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Abstract

This thesis will investigate different methods to anonymize production data to

inject it or parts of it into the test environment. The different methods will be

analyzed from different perspectives and some of them will be implemented in the

implementation stage. Each method will be analyzed on a general plane but also

from the point of view of a specific use case. The different methods might have

to be used simultaneously for different parts of the process where different legal or

technical requirements exist. Some methods (such as training an AI model) are

more time-consuming to implement than others and, thus, they were not considered

worth implementing in this thesis. We will also go through which methods work

for our specific use case and which support our goals the most. Those will not

be implemented but they will be considered in the comparison section of this thesis.

Finally, this thesis will compare and summarize the analyses of the different methods

in the summary section, and use cases will be suggested for the specific method for

future use.

Keywords: IT, information technology, Anonymization, GDPR, Relational, Data,

Testing



Preface

Abbreviations and Terms

• General Data Protection Regulation (GDPR)

• Health Insurance Portability and Accountability Act (HIPAA)

• America Online (AOL)

• Graphical User Interface (GUI)

• Command Line Interface (CLI)

• Machine Learning (ML)

• Generative Adversarial Network (GAN)

• Anonymization through Data Synthesis using a GAN (ADS-GAN)

• Minimum Viable Product (MVP)

• Primary Key (PK)

• Foreign Key (FK)

• Amazon Web Services (AWS)

• Structured Query Language (SQL)
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1 Introduction

The reason for anonymization of many of the sources [1, 2, 3] has been to make

production data safe for release to the public with focus on it being useful for various

research purposes. However, the main goal for the implementation in this thesis work

is to create better test data from the production data that on some level represents

what exists in production, while people and companies are not recognizable, i.e.

complying with GDPR. The implementation will be used to release anonymized

production data most likely for internal use, meaning advanced methods of analyzing

the anonymized data to correlate to real-world data might not be too relevant. For

the purpose of the literary work, though, it can be interesting to study how to avoid

those more advanced methods, even if they might not be necessary for our specific

implementation needs.

The main reason for the need to generate test data, and to find a good method to

do it, is to have proper data in a non-production environment. There can be many

benefits in having a representative dataset in a non-production environment. Test

environments are often not exact copies of production environments. Reviewing data

tables and loading times shows that some tables usually are less populated in test,

while others can have more data than production. When developing systems such

as search queries the developer usually does not have the ability to test their new

developed features in production before the feature has been released by definition.

This can often lead to developers not giving the correct attention to possibly badly

optimized search queries that cause the end users to spend unexpected amounts of

time waiting for results, or even having queries timing out. These problems are often

easier to iron out if caught early, since data tables are often more difficult to change

once in production.

Another benefit of generating anonymized data for test environments from real

production data can include the quality or realness of the dataset. A common oc-

currence in many test datasets are properties such as “Test property 1” and “Bob’s

Test property, do not touch!”. These properties are often created to test a specific
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feature by a specific tester or developer. Sometimes these properties are incorrectly

linked to other parts of the complete dataset or are incomplete in other ways. These

test properties are unrepresentative of real data in production.

If the data in the test environments is of low enough quality, usage of the pro-

duction environment for testing or development purposes might occur. This brings

numerous problems. The developer or tester could unintentionally affect customer

data and cause problems. The developer or tester will in this case be able to see

real-world user data unnecessarily, which might have implications from a GDPR

or ethical perspective. Should a developer be able to access data meant for the

customer? Probably not, at least not unnecessarily. Having unnecessary access to

production environments also increases the possibility of a data leak. For these pur-

poses, it is important for us to be able to find a good method to generate anonymized

data from production data for use in a test environment.
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2 GDPR

The General Data Protection Regulation (GDPR) is a piece of regulation adopted

by the European Union (EU) and is being adopted in the United States of America

(USA)[4]. Although GDPR is an EU law, it is said to have a global impact since

any company that targets the European market must follow it[5, 6].

The GDPR was introduced in 2017 in the EU, and was enforced across all EU

Member States from the 25th of May 2018. The GDPR was created from a philo-

sophical approach to protection of people’s data. The EU, having human rights as

an important principle, has decided that data privacy is an important part of human

rights as it relates to privacy [6]. Due to this, the GDPR was introduced. [6]

In our specific case, we are interested in the GDPR, since we are interested in

the European market. The reason we must be aware of the GDPR is to know where

the legal boundaries are drawn. This will allow us to know what red lines have been

drawn, so we know what the minimum level of anonymization will have to fulfill.

The GDPR gives its users the right to withdraw their consent from companies

to hold their data and the right to demand that the companies delete all the data

about the user. The regulation means that data handlers and controllers must be

designed from the start to protect people’s personal data. Failure to follow these

GDPR rules can cause substantial fines for the company in violation. The GDPR

has implications mainly for actors in Europe, but even companies that do not have

a presence in Europe, or do not handle European user data, should consider the

GDPR in their IT solutions, if they have global aspirations. [5]

According to J. Yoon et al. [4], data protection regulations such as the GDPR and

the Health Insurance Portability and Accountability Act (HIPAA) do not provide

clear guidance on anonymization of personally identifiable data. Article 4 in the

GDPR defines personal data as the following:

“any information relating to an identified or identifiable natural person (‘data

subject’); an identifiable natural person is one who can be identified, directly or in-

directly, in particular by reference to an identifier such as a name, an identification
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number, location data, an online identifier or to one or more factors specific to the

physical, physiological, genetic, mental, economic, cultural or social identity of that

natural person” [7, 4]

He Li, Lu Yu and Wu He [5] wrote that personal data is defined as any data

that can be used to identify an individual. This includes data such as names, email

addresses, social security numbers, IP addresses, telephone numbers, location data,

birth dates and others, such as those mentioned in the paragraph above. This data

is protected for every EU resident, even if they do not reside in the EU [6].
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3 Perspectives of Anonymization

In this chapter, we will review two short examples from the early 2000’s when people’s

personal data was badly anonymized and given to the public. These examples will

be used to explain a few concepts regarding anonymization. These discussions will

build a basis on why anonymization is important from a non-legal perspective, and

methods of how anonymization can be measured.

3.1 Risks

In multiple cases in the early 2000’s [8], big companies have attempted to release

actual user data for research purposes. The companies have thought that releasing

their user data after implementing simple anonymization of only identifying data,

such as the usernames, would be enough to avoid controversy. In the cases of America

Online (AOL) and Netflix in 2006 releasing their user data for research purposes, The

New York Times revealed that users could be identified even when their usernames

were anonymized. The AOL data contained user queries and their timestamps while

the Netflix contained users’ movie ratings and their timestamps.

In the case of the AOL dataset release, AOL ended up apologizing for the release

only nine days after the dataset was made public [2]. A user’s search queries were

used to identify family members whom the user had queried for, in addition to local

business searches. This gave the New York Times the home county and the family

name of the user from where the user was identified due to the name not being too

common in the county.

In the case of the Netflix dataset merely looking at ratings of less popularly rated

movies “...it was shown that 84% of the subscribers could be uniquely identified...”

[8]. In [9], it was elaborated that if the attacker knows a little bit about a user

whose data was anonymized in the dataset, the attacker can identify the user from

the anonymized data and learn about the person’s personal sensitive data.

Risks associated with this kind of breach of anonymity can be numerous. In

the case of AOL’s search engine query logs, they can reveal much about the state
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of mind or sensitive personal information of the user, such as locations, names of

companies, inappropriate searches, and revealing sensitive information. The revealed

search queries can cover topics ranging from pornographic material to employment,

murder, and even suicide. This data can be a breach of privacy if released, especially

if the data can be traced to individual persons. Even when some information gained

from anonymous data, or queries not associated with a session-id can be considered

sensitive, these are not always “safe” even to that level. Related queries can be

tracked from similarity of search topics, while some search queries might contain

de-anonymizable or non-anonymized search terms which can connect the queries to

individuals. [2]

3.2 K-anonymity

The reason these datasets failed was that the data was not k-anonymous. A dataset

being k-anonymous means that every user’s quasi-identifying dataset is identical to

the quasi-identifying dataset of at least k-1 other users’ quasi-identifying datasets.

The idea with k-anonymity is that when every user has at least k identical sets, the

user’s data will be private[8]. The benefits of k-anonymity makes the anonymized

data such that it is not possible to trace any particular piece of data to one specific

individual, but to k other possible matches. For a big enough k, there will be a level

of privacy provided[2]. There can be many ways to achieve k-anonymity, but if we

want truly representative data, we cannot merely remove every item from each user,

or create all the possible combinations to drown out the user’s data.

Interesting about the New York Times research was that they did not use the

timestamps associated with the data to resolve which user what data was associated

with. Having exact timestamps in anonymized data is not very good when consid-

ering k-anonymity, since that increases the number of possible combinations consid-

erably, especially since the timestamps are associated with the ratings or queries in

our two examples. If we include the timestamps in our data, k-anonymity might be

easier to reach if we, for example, round off the timestamps to the closest day or

month. A similar method is used in programs such as µ-Argus, for example [1].
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As in that example, anonymization algorithms usually achieve k-anonymization

by generalizing and suppressing quasi-identifying values in the data. As mentioned

above, an extreme way to do this is by making all the data identical, or by sup-

pressing them, however, in most cases, that is not particularly useful. For an al-

gorithm to preserve maximal utility, while also attempting to achieve some level of

k-anonymization, the algorithm must do it by performing the minimal number of

generalizations and suppressions. However, utility is subjective and depending on

what the data is meant to be used for. A limited number of data points when build-

ing a machine learning model might lead to underfitting of the machine learning

model, for example [10]. Underfitting in data science means that the algorithm does

not successfully model the effect of the inputs on the outputs.

An interesting thought about the AOL case is that in [11] it is suggested that free

text can be anonymized by creating regular expressions from identifying parameters.

If this could have been done to, for example the names of the relatives of the user,

their data might have been at least somewhat more secure.

3.3 Anonymization in Social Networks

Netflix and AOL are not the only big companies that have released, or have the

need to release, their user data for the public. Big social network companies possess

vast quantities of user data (See Figure 1) that they wish to utilize in one way or

another. In addition to the whims of these social network companies, the data is of

interest to the people the data is composed of, and to third parties such as marketing,

advertising, data collection, further resale or even malicious intents. [12]

Social network companies have vast amounts of data about their users and ser-

vices. They can use the data to create different kinds of features for their services or

give it to third parties. If the company decides to give their data to a third party,

they might want to consider the privacy of their users. In a previous section (3.2)

of this chapter, we discussed that simple anonymization steps, such as removing di-

rectly identifiable information from user data, are not sufficient to prevent the risk

of re-identification. [12]
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Figure 1: Facebook alone, in Q3 of 2022, had two billion active daily users and has
grown by about 20% since the beginning of the pandemic. Monthly active users are
reaching three billion. [13]

There can be many benefits in releasing some type of anonymized version of

social network data for research purposes or even marketing. If the data is released

non-anonymized, these companies will create a severe privacy threat to their users.

