
Big data in consumer marine
environment - real-time streaming and

long-term storage

Robert Kantero
Master’s thesis in Computer Engineering
Faculty of Science and Engineering
Åbo Akademi University
Supervisor: Jerker Björkqvist
2023

Abstract

The relevance of Internet of Things (IoT) and big data are ever growing as we continue to
digitize the world we live in. The space of consumer leisure boating has not yet followed
these trends as well as many other industries. In this thesis the architecture, design, and
implementation of a platform enabling real-time data streaming and big data gathering
from integrated plotters is presented. Research is made into viable technologies and de-
sign choices through various outlets and is discussed with senior staff of Nextfour. The
implemented platform works as intended at a current relatively small scale, but will need
further development in order to reach its full potential. The platform functions as an ini-
tial step in bridging the gap between IoT and big data applications in the consumer leisure
boating and other more mature industries, such as the automotive industry.

Keywords: Internet of Things, IoT, big data, MQTT, time-series data, marine, boating

Acknowledgements

First and foremost I’d like to thank Nextfour for giving me the opportunity to do my
Master’s thesis for the company. All staff were incredibly helpful in answering questions
and providing me with guidance, discussions, and resources. I especially want to thank
my team-leader and supervisor in spirit, Marko Pekkala, who not only thought of the
thesis project to begin with, but also allowed me extensive freedom in designing and
implementing the project, and was always eager to engage in conversations about my
ideas. Lastly, I want to extend my gratitude to my actual supervisors, Jerker Björkqvist
from Åbo Akademi University and Johan Wessberg from Nextfour.

Contents

1 Introduction 1

2 Project architecture 3
2.1 Overview . 3

2.1.1 Clients . 3
2.1.2 Message brokering - HailstQrm 4
2.1.3 Databases and long-term storage - ThunderQloud 4
2.1.4 Back-end server - Q-server . 4
2.1.5 Q Display . 4

2.2 New services . 4
2.2.1 HailstQrm . 5
2.2.2 ThunderQloud . 5

3 Message brokering with MQTT 6
3.1 MQTT Technical specifications . 6
3.2 Implementation . 7

3.2.1 MQTTs - secure MQTT . 7
3.2.2 MQTT Servers . 8

3.2.2.1 Broker . 8
3.2.2.2 Bridge . 9

3.2.3 Topic structure . 11
3.2.3.1 Group ID . 11
3.2.3.2 Serial Number . 11
3.2.3.3 Value set . 12

3.3 Usage . 12
3.3.1 Q Display . 12
3.3.2 Clients . 13

3.3.2.1 Publishing . 13
3.3.2.2 Subscribing . 13

3.3.2.3 Overview . 14

4 Databases and long-term storage 17
4.1 Time-series databases . 17

4.1.1 QuestDB . 18
4.2 Implementation . 18

4.2.1 QDB . 19
4.2.2 QDB2 . 20
4.2.3 Long-term storage . 20
4.2.4 Nginx . 21
4.2.5 Python scripts . 22

4.2.5.1 Enabler . 22
4.2.5.2 QDB Populator . 24
4.2.5.3 QDB2 Populator . 26
4.2.5.4 QDB Ejector . 27

4.3 Usage . 30
4.3.1 QDB . 30
4.3.2 QDB2 . 30
4.3.3 Long-term storage . 30

5 Back-end server - Q-server 31

6 Data sampling 32
6.1 Enabler . 32
6.2 Q Display . 32
6.3 QDB2 Populator . 33

7 Methodology 34
7.1 System design methodology . 34
7.2 Requirement analysis . 34

7.2.1 Decision to use MQTT for message brokering 35
7.2.2 Decision to use QuestDB . 39

7.3 Architecture . 40
7.4 Testing and validation . 41

7.4.1 HailstQrm . 41
7.4.2 ThunderQloud . 41
7.4.3 Q-server . 41

7.5 Deployment and maintenance . 41
7.6 Limitations and challenges . 42

8 Results 43
8.1 Quantitative data . 43
8.2 System performance and reliability . 43
8.3 System usability and functionality . 44
8.4 Qualitative observations . 44

9 Conclusion 46

10 Svensk sammanfattning 47
10.1 Introduktion . 47
10.2 Implementation . 47
10.3 Metodologi . 49
10.4 Resultat . 49
10.5 Slutsats . 50

Chapter 1

Introduction

The value of data is ever-increasing in today’s society. Companies use all kinds of data to
better tailor their business models and increase profits and efficiency. On the rise for some
time now, is the concept of big data. The aim is not to have a predefined metric in mind
and collect the relevant data as traditionally, but to gather vast amounts of data for some
machine learning models or other advanced analytical applications to use. The results of
these analyses may vary from completely expected metrics, to new insights not thought
of before, depending on the analytical applications used.

The space of consumer boating has not yet reached the same level of digitization as
many other markets. In the automotive industry, connected On-Board Units (OBU) have
been standard for many years already, and a subsection of Internet of Things (IoT) - In-
ternet of Vehicles (IoV)[1] - can be said to have emerged. Nextfour’s product Q Display
is a step in this direction. Q Display is an integrated plotter for consumer boats, with all
functionalities of traditional analog gauges, paper charts, and much more. Q Display is
connected to the boat’s engine/motor ECU, battery, fuel sensors, and other possible equip-
ment such as VHF radio, sonar, radar, etc. It is also connected to the internet to enable
weather services and software updates, amongst other things. All these connections mean
large amounts of different data, which all go to waste if not logged and stored somewhere.

The project at hand is to create a platform enabling big data collection from Q Dis-
plays, as well as real-time data streaming. Other internal projects will then be able to
leverage these services in order to create meaningful analyses of the gathered data. Cus-
tomers - the boat manufacturers Nextfour is in business with - will be provided access to
their Q Displays for real-time streaming. The decision on how, or if, to provide customers
with the raw big data collected from their Q Displays is yet to be decided.

This thesis presents the challenges of designing and implementing the project, the
solutions to said challenges and the technologies which the project utilizes. After this
brief introduction, the overarching architecture will be presented. This is followed by

1

several chapters of showing how the different technologies have been leveraged in order
to achieve the desired outcomes. After the technical chapters, the methodology and results
are discussed. The thesis then ends with the conclusion, and a summary in Swedish.

2

Chapter 2

Project architecture

2.1 Overview

Initially, there were only the Q Displays in the field, and their corresponding back-end
server. For simplicity’s sake, in this thesis it is referred to as Q-server. The Q Displays
and Q-server handled all communication amongst themselves. Now, three more entities
are introduced: one service for databases, one for message brokers, and the clients who
may use these new services. The database service is called ThunderQloud, while the
message broker service is called HailstQrm.

Figure 2.1: Architecture overview

2.1.1 Clients

Clients can be whatever end user leveraging HailstQrm and/or ThunderQloud. A Client
can be a human sitting at their computer, a script, or another service completely.

3

2.1.2 Message brokering - HailstQrm

HailstQrm is a virtual machine hosted in the cloud, running two services. The services
are two instances of MQTT message brokers.

2.1.3 Databases and long-term storage - ThunderQloud

ThunderQloud is similar to HailstQrm, but the services it runs differ slightly. There are
two database instances along with their own web servers, an Nginx server, and a handful
of Python scripts.

2.1.4 Back-end server - Q-server

Q-server is the backbone for the Q Displays’ operations, which are outside of the scope
of this thesis. Some additional implementation to Q-server which allows for HailstQrm
and ThunderQloud functionality will be presented in chapter 5.

2.1.5 Q Display

Q Displays are the integrated plotters in consumer boats, which handle large amounts of
data. Some critical pieces of data are already extracted, but this project aims to further
extend the availability of said data.

2.2 New services

As no architectural changes are needed for Q-server or the Q Displays, deeper dives into
their architecture is outside the scope of this thesis. HailstQrm’s and ThunderQloud’s
architectures will be explained further.

They are both running on their own virtual machine instances, under the same cloud
project. This greatly increases ease in networking configuration, as they reside in the same
Virtual Private Cloud. The VPC has its own network, meaning the VM instances share this
network and can communicate with each other. It is also easy to configure firewall rules
to the outside internet via this VPC. This allows fine-grained control of which protocols
and from which sources clients can connect to the VMs and the services running inside
them.

The VMs run a generic Linux operating system, together with a custom startup script.
This script pulls the latest version of the project branch’s source code and executes another
service-specific startup script found there. This way the VMs’ startup scripts remain
untouched, and changes to the actual source code’s startup scripts will not be reflected in

4

the VM instances’ startup script. Both service-specific startup scripts ensure the presence
of all necessary dependencies, namely Docker Compose[2], export environment variables,
and run commands to start the services specified in their compose.yaml files.

2.2.1 HailstQrm

HailstQrm consists of two services specified in its compose.yaml file. There are two
instances of MQTT brokers: Broker and Bridge. The Broker and Bridge services are
official Docker images of eclipse-mosquitto[3], with custom configurations.

2.2.2 ThunderQloud

ThunderQloud’s list of services is rather robust compared to that of HailstQrm. There
are two instances of QuestDB database Docker images[4] - QDB and QDB2 - a service
running the official Nginx[5] Docker image, as well as three instances of Python services
running their scripts. The Python scripts are run in Python’s official alpine Docker im-
ages[6]. Additionally, there are two persistent disks mounted onto this VM instance. One
disk is used by the databases, as their data needs to be persisted after reboots. The other
is used for long-term storage.

5

Chapter 3

Message brokering with MQTT

This chapter discusses HailstQrm’s archiutecture and the services it runs in more detail.
Message Queuing Telemetry Transport (MQTT) and its implementation is also presented.

3.1 MQTT Technical specifications

Two types of entities are present in MQTT v3.1.1, Clients and Servers. It is always Clients
who establish the network connection to the Server. A Client is a program or device that
uses MQTT, and it can do four things:

• Publish Application Messages to a certain Topic

• Subscribe to a Topic in order to receive Application Messages published to that
Topic

• Unsubscribe from a Topic

• Disconnect from the Server.

A Server is also a program or device, acting as an intermediary between Clients. The
Server also does four things. It:

• Accepts Network Connections from Clients

• Accepts Application Messages published by Clients

• Processes Subscribe and Unsubscribe requests from Clients

• Forwards Application Messages that match Client Subscriptions.

6

Control Packets are the packets carried across the network by the MQTT protocol. Dif-
ferent types of Control Packets have different structures, but for this application the most
interesting types are the PUBLISH, SUBSCRIBE, and UNSUBSCRIBE Control Pack-
ets. The PUBLISH type Control Packet is used to convey Application Messages, while
the SUBSCRIBE and UNSUBSCRIBE type Control Packets are used to un/subscribe to
Topics.

