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1 Introduction 
 

The Danish fairy tale, authored by the famous writer Hans Christian Andersen, suggests “The 

ugly duckling did not realize that he was a swan until he came in contact with swans, saw his 

reflection in water, and figured out that he was himself a swan, too” (Bates, 2010, Chapter 2). 

 

The aforementioned abstract has the connotation of how data and information can help reveal 

hidden insights. Similarly, within the complex world of supply chain management, hidden 

insights and opportunities can be uncovered through the power of data and advanced 

analytics. Much in the same manner that the ugly duckling discovered his true nature when 

exposed to new information, businesses can also unlock valuable insights by leveraging 

advanced analytics techniques to optimize their operations in the supply chain. 

 

 

1.1 Background and motivation 

 

Supply chain management, SCM, encompasses the entire journey of transforming raw 

materials into finished goods. It ensures the availability of essential products, such as food, 

health items, and various commodities that facilitate daily human lives, including work, 

travel, and entertainment. Without the supply chain, these goods would not be accessible to 

the users (University of Maryland, n.d.).  

 

Morana (2013) claims that, in today’s business landscape, the crucial role of SCM is well 

acknowledged in the success of companies across various sectors. With increasing external 

pressures, globalization, and competition, SCM has become essential for optimizing 

processes and streamlining production and delivery cycles. By embracing SCM practices 

paired with technological and organizational innovations, businesses can proactively respond 

to the dynamic factors and challenges (economic, environmental, or social constraints) 

present in the market. 

 

In accordance with IBM (n.d.a), supply chain management has undergone a significant 

transformation, shifting from a focus on physical assets to the management of data, services, 

and comprehensive product solutions. Today's supply chains have a far-reaching impact on 

various aspects, including product quality, delivery efficiency, costs, customer experience, 
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and overall profitability. Notably, the volume of data available to supply chains has 

multiplied in recent years. By 2017, supply chains had already gained access to 50 times 

more data than they possessed a mere five years earlier, in 2012. However, a considerable 

portion of this data remains underutilized, resulting in missed opportunities. Thus, crucial 

time-sensitive data, such as weather information, labor shortages, political developments, and 

demand fluctuations, often goes unnoticed. Some studies (Luther, 2022; Kathuria, n.d.) find 

that this leads to backorders.  

 

Notwithstanding, backorders, a very familiar term in supply chain management, occur when a 

customer order cannot be fulfilled immediately due to lack of available supply. Backorders 

can arise from various factors. From the supply perspective, a company may encounter 

situations where they exhaust their stock of a particular item due to challenges in the supply 

chain, underestimation of manufacturing capacities, or failures in delivering products to 

physical retail locations. On the demand side, backorders often occur when there is a high 

level of consumer interest in a product, particularly in the case of new releases or highly 

sought-after items (Kenton, 2022). Kathuria (n.d.) stated that backorders can be troublesome 

because, although they may initially appear as a positive situation for a manufacturer, they 

eventually raise additional tangible and intangible costs that can be burdensome. Backorders 

can lead to unhappy customers, lost sales, and disruptions in business operations.  

 

Not only this, but backorders can also cause a bullwhip effect, another phenomenon that can 

have significant implications for SCM. A bullwhip effect is a chain reaction that results from 

the fluctuations in demand at the downstream end of a supply chain. It usually occurs when a 

small shift in customer demand leads to a bigger swing in what companies produce and 

stockpile. Several studies found that the bullwhip effect and backorders are interconnected, 

one can cause the other (“How backorders can”, n.d.; Burtler, 2022; Wallstreetmojo, 2023; 

Intellipaat, 2023, Georgiev, n.d.). Even though the bullwhip effect, along with its 

consequences for supply chains, has been extensively examined by scholars, it remains a 

significant and contemporary challenge in the field of supply chain research (Forrester, 1961; 

Wang and Disney, 2016, as cited in Weisz et al., 2022). Some recent examples of the 

bullwhip effect on inventories are: 

 

In October 2022, Nike disclosed an excess inventory valued at $9.7 billion, attributing it to 

increased purchasing due to prolonged lead times. Concurrently, ASOS faced substantial 
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losses, writing off up to £130m of stock. In a related context, recent independent research has 

revealed that inventory mismanagement leads to a staggering $163 billion worth of supply 

chain waste annually, caused by product expiration or overproduction. (Phillips, 2022). 

 

Addressing the bullwhip effect and effectively managing backorders require proactive 

measures in supply chain management. Leveraging advanced analytics techniques, such as 

Machine learning/ ML has emerged as a promising solution. By utilizing predictive analytics 

and machine learning algorithms, businesses can proactively conduct accurate demand 

forecasting, identify potential backorders and thus optimize inventory management, and 

enhance overall supply chain performance. 

 

 

1.2 Problem statement 

 

With the rise of e-commerce enterprises and the growing preference for online shopping, the 

complexity of supply chain management issues has also escalated. This poses a significant 

challenge for managers, who are responsible for effectively managing various aspects of the 

supply chain, such as production, inventory, transportation systems, and more (Dehghan-

Bonari et al., 2021; Gao et al., 2022).  

 

Although advanced analytics techniques, such as predictive analytics and Machine 

learning/ML, show potential for addressing backorder challenges in SCM, there is a research 

gap in understanding how these techniques can be effectively employed within the supply 

chain context. Islam & Amin (2020) and Gao et al. (2022) claimed that ML algorithms are 

not widely adopted in various aspects of business decision-making processes due to their lack 

of clarity and flexibility. However, the current literature lacks comprehensive studies that 

evaluate the comparative effectiveness of different machine learning algorithms in predicting 

backorders and explore the impact of parameter tuning on algorithm performance. Notably, 

most of the existing research has not employed a multi-metric evaluation technique to verify 

the models’ effectiveness. Hence, there is a need to assess the performance of machine 

learning models using relevant evaluation metrics, such as Confusion Matrix, Accuracy, 

Precision, Recall, F1-score, AUC/Area Under the Curve (ROC) and/or any other suitable 

metrics, to determine the most viable strategies for optimizing business operations. 
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1.3 Research objectives 

 

The primary objective of this research is to investigate the accuracy and performance of 

predictive analytics models in identifying early warning signs of potential backorders, 

enabling businesses to implement proactive inventory management strategies and minimize 

stockouts. The secondary objectives derived based on it are the followings: 

 

• To evaluate and compare the effectiveness of different machine learning algorithms in 

predicting backorders within the context of supply chain operations. Further to this, 

the impact of parameter tuning on the performance and accuracy of these algorithms 

will also be explored. 

 

• To assess the performance of machine learning models for backorder prediction, 

considering various evaluation metrics, such as Confusion Matrix, Accuracy, 

Precision, Recall,  F1-score, AUC and/or any other suitable metrics. The objective is 

to compare the effectiveness of these models within the supply chain domain and 

identify the most suitable approaches for optimizing business operations. 

 

1.4 Research questions 

 

This paper aims to identify the best predictive model to achieve above-mentioned research 

objectives. The following research questions, RQs, will guide the investigation: 

 

RQ-1. How can predictive analytics be effectively utilized to identify early warning 

signs of potential backorders within the supply chain? 

 

RQ-2. What is the comparative effectiveness of different machine learning algorithms 

in predicting backorders in the context of supply chain operations? Additionally, how 

does parameter tuning impact the performance and accuracy of these algorithms? 

 

These research questions aim to explore the application of predictive analytics and machine 

learning algorithms in identifying and managing backorders within the supply chain. By 

addressing these questions, this research seeks to contribute to the existing knowledge and 
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provide valuable insights for businesses in improving their inventory management strategies 

and overall supply chain performance. 

 

 

1.5 Significance and contributions of the study 

 

The significance of this work lies in its contribution to the supply chain management field. 

This study offers a comprehensive and innovative approach to forecasting inventory 

backorders. Some key points to highlight the contributions of this research include: 

 

• Practical implications: By investigating the use of predictive analytics and machine 

learning in identifying potential backorders, this research provides practical insights 

and recommendations for businesses to enhance their inventory management 

strategies. Implementing proactive measures to minimize stockouts and improve 

supply chain efficiency can lead to cost savings, improved customer satisfaction, and 

increased competitiveness in the market. 

 

• Operational efficiency: The findings of this study can help businesses streamline 

their supply chain operations by optimizing inventory levels, reducing backorder 

instances, and minimizing excess inventory. This can result in improved resource 

utilization, reduced lead times, and better overall operational efficiency. 

 

• Enhanced customer experience: By effectively managing backorders and reducing 

stockouts, businesses can meet customer demands more effectively and enhance the 

overall customer experience. This can lead to higher customer satisfaction, increased 

loyalty, and improved brand reputation. 

 

• Competitive advantage: Adopting advanced analytics techniques for backorder 

prediction can provide businesses with a competitive advantage in the market. The 

ability to anticipate and mitigate backorder situations can help businesses stay ahead 

of their competitors, meet customer demands more effectively, and achieve a higher 

level of operational excellence. 
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Apart from this, the significance of this study extends beyond the realm of SCM. It has the 

potential to be a lifesaver in critical situations, especially for emergency products, such as 

medicine. This research holds great importance in ensuring the timely delivery of life-saving 

medications to those in need, thereby contributing to the well-being and safety of individuals. 

Furthermore, by investigating and analyzing the efficacy of different predictive analytics 

techniques and their applications in backorder prediction, this research not only provides 

practical recommendations but also adds to the academic body of knowledge in the field of 

supply chain management. 

 

 

1.6 Limitations and delimitations of the work 
 

While conducting this research, certain limitations and delimitations were encountered that 

should be acknowledged to offer a thorough comprehension of the study's scope and potential 

constraints. 

  

On one hand, the analysis and conclusions are based on the available data, which may have 

limitations in terms of completeness or accuracy. The study utilized a specific dataset, and the 

findings may not be fully representative of the entire population or industry. Certain 

assumptions were made during the research process, which may introduce biases or 

uncertainties in the outcomes. The findings may have limited generalizability to other 

industries, supply chain setups, or geographic regions. Apart from this, this paper briefly 

acknowledged the presence of the bullwhip effect in the supply chain but did not provide 

comprehensive discussions on potential solutions to address this issue. 

 

On the other hand, the delimitations of this study lie in its focus on the application of 

predictive analytics and machine learning for backorder prediction within the supply chain 

context. Further to this, the study evaluates specific machine learning algorithms, while 

alternative algorithms may yield different results. The research employs certain evaluation 

metrics, such as Confusion Matrix, Accuracy, Precision, Recall, F1-score, ROC/AUC score, 

ROC/AUC curve, Precision-Recall curve, G-mean, etc. to assess model performance, but 

other metrics could provide additional insights. The findings should be considered within the 

specific timeframe of the study and may not capture the latest dynamics or emerging trends in 

supply chain management. 
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1.7 Structure of the paper 

 

This paper has been divided into five different chapters. The first chapter, “Introduction”, 

gives an overview of the research topic, presents the background and motivation, and 

highlights the significance and contribution of the study. It introduces the research objectives 

and research questions, setting the foundation for the rest of the paper. However, the 

remainder of the work is structured as follows: 

 

The second chapter, “Examining literature and theoretical constructs”, provides a 

comprehensive review of the existing body of literature related to supply chain management, 

bullwhip effect, and backorder prediction. An overview on advanced analytics with machine 

learning has also been presented, where machine learning techniques, comprehensive process 

in machine learning, importance of data and challenges or issues associated with it, feature 

engineering techniques for prediction accuracy improvement and evaluation metrics for 

assessing model performance, etc. have been discussed. In addition, a thorough exploration 

has also been undertaken on various real-world applications of machine learning. After that, 

by reviewing previous studies and research papers on backorder prediction, valuable insights 

will be gained into the current state of knowledge in optimizing business operations and 

supply chain performance. The review synthesizes existing knowledge and establishes the 

theoretical framework for the current research. The chapter also discusses the rationale and 

uniqueness of this paper while at the same time it identifies gaps in the existing research. 

 

The next chapter, “Research design and methodology”, consists of the research methodology 

adopted in this work. It describes the data collection process, details about the dataset used in 

the study, including its source, size, and attributes. It outlines the specific characteristics of 

the data that are relevant to the research objectives. Further to this, this chapter also covers 

the selection of machine learning algorithms and their training, as well as the process of 

tuning the hyperparameters of the selected machine learning algorithms to optimize their 

performance. It also discusses the evaluation metrics used to assess the performance of the 

predictive models. 

 

In the “Experimental results and analysis” chapter, the collected data is thoroughly analyzed 

using the chosen machine learning algorithms. The chapter focuses on presenting and 
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interpreting the results obtained from the analysis, emphasizing the performance of the 

models in predicting backorders and benchmarking the top-performers against state-of-the-art 

solutions. The findings are then discussed in relation to the research objectives, providing 

insights into the effectiveness of the proposed approach. The chapter concludes with a 

discussion on the broader implications and a critical evaluation of model usability. 

 

Finally, Chapter 5, “Conclusion and future work”, presents a summary of the key findings 

and contributions of the research. It recaps the research questions and objectives and 

discusses the limitations encountered during the study. On top of it, it also explores potential 

areas for future research and provides concluding remarks on the significance of the study. 

 

 

2 Examining literature and theoretical constructs 
 

This chapter will review the existing body of literature related to supply chain management, 

bullwhip effect and backorder prediction, advanced analytics, and machine learning 

techniques. This literature review will help identify any gaps or areas that require further 

investigation, forming the basis for the research objectives. 

 

 

2.1 Overview of supply chain management and its challenges 
 

According to SAP (n.d.) and Perkins et al. (2021), supply chain management, SCM, entails 

the integration of activities that facilitate the conversion of raw materials into finished goods 

and their subsequent delivery to customers. These activities encompass sourcing, product 

design, manufacturing, inventory management, transportation, and distribution. The primary 

aim of supply chain management is to optimize operational efficiency, enhance product 

quality, increase productivity, and ultimately ensure customer satisfaction. 

 

The concept of a supply chain extends beyond individual companies, often encompassing 

multiple facilities in different countries. Managing material, information, and financial flows 

within multinational corporations presents ongoing challenges. Streamlined decision-making 

can be achieved through the integration of facilities under a unified organizational structure. 

Collaboration among functional units: marketing, production, procurement, logistics, and 

finance, is essential for effective supply chain management (Stadler & Kilger, 2005). 
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However, supply chain management faces numerous challenges in today's dynamic business 

environment. These challenges arise from various factors, such as market dynamics, 

technological advancements, and customer expectations. Some of the key challenges include: 

 

• Increased costs: Rising costs of raw materials, transportation, and labor put pressure 

on supply chain operations, affecting profitability and competitiveness (Lans, 2019). 

 

• Material scarcity: The onset of the global COVID-19 pandemic led to a scarcity of 

essential inputs, intensifying challenges arising from an abrupt spike in consumer 

demand. Retailers and suppliers found it increasingly challenging to meet this demand 

due to the limited supply of various parts and materials. A recent survey by the 

Institute for Supply Management/ISM highlights the presence of record-long lead 

times, acute shortages of critical materials, increasing commodity prices, and 

transportation difficulties across industries. Given the scarcity of inputs, a brand's 

ability to maintain growth relies heavily on sufficient working capital to navigate this 

period and prepare for peak seasons (Brown, 2022). 

 

• Labor unrest: Supply chains face increased pressure when industrial tension occurs. 

Recent examples include trucker strikes in South Korea that disrupted computer 

supply chains and railway strikes in the UK that affected the delivery of construction 

materials. Dock workers in Germany and the UK have also gone on strike, and strikes 

at the Port of Liverpool are expected to cause congestion at freight hubs in Ireland 

(World Economic Forum, 2022). 

 

• Geopolitical uncertainty: Geopolitical uncertainty has a great impact on the supply 

chain. The invasion of Ukraine has caused global energy and food price inflation, 

leading to supply chain disruptions and a global food crisis. A shortage of fertilizers is 

also impacting agricultural output in many countries. Tensions between China and the 

US, exacerbated by recent military exercises and political visits, have the potential to 

disrupt supply chains for critical components, such as semiconductors. These factors 

collectively pose significant challenges to global supply chains and have far-reaching 

consequences for various industries (World Economic Forum, 2022). 
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• Qualified personnel: Lans (2019) claims that finding individuals who are both 

interested in and passionate about supply chain management has become increasingly 

difficult. It is crucial to recruit personnel who possess a comprehensive understanding 

of the roles and responsibilities inherent to the field. 

 

• Collaboration and syncing of data: Efficient supply chain management relies on 

access to supply chain data. Yet, managing the vast number of data points across 

global supply chains poses a significant challenge in this field (“Key Challenges in 

Supply Chain Management”, 2022). 

 

• Digital transformation: Enhancing supply chain operations requires the adoption of 

digital transformation and technologies, such as IoT/Internet of Things, AI/Artificial 

Intelligence, drones, and robotics. However, the main obstacle in supply chain 

management is effectively integrating these technologies into existing operations 

(“Key Challenges in Supply Chain Management”, 2022). 

 

• Difficult demand forecasting: Fluctuating customer demands, seasonal variations, 

and market uncertainties make forecasting particularly challenging in the supply 

chain. These complexities directly impact inventory management (Brown, 2022).  

 

• Port congestion: Port congestion arises when a port reaches its capacity and cannot 

accommodate the arrival of ships for cargo loading or unloading. This can be caused 

by various factors, such as bad weather, accidents, equipment damage, unpredictable 

trade demands, and inadequate port infrastructure. The consequences of port 

congestion include delivery delays, queues, increased travel time, additional costs, 

trade loss, reduced productivity, limited port access, and significant implications for 

the logistics and supply chain industry (Fathima, n.d.). 

 

Therefore, disruptions in the supply chain, demand volatility, etc., are some of the key 

underlying challenges in SCM. Understanding and proactively addressing these challenges 

are crucial for developing effective strategies and solutions to optimize supply chain 

performance. 
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2.2 Bullwhip effect and Backorder prediction in supply chain management 
 

The “bullwhip” effect, also known as “whiplash” or “whipsaw” or “Forrester” effect was 

coined by an MIT Sloan School of Management professor named Jay Wright Forrester in the 

year of 1961 (Lee et al., 1997; Holicki, 2022). It is a phenomenon in which an increase in 

demand variability occurs as one moves from downstream stages to upstream stages in a 

supply chain (Lee et al., 1997, as cited in Pillai & Pamulety, 2013). It has significant 

implications for supply chain management, leading to issues, such as excessive inventory, 

poor customer service, revenue loss, transportation inefficiencies, and more (Lee et al., 1997; 

Wright & Yuan, 2008; Shukla et al., 2009, as cited in Pillai & Pamulety, 2013).  

 

The bullwhip effect has been observed in various industries, including Procter & Gamble, 

Hewlett-Packard, the machine tool industry, the clothing supply chain, grocery retailers, and 

more (Lee et al., 1997; Disney & Towill, 2003; Ge et al., 2004; Kok et al., 2005; Terwiesch 

et al., 2005; Odonnell et al., 2006; Bhattacharya & Bandyopadhyay, 2011, as cited in Pillai & 

Pamulety, 2013). Researchers have identified operational and behavioral causes of the 

bullwhip effect (Paik & Bagchi, 2007; Bhattacharya & Bandyopadhyay, 2011, as cited in 

Pillai & Pamulety, 2013).  

 

Operational causes include factors, such as demand forecast updating, batching of orders, 

fluctuations in price, the gaming of rationing and shortages, lack of communication and 

coordination, information transparency, and more. Behavioral causes, identified through 

experiments such as the beer distribution game, involve misperception of feedback, lack of 

training and learning, overreaction to orders, and underestimating the value of information 

(Sterman, 1989; Croson & Donohue, 2003; Nienhaus et al., 2006, as cited in Pillai & 

Pamulety, 2013). 

 

Backorders contribute to the bullwhip effect, as they introduce variation in order quantities 

(Croson & Donohue, 2002, as cited in Pillai & Pamulety, 2013). However, backorder and out 

of stock should not be mistaken for one another. While out of stock means the delivery date 

of goods cannot be guaranteed, backorder allows customers to browse and place orders for 

products. In essence, a backorder can be understood as an order that will be delivered at a 

later, postponed date. (Raja, 2021; Dahiwalkar, 2021).  
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The following figure, Figure 1, illustrates the bullwhip effect that is a result of a slight 

increase in consumer demand and the interaction within the supply chain. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 01: An example of bullwhip effect (Li, 2017, p. 4) 

 

Backorders are simply a result of temporary unavailability or out-of-stock situations, whereby 

customers place orders for future production and shipment. These instances commonly occur 

when there is a surge in demand or when a popular product is anticipated to be released soon.  

 

For example, during the COVID-19 pandemic, the increased need for antiseptic products and 

indoor activities led to a significant surge in online purchases. This unexpected demand spike 

caused the bullwhip effect, leaving many industries unprepared and surprised by the sudden 

increase in demand. Consequently, product stocks were inadequate, but customers were 

willing to wait due to limited alternatives. Another scenario is when a renowned company 

announces the upcoming release of a new product. In such cases, the company accepts 

backorders from customers due to an inadequate initial production quantity in relation to the 

anticipated demand (Shajalal et al., 2021, as cited in Ntakolia et al., 2021).  

 

Proper management of backorders is important in inventory control as it directly affects the 

overall production costs of the entire supply chain (Ntakolia et al., 2021). Effectively 

managing backorders significantly impacts a company's revenue, stock market performance, 

and customer trust (Islam & Amin, 2020, as cited in Ntakolia et al., 2021).  
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Backorder prediction involves using data analysis and forecasting techniques to estimate the 

likelihood of backorders occurring. Machine learning algorithms and statistical models can be 

employed to analyze historical data on orders, inventory levels, customer demand, and other 

relevant factors. These models can then generate predictions on the probability of backorders 

in the future (Raja, 2021). 

 

However, backorders have been the subject of extensive study in supply chain management 

research. Experimental studies have primarily focused on backorder settings to examine the 

bullwhip effect and its underlying causes (Sterman, 1989; Croson & Donohue, 2003; Croson 

& Donohue, 2005; Wu & Katok, 2006; Cantor & Katok, 2012, as cited in Pillai & Pamulety, 

2013). In light of these findings, it becomes imperative for companies to accurately forecast 

backorders. This practice allows them to optimize inventory levels and streamline production 

planning while enhancing customer satisfaction. To this end, implementing data-driven 

approaches, such as machine learning and statistical modeling, can offer reliable backorder 

predictions (Raja, 2021).  

 

 

2.3 Challenges and complexities associated with backorder prediction 
 

Although backorder prediction is a specific aspect of supply chain management, it often 

intersects with the general challenges encountered in the broader supply chain spectrum, as 

highlighted in Section 2.1. Nevertheless, due to its unique nature and specific requirements, it 

presents its own set of challenges and intricacies that mandate deeper exploration for accurate 

forecasting. These include: 

 

• The foggy crystal ball: Backorder prediction often requires the use of machine 

learning algorithms. However, sometimes the process lacks clarity and flexibility 

which can be compared to “gazing into a foggy crystal ball”. Moreover, incorporating 

inaccurate or faulty data can diminish the accuracy, clarity, and adaptability of the 

prediction process (Islam & Amin, 2020; Gao et al., 2022). 

 

• The quest for reliable data: Echoing insights from Section 2.1, backorder prediction 

relies on historical data related to orders, inventory levels, and customer demand. 

However, obtaining comprehensive and accurate data can be challenging. 
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Additionally, issues, such as fragmented, inconsistent, and incomplete data can 

negatively impact the reliability of backorder prediction model (Islam & Amin, 2020). 

 

• The imbalanced tango: Backorders are relatively rare compared to items that do not 

go into backorder. This imbalance in class distribution poses a challenge in 

developing predictive models. Techniques, such as ensemble learning, sampling, and 

specific metrics are employed to address this issue (Santis et al., 2017; Raja, 2021; 

Dahiwalkar, 2021; Shajalal et al., 2022). 

 

• The demand rollercoaster: Demand forecasting is a crucial aspect of backorder 

prediction. However, as discussed in Section 2.1, accurately predicting demand 

patterns can be challenging due to various factors, such as seasonality, market trends, 

and external events. The dynamic nature of demand introduces complexities in 

accurately forecasting backorders (Raja, 2021; Brown, 2022). 

 

• The whirlwind supply chain: As touched upon in Section 2.1, supply chains are 

subject to constant changes, including supplier disruptions, production delays, and 

market fluctuations, etc. These dynamic factors can introduce volatility into the 

backorder prediction process, which is difficult to capture and incorporate into 

prediction models (Luther, 2022; Lutkevich, 2023). 