However, if the company does not release the data, researchers will not be able to

analyze the data. While many actors might have their reasons to release user data,

users of these social networks might be interested in not being identified in any

possible published data. Malicious actors can use published user data to identify

sensitive information about users who might want to keep their data private. A

graph structure that can be generated from this type of data can introduce new

ways to threaten user privacy. [12]

These companies have data that contain sensitive information. The data can

include anything from user interests, friends, groups, relations, or even financial

exchanges, and this data can be used to build a network graph of nodes and edges.

This type of graph is called a sociogram. The nodes represent actors such as the

users of the social network, and the edges represent their relations such as who is
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friends with whom. Edges can have different kinds of labels, such as “friendships”,

“partners” or “colleague” and they can be directional, for example, to indicate who

is whose parent or child, and they can have weights. [12]

Sociograms can also be represented in matrix form. Matrices can be used as

mathematical and computational tools to process the data to find patterns or to

summarize it. One form of matrix representation of a social network is the adjacency

matrix. Such a matrix can be used to represent valued relations. The complexity for

a matrix to describe a social network of size n is n x n creating a matrix where the

relations of the i-th and j-th nodes are represented by the cells i, j and j, i. Because

of the structure of the matrix, lookup operations can be performed quickly, making

adjacency matrices an efficient way to analyze relationships in large datasets. With

signed and valued relations between nodes, matrices are not the most appropriate

way to represent the networks, as that would require one matrix for each type of

relationship. [12]

Sociograms themselves can be used to represent more complex data. The graph

will consist of the nodes and their edges. Each node can have additional attributes,

such as name, telephone number and age, while the edges can be labeled so as to

denote different types of relations, such as the familiar relations of the nodes, or to

describe a friendship. [12]

To avoid problems with bad anonymization we must first understand the ac-

tual data. According to Ouafae et al. [12], social network data cannot simply be

anonymized by applying k-anonymity. In relational databases, the privacy attacks

come from the quasi-identifiers being used to recognize individuals. In social net-

works, these attacks can come from for example neighbourhood graphs which can be

used to identify individuals. In relational graphs, tuples can be anonymized without

the rest of the data being affected, while in social networks, adding data to the graph

will also affect the neighbourhoods of other nodes in the neighbourhood. [12] This

can be an interesting factor to consider when implementing anonymization of our

data.
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3.3.1 Utility vs identifiability

Again, as mentioned in section 3.2, anonymization reduces the utility of the resulting

data [12], so we would want to consider what level of anonymization is best for our

specific use case. In this case, we might not be interested in perfectly representing

the social networks between our data points, if our resulting anonymized data will

not be used to study such relations. We can consider and weigh how important it is

to have this data, thinking of the utility our use case will have versus the possible

risk of re-identification it will introduce.

Perhaps, as a generic example, if we were to for example sell our data to a research

company interested in studying possible relational patterns in social network data,

we would have to find a way to actually protect users’ anonymity in some way, while

also preserving the utility of the relational social network of the data. Conversely, if

we are using the resulting anonymized data to, for example, have mock data to test

if new features in a new release for the system works, certain relations or network

aspects in our data might not be of interest for that use case.

For different elements in our data, there can be different levels of identifiability.

On the one hand, an element can be of high utility for a specific use case and cannot

be anonymized at all and must thus be present in its unaltered form, while on the

other hand, the piece of data can be of such low importance or utility that it can

entirely be removed without negatively affecting the utility in our use case. [12]

Another viewpoint regarding anonymization risk and usefulness is if the recipient

of the data knows the level of anonymization used. Knowing it, the recipient can bet-

ter understand it, but it can also introduce clues towards the risk of re-identification

[12]. Ouafae et al. [12] suggest that there are two types of utility in social networks.

The first type of utility comes from overarching characteristics of the graph, such

as the spread of the number of connections each individual has within a section

of the social network, or the extent to which individuals form tightly-knit groups,

as measured by clustering coefficients within the entire network. The other type
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is aggregate network queries, where an aggregate of paths fulfilling a conditional is

queried from the data. An example of this could be computing the average distance

in relations of two types of nodes, i.e. how many steps in the sociograph from a

programmer there are on average to a lawyer.

Ouafae et al. [12] write that social network anonymization is a complex problem,

since they are much more complex than simple relational datasets. When anonymiz-

ing simple relational datasets we can study established models of anonymization

such as k-anonymity to measure the level of privacy. In social networks, though, we

have more vectors of attack than for example quasi-identifying information. As we

established earlier, social networks have neighbourhood graphs, which means if one

tuple of data is changed, the change will be seen in the rest of the neighbourhood

graphs of the neighbouring nodes.
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4 Anonymization Methods

Many different methods exist to anonymize data, but many of them are designed for

specific use cases or specific organizations, such as healthcare datasets [1, 4]. This

means that we should study a number of anonymization methods, and based on what

we learn, we can use parts of these methods in the implementation chapter of this

thesis to generate anonymized production data for test usage.

This section will evaluate various anonymization methods to distill insights rel-

evant to our use case. Each method will be delineated with a succinct evaluation

of its strengths and weaknesses. This will enable the reader to rapidly acquire a

general understanding of the potential benefits and limitations associated with each

respective method.

4.1 µ-Argus

The Windows program µ-Argus is used to anonymize data created by the European

Computational Aspects of Statistical Confidentiality between the years 2000 and

2003 and has been further developed since then [1]. The name µ-Argus comes from

the Greek myth of Argus, a giant with thousands of eyes transformed into a peacock

making it more difficult to discover. This is probably a reference to k-anonymity.

The program was developed to make it easier for institutions to modify data to

create releasable “safe enough” data with minimal data loss for use by the public

and researchers. [3]

The interactive application µ-Argus is used by different state and national statis-

tical institutes globally [1, 3]. Many users of µ-Argus have automated the process

while others have not. [1]

The µ-Argus tool was made to anonymize microdata files. Microdata is unanony-

mized data from surveys, censuses, and administrative systems and is used for official

statistics to produce aggregated information often in a relational tabular format with
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each row representing individual entries. In some contexts, microdata is protected

due to its sensitive nature. [12]

Usage of the tool consists of the following steps. The user will import their mi-

crodata file into µ-Argus. After this, the user must define metadata relating to the

file before continuing. The user will then define indirect identifiers and sensitive vari-

ables. A minimum risk acceptance must first be selected for these values. Then, the

possibility of data re-identification using probabilistic methods can be studied using

µ-Argus. Finally, the risk of re-identification can be reduced with several different

methods employed by µ-Argus. Anonymization choices include the addition of noise,

micro-aggregation (grouping data into small aggregates to protect individual values),

post-randomization (applying random noise to data after collection), rounding, and

data swapping. After these methods are applied, a residual disclosure risk estimation

is conducted, after which a safe, or anonymized version of the original microdata file,

can be exported. [1]

The study conducted by Bergeat et al. [1] regarding the anonymization of French

medical record data highlights certain limitations associated with µ-Argus. The find-

ings suggest that µ-Argus does not conform to the standards outlined by the HIPAA

and lacks regular updates. These factors potentially compromise the effectiveness

of anonymization, depending on the desired level of anonymization. However, it is

important to note that if the context involves non-medical data, data outside the

United States, or there are no plans to publicly release the data, these limitations

may be inconsequential for that specific use case.

The work on µ-Argus has for several years been continued by de Wolf in an open-

source manner [1, 14]. Constant development has taken place on the GitHub page

[14] with the latest version tag being created on 2022-07-26.

An advantage of µ-Argus, among other factors, is that it is an existing program.

No coding work needs to be done to apply µ-Argus to a microdata file. This might not

be optimal for all use cases, though. µ-Argus is easy to feed data to. For an average

user who is familiar with Windows applications, a Graphical User Interface (GUI)

can be easier to learn compared to a command line interface (CLI) program. µ-Argus
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has many anonymization features that it can implement in the user’s microdata files.

Drawbacks of using µ-Argus include it being originally designed for use on

microdata. While microdata is a common format for many statistical institutes, it

is not used by everyone [12]. For a use case where the data is not in a microdata

format, a translation step must be introduced to make use of µ-Argus. The program

is not HIPAA compliant [1]. For use cases where HIPAA is relevant, µ-Argus will

not be the tool to choose. Note that this might have changed since Bergeat et al.

[1] wrote their paper, as de Wolf [14] has delivered updated versions for eight years

at this point.

4.2 Token-based hashing anonymization

Kumar et al. [2] made a study on token-based hashing methods from the perspective

of the dangers of using them. In their study, they suggest that k-anonymity-based

methods are better. However, this study does make some assumptions about the

attacker having a level of statistical knowledge of the targeted data.

The data the study [2] used to reverse-engineer hashes was in the style of the

AOL dataset, i.e., search query logs. The article suggests that if as an attacker one

has access to a non-hashed query, it is trivial to invert the hashing.

The data in this system were hashed by each query log having its own hashing

token. This token is then used to hash identifying parameters in the logs to make

them anonymized.

The method used by Kumar et al. [2] requires the attacker to have a significant

amount of domain knowledge. It also requires the use of a reference dataset of similar

caliber, with data that has a sufficiently large rate of co-occurrences. In the context

of query logs, the logs would have to contain words or numbers that often occur

together, such as “may” and “april”, or “heel” and “toe”, as Kumar et al. [2] found

in their data.

These known patterns, such as common names and co-occurrences, can be used

in an algorithm to find the token and, thus, de-anonymize the hashed data. Kumar

et al. [2] thus propose that data anonymized in this way is not a perfect solution to
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protect user data. This means that this method should not be used as a safe method

to release anonymized data to the public.

An advantage of hashing is that it is relatively easy to implement. Applying

a hashing algorithm to a string is a relatively simple task. It would also result in

deterministic results [15], which would be useful in a case where we want to have a

somewhat static test environment.

A drawback of using hashing is that it might not be safe. The anonymized

data can be reverse-engineered, if an attacker has statistical knowledge of the data.

Human input is also required. Choosing which fields are to be anonymized in this

way might lead to mistakes.

4.3 Generative Adversarial Network solution

As machine learning has become more popular recently, we can find sources [4, 10, 16]

also for implementations of machine learning to generate synthetic anonymized data

[10].

Using a machine learning (ML) method can be a good way to generate anonymous

synthetic data from a highly complex original dataset [4]. The synthetic nature of

the generated data can mean loss of rare occurrences, e.g. rare medical conditions

can be difficult to replicate in patient data without exactly replicating that patient’s

data [4]. Synthetic data generation results in data in which it will be harder to

re-identify the original subjects who contributed their personal data [16].

Yoon et al. [4] created a modified Generative Adversarial Network (GAN) that

they call anonymization through data synthesis using a generative adversarial net-

work, or ADS-GAN. As the name suggests, a GAN has two parts, a generative and an

adversarial part. These two parts face off against each other to refine the generative

network to create output that looks like the original data but is not exactly similar.

Commonly, GANs are used, for example, in image generation. In ADS-GAN, the

network receives an additional dynamic input in the form of values of a set of condi-

tioning variables. This improves the data quality, as well as makes it more unique.

In essence, this means that the discriminator knows what the original data is for each
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generated synthetic dataset. This makes the output of ADS-GAN quite resistant to

a possible identity attack, such as those used in the AOL and Netflix cases.

In more traditional methods for anonymization, a requirement to start the pro-

cess might be to determine the identifiability of specific properties in the dataset.