PUBLISH type Control Packets have header fields for Quality of Service and a Topic
Name. Quality of Service determines how many times the packet is to be sent. It can be
sent at most once, at least once, or exactly once. This enables reliability in situations with
unstable network connections. The Topic Name must also be specified for each packet,
as the basic concept of MQTT is to publish to and to subscribe to certain Topics. The
Application Message itself is located in the payload of the packet.

SUBSCRIBE type Control Packets’ payload need to include a maximum Quality of
Service/Topic Filter pair. This means the subscribing Client is required to choose their
own Quality of Service, regardless of what the publishing Client chose. The Topic Filter
is an expression contained in a Subscription, to indicate an interest in one or more Topics.
A Topic Filter can include wildcard characters.

The UNSUBSCRIBE type Control Packets’ payload contain at least one Topic Filter
to unsubscribe from. [7]

3.2 Implementation

There are multiple aspects that pertain to the implementation of the MQTT stack in this
project.

• Communications need to be secure

• MQTT Servers are needed

• A topic structure is to be defined, so that communications can be organized and
different services can utilize them efficiently.

In the following subsections, these points will be detailed further.

3.2.1 MQTTs - secure MQTT

This section will cover the authentication aspect of secure communications, while the
server configuration section will cover authorization.

Eclipse Mosquitto is an open source message broker implementing MQTT[8]. It uses
Transmission Control Protocol (TCP) as its underlying transport protocol and is thus able

7

to leverage Transport Layer Security (TLS)[9]. To enable the use of TLS the servers
will need their individual server certificates and the clients will need client certificates.
The company has an in-house Certificate Authority (CA), which is used to issue these
certificates. The certificates used are RSA encrypted SHA-256 X.509 certificates.

3.2.2 MQTT Servers

The two servers - Broker and Bridge - need to be configured in order to use TLS for au-
thentication. They also need some sort of authorization, in order to make communications
secure. In this section, the server configurations will be presented.

3.2.2.1 Broker

The configuration file of Broker looks as follows:

l i s t e n e r XXXX

r e q u i r e _ c e r t i f i c a t e t r u e
u s e _ i d e n t i t y _ a s _ u s e r n a m e t r u e

c a f i l e / m o s q u i t t o / d a t a / c a c e r t s / ca . c r t
c e r t f i l e / m o s q u i t t o / d a t a / c e r t s / c e r t . c r t
k e y f i l e / m o s q u i t t o / d a t a / c e r t s / c e r t . key

p l u g i n / u s r / l i b / m o s q u i t t o _ d y n a m i c _ s e c u r i t y . so
p l u g i n _ o p t _ c o n f i g _ f i l e / m o s q u i t t o / d a t a / dynsec / d y n a m i c _ s e c u r i t y . j s o n

l o g _ t y p e e r r o r , warning , n o t i c e
l o g _ t y p e i n f o r m a t i o n

Figure 3.1: MQTT Server configuration file broker.conf

Mosquitto servers can define custom ports which they listen to. Any settings below the
listener line apply only to that specific port, until the optional next listener is spec-
ified. Specifying a port together with the configuration options require_certificate
and use_identity_as_username set to true, connecting Clients are required to authen-
ticate using TLS certificates. The field Common Name (CN) in the Client’s certificate
Subject field is used as the connecting Client’s username. In order to make authentication

8

possible, the server needs a CA certificate, server certificate, and its corresponding pri-
vate key. These are mounted into the Docker Compose service into the paths specified in
cafile, certfile, and keyfile[9].

In order to add authorization together with authentication, Broker uses Mosquitto’s
Dynamic Security plugin[10]. The plugin allows the creation of three main objects,
clients, groups, and roles. In this context, clients are the objects created in the
plugin, and the actual MQTT Clients connecting to the server are called users.

Clients have many attributes, but in this application the key attributes are username,
groups, and roles. Username maps to the username provided in the CONNECT Control
Packet when a user connects. This is a key feature, as previously mentioned in the
Server configuration file, it is specified that the connecting user’s certificate CN is used
as username. This way users can be mapped to specific Client certificates. A client

can be member of any number of groups and be assigned any number of roles.
Groups can host multiple clients and have roles assigned to them. This allows for

multiple different clients to share specific roles via one group.
Roles contain Access Control Lists (ACLs), and can be assigned to clients and/or

groups. ACLs are constructed by listing the acltype, topic, priority, and allow

values.
At the time of writing this thesis, the Dynamic Security plugin does not support vari-

ables in the ACLs, which forces the creation of multiple roles. The author of Mosquitto,
Roger Light, promises this feature in an upcoming release[11]. This would greatly re-
duce the bloat of the dynamic_security.json file, as most clients could be lumped
under the same role. Example dynamic_security.json files with and without bloat
are presented in figures 3.2 and 3.3

3.2.2.2 Bridge

The configuration file for Bridge looks as follows:

9

l i s t e n e r YYYY

r e q u i r e _ c e r t i f i c a t e t r u e
u s e _ i d e n t i t y _ a s _ u s e r n a m e t r u e

c o n n e c t i o n b r i d g e − to − b r o k e r
a d d r e s s ${BROKER_ADDRESS}:8883

t o p i c + / + / s y s / cmd i n 0

t o p i c + / + / s y s / # o u t 0
t o p i c + / + / r e s / # o u t 0

l o c a l _ c l i e n t i d incoming
r e m o t e _ c l i e n t i d o u t g o i n g

c a f i l e / m o s q u i t t o / d a t a / c a c e r t s / ca . c r t
c e r t f i l e / m o s q u i t t o / d a t a / c e r t s / c e r t . c r t
k e y f i l e / m o s q u i t t o / d a t a / c e r t s / c e r t . key

b r i d g e _ c a f i l e / m o s q u i t t o / d a t a / c a c e r t s / ca . c r t
b r i d g e _ c e r t f i l e / m o s q u i t t o / d a t a / c e r t s / b r i d g e . c r t
b r i d g e _ k e y f i l e / m o s q u i t t o / d a t a / c e r t s / b r i d g e . key

a c l _ f i l e / m o s q u i t t o / c o n f i g / a c l . con f

l o g _ t y p e e r r o r , warning , n o t i c e
l o g _ t y p e i n f o r m a t i o n

Figure 3.4: MQTT Server configuration file bridge.conf

As both Broker and Bridge share the same host VM, they need different ports to listen
to. Although it is possible to use the same port in the configuration file for the Bridge
service and have Docker Compose map the service port to a different host port, for clarity
it is easier to just define another port in the configuration file. Enabling TLS is the same
as for Broker, but using Bridge as an MQTT bridge requires additional certificates. These
files can be seen in the configuration file under bridge_cafile, bridge_certfile, and

10

bridge_keyfile. The combination of both sets of certificates enables Bridge to both act
as its own standalone MQTT server and as an MQTT client to Broker[9].

A connection to Broker is defined under connection and address. The topic key-
word specifies which topics are to be bridged. The syntax is topic topic pattern

direction QoS. The direction can have the following values;

• out = publish from the broker

• in = receive from remote broker

• both = publish and receive.

In the above context, broker refers to the broker being configured, while remote broker
refers to its paired broker[12]. In this case Bridge is broker and Broker is remote broker.
This configuration ensures that messages sent to Bridge on topics +/+/sys/cmd are not
forwarded to Broker, rather it subscribes to this topic from Broker. Bridge will forward
messages to Broker sent to it on topics +/+/sys/# and +/+/res/#.

Authorization is simpler for Bridge, as there are but two predefined types of connect-
ing users. There are scripts, which use a specific TLS certificate, as well as Q Displays,
which all have a certain type of certificate. The scripts are granted readwrite access
to all topics, while the Q Displays are granted readwrite access to topic filter +/%u/#,
meaning wildcard/username/wildcard. Other users are denied[9].

3.2.3 Topic structure

3.2.3.1 Group ID

Group IDs (GIDs) are the base of the topic structure. Each Q Display belongs to one or
more GIDs. By creating GIDs for each of our customers, ourselves, and possible future
needs, access to different sets of Q Displays via MQTT is easy. This Q Display - GID
relationship is not trivial to manage and will be further explored in chapter 5.

3.2.3.2 Serial Number

Each Q Display has its own unique Serial Number (SN), which matches its TLS certificate
CN. This means the Q Displays may share different topic roots with others, but branch
out into their own topic leafs, e.g:

• {GID 1}/{SN 1}/#

• {GID 1}/{SN 2}/#

11

• {GID 1}/{SN 3}/#

• {GID 2}/{SN 1}/#

• {GID 2}/{SN 3}/#

• {GID 2}/{SN 4}/#

can be seen as:

• {GID 1}/ <- shared topic

– {SN 1}/# <- private topic

– {SN 2}/# <- private topic

– {SN 3}/# <- private topic

• {GID 2}/ <- shared topic

– {SN 1}/# <- private topic

– {SN 3}/# <- private topic

– {SN 4}/# <- private topic.

3.2.3.3 Value set

Value set is Q Display’s proprietary method for inter-application communication. Values -
such as RPM, GPS position, etc. - are addressed by specified combinations of SetId (SID),
ValueId (VID), and InstanceId (IID). These are used extensively in the topic structure.

3.3 Usage

3.3.1 Q Display

Q Displays have a list of GIDs they belong to and instantiate a number n amount of Clients
subscribing to each available combination of {GID}/{SN}/sys/cmd topic on startup.
They publish a message containing a session ID in the form of a UUID to corresponding
{GID}/{SN}/sys/valueset/{SID}/{VID}/{IID} topic. Then they wait for incoming
commands from Clients. Messages received on topic {GID}/{SN}/sys/cmd are handled
appropriately. All message payloads are JSON[13] formatted. If the command received
is valid, a response indicating so will be sent to topic {GID}/{SN}/res/cmd/{cmd}.
If the command cannot be resolved, a message indicating so will be published to topic
{GID}/{SN}/res/cmd.

12

3.3.2 Clients

For this application, the interesting topics are:

• {GID}/{SN}/sys/cmd

• {GID}/{SN}/res/cmd

• {GID}/{SN}/res/cmd/{cmd}

• {GID}/{SN}/sys/valueset/{SID}/{VID}/{IID}

and their usages will be explored further. As can be seen in figures 3.2 and 3.3, Clients
are restricted to topics starting with their own GID. This ensures access to only the Q
Displays they are authorized to access.