 

Addressing these challenges requires a combination of technical expertise, robust data 

management practices, and collaborative efforts among supply chain partners. Overcoming 

these complexities can lead to improved backorder prediction, optimized inventory levels, 

enhanced customer satisfaction, and overall supply chain efficiency. 

 

 

2.4 Understanding machine learning and its applications 
 

This section provides an overview of Machine Learning/ML and its significance in backorder 

prediction. The applications, types of techniques, and key concepts in machine learning will 

be discussed to understand its relevance in backorder prediction. By gaining insights into the 

advantages and limitations of machine learning, the author aims to establish a foundation for 

further exploration of machine learning methods in achieving effective backorder prediction. 
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2.4.1 Machine learning- what it means 
 

AI/Artificial Intelligence, ML/Machine Learning, NN/Neural Networks, and DL/Deep 

Learning are often considered as buzzwords. These terms have gained significant attention 

and popularity in various industries and discussions, often capturing the interest and curiosity 

of people due to their potential implications and advancements in technology. Kavlakoglu 

(2020) used the metaphor of Russian nesting dolls to demonstrate the relationship between 

AI, ML, NN, and DL. Analogous to the structure of these dolls, each term represents a 

component nested within the preceding one, where AI serves as the broader field, and ML is 

a specialized subfield within it. DL, in turn, is a subfield of ML, and it heavily relies on NN 

as its fundamental architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 02: Relationship between AI, ML, NN, and DL (Kavlakoglu, 2020, para. 3) 

 

According to Brown (2021), a news writer in renowned MIT Sloan, during the 1950s AI 

pioneer Arthur Samuel defined ML as the area of research that empowers computers to 

acquire knowledge and skills without explicit programming instructions. In contrast, Brown 

(2021) also argued that in certain situations, programming a machine to perform a specific 

task can be challenging or even impractical, particularly when it comes to complex tasks 

including image recognition. Humans can effortlessly recognize different individuals in 

pictures, but conveying this ability to a computer is challenging. Machine learning offers an 

alternative approach by enabling computers to learn and develop programming capabilities 

autonomously through experience.  
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However, Zhang (2017) defines ML as an automated approach to analyzing data by 

constructing analytical models. It utilizes adaptive algorithms that continuously learn and 

adapt from data and past computations. This allows the models to discover information and 

patterns without explicit instructions on where to look.  

 

 

2.4.1.1 Machine learning approaches: supervised versus unsupervised  
 

Generally, there are two main types of machine learning algorithms: supervised learning and 

unsupervised learning. Supervised learning involves a data scientist guiding the algorithm by 

providing labeled datasets with predefined outputs. Linear regression, logistic regression, 

multi-class classification, and support vector machines are examples of such approaches. In 

contrast, unsupervised learning allows the computer to independently identify patterns and 

processes without labeled data. Algorithms, such as k-means clustering, principal component 

analysis, and association rules fall under unsupervised learning. However, the choice between 

the two depends on factors, such as data structure and volume, as well as the specific use 

case. Machine learning is widely applicable across various industries and supports diverse 

business goals and use cases (Oracle, 2023). 

 

 

2.4.1.2 Machine learning process at a glance 
 

Machine learning enables systems to learn from data. It involves creating computer programs 

that can acquire knowledge independently by analyzing input data. ML professionals adhere 

to a standardized methodology to complete their tasks, irrespective of the model or training 

technique employed. These actions involve iteration that allows continuous evaluation and 

improvement. ML empowers machines to learn and adapt autonomously, leading to 

intelligent decision-making based on available information (Ahamed, 2022). 

 

To say about the machine learning process, Brownlee (2016) emphasized that the initial stage 

of any project involves clearly identifying and defining the problem. While utilizing 

advanced and impressive algorithms may be tempting, their effectiveness becomes irrelevant 

if they are applied to the wrong problem. Therefore, it is crucial to ensure that the problem 

statement is accurate and well-defined before proceeding with any solution approach.  
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However, once the exact problem is defined, the remaining process of machine learning can 

be shown as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 03: ML process at a glance (Pandian, 2020, para. 6) 

 

• Data Collection: In machine learning, the learning process heavily relies on the data 

provided to the model. Thus, it is crucial to gather reliable data that enables the model 

to identify accurate patterns. The quality of the input data directly impacts the 

accuracy of the model's outcomes and predictions. Using incorrect or outdated data 

can lead to irrelevant results. Therefore, it is important to ensure the data is sourced 

from a reliable and trustworthy source. Good data is characterized by its relevance, 

minimal missing or duplicate values, and a comprehensive representation of the 

different subcategories or classes within the dataset (Banoula, 2023). 

 

• Data preparation: After collecting the data, it undergoes data processing, including 

Exploratory Data Analysis /EDA and feature engineering. EDA helps understand and 

clean the dataset, while feature engineering involves handling missing values, 

converting categorical variables into numerical representations, addressing non-

Gaussian distributions, finding outliers, and scaling features. The clean data then is 
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split into two sets, training set and testing set. The training data is used to recognize 

patterns and optimize the algorithm, while the test data evaluates the model's 

predictive capabilities on new data. However, it is important to judiciously split the 

data into separate training and test sets (usual range between 20 percent to 80 percent) 

to avoid overfitting and ensure accurate predictions (Pandian, 2020). 

 

• Model building: Once the dataset is prepared, a suitable model can be selected to 

address the targeted problem. For tasks involving continuous outputs, such as 

predicting the waiting time for an order, a regression algorithm can be used. If the 

task involves classifying inputs, such as determining whether an order will be 

completed within a specific time frame, a classification algorithm is chosen. Different 

classification and regression algorithms exhibit varying performance depending on 

the dataset's characteristics. Models are selected based on whether the data is 

categorical or numerical and the number of features in the dataset. The interpretability 

of the models also varies, indicating the ease of understanding and interpreting the 

results obtained (Codeacademy, 2023). 

 

• Model evaluation: Various evaluation methods exist for assessing the performance of 

different models. In regression, metrics, such as Sum of Squared Error /SSE, Mean 

Squared Error /MSE, Root Mean Squared Error /RMSE, Mean Absolute Error /MAE, 

Coefficient of determination /𝑅2, and Adjusted 𝑅2 are commonly used (Pandian, 

2020). For classification models, evaluation can be done through the Confusion 

Matrix, Accuracy score, Precision, Recall, F1 score, and metrics, such as AUC and 

ROC (Silwal, 2022). These evaluation techniques provide valuable insights into the 

accuracy and performance of regression and classification models.  

 

However, a classifier's effectiveness is determined by the evaluation metric applied. 

By using the wrong metric, one risks choosing an inefficient model or even 

underestimating the performance of the model. In machine learning, choosing the 

appropriate measure can be particularly challenging, especially for imbalanced 

classification. This is because errors in prediction do not have the same effect across 

imbalanced classes, contrary to the assumption made by standard metrics that class 

distributions are equal (Brownlee, 2020). Hence, Macro F1 score, AUC score, G-

mean, and some graphical performance evaluation, such as ROC curve and Precision-
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Recall curves, etc. play a vital role in the performance measurement in case of an 

imbalanced dataset (Bekkar et al., 2013; Brownlee, 2020; Allwright, 2022). 

 

• Model deployment: Finally, ML deployment comes into action that involves 

integrating the finalized model into a production environment and obtaining results 

that can inform business decisions (Pandian, 2020). 

 

However, one important aspect of machine learning is hyperparameter tuning. 

Hyperparameters are external configuration variables that data scientists manually set before 

training a model. They manually control features, such as model architecture, learning rate, 

and complexity. This process, known as hyperparameter tuning or optimization, involves 

experimenting with different combinations of hyperparameters to find the most effective 

ones. The iterative process involves trying out various parameter combinations and 

evaluating them based on metrics, such as accuracy as a base metric. Bayesian optimization, 

grid search, random search, etc. are the most commonly used algorithms for this purpose. 

Cross-validation techniques are often employed to ensure the model's generalizability across 

different subsets of the data. Overall, hyperparameter tuning is a crucial and computationally 

intensive process that significantly impacts the quality and effectiveness of machine learning 

models (AWS, 2023). 

 

 

2.4.1.3 Data in machine learning 
 

Brown (2021) claims that machine learning begins by collecting and preparing data, which 

can include various types, such as numerical data, images, or textual information, from 

different sources. However, data serves as the fuel for machine learning algorithms. The 

availability and quality of data significantly impact the performance and accuracy of the 

machine learning model (Domingos, 2012). 

 

A survey conducted by CrowdFlower, a platform that offers data enrichment services for data 

scientists, data scientists allocate their time in the following manner (as cited in ProjectPro, 

2023): 
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Table 01: CrowdFlower survey on data scientists’ time allocation 

Task Time spent 

Organizing and cleaning data 60% 

Collecting datasets 19% 

Mining the data to draw patterns 9% 

Training the datasets 3% 

Refining the algorithms 4% 

Other tasks 5% 

 

The survey findings suggest that a significant portion of a data scientist's time is dedicated to 

data preparation tasks (ProjectPro, 2023).  

 

However, “Data preparation is an essential that can take place at various stages of the 

machine learning process” (Prof. Mezei, personal communication, October 12, 2021). 

Therefore, data preprocessing is a critical step in machine learning, aiming to prepare the data 

for analysis and modeling. Various techniques are employed to make the data more usable 

and reliable. For example, data cleaning involves identifying and addressing issues, such as 

incomplete, inaccurate, duplicated, irrelevant, outliers, or noisy data in the dataset. 

Dimensionality reduction is another technique used to simplify the data by reducing the 

number of features. This helps focus on the most important aspects and avoids unnecessary 

complexity and thus improve computational efficiency. It also helps in preventing overfitting 

and avoiding multicollinearity. Feature engineering involves creating new features based on 

domain knowledge to enhance the model's predictive power. Sampling techniques are 

employed when dealing with large datasets that may strain resources. Representative 

sampling data techniques, such as with/without replacement, stratified and progressive 

sampling can be used to capture the essence of the data without overwhelming computational 

capabilities (Azevedo, 2023).  

 

Azevedo (2023) also argues about another technique, data transformation, that converts the 

data to the same structure to avoid poor model performance. This includes normalization and 

standardization, which are used to adjust the data's scale and distribution. Apart from this, 

transforming categorical variables also is considered as data transformation. Further to this, 

handling imbalanced data is also essential when dealing with datasets that have a 
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disproportionate distribution of classes. Techniques, such as oversampling, under-sampling, 

and hybrid approaches are employed to address this issue.  

 

Overall, these data preprocessing techniques are vital for improving data quality, model 

performance, and the overall success of machine learning projects.  

 

 

2.4.2 Machine learning use cases and the power of prediction 
 

Machine learning plays a pivotal role in the business models of certain companies, such as 

Netflix, with its recommendation algorithm, and Google, with its search engine, while other 

companies are actively exploring its potential applications, even if it is not their primary 

focus. A recent survey by Deloitte discovered that 67% of companies are already leveraging 

machine learning whilst 97% will either be using or planning to use within a year. However, 

many organizations are still struggling to figure out the problems that can be addressed 

through machine learning (Brown, 2021). 

 

Brown (2021) also mentioned that, based on a recent study from MIT, while no occupation 

will remain untouched by machine learning, complete replacement by machines is unlikely. 

Successful implementation of machine learning involves reorganizing jobs into discrete tasks, 

some of which can be automated, while others require human involvement. Nevertheless, 

various applications of machine learning can be observed across different industries. 

Recommendation algorithms powered by machine learning are utilized by different 

platforms, such as Netflix, YouTube, and other social media networks to personalize content 

based on user preferences. Machine learning algorithms are also employed in image analysis 

and object detection tasks, allowing for the identification and differentiation of objects and 

individuals in images. While facial recognition algorithms have raised concerns, machine 

learning finds application in other areas, such as finance, where hedge funds analyze parking 

lot occupancy to gain insights into company performance. Fraud detection benefits from 

machine learning as well, as algorithms can identify anomalies and patterns in financial 

transactions that help detect potentially fraudulent activities, such as unauthorized credit card 

usage or spam emails. Companies also leverage machine learning and NLP/ Natural 

Language Processing to deploy automatic helplines or chatbots. This approach enables them 

for automated customer assistance and learning from past conversations to deliver relevant 
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responses. Machine learning, particularly deep learning, forms the foundation of technology 

used in self-driving cars. Further to this, machine learning algorithms play a vital role in 

medical imaging and diagnostics, where they can be trained to analyze medical images and 

data, assist in diagnosis, and predict markers of diseases, such as assessing cancer risk using 

mammograms. 

 

Machine learning offers predictive capabilities that allow organizations to make informed 

decisions based on advanced analytics. One example is predictive maintenance, where ML 

models identify equipment at risk of failure, enabling maintenance teams to take preventive 

action. This approach maximizes productivity, improves asset performance and longevity, 

reduces costs, and enhances regulatory compliance. Moreover, predictive maintenance aids in 

inventory control and management by accurately forecasting spare parts and repairs. This 

results in reduced expenses, and increased operational efficiency (Oracle, 2023). 

 

Hence, ML has found applications in different business areas, including healthcare, finance, 

marketing, and now increasingly in supply chain management. By harnessing the power of 

ML, organizations can gain a deeper understanding of their supply chain dynamics to make 

well-informed decisions. This enables them to optimize inventory levels, improve customer 

satisfaction, reduce costs, and ultimately achieve their business goals. 

 

 

2.5 Existing methods and techniques for backorder prediction 
 

Backorder prediction, being a critical task in inventory and supply chain management 

systems, aims to minimize losses and optimize customer satisfaction. To achieve these 

objectives, along with the traditional approach, researchers have proposed several methods 

and techniques that leverage machine learning algorithms and data analysis techniques.  

 

This section aims to provide a comprehensive overview of existing research in this domain, 

highlighting the different approaches employed and their implications for backorder 

prediction. However, it is worth noting that these findings, although not specifically targeting 

backorder prediction, provide valuable insights and serve as a reference for this project. 
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2.5.1 Traditional approach versus modern approach in backorder prediction 
 

The traditional approach to backorder prediction is often considered subjective. There are 

varying views on what constitutes a conventional method, with some, such as Singh et al. 

(2021), contending that randomly manufacturing inventory without proper measures or 

detailed analysis of customer demand is a traditional approach in the supply chain. Ntakolia 

et al. (2021) and Hájek & Abedin (2020) stated that traditional methods described in the 

literature rely on stochastic approximations and do not consider insights from historical data.  

 

In contrast, several studies suggest even some advanced analytics techniques can be 

categorized as traditional methods (Rheude, 2022; IBM, 2021; Hyndman & Athanasopoulos, 

2021; Carbonneau et al., 2007; 2008). However, it is widely recognized that these 

conventional approaches may be insufficiently accurate and efficient for predicting 

backorders.  

 

Both the traditional and advanced approaches are presented in an extensive manner below: 

 

 

2.5.1.1 Traditional approach 
 

Traditional models often involve a combination of qualitative and quantitative analysis, 

considering previous trends, current market situations, and expert insights. For example, 

qualitative techniques, such as expert judgment and the Delphi method involve gathering 

opinions and expertise from supply chain professionals or domain experts to estimate future 

demand and potential backorders. In the market research method, researchers use a variety of 

techniques that include conducting surveys, interviews, focus groups, and observations to 

gather customer feedback, preferences, and demographic data. This approach helps 

understand consumer behavior and market trends. Further to this, the sales force composite 

method relies on feedback from the sales team, who have direct contact with customers. 

Salespeople provide qualitative insights for demand forecasting by sharing their knowledge 

of client preferences, product trends, and competition actions. These approaches can provide 

insightful information, especially in situations where historical data is limited or unreliable. 

However, they are subjective and reliant on the expertise and biases of the individuals 

involved (Rheude, 2022). 
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On the other hand, quantitative analysis or economic method requires number crunching 

(Rheude, 2022). Traditionally, statistical regression techniques have been commonly used to 

analyze numerical inventory values over time and make future projections. These techniques 

compare the projected inventory values with the actual stock levels to evaluate the accuracy 

of the regression algorithms (IBM, 2021). However, traditional methods are commonly used 

as baseline methods for comparison in forecasting studies (Carbonneau et al., 2007).  

 

Among the quantitative analyses, one commonly used traditional approach in backorder 

prediction is time-series analysis, which involves analyzing historical inventory data and 

using statistical methods, such as moving averages, exponential smoothing, and 

Autoregressive Integrated Moving Average/ ARIMA models. The data can be analyzed using 

time-series models to identify trends, seasonality, and other patterns that can be used to 

predict future inventory levels. However, they could have trouble capturing non-linear 

relationships and handling complex factors that impact backorders in the supply chain. 

Another conventional method is the use of statistical regression models, for instance, multiple 

linear regression, to determine the relationships between various factors and backorders. 

These models can analyze historical data and assess the impact of variables, such as lead 

time, demand, and inventory levels on the occurrence of backorders. These regression models 

often assume linearity and could miss complex relationships present in the data (Hyndman & 

Athanasopoulos, 2021; Carbonneau et al., 2007; 2008).  

 

In addition to time-series analysis and regression models, traditional supply chain 

management techniques, such as Economic Order Quantity/ EOQ and Just-in-Time/JIT 

inventory management have also been used to manage backorders. JIT strives to lower 

inventory holding costs by coordinating production and delivery schedules, whereas EOQ 

assists in determining the ideal order quantity to minimize costs and maintain inventory 

levels (Sprague et al., 1990; Chopra & Meindl, 2013).  

 

These techniques focus on optimizing inventory levels, even though they may not explicitly 

address backorder prediction and proactive management. 
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2.5.1.2 Modern/ML approach  
 

Modern techniques, such as machine learning/ ML algorithms have also been extensively 

utilized in backorder prediction to provide flexibility and clarity in the decision-making 

process. Researchers have developed predictive models employing ML techniques that can 

predict probable backorder scenarios in the supply chain to help decision-makers understand 

and optimize the accuracy of predictions. These models can manage vast amounts of data, 

identify relevant trends and patterns, and produce forecasts that assist in making informed 

business decisions. To explore the effectiveness of ML-based and traditional forecasting 

methods in predicting manufacturers' uncertain demands, researchers conducted a 

comparative analysis (Islam & Amin, 2020).  

 

For example, Carbonneau et al. in 20061 (2008, as cited in Li, 2017; Islam & Amin, 2020) 

conducted a study focusing on comparing traditional methods, such as Naïve forecasting, 

average, moving average, trend analysis and multiple linear regression with advanced 

prediction methods, such as Neural Networks/ NN, Recurrent Neural Networks/ RNN, 

Support Vector Machines/ SVM. Surprisingly, the study discovered that while the average 

performance of ML methods did not outperform that of conventional approaches, an SVM 

that was trained on a variety of demand-series produced extremely accurate forecasts, 

offering a glimpse of possibility. Encouraged by these findings, the same researchers, 

Carbonneau et al. (2007, as cited in Li, 2017; Islam & Amin, 2020), further expanded their 

investigation by incorporating 22 different tools in total, including both conventional 

methodologies and cutting-edge ML techniques. This extended research revealed noticeable 

improvements in prediction accuracy compared to traditional models (Islam & Amin, 2020).  

 

Furthermore, Guanghui (2011, as cited in Li, 2017; Islam & Amin, 2020) conducted a study 

where Support Vector Regression/ SVR method was applied to predict the demand in a 

supply chain, comparing it with the Radial Basis Function/ RBF neural network method. The 

results indicated that SVR outperformed RBF in terms of prediction performance, making it a 

suitable and efficient method for demand forecasting in the supply chain.  

 

 

 
1 The work was accepted in 2006 but published in 2008. Source: 

https://www.sciencedirect.com/science/article/pii/S0377221706012057 

https://www.sciencedirect.com/science/article/pii/S0377221706012057
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2.5.1.2.1 Enhancement in backorder prediction 
 

Companies face the dilemma of deciding whether to produce or acquire backordered 

products, while customers may cancel their orders if the wait is too long, resulting in unsold 

inventory. To improve strategic inventory management decisions, Shajalal et al. (2022) 

argued for the inclusion of explanations for AI recommendations. Moreover, explainable 

machine learning models have been proposed to enhance backorder prediction by considering 

the costs associated with backorders. Ntakolia (2021) developed an explainable machine 

learning model that helps identify material backorders and optimize production and shipment 

processes, contributing to an effective and cost-efficient supply chain. This approach 

considers the unavailability of stock and delays in product delivery, which can lead to 

additional production costs and dissatisfied customers.  

 

Later, Shajalal et al. (2022)  proposed a novel Convolutional Neural Network/ CNN-based 

predictive model for predicting product backorders in inventory management. They 

investigated the provision of explanations using Shapley additive explanations, which 

elucidate the overall priority of the models in decision-making. Additionally, they introduced 

locally interpretable surrogate models that can explain individual predictions made by the 

model. Shin et al. (2012, as cited in Islam & Amin, 2020) proposed a dynamic backorder 

replenishment planning framework based on risk analysis, aiming to reduce supply chain and 

inventory control expenses. This framework utilized the Bayesian Belief Network to make 

informed decisions. Acar & Gardner (2012, as cited in Islam & Amin, 2020) also 

recommended a similar framework, employing optimization and simulation techniques to 

optimize backorder replenishment planning. In a different approach, Rodger (2014, as cited 

in Islam & Amin, 2020) introduced a risk-triggering model that incorporated fuzzy feasibility 

and Bayesian probabilistic evaluation to assess backorder risks. 

 

To address the issue of imbalanced classes in backorder prediction, researchers have explored 

various techniques, such as ML classifiers, sampling techniques, and ensemble learning. 

These techniques aim to improve the accuracy of backorder prediction models by handling 

imbalanced datasets and leveraging the collective predictions of multiple models. One 

approach that has gained significant attention is the utilization of deep neural networks for 

backorder prediction. Shajalal et al. (2021) developed a deep neural network model to handle 

the data imbalance issue between backorders and filled orders. Techniques, such as minority 
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class weight boosting, random oversampling, and the synthetic minority oversampling 

technique/ SMOTE have been employed to address this challenge and balance the dataset. 

Deep neural networks are well-suited for capturing complex patterns and dependencies in the 

data, making them effective for predicting backorders. These models are trained on historical 

data that incorporates product information, customer details, and inventory status. They help 

them make accurate predictions by identifying patterns that indicate backorders. However, 

evaluation metrics, such as the area under the Receiver Operator Characteristic/ ROC curve 

and Precision-Recall curves are commonly used to assess the performance of predictive 

models (Raja, 2021). 

  

 

2.5.2 Modern/ML approach is better 
 

Modern machine learning/ ML techniques have drawn interest because they have the 

potential to perform better than conventional approaches in backorder prediction, despite the 

advantages that conventional methods may offer. 

 

The following is a detailed discussion of how the ML approach is better than the traditional 

approach: 

 

• Improved accuracy: Numerous studies have demonstrated that ML algorithms are 

more accurate at making predictions than conventional techniques. A notable example 

of this is the study of Carbonneau et al. (2007), where ML algorithms outperformed 

conventional approaches in terms of prediction accuracy. 

 

• Handling non-linearity: Traditional approaches may have trouble capturing and 

learning from non-linear patterns in the data, whereas ML models excel in this aspect. 

IBM (2021) points out that although regression models are commonly used and 

straightforward for time-series data analysis, they may not be appropriate for reliably 

predicting complex non-linear correlations in more intricate issues.  

 

• Complex pattern identification: One advantage of machine learning is its capacity 

to uncover complex patterns that surpass human cognitive capabilities. While 

machine learning can swiftly analyze enormous datasets, find hidden patterns, and 
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enable more accurate forecasts, traditional forecasting approaches are limited by the 

volume of data that humans can process and analyze properly (Wisneski, 2022). 

 

• Scalability and adaptability: ML models are highly scalable and adaptable to 

different datasets and supply chain scenarios. They are scalable because they can 

handle and process large volumes of data effectively. Their adaptability lies in their 

capacity to incorporate various types of data, including non-traditional sources, and 

adjust their predictions accordingly (Wisneski, 2022). 

 

• Handling uncertainty: The inherent unpredictability of backorder forecasting is 

caused by various external factors. By adding probabilistic strategies and ensemble 

techniques, ML models may manage this uncertainty. Raja (2021) emphasized how 

ensemble learning strategies might enhance backorder prediction by aggregating the 

predictions of multiple models. 