One way of classifying identifiability includes four different categories, which are (1)

directly identifying such elements as the name or social security number of a user,

(2) indirectly identifying such elements as date of birth or phone number. Yoon et

al. [4] suggest the classes of (3) potentially identifiable information such as dates

of visit (to a hospital for example) and rare traits (such as a rare condition), and

(4) non-identifiable information including test results and specific codes. This task

can increase in difficulty depending on the complexity of the original dataset to be

anonymized. In theory, specific fields can be misidentified in terms of their identifi-

ability class. This means that due to implementation errors, certain data may pose

challenges in maintaining anonymity. In addition to possible user errors, methods

that are used to achieve this can be highly subjective or hardly defined. Benefits

of using ML techniques to create synthetic anonymized data from complex datasets

include the fact that this task can be done by a “simple” mathematical method,

removing the human, assuming the mathematical method is sound. [4]

The two components of ADS-GAN optimize themselves against each other to

generate results that are at the same time similar, but still different enough from the

original material. The person running the ADS-GAN system has control over what

to set the desired identifiability to, having to choose between reduced identifiability

and increased quality. This identifiability is not a user-controlled parameter in other

GANs that Yoon et al. [4] compared ADS-GAN with to benchmark the quality of

ADS-GAN. Yoon et al. [4] benchmarked ADS-GAN against four other GANs with

a range of identifiability settings. In the results reducing the identifiability value

in all GANs gives results that are more dissimilar to the original data. In all cases,

ADS-GAN demonstrated better performance, having the lowest distance scores from

the original data compared to the other GANs. This benchmark was run on four

different available medical datasets.
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Yoon et al. [4] conclude their paper by suggesting that the ADS-GAN worked

and they propose ADS-GAN can be used as a safe, legal, and ethical method for

publishing data. They believe that there is a degree of trust that the data is not

identifiable, since they used mathematical formulas to define identifiability. This

means that it would not be possible to identify the original data from the anonymized

set, but the resulting synthetic data should still be good enough for use. With an

original dataset size of 5000, Yoon et al. [4] claim that ADS-GAN would produce

good data. They also claim that ADS-GAN fulfils the requirements of k-Anonymity

by defining similarity as the corresponding definition of indistinguishable. They

claim it satisfies k-anonymity with a k value of 2 due to the identifiability parameter

in ADS-GAN.

Advantages of using ADS-GAN include re-identification being more or less im-

possible due to how the method is implemented. No parameter needs human input.

All parameters are anonymized when creating synthetic data. Due to these factors,

there is no risk that the developer forgets to anonymize something.

A drawback of using this method is that it has to be fine-tuned. A model has

to be trained. It might not work for relational databases. It is also unclear if ADS-

GAN-generated synthetic data can successfully refer to other rows of data. Foreign

keys will probably not work in synthetic data. The model has to be re-trained if

new data that we want to include is added or if the data changes in some way

that we want to represent. Re-training the model will probably lead to inconsistent

data every time. Each model will generate unique data, meaning there will be no

persistence in the generated data.

4.3.1 Method complexity

In theory, implementing a machine learning method for generating synthetic data

can mean that changes in the dataset, such as additions of new columns, might be

a non-issue for the generation method since the network does the hard work of un-

derstanding the anonymization and the generation of a similar dataset without the

operator’s input. In other words, human effort does not have to be put into consid-
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ering how important certain columns of data are for identifiability, which means that

the risk of human error is removed from the equation, assuming the model and its

in-parameters are good. The ADS-GAN with a proper identifiability property will

generate properly non-identifiable data with a scalable number of data columns.

This presumes that one can get the network to work with the data we are trying

to generate. In addition, fine-tuning the solution might require considerable work.

4.3.2 Relational database compatability

From a technical point of view, it is unclear if this method can be directly used

to generate synthetic data for a relational database since the datasets presented by

Yoon et al. [4] imply that the data contains homogeneous rows of simple patient

data. Relational databases have multiple tables which have references to different

keys in other tables.

Having one GAN for each table might work to generate the rows for that table,

but having the different tables be connected using this solution would not work out

of the box. The resulting data would most likely not be connected, but a bunch

of unrelated rows not resulting in any hierarchy, if there is nothing to connect the

foreign keys in the rows to relate to the other tables.
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5 Anonymization Project Requirements

In this chapter, we will discuss the specific requirements for our specific use case.

We will discuss both functional and non-functional requirements. The non-functional

requirements might be less strict than those in many of the sources used in this thesis

and, thus, some of them will have to be parsed from the perspective of our specific

use case. In the following chapters, we will use these requirements to compare the

existing methods from the previous chapter and then implement one or two solutions

to achieve the goals described in this chapter.

We will need to develop a tool to provide useful data for a test or staging environ-

ment with the audience being mostly internal developers. We will have to figure out

what kinds of features our solution should support, and what is possible. Having nu-

merous vague requirements can make coming to a perfect solution difficult. Defining

proper requirements and their importance before starting work on an implementa-

tion can be beneficial, especially if some requirements cause other requirements to

suffer, or to be impossible.

We will have to study the benefits and disadvantages of implementing specific re-

quirements and see how they conflict with identifiability. We might want to have

a feature where the data generated is static or we might want the data to repre-

sent what our production data looks like. Will it be possible to do both using a

method that at the same time provides unidentifiable data and keeps the dataset

usable and relatively unchanging while also updating when the production dataset

expands? Will we encounter problems if the developer looking at our data knows

that a new big dataset is added to production, and the developer notices that the

staging environment receives a new big dataset?

The most important requirement is to have some level of anonymization. Making

the resulting data at least not a direct copy of production can be a good first step.

The required level of non-identifiability has to be discussed. There are many tools

and methods to measure the level of anonymity in an anonymized dataset, and those
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will be discussed in various chapters.

Many of our literature sources [1, 2] in this thesis discuss anonymization with

the goal of being able to release the resulting anonymized data to the public. This

means that the pool of attackers and the ease of attack on the anonymized dataset

or its access level will be lower than that which has been mentioned in the sources.

We want the dataset to be good for noticing possible bugs before releasing features

to production. This can mean many things, such as the time it takes to search or

create data.

We probably do not want to have to spend much time maintaining the tool, if

our data changes for example. This means that if a solution requires a considerable

amount of extra work from developers to be able to test new features, the utility of

the tool will suffer. One example of this could be strict input validations. If we are,

for example, anonymizing new data and there is a version mismatch, since we are

deploying new features, we do not want the system to break down.

The practical part of this project will be implemented using the programming

language TypeScript and will be deployed as an AWS lambda, from where we will

generate an anonymized dataset based on the production environment to the staging

environment.

The resulting dataset must be valid according to possible validation tools. The

data must have functioning foreign keys, assuming the foreign keys point to existing

rows of data in the original production data. This means, for example, that simply

randomizing might not work. This will be discussed further in the next chapter.
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6 Comparison

In this chapter, we will review what we learned in the previous chapters and consider

what are the pros and cons of each method.

6.1 µ-Argus

The µ-Argus method is interesting. It brings many advantages, but according to for

example Bergeat et al. [1] and Chou [3], it requires the user to input the data as

a microdata file. This requirement can be good for institutional anonymizers who

already have their unanonymized data in that format, but for anyone with another

data format, this will cause extra steps.

The method is interesting as an example of what small things one can do to data

to improve the level of anonymization without losing too much utility. An example

of this would be the rounding, addition of noise, and data swapping. In addition

to these, µ-Argus also has an in-built system to analyze the risk of re-identification

from the anonymized data.

Even if we were not to use µ-Argus itself, we can implement several of the

anonymizations steps ourselves. If we had a converter for our data to make it into

microdata files, we might even use the re-identification risk analyzer to get a mea-

surement of how well we have anonymized our data.

6.2 Token-based hashing anonymization

Token-based hashing anonymization is also, for the purposes of this thesis, an in-

teresting method, even if it has many issues. Kumar et al. [2] proved it to not be

a secure method if an attacker has statistical knowledge of the unanonymized data,

and if the data has high levels of co-occurrences. They wrote that they recommend

k-anonymous methods over token-based hashing anonymization.

This type of hashing should not be used to protect user data [15], at least not

alone. Hashing algorithms should not be seen as a method to anonymize, but rather
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as a method to pseudonymize. Pseudonymization means that the data can be con-

verted to identifiable data with a key. [15]

Marx et al. [15] described how cryptographic hashing algorithms are a good

pseudonymization method due to their one-way conversion, meaning that the output

can not be used to directly get the input. On the other hand, they wrote about

how personal information, such as IPv4 addresses, MAC addresses or generic e-mail

addresses, and other similarly limited input sets (small pre-image space, meaning

the possible inputs that lead to the same hash), can be de-hashed within hours on

consumer-grade hardware.

With these two sources, we know we can not use hashing algorithms for data

with a small pre-image space and high co-occurrences. This limits the usefulness

of this method. In addition to the two sources cited, hashing algorithms have been

extensively researched over the years to determine their level of security. More re-

cently, emerging technologies such as quantum computing have significantly reduced

the time complexity of cracking hashed values [17].

When it comes to combining hashing with other methods, Ali and Dyo [18] wrote

about bucketing of hashed MAC addresses. This bucketing of hashed values can be

used to reach k-anonymity in the output data if the collision rate of the output is

sufficient. If there is a limited amount of outputs and a sufficiently large amount

of inputs, similar to the birthday paradox, there will be ambiguity over the original

value for a specific anonymized output. In the birthday paradox, Ali and Dyo [18]

wrote about reaching an acceptable collision rate for their specific use case, which

for them was 1%. For our use case, we might want to accept a higher percentage.

In our use case, a higher collision rate might mean searches returning more results

in the anonymized set than in the original non-anonymized set.

In a case where the production data set is growing, this higher collision rate might

be an acceptable side-effect since, in theory, we will be getting on average more results

in our test environment than in production. However, getting the results will take a

longer time to execute to completion. Since this will happen in a growing data set,

this can be a positive factor as a slight future predictor of how long similar searches
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will take to execute in the future.

6.3 Generative Adversarial Network solution

ADS-GAN, as described by Yoon et al. [4], seems like a very good method to use for

use cases where it can be applied. Although implementing it might be difficult, it

is most likely the best method to anonymize data, since it synthesizes entirely new

data based on the existing data.

In the article written by Yoon et al. [4], there is no mention of their ADS-GAN

method working for a relational database. If the ADS-GAN method cannot be used

for relational databases, the utility of it will diminish, since many databases are

built using a relational database model, and they can be difficult to anonymize using

synthetic methods [19].

Xu and Veeramachaneni [19] concluded in their 2018 paper about using GANs

for generating synthetic data that it is difficult to use the various GAN methods to

synthesize data for relational databases. They noted that their GAN method works

for a database with a single table, indicating that a multi-table relational database

would be more difficult to model using a GAN. Xu and Veeramchaneni [19], in turn,

observed that GANs are a scalable method for keeping correlations from the original

dataset to the synthesized dataset.

From a technical point of view, it seems that this method cannot be directly used

to generate synthetic data for our specific use case. The datasets presented by Yoon

et al. [4] imply that the data contains homogeneous rows of patient data.