3.3.2.1 Publishing

As Q Displays only subscribe to topic(s) {GID}/{SN}/sys/cmd, this is the topic Clients
use to issue commands to Q Displays. The payload of messages published on this topic
contain the commands the Client wishes the Q Display to execute. The commands
enable-value and set-valueset-update-interval are the two commands in scope.
As Q Display’s value set concept is proprietary, the payloads for these commands will not
be shared publicly.

Enabling a value set value for streaming is done with enable-value. Multiple Val-
ueIds and InstanceIds can be enabled simultaneously, but disabling value set value stream-
ing must be done using an entire SetId, ValueId, InstanceId combination.

The other command in scope, set-valueset-update-interval, is used to set the
minimum interval for receiving value set value changes in milliseconds. Changes are
reported if the time difference between the last and current report exceeds the interval.
Interval value 0 will report changes immediately.

Publishing has to be done to one specific topic, so wildcard topics are not available.
Commands can thus be sent to one individual Q Display per message.

3.3.2.2 Subscribing

By subscribing to the topic {GID}/{SN}/sys/valueset/{SID}/{VID}/{IID} corre-
sponding to Q Display session ID, the Client will be notified when a Q Display matching
the {GID}/{SN} comes online. This is useful for automation, e.g sending a predefined
enable-value command to the Q Display. By then subscribing to either each individual
{GID}/{SN}/sys/valueset/{SID}/{VID}/{IID} topic,

13

{GID}/{SN}/sys/valueset/#, or any other combination, the Client can receive the in-
tended data. For information about issued commands, the Client can also subscribe to
topics {GID}/{SN}/res/#. Receiving all communication the Q Display sends out can of
course be received by subscribing to topic {GID}/{SN}/#.

Subscriptions support wildcards in the topic filter, meaning one Client can subscribe
to their entire GID at once, via a subscription to topic {GID}/#. Other combinations are
of course allowed, such as {GID}/+/sys/valueset/#, if all value set value data from
all Q Displays in this GID is the intended target for subscription.

3.3.2.3 Overview

In figure 3.5, the MQTT architecture is displayed. Clients communicate with Broker,
unknowing of Bridge’s existence. Q Displays communicate with Bridge, unknowing of
Broker’s existence. As Broker has strict authorization, the multiple Q Displays - who are
all equal Clients - are funneled into one Client (Bridge) from Broker’s point of view.

Figure 3.5: MQTT communications diagram

14

1 {
2 "defaultACLAccess": {...},
3 "clients": [{
4 "username": "master_client",
5 "roles": [{
6 "rolename": "master"
7 }],
8 }, {
9 "username": "client_0001",

10 "roles": [{
11 "rolename": "role0001"
12 }]
13 }, {
14 "username": "client_0002",
15 "roles": [{
16 "rolename": "role0002"
17 }]
18 }, ...
19],
20 "groups": [],
21 "roles": [{
22 "rolename": "master",
23 "acls": [{
24 "acltype": "publishClientSend",
25 "topic": "#",
26 "priority": 0,
27 "allow": true
28 }, {
29 "acltype": "publishClientReceive",
30 "topic": "#",
31 "priority": 0,
32 "allow": true
33 }, {
34 "acltype": "subscribePattern",
35 "topic": "#",
36 "priority": 0,
37 "allow": true
38 }, {
39 "acltype": "unsubscribePattern",
40 "topic": "#",
41 "priority": 0,
42 "allow": true
43 }]
44 }, {
45 "rolename": "role0001",
46 "acls": [{
47 "acltype": "publishClientSend",
48 "topic": "0001/#",
49 "priority": 0,
50 "allow": true
51 }, {
52 "acltype": "publishClientReceive",
53 "topic": "0001/#",
54 "priority": 0,
55 "allow": true
56 }, {
57 "acltype": "subscribePattern",
58 "topic": "0001/#",
59 "priority": 0,
60 "allow": true
61 }, {
62 "acltype": "unsubscribePattern",
63 "topic": "0001/#",
64 "priority": 0,
65 "allow": true
66 }]
67 }, {
68 "rolename": "role0002",
69 "acls": [{
70 "acltype": "publishClientSend",
71 "topic": "0002/#",
72 "priority": 0,
73 "allow": true
74 }, {
75 "acltype": "publishClientReceive",
76 "topic": "0002/#",
77 "priority": 0,
78 "allow": true
79 }, {
80 "acltype": "subscribePattern",
81 "topic": "0002/#",
82 "priority": 0,
83 "allow": true
84 }, {
85 "acltype": "unsubscribePattern",
86 "topic": "0002/#",
87 "priority": 0,
88 "allow": true
89 }]
90 }, ...
91]
92 }

Figure 3.2: Example Dynamic Security configuration file with bloat, due to no variable
support in ACLs.

15

1 {
2 "defaultACLAccess": {...},
3 "clients": [{
4 "username": "master_client",
5 "roles": [{
6 "rolename": "master"
7 }],
8 }, {
9 "username": "client_0001",

10 "groups": [{
11 "groupname": "clients"
12 }]
13 }, {
14 "username": "client_0002",
15 "groups": [{
16 "groupname": "clients"
17 }]
18 }, ...
19],
20 "groups": [{
21 "groupname": "clients"
22 "rolename": "clients_role"
23 }],
24 "roles": [{
25 "rolename": "master",
26 "acls": [{
27 "acltype": "publishClientSend",
28 "topic": "#",
29 "priority": 0,
30 "allow": true
31 }, {
32 "acltype": "publishClientReceive",
33 "topic": "#",
34 "priority": 0,
35 "allow": true
36 }, {
37 "acltype": "subscribePattern",
38 "topic": "#",
39 "priority": 0,
40 "allow": true
41 }, {
42 "acltype": "unsubscribePattern",
43 "topic": "#",
44 "priority": 0,
45 "allow": true
46 }]
47 }, {
48 "rolename": "clients_role",
49 "acls": [{
50 "acltype": "publishClientSend",
51 "topic": "{client:username}/#",
52 "priority": 0,
53 "allow": true
54 }, {
55 "acltype": "publishClientReceive",
56 "topic": "{client:username}/#",
57 "priority": 0,
58 "allow": true
59 }, {
60 "acltype": "subscribePattern",
61 "topic": "{client:username}/#",
62 "priority": 0,
63 "allow": true
64 }, {
65 "acltype": "unsubscribePattern",
66 "topic": "{client:username}/#",
67 "priority": 0,
68 "allow": true
69 }]
70 }]
71 }

Figure 3.3: Example Dynamic Security configuration file without bloat, due to variable
support in ACLs.

16

Chapter 4

Databases and long-term storage

This chapter presents the architecture and implemented services of ThunderQloud, as well
as what time-series databases and QuestDB are.

4.1 Time-series databases

Time-series databases are designed to efficiently store and process time-series data, i.e.
data points associated with timestamps. Examples of typical time-series data include
financial market data and sensor readings. Time-series data have key characteristics due
to their temporal nature.

• The order of data is important.

• The volume of data is typically very large.

• Data flow is uninterrupted within a time window, continuous or cyclical.

• Over time, the relevance of each individual data point diminishes.

• Aggregation or down-sampling is leveraged for analysis over time intervals.

These characteristics lend themselves to identifying trends over time. This can be used to
create models for forecasting or anomaly detection, for example.

Time-series databases focus on ingestion speed rather than transactional guarantees,
offered in SQL databases. Data is usually written by appending, rather than updating
records. Streaming protocols, such as InfluxDB line protocol (ILP)[14], further speed up
ingestion. ILP is a text-based protocol that can compactly represent data points and ingest
lines - data points - schema-lessly. Once ingested, data is indexed and partitioned by time,
allowing for fast retrieval for time-based queries. Built-in interpolation, down-sampling,
and aggregation functions also allow for fast queries. Older data can also efficiently be
stored and archived using compression and retention techniques[15].

17

4.1.1 QuestDB

QuestDB is a time-series database with an engine built from the ground up to be both as
efficient as possible and easy to use. Data can be inserted and queried via multiple meth-
ods, but for this application ILP is used for ingestion, while Postgres wire protocol and
the inbuilt HTTP server are used for querying. More about the decision to use QuestDB
in chapter 7.

4.2 Implementation

As mentioned in section 2.2.2, there are two QuestDB instances. A mounted persistent
disk hosts the data for both QuestDB instances. Each instance uses a slightly modified
configuration file. ILP is the preferred ingestion method and as such enabled by default
in the configuration. Postgres wire protocol needs user configuration, and the in-built
HTTP server is not set to read only mode by default. The symbol capacity is set to 256
by default. The full configuration options can be found at QuestDB’s web page[16].

Symbols are a data type unique to QuestDB. It is an optimized way to store repetitive
strings[17]. They are used in QDB as identifiers for Q Displays. The QuestDB configu-
ration documentation states the symbol cache should be roughly equal to the number of
unique symbols in the database. The capacity must be a power of two. Having many more
symbols than the cache will negatively impact performance. As there are many more Q
Displays than 256, this value needs to be modified. Figure 4.1 lists the modifications to
the configuration files.

18

C a i r o e n g i n e
c a i r o . d e f a u l t . symbol . c a p a c i t y = 8192

REST API
h t t p . s e c u r i t y . r e a d o n l y = t r u e
d e f a u l t s t o f a l s e , b u t ENV VARs a lways o v e r r i d e con f f i l e

P o s t g r e s wi r e p r o t o c o l

pg . r e a d o n l y . u s e r . e n a b l e d = t r u e
pg . r e a d o n l y . u s e r = XXXX
pg . r e a d o n l y . password = XXXX

pg . u s e r = XXXX
pg . password = XXXX

Figure 4.1: QuestDB server.conf

4.2.1 QDB

QDB is used for big data purposes. A large fraction all available data produced by Q
Displays is stored here. The aim is to have the largest possible amount of data - within
reason - to be able to create useful insights later on. There is one big database table, to
which all Q Displays populate data. As seen in section 3.3, the Q Displays stream data
according to the value set concept. This means the database table needs to reflect this.
The table has six columns:

• SN (symbol) Q Display Serial Number

• SID (int) SetId

• VID (int) ValueId

• IID (int) InstanceId

• val (double) value

• ts (timestamp) timestamp.

The table is partitioned daily by the timestamp column. Value sets are enumerated, which
gives easy access to specific value set values via SQL query. Complicated queries to this

19

table are cumbersome due to its structure. Fortunately, queries to this table are rare to non-
existent. This is due to the facts that resources are somewhat limited, use cases are not yet
clearly defined, and the data are only retained for a certain time. The data are exported to
long-term storage, in order to save costs. Data ingestion, retention, and ejection will be
presented in sections 4.2.5.2 and 4.2.5.4.