 

• More accessibility: Wisneski (2022) asserted that machine learning offers more 

accessibility compared to conventional methods, which frequently require specialized 

knowledge and training. As technology advances, ML is becoming more readily 

available, enabling users to build models on various software platforms without 

requiring extensive training or experience. 

 

• Unbiased predictions: By reducing the impact of human biases and subjective 

viewpoints, machine learning offers an edge over conventional forecasting 

techniques, resulting in more accurate predictions. Machine learning algorithms do 

not have personal biases or emotions, in contrast to humans who can be affected by 

these things. This makes decision-making impartial, especially in situations, such as 

launching new stores when conventional approaches could be exposed to subjective 

biases. However, it is worth noting that machine learning models can still manifest 

bias if trained on biased data, but employing unbiased data and cross-validation 

approaches can assist in ensuring accuracy (Wisneski, 2022). 

 

Furthermore, incorporating big data analytics into backorder prediction has shown promising 

results. By integrating a profit-based measure into the prediction model and optimizing the 
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decision threshold, the expected profit of backorder decisions can be maximized. This data-

driven approach leverages valuable insights from historical inventory data, enabling more 

precise predictions (Hájek & Abedin, 2020). However, the selection and effectiveness of 

these methods and techniques may vary depending on the specific context and dataset. 

Continuous research is underway to explore new approaches and algorithms to further 

enhance the accuracy and efficiency of backorder prediction models. 

 

 

2.5.3 Recent relevant studies at a glance 
 

Machine learning algorithms have gained significant traction in backorder prediction due to 

their ability to handle complex patterns and large volumes of data. These algorithms leverage 

historical data and employ various techniques to predict backorder scenarios accurately. 

Some commonly used ML algorithms in backorder prediction in most recent studies include 

the followings: 

 

Santis et al. (2017) conducted a study on backorder prediction using classifiers and ensemble 

methods. They incorporated balancing techniques, such as RUS/ Random Under-Sampling 

and SMOTE/ Synthetic Minority Over-sampling Technique to address the imbalanced nature 

of the dataset. Among the classifiers, LR/ Logistic Regression achieved an AUC/Area Under 

the ROC Curve score of 0.92, while CART/ Classification Tree performed slightly better 

with a score of 0.94. Moving on to the ensemble methods, RF/ Random Forest achieved a 

score of 0.94, indicating strong performance. However, both GBOOST/ Gradient Tree 

Boosting and BLAG/ Blagging outperformed the other models with impressive AUC scores 

of 0.95. These results highlight the effectiveness of ensemble methods, particularly GBOOST 

and BLAG, in predicting backorder accurately. 

 

In the study conducted by Hájek and Abedin (2020), in which they proposed the profit-max 

CBUS technique, the results showed that the RF classifier achieved the highest AUC score of 

0.92, indicating strong predictive performance. LR and SVM also performed relatively well 

with AUC scores of 0.77 and 0.78, respectively. However, the KNN/ K-Nearest Neighbor 

classifier and NN/ Neural Network had lower AUC scores of 0.74 and 0.60, respectively, 

indicating weaker performance in predicting backorders. These findings suggest that the RF 

classifier is the most effective among the evaluated classifiers for the given task. 
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Islam and Amin (2020) assessed the performance of GBM/ Gradient Boosting Machine and 

DRF/ Distributed Random Forest models using SMOTE and ROS/ Random Oversampling 

techniques on actual and modified (ranged) data. The ranged data is derived from the actual 

data by converting certain features into different class ranges and then multiplying by 

correlational factors. When trained with real data, these models showed increased mean 

classification errors and lower AUC values, indicating a potential overfitting issue. AUC 

values decreased somewhat throughout the testing phase, with DRF recording an AUC of 

0.79 and GBM recording an AUC of 0.80. 

 

Ntakolia et al. (2021) aimed to evaluate the performance of various machine learning models 

in predicting backorders of products. Eight machine learning models were compared in the 

study. RF, XGBoost, LightGBM, and Balanced Blagging/ BB exhibited excellent 

performance with an AUC score of 0.95. These models show promise for effective inventory 

management and preventing stockouts. In contrast, KNN, LR, and SVM achieved lower 

accuracy with AUC scores of 0.82, 0.79, and 0.83, respectively. To enhance the performance 

of the identified models, calibration techniques, such as Isotonic Regression and Platt Scaling 

were applied. The performance of these models was further evaluated using additional 

metrics, such as accuracy, recall, precision, and F1-score. The majority of the classifiers 

achieved accuracy rates of up to 88.85%, except for KNN, LR, and SVM, which had lower 

accuracy rates (up to 75.93%). Additionally, RF, XGBoost, LightGBM, and BB models 

performed well in terms of recall (up to 90.69%), precision (up to 88.10%), and F1-score (up 

to 89.12%). The results revealed that Isotonic Regression provided better calibration results 

for RF, XGBoost, and LightGBM, while Platt Scaling yielded superior performance for the 

BB classifier. Notably, the LightGBM classifier calibrated with Isotonic Regression 

demonstrated the best overall performance, approaching the perfectly calibrated model. 

 

Another work done by Dahilwalkar (2021) compares the performance of different machine 

learning models for backorder prediction. The AUC scores of the models used in the study 

were LR (0.90), RF (0.95), Adaboost/ Adaptive Boosting (0.94), GBDT/ Gradient Boosted 

Decision Trees (0.95), and Stacking Classifier (0.88). These findings highlight the strong 

performance of RF, Adaboost, and GBDT models in achieving high AUC scores. LR also 

exhibited good performance, with a score of 0.9. The Stacking Classifier had a slightly lower 

AUC score of 0.88, but still demonstrated decent performance. Additionally, considering the 

F1 score, LR had the lowest performance among all models. RF achieved a good F1 score of 
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0.63, while Adaboost outperformed RF with an F1 score of 0.53. GBDT showed strong 

performance with an F1 score of up to 0.56. Stacking classifiers demonstrated similar 

performance, slightly lower than GBDT. Custom ensembles utilizing the DecisionTree 

Regressor achieved an F1 score of 0.62. Overall, these results provide valuable insights into 

the performance of different models in backorder prediction tasks. 

 

In the most recent study, Shajalal et al. (2022) aimed to introduce explainable models in 

backorder prediction. Different dataset balancing techniques, such as Adaptive Synthetic 

Sampling/ ADASYN and SMOTE, were used in the experimental setups. Based on accuracy 

and AUC, the effectiveness of several classifiers was assessed. The findings demonstrated 

that in the majority of experimental setups, the ADASYN balancing strategy surpassed 

SMOTE in terms of accuracy and AUC. This shows that using ADASYN is preferable when 

putting real-time backorder prediction systems into practice. With a score of 0.95, the 

Gradient Boosting classifier had the highest accuracy among the tested traditional machine 

learning models. The SVM outperformed other models in terms of AUC, earning a score of 

0.87. The Decision Tree, SVM, and KNN classifiers all showed strong performance in 

backorder prediction, with accuracy scores of 0.94, 0.85, and 0.90, respectively, and AUC 

scores ranging from 0.81 to 0.87. In contrast, the convolutional neural network/CNN based 

approach with max-pooling layers (MxCNN_100 and MxCNN_50) significantly 

outperformed traditional machine learning models in predicting future backorders, 

particularly in terms of AUC. The Gaussian Naive Bayes classifier, on the other hand, had 

relatively lower accuracy (0.79) and AUC (0.82) scores compared to the other models. To 

alleviate the overfitting issue and enhance performance, dropout layers were added to the 

CNN-based model. On the training set of data, the model's accuracy was 0.88 and its AUC 

was 0.95; on the testing set, it was 0.89 and 0.95. These results show the potential of diverse 

classifiers, CNN-based models, and the value of dataset balancing methods in backorder 

prediction tasks. 

 

To sum up, recent studies underscore the power of different machine learning algorithms in 

backorder prediction, with various balancing techniques proving beneficial for imbalanced 

datasets. Additionally, AUC remains a vital performance metric, with models often achieving 

scores around 0.90 or higher. The exploration of deep learning via CNNs has shown 

promising results. However, there is a growing emphasis on not only predicting accurately 

but also optimizing for business outcomes. 
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Table 02: Performance comparison among known related works on similar dataset 

Researchers ML techniques AUC 

Santis et al. (2017) 

 

LR/Logistic Regression 

CART/Classification Tree 

RF/Random Forest 

GBOOST/Gradient Tree Boosting 

BLAG/Blagging 

0.92 

0.94 

0.94 

0.95 

0.95 

Hájek & Abedin (2020) 

 

LR/Logistic Regression 

KNN/K-Nearest Neighbor 

RF/Random Forest 

NN/Neural Networks 

SVM/Support Vector Machines 

0.77 

0.74 

0.92 

0.60 

0.78 

Islam & Amin (2020) 

 

GBM/Gradient Boosting Machine 

DRF/Distributed Random Forest 

0.80 

0.79 

Ntakolia et al. (2021) 

 

RF/Random Forest 

KNN/K-Nearest Neighbor 

NN (MLP)/Neural Networks (Multilayer perceptron) 

LR/Logistic Regression 

SVM/Support Vector Machines 

XGBoost/Extreme Gradient Boosting 

LightGBM/Light Gradient Boosting Machine 

BB/Balanced Blagging 

0.95 

0.82 

0.92 

0.79 

0.83 

0.95 

0.95 

0.95 

Dahilwalkar (2021) 

 

LR/Logistic Regression 

RF/Random Forest 

Adaboost/Adaptive Boosting  

GBDT/Gradient Boosted Decision Trees 

Stacking Classifier 

0.90 

0.95 

0.94 

0.95 

0.88 

Shajalal et al. (2022) 

 

DT/Decision Tree 

SVM/Support Vector Machines 

GBM/Gradient Boosting Machine 

Gaussian Naïve Bayes 

KNN/K-Nearest Neighbor 

CNN_50/ Conventional Neural Network with ReLU 

CNN_100 

MxCNN_50/ CNN with maximum pooling layers 

MxCNN_100 

0.81 

0.87 

0.83 

0.82 

0.85 

0.94 

0.95 

0.95 

0.95 

 

Considering the imbalanced class distribution, the evaluation of these studies is shown based 

on the AUC/ Area Under the Curve score, a common metric used to assess the accuracy of 

the models. 



33 
 

2.6 Rationale and uniqueness of the paper 
 

Research rationale involves establishing the relevance of the research purpose by considering 

the current body of knowledge, including relevant theories, and acknowledging the potential 

practical implications (Rojon & Sauders, 2012). This sub-chapter aims to highlight the 

necessity and originality of the current research study in the context of backorder prediction. 

It highlights the constraints and gaps found in earlier studies along with the unique aspects 

and contributions of the current study.  

 

Although there have been many studies on backorder prediction, there are still many 

problems and areas that might use more research. Existing research has developed various 

valuable prediction models and provided insightful information on the variables causing 

backorders. However, there is still a need for more comprehensive and accurate approaches 

that account for the complexity of contemporary supply chain dynamics. The following 

reasons will establish the rationale and uniqueness of this paper: 

 

• Integration of relevant theories and concepts: Many of the previous research 

studies in backorder prediction have not thoroughly investigated the underlying 

theories and concepts. These studies might have emphasized on empirical analysis or 

practical applications without offering a thorough theoretical framework. However, 

this paper addresses this gap by incorporating detailed theories to enhance the 

understanding and interpretation of backorder prediction models. 

 

 

• Up-to-date dataset: Although the same or similar dataset has been used in previous 

research, it is crucial to emphasize that the version selected for this study is the most 

recent one that is currently available. With the advancements in data availability, this 

research makes use of the comprehensive and up-to-date dataset, enabling a more 

accurate and realistic representation of the backorder prediction problem.  

 

• Rich information about the dataset: One notable gap in previous research studies is 

the lack of adequate information about the dataset used for backorder prediction. The 

current research addresses this gap by providing detailed information about the 

dataset, including the attributes, data types, and their respective meanings. This 
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improves the research transparency and reproducibility and enables readers to gain a 

deeper understanding of the data and its implications for backorder prediction. 

 

• Dataset handling and data leakage prevention: In the datasets provided for this 

study, the data has already been partitioned into distinct training and test sets in the 

given source. It is important to highlight that some earlier studies chose to merge 

these sets into a single data frame, a choice that lacked a clear rationale. Such a 

method raises questions concerning possible data leakage, where data from the test set 

may unintentionally affect the learning process. This can lead to overly optimistic 

performance estimations, potentially not generalizing well to new, unseen data (Krish 

Naik, 2020a). On the contrary, this research maintains a systematic approach and 

assures comparability with prior studies by handling the datasets and performing data 

preparation methods separately. By using this method, the analysis gains credibility, 

producing backorder prediction models that are both accurate and reliable. 

 

• Handling missing values and imbalanced datasets: In earlier studies, a variety of 

methods have been used to handle missing values and imbalanced datasets. While 

some studies dropped all the missing values or utilized mean values for imputation, 

others employed the median values. Similarly, a range of different techniques were 

applied to address the issue of imbalanced datasets. Some earlier studies have 

addressed data imbalance likely to improve their findings. Preprocessing is a vital 

stage in machine learning tasks, but it is important to follow a systematic approach to 

ensure the model’s robustness to the unseen data. The results in the Confusion Matrix, 

as shown in some earlier publications, suggest that the data may have been overly 

tailored to yield favorable findings, potentially compromising the model’s ability to 

generalize to real-world scenarios. In contrast, the current research suggests a novel 

approach for handling missing values and addressing class imbalance, providing more 

robust and accurate backorder prediction models. 

 

• Scaling the dataset: The dataset exhibited a significant number of outliers. Given the 

presence of outliers, robust scaling would be the best option, although it was found 

that MinMax scaling or standard scaling were mostly used in earlier studies. Such 

decisions could result in skewed model performance and may not be the best option 



35 
 

for datasets with noticeable outliers. However, in this study, Robust scaling is 

employed to account for these outliers and guarantee more reliable and effective 

model training (Singh, 2022). 

  

• Feature selection and correlation metrics: Some of the previous studies in the field 

of backorder prediction have shown inconsistencies in the approach to feature 

selection. While some studies did not explicitly mention the use of correlation metrics 

for feature selection, others acknowledged its importance. To enable a robust analysis, 

this paper recognizes the significance of correlation metrics in feature selection. 

Along with other techniques, the research uses correlation measures as well to 

discover and prioritize the most influential factors that are highly correlated with the 

occurrence of backorders. This method improves the reliability and efficacy of the 

ML models used to predict backorders, providing supply chain management with 

more useful information and outcomes. 

 

• Focus on machine learning models: The current research emphasizes the use of pure 

machine learning models, while some of the previous studies have investigated 

backorder prediction extending to neural network models. The study intends to assess 

the performance of different machine learning algorithms, including their 

hyperparameter tuning, and determine the most effective models for backorder 

prediction tasks. This approach offers a novel viewpoint and potentially uncovers 

alternative models that might rival, if not surpass, the performance of neural networks 

in certain scenarios. 

 

• Comprehensive performance evaluation metrics: Only a few prior studies 

evaluated backorder prediction algorithms using an extensive set of performance 

evaluation parameters. Conversely, considering the imbalanced nature of the product 

backorder dataset, this research aims to address this limitation by incorporating 

multiple metrics, such as precision, recall, accuracy, F1 score, ROC/AUC score, 

ROC/AUC curve, Precision-Recall curve, G-mean together. This comprehensive 

evaluation provides a more holistic assessment of the model's performance, enabling 

better-informed decision-making in the supply chain. 
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Moreover, it is necessary to stress the importance of ensuring the thesis is easily readable and 

comprehensible, which is an essential aspect of knowledge dissemination and practical 

application. This thesis achieves these qualities by incorporating clear explanations of 

relevant theories,  logical structure,  reader-friendly presentation style, effective visual aids, 

and detailed information about the dataset. Along with this, the research also aims to 

eliminate unnecessary jargon and technical complexities that will enable readers to follow the 

research smoothly and interact with the findings. Therefore,  this paper is not only 

academically rigorous but also approachable and engaging to a wider audience.  

 

In the subsequent chapters, the research methodology, experimental setup, and result analysis 

will be covered. Based on the overall analysis, conclusions and necessary recommendations 

will also be presented. By focusing on future directions, this work will help increase supply 

chain management's ability to predict backorders. 

 

 

3 Research design and methodology 
  

A research design is the methodical organization of parameters for data collection and 

analysis with the goal of extrapolating findings from a sample to the entire population. It 

accomplishes a variety of tasks, such as minimizing expenditure, facilitating smooth scaling 

of research operations, collecting relevant data and techniques, providing a blueprint for 

plans, offering an overview to other experts, and providing direction to the research process. 

The characteristics of a good research design include objectivity, reliability, validity, 

generalizability, adequate information, flexibility, and adaptability, each of which enhances 

the overall quality of the study (Pandey & Pandey, 2015).  

 

Nevertheless, research methodology, a philosophy of how an investigation should be 

conducted, entails a methodological approach employed in a particular area of inquiry to 

address the aims, objectives, and questions of the research. The methodologies explain and 

define the kinds of problems that are worthwhile investigating. They also provide guidelines 

on how to frame a problem so that it can be investigated using specific designs and 

procedures, as well as how to choose and develop suitable data collection and analysis 

methods (University of Pretoria, n.d.; Jansen & Warren, 2023).  
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Therefore, this design is created to ensure that the research problem is effectively handled and 

salient. It also explains to the readers how the researcher conducted the study by outlining the 

methodologies and the procedures used for data collection, analysis, and measurement, as 

well as the specific quantification of the variables involved. 

 

The research methods and approach that will be used for the study are explained in this 

chapter. As part of the research design, the ethical issues of the study are also presented. 

Tools, software, and libraries employed in the research are detailed subsequently. Finally, the 

tactics that will be used for the processes of data gathering, sampling, and analysis are then 

presented.  

 

 

3.1 Methodological approach 

 

The two primary categories of research methods are quantitative and qualitative. The main 

area where these strategies diverge is in the sort of data that they gather and examine. 

Qualitative research concentrates on gathering non-numerical information, such as words, 

images, and sounds, through various techniques. It seeks to investigate subjective 

experiences, beliefs, and attitudes. Qualitative research aims to provide rich and complete 

descriptions of the phenomenon being studied in order to discover fresh insights and 

interpretations. In contrast, quantitative research relies on collecting numerical data and 

conducting statistical analysis. Its goal is to produce quantifiable, measurable facts that can 

be expressed numerically. Quantitative research is frequently utilized to test hypotheses, spot 

patterns, and make predictions based on actual data (Jansen & Warren, 2020).  

 

Therefore, this thesis follows a quantitative research approach. This involves collecting 

numerical/quantitative data, advanced statistical analysis, and application of machine learning 

algorithms to make accurate backorder predictions in the supply chain domain. This study 

aims to produce objective and empirical findings that can be measured and expressed in 

numerical terms. The quantitative nature of this thesis allows for the potential replication of 

the study by other researchers, as the data and analysis can be objectively presented and 

interpreted. 
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3.2 Ethical considerations 

 

The American Psychological Association/APA (2009, p. 11) highlighted the existing ethical 

norms to ensure accuracy, preserve participant rights, and safeguard intellectual property 

rights. This study will abide by ethical rules and guidelines that distinguish between 

legitimate and unlawful research methods. Its goal is to advance knowledge and the truth 

while preserving accuracy. Throughout the process of gathering data, analyzing it, and 

presenting the findings, the research will be conducted with the utmost objectivity and 

honesty. The methodology and processes of this study will be fully documented to ensure 

transparency and to provide readers with a clear understanding of how the study was 

performed. The researcher will work to maintain consistency in ideas and actions while using 

open and transparent methods and procedures. The appropriate credit will be given to the 

information's original creators and all applicable copyrights, patents, and intellectual property 

rights will be upheld. By providing data and findings in an impartial and responsible manner, 

the research will recognize and avoid plagiarism while upholding ethical standards for 

advancing social good (Walliman, 2017).  

 

Therefore, by following ethical standards and principles, the research will strive to make a 

meaningful and ethical contribution to the field. 

 

 

3.3 Tools/software and libraries 

 

The study employed the Jupyter Notebook as a programming environment for Python. To 

conduct the data preparation, analysis, and modeling, several software libraries were utilized. 

For activities ranging from operating system interactions to data analysis, foundational 

libraries including “os”, “numpy”, and “pandas” were used. Additionally, visualization was 

accomplished using libraries, such as “matplotlib” and “seaborn”. For algorithm performance 

optimization and data imputation, libraries from “sklearn” and its extensions were used. 

Furthermore, resources for statistical analysis, feature processing, and model creation came 

from both “sklearn” and other specialized libraries. As a result of some deprecations in more 

recent versions of “numpy”, aliasing techniques were used to ensure smooth code execution 

and avoid potential reference issues. 
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3.4 Data collection 
 

Data collection for research requires conducting systematic observations or measurements. 

Data gathering allows a researcher to obtain firsthand knowledge and thus gain unique 

insights into the study challenge, regardless of whether the research is intended for business, 

governmental, or academic purposes (Bhandari, 2023).  

 

However, understanding the distinction between primary and secondary sources is essential 

for academic research in a variety of fields. Interview transcripts, statistical data, memoirs, 

and pieces of art are examples of primary sources that offer personal proof and unprocessed 

information. They help produce innovative and appealing scholarly research. On the other 

hand, the facts and commentary offered by other researchers are included in secondary 

sources. Journal articles, academic books, and reviews are a few instances of secondary 

sources. Innovative, interesting, and powerful scholarly writing and arguments require the 

utilization of both primary and secondary materials (Western Governors University, 2023). 

 

Nevertheless, the dataset for this study will be gathered by the researcher from the link 

supplied (https://data.world/amitkishore/can-you-predict-products-back-order). It is publicly 

available under the heading “Predict products back-order to manage service level”. This 

shows that the dataset supplier has already made the data accessible. As a result, the 

researcher will use secondary data by examining and processing this dataset in order to create 

machine learning models and derive insightful information for supply chain management's 

backorder prediction. The dataset comprises two Comma-Separated Values/CSV files, 

namely the training and test datasets.  

 

 

3.4.1 Dataset overview 
 

The data was captured at the beginning of each week as weekly snapshots (Li, 2017). Both 

the datasets are extensive, and each contains a range of relevant variables (23 columns) for 

backorder prediction, including SKU/Stock Keeping Unit, national inventory levels, lead 

time, in-transit quantity, forecasted sales, past sales, and other factors known to influence the 

occurrence of backorders. The names of the variables of both the datasets are same. While the 

training dataset has 1,687,861 rows, the test dataset has  242,076 rows. 

https://data.world/amitkishore/can-you-predict-products-back-order
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Table 03: A quick overview of the dataset 

Count Column name Description Data type 

1  Sku Random ID for the product Nominal 

2  national_inv Current inventory level for the part Numeric 

3  lead_time Transit time for product (if available) Numeric 

4  in_transit_qty Amount of product in transit from source Numeric 

5  forecast_3_month Forecast sales for the next 3 months Numeric 

6  forecast_6_month Forecast sales for the next 6 months Numeric 

7  forecast_9_month Forecast sales for the next 9 months Numeric 

8  sales_1_month Sales quantity for the prior 1 month time period  Numeric 

9  sales_3_month Sales quantity for the prior 3 month time period Numeric 

10  sales_6_month Sales quantity for the prior 6 month time period Numeric 

11  sales_9_month Sales quantity for the prior 9 month time period Numeric 

12  min_bank Minimum recommend amount to stock Numeric 

13  potential_issue Source issue for part identified Categorical 

14  pieces_past_due Parts overdue from source Numeric 

15  perf_6_month_avg Source performance for prior 6 month period Numeric 

16  perf_12_month_avg Source performance for prior 12 month period Numeric 

17  local_bo_qty Amount of stock orders overdue Numeric 

18  deck_risk Part risk flag Categorical 

19  oe_constraint Part risk flag Categorical 

20  ppap_risk Part risk flag Categorical 

21  stop_auto_buy Part risk flag Categorical 

22  rev_stop Part risk flag Categorical 

23  went_on_backorder Product actually went on backorder Categorical 

 

 

However, out of the 23 attributes, 16 are numerical data types. The “sku” column contains the 

nominal data type, which represents a random ID for each corresponding product. The 

remaining six attributes are categorical data types, with values of “Yes” or “No”, which can 

be treated as binary values (Li, 2017).   
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Among the next set of columns, the “national_inv” column indicates the current inventory 

level for the specific part or product. It provides information about the quantity of stock 

available at a national level. The column “lead_time” refers to the length of time it takes to 

process an order. It denotes the duration it takes for the product to be delivered or transported 

from the source to its destination. The quantity of the product that is currently being 

transported from the source is shown in the “in_transit_qty” column. It shows how many 

goods are being transported to their final location (Li, 2017).  