Our use case would require the generation of multiple tables of connected rela-

tional data. In theory, having one GAN for each table might work to generate the

data, but having the different tables be related to each other using separate GANs

would most likely not work out of the box. Moreover, it would seem that GANs

are more suitable for single-table databases. Hence, this approach, while interesting,

cannot directly be applied to our relational database model.
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7 Implementation

Having taken into account the different aspects of the methods we have analyzed,

we can decide on what we can do with our data. In this chapter, we will first, on a

higher level, consider which choices we can make to have a minimum viable product

(MVP). After that, we can start to implement an MVP as a proof of concept. In

the next chapter, we will reflect on what we have learned during the process.

An MVP implementation will demonstrate that we can automate a process to

generate useful data for a test database that is GDPR-compliant and anonymized.

This means that for an MVP implementation, we will first choose a specific part of

our data model in such a manner that we can get a usable result with a minimal

amount of anonymization steps.

For the level of anonymization, we will think about our requirements on how safe

we need the data to be. Though, this has to be in balance with the level of usability.

As mentioned in section 3.2, if we want the most anonymous output we can just

remove everything. This means we have to weigh the utility of specific data with

how much of a risk keeping its utility will be.

As a start, we will lay out the work plan so we have an overview what we need

and what choices need to be made. The implementation steps are listed below.

7.0.1 Implementation steps

1. Analysis: First, we will need to go through a number of fields and tables

and identify if the field can contain content that is in scope for GDPR. For

fields that are not fulfilling the requirement, we can discuss the benefits and

disadvantages of leaving them unanonymized.

To begin with, we will start with doing this process for two tables, where the

first one (Tab-1) does not have any references to other tables, and the other

table (Tab-2) contains references to this first table. Other for now irrelevant

tables (Tab-3, Tab-4...) are often connected to Tab-(n-1) (See Figure 2). We

chose to do this for two tables to prove that our method can be used for
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relational databases.

Figure 2: In this figure we can see an abstract representation of the described Entity
Relationship Diagram showing the Primary key (PK) and Foreign key (FK) in each
table

2. Triggering and fetching data: We will implement a Lambda function in

Amazon Web Services (AWS) that is triggered on a daily schedule to keep

the stage database up to date, and clean from possible manual changes that

developers, tests or faulty code might have caused. The benefit of keeping it up

to date, for example daily, is that our tests, code and developers will be trying

to make their code work on an environment that is as similar to production as

possible.

When our Lambda function is triggered, it will read production data, either

all rows of the two tables, or just a limited amount of rows from each table,

depending on anonymization related choices we make. These anonymization

related choices have to do with if we want to do “binning”, meaning combining

random rows in Tab-1 together to make it, for example, harder to know for sure

which row in Tab-1 is which by knowing how many rows in Tab-2 is related to

it, or which item in Tab-2 is which based on how many related items in Tab-3

it has, and so on (See Figure 3).

For this binning method, to keep the resulting anonymized data similar enough

to production, an equation similar to that used for the Birthday problem could
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Figure 3: Adding to Figure 2, we can now see the cardinality and optionality of the
relations.

be used to mathematically calculate how much binning we need to do if we

want to keep sizes similar to production if we decide not to read all data from

production but only a part.

3. Applying methods: When we have read the production data, we will have

to apply the filters we decided to apply in the first step to the data. We can

use Faker [20] as a helper to give us “good enough” data. Faker can be used

to generate fake, but “real looking” data. Faker has many categories one can

choosen from to create specific type of fake data, such as ipv4 addresses or

zip codes. Using our production data we can create an input for Faker’s seed

feature, to keep consistency in co-occurences, but with the value not being

directly identifiable.

Since Faker essentially is a regular expression generator which results in a finite

length of possible results, some faker.seed(originalData) −→ faker.something()

can in theory result in the same value even if originalData is not the same,

there will be some level of “binning”. This is essentially equivalent to having

a lossy hashing algorithm mentioned by M. Marx et al. [15].

4. Keeping it clean: When we have processed the data through an anonymiza-

tion filter, it can then be inserted into either a pre-cleared stage database, or

we can use an update system such as ON CONFLICT REPLACE which will
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update each matching row of data with our newly created data to “clean” or

update it. Unfortunately both of these methods have some issues that we will

either have to keep as problems, or we will have to invent a more complex

solution to solve them.

The issues here are that if we change how our binning algorithm works or

how data gets removed from the production data, the resulting IDs might not

all match what was previously produced. This can cause issues in the two

scenarios.

The issue in the pre-cleared stage scheme would be if we have static tests

with fixed IDs and expectations, our tests will most likely break every time we

change the algorithms. The stage database will be empty until the anonymizer

uploads the fresh anonymized data.

The issue in the update-based scheme would be that we would be slowly col-

lecting a backlog of old rows. This might not be a problem if our binning limits

us to a low enough amount of possible output items. Since there are a limited

number of possible (binned) IDs, the old backlog items might at some point

be updated if any of our newly generated items have the same ID. This also

means that in theory there can be as many items in the database as we have as

our binning limit for the ID. This however does not take into account possible

test or developer generated rows with IDs that can not be generated by the

binning algorithm. These rows would never get updated by the anonymizer in

this case.

A possible solution might be to peak at each row in the anonymized dataset,

after uploading or updating the fresh anonymized data. Each peaked row

would be compared with our newly added and updated item that our Lambda

function might still have in memory and delete everything that did not match.

The issue here would be that large databases might not fit in memory, and

comparing two long lists in that way most likely will be very slow: O(n2).

Alternatively, if the database we are using has a “last updated” field or feature
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for each row, we could just clear values that were not updated since we last

updated or added new data. Otherwise if the uploading of new data can be

done fast enough, the chance of this being an issue can be quite low.

7.1 Analysis

As we have chosen to limit our initial work on only Tab-1 and Tab-2 (See Figure 3),

we have a smaller amount of data to analyze. In our case, as the later tables might

have exponentially more data than Tab-1 for example (See Figure 3), this makes it

easier for us to do a more qualitative analysis on the fields we need to analyze. In

addition, limiting our analysis and implementation to only two tables leaves us with

less fields compared to if we did not limit the amount of tables.

The goal in this step for us is to do an analysis of what we want to do with our

data, so that we know what kind of tools we might need or what kind of system we

can build to support our goals. If our requirements for example were simple enough,

our system might be able to be built using less effort.

7.1.1 Goals and priorities

Our goals in this implementation, firstly, are to avoid obvious GDPR related pitfalls

with fields such as “FullName” or “TelephoneNumber”, but also to obfuscate free

text fields and other similarly not so obvious fields where GDPR-protected data

might occur. By also censoring factors such as free text fields, we are progressing in

a manner that the AOL dataset anonymizers did not, as we discussed in section 3.1.

Our secondary goal is to create a working test environment dataset, which we

can use to, for example, run automated tests. We also want to keep the anonymized

data relatively close to the production data, as with that, our development efforts

are not focused on making the product work for something that is further from the

real production data. This secondary requirement might in some cases mean that

we cannot maximize anonymization by methods such as K-Anonymity, but since the

data in our case will be for internal use, instead of being made for public consumption,

the risk of a devious actor reverse engineering our anonymized dataset is somewhat
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diminished compared to the examples in our source material. An example of this

would be that in some cases where we are aware of hard-coded features, where certain

values in the dataset will be tied to source code or other systems, we might have to

choose to not implement anonymization of secondary identifiers. Another quality of

life feature in this rank would be to have human readable data where possible, and

have a similar data-size for free text fields. These requirements make it easier to

work with the anonymized dataset when it comes to search-time, human readability

and recognisability of fields more similar to working with production data.

Lastly, where we are not conflicting with our secondary goal, we will try to im-

plement methods that decrease the indirect identifiability of our data. This includes

obfuscating fields such as street addresses where having them unanonymized would

firstly geo-locate the item, and significantly limit the possibilities of what the item

can be, or more vague identifiers such as creation dates and rarely used parameters.

Rarely used parameters, or parameters where for example 99% of the values are X

and 1% are Y, can reduce the anonymity of the item. If our data has multiple rarely

used parameters, items which have many of these can be more easily identified. If

there are several such fields, each with a majority of items sharing a common value,

we can significantly narrow down the possible matches in the original dataset when

several fields have a non-common value, assuming there is no correlation between

these common values in the fields. Unfortunately, in some cases where we might want

to change these fields to avoid this issue, we might have to prioritize the secondary

requirement of prioritizing usability of the anonymized data in our use case. This

would mean that some compromises will have to be made.

7.1.2 Binning

For most fields in our use case, binning the value should work, by using a generic

value as the seed, such as the ID of the item. When binning item context specific

fields, such as Tab-1.name and Tab-1.socialSecurityNumber (See Figure 4), where

the context is specific to the item, using the ID or Primary Key (PK) as a seed

works well, but when the context is for example a location, such as a street address
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or zip code, the calculus will be different. Unlike names or social security numbers

(assuming no namesakes or duplicate items), multiple items might have similar street

addresses or zip codes, meaning that in a large enough dataset and in certain use

cases, it might be beneficial to not just use the ID or PK of the item as the seed. It

might make practical sense to, for example, use the zip code as the seed, meaning

all items that share a zip code in the original data set also share it in the outputted

anonymized data set.

If we want to anonymize something such as location data, where we for example

have different variables such as street addresses, zip codes, city data and country

codes, we can chose a different seed value for these if we wanted to group them.

Reducing accuracy is good for anonymity, since that increases K-anonymity. We can

then choose to bin the location fields by using, for example, the zip code, city or

country code as the seed, depending on what our data looks like and our anonymiza-

tion needs. In our case we will choose the city name as the seed as a demonstration.

Assuming we build our anonymization code using good coding practices, it should

be easy to change this in the future if the requirements change. (See Figure 4)

Figure 4: Figure 3 with explicit fields mentioned for Tab-1 and Tab-2

In some data sets, some tables might contain fields, where most items have the

same value, and only a few differ from the most common value, and they may also
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differ from each other. One example could be country codes. Consider an example

where our data set contains data over European persons. If one of our fields is the

country where the person lives, we can assume most of these fields will consist of

the more populated countries in Europe, while a minority will consist of smaller

nations. If we were to randomize each country code to any other country code, by

for example binning, we risk making it possible to identify the resulting country

code by size. In addition, very small countries can have a very small amount of

occurrences. This combined with something such as The Vatican city, where there

only exists one zip code, in for example a known complete dataset over the European

population, any binned country which consists of only one zip code can be assumed

to be the Vatican city. In a more generalized sense, keeping country codes can be a

risk to the anonymity of the data, especially when combined with other anomalies

and especially when an attacker has some knowledge over what kind of data set they

are looking at. [21]

7.1.3 Noise for numbers and dates

Date and amount fields will not be anonymized using Faker-js. Rather, we will add

an amount of noise to them. The amount of noise will have to be tied to the amount

of noise that is needed depending on the data spread for that field. The goal is

to make it difficult or impossible to distinguish items based on their exact date or

amount. Another factor is clustering. If an item has a date field which is significantly

far from the date fields of other items, it might be easier to spot and possibly be

identified if an approximate production date is known for that item. The same would

apply to amount values. This means that the amount of noise should ideally be large

enough so that in theory, this kind of identification should be harder or impossible.

This anonymization method is inspiered by the description of how µ-Argus applies

post-randomization or addition of noise on microdata fed to it [1].