4.2.2 QDB2

QDB2 is used for statistical analysis on predefined metrics. The table structure is different
from QDB, as each Q Display has its own table. All tables are similar in this database,
and similar to the one table in QDB, except missing the SN column, as that information is
carried in the table name instead. This allows for fast queries on data from a specific Q
Display. As each table hosts less data by many orders of magnitude than the table in QDB,
data retention is much more relaxed. At the time of writing, QuestDB’s own partitioning
system handles the volume of data without issue, meaning no custom data retention or
ejection strategies are yet required. Data ingestion will be presented in section 4.2.5.3.

4.2.3 Long-term storage

The other persistent disk mounted on ThunderQloud is the long-term storage disk. Data
from QDB is compressed and moved to this disk. The directory structure is much more
user-friendly than the table in QDB would suggest. The structure is designed to allow
for easy pin-point precision in data extraction for future analysis. Each Q Display be-
longs to one or more GIDs as previously established. There might not be a "primary"
GID it belongs to, or it may change GIDs over time. As such, all Q Displays have their
own directory structure under one shared directory. The shared directory is called data.
Each Q Display has its own sub-directory data/{SN}. Furthermore, as section 4.2.5.4
will cover, data is added on a daily basis, so each data/{SN} directory has its own
data/{SN}/{DT} directories. In these daily directories, each value set has its own zip
file, {SN}_{DT}_{SID}_{VID}.zip. Note, that InstanceId is not reasonable to split into
its own file, as InstanceId only separates different instances producing the same type of
data.

In order to be able to group Q Displays together with their peers based on GID, sym-
bolic links are used. This way, the symbolic link
org_data/{GID}/{SN}/{DT}/{SN}_{DT}_{SID}_{VID}.zip points to the same file as
corresponding hard link data/{SN}/{DT}/{SN}_{DT}_{SID}_{VID}.zip. If a Q Dis-
play changes GIDs, no hard links need to be tampered with. This also eliminates the need
of duplicating data because of multiple GIDs for one Q Display. More on how this is

20

achieved in section 4.2.5.4.

4.2.4 Nginx

The use of an nginx proxy server is needed, as the in-built QuestDB web server only
supports HTTP - not HTTPS - and the port number it listens to is fixed at a certain port
number. Without an nginx proxy, the QuestDB Docker Compose services - QDB and
QDB2 - would be required to expose their ports to the host VM, and be mapped to ports
different from each other. Connections to these ports would be unauthenticated plain-text
HTTP connections. For ease of use, as well as security reasons, access via subdomain
names combined with SSL encryption, authentication, and authorization is preferred over
unauthenticated, unauthorized, and unencrypted connections to specific port numbers.
This way, the services don’t need to expose ports to the VM, since Docker Compose
creates its own network, where the services can communicate with each other by name.
The nginx service is thus the only service out of these three that needs to expose a port.

The nginx service has two servers configured. Both listen for SSL connections on the
same port, but under different server names. As such, different subdomain names route
to different QuestDB instances. The server block for QDB in the nginx configuration
file is presented in figure 4.2. Another server block for QDB2 is present, with its unique
characteristics. Nginx authenticates and authorizes connecting clients based on provided
certificates.

21

. . .
s e r v e r {

l i s t e n XXX s s l ;
s e rve r_name sub . domain . com ;

s s l _ c e r t i f i c a t e / e t c / ng inx / c e r t s / s e r v e r . c r t ;
s s l _ c e r t i f i c a t e _ k e y / e t c / ng inx / c e r t s / s e r v e r . key ;

s s l _ c l i e n t _ c e r t i f i c a t e / e t c / ng inx / c e r t s / ca . c r t ;
s s l _ v e r i f y _ c l i e n t on ;

s e t $ c l i e n t _ c n $ s s l _ c l i e n t _ s _ d n ;
i f ($ c l i e n t _ c n !~* "CN=XXXX") {

r e t u r n 403 ;
}

l o c a t i o n / {
p r o x y _ p a s s h t t p : / / QDB:XXXX/ ;
p r o x y _ s e t _ h e a d e r Host $ h o s t ;
p r o x y _ s e t _ h e a d e r X−Real − IP $ r e m o t e _ a d d r ;

}
}
. . .

Figure 4.2: Snippet from nginx.conf

4.2.5 Python scripts

The following Python scripts running in their respective Docker Compose services handle
their own specific tasks. All tasks are essential for ThunderQloud’s operations.

4.2.5.1 Enabler

The enabler script enables database population for Q Displays. It uses the paho-mqtt
library[18] to instantiate an MQTT client. This client subscribes to a database-specific Q
Display session ID topic on HailstQrm. When a Q Display sends a message indicating it
is online, a callback function parses the necessary information and runs an initialization
routine function. This function generates a command that is sent back to the specific Q

22

Display. The command tells the Q Display to start populating the database. Pseudo-code
for this script can be seen in figure 4.3.

The Q Display does not start sending multitudes of individual messages with one value
and a timestamp in JSON format like it does when streaming data in real time. Rather it
collects data into organized JSON arrays in larger chunks first, then encodes these chunks
of JSON into CBOR[19] and only then sends the message to db/{SN}. CBOR is short for
Concise Binary Object Representation and is based on the JSON data model. As JSON
is a text-based and CBOR is a binary data format, the overall footprint in data usage
is smaller this way. There are fewer messages sent, and the larger amount of data per
message - not necessarily by size, but by amount of information - is not as compromising
due to the concise packing achieved by CBOR.

1 i m p o r t s
2
3 HOST= os . g e t e n v ("BROKER_ADDRESS")
4 PORT= 8883
5
6 CA_PATH = some p a t h
7 CERT_PATH = some p a t h
8 KEY_PATH = some p a t h
9

10 LISTEN_GID = some GID
11
12 ENABLED_VALUES = [
13 some v a l u e s
14]
15
16 # The c a l l b a c k f o r when t h e c l i e n t r e c e i v e s a CONNACK r e s p o n s e from t h e s e r v e r .
17 d e f o n _ c o n n e c t (c l i e n t , u s e r d a t a , f l a g s , r c) :
18
19 # S u b s c r i b i n g i n o n _ c o n n e c t () means t h a t i f we l o s e t h e c o n n e c t i o n and
20 # r e c o n n e c t t h e n s u b s c r i p t i o n s w i l l be renewed .
21 c l i e n t . s u b s c r i b e (d a t a b a s e s p e c i f i c s e s s i o n ID t o p i c)
22
23 # The c a l l b a c k f o r when a PUBLISH message i s r e c e i v e d from t h e s e r v e r .
24 d e f on_message (c l i e n t , u s e r d a t a , msg) :
25 h a n d l e _ p a y l o a d (msg . t o p i c , msg . p a y l o a d)
26
27 d e f h a n d l e _ p a y l o a d (t o p i c , p a y l o a d) :
28 p a r s e t o p i c and p a y l o a d
29
30 i f (s u i t a b l e c o n d i t i o n) :
31 d e v i c e _ i n i t i a l i z a t i o n _ r o u t i n e (GID , SN)
32
33 d e f d e v i c e _ i n i t i a l i z a t i o n _ r o u t i n e (gid , sn) :
34
35 f o r v a l u e i n ENABLED_VALUES:
36 p a y l o a d = {
37 command
38 }
39 c l i e n t . p u b l i s h (t o p i c =Q D i s p l a y s p e c i f i c t o p i c , p a y l o a d = j s o n . dumps (p a y l o a d))
40
41 c l i e n t = mqt t . C l i e n t ()
42 c l i e n t . o n _ c o n n e c t = o n _ c o n n e c t
43 c l i e n t . on_message = on_message
44 c l i e n t . t l s _ s e t (CA_PATH, CERT_PATH , KEY_PATH)
45 c l i e n t . c o n n e c t (HOST, PORT, 60)
46
47 # B l o c k i n g c a l l t h a t p r o c e s s e s ne twork t r a f f i c , d i s p a t c h e s c a l l b a c k s and
48 # h a n d l e s r e c o n n e c t i n g .
49 c l i e n t . l o o p _ f o r e v e r ()

Figure 4.3: Enabler script pseudo-code

23

4.2.5.2 QDB Populator

This script populates QDB’s database with data from Q Displays. It uses the paho-mqtt,
cbor2[20], and questdb[21] libraries, as well as some Python native ones.

The paho-mqtt library is again used to instantiate an MQTT client, which subscribes
to the topic filter db/+ on Bridge in HailstQrm. This script, as well as QDB2’s populator
script, are the only Clients other than Q Displays allowed to contact Bridge directly. The
reason is to not unnecessarily burden the MQTT servers with additional traffic, as mes-
sages on this topic are strictly meant for database population. Thus other Clients never
have any need to see them.

When a message is received, the callback function runs a function handling the pay-
load. This function:

1. Validates Q Display serial number

2. Decodes the CBOR encoded payload

3. Connects to the database

4. Validates an entry in the decoded payload

5. Writes valid entry as a row and places it in buffer

6. Repeats steps 4 and 5 until there are no more entries

7. Flushes buffer.

Pseudo-code for this script can be seen in figure 4.4.

24

1 i m p o r t s
2
3 HOST= os . g e t e n v ("BROKER_ADDRESS")
4 PORT= 8882
5
6 CA_PATH = some p a t h
7 CERT_PATH = some p a t h
8 KEY_PATH = some p a t h
9