 

Apart from this, certain attributes refer to projected sales while others refer to actual sales that 

have already occurred, for example, “forecast_3_month” refers to projected sales for the 

following three months, while “sales_9_month” shows the sales quantity for the previous 

nine-month period (Li, 2017).  

 

In addition to this, the “min_bank” column indicates the minimum quantity of stock that 

should be kept on hand for the related product. It helps in determining the optimal stock level 

to meet demand and avoid shortages. The “potential_issue” column shows whether a problem 

or concern has been suspected with the given component or item. It acts as a warning sign to 

draw attention to any potential issues or difficulties that might impair the product's 

availability. Then the “pieces_past_due” column represents the number of parts that are 

overdue from the source. It lists the item quantities that have not been delivered or received 

by the due date, thereby causing supply chain delays or interruptions (Li, 2017). 

 

Moving further, the “perf_6_month_avg”, and “perf_12_month_avg” columns provide 

information on the performance of the source or supplier over the past six and twelve months, 

respectively. They indicate the average performance ratings or metrics associated with the 

source's ability to meet delivery schedules, quality standards, and other performance criteria. 

However,  some datapoints in these two columns are observed with a loaded dummy value of 

-99 as they have not been scored. The next column “local_bo_qty” represents the number of 

stock orders that are currently overdue at the local level. It provides insights into the item 

quantity that has not been fulfilled or delivered within the expected timeframe at the local 

distribution or storage locations (Li, 2017).  

 

Moreover, the columns “deck_risk”, “oe_constraint”, “ppap_risk”, “stop_auto_buy”, and 

“rev_stop” describe various risk factors and limitations related to the product or its 
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procurement process. They act as warning signs to indicate whether the product carries 

certain risks, such as being a deck risk (prone to obsolescence), having operational 

constraints, exhibiting production part approval process/PPAP risks, the need for manual 

intervention to stop automatic buying, or experiencing revenue interruptions (Li, 2017). 

 

Finally, the “went_on_backorder” column indicates whether a product went on backorder or 

not, meaning it was available or unavailable for immediate delivery or supply. It serves as the 

target variable for backorder prediction (Li, 2017). 

 

Overall, the dataset offers a wealth of data for investigating the connections and trends 

between predictor variables and the occurrence of backorders. It is possible to gain important 

insights to improve supply chain management and service levels through rigorous analysis 

and modeling. The dataset source and other pertinent information are clearly stated in the 

thesis to ensure transparency and encourage replication and to make it possible for other 

researchers to access and verify the results. 

 

 

3.5 Data preprocessing techniques 
 

Real-world data often require preprocessing to ensure their quality for analysis. Data 

preprocessing addresses various issues present in datasets to maintain their integrity and 

dependability (Bhagat, 2022).  

 

To assure the dataset's quality and consistency throughout the study, both the training and test 

datasets have undergone meticulous curation. Every action in this study has been performed 

with a careful awareness of the potential for data leakage. The same procedures have been 

used to pre-process the training and test sets individually from the beginning. This 

standardized and distinct processing ensures that the model's performance on the test set is 

accurately representative of how well it performs on unobserved data. During analysis, it is 

crucial to preserve data dependability and integrity. To guarantee the quality and validity of 

the findings, any inconsistencies in the dataset have been addressed using the proper data 

preprocessing techniques. The project intends to create reliable machine learning models for 

backorder prediction in the supply chain sector using this dataset.  
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For example, both the datasets collected for this research contain null values, outliers and 

other inconsistencies that require proper techniques to handle. In addition to that, choosing 

important features, rather than having all 23 columns, for the machine learning models is also 

crucial as unimportant or redundant ones can degrade an algorithm's performance, accuracy, 

and efficiency (Heavy.AI, n.d.). Hence, in the data preparation phase, a series of 

preprocessing techniques have been applied to both the datasets. These techniques include 

replacing and transforming values, missing values imputation, outlier handling, choosing the 

important features through different tests, scaling, etc.  

 

However, an exception has been made in resampling only the training data to address class 

imbalance in the target column. The test set remained unaltered in this respect, ensuring it 

mirrors the population of interest, as modifying it could yield misleading results (Prof. Mezei, 

personal communication, August 08, 2023). 

 

This section largely highlights the preprocessing methods used on the training dataset, which 

are concisely and clearly described by the provided code snippets and supplementary images. 

This choice has been made for the following reasons: 

 

• Preprocessing step consistency: The test set's preprocessing steps mimic the training 

set's preprocessing steps exactly. As a result, outlining the training set's procedures 

effectively explains the strategy without becoming tedious. 

 

• Emphasis on methodology over repetition: By drawing attention to the 

preprocessing of the training set, the emphasis is put on methodology and methods 

rather than code repetition. This makes sure that readers can understand the crucial 

preprocessing techniques without being overloaded with unnecessary details. 

 

• Effective presentation: Aligning with academic conventions, the choice to detail 

only the training set's preprocessing improves readability and concision. 

 

Moreover, the test set has been treated to the exact identical methods, except resampling, 

assuring scientific rigor and consistency throughout the investigation, despite the decision to 

only discuss the training set's preprocessing stages. 
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3.5.1 Data descriptives- key insights 
 

 

Before starting any preprocessing or modeling operations, it is essential to thoroughly 

understand the dataset. The primary patterns and variability of dataset properties are revealed 

by descriptive statistics. The following figure shows key insights from the numerical 

columns: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 04: Summary statistics 

 

Here some summary statistics are visible including row counts, each column’s minimum and 

maximum values, mean and standard deviations, percentile-wise data distributions. Along 

with these, the following observations are also made: 

 

• Due to their wide value ranges, columns, such as “national_inv” and “in_transit_qty” 

may indicate probable outliers. 

• The average lead time for items is a week, however some might take up to 52 days. 

• Values of -99 in the Performance columns suggest placeholders for unrecorded data. 

• Higher outliers in longer-term Forecasts and Sales columns could signify seasonality 

or exceptional occurrences. 

• Variation in the “local_bo_qty” reveals occasional, considerable local backorders. 

 

These insights will guide subsequent data preparations and modeling decisions. 
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3.5.2 Handling loaded dummy values and missing values 
 

As discussed above, in the performance columns (“perf_6_month_avg” and 

“perf_12_month_avg”), values that have not been evaluated are shown as -99 which can be 

treated as null/missing values (Dalvi, 2021). The author of this study produced codes to 

transform these dummy values into null values.  

 

However, now that the dummy values are transformed into null values, all the null values of 

the entire dataset can be treated in a systematic approach. The “lead_time” column in the 

training dataset has 40,837 (4.00%) missing values, while some columns have one missing 

value each. On the other hand, regarding the transformed performance columns, the 

“perf_6_month_avg” and “perf_12_month_avg” have now 55,761 (5.47%) and 50,658 

(4.96%) null values, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 05: Missing values in “lead_time” and Performance columns 

 

Imputation entails replacing missing values with approximations, whereas deletion is 

eliminating any rows or columns that include any missing values. The technique that will be 

used will rely on the type of data and the specifications of the study (Linkedin, 2023).  
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Figure 06: Examining the randomness of the missing values 

 

As evident from the above  figure, the missing values in the “national_inv” column and the 

Performance columns coincide. This indicates that the missing values in these three columns 

are MNAR/Missing Not At Random. According to Little & Rubin (2002), when data is 

MNAR, the fact that a specific piece of data is missing by itself conveys information, and 

simply discarding these observations could lead to incorrect or biased inferences. To ensure 

data integrity, the author of this research has decided to handle these missing values in the 

following manner: 

 

• The associated rows from the dataset for any columns with only one missing value 

will be deleted. This strategy aids in maintaining overall data completeness.  

• On the other hand, For the “lead_time” and Performance columns, each has a large 

number of MNAR missing values. Simply eliminating such a sizable amount of data 

would result in a major loss of information. In this situation, the author will take a 

different tack and use the proper technique to fill in the missing numbers.  
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The Multivariate Imputation by Chained Equations/MICE method is chosen by the thesis to 

fill in these missing data. Notably, MICE is a preferred method for handling missing data, 

especially when the data is MNAR. In order to impute the missing values using multiple 

imputations, this method takes advantage of the relationships between the variables. Thus, it 

lessens the impact of missing values while preserving the statistical properties of the data 

(Soni, 2023). The MICE process  is outlined below using lucid chart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 07: MICE process (Shalev, 2018) 

 

 

The MICE method imputes missing values through a series of iterative predictive models. 

Every variable that has missing values is treated as the dependent variable in MICE, with all 

other variables serving as its predictors. The iterations continue until the imputed values seem 

to have converged (they no longer change significantly with further iterations). Usually, the 

process iterates until imputation for each of the required variables is accomplished. Even 

though the required iterations may differ, achieving convergence often does not require more 

than five iterations (Wilson, 2021). These techniques are expected to effectively address 

missing values, thereby preserving the quality and utility of the dataset for further research 

and modeling. 

 

NB: Relevant Codes for “Handling loaded dummy values and missing values” are provided 

in the ‘Appendix 01’. 
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3.5.3 Outlier detection and handling 

 

According to the NIST/National Institute of Standards and Technology (n.d.), an outlier is a 

data point that significantly differs from others in a dataset. Outliers may represent errors, 

such as mistakes in data coding or experimental procedures. If outliers are errors, these values 

should either be corrected or removed from the analysis. However, if they are not errors, they 

could arise from natural variations or reveal valuable scientific insights. Instead of outright 

deletion, employing robust statistical methods to handle them effectively is more appropriate. 

Hence, in the preliminary stages of data exploration, it is essential to identify and address 

potential outliers, as they can significantly influence the statistical measures and the machine 

learning models.  

 

To achieve this for the numerical columns, box plots and histograms were initially utilized as 

visualization tools. These plots, however, turned out to be less informative due to the 

presence of extreme outliers, which often distorted the visual representation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 08: Boxplots of the numerical columns  
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Figure 09: Histogram of the numerical columns 

 

Recognizing the limitations of the box plots and histogram in this particular dataset, to further 

understand the extent and nature of these outliers, an additional method, percentile testing, 

has been employed. This method provides a more quantitative assessment with a more 

detailed perspective by examining the data distribution at specific percentile levels and thus 

helps identify the potential outliers.   

 

For example, through the percentile test, it is now observed that for most of the columns, 

values from the 99th percentile are extremely larger compared to other percentiles. Therefore, 

these can be treated as extreme outliers. Thus, after a thorough analysis using this approach, it 

became evident that there were substantial deviations in the extreme values.  

 

Additionally, it has also been observed that values of the “pieces_past_due” and 

“local_bo_qty” columns remained at zero up to the 97th percentile, questioning their 

influence on the target variable. This will be helpful in feature selection for the ML models. 

 

The percentile test results are provided in “Table 04” below: 
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Table 04: Percentile test result of the numerical columns 

Count Column name Percentiles  

0th-96th 97th  98th  99th  100th  

1  national_inv -27256.0, 1960.0 2780.0 4418.0 8241.79 12334404.0 

2  lead_time 0.0, 13.0 15.0 21.0 52.0 52.0 

3  in_transit_qty 0.0, 200.0 285.0 462.0 985.0 489408.0 

4  forecast_3_month 0.0, 835.0 1179.0 1872.0 3804.0 1427612.0 

5  forecast_6_month 0.0, 1600.0 2230.0 3555.0 7146.0 2461360.0 

6  forecast_9_month 0.0, 2350.0 3300.0 5193.86 10500.0 3777304.0 

7  sales_1_month 0.0, 275.0 378.0 578.0 1105.0 741774.0 

8  sales_3_month 0.0, 884.0 1208.0 1855.0 3542.0 1105478.0 

9  sales_6_month 0.0, 1728.0 2390.0 3651.0 6976.0 2146625.0 

10  sales_9_month 0.0, 2646.0 3621.0 5572.0 10563.79 3205172.0 

11  min_bank 0.0, 280.0 375.0 562.0 1074.0 313319.0 

12  pieces_past_due 0.0, 0.0 0.0 1.0 16.0 146496.0 

13  perf_6_month_avg 0.0, 1.0 1.0 1.0 1.0 1.002 

14  perf_12_month_avg 0.0, 0.99 1.0 1.0 1.0 1.0 

15  local_bo_qty 0.0, 0.0 0.0 1.0 4.0 12530.0 

 

In light of these findings, the decision has been made to eliminate the top 1% of outliers from 

the entire training set to maintain data integrity and ensure a robust modeling process. 

 

NB: Relevant codes for “Outlier detection and handling” are provided in the ‘Appendix 02’ 

 

 

3.5.4 Binarization of the categorical features  

 

According to Brownlee (2017), categorical variables consist of label values instead of 

numerical ones. Numerous machine learning techniques need numerical input data. Hence, 

categorical data must be transformed into a numerical representation. One of these methods is 

called “binarization” which converts categorical data into binary (0 or 1) values to make it 

compatible with algorithms that require numerical input. A categorical feature, especially one 

with two categories, is binarized when it is converted into a binary number format. 



51 
 

 The benefits of binarization are as follows: 

 

• Model compatibility: Converts categorical data to a numerical representation that is 

easily processed by algorithms. 

 

• Data simplification: By converting data to a binary format, it is often possible to 

minimize the complexity of the data, hence facilitating its examination. 

 

 

 

 

 

 

 

 

 

 

Figure 10: Unique values of the categorical features 

 

Figure 10 illustrates that the categorical variables of the dataset have two options “Yes” and 

“No”. The author of this thesis has decided to transform those values into binary format so 

that “Yes” is represented by 1 and “No” by 0. 

 

 

NB: Relevant codes for “Binarization of the categorical features” are provided in the 

‘Appendix 03’ 

 

 

3.5.5 Feature selection process for ML models 

 

According to Gupta (2020), the objective of feature selection techniques in machine learning 

is to locate the ideal set of features that allows for the development of accurate models of the 

phenomenon being studied. However, a comprehensive set of methods has been utilized to 

select the final features for machine learning models in this study.  
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3.5.5.1 Cardinality checking and dropping the “sku” column 
 

When a categorical feature has an excessive number of unique values, this is referred to as 

high cardinality (Sangani, 2021). In the initial EDA/Exploratory Data Analysis phase, a 

cardinality check has been conducted that involves evaluating the number of distinct values 

in each feature. The “sku” column, upon this cardinality test, has been found to have a unique 

value for each row, indicating high cardinality. Given its nature as an identifier and the 

potential issues associated with high cardinality in machine learning models, this column has 

subsequently been dropped from the dataset. 

 

NB: Relevant codes for “Cardinality checking and dropping the ‘sku’ column” are provided 

in the ‘Appendix 04’ 

 

 

3.5.5.2 Bivariate analysis of categorical features with the target column 
 

At this stage, each of the categorical features has been evaluated in relation to the target 

variable. The observations from this analysis are as follows: 

 

• Products identified with “potential_issue” as "Yes" are considerably more likely to go 

into backorder compared to those labeled as "No". 

• Products labeled with “deck_risk” as "Yes" are marginally less likely to go into 

backorder compared to those labeled as "No". 

• Products identified with “oe_constraint” as "Yes" notably more tend to go into 

backorder compared to those labeled as "No" 

• Products identified with “ppap_risk” as "Yes" are slightly more likely to go into 

backorder compared to those labeled as "No". 

• Products with “stop_auto_buy” set to "No" or "Yes" have roughly the same likelihood 

of going into backorder. 

• When “rev_stop” is “No”, there is a 100% chance that the product did not go into 

backorder. However, domain knowledge suggests that “rev_stop” does not determine 

a product's backorder status; instead, backorders influence revenue generation. 

 

 



53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Bivariate analysis of categorical features with the target column 

 

Overall, the proportion of products moving into backorder in each category closely matches 

the relevant class ratios. The possibility of the categorical variable's significance in 

forecasting backorder status is suggested by this alignment. The analysis will continue as it 

moves forward to explore these connections further. 

 

NB: Relevant codes for “Bivariate analysis of categorical features with the target column” 

are provided in the ‘Appendix 05’ 

 

 

3.5.5.3 Chi-squared test 

 

The Pearson’s Chi-squared test, often known as the Chi-squared test, is a statistical method 

used to determine whether there is a statistically significant relationship between two 

categorical variables. It contrasts predicted frequencies (the expected counts if there was no 

association between the variables) with observed frequencies (the actual counts). 
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Mathematically, the expected frequency for each cell in a contingency table is calculated as:  

 

𝐸𝑖𝑗 =
𝑅𝑜𝑤 𝑖 𝑇𝑜𝑡𝑎𝑙 × 𝐶𝑜𝑙𝑢𝑚𝑛 𝑗 𝑇𝑜𝑡𝑎𝑙

𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
 

 

Where, 𝑂𝑖𝑗   denotes the observed frequency, and   𝐸𝑖𝑗   denotes the expected frequency. 

Then, the Chi-squared statistic, X
2 =∑

(𝑂𝑖𝑗−𝐸𝑖𝑗)2 

𝐸𝑖𝑗
 

 
The objective of this test is to determine whether a disparity between projected and actual 

data is caused by coincidence or if there is a strong connection between the variables being 

examined. Hence, the Chi-squared test is a great technique for helping the researchers 

understand and evaluate the relationship between two categorical variables (Biswal, 2023). 

 

In this study, the test is applied to determine the relationship between all the categorical 

variables and the target column. The hypotheses set forth are: 

 

• Null hypothesis, H0 : There is no association between the categorical variable and the 

target column. 

 

• Alternative hypothesis, H1: There is a significant relationship between the 

categorical variable and the target column. 

 

The p-value serves as the criterion for hypothesis testing, where the significance level, often 

represented as alpha (α), is typically set at 0.05. The decision rule is as follows: 

 

• If the p-value exceeds the significance level, H0 will not be rejected. 

• Alternatively, if the p-value is less than or equal to the significance level, H0 will be 

rejected in favor of H1. 

 

However, results from the Chi-squared test reveal that almost all the categorical variables, 

except “rev_stop” and “stop_auto_buy”, have a statistically significant impact on the 

likelihood of products going into backorder. Further exploration of these relationships will be 

conducted in subsequent Sub-subsections. 

 

NB: Relevant codes for “Chi-squared test” are provided in the ‘Appendix 06’ 
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3.5.5.4 Bivariate analysis of numerical features with the target column 
 

At this stage, each of the numerical features has been evaluated in relation to the target 

variable. The initial approach involved the usage of box plots. However, even though top 1% 

of outliers from the entire dataset were removed earlier, the dataset still contains outliers, and 

their presence limited the clarity and interpretability of these plots and did not offer that much 

information about the relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Box plots for bivariate analysis of numerical features with the target column 

 

Subsequently, a detailed bivariate analysis has been conducted by binning the numerical 

values of the respective columns into specific intervals, ranging from 0 to 50. The objective 

was to observe how different numerical ranges influence the likelihood of products 

transitioning into backorder. This analysis resulted in the following key observations: 

 

• Products that went on backorder tend to have lower “national_inv” values. 

Conversely, those who did not go on backorder exhibited higher 'national_inv' values. 

• Products that went on backorder experienced longer “lead_time” compared to 

products that did not go on backorder. 
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• “in_transit_qty”, Forecast and Sales columns, all have similar analysis results. 

Products with lower values in these columns tend to be more likely to go on 

backorder, while products with higher values tend to avoid backorders. 

• Products with higher “min_bank” values are less likely to go on backorder. 

• Products with higher values in the “pieces_past_due” column are more likely to go on 

backorder. However, percentile testing result in “Table 04” showed that the value of 

this column remained at zero up to the 97th percentile, suggesting its limited impact. 

• Products with lower average performance in the past 6 or 12 months tend to be more 

backordered, while those with higher average performance tend to be less likely. 

• Products with higher values of “local_bo_qty” are less likely to go on backorder. Yet, 

similar to “pieces_past_due”, the result from percentile testing in “Table 04” revealed 

that values remained at zero up to the 97th percentile, questioning its influence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Detailed bivariate analysis by binning the numerical values of the columns 

 

However, these findings are preliminary even though they offer insightful information. To 

validate these results and understand their implications in a prediction model, more in-depth 

investigation has been conducted. 

 

NB: Relevant codes for “Bivariate analysis of numerical features with the target column” 

are provided in the ‘Appendix 07’ 
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3.5.5.5 Correlation matrix 
 

The Correlation Coefficient is a statistical measure of the association or the relationship that 

exists between two variables. In other words, it is only a single number (between -1 and +1) 

that indicates how closely two variables are connected and the extent to which changes in one 

affect the other. The interpretation of correlation strength varies across fields (Fernando, 

2023). By conducting a correlation analysis between the target variable and the other features 

in the dataset, the researcher aimed to identify relevant variables that exhibit significant 

relationships with the target column. The correlation analysis is a fundamental step in feature 

selection, as it provides insights into the associations between variables (Krish Naik, 2020b).  

 

a) Pearson correlation: According to Guo (2021), Pearson correlation, often represented as 

𝑟, measures the linear relationship between two continuous variables. Mathematically, the 

Pearson correlation coefficient is represented as: 

 

𝑟 =  
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√𝛴(𝑥𝑖 − �̅�)2𝛴(𝑦𝑖 − �̅�)2
 

 

Where, 

 𝑥𝑖  and 𝑦𝑖  are the individual data points of x-variable and y-variable respectively, 

 �̅� and �̅� are the means of x-variable and y-variable respectively. 

 

After binarizing the target column, the Pearson correlation test has been conducted with all 

the numerical columns. The focus on the “went_on_backorder” target variable has revealed 

an absence of any evident linear relationship with the other variables. Additional observations 

include: 

 

• A distinct positive correlation between the Sales and Forecast columns. 

• “in_transit_qty” has a strong positive correlation with the “min_bank”, Forecast 

and Sales columns. 

• Performance columns, “pieces_past_due”, “lead_time”, “local_bo_qty”, and 

“national_inv” all show rather weak associations. 

• All the Sales columns, Forecast columns and Performance columns showed 
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internally strong positive correlation. Sales columns have coefficients ranging 

from 0.93 to 0.99, while the Forecast columns have between 0.92 and 0.98, and 

Performance columns have a score of 0.94. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Pearson correlation matrix 

 

In general, the analysis shows strong positive correlations between several features, 

suggesting that there are dependencies within the dataset. These relationships must be taken 

into consideration when creating predictive models to avoid multicollinearity issues. 

 

b) Spearman correlation: Guo (2021), also describes how Spearman's rank correlation 

coefficient works. It, often represented as ρ, measures the monotonic relationships 

between variables based on their ranked values. It is defined as: 

 

ρ  =  1 − 
6𝛴 ⅆ𝑖

2

𝑛(𝑛2−1)
 

 

Where, 𝑑𝑖 is the difference between two ranks of each observation and  

n is number of observations. 

 

After binarizing all the categorical features, the test has been applied to the entire dataset. 
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The Spearman correlation matrix indicates a rather weak monotonic relationship between 

the dataset's features and the target variable. This strengthens the reason for dropping 

those previously identified four columns ("local_bo_qty", "pieces_past_due", "rev_stop", 

and "stop_auto_buy") through percentile test and Chi-squared test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Spearman correlation matrix 

 

Furthermore, here also it is clearly visible that, the Sales columns exhibit strong positive 

correlations in the group, with correlation coefficients ranging from 0.90 to 0.99, while the 

Forecast columns demonstrate strong positive correlations between them with coefficients 

from 0.85 to 0.95, and the Performance columns are highly correlated with a coefficient of 

0.90. Given the substantial intercorrelations between these groups, a strategic approach might 

involve choosing a representative column from each of these three groups to avoid 

multicollinearity problems in subsequent predictive modeling. From a data perspective, 

considering columns with longer time frames, such as “forecast_9_month”, 

“sales_12_month”, and “perf_12_month” would be advantageous. This would facilitate a 

comprehensive view of historical data, enabling models to account for extended trends and 

patterns. 
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However, it is important to recognize that these correlation analyses only capture linear and 

monotonic relationships between variables. While features with strong correlations have been 

identified, there might still be other intricate dependencies or interactions between variables 

that not fully captured by these methods alone. Hence, to ensure a comprehensive feature 

selection process, the researcher utilized the SelectKBest method, employing the Mutual 

Information/ MI score as a metric. These additional techniques will allow this research to 

explore complex relationships and gain a more holistic understanding of feature relevance in 

the context of building accurate and reliable predictive models. 