An interesting possible issue with adding noise to dates could be if we have a

system where a date field in Tab-1 normally has an earlier date compared to each

child [22] (Tab-2, Tab-3, ..., Tab-n). If we add noise to all dates, the noise might
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cause these dates to get mixed up in such a manner that the date field in an item in

Tab-2 relating to a date field in an item in Tab-1 has an earlier date than the date

field in the related item in Tab-1. If this is relevant for the test environment, one

solution for this could be to fix the seed for the random noise for all related fields

to for example the PK of Tab-1, assuming all related date fields containing tables

have a reference to the PK of Tab-1. Unfortunately, in our example data (See Figure

4), this work-around would only work for two tables, since the only shared values

between related items in different tables are the FK and the PK, with the FK for

Tab-n being the same as the PK for Tab-n-1. The noise modifier would be different

for different seeds. The multiplier for the noise would be set to the cluster gap size.

The cluster gap size (time) is the largest gap between items. In our example, each

consecutive table has larger data amounts, meaning the gap is most likely smaller. If

the multiplier for the noise were to be larger for Tab-n than for Tab-n-1, that would

also mean this solution would not work. If we write the code to make the noise be

either a positive or negative modifier, having different multipliers on the noise would

not work either, since assuming positive noise and two close original dates, the item

with a lower multiplier will get overpassed by the one with the larger multiplier. We

figured this out by writing an unit test (See Code 9). This is further discussed in

section 7.4.1.

Free text fields such as comment fields or similar are problematic since they might

contain anything, and anything contains data which can be in scope for GDPR. Thus

content in free text fields should not be shown in the anonymized data set. If we

have, for example, a comment field, which can have any text, we might want the

resulting size to be similar to the original comment to keep the size of the data

similar to production.

7.2 Triggering and fetching data

We start off by making an MVP version which can be triggered manually from AWS

console or automatically with an AWS trigger which is set to run every midnight.

Using automatic deployments helped in debugging.
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Assuming a large enough data set, one AWS Lambda might not be good enough

for running this task. Theoretically there would be ways to work around this, such

as splitting the task into multiple smaller tasks. This method is tailored to work in

that scenario, since each item is anonymized without knowledge of items in its own

table or items in different tables.

To fetch data we wrote a simple Structured query language (SQL) statement

that fetches the data from an SQL database. To begin with we are just fetching data

that exist in the environment that the program is deployed to. In this case, it is a

test environment with a small dataset of about 75 items in Tab-1 and 106 in Tab-2.

Only deploying the Lambda to this test environment protects us from accidentally

tampering with production data, or from causing extra load during development.

Since deploying new code to AWS in our case takes a while, trying out our code

on synthetic data and unit tests ended up being a more efficient way of testing the

methods in the next section.

7.3 Applying methods

In this section we will discuss the practical parts of implementing the methods in-

cluding issues and steps taken to solve them in chronological order. We will test

and discuss different iterations of the program with iterative improvements or com-

promises to improve aspects of the program. These steps will be split into different

smaller sections for improved readability. The libraries we use include faker-js 8.0.2

[20] and seedrandom 3.0.5 [23].

7.3.1 Basic binning method

As mentioned earlier, our goal is to anonymize our data and to keep the data usable

and representative of the original data set. For that we will need to anonymize the

data while keeping the relational structure of the data, as well as keep the anonymized

values close to the original values.

Firstly, the PK of Tab-1 happens to be in the form of a short string, which

also happens to be a shortened version of the name of the item. Ignoring length
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1
2 //...

3
4 //SQL query for tab -1 ->.forEach ((item) => anonymizeTab1(mapForTab1 , item))

5
6 function anonymizeTab1 ( items : Map<string , object>, item : Item ) {
7 item [ ’tab -1_id’ ] = binningMethod ( item [ ’tab -1_id’ ] , item [ ’tab -1_id’ ] , 50) ;
8 items . set ( ‘ c : ${ item [ ’tab_id ’ ] } ‘ , { channel : item }) ;
9 }

10
11 function binningMethod ( anonymizedRowElement : string , anonymizedRowElement2 : string ,

accuracy : number) : string {
12 f ake r . seed ( b inaryToInteger ( str ingToBinary ( anonymizedRowElement2 ) ) % accuracy ) ;
13 return f ak e r . company . name ( ) . toLowerCase ( ) ;
14 }
15
16 function str ingToBinary ( s t r : string ) : string {
17 return s t r
18 . s p l i t ( ’’ )
19 .map( ( char ) => char . charCodeAt (0 ) . t oS t r i ng (2 ) . padStart (8 , ’0’ ) )
20 . j o i n ( ’’ ) ;
21 }
22
23 function binaryToInteger ( b inaryStr : string ) : number {
24 return par s e In t ( b inaryStr , 2) ;
25 }

Code 1: Basic binning method

constraints for now, we can start testing our faker method. Some possible issues

might be the chance of co-occurrence of the same output value with different seed

values being too high. For that, we have conducted some tests and will display some

data over the results, when using the faker.company.name() method.

In Code 1, we have abstracted away the irrelevant parts for this section so we

can focus on the important parts relevant to the binning method. Reading from

top to bottom, we are calling the anonymizeTab1 function in sequence with each

item we get from the SQL call. We give the function a map where we can save our

anonymized items for later use. We can then use this map to test attributes such as

the resulting size of the anonymized output compared to the original size.

In the anonymizeTab1 function, we pass the PK (in this case, item[’tab-1 id’])

to the binningMethod function along with an accuracy variable. The PK is sent

twice in this case, but that is not relevant yet. The idea is that the first variable

is what we are anonymizing and the second parameter is the seed for Faker. The

third parameter here is our accuracy parameter. We conducted some tests where

we varied the accuracy parameter. Since the binning method performs binning even
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without the accuracy variable, the variable might not be necessary depending on

the targeted amount of repeated output values. We might not need to bin it in this

manner.

The binningMethod function converts the seed into a number that faker.seed()

can use. Since it turned out the stringToBinary and binaryToInteger functions ended

up being an issue for our implementation, we will not cover them in detail. Here we

used the accuracy variable to maximize the seed to a specific max seed number. If

we were to compare this to the birthday paradox, the accuracy variable would be

the amount of days in a year, and the original data set is the amount of people in

the setting. When the modulo wraps around the seed number can be compared to

people being born the next year and thus sharing birthdays.

7.3.2 Binning accuracy

To test the efficacy or necessity of an accuracy variable we ran a set of tests (See

Table 1) using the basic binning code (See Code 1) on Tab-1 and Tab-2 in the test

environment. The goal was to get a general idea how well our binningMethod works

for binning using different accuracy values.

An interesting anomaly in the data (See Table 1) happens when in Tab-1 with an

accuracy value of 100 resulted with a smaller resulting size than with the accuracy

variable at 75. This is likely due to the modulo of some seed values wrapping to

values with the same resulting value. This tells us we might have to conducts tests

at a larger scale to get better test results.

From further testing it turned out that the way we parse the seed into an integer

or a TypeScript number ended up being problematic. We ended up fixing this by

using a cryptographic hashing algorithm on our seed when we convert it from a

string to a number (See Code 2). The reason a cryptographic hashing algorithm

works better here is due to the avalanche effect they employ. The avalanche effect

means that if the original value changes slightly, the entire resulting hash changes

[24]. This allows us to take the hash and more often get unique results for our seed.

We conducted further tests on synthetic data. First we test the original code
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Table 1: The values show the resulting size of the binned (anonymized) side. The last
two rows are without the accuracy variable and without the faker.company.name()
parts respectively.

Tab-1 result size accuracy Tab-2 result size accuracy
original data 75 % of 75 106 % of 106
50 38 51 % 44 42 %
75 46 61 % 58 55 %
100 45 60 % 59 56 %
200 53 71 % 76 72 %
infinity 69 92 % 102 96 %
without faker 75 100 % 106 100 %

1 function str ingToUns ignedInt ( input : string ) : number {
2 const hash = createHash ( ’sha256 ’ ) ;
3 hash . update ( input ) ;
4 // Take the first 4 bytes (32 bits) of the hashBuffer and interpret it as an

unsigned 32-bit integer

5 return hash . d i g e s t ( ) . readUInt32BE (0) ;
6 }

Code 2: A better function to convert strings to integer

without the cryptographic method. The resulting percentage of unique results

in the output dataset when running the binningMethod can be seen in the sec-

ond column of Table 2. The results for the code in Code 2 can be seen in the

third column in Table 2. We generated these values up to accuracies above 50%.

This test was conducted on a binning method bottlenecked by a binaryToInte-

ger(stringToBinary(faker.company.name())) wrapped output. When using a cryp-

tographic hashing algorithm (stringToUnsignedInt()) the amount of unique values

was significantly higher.

7.3.3 Testing speed and accuracy

In Code 3 we have an example of a unit test (using the Jest test suite) used to

generate the test data. We wrote two tests to assess the accuracy and speed when

we are converting the faker.company.name() result to an integer, as well as when we

are not.

Considering that for some of the Tab-n tables, we might have around 224 rows

of data, we might encounter performance problems at some point. Even if we were
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Table 2: Comparison of the accuracy of automated tests run locally on synthetic
seed values of 1, 2, 3, ... n with and without the bottleneck. The second and third
columns display the relative size of the resulting data set compared to the original
size for each test case.

Test Size %: With Bottleneck %: Without Bottleneck
2 100.00 100.00
4 100.00 100.00
8 100.00 100.00
16 100.00 100.00
32 100.00 100.00
64 100.00 100.00
128 99.22 99.22
256 98.83 99.61
512 96.29 98.24
1 024 91.89 96.68
2 048 85.40 93.95
4 096 75.07 89.62
8 192 59.80 83.85
16384 - 77.63
32768 - 71.91
65536 - 68.14
131072 - 65.10
262144 - 61.78
524288 - 56.91
1048576 - 50.35

to parallelize the Lambda or have multiple Lambdas processing the data, we would

still have to pay real money for every millisecond the Lambda or Lambdas run for.

This means that improving execution speed or efficiency has an effect on processing

costs and time spent on waiting.

When running these tests, we can see how long it takes to run the simulated

tests. On modern consumer hardware, running the tests shown in Code 3 using

faker.numbers.integer() to generate integers for numbered IDs, it ended up taking

54 minutes and 59 seconds for the test to complete. Testing another library for

generating random numbers, seedrandom ended up being significantly faster with the

same test, using seedrandom (See Code 4), completing in 1 minute and 50 seconds.
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1 de s c r i b e ( ’max amount at 50%’ , ( ) => {
2 i t ( ’binningMethod numbers ’ , async ( ) => {
3 const tenKTest = new Map<string , object>() ;
4 let j = 0 ;
5 for ( let i = 1 ; i < 14 ; i++) { //run 2^13 times , other test runs 2^20 times.