10 P_IDX_TS = 0
11 P_IDX_SID = 1
12 P_IDX_VID = 2
13 P_IDX_IID = 3
14 P_IDX_VAL = 4
15
16 d e f v a l i d a t e _ s n (SN) :
17 some l o g i c
18 r e t u r n boo l
19
20 d e f v a l i d a t e _ p a y l o a d (p a y l o a d) :
21 some l o g i c
22 r e t u r n boo l
23
24 d e f v a l i d a t e _ t i m e s t a m p (t s) :
25 some l o g i c
26 r e t u r n boo l
27
28 # The c a l l b a c k f o r when t h e c l i e n t r e c e i v e s a CONNACK r e s p o n s e from t h e s e r v e r .
29 d e f o n _ c o n n e c t (c l i e n t , u s e r d a t a , f l a g s , r c) :
30
31 # S u b s c r i b i n g i n o n _ c o n n e c t () means t h a t i f we l o s e t h e c o n n e c t i o n and
32 # r e c o n n e c t t h e n s u b s c r i p t i o n s w i l l be renewed .
33 c l i e n t . s u b s c r i b e (" db / + " , qos=1)
34
35 # The c a l l b a c k f o r when a PUBLISH message i s r e c e i v e d from t h e s e r v e r .
36 d e f on_message (c l i e n t , u s e r d a t a , msg) :
37 h a n d l e _ p a y l o a d (msg . t o p i c , msg . p a y l o a d)
38
39 d e f h a n d l e _ p a y l o a d (t o p i c , p a y l o a d) :
40 t = t o p i c . s p l i t (" / ")
41 sn = t [1]
42
43 i f v a l i d a t e _ s n (sn) :
44 d a t a = cbo r 2 . l o a d s (p a y l o a d)
45 t r y :
46 wi th Sender ("QDB" , 9009) as s e n d e r :
47 f o r e i n d a t a :
48 u i n t _ v a l u e =e [P_IDX_TS]
49 t s = i n t (u i n t _ v a l u e) / 1000
50 d t = d a t e t i m e . f romt imes tamp (t s)
51 nano = TimestampNanos . f r o m _ d a t e t i m e (d t)
52
53 i f v a l i d a t e _ p a y l o a d (e) and v a l i d a t e _ t i m e s t a m p (d t) :
54 s e n d e r . row (
55 ' t ab lename ' ,
56 symbols ={
57 ' SN ' : sn
58 } ,
59 columns ={
60 ' SID ' : e [P_IDX_SID] ,
61 ' VID ' : e [P_IDX_VID] ,
62 ' IID ' : e [P_IDX_IID] ,
63 ' va l ' : e [P_IDX_VAL] ,
64 } ,
65 a t =nano
66)
67 s e n d e r . f l u s h ()
68 e x c e p t I n g r e s s E r r o r a s e :
69 s y s . s t d e r r . w r i t e (f ' Got e r r o r : { e } \ n ')
70
71 c l i e n t = mqt t . C l i e n t ()
72 c l i e n t . o n _ c o n n e c t = o n _ c o n n e c t
73 c l i e n t . on_message = on_message
74
75 c l i e n t . t l s _ s e t (CA_PATH, CERT_PATH , KEY_PATH)
76 c l i e n t . c o n n e c t (HOST, PORT, 60)
77
78 # B l o c k i n g c a l l t h a t p r o c e s s e s ne twork t r a f f i c , d i s p a t c h e s c a l l b a c k s and
79 # h a n d l e s r e c o n n e c t i n g .
80 c l i e n t . l o o p _ f o r e v e r ()

Figure 4.4: QDB Populator script pseudo-code

25

4.2.5.3 QDB2 Populator

This script works similarly to QDB’s populator script, but has some added functionality.
It uses the same libraries and the MQTT client works the same way. There are only a
handful of selected value sets allowed in this database, and the database schema differs
slightly as well. As it would cost Q Displays additional network load to send only the
selected values to a different topic for this MQTT client to receive, this client subscribes
to the same topic as the client in QDB’s populator script. The same callback for received
messages is implemented here as well. The function handling the payload needs some
additional parsing logic, however. Initially, the same instructions apply: extract the serial
number from the topic and decode the payload. This is where the two scripts branch off.
The control flow of the function can be summarized as below:

1. Validate Q Display serial number

2. Decode the CBOR encoded payload

3. Validate an entry in the decoded payload

4. Add valid entry to a list

5. Repeat steps 3 and 4 until no more entries

6. If the list is populated, connect to database and input list.

The validation process now has an additional validity check, validate_update_interval().
This function leverages the global variables ALLOWED_COMBINATIONS and last_updated_dict.
These variables keep a record of which value sets for which Q Displays have been inserted
into the database at which timestamps. The validate_update_interval() function
only validates entries for which the desired time interval has passed since last insertion as
true.

The database connection is established in the same manner, a Sender object is used
to create rows, which are then flushed. The mechanism for populating these rows is
slightly different, which can be seen in in figure 4.5. The figure displays the difference in
implementation from QDB’s Populator script .

26

1 INTERVAL_10 = t i m e d e l t a (s e c o n d s =10)
2 INTERVAL_60 = t i m e d e l t a (s e c o n d s =60)
3
4 ALLOWED_COMBINATIONS = {
5 some v a l u e s e t c o m b i n a t i o n s
6 }
7
8 # D i c t i o n a r y t o s t o r e l a s t u p d a t e d t imes t amp f o r each key
9 l a s t _ u p d a t e d _ d i c t = {}

10
11 d e f v a l i d a t e _ u p d a t e _ i n t e r v a l (e , sn , d t) :
12 some l o g i c
13 r e t u r n boo l
14
15
16 d e f h a n d l e _ p a y l o a d (t o p i c , p a y l o a d) :
17 t = t o p i c . s p l i t (" / ")
18 sn = t [1]
19
20 i f v a l i d a t e _ s n (sn) :
21 d a t a = cbo r 2 . l o a d s (p a y l o a d)
22 v a l i d _ d a t a = []
23
24 f o r e i n d a t a :
25 u i n t _ v a l u e =e [P_IDX_TS]
26 t s = i n t (u i n t _ v a l u e) / 1000
27 d t = d a t e t i m e . f romt imes tamp (t s)
28
29 i f v a l i d a t e _ p a y l o a d (e) and v a l i d a t e _ t i m e s t a m p (d t) :
30 i f v a l i d a t e _ u p d a t e _ i n t e r v a l (e , sn , d t) :
31 nano = TimestampNanos . f r o m _ d a t e t i m e (d t)
32 v a l i d _ d a t a . append (
33 {
34 ' t a b l e ' : ' { } ' . f o r m a t (sn) ,
35 ' columns ' : {
36 ' SID ' : e [P_IDX_SID] ,
37 ' VID ' : e [P_IDX_VID] ,
38 ' IID ' : e [P_IDX_IID] ,
39 ' va l ' : e [P_IDX_VAL] ,
40 } ,
41 ' a t ' : nano
42 }
43)
44
45 i f v a l i d _ d a t a : # i f t h e r e i s a t l e a s t one v a l i d p a y l o a d i t em
46 t r y :
47 wi th Sender ("QDB2 " , 9009) as s e n d e r :
48 f o r row i n v a l i d _ d a t a :
49 s e n d e r . row (row [' t a b l e '] , columns=row [' columns '] , a t =row [' a t '])
50 s e n d e r . f l u s h ()
51 e x c e p t I n g r e s s E r r o r a s e :
52 s y s . s t d e r r . w r i t e (f ' Got e r r o r : { e } \ n ')

Figure 4.5: QDB2 Populator script pseudo-code snippet

4.2.5.4 QDB Ejector

This script runs a defined job - job() - based on a schedule. This job has two parts. The
first part is designed to capture all data received from the previous day, write it into indi-
vidual csv files based on the structure data/{SN}/{DT}/{SN}_{DT}_{SID}_{VID}.csv
specified in section 4.2.5, compress these csv files into zip files, remove the temporary csv
files, and create symbolic links to the zip files based on Q Display GIDs. The second part
drops partitions older than a specified number of days from the database. The second part
will not run if the first part fails for any reason. This ensures data is not removed before it

27

is safely stored. The control flow of the script can be summarized as below.

1. Start job() at 01:00

2. job() runs collect()

3. collect() runs extract()

4. extract() runs getDeviceGidMapping()

5. getDeviceGidMapping() runs getGidSerialMapping()

6. getGidSerialMapping() runs getGids() and serialsOfGid()

7. extract() runs getDeviceGids()

8. extract() returns a Boolean res to collect, which returns it tojob()

9. If res = True, carry on. If not, stop.

10. job() runs drop()

11. drop() returns a Boolean res to job()

12. If res = True, job() ran successfully. If not, log error.

If at any point something fails between 3 and 9, job() stops and logs the error. Data
will not be lost, it will just be present in the database and can be inspected and recovered
manually. If something goes wrong after 9, there is an issue with dropping old partitions -
although it should always be just one partition to be dropped, as the job runs daily - which
also means the partition stays in the database and can be inspected manually.

The extract() and drop() functions use the PostgreSQL database adapter library
psycopg2 [22] to connect to the database. The combination of GID- and Q Display related
functions are used in order to minimize the amount of necessary requests sent to Q-server
REST API endpoints, while still acquiring relevant up-to-date mapping of relationships.
Pseudo-code for this script shown in figure 4.6.

28

1 i m p o r t s
2 # S c h e d u l e s j o b () t o be run a t 01 :00 e v e r y day
3 s c h e d u l e . e v e r y () . day . a t (" 01 : 00 ") . do (j o b)
4
5 d e f j o b () :
6 r e s = c o l l e c t ()
7 i f n o t r e s :
8 r e t u r n
9

10 r e s = drop ()
11 i f n o t r e s :
12 r e t u r n
13
14 # C o l l e c t s d a t a from y e s t e r d a y
15 d e f c o l l e c t () :
16 c o n n e c t t o d a ba se
17 r e s = e x t r a c t (c u r s)
18 c l o s e c o n n e c t i o n
19
20 r e t u r n r e s
21
22 # Drops n day o l d p a r t i t i o n
23 d e f drop () :
24 r e s = F a l s e
25 t r y :
26 c o n n e c t t o d a t a b a s e , d rop o l d p a r t i t i o n , c l o s e c o n n e c t i o n
27 r e s = True
28 e x c e p t : e r r o r h a n d l i n g l o g i c
29
30 r e t u r n r e s
31
32 # Used t o e x t r a c t y e s t e r d a y ' s da t a , z i p s i t , moves t o long te rm s t o r a g e
33 d e f e x t r a c t (c u r) :
34 r e s = F a l s e
35 t r y :
36 d e v i c e _ g i d _ m a p p i n g = getDeviceGidMapping ()
37 c u r . e x e c u t e (s e l e c t d a t a from y e s t e r d a y)
38 SNs = c u r . f e t c h a l l ()
39 f o r SN i n SNs :
40 GIDs = g e t D e v i c e G i d s (s t r (SN[0]) , d e v i c e _ g i d _ m a p p i n g)
41 . . .
42 f o r SID i n SIDs :
43 . . .
44 f o r VID i n VIDs :
45 l o g i c f o r g e n e r a t i n g z i p f i l e s i n t o long te rm s t o r a g e o u t o f q u e r i e d d a t a
46 r e s = True
47 e x c e p t : e r r o r h a n d l i n g l o g i c
48
49 r e t u r n r e s
50
51 # He lp e r f u n c t i o n f o r g e t G i d S e r i a l M a p p i n g ()
52 # Gets d e v i c e s e r i a l numbers o f a c e r t a i n GID v i a a Q− s e r v e r API e n d p o i n t
53 d e f s e r i a l s O f G i d (GID) :
54 some l o g i c
55 r e t u r n s e r i a l s
56
57 # He lp e r f u n c t i o n f o r g e t G i d S e r i a l M a p p i n g ()
58 # G e n e r a t e s t r i n g s f o r API r e q u e s t
59 d e f g e t G i d s () :
60 some l o g i c
61 r e t u r n GIDS
62
63 # He lp e r f u n c t i o n f o r ge tDeviceGidMapping ()
64 # R e t u r n s a d i c t i o n a r y mapping each GID t o i t s c o r r e s p o n d i n g s e r i a l s
65 d e f g e t G i d S e r i a l M a p p i n g () :
66 some l o g i c
67 r e t u r n g i d _ s e r i a l _ m a p p i n g
68
69 # He lp e r f u n c t i o n f o r g e t D e v i c e G i d s ()
70 # R e t u r n s a d i c t i o n a r y mapping each d e v i c e SN t o i t s c o r r e s p o n d i n g GIDs
71 d e f ge tDeviceGidMapping () :
72 some l o g i c
73 r e t u r n d e v i c e _ g i d _ m a p p i n g
74
75 # R e t u r n s a l i s t o f GIDs f o r a s p e c i f i c Q D i s p l a y
76 d e f g e t D e v i c e G i d s (SN , map) :
77 some l o g i c
78 r e t u r n map [SN]