 

NB: Relevant codes for “Correlation matrix” are provided in the ‘Appendix 08’ 

 

 

3.5.5.6 SelectKbest with Mutual Information / MI Score 
 

The SelectKBest method is a feature selection strategy that ranks and chooses a predefined 

number of top characteristics according to how important each one is to the target variable. 

This approach relies on a scoring function to evaluate and rate the relevance of each attribute. 

Among the available scoring functions, the Mutual Information / MI score stands out. MI 

primarily assesses the relationship between the dependencies of two variables. When one 

variable is observed in relation to another, it quantifies the knowledge or information 

obtained about the first variable. Its ability to detect any kind of association between the 

variables makes it especially valuable for complex datasets (Scikit-learn Documentation, 

n.d.a; Krish Naik, 2021). For a dataset with n features, 𝑋1, 𝑋2,…, 𝑋𝑛, and a target variable 

Y, the MI score for each feature 𝑋𝑖  in relation to Y can be described mathematically as: 

 

𝑀𝐼(𝑋𝑖,𝑌) =  ∑ 𝑥 ∊ 𝑋𝑖  ∑ 𝑦 ∊ 𝑌 𝑝(𝑥, 𝑦)log (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)  

 

Where, 𝑝(𝑥, 𝑦) is the joint probability distribution of 𝑋𝑖 and 𝑌, 

 𝑝(𝑥) and 𝑝(𝑦)are the marginal probability distribution of 𝑋𝑖 and 𝑌 respectively,  

 

Here, the double summation, ∑ 𝑥 ∊ 𝑋𝑖  ∑ 𝑦 ∊ 𝑌 iterates over all possible values of 𝑋𝑖 and 

𝑌 and effectively weighs each possible combination with its corresponding logarithmic term 

and then sums all these contributions up to get the overall mutual information. 
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However, the SelectKBest method has been employed for this analysis with MI as the scoring 

function, set to examine all features initially. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: SelectKBest feature ranking using MI score 

 

Based on the SelectKBest method using the Mutual Information score the following 

observations have been made: 

 

• The top features include “stop_auto_buy”, “lead_time”, and “deck_risk”, with 

significant MI scores and appear to be crucial. 

• The Performance columns, Forecast columns and Sales columns have moderate 

scores that suggest their importance on the target column. However, there is a special 

consideration regarding them based on the correlation tests. 

• Certain features, including “in_transit_qty”, “pieces_past_due”, “local_bo_qty”, 

“oe_constraint”, “potential_issue”, and “rev_stop” have close to zero or very low MI 

scores, indicating that they might not be providing much information about the target 

variable compared to the other features. 

 

NB: Relevant codes for “SelectKbest with Mutual Information / MI Score” are provided in 

the ‘Appendix 09’ 
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3.5.5.7 Summary of all observations / Finalizing the features for ML model 
 

As all the analyses have produced varied results, a balanced strategy for feature selection will 

be followed. A variable will be kept even if a single test determines it to be significant. 

However, any variable that is consistently labelled as insignificant throughout several tests 

will be ignored. A variable will also be eliminated if one test finds it to be insignificant and 

no other tests provide a compelling reason for its inclusion. On top of it, professional 

judgment will also serve as an additional guiding factor. In light of this strategy, the 

following conclusions have been reached: 

 

• The longest timeframe columns from the Performance, Forecast, and Sales categories 

will be retained to ensure thorough trend analysis. 

• Features with unusually low MI scores will be excluded, particularly when supported 

by correlation analyses. However, the column 'min_bank' will remain due to its 

significance as deduced from domain knowledge. 

 

Therefore, the final features for the ML models are- “national_inv”, “lead_time”, 

“forecast_9_month”, “sales_9_month”, “min_bank”, “perf_12_month_avg”, “deck_risk”,  

“ppap_risk”, “stop_auto_buy” as predictors and “went_on_backorder” as the target column. 

 

NB: Relevant codes for “Summary of all observations / Finalizing the features for ML 

model” are provided in the ‘Appendix 10’ 

 

 

3.5.6 Handling duplicates and resetting indices 
 

In real-world datasets, it is common to encounter disordered data containing numerous 

duplicate entries. These repetitive records do not contribute any new insights and can hinder 

computational efficiency. Thus, removing duplicates is a recommended step prior to model 

training (Durgapal, 2023). In this study, the dataset has been thoroughly scanned for any 

identical rows. Whenever duplicates have been detected, they have promptly been removed to 

ensure each data entry is unique and representative. 
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However, the indices were reset after any rows were removed, whether because of 

duplication or other data-cleaning procedures. This procedure guarantees a continuous and 

consistent numbering sequence that improves the readability and traceability of the dataset. 

 

NB: Relevant codes for “Handling duplicates and resetting indices” are provided in the 

‘Appendix 11’ 

 

 

3.5.7 Scaling the dataset 
 

In the field of machine learning, feature scaling during the data pre-processing phase is 

crucial. Its impact may make the difference between a weak machine learning model and a 

powerful one (Roy, 20020). In essence, feature scaling becomes crucial for machine learning 

techniques that calculates the separations between data points. In the absence of scaling, 

characteristics with wider numerical ranges could overshadow those with smaller ranges, 

skewing how the model interprets the dataset (Patil, 2022).  

 

However, when dealing with datasets containing outliers, it is important to choose right 

scaling technique. This is because outliers can profoundly affect statistical measures, such as 

the mean and standard deviation. In such scenarios, robust scaling is recommended. Robust 

scaling calculates the scaled value 𝑥𝑠𝑐𝑎𝑙𝑒ⅆ  for an input value x as: 

 

𝑥𝑠𝑐𝑎𝑙𝑒ⅆ =  
𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)

𝐼𝑄𝑅(𝑋)
 

Where,  

X is the feature,  

median(X) is the median value of the feature column X, 

IQR(X) is the interquartile range of the feature column X, which is the difference 

between the 75th percentile and the 25th percentile. 

 

Robust scaling employs the median and Interquartile Range / IQR for scaling input values. 

Since both these metrics are resistant to outliers, robust scaling can effectively mitigate the 

undue influence of outliers, ensuring that the model remains unbiased (Singh, 2022).  
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Therefore, given the presence of outliers in the dataset for this study, robust scaling has been 

selected to provide an even and uniform transformation of all features. Due to its wide range 

of values, this method ensures that no feature dominates others. 

 

NB: Relevant codes for “Scaling the dataset” are provided in the ‘Appendix 12’ 

 

 

3.5.8 Handling imbalanced training set / Resampling training set 
 

The machine learning field frequently faces problems with imbalanced datasets, particularly 

when performing classification tasks. The term “imbalanced data” refers to datasets where the 

target class exhibits a disproportionate distribution of records, such as one class label 

significantly outnumbers the other in terms of observations. If the dataset is highly 

imbalanced, it affects the ML models’ performance badly as it performs worse on the 

minority class, which is often the class of more interest. Hence, resampling techniques are 

often utilized to either raise the minority class instances or decrease the majority class 

instances (Mazumder, 2021). 

 

 

 

 

 

 

 

 

Figure 17: Under-sampling and Oversampling (Aguiar, 2023, para. 12) 

 

There is a definite class imbalance in the training dataset of this study. Specifically, the 

majority class (labeled as 0) contains 795,206 observations, substantially outnumbering the 

minority class (labeled as 1), which has only 8,196 observations (98.98% versus 1.02% only). 

This significant disparity can lead to models that have a strong bias toward forecasting the 

majority class. Hence, among various sampling techniques, this work specifically used RUS 

and SMOTENC, two sampling techniques, to address the class imbalance, ensure a more 

equal representation, and encourage the development of objective predictive models. 
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• RUS: Random Under-sampling / RUS is arguably one of the most common sampling 

techniques. RUS seeks to achieve a balanced class distribution by eliminating 

majority class instances at random. Even though RUS uses subsets of the original 

dataset to protect data integrity, it might cause significant data loss for extremely 

unbalanced datasets, which could jeopardize model performance (Aguiar, 2023). 

 

• SMOTENC: To understand Synthetic Minority Oversampling Technique for 

Nominal and Continuous / SMOTENC it is important to understand how SMOTE / 

Synthetic Minority Oversampling Technique works because SMOTENC is an 

extension of the SMOTE algorithm. However, SMOTE is a method that relies on the 

Euclidean Distance to determine nearest neighbors among data points in the feature 

space. SMOTENC expands the SMOTE algorithm to handle datasets with a mix of 

continuous and categorical variables. SMOTENC considers the nature of the features 

rather than merely interpolating between feature values to produce fictitious data 

points. It determines a mode of the categorical values of the closest neighbors for 

categorical features. In this way, SMOTENC creates artificial samples that are 

consistent with the organization of the data (Aguilar, 2019). 

 

 

 

 

 

 

 

 

Figure 18: Class distribution before and after resampling 

 

Nevertheless, to ensure a representative dataset without significantly reducing the amount of 

data, a modest 10% under-sampling has been applied with RUS technique. With this 

adjustment, the class distribution is changed to 81,960 observations for class 0 (90.91%) and 

8,196 for class 1 (9.09%). This selective under-sampling is designed to maintain the dataset's 

integrity and robustness and reduce the risk of overfitting. Subsequently, SMOTENC has also 

been applied to achieve a more balanced distribution, yielding class ratios of 83.33% for class 

0 (795,206 observations) and 16.67% for class 1 (159,041 observations). The initial 
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imbalance found in the dataset, coupled with resource constraints, influenced the choice to 

modestly oversample by 20% as opposed to taking a more aggressive strategy. This approach 

not only accommodates limited computational resources but also minimizes the risk of 

introducing noise or over-representing the minority class. By ensuring that the synthetic 

observations generated by SMOTENC are coherent and fit well with the original data, the 

integrity of the dataset is maintained while addressing its imbalance. 

 

NB: Relevant codes for “Handling imbalanced training set / Resampling training set” are 

provided in the ‘Appendix 13’ 

 

 

3.6 Model building 
 

According to Manika (2023), the process of model building is central to any machine 

learning-related research. While selecting the optimal model for a project can be a complex 

task, understanding each model's strengths and limitations can streamline the process. Having 

completed all the data preparation steps, the stage is now set for the crucial phase of model 

building. This is where theoretical knowledge and prepared data intertwine, turning insights 

into actionable predictions. The model's efficacy directly affects the decision-making and 

supply chain efficiency in the context of backorder prediction.  

 

This section examines the intricacies of selecting algorithms, understanding their mechanics, 

and fine-tuning them for optimal performance. The objective is to build reliable predictive 

models that demonstrate machine learning's ability to handle complex business problems in 

the real world. The section also incorporates the appropriate performance measurement 

considering the imbalanced nature of the datasets. 

 

 

3.6.1 Model selection 
 

Manika (2023) also defines model selection as the process of selecting the best-fit model out 

of all potential options for a particular problem. She argues that this process ensures that the 

selected model not only performs well on training data but is also generalizable to new data. 

A well-chosen model improves accuracy, reduces overfitting, improves interpretability, and 

saves computational resources.  
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Drawing upon the comprehensive “Table 02”, presented in Chapter 02, several algorithms 

frequently appeared and demonstrated noteworthy performance across various studies. 

However, this research emphasizes the exploration of diverse classifiers to identify the most 

optimal model. Consequently, Neural Networks will not be a part of the training process. The 

literature review shed light on the following classifiers: 

 

• Top-performing studies, such as Santis et al. (2017) and Hájek & Abedin (2020) 

attested to the effectiveness of Logistic Regression/LR. 

• The interpretative aspect of the fundamental Decision Trees/DT was evident in the 

works of Santis et al. (2017) and Shajalal et al. (2022). 

• Several major research consistently preferred the ensemble approach Random 

Forest/RF, obtaining notable AUC scores. 

• In the study of Ntakolia et al. (2021), the potent gradient boosting algorithm 

XGBoost/XGB, demonstrated its formidable capabilities, solidifying its leading 

position among the best algorithms for backorder predictions. 

 

Therefore, incorporating knowledge from the literature review and on the research 

supervisor's recommendation, this study will largely concentrate on the four models: Logistic 

Regression, Decision Tree, Random Forest, and XGBoost. This choice is supported by their 

consistent performance throughout earlier studies and flexibility in dealing with backorder 

forecast difficulties. 

 

 

3.6.2 Model training  
 

 

According to Weedmark (2021), model training is a crucial stage in machine learning, 

turning raw data insights into intelligence by enabling algorithms to learn and form 

connections. To capture patterns, identify anomalies and test correlation the process entails 

feeding the selected algorithm with training data. In supervised learning, model training 

yields a mathematical representation of the relationship between data features and a target 

label. Conversely, in unsupervised learning, the focus shifts to building representations solely 

from data features. The overall performance during the training phase provides an insight into 

the model's future effectiveness.  
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To ensure optimal performance of the model, continuous model refinement is crucial once the 

first model training is over. This involves several specialized techniques that concentrate on 

specific model components, enhancing the model’s performance on new, unseen data. These 

include, among others: 

 

• Threshold optimization: The underlying mathematics of classification tasks often 

include assigning probabilities (usually with a default threshold value of 0.5) to each 

class. This indicates that if the expected probability that an instance belongs to the 

positive class is greater than or equal to 0.5, it is considered as positive; otherwise, it 

is considered as negative. For example, when using logistic regression to detect spam, 

the two classes can be used to distinguish between spam and legitimate emails. A 

probability spectrum between 0 and 1 is produced by logistic regression when used 

with the sigmoid function, indicating the likelihood that an input sample is spam. 

Here, a probability of 0.99, implies that there is a high likelihood that the email is 

spam, whereas a probability of 0.003 suggests otherwise. The identification of the 

email's type, however, becomes less certain when the likelihood is close to the 

threshold, such as 0.51. This uncertainty highlights how important threshold 

optimization is. Better classification results may result from adjusting the threshold 

based on the type of data and specific requirements of a task. It is vital to establish an 

ideal threshold that balances these errors when false positives and false negatives have 

different consequences. This will guarantee that the model's predictions are both 

accurate and pertinent to the task at hand (Iguazio, n.d.). 

 

• Hyperparameter optimization: As established in the theoretical review Chapter 02, 

default configurations known as hyperparameters are essential for model training. 

Model performance on unknown data is considerably improved by identifying and 

utilizing the best hyperparameters.  

 

According to Brownlee (2019), a sophisticated approach for hyperparameter 

optimization is Bayesian optimization which efficiently searches the hyperparameter 

space to find optimal values. In contrast to conventional techniques, which view 

hyperparameter tuning as a form of black-box optimization, Bayesian optimization 

ensures a more focused search based on probabilistic models during the 

hyperparameter tuning phase. It is based on the idea of a surrogate probability model, 
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a statistical model that calculates the function connecting the input hyperparameters to 

the expected model performance. Gaussian Processes/GPs are typically used as the 

surrogate. The distribution across functions in a GP, a non-parametric technique, is 

specified by points, and the multivariate normal distribution of these functions is 

assumed. A kernel function is used to define the relationship between the function 

values. The Bayesian optimization's performance is substantially impacted by the 

chosen kernel and its parameters. An acquisition function is also employed to choose 

the subsequent set of hyperparameters to be evaluated. This function strikes a balance 

between exploitation and exploration, or locations where the surrogate function 

predicts a good objective value. It assists in weighing the trade-offs between 

exploring areas with high uncertainty and experimenting in those that are near to the 

most well-known solution. 

 

• Cross-validation: As highlighted in Chapter 02, cross-validation is integral to 

hyperparameter tuning ensuring model generalizability. In accordance with Gupta 

(2017), this technique evaluates the performance of models to see whether they can 

handle unobserved data. It mainly prevents overfitting, where a model impressively 

deciphers training data but struggles with new data. While dividing datasets into 

training and testing sets is standard procedure, relying solely on this distinction can 

occasionally be deceptive. Cross-validation addresses this limitation by dividing the 

data into several subsets or folds. A popular variation is K-Fold Cross-validation, in 

which the data is divided into “k” different subgroups. K-1 folds are assigned to 

training for each iteration, and the final fold is used for validation. Once each fold has 

been used as the validation set, the cycle is repeated. The performance measures from 

each iteration are then averaged to provide a comprehensive evaluation of the model's 

capabilities. A subtle strategy, stratified cross-validation, is particularly useful when 

the distribution of the target variable is imbalanced. In this method, each fold is 

formed by maintaining the percentage of samples from each class, ensuring that each 

subset replicates the overall sample distribution. Hence, this approach is especially 

beneficial for datasets where some classes are underrepresented. 

 

For this research, the model training phase followed a systematic approach. After building the 

base models, an organized procedure was used to improve the overall models’ performance 

by determining the best choice threshold and fine-tuning hyperparameters. To enable a 
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thorough investigation of probable decision boundaries, an array of 200 evenly spaced values 

between 0 and 1 was created. The model's projected probabilities were binarized for each 

threshold. The balance between precision and recall was then assessed using the F1 score for 

each threshold. The threshold with the highest F1 score was chosen as the best decision 

boundary, according to the optimal threshold selection method. A rigorous hyperparameter 

tuning procedure was used for all the models in this research. The extensive search in the 

hyperparameter space was performed by utilizing the capabilities of Bayesian optimization. 

Along with that, StratifiedKFold for cross-validation was employed and this fine-tuning 

ensured a balanced representation of classes during each fold. However, during this tuning 

phase, a new optimal threshold was discovered and applied to refine the model’s 

classification. This thorough investigation's conclusion produced the ideal collection of 

parameters, which prepared the ground for improved model performance. The following Sub-

subsections provide more information on each model's training process, including its base 

and tuned configurations. 

 

 

3.6.2.1 Logistic Regression 

 

According to Datacamp (2019); IBM (n.d.b), Logistic Regression/LR, fundamentally a 

statistical model, is an extension of linear regression. While Linear Regression predicts a 

continuous outcome, Logistic Regression predicts the likelihood that a given instance would 

fall into a specific category in a classification problem based on one or more independent 

variables. The core of LR is the logistic function, often referred to as the sigmoid function. 

This S-shaped curve can transform any real-valued number into a value between 0 and 1. 

 

 

 

 

 

 

 

 

 

Figure 19: Understanding logistic regression (Datacamp, 2019, para. 10) 
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The sigmoid function is especially used in situations where the probability of an outcome is 

not linearly related to the independent variables. It is expressed in as: 

 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

 

Where, 𝜎(𝑧) denotes the probability, Euler’s number 𝑒 = 2.71828, and 𝑧 is weighted sum 

of the input features which is calculated by:  

 

𝑧 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … … … + 𝛽𝑛𝑥𝑛 
 

 

Here, 𝛽0 + 𝛽1 + 𝛽2 + … … … + 𝛽𝑛 are the coefficients of the model and 

 

 𝑥1 + 𝑥2 + … … … + 𝑥𝑛 are the input features or independent variables. 

 

 

 

The likelihood that an event will occur divided by the probability that it will not occur is 

known as the odds of the event. The odds ratio is shown as follows for logistic regression: 

 

𝑂𝑑𝑑𝑠 =  
𝑝

1 − 𝑝
 

 

Where,  𝑝 is the predicted probability. The logarithm of the odds gives the following: 

 

𝑙𝑛 (
𝑝

1 − 𝑝
) =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … … … + 𝛽𝑛𝑥𝑛 

 

In this case, the outcome's logarithm of odds (also known as log-odds or logit) is shown on 

the left side (𝑙𝑛  stands for the natural logarithm) and is transformed into a linear relationship 

with the predictors. Logistic Regression employs the method of Maximum Likelihood 

Estimation/MLE to estimate the parameters or weights (Saini, 2021a). However, LR is 

effective and uses little processing power. It is widely favored by data professionals and is 

easy to apply and analyze. It provides probability scores for observations and functions 

without the need for feature scaling. The algorithm has inherent limitations as well. It is 

prone to overfitting and has trouble with many category variables. It also requires feature 

transformations for nonlinear issues. Performance may also decline when independent 
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variables either do not correlate with the target variable or are highly associated among 

themselves (Datacamp, 2019). 

 

With this foundational understanding of Logistic Regression, this study employed the 

algorithm in the following manner: 

 

• Initial model development: Training the Logistic Regression model with default 

parameters on the dataset was the initial step. The model was using “l2” 

regularization, the “liblinear” solver, and no explicit class weighting at this point. This 

initial modeling served as a baseline, facilitating subsequent optimization. 

 

• Hyperparameter tuning: As it was discussed earlier, through the Bayesian 

optimization the investigation of hyperparameters was meticulous at this stage: 

 

Table 05: Hyperparameter tuning of Logistic Regression 

Parameter Space Description Best parameter 

Original RUS SMOTENC 

C 0.001 to 

10,000 

Regularization strength, 

Spanning a log-uniform 

distribution  

9154.7 10000.0 10000.0 

class_weight “None”, 

“balanced” 

This investigated the trade-

offs between the default and 

a balanced approach 

“balanced” “balanced” “balanced” 

penalty “l1”, “l2” Exploring both Lasso and 

Ridge regularization 

techniques 

“l2” “l2” “l2” 

solver “liblinear”, 

“saga” 

Two algorithmic methods for 

optimization were 

considered. 

“liblinear” “liblinear” “liblinear” 

 

After careful hyperparameter adjustment for the Logistic Regression, it is clear how 

customized setups may improve the algorithm's capacity for specific datasets. The options, as 

shown in the table, demonstrate both the model's adaptability and the breadth of this 

research's methodology. 
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3.6.2.2 Decision/Classification Trees 

 

According to Singh (2018), Decision or Classification Trees are a common supervised 

machine learning approach for both classification and regression problems. At their core, they 

make decisions based on a series of inquiries. A Decision Tree/DT consists of nodes, where 

each node stands for a characteristic or attribute, branches for a set of rules, and leaves that 

represent the results. Understanding various terminology in the context of Decision Trees is 

essential to understanding their structure and workings. The “Root Node” represents the full 

dataset or sample, which eventually divides into one or more cohesive sets. “Splitting” is the 

process of separating a node into several sub-nodes. A “Decision Node” is any sub-node that 

splits even more. On the other hand, nodes that stop splitting are known as “Leaf or Terminal 

Nodes”. “Pruning”, a technique that works against “Splitting” to streamline and optimize 

Decision Trees, primarily entails trimming the tree by removing nodes. Any specific section 

of the Decision Trees can be called as a “Branch” or “Sub-Tree”. Terms are also used to 

describe the connectivity between nodes: a node that produces sub-nodes is the “Parent 

Node”, and the resulting sub-nodes are its “Child Nodes”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Decision Trees (Singh, 2018, para. 1) 

 

However, Decision Trees use various measures to determine the appropriate split. For 

classification problems, these measures include: 
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a) Entropy: In a dataset, Entropy quantifies randomness or unpredictability. When a set 

is totally homogeneous, it becomes zero. Entropy 𝐸 of a set 𝑆 with respect to binary 

categorization into positive and negative classes can be calculated mathematically by: 

 

𝐸(𝑆) =  − ∑ 𝑝𝑖𝑙𝑜𝑔2

𝑐

𝑖=1

(𝑝𝑖) 

 

Where, 𝑐 is the number of classes and 𝑝𝑖 represents the percentage of instances that 

belong to class 𝑖. 

 

b) Gini impurity: It shows how frequently a randomly selected element would be 

misclassified. It drops to its lowest possible value (zero) when all cases in the node fit 

into a single target category. The Gini impurity for a set 𝑆 is: 

 

𝐺𝑖𝑛𝑖(𝑆) =  1 − ∑ 𝑝𝑖
2

𝑐

𝑖=1

 

 

Even though both Entropy and Gini impurity aim to measure the disorder or impurity 

in data, the specific metric chosen often depends on practical considerations. 