6 const testAmount = 2 ∗∗ i ;
7 for ( ; j < testAmount ; j++) {
8 const row = binningMethod (123 , j ) ; //Other test has binningMethod ("asd", ""+

j)

9 tenKTest . set ( ‘m: ${row } ‘ , { fakedata : row }) ;
10 }
11 const percentage = ( tenKTest . s i z e / testAmount ) ∗ 100 ;
12 console . l og ( ’a:’ + testAmount + ’ %:’ + percentage ) ;
13 expect ( percentage > 50) . toBeTruthy ( ) ;
14 }
15 }) ;
16 // Similar test ommitted

17 }) ;

Code 3: accuracy performance test

1 const rng = seedrandom ( ’’ + str ingToUns ignedInt ( ’’ + seed ) ) ;
2 return Math . f l o o r ( rng ( ) ∗ (9223372036854775807 + 1) ) ; //about 50 times faster than

faker.number.integer ().

Code 4: Faster seeded numbers with seedrandom

7.3.4 Improved accuracy and speed with seedrandom

The library seedrandom allows us to get a random decimal value for a given seed.

It can be given a seed value as a string, similarly to how Faker can be given a seed

number. For our use case, we want to convert this decimal to an unsigned integer.

We do this by multiplying the decimal with the maximum number we want and

adding 1 to it and then removing any trailing decimals.

When purely using seedrandom with the sequential numbers as seed values, which

for seedrandom have to be string types, the results (See Table 3) for accuracy dropped

from 100% down to around 93% as early as at 24, getting back up to above 99% at 214.

First test (seedrandom) shows results when the seed is input as ” + sequentialSeed.

The second test (+ avalanche) shows the results when wrapping that with ” +

avalancheMethod(). The values in the second test had a score of 100% up as high as

216 but not 217. The third test (faker.numbers.integer) shows the resulting accuracy

using faker.numbers.integer. Results are shown in the percentage of unique generated

results. When adding the avalanche effect to how we convert the sequential number

seed to a string, we removed this drop, and the accuracy stayed at 100% up to 216.
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Adding the avalanche step to this gives similar results as faker.numbers.integer does,

but the results are generated significantly faster.

Table 3: This table shows the accuracy results from running the sequential seed for
seedrandom test on 224 values.

test size seedrandom + avalanche faker.numbers.integer
8 100.000
16 93.750
32 93.750
64 92.188
128 92.188
256 95.703
512 97.461
1 024 98.145
2 048 98.584
4 096 98.804
8 192 98.901
16384 99.335
32768 99.664
65536 99.828 100.000 100.000
131072 99.886 99.998 99.999
262144 99.888 99.995 99.998
524288 99.890 99.993 99.994
1048576 99.895 99.988 99.987
2097152 99.948 99.975 99.976
4194304 99.974 99.950 99.950
8388608 99.987 99.901 99.902
16777216 99.989 99.804 99.806

When looking at the test results (See Table 3) we can say that for binning number

IDs, using seedrandom with the avalanche effect to convert a sequential integer to a

hash and turning that into a string to give as a seed to seedrandom is significantly

faster than using faker.numbers.integer, and the results are similar.

7.3.5 Shortening strings

Now that we have methods to convert a text or a number seed into a unique human

readable text, we might still have to edit the resulting output to fit better into our

specific use case. A database might have restrictions such as maximum lengths for
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specific columns. In our case, we sometimes have to shorten the resulting output

string. Shortening allows us to have human readable text even on fields with a

character limit if necessary. Other uses for this could be if there are values such as

converting a faker.company.name result to a shorter version of the same text if the

data has such fields (ie. OP or ABF versus Osuuspankki or Ålandsbanken Finland).

One way of doing this could be to remove vowels and white space from the results

until the size fits the criteria, and if that is not enough, more can be removed. A

risk with this is that the accuracy might in some cases be lower than in our previous

tests, but since we have unit tests that can test the accuracy, we will be aware of

these changes if they happen.

To attempt to implement a way to fit our resulting readable string to a limited

length field we can wrap it with a function that works it down. We give the function

the maximum size we want the string to be along with the string itself. The goal

is to keep maximal legibility and uniqueness while removing or replacing characters

from it. We will call this function “shorten” (See Code 5).

Capitalizing the first letter of each word is used here to signify the start or

amount of words in the string. Consonants could be considered to have more value

than vowels, as in some Semitic written languages the vowels are entirely omitted

[25]. Then, on top of this, if the string still is too long, rather than cutting it off

to fulfill the maximum length requirement, we can remove remaining uncapitalized

consonants. This system removes the vowels and respectively the consonants in

sequential order. In some cases other orders of removing letters might be beneficial.

Due to the characteristics of faker.company.name, which generates strings such

as ’feest, hintz and hettinger’ and ’ratke, grant and keebler’, the word “and” is very

common. We ran tests (See Table 4) with the full shortener, no word replacement

list and only the “and” replacement. Results are shown as the percentage of unique

generated results. When testing the code before adding the replacement list feature,

the word “and” would be converted to “N”, since “a” is a vowel, “n” gets capitalized

and since “d” is a lower case consonant, it gets removed before the string is concate-

nated. “N” as a shortening of “and” is not completely illegible, but since there are
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1 export function shorten (maxSize : number , input : string ) : string {
2 let f o rmattedSt r ing = input ;
3
4 // Replace known common words

5 const rep lacements = [
6 { pattern : /\band\b/ gi , replacement : ’&’ } ,
7 { pattern : /\byou\b/ gi , replacement : ’u’ } ,
8 { pattern : /\ b fo r \b/ gi , replacement : ’4’ } ,
9 { pattern : /\bto\b/ gi , replacement : ’2’ } ,

10 { pattern : /\ bare \b/ gi , replacement : ’r’ } ,
11 { pattern : /\bat\b/ gi , replacement : ’@’ } ,
12 ] ;
13
14 for ( const { pattern , replacement } o f rep lacements ) {
15 fo rmattedSt r ing = formattedStr ing . r ep l a c e ( pattern , replacement ) ;
16 }
17
18 // Remove vowels

19 while ( fo rmattedSt r ing . l ength > maxSize && / [AEIOUaeiou ] / g . t e s t ( fo rmattedStr ing ) )
{

20 fo rmattedSt r ing = formattedStr ing . r ep l a c e ( / [ AEIOUaeiou ] / , ’’ ) ;
21 }
22
23 fo rmattedStr ing = formattedStr ing . toLowerCase ( ) . r ep l a c e ( / ( ˆ | \ s ) \S/g , (match ) =>

match . toUpperCase ( ) ) ; // Capitalize the first letter of each word

24 fo rmattedStr ing = formattedStr ing . r ep l a c e (/\ s /g , ’’ ) ; // Remove all white spaces

25
26 // Remove uncapitalized consonants until the maximum length is reached

27 while ( fo rmattedSt r ing . l ength > maxSize && / [ bcdfghjklmnpqrstvwxyz ] / . t e s t (
fo rmattedSt r ing ) ) {

28 fo rmattedSt r ing = formattedStr ing . r ep l a c e ( / [ bcdfghjklmnpqrstvwxyz ] / , ’’ ) ;
29 }
30
31 //If the length is still too long , trim the string to the maximum length

32 i f ( fo rmattedSt r ing . l ength > maxSize ) {
33 fo rmattedSt r ing = formattedStr ing . s l i c e (0 , maxSize ) ;
34 }
35
36 return f o rmattedSt r ing ;
37 }

Code 5: The Shorten method
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better ways to represent “and” as a single character, we might as well use it. “N”

could be “nigel” or “and”, so it would be better to convert “and” to “&”. While we

are at it, we can create a list of similar possible replacements. Unfortunately for these

efforts though, faker.company.name only produces “and” out of our replacement list

items as shown in our test results. Our example strings when input to our shorten

function with a maximum size of 10 become ’F,H&Httngr’ and ’R,Gnt&Kblr’.

Table 4: Results of testing three variations of the shortening method at max size of
10 when testing the faker.company.name faker feature.

test size full word list no words replaced only and replaced
64 100.00 100.00 100.00
128 99.22 99.22 99.22
256 99.61 99.61 99.61
512 98.05 98.05 98.05
1 024 96.58 96.58 96.58
2 048 93.75 93.75 93.75
4 096 89.36 89.31 89.36
8 192 83.42 83.29 83.42
16384 77.01 76.78 77.01
32768 71.02 70.65 71.02
65536 66.60 65.92 66.60
131072 62.47 61.13 62.47
262144 57.63 55.33 57.63
524288 50.98 47.45 50.98
1048576 42.37 N/A 42.37

The summary for this method is that the method seems to work for the in-

tended purpose. Depending on the use case, the desired binning rate and the size

of the original data set, this method will work for generating human readable and

unique replacements for real data and can be used to “bin”, which decreases the

re-identification risk. If the anonymization method produces too high a percentage

of unique results, an accuracy variable can be added to reduce the uniqueness of the

results. The variable should be a function of the total size of the original data set and

the desired accuracy. This function can be calculated with the help of the mentioned

unit test, or a derivation of it. An accuracy can be guaranteed for synthetic data,

but the actual resulting accuracy will depend on the real original data set.
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1 case ’city’ :
2 processedData [ key ] = binningMethod ( data [ ’city’ ] , f ak e r . l o c a t i o n . c i t y ) ;
3 processedData [ ’streetAddress ’ ] = binningMethod ( data [ ’city’ ] , f ak e r . l o c a t i o n .

s t r e e tAddre s s ) ;
4 processedData [ ’zipCode ’ ] = binningMethod ( data [ ’city’ ] , f ak e r . l o c a t i o n . zipCode ) ;
5 break ;
6 case ’merchantAddress ’ :
7 case ’merchantPostcode ’ :
8 break ;

Code 6: Reducing location accuracy to city level

7.3.6 Using the binning method for non-ID values

Since faker has a lot of different types of fake data it can generate, we can use it

to generate fake but real looking data for other types of data, for example, phone

numbers, usernames, emails, street addresses or social security numbers.

Our binning method is essentially just a wrapper to call faker.company.name

with a set seed. In typescript, we can pass a function as a parameter, we can change

its behavior to use a chosen faker method. Thus we can call it with our desired faker

method as an inparameter: binningMethod(mySeed, faker.hacker.phrase);

Even though faker has a vast amount of faking methods, some formats are not

supported. In some cases we can find faker methods that result in almost what we

desire, and then manipulate the resulting string to match our requirements.

For the location accuracy part, we can call the binning method when we are

handling the location accuracy variable that we want to use as the seed for the

higher accuracy location variables (in this case, streetAddress and zipCode). This

code (See Code 6) is run in a switch case where the key is the index of the field.

In the switch case, default maps the key to itself without anonymizing, so for the

higher accuracy location variables we have to break the switch case to avoid them

being re-mapped to a non-anonymized value. If there is no value in keeping location

data varied or semi-accurate (in consistency at a specific accuracy level) in the test

environment, a PK can be used as a seed instead, to make the resulting value more

random. This would decrease the risk of re-identification and might simplify the

code, increasing maintainability.

For free text, we can use faker.lorem.words, which can be given parameters for
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1 i f ( fakerMethod == fake r . lorem . words && exampleValue ) {
2 return f ak e r . lorem . words ( exampleValue . tr im ( ) . s p l i t ( ’ ’ ) . l ength ) ;
3 }

Code 7: Free text field anonymization

the amount words to generate. This faker function generates us meaningless words

[26]. We want to give the function the amount of words in our free text field so we

can approximate the size of the field, assuming the length of the free text affects

performance, we will thus attempt to keep similarity with the production data set.