Figure 4.6: QDB Ejector script pseudo-code
29

4.3 Usage

4.3.1 QDB

The primary use case for QDB - gathering big data - is automated by its aforementioned
scripts. While the database can be queried manually, there is little to no use by it. Data is
only retained a for a certain time, so no meaningful analysis is likely to be done directly
via QDB. Future company projects will be responsible for creating insights based on the
data gathered by QDB. Customer access to the data is off limits directly via QDB, as data
from all Q Displays is present in the same table.

4.3.2 QDB2

The use cases for QDB2 are also mostly outside of the scope of this project. Other projects
will heavily leverage QDB2, though, as a fleet management project and the Q Display
mobile application are gearing up for integrating with QDB2. The built-in QuestDB web
server provides REST API endpoints[23] for external applications to use. Of course, the
web server is accessed securely via nginx as per section 4.2.5. As this database houses all
Q Displays as separate tables in plain sight, this database is also meant only for internal
use. Customers will be granted access to their data via other projects in the company.

4.3.3 Long-term storage

All historical data from QDB is stored here. For now, access to these files is restricted to
VM access. Thus, only company personnel with appropriate VM access can access the
data. Files can be downloaded to local computers via scp[24]. Future development plans
for customer access will be discussed in chapter ??.

30

Chapter 5

Back-end server - Q-server

As the concept of GroupIds (GIDs) is completely new, and a requirement for the topic
structure used by HailstQrm, additional implementation is needed on Q-server. Q-server
has its own database, with existing schema. Adding GIDs will not tamper with exist-
ing implementation, rather only build new functionality on top of the old base. A new
database table is created for GIDs, as well as a couple of linking tables between organiza-
tions and GIDs, and Q Displays and GIDs. Database migrations and a one-time migration
script is run to create correct links to aforementioned linking tables. REST API endpoints
with authentication and authorization return either list of GIDs a specific Q Display be-
longs to, or a list of Q Display serial numbers (SNs) belonging to a specific GID. The
Q-server admin panel allows for managing GIDs, organizations, and Q Displays, as well
as the links between them. Q Displays and other services - such as QDB Ejector script -
utilize the endpoints for up-to-date information about Q Display - GID relationships.

31

Chapter 6

Data sampling

A fundamental part of gathering data into the databases is sampling. Choosing a sampling
rate for QDB is not trivial, as the use case for gathered data is yet undefined. In future,
some other project will analyze the data, but the intentions of what kind of information
is to be extracted is not clear. While gathering every single change in value maintains
complete integrity of data, this, however, accumulates to more load on the Q Displays,
their network usage, and the database. Thus, some sort of sampling strategy is needed.

6.1 Enabler

The enabler script, which tells the Q Displays to start sending data to populate the databases,
has instructions on sampling rates for each value set value. Most values are set to be sam-
pled at 1Hz, while some, less time-sensitive values, are set to be sampled at 0.2Hz. This
creates a satisfactory compromise between data integrity, costs, and performance. This
can easily be reconfigured in future, if the need arises.

6.2 Q Display

Some additional sampling logic is also implemented in the Q Displays. Given a sampling
rate of 1Hz for a value, the Q Display will perform in the following way. Sample value
at t, wait until t+1000ms, evaluate if value has changed since last sample, if changed,
sample value, else, continue until t+2000ms, and so forth. This way, unchanged values
are not reported multiple times redundantly.

32

6.3 QDB2 Populator

As stated in section 4.2.5.3, QDB2 is populated with a custom sampling rate for a subset
of metrics. The sampling is done in this script on the raw data published by Q Displays,
eliminating the need for multiple streams of similar data.

33

Chapter 7

Methodology

7.1 System design methodology

As this project was a one person job, no strict software development model was applied.
The development process did, however, have similarities with the Agile model. Instead
of working with a team in defined sprints and discussing progress in daily stand-ups,
research, development, and progress was continually reported to the entire Q Display
development team in daily stand-ups.

Even though not specified in a project plan in detail, the order of developing services
was organically clear from the beginning. In order for Q Display data to be stored some-
where, there was a need for a database. In order to populate the database to be, there was a
need for a way to deliver the data to it. Naturally, the project then started with developing
the message brokering services. This could be considered one rather long sprint. Then,
when data could be transferred, it needed to be stored. That initiated another so-called
sprint, developing the database and its related services. Finally, with the basics work-
ing, the GID structure needed implementing in Q-server, which could be considered yet
another sprint.

As opposed to a team iterating over built software from previous sprints due to newly
emerged requirements or dependencies in current sprints, this iterative compatibility de-
velopment was handled concurrently. Since the entire team working on a sprint was just
one person, the need for defined sprints to keep the team coordinated was rather moot.

7.2 Requirement analysis

Once more leaning towards an Agile model, the requirements for the complete system
were not laid out before starting the project. In the beginning, there were only a handful
of requirements. The system should:

34

• enable real-time streaming of data from Q Displays

• gather big data from Q Displays

• be flexible to allow for creation of arbitrary groups and grant group-specific API
access

• be secure.

Over the course of designing and implementing the system, new requirements were elicited
via discussions with staff, technical restrictions, and logical conclusions. The existence
of the QDB2 service is an example of this, as it was not initially planned, rather the need
for it arose due to requirements from another company project.

7.2.1 Decision to use MQTT for message brokering

The first of the ad hoc sprints called for a technology to relay information between Q
Displays and clients. The Q Display already implemented MQTT for communication
between other devices in the same local network, as well as an API for other services.
From a Q Display developer standpoint, there would be minimal investment in researching
and implementing slightly different functionality, as opposed to an entirely new protocol.

Low overhead played a key factor in the decision-making process, as the Q Displays
may spend significant amounts of time in areas with low network reception. Coverage
charts provided by Telia below illustrate this (Figures 7.1, 7.2, 7.3, 7.4).

As Laaroussi et al. note, Constrained Application Protocol (CoAP) performs better
than MQTT in terms of latency and throughput[25]. When researching how to secure
communications, since both MQTT and CoAP are of course not inherently secure, a pub-
lication by El Aidi et al. pointed out that CoAP uses a 4-byte header as opposed to
the 2-byte header of MQTT[26]. Since real time streaming of data was one of the re-
quirements for this application, a large amount of messages containing only one value
and corresponding timestamp may be sent. In such a setting, duplicating the overhead
comes with its implications. Performance in throughput and latency pale in comparison
to network overhead in this marine environment. This, combined with the aforementioned
already existing MQTT implementation, made the decision to use MQTT easy.

35

Figure 7.1: Telia IoT network coverage FIN
[27]

36

Figure 7.2: Telia IoT network coverage SWE
[28]

37

Figure 7.3: Telia IoT network coverage NOR
[29]

38

Figure 7.4: Telia IoT network coverage DK
[30]

7.2.2 Decision to use QuestDB

The purpose of ThunderQloud is to store data produced by Q Displays. As seen in chapter
3, the data they produce are in the form of individual value set values, accompanied by a
timestamp. A parallel to sensor readings can easily be drawn, which heavily supports the
notion to use a time-series database. Add to that the aim to produce information out of
the data, built-in support for sampling and aggregation of time-series data in the database
also became key factors.

For this application the final schema of the database was still uncertain during the
decision making process of technology stack. Deciding which database management sys-
tem to use influenced possible schema structures, so flexibility was a factor to consider.
DB-Engines rank database management systems monthly by popularity. In this ranking,
the top two contenders were InfluxDB and TimescaleDB. InfluxDB was at the top of the
rankings, TimescaleDB somewhere in the top five.[31]. While researching which of these
two would better suit the application at hand, an article by Yitaek Hwang[32] mentioned
another contender, QuestDB. In his article, he presents each DBMS and concludes each

39

section with a pros and cons list.
In short, InfluxDB has a huge community, schema-less ingestion, and support for pop-

ular tools, but suffer in performance with high cardinality datasets, have multiple different
conflicting open source versions, and a custom query language. As high cardinality was
likely to be present due to the Q Display value set structure, InfluxDB did not look like
an optimal solution.

TimescaleDB is an extension of PostgreSQL and as such has PostgreSQL-compatibility,
scales better than InfluxDB with data cardinality, and has various available deployment
models. However, TimescaleDB also enforces schema configuration limited by Post-
greSQL, needs extra storage for continuous data aggregation, does not support any stream-
ing ingestion protocols, and is partly under a proprietary license. As there is no flexibility
in the schema configuration and no support for input via streaming protocol, TimescaleDB
might not have been the right fit for this application, either.

QuestDB offers flexibility in the form of supporting various input protocols. The
database engine is built from the ground up, focusing on performance, compatibility,
and querying. The performance aspect covers high throughput ingestion and addresses
InfluxDB’s issue with high cardinality by using SIMD instructions and a just-in-time
(JIT) compiler for query execution. The focus on compatibility refers to the fact that
QuestDB supports ILP, Postgres wire protocol, as well as a REST API for both ingestion
and querying. Client libraries for ILP are also available. Querying is made easy, as
QuestDB uses SQL as its query language.

The pros for QuestDB include fast ingestion, high performance with low resources,
support for multiple protocols, standard SQL queries, SIMD optimization, and open
source. The cons include a smaller community and fewer available integrations than
InfluxDB.

Based on these findings - QuestDB supporting schema-less ingestion and many in-
gestion protocols, high performance queries with a familiar query language, and most
flexibility of all - the decision to use QuestDB was made.