 

c) Information Gain/IG: IG plays a vital role in Decision Trees. It directs the 

algorithm's split decisions by determining how much information a given feature 

offers about the outcome. IG can be calculated using the following formula: 

 

𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) −
𝑁𝑙𝑒𝑓𝑡

𝑁
𝐼(𝐷𝑙𝑒𝑓𝑡) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝐼(𝐷𝑟𝑖𝑔ℎ𝑡) 

 

Where, 𝑓 represents feature to split on and 𝐷𝑝 represents dataset of the parent node, 

𝐷𝑙𝑒𝑓𝑡  and 𝐷𝑟𝑖𝑔ℎ𝑡 represent dataset of the left child node and right child node, 

respectively, 

  𝐼 represents Impurity criterion (Entropy or Gini), 

  𝑁 represents total number of samples, 

  𝑁𝑙𝑒𝑓𝑡  and 𝑁𝑟𝑖𝑔ℎ𝑡 represent number of samples at left child node and right  

child node, respectively. 
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For regression tasks, Decision Trees use Mean Squared Error/MSE. The approach determines 

the weighted average of the MSEs for the left and right child nodes at each potential split. 

The split that yields the lowest overall MSE is chosen (Singh, 2018). 

 

Decision Trees are recognized for their simplicity of interpretation since they are simple to 

visualize. Additionally, they only need a minimal amount of data preparation; feature scaling, 

for example, is less important than it is for some other techniques. They do not make 

assumptions about the distribution of the underlying data because they are non-parametric. 

Decision Trees provide a variety of advantages, making them suitable for both classification 

and regression tasks. They are skilled at handling datasets with potentially imbalanced classes 

and can effectively capture non-linear decision boundaries. They do, however, have some 

drawbacks. Although this may be avoided with the correct parameters, they can occasionally 

overfit (performing well only on training set but not on test set), producing excessively 

complex trees that do not generalize well to new data. They can also be unreliable since even 

small changes in the data might produce a dramatically altered tree structure. To lessen this 

volatility, ensemble approaches might be used. Further to this, Decision Trees tend to use 

heuristic techniques, specifically greedy algorithms. These algorithms make the best split for 

the current node they are evaluating, without considering the impact of the decision on future 

splits. This can sometimes lead to solutions that do not always guarantee a globally optimal 

tree structure (Singh, 2018). 

 

With this foundational knowledge of Decision Trees, the algorithm was employed in the 

study in the following manner: 

 

• Initial model development: The Decision Tree method was first trained on the 

dataset using its default parameters. For the future optimization procedure, this initial 

modeling phase served as the baseline. 

 

• Hyperparameter tuning: At this point, the rigorous investigation of the 

hyperparameters was performed using the previously discussed Bayesian optimization 

technique: 
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Table 06: Hyperparameter tuning of Decision Trees 

Parameter Space Description Best parameter 

Original RUS  SMOTENC 

class_weight “None”, 

“balanced” 

This investigated the trade-

offs between the default and 

a balanced approach 

“balanced” “None” “None” 

criterion “gini”, 

“entropy” 

Function to measure split 

quality 

“entropy” “entropy” “entropy” 

max_depth 3 to 15 Maximum allowed depth of 

tree.    

7 7 15 

max_features “None”, 

“sqrt” 

Number of features for best 

split. 

“None” “None” “None” 

min_samples_leaf 1 to 7 Minimum samples required 

at a leaf node.   

7 1 7 

min_samples_split 2 to 10 Minimum samples to split a 

node. 

2 10 2 

splitter “best”, 

“random” 

Strategy for node split “best” “best” “best” 

 

It is obvious that meticulous hyperparameter tuning of the Decision Tree model yields 

diverse effects across different data treatments. The table shows how thoroughly the 

parameter space of the DT was investigated, as well as the best parameters that could be 

found for each data treatment. The versatility of the DT algorithm and the depth of this 

research's methodology are demonstrated by these outcomes. 

 

 

 

3.6.2.3 Random Forest 

 

 

According to Saini (2021b); IBM (n.d.c), Random Forest/RF is a widely used supervised 

machine learning algorithm. It serves as an ensemble technique, as at its core, it creates 

multiple decision trees during the training phase and merges them to produce a more accurate 

and stable prediction. Decision Trees and Random Forests share many similarities in terms of 

their fundamental concepts. In both models, the concepts of “Node”, “Branch”, “Leaf or 

Terminal Nodes”, “Root Node”, “Splitting”, “Decision Node” and the parent-child 
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relationships between nodes are consistent. They also use various measures to determine the 

best split, such as Entropy, Gini Impurity, Information Gain for classification and MSE for 

regression. While DT and RF have a lot in common, they have distinctions as well. For 

regression tasks, DT predicts based on the average target value in the terminal node, whereas 

RF averages predictions from all trees in the ensemble. For classification problems, even 

though both use majority voting, DT uses it at the individual nodes level, while RF uses it at 

the ensemble level to aggregate predictions from multiple trees.  

 

�̂�(𝑥, 𝐷) =
1

𝑀
∑ �̂�𝑚(𝑥)

𝑀

𝑚=1

 

 

Where,  �̂�(𝑥, 𝐷) represents the predicted output for an input 𝑥 based on dataset 𝐷 

 

 𝑀 represents the total number of trees in the Random Forest 

 

 �̂�𝑚(𝑥) represents the prediction of the 𝑚𝑡ℎ tree for the input 𝑥 
 

 

 A simple Random Forest classifier is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Simple Random Forest Classifier (Saini, 2021b, Applying DT in RF algorithm) 
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However, Random Forest is essentially an application of the bagging technique to Decision 

Trees, where each tree is constructed using a subset of data (also known as a bootstrap 

sample)  drawn from the training dataset with replacement. Approximately one-third of this 

sample is reserved as the Out-of-Bag/OOB sample. The OOB sample plays a crucial role in 

cross-validation, refining the final prediction. Unlike conventional Decision Trees which may 

consider every feature for a split at each node, Random Forests only allow a random subset of 

features to be considered at each split. This randomness ensures diversity among the trees and 

minimizes correlations that make the ensemble resilient (IBM, n.d.c). 

 

Due to its versatility, Random Forest is one of the most popular algorithms in the data science 

field. Even when hyperparameter tuning is not done meticulously, it often produces greater 

results. The parameters involved in Random Forests are simple and few which are easy to 

understand. By combining numerous Decision Trees that finally provide low bias and low 

variance, RF helps to avoid overfitting which is a persistent problem in machine learning 

tasks. Nevertheless, a major disadvantage of RF is the lengthy training period required due to 

the large number of trees involved. While training is typically quick, making predictions can 

be too slow. Although the algorithm works well in most cases, there are some situations 

where quick real-time predictions are essential, prompting consideration of alternative 

strategies (Saini, 2021b). 

 

Drawing on the fundamental knowledge of Decision Trees and their ensemble application in 

Random Forests, and recognizing the inherent strengths and potential drawbacks, this study 

adopted a structured approach to employ the RF algorithm in the following manner: 

 

• Initial model development: A Random Forest classifier was first built using default 

parameters to provide a baseline. This initial model provided a performance standard 

by which all later improvements were evaluated. 

 

• Hyperparameter tuning: Given that specialized configurations can unleash Random 

Forest's full potential, a thorough hyperparameter tuning process was employed. The 

Bayesian optimization strategy helped in effective navigation in the hyperparameter 

space: 
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Table 07: Hyperparameter tuning of Random Forests 

Parameter Space Description Best parameter 

Original RUS  SMOTENC 

bootstrap “True”, 

“False” 

Whether bootstrap samples are 

used when building trees.  

“False” “False” “True” 

class_weight “None”, 

“balanced” 

This investigated the trade-

offs between the default and a 

balanced approach 

“None” “None” “None” 

criterion “gini”, 

“entropy” 

Function to measure split 

quality 

“entropy” “entropy” “entropy” 

max_depth 1 to 25 Maximum allowed depth of 

tree.    

18 18 25 

min_samples_leaf 1 to 7 Minimum samples required at 

a leaf node.   

1 1 1 

min_samples_split 2 to 15 Minimum samples to split a 

node. 

2 2 2 

n_estimators 50 to 300 The number of trees in the 

forest. 

223 281 300 

 

 

By using this organized methodology, the study not only took advantage of the Random 

Forest's powerful capabilities but also meticulously shaped the model to meet the unique 

nuances of the under-investigation dataset. The selected hyperparameters highlight the 

breadth and rigor of the research methodology, which demonstrates a deliberate balance 

between adaptability and performance. 

 

 

3.6.2.4 XGBOOST 

 

According to Chen & Guestrin (2016); Analytics Vidhya (2018); Geeksforgeeks (2023), 

Extreme Gradient Boosting/XGBoost is a powerful ensemble learning technique specifically 

designed to improve the efficiency and performance of a machine learning model. At its 

essence, gradient boosting optimizes a differentiable loss function by iteratively adding weak 

learners to the model. These weak learners are often decision trees in the context of 

XGBoost. The main differences between XGBoost and conventional gradient boosting are its 
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regularization, optimization of the algorithm, and capacity to tolerate missing information. 

Similar to the Random Forest described earlier in this study, XGBoost also operates with 

Decision Trees as its basis models. However, XGBoost uses somewhat different trees. A 

comparison of XGBoost to Decision Trees and Random Forests can help to clarify the 

uniqueness of the algorithm. While a Decision Tree operates as a single, stand-alone model 

and a Random Forest builds multiple trees in parallel from bootstrapped samples with 

“bagging” strategy, XGBoost takes a sequential approach. This strategy is based on the idea 

of “boosting” in which several weak prediction models are combined to create a powerful 

one. In an iterative refinement process, the trees in the XGBoost forecast residuals or errors 

rather than the direct target value, where new trees attempt to fix the mistakes caused by older 

ones. This results in sequential model improvement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Flow chart of XGBoost (Guo et al., 2020, p. 06) 

 

In the Figure 22, 𝑓𝑘 is the prediction made by the 𝑘𝑡ℎ Decision Tree for input data 𝑋 with 𝜃 

indicating the tree parameter. As detailed above, instead of relying on only one model, 

XGBoost sums the predictions cumulatively of each tree built up to the current iteration to 

make its predictions. Each tree (function 𝑓𝑘) aims to rectify the errors made by the preceding 

trees. 
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Mathematically, the model seeks to minimize the loss function through gradient descent, with 

each step being modified by the residuals: 

 

𝑁𝑒𝑤 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑂𝑙𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝜂 × 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

 

Where, 𝜂 (eta) represents the learning rate. 

 

To elaborate on the mathematical foundations, the objective function that XGBoost optimizes 

is specified as follows: 

 

𝑂𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖

𝑛

𝑖=1

, �̂�𝑖
(𝑡)

) + ∑ Ω(𝑇𝑘)

𝐾

𝑘=1

 

 

Where, 𝑙 is the differentiable loss function, 

 𝑦𝑖  is the true label for instance 𝑖, 

 �̂�𝑖
(𝑡)

 is the predicted label for instance 𝑖 at iteration 𝑡, 

 Ω (Omega) is the regularization term and 

 𝑇𝑘  is the 𝑘𝑡ℎ Decision Tree. 

 

The regularization term Ω in XGBoost is defined as: 

 

Ω(𝑇) = 𝛾𝑇 +
1

2
𝜆 ∥ 𝑤 ∥   2 

Where, 𝑇 is the number of leaves in the tree, 

 𝑤 is the vector of scores on leaves, 

 𝛾 (gamma) and 𝜆 (lambda) are regularization parameters. 

 

The versatility of XGBoost is admirable. For classification tasks, XGBoost predicts the 

probability of an instance belonging to a certain class; the probabilities are calculated using 

the logistic function, similar to Logistic Regression. For regression scenarios, XGBoost 

predicts continuous values, similar to Random Forest but the method of constructing the 

prediction model is different as the trees (functions) are iteratively created in XGBoost 

(Analytics Vidhya, 2018; Geeksforgeeks, 2023). 
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Nonetheless, one of the most notable qualities of XGBoost is its excellent performance and 

speed. XGBoost is not only accurate but also faster than many other boosting algorithms 

because of its effective implementation and capability to parallelize the tree-building process. 

It naturally has the capacity to control against overfitting, providing it an advantage over 

other boosting methods. Its ability to automatically handle missing data during training 

eliminates the frequently laborious phase of manual imputation, which is another key benefit. 

Additionally, XGBoost's method of building and pruning trees is distinct; it builds trees 

depth-first and then prunes them using max_depth to ensure optimal structure and avoid 

overcomplexity. Despite its advantages, XGBoost has certain drawbacks. Due to its 

sequential structure, it can occasionally require more computing power than bagging 

methods, such as Random Forests, especially when working with very large datasets. 

Although the technique has regularization characteristics, if not tuned correctly, XGBoost 

models could overfit, especially if the data include noise. Furthermore, careful 

hyperparameter adjustment, which can take a lot of time, is frequently necessary for 

XGBoost to achieve its full potential (Analytics Vidhya, 2018; Geeksforgeeks, 2023). 

 

Harnessing the power of XGBoost and appreciating the unique nuances of the algorithm, this 

study employed it in a structured, two-tier approach: 

 

• Initial model development: The first phase entailed creating a fundamental XGBoost 

model that was designed exclusively for binary classification. The model used the 

evaluation metric “logloss” for the “binary:logistic” aim, ensuring a clear and 

straightforward initialization. This base model serves as a reference point for 

evaluating the benefits of future hyperparameter adjustment. 

 

• Hyperparameter tuning: A sophisticated hyperparameter tuning phase was launched 

to fully utilize the capabilities of the XGBoost algorithm. A more intelligent and 

purposeful search over the hyperparameter domain was performed by leveraging the 

Bayesian optimization technique. This reduced the possibility of overfitting while 

simultaneously ensuring ideal configurations: 
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Table 08: Hyperparameter tuning of XGBoost 

Parameter Space Description Best parameter 

Original RUS  

SMOTENC 

colsample_bytree 0.5 to 1.0 Proportion of columns (features) 

to subsample for each tree. 

1.0 1.0 1.0 

gamma 1e-5 to 0.8 Minimum loss reduction required 

to make a split, contributing to 

regularization and pruning. 

1e-5 1e-5 0.06941 

learning_rate 0.01 to 

0.15 

Step size shrinkage to prevent 

overfitting. 

0.15 0.15 0.15 

max_depth 1 to 8 Maximum allowed depth of tree.    8 8 8 

min_child_weight 1 to 5 Minimum sum of instance 

weights required in a child. 

1 1 1 

n_estimators 10 to 200 Number of boosting rounds, or 

the number of trees added to the 

model. 

200 200 200 

subsample 0.5 to 1.0 Proportion of the dataset to be 

randomly sampled for each tree. 

1.0 1.0 0.83602 

 

This study took full advantage of XGBoost's powerful algorithm by carefully adjusting it to 

match the unique properties of the test dataset using the structured methodology described in 

the table. The selected hyperparameters demonstrate a wise balance between personalization 

and effectiveness, underscoring the thoroughness and accuracy of the study methods. 

 

 

3.7 Model evaluation metrics 
 

Once the machine learning models have been developed, understanding how well the models 

perform is essential for determining their accuracy and reliability. As highlighted in Chapter 

02, various evaluation metrics exist. Bekkar et al. (2013) claimed that a Confusion Matrix is 

often used to assess the performance of a classifier in machine learning. For binary 

classification problems, this matrix is typically a 2x2 grid, as illustrated in the following 

table: 
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Table 09: Confusion Matrix for two classes classification (Bekkar et al., 2020, p. 27) 

 Predicted Negative Predicted Positive 

Actual  Negative TN (Number of True Negative) FP (Number of False Positive) 

Actual Positive FN (Number of False Negative) TP (Number of True Positive) 

 

The Confusion Matrix uses abbreviations TN, FN, FP, and TP, which stand for the following: 

 

TN = True Negative, denoting the negative instances accurately classified as negative, 

FN = False Negative, indicating the positive instances incorrectly labeled as negative, 

FP = False Positive, which means the negative instances wrongly predicted as positive, 

TP = True Positive, representing positive instances correctly predicted as positive. 

 

The Confusion Matrix serves as the foundation from which several other common metrics are 

derived including Accuracy score, Precision, Recall, F1 score, etc. that are often utilized in 

evaluating classification models. However, when dealing with imbalanced datasets, as in this 

study, the conventional metrics might not provide a complete or comprehensive picture of a 

model's actual performance. Imbalanced datasets pose a unique challenge: since prediction 

errors between the majority and minority classes can result in misleading performance 

assessments. This is compounded by the general assumption made by many standard metrics 

that equal class distributions exist, as noted by Brownlee (2020). Due to these difficulties, it 

is essential to use evaluation metrics tailored for imbalanced scenarios.  

 

Allwright (2022), emphasized on using multiple metrics as it is advantageous to track many 

metrics when creating a machine learning model since they demonstrate various performance 

facets. However, he further, specifically, focused on Macro F1 score as a primary choice of 

metrics due to its balance of precision and recall and its efficacy with imbalanced datasets. 

Macro F1 is the average of the F1 scores for each class whereas F1 score is the harmonic 

mean of precision and recall. Another popular metric for evaluating the accuracy of projected 

probabilities in binary classification is LogLoss, also known as cross-entropy or negative log 

likelihood. This metric effectively counts the average deviation between the probability 

distributions that happened and those that were projected. For a flawless classifier, the ideal 

value of log loss is 0.0. Poor classifiers, on the other hand, may have Log loss values that 

range from a positive value to infinity (Brownlee 2020).  
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Apart from this, AUC (Area Under the Curve) score, also found to be the most common 

metric that was utilized by all the researchers that this study has reviewed in Chapter 02, 

measures a model’s aptitude for distinguishing between classes regardless of their 

distribution. The interpretation can be as follows: AUC value 0.5-0.6 is poor, 0.6-0.7 is fair, 

0.7-0.8 is good, 0.8-0.9 is very good, and 0.9-1.0 is excellent. Other valuable measures for an 

imbalanced dataset are the Geometric Mean/G-mean and Balanced accuracy. G-mean focuses 

on the balance between sensitivity and specificity while the latter is the arithmetic mean of 

the two. For both metrics, a higher score indicates a better-performing model (Bekkar et al., 

2013; Brownlee, 2020; Allwright, 2022). The following table is the representation of the 

discussed metrics so far: 

 

Table 10: Some metrics for two classes classification problems 

Measure Formula Notations/Description 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Measures overall performance of model 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Measures accuracy of the positive 

predictions 

Recall or 

Sensitivity or TPR 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

True Positive Rate 

Specificity or TNR 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

True Negative Rate 

FPR 𝐹𝑃

𝑇𝑁 + 𝐹𝑃
= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

False Positive Rate 

FNR 𝐹𝑁

𝑇𝑃 + 𝐹𝑁
= 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

False Negative Rate 

F1 score 2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

Harmonic mean of Precision and Recall 

Macro F1 score 1

𝑁
∑ 𝐹1𝑖

𝑁

𝑖=1

 

𝑁 is the number of classes and 𝐹1𝑖 is 

the F1 score of the 𝑖𝑡ℎ class 

Balanced accuracy 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

Arithmetic mean of Sensitivity and 

Specificity 

LoggLoss −((1 − 𝑦) × log(1 − �̂�) + 𝑦 × log(�̂�)) 𝑦 represents expected values and �̂� 

represents predicted values 

G-mean √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 Balances classification performances on 

both the majority and minority classes 
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Additionally, graphical techniques that capture the nuances that conventional measures might 

miss, such as the ROC curve and Precision-Recall curves, can provide more in-depth insights 

into model performance. The ROC curve plots the trade-off between the FPR (x-axis) and 

TPR (y-axis) for various threshold values. An AUC of 0.50 denotes no discrimination 

(equivalent to random guessing), whereas an AUC of 1.0 denotes perfect discrimination. The 

Precision-Recall curve, also known as the PR curve, plots Recall (x-axis) against Precision 

(y-axis) for various threshold values. Unlike the ROC curve, which uses both true negatives 

and false positives, the Precision-Recall curve only considers the positive (often the minority) 

class. A no-skill classifier shows as a horizontal line on the figure, with precision matching 

the positive instance ratio of the dataset (0.5 for balanced datasets). Conversely, the top right 

point signifies a flawless classifier (Brownlee, 2020). Average Precision/AP provides a 

comprehensive summary of the Precision-Recall curve. It calculates the weighted average of 

the Precision values achieved at each threshold level and thus offers a single score to evaluate 

the models (Saxena, 2022). Therefore, it is evident that different techniques help evaluate 

machine learning models from different perspectives. While some offer broad, quantifiable 

measures, other may provide even deeper insights by shedding light on intricate nuances. 

 

However, to summarize, the methodology outlined in this chapter provides a comprehensive 

framework for addressing the research questions posed at the commencement of this study. 

The methods used are based on the literature, best practices, and are adapted to the unique 

circumstances and difficulties of this research. The thorough explanation guarantees that the 

procedure is transparent, repeatable, and open to criticism, supporting the validity and 

reliability of the results. The rigor and robustness of these approaches will be crucial in 

ensuring that the results are relevant and reliable as the research transitions from 

methodological design to empirical analysis in the subsequent chapter. 

 

 

4 Experimental results and analysis 
 

As established in the preceding chapters, evaluating the effectiveness of machine learning 

models is crucial. In this study, to determine how well all four developed models (Logistic 

Regression, Decision Trees, Random Forests and XGBoost) work with the unseen data (test 

set), a range of different evaluation metrics have been leveraged. This chapter methodically 

presents and analyzes the performance of these models across different sampling techniques. 



87 
 

4.1 Base models evaluation 
 

The initial experiments focused on understanding the fundamental performance of the 

machine learning algorithms without any parameter optimization. This serves as the basis and 

provides a preliminary view of the capability of each algorithm to predict backorders. The 

following table showcases the results of the base models. To provide a holistic view of each 

model's performance, notable metrics, such as Accuracy, Balanced accuracy, Precision, 

Recall, F1 Score, Macro F1 Score, G-mean, ROC/AUC Score, and LogLoss are included: 

 

Table 11: Base models’ performance evaluation 
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LR 

ORIGINAL Default 0.98 0.50 0.15 0.0 0.01 0.5 0.06 0.85 0.07 

0.04 0.96 0.59 0.1 0.21 0.14 0.56 0.46 

RUS 

 

Default 0.98 0.52 0.16 0.04 0.06 0.53 0.19 0.87 

 

0.12 

0.29 0.97 0.60 0.13 0.23 0.16 0.57 0.47 

SMOTENC 

 

Default 0.97 0.57 0.15 0.16 0.15 0.57 0.39 0.87 

 

0.19 

0.44 0.96 0.63 0.13 0.29 0.18 0.58 0.53 

 

 

DT 

ORIGINAL Default 0.98 0.53 0.22 0.07 0.11 0.55 0.27 0.54 

 

0.62 

0.01 0.98 0.54 0.18 0.09 0.12 0.55 0.29 

RUS 

 

Default 0.95 0.66 0.11 0.36 0.17 0.57 0.58 0.66 

 

1.90 

0.50 0.95 0.66 0.11 0.36 0.17 0.57 0.59 

SMOTENC 

 

Default 0.98 0.54 0.17 0.08 0.11 0.55 0.27 0.54 

 

0.68 

0.01 0.98 0.54 0.15 0.09 0.11 0.55 0.30 

 

 

 

 

RF 

ORIGINAL Default 0.98 0.51 0.24 0.01 0.02 0.51 0.11 0.72 

 

0.18 

0.06 0.96 0.67 0.17 0.36 0.23 0.61 0.59 

RUS 

 

Default 0.97 0.65 0.19 0.32 0.24 0.61 0.56 0.89 

 

0.11 

0.46 0.97 0.67 0.18 0.36 0.24 0.61 0.59 

SMOTENC 

 

Default 0.98 0.52 0.24 0.04 0.07 0.53 0.20 0.78 

 

0.17 

0.16 0.97 0.62 0.19 0.26 0.22 0.60 0.51 

 

 

XGB 

ORIGINAL Default 0.99 0.50 0.36 0.01 0.01 0.5 0.08 0.91 

 

0.06 

0.09 0.97 0.66 0.23 0.34 0.27 0.63 0.58 

RUS 

 

Default 0.97 0.66 0.23 0.34 0.27 0.63 0.57 0.91 

 

0.08 

0.53 0.98 0.65 0.24 0.31 0.27 0.63 0.55 

SMOTENC 

 

Default 0.98 0.55 0.32 0.1 0.15 0.57 0.32 0.91 0.06 

0.28 0.97 0.64 0.22 0.29 0.25 0.62 0.53 
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Even though the table showcases a holistic view of several metrics, given the complexity and 

specific challenges of the study, more informative metrics compared to their traditional 

counterparts, such as Balanced accuracy and Macro F1 are emphasized to streamline the 

result analysis. Balanced accuracy provides a more equitable measure of model performance 

across different classes than traditional Accuracy, while Macro F1 offers a holistic view of 

the model’s performance across all classes, distinct from the standard F1 Score (Dalvi, 2021). 