Unfortunately, if we want to choose the amount of words, this will not work exactly

in the same way as for example faker.hacker.phrase. We will have to modify the

binningMethod signature to also be able to take either the original free text or a

number of desired words. We will modify the binningMethod to have an additional

optional variable of type string. If our faker method is one that needs a length

value from this example string, we will check it, take the amount of words from the

example string and take that as the word amount variable.

In this code (See Code 7) we first check if we are using faker.lorem.words, and that

we have given the exampleValue string. Then we trim it to remove any outer white

space, and split it on ’ ’ or white space so we can count the length of the resulting

list of words. This gives us the amount of words in the exampleValue string which

we can then pass directly as the number-of-words parameter to faker.lorem.words.

The implementation in Code 7 has some issues, as the text being derived from

faker.lorem.words is not a necessity. Using Faker here might be unnecessarily com-

plex to fill the data-size “requirement” and there are simpler ways of doing this.

7.3.7 Random noise for date values

For adding noise to dates, we can write a method to do that for us. In our case our

dates are mostly in an ISO standard (ISO 8601, e.g., 2023-11-12T18:36:06.563165Z)

format. Some of our values are not given in Greenwich Mean Time (GMT), as they

are missing the “Z” at the end. For our use case the time zone does not have a

significant effect on the resulting data. The noise amount is large enough to make a
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1 export function addNoiseDateTime (maxNoiseMS : number , da t eSt r ing : string , seed :
string ) : string {

2 const date = new Date (/Z/ . t e s t ( dateSt r ing ) ? dateSt r ing : da teSt r ing + ’Z’ ) ;
3 i f ( isNaN ( date . getTime ( ) ) ) {
4 l ogg e r . e r r o r ( ’Invalid date string ’ + dateSt r ing ) ;
5 return ’’ ;
6 }
7 const rng = seedrandom ( seed ? seed : ’’ ) ;
8 const modif iedDate = new Date ( date . getTime ( ) + ( rng ( ) − 0 . 5 ) ∗ 2 ∗ maxNoiseMS) ;
9 return modif iedDate . toISOStr ing ( ) ;

10 }

Code 8: Method to add noise to dates

plus or minus of a few hours difference to the original date value of no consequence as

our maxNoiseMS variable is set to multiple days or even months. We can normalize

missing time zones to GMT.

In code 8 we first check if the dateString is missing the Z, and if so, we add it to

the string. This means we just assume the date is given as GMT. We then convert

the string to a Date, and check if it succeeded. We use seedrandom to generate

a seeded random number as we did with number IDs. The seedrandom(mySeed)

method gives us a variable, here called rng. It gives us a number between 0 and 1

which we then manipulate to give us a random noise amount up to our maxNoiseMS

variable in either negative or positive milliseconds to add to our original input date.

The code should be improved by making the anonymized output appear in the

same format as the original given value. This could be important since changing

the format from the original can cause issues as we are relying on new features and

releases to work in our test environment. The test environment should be as similar

to production as possible. If a new feature does not fail due to the noise function

sanitizing it to be in a specific format and the production environment has another

format, there is a risk that the new feature does not work correctly in production

even if it worked well in the test environment.

A similar method could be written to add noise to amounts. The resulting method

would be simpler since there would be no need to convert a string to milliseconds. A

possible improvement would be to instead use Gaussian distribution instead of this.

Doing that would make the data more anonymous, as there is no maxNoiseMS which

a reverse engineer might use to extrapolate what the original date was as easily, but
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it might affect the usability of the generated data.

7.4 Improving the code

In this section we will discuss how we improve our code. Increasing the code quality

is done by writing unit tests to verify that all parts of the code do what they are

supposed to do. We will also take a look at the performance of our code and see

what we can do to decrease execution time to make it usable for larger datasets.

7.4.1 Testing and code quality

To test the program, we have implemented a number of unit tests to test the methods,

as well as tests where we mock SQL searches to test the entire flow (apart from an

actual database connection). The tests are run using Jest. The Jest framework

has a feature where you can check the code test coverage. Using this feature the

programmer can figure out which parts of the code are not covered by tests. This

can help the programmer find out what they have not written tests for. When the

programmer writes tests for these uncovered parts, they can often reveal bugs in the

implementation.

For each step of implementing features for the anonymizer program we wrote tests

to cover the changes. If changing parts of the anonymizer changes the output, we

are prompted to change the expected values or rewrite the test. When writing tests,

our goal was to get the test coverage to 100% to cover all programmatic branches in

the code.

The value of these tests lies in the fact that if a change to the program causes

any tests to fail, we can not merge that code to the master branch unless we either

fix or remove the tests, or the code that makes the tests fail. Often this can involve

changing the expected results of a test for a specific fixed input value, as a change in

the code might change the output of the resulting anonymized output. This means

the programmer can notice the resulting changes their updated code causes. This

lets them consider if they are changing the code in the intended way.
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1 de s c r i b e ( ’time noise ’ , ( ) => {
2 i t ( ’should produce logical date order for Tab -2 item related to Tab -1 item’ , async

( ) => {
3 for ( let i = 0 ; i < 50 ; i++) {
4 const fk = new Faker ({ l o c a l e : [ en ] }) ;
5 const tab1Id = fk . company . name ( ) ;
6 let inputTab1 = { . . . tab1 , tab1 id : tab1Id } ;
7 const outTab1 = anonymizeTab1 ( inputTab1 ) ;
8 let inputTab2 = { . . . tab2Item , tab1 id : tab1Id } ;
9 const outTab2 = anonymizeTab2 ( inputTab2 ) ;

10 expect (new Date ( outTab2 . createTime ) . valueOf ( ) ) . toBeGreaterThan (
11 new Date ( outTab1 . createTime ) . valueOf ( ) ,
12 ) ;
13 }
14 }) ;
15 }) ;

Code 9: Testing that order of dates stays the same for related Tab-1 and Tab-2 items
regardless of noise seed (tab1Id)

When writing tests, we start by writing simple tests for happy case scenarios,

where for each tested method, we give a simple input to test that the most common

use case works as intended. This usually means the code test coverage increases

from zero to for example 70%. The remaining uncovered code usually includes parts

of the code where we have conditionals such as not calling the binning method if a

value is just an empty string.

For some features writing tests by looking at the coverage does not work. An

example of this is the addNoiseDateTime method that was designed to make specific

date values in Tab-1 and Tab-2 have the added noise not change the order of the

dates as mentioned in section 7.1.3. For this, we wrote a test (See Code 9) that

creates a shared id that we set as the PK for the Tab-1 item and as a FK to Tab-1

in the Tab-2 item. With the PK of Tab-1 being the seed for the noise amount, we

test the anonymized values to check that the date of the Tab-2 item is a date after

that of the Tab-1 item. To avoid the test giving us false positive results, we run the

test a number of times. Running it multiple times takes only tens of milliseconds.

In this example we use JSON templates so we can specify only relevant parts of the

input data to make the test easier to read.
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1 const [ tab1 , tab2 ] = await Promise . a l l ( [
2 getTab1 (db) , getTab2 (db)
3 ] ) ;

Code 10: Parallel database queries in TypeScript

7.4.2 Execution time at scale

In this subsection we will run some tests to figure out how well this program would

run if it were to be run at a larger scale. To do this we will have to simulate the

program getting several results from the SQL queries. At this point the code (See

Code 10) can read Tab-1 and Tab-2 asynchronously. Our test code can mock the

results of the SQL queries to give us a specified amount of generated data, so we can

simulate the program running with any number of items.

After the queries, the code calculates the amount of rows, and the anonymization

functions for Tab-1 and Tab-2 are called sequentially. These functions process each

item in Tab-1 and Tab-2 using our chosen anonymization methods. For each item,

we process each parameter according to what we have chosen to do with it.

In our case, we have chosen not to process properties which we have not done an

analysis for, as opposed to dropping them. The goal here is to keep the usability of

the test data high. This means that we might risk getting a new field which could

contain sensitive data which we would not have an anonymization process for. The

new field would just be mapped as it is to the test data set.

After the anonymization functions have been executed, the results are saved in a

list where only unique PK-containing anonymized Tab-1 and Tab-2 items exist. We

have not implemented any SQL inserting systems, but instead display the results as

logs. This way we can debug the results. For the future, these lists can be inserted

into a specific database.

To test the large scale performance of our full program we can mock the get-

Tab1(db) and getTab1(db) results using Faker to create unique enough items. We

generate n total items, n/2 items for Tab-1 and n/2 items for Tab-2. With these

unique enough items we can run the anonymization methods to measure the execu-

tion time for a large amount of items.
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This test does not include the time it takes to get a result from the database. The

main goal here is to get an idea how efficient the design is. Database querying time

is dependent on factors outside of the scope of this thesis. For this test, each item

is on average operated on 11 times by the binning method, 3 times by the shorten

method, 2.5 times by the data noise adder and 0.5 times by the fast seedrandom

number method. These tests were run using a Jest test.

Table 5: Total time shows time for program to execute from generating n items of
input data (executed in parallel for Tab-1 and Tab-2).

n output accuracy total (ms) generate data (ms)
4 4 100 % 18.342534 2.786242
8 8 100 % 29.329461
16 16 100 % 50.576841
32 32 100 % 93.287598
64 64 100 % 180.310172 8.209222
128 126 98 % 349.419097
256 252 98 % 691.037353
512 505 99 % 1329.622816
1024 1017 99 % 2646.085011
2048 1984 97 % 5097.051695 79.890492
4096 3872 95 % 10186.97936
8192 7461 91 % 20269.66346
16384 14115 86 % 40919.69487 489.11608
32768 26465 81 % 81889.15668 973.746218
65536 49952 76 % 160259.8462 1831.406739

The accuracy values for these these tests (See Table 5) are lower than expected on

the basis of the “synthetic” tests, since the seed value here is generated by running

faker.company.name() instead of sequential numbers. Looking at the time the tests

took to execute, they are significantly slower than we would expect from the synthetic

tests. After some profiling of the code, the biggest cause of the slowness was identified

in the binning method. Further analysis showed that executing faker.seed in the

binning method took around 0.2 milliseconds, which is a significant portion of the

per-item execution time when we consider the tests give an average execution time

per n items of about 2.49 milliseconds and that faker.seed is called 11 times for each

item on average.
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7.4.3 Faster performance without seeds

Setting our performance goal to be able to execute this program with a data set

containing around 224 items, extrapolating the data from our table as a linearly

increasing time complexity, at 224 items we would have to spend over 11 hours of CPU

time for the program to complete. Even if we were to parallelize the anonymization

steps, it would still be computationally expensive, even if the execution speed would

in terms of time be shorter.

If we do not care about consistency between runs for diverse fields we can stop

using faker.seed in the binning method. Then we could get an almost two orders

of magnitude faster execution speed for our test. It is worth noting that without a

seed for PKs and FKs, the relational features of our anonymized data will not have

a structure resembling the original data, but will instead be random, similarly to the

birthday problem.

Table 6: progressively reducing code complexity step by step and measuring execu-
tion time with n = 65536 using the same parameters as in the previous table.