7.3 Architecture

As presented in chapter 2, there were only Q Displays and the Q-server in the Q ecosys-
tem. The development methodology supported the plan to divide the new platform into
separate services, one for message brokering, one for databases, and to keep the book-
keeping of Q Display - GID relationships separate in the Q-server. It would have been
possible to build everything as microservices alongside Q-server, but with the limited
knowledge of requirements in the beginning of the project, such an architecture would

40

have been cumbersome to design. This approach allowed for isolating the services and
developing, failing, and iterating fast, without causing outages in established services.

7.4 Testing and validation

7.4.1 HailstQrm

Using scripts to simulate up to tens of thousands of MQTT clients, and tailored test sets
for testing authentication and authorization, the design for HailstQrm was validated. Test
sets are executed upon changes in the system, in order to keep the system secure.

7.4.2 ThunderQloud

Running a local QuestDB instance and compressing ejected data allowed for calculations
and projections validating the use of ThunderQloud’s current setup, as well as the required
attached persistent disks’ sizes. The populator and ejector scripts are manually observed
and tested in the staging environment before deployment to production.

7.4.3 Q-server

Q-server uses unit tests in order to validate the current build before deploying it in its
pipeline. Unit tests covering all GID related implementation were written.

7.5 Deployment and maintenance

Currently, both HailstQrm and ThunderQloud are deployed quite manually. There are
four VM instances in the cloud project; one production environment for both services, as
well as one staging environment for both services. By pushing source code changes to
the remote repository, and then manually restarting a VM instance, changes are applied.
The staging VM instances pull source code from the remote repository’s staging branch,
while the production instances pull from master branch.

Computing resources for both VM instances are constantly monitored by the cloud
provider’s monitoring agent, and can be adjusted on the fly. If anything goes wrong with
the services, they produce logs via Docker to the host VM, which can be inspected and
dealt with accordingly.

41

7.6 Limitations and challenges

A clear project structure and a thorough requirement elicitation process in the beginning
of the project would have streamlined the entire project. This was not the case, however,
as the message brokering part needed to be designed and implemented quickly due to
outside factors. This set the precedent for the entire project, where clear processes were
outweighed by working results, and developing them quickly.

42

Chapter 8

Results

8.1 Quantitative data

ThunderQloud launched without QDB2 in the end of spring. Over the course of summer,
nearly 4500 Q Displays were systematically populating QDB with their data. Now that the
boating season is over in northern Europe, where most of the Q Displays are geographi-
cally, activity is very low. As older data is exported from QDB to LTS, the current volume
of QDB is at an all-time low, only 6 Gigabytes worth of data from ca 200 Q Displays. LTS
has accumulated over 80 Gigabytes worth of compressed data. With a compression rate
of 14 to 1 discovered in early testing, which is most likely extremely consistent due to all
database entries being in the same format, LTS has an estimated volume of 1.2 Terabytes
of raw data.

QDB2 launched in fall, missing high season. Ca 500 Q Displays have populated 1.5
Gigabytes of raw data.

8.2 System performance and reliability

ThunderQloud ran through summer on a 6-core E2 instance, with 6GB RAM. During
this time CPU usage averaged at ca 20% and memory usage averaged at ca 30%. QDB
Ejector’s nightly job demanded higher resources, though, as computing resource usage
spiked considerably. During high season in late June and early July, nightly spikes could
reach percentages ranging from 60-70% for CPU usage and 70-80% for memory usage.
As the season started to slow down in fall, resources were scaled back to 4 cores and 4GB
of RAM. Resource usage has lowered even still, with averages of 10-15% and 15-30%
for CPU and memory, respectively.

Now that QDB is relatively empty, query speeds are rapid. Simple queries generally
execute in less than a second, while more complex ones can take up to 5 seconds. During

43

high season, when there were 1.5-2 billion entries at any given time, complex queries
could execute as slowly as 30 seconds. Computational resources were more abundant
during summer, though. QDB2 is much faster due to its data being split into different
tables. Even complex queries execute in less than a second, while simple queries are
so fast that internet speeds are the limiting factor. Generally queries execute in 10-20
milliseconds.

HailstQrm needs very little resources in comparison to ThunderQloud, as it only runs
two mosquitto MQTT servers. HailstQrm runs on a pre-set E2-small instance with 2GB
RAM. During summer, both CPU and memory usage averaged at ca 40%.

HailstQrm has not had any issues with reliability in its services. ThunderQloud has
had one critical fault, where QDB suffered from a known and supposedly fixed bug[33].
The bug did not allow for new transactions to be processed and required deleting a file
keeping track of transactions and restarting QuestDB[34]. Fortunately this happened to
QDB in late fall during low activity, and the workaround was applied quickly.

8.3 System usability and functionality

The initial requirements laid out in chapter 7, although few, are met. Groups with associ-
ated GIDs can be created by staff via the admin interface on Q-server, Q Devices can be
added to these groups, and so clients are able to use the API via HailstQrm. The enabler,
ejector, and populator services in ThunderQloud ensure big data gathering from the Q
Displays is automated and works as required.

The only major drawback in the system is the accessibility of the gathered big data in
ThunderQloud’s file system. While the requirement of gathering big data may be satisfied,
working with old historical data directly could prove cumbersome. The data is neatly
organized, indexed, and zipped in the file system, but analyzing it requires transferring
certain desired files from the VM, unzipping them, and only then can processing begin
with whatever tool is chosen. There will probably be a need for developing yet another
service just to retrieve and unpack desired data to prepare for analysis. Alternatively,
another database and/or storage solution may be used in future, to which the already
existing data would then be imported. Such drastic measures have not yet been set in
motion, though.

8.4 Qualitative observations

HailstQrm and ThunderQloud are, as stated in section 7.5, deployed manually. As the
staging and production environments for the services have been established and are oper-

44

ational, they have not yet been officially launched as marketable products, so this setup
works for now. Future automated deployment pipelines are needed, however. As use of
these services will grow, scaling might also become an issue.

45

Chapter 9

Conclusion

This thesis covers the implementation of a platform enabling the gathering of big data in
a consumer marine environment, as well as streaming selected data in real time. Clients
are able to leverage the MQTT protocol in order to communicate with Q Displays out in
the seas and lakes, where they are used. Direct access to Q Displays can be granted based
on their associated GroupIds, while summarized reports on insights gained from analyses
may be generated in future. Other company services will allow for pre-defined statistical
analysis generated from data gathered in this project.

To the best of the author’s knowledge, this is where IoT in marine environments on
a consumer scale has its beginning. While IoT has been leveraged on an industrial scale
for large ships[35], this project specifically targets consumer leisure boats. As a result,
a blueprint is now available for competitors to implement their own versions of such a
platform.

As publications describing similar platforms to this one were not available during the
research and implementation phases of this project, every decision taken was a novel one.
This might not always lead to the optimal choice, which is brought up in chapter 8, with
e.g. future plans of restructuring deployment strategies.

Future studies on what insights can be gained from consumer boating big data would
shed light on what to do with the gathered data.

This project firmly takes a foothold in the domain of IoT for consumer boating. As
the use of IoT in other industries, such as the automotive industry, are ahead by a large
margin, this project might be the first step in the direction of closing the gap.

46

Chapter 10

Svensk sammanfattning

10.1 Introduktion

Värdet av data stiger konstant i dagens samhälle, i synnerhet värdet av stordata. Flera
marknader har anpassat sig till denna trend, till exempel blir bilindustrin år för år mer
digitaliserad. I marinindustrin har det tagit längre för digitaliseringen att nå båtmark-
naden för fritidsänamål. Nextfours Q Display är en integrerad kartplotter för konsument-
båtar. Q Display är kopplad till båtens motor, batteri, sensorer, VHF radio, ekolod, radar
och eventuella övriga tillbehör. Den är också uppkopplad till internet, bland annat för
mjukvaruuppdateringar och väderleksrapporter. De flesta av dessa data är outnyttjade, det
vill säga att de inte lagras någonstans. I denna avhandling behandlas projektet att bygga
en plattform som möjliggör insamling av stordata och realtidsströmning av data från Q
Displayer.

10.2 Implementation

Q Displayerna ute på fältet har alltid varit i kontakt med en backend server, Q-server,
men i och med detta projekt utvidgas Q-ekosystemet med två nya tjänster: HailstQrm och
ThunderQloud. HailstQrm är en virtuell värddator i molnet som kör två mosquitto [8]
MQTT [7] servrar. ThunderQloud är en annan virtuell värddator i molnet, men den kör
fler tjänster. ThunderQloud kör två stycken QuestDB-databaser [15], en nginx-server [5],
såväl som fyra stycken Pythonskript.

Q-serverns funktionalitet utvidgas med ett nytt gruppkoncept, till vilka man kan lägga
till Q Displayer. Grupperna har ett Id, ett så kallat GID. Detta GID-koncept är kritiskt
viktigt för att kunna separera Q Displayer baserat på olika kriterier. Utöver det imple-
menteras två nya REST-slutnoder, en som besvarar vilka Q Displayer som hör till ett visst
GID, samt en som besvarar vilka GID en Q Display tillhör.

47

HailstQrm möjliggör kommunikation mellan Q Displayer och MQTT-klienter via
MQTT-protokollet över internet. Utöver det sköter HailstQrm autentisering och behörighet
över TLS med hjälp av mosquittos inbyggda hjälpapplikation. Behörigheten verifieras
med hjälp av klientens TLS-certifikat, som bör motsvara MQTT-ämnet klienten försöker
publicera eller prenumerera på. Eftersom nätverkstrafiken sker över TLS är den krypterad,
till skillnad från MQTT utan TLS. MQTT-ämena i användning är strukturerade enligt
{GID}/{Q Display serienummer}/

• sys/cmd/{kommando}

• sys/valueset/{SID}/{VID}/{IID}

• res/cmd

• res/cmd/{cmd}.

Exempelvis kunde en kund ha 100 stycken Q Displayer, vilka alla befinner sig i deras GID
0015. Då kunde kunden skicka ett kommando åt alla sina Q Displayer via en publikation
till 0015/+/sys/cmd/enable-value. Ifall de vill ha svar på vilka Q Displayer som tagit
emot kommandot, kan de prenumerera på
0015/+/res/cmd/enable-value. Beroende på vilka värden de aktiverade strömningen
av, vore det också ändamålsenligt att prenumerera på
0015/+/sys/valueset/{SID}/{VID}/{IID}, eller 0015/+/sys/valueset/# för att
motta strömningen av data.