 

Initially, class imbalance with a default threshold value of 0.50 hindered model performance. 

However, introducing an optimized threshold improved Recall significantly, even though a 

tradeoff between Precision and Recall was observed. This optimization positively influenced 

several metrics, notably Balanced accuracy, Macro F1, and G-mean scores in most cases. 

 

For Logistic Regression/ LR, utilizing the ORIGINAL sampling technique, the model 

registered an ROC/AUC score of 0.85 and a LogLoss of 0.07. An optimized threshold value 

of 0.04 led to an improvement in Balanced accuracy, Macro F1, and G-mean scores to 0.59, 

0.56, and 0.46, respectively. When the RUS sampling technique was implemented, the model 

displayed an ROC/AUC score of 0.87 and a LogLoss of 0.12. Utilizing an optimized 

threshold value of 0.29, a more pronounced increment was observed in terms of Balanced 

accuracy, Macro F1, and G-mean, reaching scores of 0.60, 0.57, and 0.47, respectively. The 

most significant advancement, however, occurred with the SMOTENC sampling technique, 

paired with an optimized threshold value of 0.44. Here, the scores rose to 0.63, 0.58, and 

0.53, respectively. The model achieved an ROC/AUC score of 0.87 and a LogLoss of 0.19. 

 

For the Decision Trees/ DT model, using the ORIGINAL sampling technique, the ROC/AUC 

score was 0.54 with a LogLoss of 0.62. Introducing an optimized threshold value of 0.01 

resulted in an improved Balanced accuracy and G-mean scores, 0.54 and 0.29, respectively.  

With the RUS sampling technique, the ROC/AUC score improved to 0.66, though it came 

with a significantly higher LogLoss of 1.9. However, the optimal threshold was discovered to 

be 0.50, which is the same as the default threshold. Despite this, the G-mean score saw a 

small improvement, rising to a value of 0.59. This implies that the model performance may 

have been improved by the RUS sampling technique itself. The SMOTENC sampling 

technique, coupled with the optimized threshold value of 0.01 also improved the G-mean to 

0.30 which again shows the significance of the sampling technique itself. However, the 

model displayed an ROC/AUC score of 0.54 and a LogLoss of 0.68. 
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For Random Forests/ RF, using the ORIGINAL sampling technique, the model registered an 

ROC/AUC score of 0.72 and a LogLoss of 0.18. An optimized threshold value of 0.06 

marked significant improvement in metrics: Balanced accuracy reached 0.67,  while  G-mean 

improved dramatically to 0.59. The Macro F1 Score also saw a commendable rise to 0.61. 

With the RUS sampling technique, the model displayed an impressive ROC/AUC score of 

0.89 with a reduced LogLoss of 0.11. Even though the default threshold already showed 

improved metrics, such as Balanced accuracy of 0.65, Macro F1 of 0.61, and G-mean of 0.56, 

the optimized threshold of 0.46 improved its Balanced accuracy (0.67) and  G-mean (0.59) 

while the Macro F1 remained the same. The SMOTENC sampling technique with an 

optimized threshold of 0.16 enhanced performance, with Balanced accuracy, Macro F1, and 

G-mean reaching 0.62, 0.60, and 0.51, respectively. In this setup, the model achieved an 

ROC/AUC score of 0.78 and a LogLoss of 0.17. 

 

The XGBoost/XGB classifier with the ORIGINAL sampling technique, the model recorded 

an ROC/AUC score of 0.91 with a LogLoss of 0.06. Applying an optimized threshold value 

of 0.09 led to a notable increment in Balanced accuracy, Macro F1, and G-mean scores, 

reaching values of 0.66, 0.63, and 0.58, respectively. In the case of RUS sampling, the model 

achieved an ROC/AUC score of 0.91 and a LogLoss of 0.08. The default threshold already 

presented enhanced metrics, with a Balanced accuracy of 0.66, a Macro F1 of 0.63, and a G-

mean of 0.57. However, when the optimized threshold of 0.53 was introduced, the Balanced 

accuracy and the G-mean decreased slightly to 0.65, and 0.55, respectively, while the Macro 

FI remained the same. Lastly, utilizing the SMOTENC sampling technique, the model 

displayed an ROC/AUC score of 0.91 and a LogLoss of 0.06. An optimized threshold of 0.28 

further refined the Balanced accuracy, Macro F1, and G-mean scores to 0.64, 0.62 and 0.53, 

respectively. 

 

It is evident upon the comprehensive evaluation of the base models across various metrics 

that different models have their strengths and potential weaknesses when faced with 

imbalanced datasets. While all the metrics offered valuable insights into the models' ability to 

distinguish between classes, some of the metrics including Balanced accuracy, Macro F1, and 

G-mean were enhanced in most cases when optimized threshold values were used. These 

findings serve as a foundation for the subsequent exploration of hyperparameter-tuned 

models. After gaining the foundational insights from the base models, the next pivotal step is 

assessing the performance of the hyperparameter-tuned models, using the similar metrics.  
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4.2 Hyperparameter tuned models evaluation 
 

The process of hyperparameter tuning can significantly influence the performance of any 

machine learning model, optimizing it for the specific intricacies of the dataset in hand. This 

section provides a deeper evaluation of the model performance following meticulous 

hyperparameter tuning. With the optimal configurations, by addressing the difficulties 

presented by the imbalanced datasets, these models are expected to demonstrate improved 

predictive power. Similar to the base model evaluation, the following table utilizes notable 

metrics to provide a holistic view of tuned models’ performance: 

 

Table 12: Hyperparameter tuned models’ performance evaluation 

 

Model 

 

Sampling 
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LR 

ORIGINAL Default 0.62 0.77 0.04 0.93 0.07 0.42 0.76 0.87 

 

0.52 

 0.74 0.95 0.65 0.11 0.35 0.16 0.57 0.58 

RUS 

 

Default 0.62 0.77 0.04 0.93 0.07 0.42 0.76 0.87 

 

0.52 

 0.74 0.95 0.65 0.11 0.35 0.16 0.57 0.58 

SMOTENC 

 

Default 0.64 0.78 0.04 0.93 0.07 0.42 0.77 0.88 

 

0.51 

 0.77 0.96 0.63 0.13 0.28 0.17 0.58 0.52 

 

 

DT 

ORIGINAL Default 0.85 0.83 0.07 0.81 0.14 0.53 0.83 0.90 

 

0.35 

 0.91 0.97 0.65 0.22 0.32 0.26 0.62 0.56 

RUS 

 

Default 0.97 0.65 0.22 0.32 0.26 0.62 0.56 0.90 

 

0.09 

 0.45 0.97 0.69 0.20 0.39 0.27 0.63 0.62 

SMOTENC 

 

Default 0.97 0.61 0.18 0.24 0.21 0.60 0.49 0.82 

 

0.99 

 0.30 0.96 0.66 0.16 0.34 0.22 0.60 0.57 

 

 

 

 

RF 

ORIGINAL Default 0.99 0.50 0.36 0.01 0.01 0.50 0.08 0.90 

 

0.06 

 0.08 0.97 0.66 0.21 0.34 0.26 0.62 0.58 

RUS 

 

Default 0.97 0.65 0.21 0.32 0.26 0.62 0.56 0.91 

 

0.08 

 0.49 0.97 0.66 0.21 0.33 0.26 0.62 0.57 

SMOTENC 

 

Default 0.98 0.55 0.29 0.10 0.15 0.57 0.32 0.90 

 

0.08 

 0.18 0.97 0.67 0.19 0.37 0.26 0.62 0.60 

 

 

XGB 

ORIGINAL Default 0.99 0.50 0.40 0.01 0.02 0.50 0.09 0.91 

 

0.06 

 0.09 0.97 0.65 0.23 0.32 0.26 0.63 0.56 

RUS 

 

Default 0.97 0.66 0.22 0.33 0.27 0.63 0.57 0.90 

 

0.08 

 0.48 0.97 0.67 0.22 0.35 0.27 0.63 0.59 

SMOTENC 

 

Default 0.98 0.53 0.38 0.06 0.11 0.55 0.25 0.91 0.06 

0.16 0.97 0.67 0.19 0.37 0.25 0.62 0.60 



91 
 

Post hyperparameter tuning, the models' performance profiles showed interesting changes. 

Class imbalance remained a difficult obstacle while dealing with the default threshold of 

0.50. In particular, the Logistic Regression classifier displayed unusually high Recall values, 

often at the expense of Precision. This pattern suggests that the minority class has a high true 

positive rate but also a significant number of false positives. This observation was confirmed 

by the strikingly low Precision values for these models with default threshold. The majority 

of models and sampling strategies saw a significant boost in Precision after the introduction 

of optimized thresholds, however this came at the expense of a little decline in Recall. This 

illustrates a more balanced approach, where the models successfully distinguished between 

the classes without unduly favoring either one. Similar to the base models, this also led to an 

enhanced scores across several metrics, such as  Balanced accuracy, Macro F1, and G-mean 

scores in most cases. 

 

For the hyperparameter tuned Logistic Regression model, when the ORIGINAL sampling 

technique was employed, the ROC/AUC score stood at 0.87 and the LogLoss at 0.52. When 

the optimized threshold of 0.74 was introduced, Balanced accuracy, Macro F1, and G-mean 

dropped noticeably to 0.65, 0.57, and 0.58, respectively. Using the RUS sampling technique, 

the outcomes mirrored the previous set, with the model producing an ROC/AUC score of 

0.87 and a LogLoss of 0.52. However, utilizing an optimal threshold of 0.74 had a mixed 

effect: Balanced accuracy and G-mean were reduced to 0.65 and 0.58, respectively, while the 

Macro F1 significantly increased to 0.57. Lastly, the model earned a ROC/AUC score of 0.88 

and a LogLoss of 0.51 using the SMOTENC sampling strategy. Here also, the Balanced 

accuracy and the G-mean reduced to 0.63 and 0.52, respectively at the optimum threshold 

value of 0.77, but the Macro F1 increased to 0.58. 

 

For the hyperparameter tuned Decision Trees model, with the ORIGINAL sampling 

technique, the model demonstrated an ROC/AUC score of 0.90 and a LogLoss of 0.35. Yet, 

when the threshold was raised to 0.91, the G-mean and the Balanced accuracy fell to 0.65 and 

0.56, respectively. However, the Macro F1 score climbed to 0.62. The model, which used the 

RUS sampling method, displayed a favorable LogLoss of 0.09 while the ROC/AUC remained 

unchanged. With the introduction of an optimized threshold of 0.45, there was an 

improvement in the Balanced accuracy to 0.69, the Macro F1 score to 0.63, and the G-mean 

to 0.62. Lastly, for the SMOTENC sampling approach, the model recorded an ROC/AUC 

score of 0.82 and a LogLoss of 0.99. However, when an optimal threshold of 0.30 was 
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applied, the Balanced accuracy, the Macro F1, and the G-mean enhanced to 0.66, 0.60, and 

0.57, respectively. 

 

For the hyperparameter tuned Random Forests model, when utilizing the ORIGINAL 

sampling method, it achieved an ROC/AUC score of 0.90 and a LogLoss of 0.06. When an 

optimized threshold of 0.08 was applied, the Balanced accuracy and the Macro F1 scores 

jumped to 0.66 and 0.62, respectively, whereas the G-mean took declined to 0.58. While 

employing the RUS sampling technique, the model slightly increased a ROC/AUC score of 

0.91 and a LogLoss of 0.08. An optimal threshold of 0.49 led to the Balanced accuracy, 

Macro F1, and G-mean scores reaching 0.66, 0.62, and 0.57, respectively. Lastly, using the 

SMOTENC sampling strategy, the model reported an ROC/AUC score of 0.90 and a 

LogLoss of 0.08. By applying a threshold value of 0.18, there was an increase in Balanced 

accuracy to 0.67, Macro F1 to 0.62 and G-mean to 0.60. 

 

For the hyperparameter-tuned XGBoost model, when the ORIGINAL sampling method was 

applied, the model attained an ROC/AUC score of 0.91 and a LogLoss of 0.06. However, 

with the introduction of an optimized threshold of 0.09, there were notable changes in 

performance metrics: the Balanced accuracy, Macro F1, and G-mean scores rose to 0.65, 

0.63, and 0.56 respectively. Using the RUS sampling technique, the model registered an 

ROC/AUC score of 0.90 and a LogLoss of 0.08. On adjusting to an optimal threshold of 0.48, 

the Balanced accuracy, Macro F1, and G-mean scores enhanced to 0.67, 0.63, and 0.59, 

respectively. Lastly, with the SMOTENC sampling approach in play, the model registered an 

ROC/AUC score of 0.91 and a LogLoss of 0.06. A threshold tweak to 0.16 led to the 

Balanced accuracy jumping to 0.67, Macro F1 to 0.62, and the G-mean to 0.60. 

 

Upon the detailed assessment of the tuned models, it is evident that adjusting specific 

parameters has a significant effect. Here also, in most scenarios, results with optimized 

thresholds consistently outperformed the results with default thresholds in terms of a number 

of important metrics including Balanced accuracy, Macro F1, and G-mean. Hence, there will 

be an inclination to place more emphasis on the results with optimized thresholds in 

upcoming analysis. 

 

The benefits of tuning are further illustrated by comparison of these findings with those 

obtained from the basic models in next sub-chapter . 
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4.3 Comparative analysis: base Vs. tuned models 
 

The base models and the tuned models are compared head-to-head in this sub-chapter. The 

purpose of this comparison is to highlight the improvements achieved through tuning. In 

particular, for imbalanced datasets, a detailed examination of results offers insights into how 

model performance alterations arise from tuning. However, it is important to note that while 

tuning adjustments significantly impact various performance metrics, they do not affect 

metrics, such as AUC and LogLoss. Consequently, when other metrics produce outcomes 

that are comparable to those of these stable measures, it becomes imperative to include them 

in the juxtaposition table to ensure a more thorough and differentiated comparison between 

the models.  

 

The following table compares the results of the base models and their tuned counterparts: 

 

Table 13: Juxtaposition of base model’s and tuned model’s performance 

 

Model 

 

Sampling 

Technique 

Balanced 

accuracy 

 

Macro F1 

 

G-mean 

 

ROC/AUC 

 

LogLoss 

Base Tuned Base Tuned Base Tuned Base Tuned Base Tuned 

 

 

LR 

ORIGINAL 0.59 0.65 0.56 0.57 0.46 0.58 0.85 0.87 0.07 0.52 

RUS 0.60 0.65 0.57 0.57 0.47 0.58 0.87 0.87 0.12 0.52 

SMOTENC 0.63 0.63 0.58 0.58 0.53 0.52 0.87 0.88 0.19 0.51 

 

 

DT 

ORIGINAL 0.54 0.65 0.55 0.62 0.29 0.56 0.54 0.90 0.62 0.35 

RUS 0.66 0.69 0.57 0.63 0.59 0.62 0.66 0.90 1.90 0.09 

SMOTENC 0.54 0.66 0.55 0.60 0.30 0.57 0.54 0.82 0.68 0.99 

 

 

RF 

ORIGINAL 0.67 0.66 0.61 0.62 0.59 0.58 0.72 0.90 0.18 0.06 

RUS 0.67 0.66 0.61 0.62 0.59 0.57 0.89 0.91 0.11 0.08 

SMOTENC 0.62 0.67 0.60 0.62 0.51 0.60 0.78 0.90 0.17 0.08 

 

 

XGB 

ORIGINAL 0.66 0.65 0.63 0.63 0.58 0.56 0.91 0.91 0.06 0.06 

RUS 0.65 0.67 0.63 0.63 0.55 0.59 0.91 0.90 0.08 0.08 

SMOTENC 0.64 0.67 0.62 0.62 0.53 0.60 0.91 0.91 0.06 0.06 
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It is evident from the “Table 13” that tuning provided enhanced results across the board. The 

analysis reveals: 

 

• Logistic Regression/ LR: There were improvements in Balanced accuracy, Macro 

F1, G-mean, and ROC/AUC in most sampling techniques following tuning, with the 

exception of SMOTENC which showed minimal change. Despite the unfavorable rise 

in LogLoss for tuned models, other enhanced metrics point to a better performance. 

 

• Decision Trees/DT: Tuning resulted in notable gains in Balanced accuracy, Macro 

F1, G-mean, and ROC/AUC. While LogLoss was generally in favor of the tuned 

models, there was an exception in the case of SMOTENC sampling. 

 

• Random Forests/RF: The outcomes after tuning were mixed. Some sampling 

techniques showed slight declines in Balanced accuracy and G-mean, yet Macro F1 

and ROC/AUC mostly increased. For SMOTENC, all metrics showed improvement. 

Additionally, the LogLoss consistently favored the tuned models across all sampling 

methods. 

 

• XGBoost/XGB: Post-tuning, Macro F1, ROC/AUC and LogLoss remained consistent 

almost across all the sampling techniques. There were improvements in other metrics, 

except a slight decrease in Balances accuracy and G-mean for ORIGINAL sampling. 

 

It is evident from the above analysis that while the effectiveness of tuning varied, it 

predominantly led to performance improvements or stability in metrics across the models 

evaluated. In essence, tuning had a generally positive impact on model performance across 

different metrics and sampling techniques. Hence, the tuned models will receive all of the 

attention in the following section. This approach will facilitate a more in-depth and targeted 

examination of their results without reference to their base counterparts.  

 

Now that, it has been determined that the more proficient models predominantly reside within 

the realm of the tuned space, it becomes imperative to rank these models within each 

sampling technique. This step is pivotal for identifying the top-performing models. A 

thorough ranking of these tuned models is covered in  next sub-chapter for a clearer picture. 
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4.4 Finding the best models 

 

While the tabulated metrics offer a quantitative snapshot, the narrative remains incomplete 

without a visual representation. Graphical representations complement these metrics and 

promise to provide an intuitive visual insight into model performance. In this section, along 

with considering the tabulated metrics (Table 13), graphical representations, such as the 

ROC/AUC and PR curves are used to simultaneously display the results of all four models in 

the context of each distinct sampling technique. This method facilitates a direct comparison 

of the performance of each tuned model under identical sampling conditions. 

 

 

4.4.1 With “ORIGINAL” sampling approach  
 

The ROC/AUC and PR curves offer a visual validation of the model ranking. When looking 

at the graphical representations below, several key trends emerge which validate the 

quantitative metrics in Table 13: 

 

 

 

 

 

 

 

 

 

 

Figure 23: ROC/AUC and PR curves for the models with ORIGINAL sampling strategy 

 

The ROC/AUC curve for XGBoost/XGB outperforms others, indicating its superior 

performance in terms of sensitivity and specificity. Additionally, its PR curve comparatively 

is closest to the top-right corner, reflecting its optimal precision and recall balance. These 

visuals complement the tabulated results, confirming XGB's rank at the top for Balanced 

accuracy, Macro F1, and ROC/AUC. Furthermore, it is also tied for the lowest LogLoss, 

making it the overall top performer with the ORIGINAL sampling when considering the 
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combined metrics. Random Forests/ RF comes closely behind, as shown by both the 

proximity of its ROC/AUC curve to XGB and the height of its PR curve, a performance that 

is also reflected in its favorable G-mean. Progress is seen by Decision Trees/ DT post-tuning, 

which places its ROC/AUC curve intermediate to RF and LR. Its PR curve indicates good 

precision and recall trade-offs, but when juxtaposed with table metrics, it also shows a 

LogLoss that is noticeably greater than XGB and RF. Despite obvious post-tuning 

improvements, Logistic Regression/ LR, particularly in the LogLoss domain, still trails 

behind its competitors.  

 

Therefore, considering both graphical and quantitative evaluations under the ORIGINAL 

sampling technique, the models can be ordered as follows: XGB > RF > DT > LR 

 

 

4.4.2 With “RUS” sampling approach  
 

Moving on to the analysis utilizing the “RUS” sampling method, the graphical 

representations (ROC/AUC and PR curves) highlight several performance nuances that are 

not immediately apparent from the tabulated metrics alone: 

 

 

 

 

 

 

 

 

 

 

Figure 24: ROC/AUC and PR curves for the models with RUS sampling strategy 

 

Comparatively, XGB's graphical representation closely resembles the top-right corners and 

attest to its top rankings in several tabulated metrics, justifying its exceptional performance. 

RF exhibits a dip in the PR curve, compared to both XGB and DT, although having an 

exceptional ROC/AUC score, indicating a trade-off in precision and recall. On the other 
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hand, DT exhibits curves that demonstrate its improved post-tuning performance and, in 

certain cases, goes head-to-head with XGB. Despite its advances, the graphical indicators for 

LR imply it lags behind its peers, especially when considering its tabulated metrics. 

 

Therefore, by combining the quantitative measures and graphical insights, under the RUS 

sampling technique, the models can be organized as follows: XGB = DT > RF > LR. 

 

 

4.4.3 With “SMOTENC” sampling approach  
 

Transitioning to the analysis based on the “SMOTENC” sampling technique, a review of the 

associated ROC/AUC and PR curves offers more detail on the model performances, revealing 

subtler performance dynamics to supplement the tabulated metrics: 

 

 

 

 

 

 

 

 

 

 

Figure 25: ROC/AUC and PR curves for the models with SMOTENC sampling strategy 

 

With its curves attracting to the ideal points, XGB stands out clearly. With regard to the 

tabulated metrics, it has the highest ROC/AUC and the lowest LogLoss, further 

demonstrating its supremacy. While RF displays an admirable ROC/AUC curve and metrics 

that are nearly identical to those of XGB, a closer look reveals a somewhat muted PR curve 

and slightly worse AUC and LogLoss values. The ROC/AUC performance of DT 

occasionally falls short of even LR, despite post-tuning enhancements. Yet, DT has better 

metrics and curves than LR, barring its ROC/AUC and LogLoss. On the other hand, LR does 

perform better than DT in terms of AUC score and has a more favorable LogLoss, but its PR 

curve emphasizes how challenging it is to strike a balance between precision and recall. As a 
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result, when compared to other models, LR performs poorly overall, according to the 

measures used to evaluate the models. 

 

Therefore, as a result of combining the quantitative measurements with the graphical insights 

under the SMOTENC sampling approach, the models are ranked as XGB > RF > DT > LR. 

 

Now that the top performers across all three different sampling techniques are identified, 

comparing those with the available industry bests is both strategic and illuminating. Such a 

comparison not only highlights the relevance and robustness of the models developed in this 

study but also provides insights into the underlying questions regarding the effective 

utilization of predictive analytics in the supply chain and the comparative effectiveness of 

various machine learning algorithms. The comparison of the pinnacle performers from this 

study and the state-of-the-art is made in the following sub-chapter. 

 

 

4.5 Elite model showdown: Best of current study Vs. best of state-of-the-art 

 

While there are many indicators available to assess model performance, not all are suitable in 

every scenario. Apart from it, a thorough investigation of several measures may add needless 

complications and obscure the analysis's main objective. In the context of this study, the AUC 

score is a vital metric, considering the special challenges presented by imbalanced datasets. 

While it provides insights into a model's ability to differentiate between classes, it is 

important to recognize that it does not capture the entire performance landscape. Other 

metrics can offer different perspectives on model efficiency, precision, recall, and more. 

Nonetheless, due to the AUC score's widespread use in existing research, employing this 

metric facilitates direct comparisons with prior studies.  

 

However, despite the fact that this study uses three different sampling strategies, it is crucial 

to recognize that some previous research has used sampling approaches that are not clearly 

detailed. Such discrepancies might lead to variations in model outcomes; hence, this 

distinction should be considered in any comparisons. The following table only shows the 

sampling strategies of those research which are specifically mentioned in the corresponding 

research: 
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Table 14: Best of current study Vs. best of state-of-the-art 

Researchers ML techniques AUC 

Santis et al. (2017) 

 

RF 

GBOOST 

BLAG 

0.94 

0.95 

0.95 

Hájek & Abedin (2020) 

 

LR (Profit-max CBUS) 

RF (Profit-max CBUS) 

SVM (Profit-max CBUS) 

0.77 

0.92 

0.78 

Islam & Amin (2020) 

 

GBM  

DRF 

0.80 

0.79 

Ntakolia et al. (2021) 

 

RF (Under Sampling) 

XGBoost (Under Sampling) 

LightGBM (Under Sampling) 

Balanced Blagging (Under Sampling) 

0.95 

0.95 

0.95 

0.95 

Dahilwalkar (2021) 

 

RF/Random Forest 

Adaboost/Adaptive Boosting  

GBDT/Gradient Boosted Decision Trees 

0.95 

0.94 

0.95 

Shajalal et al. (2022) 

 

CNN_100 (ADASYN) 

MxCNN_50 (ADASYN) 

MxCNN_100 (ADASYN) 

0.95 

0.95 

0.95 

Current study XGB (ORIGINAL) 

DT and XGB (RUS) 

XGB (SMOTENC) 

0.91 

0.90 

0.91 

 

The majority of cutting-edge research models have AUC values in the 0.90+ range, 

demonstrating the effectiveness of contemporary machine learning methods in supply chain 

scenarios for backorder prediction. Some methods, such as Random Forest/RF and XGBoost, 

appear to be well-represented in the literature, indicating that they are robust in this 

application. The models used in this current study had excellent AUC values, up to 0.91. 