Ovanstående är kortfattat vad Pythonskripten i ThunderQloud gör. Ett skript prenu-
mererar på ett MQTT-ämne dit Q Displayer skickar ett unikt meddelande som indikerar
att enheten kopplats online. Då skriptet får ett meddelande om en Q Display som kommit
online, svarar det med en serie av kommandon, som sätter Q Displayen i stånd att samla
data åt databaserna. Q Displayen börjar då samla, packa och skicka data till ett speci-
fikt MQTT-ämne ämnat för databaserna. Båda QuestDB-databasinstanserna, QDB och
QDB2, har egna Pythonskript som för in dessa data. De prenumererar på detta databas
specifika MQTT-ämne, hanterar meddelandena och överför utvunna data till respektive
databas. Det sista skriptet har som uppgift att exportera äldre data från QDB-databasen
till värddatorns filsystem i komprimerad form. Dessutom frågar skriptet Q-servern vilka
GID Q Displayer hör till, så det kan organisera filsystemet nätt.

Databaserna QDB och QDB2 är byggda med QuestDB. QuestDB är en tidsseriedatabas,
vilket innebär att varje datapost är tidsstämplad och tabellerna sorteras automatiskt i rätt
ordning. QDB har alla Q Displayer i samma tabell, med kolumner för serienummer, SID,
VID, IID, värde och tidssämpel. QDB2 delar istället upp tabellerna per serienummer
och lämnar bort den kolumnen. Dessutom matas endast vissa specifika data in i QDB2.

48

QDB fungerar som databas för stordata, medan QDB2 fungerar som databas för specifik
statistik.

10.3 Metodologi

Detta projekt utfördes av en person, med en väldigt hektisk start. HailstQrm hade brottom
att bli implementerad, på grund av orsaker indirekt relaterat till projektet. Det gjorde
att hela projektet startade utan en klar projekt plan. Metoden för systemutveckling blev
därför aldrig väl definierad, men processen följde nogårlunda en Agile metod. Någon
utförlig kravhanteringsprocess utfördes ej, men det fanns fyra klara krav redan i början.
Systemet ska:

• möjliggöra realtidsströmning av data från Q Displayer

• samla stordata från Q Displayer

• möjliggöra skapandet av grupper och bevilja grupp-baserade behörigheter

• vara säkert.

Nya krav uppenbarade sig under utvecklingsprocessen, via diskussioner med kollegor,
tekniska begränsningar, såväl som logiska slutsatser. Till exempel hörde QDB2-databasen
ursprungligen inte till planerna, men den blev ett krav på grund av krav inom andra projekt
inom bolaget.

HailstQrm stresstestades med simulationer av tiostusentals klienter som skickade med-
delanden. Dessutom körs en mängd test som verifierar säkerheten i kommunikationerna
då systemet uppdateras. ThunderQloud testades lokalt för att bekräfta designen. Skripten
observeras och testas manuellt i testomgivning före en uppdatering sker i produktionsom-
givning. Q-server utnyttjar enhetstest och de nya funktionaliteterna är väl testade varje
gång koden ändras.

10.4 Resultat

I sin helhet har hela systemet lyckats uppfylla kraven som ställdes i början. Q Displayer
kan via kommandon genom HailstQrm beordras att strömma data både i realtid och samla
data som Pythonskript samlar in i databaser och lagras i ThunderQloud. All nätverkstrafik
är krypterad och kommunkation med alla tjänster kräver korrekta TLS certifikat.

Dock är tillgängligheten till äldre historiska stordata något dålig. Eftersom det är
frågan om så stora mängder, är det inte lönsamt att hålla allting i QDB, så äldre data ex-

49

porteras och komprimeras till ThunderQlouds filsystem. Det gör att man måste exportera
de data man vill bearbeta från filsystemet, istället för att bara fråga databasen direkt.

10.5 Slutsats

Avhandlingen behandlar designen, implementattionen, metodologin, samt resultaten av
ett projekt, där målet var implementera ett system som tillåter insamling av stordata och
strömning av realtidsdata från Q Displayer. Även om alla beslut fattade under projektets
lopp inte var de mest optimala, kan slutresultatet ses som nöjaktigt, eftersom kraven på
systemet har blivit uppfyllda. I och med detta projekt har ett stort steg tagits för att minska
klyftan mellan IoT i konsdumentbåtande och IoT i andra ledande industrier.

50

References

[1] M. Gerla, E. Lee, G. Pau, et al. “Internet of vehicles: From intelligent grid to au-
tonomous cars and vehicular clouds”. In: 2014 IEEE World Forum on Internet of

Things (WF-IoT) (2014). DOI: 10.1109/WF-IoT.2014.6803166.

[2] Docker. Overview of Docker Compose | Docker documentation. URL: https://
docs.docker.com/compose/. (accessed: 19.8.2023).

[3] Eclipse. eclipse-mosquitto - Official Image | Docker Hub. URL: https://hub.
docker.com/_/eclipse-mosquitto. (accessed: 19.8.2023).

[4] QuestDB. questdb/questdb - Docker Image | Docker Hub. URL: https://hub.
docker.com/r/questdb/questdb. (accessed: 19.8.2023).

[5] nginx. nginx - Official Image | Docker Hub. URL: https://hub.docker.com/_/
nginx. (accessed: 19.8.2023).

[6] Python. python - Official Image | Docker Hub. URL: https://hub.docker.com/
_/python. (accessed: 19.8.2023).

[7] OASIS. MQTT Version 3.1.1. URL: http://docs.oasis- open.org/mqtt/
mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. (accessed: 19.8.2023).

[8] Eclipse. Eclipse Mosquitto. URL: https://mosquitto.org. (accessed: 21.8.2023).

[9] R. Light. mosquitto.conf man page | Eclipse Mosquitto. URL: https://mosquitto.
org/man/mosquitto-conf-5.html. (accessed: 21.8.2023).

[10] Eclipse. Dynamic Security Plugin | Eclipse Mosquitto. URL: https://mosquitto.
org/documentation/dynamic-security/. (accessed: 21.8.2023).

[11] ralight. Feature: Variables in ACL topic of the Dynamic Security Plugin #2784.
URL: https://github.com/eclipse/mosquitto/issues/2784. (accessed:
21.8.2023).

[12] S. Cope. Mosquitto MQTT Bridge -Usage and Configuration. URL: http://www.
steves-internet-guide.com/mosquitto-bridge-configuration/. (ac-
cessed: 22.8.2023).

51

[13] json.org. JSON. URL: https://www.json.org/json- en.html. (accessed:
24.8.2023).

[14] InfluxData. Line protocol | InflixDB OSS 2.7 Documentation. URL: https : / /
docs.influxdata.com/influxdb/v2.7/reference/syntax/line-protocol/.
(accessed: 23.8.2023).

[15] QuestDB. What is a Time-Series Database? | QuestDB. URL: https://questdb.
io/glossary/time-series-database/. (accessed: 23.8.2023).

[16] QuestDB. Configuration | QuestDB. URL: https://questdb.io/docs/reference/
configuration/. (accessed: 23.8.2023).

[17] QuestDB. Symbol | QuestDB. URL: https://questdb.io/docs/concept/
symbol/. (accessed: 23.8.2023).

[18] R. Light. paho-mqtt · PyPI. URL: https://pypi.org/project/paho-mqtt/.
(accessed: 24.8.2023).

[19] C. Bormann. CBOR — Concise Binary Object Representation | Overview. URL:
https://cbor.io/. (accessed: 24.8.2023).

[20] A. Grönholm. cbor2 · PyPI. URL: https://pypi.org/project/cbor2/. (ac-
cessed: 24.8.2023).

[21] A. Cimarosti. questdb · PyPI. URL: https://pypi.org/project/questdb/.
(accessed: 24.8.2023).

[22] D. Di Gregorio. psycopg2 · PyPI. URL: https://pypi.org/project/psycopg2/.
(accessed: 25.8.2023).

[23] QuestDB. REST API | QuestDB. URL: https://questdb.io/docs/reference/
api/rest/. (accessed: 25.8.2023).

[24] T. Rinne and T. Ylönen. scp(1): secure copy - Linux man page. URL: https://
linux.die.net/man/1/scp. (accessed: 25.8.2023).

[25] Z. Laaroussi, R. Morabito, and T. Taleb. “Service Provisioning in Vehicular Net-
works Through Edge and Cloud: An Empirical Analysis”. In: 2018 IEEE Con-

ference on Standards for Communications and Networking (CSCN) (2018). DOI:
10.1109/CSCN.2018.8581855.

[26] S. El Aidi, A. Bajit, A. Barodi, et al. “An Optimized Security Vehicular Internet
of Things -IoT-Application Layer Protocols MQTT and COAP Based on Cryp-
tographic Elliptic-Curve”. In: 2020 IEEE 2nd International Conference on Elec-

tronics, Control, Optimization and Computer Science (ICECOCS) (2020). DOI:
10.1109/ICECOCS50124.2020.9314579.

52

[27] Telia. Mobiiliverkon kuuluvuus, häiriötilanteet ja parannustyöt. URL: https://
www.telia.fi/asiakastuki/kuuluvuuskartta. (accessed: 20.8.2023).

[28] Telia. Täckningskartor. URL: https : / / www . telia . se / privat / support /
tackningskartor. (accessed: 20.8.2023).

[29] Telia. Dekningskart. URL: https://www.telia.no/nett/dekning/. (accessed:
20.8.2023).

[30] Telia. IoT dækningskort. URL: https://www.telia.dk/kundeservice/dakning-
og-drift/iot-dakningskort/. (accessed: 20.8.2023).

[31] DB-Engines. DB-Engines Ranking - popularity ranking of time Series DBMS. URL:
https://db- engines.com/en/ranking/time+series+dbms. (accessed:
23.8.2023).

[32] Yitaek Hwang. Comparing InfluxDB, TimescaleDB, and QuestDB Time-Series Databases.
URL: https://questdb.io/blog/comparing- influxdb- timescaledb-
questdb-time-series-databases/. (accessed: 23.8.2023).

[33] yjclsx. An exception occurred while querying data. URL: https://github.com/
questdb/questdb/issues/1490. (accessed: 12.12.2023).

[34] Jon. What does ’max txn-txn-inflight limit reached’ in QuestDb, and how to I avoid

it? URL: https://stackoverflow.com/questions/67785629/what-does-
max-txn-txn-inflight-limit-reached-in-questdb-and-how-to-i-

avoid-it. (accessed: 12.12.2023).

[35] E. Wings, S. Reck, H. Boomgaarden, et al. “Implementing a Low-Cost Control Unit
Network focusing on Data Collection and Flettner Rotor Control”. In: 2022 IEEE

International Conference on Industry 4.0, Artificial Intelligence, and Communica-

tions Technology (IAICT) (2022). DOI: 10.1109/IAICT55358.2022.9887390.

53