Even though they lag behind a few of the top-performing models, they nonetheless exhibit a 

high degree of effectiveness.  

 

However, disparities in the datasets utilized in different studies can cause discrepancies in 

performance. The origin, size, quality, and intrinsic complexity of the dataset, etc. are a few 

examples of the variables that may affect the model outcomes. Even with the same dataset, 

variations in preprocessing steps or feature engineering techniques can lead to diverse model 

results. For example, some crucial elements that are stressed in one study may not be present 

or emphasized in another. Furthermore, as pointed out in the “Rationale and uniqueness of 
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the paper” section, certain studies might have resampled the “Test” set or explored Neural 

Network-based models (a deep learning approach that often produces superior outcomes), 

leading to higher AUC scores. Beyond the machine learning technique used, the training 

tactics, computational resources, and hyperparameters chosen can significantly influence 

model outcomes. All these fine subtleties are not captured by the AUC, even if it offers a 

useful performance snapshot. 

 

In summary, this comparative analysis highlights the advancements achieved in supply chain 

operations using machine learning for backorder predictions. Although the models used in 

this study are competitive with some of the best in the field, there is still room for 

improvement. Future research opportunities are made possible by the modest changes in 

AUC values as well as factors, such as dataset discrepancies and model specificities. By 

investigating these possibilities, the models can be improved even more, getting closer to the 

highest level of prediction accuracy. 

 

With an aim to provide a holistic view of the current study's achievements and possible 

directions, a more in-depth examination of model criticisms, usability, and future research 

directions will be conducted in the following sections. 

 

 

4.6 Model criticism, usability, and further discussion 

 

The quest for achieving the optimal predictive model often leads academics and practitioners 

to heavily rely on certain evaluation metrics. While the ROC/AUC score is a widely 

recognized metric, it does not fully represent the models' range of performance when used 

alone. All of the models in this study had decent or high AUC scores. Nonetheless, disparities 

in performance were discovered upon careful examination of other important metrics, 

including the Precision-Recall dynamics.  

 

It is important to note that this was not an isolated incident associated with a particular 

model. However, one glaring example is the Random Forest model that uses the RUS 

sampling technique. It performed substantially worse on other measures than its peers within 

the RUS strategy, despite having the greatest AUC of 0.91. Consequently, it did not clinch a 
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leading spot based on other metrics within the RUS spectrum. The point is made clear by this 

striking contrast: a remarkable AUC does not guarantee holistic superiority across all 

evaluation criteria, as it does not always encapsulate a model's comprehensive performance 

landscape. Such disparities between the AUC and other metrics indicate the models' 

limitations in reliably distinguishing the positive from the negative classes. This divergence 

becomes paramount in situations where false positives have significant consequences. Hence, 

it is critical to evaluate models from a multi-metric standpoint to provide a more 

comprehensive evaluation of their strengths and weaknesses. Despite these observations, the 

models’ usefulness is still evident for several reasons: 

 

• Utility over random guessing: All of the models clearly outperform random 

guessing, as shown by the ROC/AUC and PR curves where the “No Skill” line refers 

to random guessing. This demonstrates their potential value and usefulness in real-

world supply chain scenarios, especially for early backorder detection. 

 

• Nature of the problem and setting realistic expectations: There are numerous 

uncontrollable elements that impact the intrinsic difficulty of backorder prediction. 

These can challenge even the most sophisticated models. While these models are not 

flawless, it is important to acknowledge their worth as they provide valuable insights. 

It is imperative to convey to stakeholders that machine learning models have limits 

and provide probabilistic projections based on past data. Thus, reasonable 

expectations ought to be established. 

 

• Business impact: Even a little decrease in backorders can result in significant cost 

savings and higher customer satisfaction. Instead of concentrating only on metric 

scores, it is critical to consider the models in the context of their larger business 

impact. 

 

• Interpretable models: Beyond its ability to anticipate outcomes, a model has other 

uses as well. Even when their absolute prediction accuracy is not the best in the 

industry, models that provide insights into feature importance can direct corporate 

strategies and decision-making procedures. 
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• Feedback loop: Setting up a feedback loop can be considered where predictions from 

the models are validated with actual outcomes. This input can be utilized to retrain 

and possibly enhance the model over time. 

 

• Human-in-the-loop systems: Businesses can utilize the models as an initial filter or 

recommendation system, and then have domain experts assess the predictions made 

by the algorithms. In this manner, they can leverage both the models’ capabilities and 

human expertise. 

 

• External factors: Sometimes it is possible that some of the elements impacting the 

result are not captured by the data alone. There might be external elements (e.g., 

abrupt changes in the market, global events) that impact backorders but are not 

present in the dataset. 

 

To summarize, although a highly effective predictive model would be optimal for supply 

chain backorder forecasting, even moderately effective models can provide useful insights, 

particularly when skillfully incorporated into the decision-making process. After all, the goal 

is not just high metric scores but tangible business impact and insights into the supply chain. 

 

 

5 Conclusion and future work 
 

Recent years have seen a growing focus on the study of the interaction between supply chain 

operations and predictive analytics. Increasingly, companies are realizing the importance of 

precise predictive models as they struggle with inventory control, backorder reduction, and 

demand forecasting. Hence, it is impossible to underestimate the importance of anticipating 

any backorders. The primary objective of this research was to investigate the accuracy and 

performance of predictive analytics models in identifying early warning signs of such 

backorders, thereby enabling businesses to adopt proactive inventory management 

approaches. This study meticulously evaluated the effectiveness of different machine learning 

algorithms in predicting backorders within the supply chain’s scope. Moreover, the study 

explored how parameter adjustment affects these algorithms' accuracy and performance. A 

variety of performance criteria were also used to evaluate the models. 
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Upon reviewing the research process and its results, it is crucial to revisit the original goals, 

assess how well they were met, and consider the broader ramifications of the findings. This 

chapter outlines the lessons learned, addresses difficulties encountered, and recommends 

directions for further study in this important area. 

 

 

5.1 Recapitulation of the study’s outcomes 

 

As this study's conclusion approaches, it is critical to summarize its main conclusions and 

ensure the research questions have been tackled with careful consideration and analytical 

rigor, echoing the sentiments of Lapan, Quartaroli & Riemer (2012). A succinct summary of 

the research process and outcomes will set the stage for answering the research questions. 

 

A rigorous sequence of processes led to the development of this investigation: 

 

The basis was established by a thorough analysis of relevant literature. Exploratory Data 

Analytics/ EDA technique was employed to explore the datasets, followed by extensive 

preprocessing measures, such as data cleaning, feature engineering, scaling, and resampling, 

etc. In the whole process, vigilant procedures were taken to ensure that no data leaked. An 

array of evaluation criteria, specifically designed for the imbalanced nature of the datasets, 

was used to analyze the outcomes of machine learning models that were methodically trained 

and fine-tuned. After comparing the performance of the outstanding models to industry 

norms, the models were critically examined, with an emphasis on their potential limitations 

and areas of applicability. 

 

With this backdrop, this paper sought to answer: 

 

RQ-1. How can predictive analytics be effectively utilized to identify early warning signs of 

potential backorders within the supply chain? 

 

Answer to RQ-1: The application of diverse machine learning algorithms in predictive 

analytics has demonstrated its effectiveness in detecting preliminary indications of impending 

backorders. Businesses can foresee and take effective measures to handle future stockouts 
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with the help of the developed and tested models in this study, each of which has strengths 

and weaknesses of its own. Companies can put their proactive inventory management tactics 

into practice by using these models to enhance their supply chain resilience. 

 

RQ-2. What is the comparative effectiveness of different machine learning algorithms in 

predicting backorders in the context of supply chain operations? Additionally, how does 

parameter tuning impact the performance and accuracy of these algorithms? 

 

Answer to RQ-2: The effectiveness of different machine learning algorithms in making 

backorder forecasts varies among models. Even while some models demonstrated high AUC 

scores, it was discovered that these scores do not always necessarily correspond with other 

important performance metrics. This discrepancy highlights the importance of a multi-metric 

evaluation approach. Regarding parameter tuning, it is evident that adjusting parameters can 

have a substantial impact on the performance and accuracy of algorithms. A model's 

predictive power can be maximized with the right set of parameters. However, finding a 

balance is crucial to maintain generalizability and prevent overfitting. 

 

To sum up, the findings emphasize the potential of predictive analytics in inventory 

management, while also stressing the significance of a well-informed and nuanced strategy. 

Predictive models have the capacity to be revolutionary, yet there is no universal solution or 

widely acknowledged “best” model. Rather, consistent with the outlined research objectives, 

success depends on understanding the specific context and the thoughtful application of these 

analytical instruments. 

 

 

5.2 Reflection on contributions and limitations 

 

Reflecting upon the journey of this research allows for a holistic understanding of its value 

and potential areas for improvement. It is essential to present a comparative analysis of the 

goals and actual results, which emphasizes the importance of the research and highlights any 

limitations. In addition to openly discussing the challenges faced, this section seeks to clarify 

the significant contributions made to the fields of supply chain management and predictive 

analytics.  
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5.2.1 Contributions revisited  
 

The journey of this study unveiled several pivotal findings, which are worth revisiting: 

 

• Bridging theoretical and practical avenues: This research not only provides 

scholarly insights but also bridges the gap between theoretical constructs and their 

actual application. The proposed strategies and overall findings in this study can help 

companies apply predictive analytics to real-world problems. 

 

• Enriching the academic landscape: Building upon the “Rationale and uniqueness of 

the paper” in Chapter 2, this paper further solidifies its stand in the academic 

landscape by its in-depth and reader-friendly exploration of theoretical foundations. 

Furthermore, the methodologies utilized in this study throughout its various stages, 

from data collection to model building and interpretation, present a novel approach. 

By comparing these approaches with the established literature, future researchers can 

gain a fresh perspective to adopt and/or further refine the existing knowledge. Thus, 

this paper serves as a testament to the dynamic nature of theoretical and 

methodological rigor in the supply chain domain. 

 

• Optimization blueprint: Businesses can use the findings as a blueprint to review and 

improve their inventory management procedures. These useful insights can result in 

more efficient operations and better resource management. 

 

• Customer-centric outcomes: This research has led to a focus on proactive backorder 

management, which is evidence of a customer-centric approach. Customer loyalty and 

trust can be greatly increased by anticipating and controlling such hiccups in the 

supply chain industry. 

 

• A paradigm shift: The study advocates for a transformative change in the way firms 

understand and handle backorders. By promoting proactive tactics over reactive ones, 

this study lays the framework for further research in this area. 
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5.2.2 Reflecting on limitations 
 

It is imperative to acknowledge the limitations that this research was conducted under: 

 

• Dataset specificity: Although the datasets provide valuable insights, it is worth 

noting that they only represent particular scenarios. When applied to a different 

dataset or environment, the suggested interpretations and techniques might need 

recalibration. 

 

• Assumptions in the spotlight: The underlying assumptions of this study may have 

influenced the results to some extent. Future scholars and practitioners need to be 

aware of these nuances. 

 

• Narrow focus: Despite being thorough, the study had some focal points, especially in 

relation to specific dataset preparation techniques, resampling strategies, prediction 

algorithms and tuning, as well as evaluation criteria. As a result, the insights have 

their locus within a pre-defined scope. 

 

• Product-specific backorder prediction: While not explicitly stated as a limitation in 

the “Introduction” chapter, it is worth noting that this research broadly addresses 

backorder prediction without knowing and specifying which particular products or 

product types are at risk of going backorder. Different products have varying levels of 

importance to a business, and the implications of a backorder might vary based on the 

product type. Hence, it is important to understand the specific inventory and business 

needs when evaluating machine learning models, where especially metrics such as 

precision and recall might have distinct impacts. 

 

In summary, although the research has undeniably advanced in addressing the gaps in the 

field of supply chain management, it had its limitations. Such a comprehensive view ensures 

that the knowledge gained from the study is contextualized appropriately and that the 

achievements and limitations encountered here can be applied to future research projects. 
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5.3 Personal research challenges 

 

Having reflected upon the study's contributions and constraints, it is equally important to 

draw attention to the difficulties encountered during the research process. Several challenges 

were encountered while conducting this research, each playing a pivotal role in shaping the 

approach, methodology, and even the outcomes of the study: 

 

• Understanding dataset variables: A primary obstacle that needed to be overcome 

was a thorough understanding of the variables in the datasets. Due to the lack of 

information in existing research with the same/similar dataset, domain knowledge and 

professional judgment had to be applied to understand the variables, as obtaining a 

complete understanding was essential for the next analytical procedures.  

 

• Handling missing values: Preprocessing of the data introduced difficulties due to the 

significant missing values in the datasets. It was a complex task to determine the 

appropriate imputation techniques and ensure that they did not skew the results. 

 

• Outliers in the datasets: In terms of outliers, the dataset posed a unique challenge. 

Conventional methods, such as box plots and histograms, proved ineffective for 

outlier detection as extreme values affected the visual representation. To manage this, 

an additional test (percentile testing) was conducted to better comprehend and address 

these outliers. However, substantial outliers remained in the prepared dataset even 

after the top 1% of the data were eliminated. 

 

• Feature importance for ML models: A rigorous feature selection and importance 

analysis were needed to identify the variables that had the most predictive potential 

for the machine learning models. 

 

• Computational resources and training time: Due to the huge-sized dataset, the 

training of the selected machine learning models required a massive amount of 

processing power. To illustrate, with decent computational capabilities, training some 

of the models required more than two days. Any requirement for retraining meant a 

comparable time commitment, whether due to any discrepancies identified after 
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training or other improvements. Apart from it, the percentage choice of sampling 

techniques was impacted by the computing needs; for example, lower percentages of 

SMOTENC had to be used due to limited resources. Furthermore, these constraints 

also limited the feasibility of exploring more computationally demanding methods, 

such as Support Vector Machines/ SVM and specific Neural Network/ NN 

architectures. Such constraints had numerous effects, affecting everything from data 

preparation and model selection to hyperparameter tuning. 

 

• Performance evaluation with suitable metrics: The success of the study depended 

heavily on the use of suitable metrics. The challenge was not only about identifying 

them but also interpretation was troublesome as they displayed mixed behavior. There 

were instances where one metric indicated satisfactory model performance, while 

another suggested otherwise. Navigating this inconsistency and understanding the 

balance between metrics required careful consideration and judgment, which made the 

evaluation phase more intricate than initially anticipated. 

 

Overall, these challenges prove that the intricacies involved in real-world data analysis and 

model training go beyond theoretical ideas. While this study overcame these obstacles to 

provide valuable insights, acknowledging these challenges not only clarifies the scope of this 

study but also paves the way for subsequent research endeavors.  

 

Nevertheless, along with these above-mentioned personal challenges, it is crucial to 

recognize and address practical implementation challenges that are often overlooked in 

academic discussions. The following sub-subsection examines these challenges in greater 

detail and provides recommendations for their mitigation. 

 

 

5.4 Addressing practical implementation challenges in SCM 

 

The dynamics of the supply chain could be significantly transformed by utilizing advanced 

analytics, especially in the area of backorder prediction. While this study offers a solid basis, 

applying these models to real-world contexts can introduce a unique set of challenges. These 

difficulties can determine how useful these models are in real-world scenarios, from complex 

data to changing supply chain conditions.  
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The specific challenges and their possible solutions are presented below: 

 

• Data collection and integrity: Collecting real-time and accurate data is essential for 

developing machine learning models. Data can be scattered across various systems in 

the field of supply chain management, especially concerning backorders.  

 

Recommendation: The implementation of centralized data warehousing solutions is 

recommended. Therefore, tools and/or platforms that offer seamless integration with 

existing ERP/Enterprise Resource Planning/ ERP and WMS/ Warehouse Management 

System software should be considered. 

 

• Model adaptability: Due to the dynamic nature of supply chains and technology, 

models might become outdated as new trends and patterns evolve. 

 

Recommendation: It is advisable to schedule regular model retraining sessions as the 

developed model should update its weights on a regular basis to reflect the latest data. 

A hybrid approach can be utilized by combining batch and online learning. 

 

• Scalability concerns: The volume of data to be processed and analyzed also increases 

with the expansion of business. This highly likely will affect the model’s building and 

evaluation processes as well as performance.  

 

Recommendation: It is advisable to opt for scalable cloud-based machine learning 

solutions that can effectively process increasing volumes of data. 

 

• Feature evolution: The significance of features may change over time. A formerly 

essential predictor might experience a decline in its importance while new vital 

predictors may evolve.  

 

Recommendation: It is advisable to continuously monitor the feature importance 

scores and integrate this monitoring within the model evaluation phase. In case of any 

changes in the feature importance scores, reengineering of the model should be 

considered. 
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• Operational integration: Having a predictive model serves only as an initial phase in 

the process. To ensure effectively impacting decision-making, a seamless integration 

of the system into daily operations is needed. 

 

Recommendation: It is advisable to develop user-friendly dashboards and interfaces, 

enabling stakeholders (with low/no technical expertise) to leverage model insights. 

Along with the accessibility of the prediction, it is also imperative to ensure its 

effective usage. 

 

• Stakeholder resistance: Due to a lack of awareness about the benefits of advanced 

analytics and machine learning, fear of change, or even technophobia, traditional 

supply chain managers or personnel might oppose the idea of implementing predictive 

analytics. Such resistance can pose a substantial obstacle.  

 

Recommendation: It is advisable to conduct regular training and awareness sessions 

to promote predictive analytics by emphasizing its advantages. This will help 

stakeholders embrace it, realizing predictive analytics meant to complement the 

human decision-making process in the supply chain, not replace it. 

 

All in all, it is evident that implementing advanced analytics for effectively predicting 

backorders is a multifaceted endeavor. Successful implementation requires a simultaneous 

evolution of both theory and practice. The insights and experiences gained from this study 

have set the stage for further exploration of prospective research and innovation paths, which 

will be discussed in the subsequent sub-chapter. 

 

 

5.5 Future directions 

 

The course of this study has been enlightening, revealing various complexities and insights 

within the domain of forecasting backorders by leveraging advanced analytics. Although this 

research offers a substantial foundation, there remains ample opportunity for further 

exploration, improvement, and expansion.  

 

Some potential areas for future investigation include:  
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• Interdisciplinary data augmentation: Understanding consumer behavior, which 

directly impacts backorders, can be improved by an interdisciplinary approach. For 

example, supplementary datasets capturing consumer sentiments, purchasing 

behaviors, or market trends, which are derived from Behavioral economics, 

Psychology, or Sociology, could be merged with the core dataset. This 

interdisciplinary approach has the potential to offer more insights with richer features 

for model training. This can lead to improved prediction accuracy and enhance the 

model's ability to generalize effectively in a wide range of scenarios. Future 

researchers can explore the possibility of utilizing a multi-disciplinary approach. 

 

• Diversified methodological approaches: While this study has produced significant 

advancements in backorder predictions utilizing advanced analytics,  certain 

methodological choices were impacted by resource constraints. For example, there are 

models capable of inherently handling missing values, outliers, and class imbalances. 

The existing literature provides a variety of suggestions and recommendations for 

these scenarios. To ensure consistency and due to limitations, this study employed a 

uniform methodology across all four developed models. This decision, though 

justifiable given the circumstances, offers prospects for further investigation. 

Exploring diversified methodologies to leverage the unique strengths and mitigate the 

weaknesses of each model might yield more nuanced insights and potentially improve 

the predictive accuracy. This is a promising area for future research endeavors. 

 

• Product-specific feature selection and analysis: Further to the discussion in  

“Reflecting on limitations”, since product types influence the supply chain dynamics 

and the likelihood of backorders, future researchers should prioritize a comprehensive 

analysis to understand how the relative importance of different columns or features in 

the dataset might shift depending on the product type in question. Recognizing that 

different products or businesses may have varying priorities in terms of Precision and 

Recall, a tailored predictive approach for each product category would be beneficial. 

Along with providing refined predictive accuracy, such an approach also ensures that 

the analysis is more closely aligned with the unique challenges and intricacies of each 

product type. 
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• Model-centric feature selection: Different machine learning algorithms interpret and 

weigh features differently. Hence, an advantageous approach can be adopting a 

methodology for feature selection that considers the specific type of model being 

trained. For example, decision tree-based algorithms might benefit from a different 

subset of features compared to linear models. Future research could experiment with 

this model-centric feature selection to enhance performance optimization for the 

corresponding algorithms. 

 

• Cutting-edge modeling techniques: Even though, due to being highly 

computationally demanding, the current study did not examine SVM and NN 

methods, they still offer promising outcomes, particularly with access to more reliable 

computational infrastructure. Additionally, the fields of Artificial Intelligence and 

Machine Learning are constantly evolving. The integration of the emerging 

algorithms and Deep Learning models has the potential to yield better prediction 

results for backorder management. Future researchers can explore these areas. 

 

• Multi-metric evaluation: Drawing from established theories and the empirical 

evidence presented in this study, it becomes clear that a multi-metric evaluation 

approach is essential for highly imbalanced datasets. Further exploration in this 

direction remains crucial, as only a limited number of studies (including this one) 

have employed multi-metric evaluation criteria. 

 

In conclusion, the integration of advanced analytics in backorder prediction highlights the 

dynamic nature of supply chain management. This paper examined the use of predictive 

analytics for early detection of potential backorders. It also evaluated different machine 

learning algorithms and emphasized the importance of parameter tuning in optimizing their 

predictive performance. Additionally, the research also demonstrated the necessity of 

utilizing multi-metric evaluation criteria for highly imbalanced datasets. Thus, the study has 

provided a framework for future investigations. Future research is expected to enhance 

current knowledge and transform the field of backorder predictions with the rapid 

technological advancements and the continuous evolution of data-driven strategies. However, 

it is important to consider that technology provides the required tools, but it is the human 

qualities of curiosity, adaptability, and collaboration that will have a significant impact on the 

future of backorder management and associated disciplines. 
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Appendix 01: Handling loaded dummy values and missing values 

 

a. Replacing loaded dummy values (-99) with Nan values: 

 

 

 

 

 

 

 

 

 

 

 

 

b. Deleting rows with null values from columns that have only one missing entry: 

 

 

  

 

 

 

 

 

 

 

 

 

c. Filling the missing values of the “lead_time” and performance columns: 
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Appendix 02: Outlier detection and handling 

 

 

a. Examining the percentile- an example with “local_bo_qty” column: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Removing outliers- top 1% of values (0.99 quantile): 
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Appendix 03: Binarization of the categorical features 

 

 

 

a. Transforming categorical values of the target column:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Transforming categorical values of rest of the columns:  
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Appendix 04: Cardinality checking and dropping the ‘sku’ column 

 

 

 

a. Checking unique values of each column 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Dropping the ‘sku’ column 
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Appendix 05: Bivariate analysis of categorical features with the target column 
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Appendix 06: Chi-squared test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 
 

Appendix 07: Bivariate analysis of numerical features with the target column 

 

 

a. Box plots for bivariate analysis of numerical features with the target column:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Detailed bivariate analysis by binning the numerical values of the columns: 
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Appendix 08: Correlation matrix 

 

 

 

a. Pearson correlation test 

 

 

 

 

 

 

 

 

 

 

 

 

b. Spearman correlation test 
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Appendix 09: SelectKbest with Mutual Information / MI Score 
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Appendix 10: Summary of all observations / Finalizing the features for ML model 
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Appendix 11: Handling duplicates and resetting indices 
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Appendix 12: Scaling the dataset 
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Appendix 13: Handling imbalanced training set / Resampling training set 

 

 

a. Original dataset: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. RUS / Random under-sampling: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. SMOTENC:  

 

 

 

 

 

 

 

 

 

 

 

 

 