Change output total time (ms) data generation (ms)
no change 49952 160259.8462 1831.406739
no faker.seed 55948 9158.370621 1855.592549
2x faker.string.uuid to randomUUID 55889 8288.529521 1882.717965
1x seedrandom to Math.random 55822 7251.870718 1898.894544
no shorten in non ID fields 56005 6820.11642 1910.856225

Reducing the complexity of the program by removing usage of faker.seed seems to

have made the simulated test (See Table 6) run about 17 times as fast as the version

which used faker.seed. Since no seed is used, the output amount varies, but the

accuracies round to about 85% for all the changed tests. The data generation step

already uses unseeded faker and thus has some extra variation in execution speed

in addition to other variation causing factors such as background tasks. Further

improvements related to optimizing seed related issues gave us even faster code.

The faker.string.uuid function was an outlier among other used Faker functions in

execution speed and could be replaced with the faster randomUUID method from

the Crypto library since we do not use faker.seed anymore. Following this pattern
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we can also replace our seedrandom code with Math.random instead which also

increased performance. On top of this we simplified some code where we wrapped a

binning method using faker.internet.userName with the shorten method and some

string manipulation used to re-create a specific username format to merely fetch the

faker.internet.username directly. This way we simplified the code and the execution

time. With all these steps we got an execution time about 23 times shorter or

reduced it to about 4% of the original unoptimized code. After these optimizations

we found no significant outliers causing increased time complexity other than the

amount of fields we are anonymizing. Thus we reduced the extrapolated CPU time

of processing 224 items from about 11 hours to about 48 minutes. The tradeoff here

is that the results do not remain the same between different runs of the program.

Anonymity is also increased, as there is less coupling between the two datasets.
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8 Discussion

In this section we will discuss different issues we had with the chosen method. These

issues are categorized into subcategories. We will also shortly discuss certain imple-

mentation details which were not mentioned in enough detail in the implementation

section.

8.1 Execution time related issues

We started to work implementing binning using Faker with the assumption that

it could be used for almost every field while calling the faker.seed each time. In

small scale tests it seemed to work well enough. Unfortunately, for our performance

requirement of 224 items with a dozen anonymization steps for each item, calling

seed each time makes the program too slow.

If we wanted to run the anonymizer daily, the program should be able to execute

within a reasonable time. If the anonymization performance for our required scale

is beyond that amount of time, running it would be too slow and costly. The per-

formance with all values seeded, ended up being about 11 hours (extrapolated) of

single threaded execution time. This would not be as big an issue if our performance

requirement was lower, or if we were to parallelize the program.

The program could be parallelized if we changed it so that it can trigger itself in

AWS. This would mean that first, the nightly schedule triggers the Lambda without

any parameters or with some specific parameter. This would make that instance

know it is the master Lambda. It would analyze the size of the data set. Depending

on the size, the program would split up the work, either by creating and sending the

SQL query as a string to the slave Lambdas or by giving them pagination information

(a limit and an offset variable). Those slave Lambdas would then process the data

from the SQL query.
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8.1.1 Faker-js

For their next version, Faker-js has defined performance increasing goals in their

roadmap [20]. The performance goals have to do with modularization of the differ-

ent packages. In theory there is a possibility that the issues with performance of

faker.seed can be improved by that. On the other hand, we do not know exactly

why the faker.seed function is so slow.

It is, however, unlikely that even with performance improvements, functions such

as faker.string.uuid or faker.number.integer will be faster than using more conven-

tional methods such as randomUUID or seedrandom. This is due to Faker using

string handling with regular expressions to generate this data. It is simply faster to

generate the data with more primitive data structures.

8.2 Database and connection related issues

What if the database keeps on changing during this execution? We can in the-

ory copy or clone the original database, which should be relatively fast. Having a

temporary database would also solve the issue with removing the last day’s data

from the anonymized database, as we can copy the temporary database over the

anonymization database after anonymization is completed on that database.

Important here is that the copying of the temporary database happens only after

all anonymization is done. The temporary database should also exist in the same

environment as the production, or the original database, as the database contains

production data before the anonymization has completed.

If we parallelize the program, we might have issues with allowed connections for

the database. For this reason it is also important to not have the Lambda swarm

spam the production database, but instead the temporary database, as that could

cause issues with daily production operations.

If the production environment is heavily separated from the test environment,

another issue can emerge. As with the temporary database being in the production

environment, since it contains production data for the moment, it is important that
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we do not give production access to a Lambda in a test environment. This means

that we have to give the anonymizer in the production environment permission to

connect to the test environment.

8.3 Test structure for the anonymizer

As we want to test all our code changes before pushing them to production, we would

also want to test the anonymizer. To do this we would need to duplicate our database

structure. At a minimum we would need to be able to test that our anonymizer works,

by anonymizing some amount of data and saving it to an anonymous database. This

would also require the code to be modular in the sense of us being able to define

which database is used as a source for the data, and which is used as an output

database. That can be done by defining them as we deploy the Lambda to AWS.

8.4 To seed or not to seed?

In theory, not using existing values as seeds to create anonymized data could be

considered a better way to anonymize, since it would be harder to track changes in

production data based on how much the anonymized fields change. A possible down

side of this could be if the use case required the anonymizer to generate static data.

Even then, if the original production data changes, the generated test data would

change even if we seeded the Faker calls in the binning method.

A compromise between these two extremes can be just reducing the amount of

times faker.seed is called. If for example we used the same seed (such as the PK) for

each call of the binning method for each item, we could consider calling faker.seed

only once (instead of 11 times). This means that the results would be the same

for each item. Each item would theoretically in our case execute in about 0.49 ms

meaning the code would run 5 times faster than with running faker.seed for each use

of the binning method.

One interesting side effect of only calling fake.seed once per item occurs when

the number of binning method calls change over time for a specific item. If a field
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changes to an empty value or is omitted entirely, we do not execute the binning

method to anonymize that field. The changed amount and order of fields change

the increment of the random seed compared to an earlier anonymization run. All

binning method calls after this ommited field will have different anonymized values.

The change in the random order when seeding only once also happens for our

free text anonymization. When we call faker.lorem.words with a specified amount

of words, n, as the parameter, the seed gets incremented n times. This is in practice

similar to calling any Faker method n times. If the word amount in any free text field

using this method changes, all consecutive fields will also change in the anonymized

output. We ended up changing our use of faker.lorem.words to just multiplying

the string ’words ’ by the amount of words, and trimming it instead due to this

inconvenience.

When not using seeds for all fields, there will be issues with creating unit tests.

In some cases, such as in the free text issue, faker.lorem.words causes irrelevant fields

to change. This makes writing tests for different cases more complex than necessary

when irrelevant fields change due to non-related fields changing. For tests, we use a

fixed seed which we can set before each test is called. Thus, we can hard code the

expected result for a fixed input. For fields which are set by randomUUID we just

check that the string matches the regular expression of a UUID.

As calling faker.seed once per item does not seem to not bring consistency as much

as expected, we might as well not call it at all. Tab-1 has a PK which is a string.

The consecutive tables have PKs which are unsigned integers.

Calling faker.seed for the PK of Tab-1 means we also have to call it for the FK

in Tab-2. For Tab-1 it might make sense to call faker.seed with the PK of Tab-1,

so that the results would be unique. What seed would the program use for Tab-2?

If it was to call faker.seed for Tab-2 using the FK (to keep the relational features

working), all items in Tab-2 which share a FK would have almost identical results.

What seed would we use for the rest of the tables, which have no string based PKs

or FKs? The seedrandom based solution is faster than using Faker for that purpose.
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To keep the anonymized relational data more similar to the original production

data, the relational structure needs to be kept similar between the two. We must,

thus, keep the PKs and FKs consistent between tables, even if not between runs. As

it turns out, Faker-js is not the only tool we can use. Using a cryptographic hashing

function and truncating, or cutting off part of the results can allow us to achieve

similar results to using Faker with a seed for the PKs and FKs. This is significantly

faster than calling faker.seed.

56



9 Conclusion

In this thesis we explored the feasibility of Faker-js as an anonymization tool to

generate production-like relational test data. The original goal was to use faker.seed

to generate consistent results every time the anonymization is applied to the same

data, but due to lower than expected performance, we did not use faker.seed in

the end. Consistency, though, is necessary for fields such as primary and foreign

keys. For this to work, we used other methods such as seedrandom to get faster and

consistent results.

Faker is easy to work with as it allows the programmers to pick one of many

modules with functions to choose what they want the anonymized data to look like.

Although, the slow performance when using Faker with a large enough scale could

cause issues. If performance at the desired scale is too slow, some Faker functions

can be replaced by other faster counterparts or similar methods, or faker.seed can

be omitted.

Using faker.seed, seedrandom or similar methods works well for anonymizing

private and foreign keys for relational data, while keeping the relational structure to

the one shown in Figure 2. According to Xu and Veeramachaneni [19] using emerging

methods such as ADS-GANs to generate synthetic data might not work for this kind

of relational data.

We believe this method is beneficial for generating usable, anonymized and

production-like test data for use in a test environment. Using this anonymizer will

increase our code quality and testing practices as well as reduce production bugs

while keeping the separation of the test environment and unanonymized production

data.
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10 Anonymisering av produktionsdata för att ska-

pa fungerande och användbar testmiljödata

I denna avhandling diskuteras anonymisering av produktionsdata för användning i

testmiljö.

10.1 Introduktion

I m̊anga källor [1, 2, 3] diskuteras anonymisering av produktionsdata för offentligt

bruk. Det problem som ska lösas är problemet med d̊aliga testdata i v̊ar testomgiv-

ning. D̊aliga testdata kan orsaka problem inom programutvecklingen. Om program-

met utvecklas med felaktiga data kan utvecklaren anta att programmet kommer att

fungera, även om produktionsdata kan se annorlunda ut. Det kan handla om att

produktionsdata inneh̊aller data med annan formatering, eller att datamängden är

annorlunda i produktionsdatabasen. Om datamängden skiljer sig kan söktiderna öka

för databasanrop. Detta kan resultera i antingen oförväntad l̊angsamhet eller i att

sökningen helt enkelt misslyckas för produktionsanvändare.

Idén är att om testdata önskas vara mer lika produktiondata, skulle produk-

tiondata kunna kopieras till testmiljön. Problemet här är att om produktionsdata

inneh̊aller personuppgifter kan detta innebära problem med hantering av dem.

10.2 Laglighet

Lagen som mest berörs är den allmänna dataskyddsförordningen, eller GDPR. GD-

PR innebär att personuppgifter inte f̊ar spridas eller dupliceras utan att först ano-

nymisera dem [7, 4]. Persondata betyder data som identifierar en person direkt eller

indirekt. Enligt Yoon et al. [4] är det oklart vad anonymisering i praktiken betyder.

Dessa krav tyder p̊a att gränsen för vad anonymisering betyder inte är starkt defi-

nierad. Alla data som kan inneh̊alla direkt eller indirekt identifierbara data måste

därför anonymiseras.
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10.3 Perspektiv p̊a anonymisering

Nedan presenteras n̊agra exempel som är väsentliga för anonymisering. Ett exempel

är America Online-datasläppet år 2006. America Online (AOL) tog en delmängd av

sina sökmotordata deras användare hade skapat. AOL hade anonymiserat användar-

namnen genom att hasha dem [2]. Det som AOL inte hade anonymiserat i sina data

var själva sökmotorsökningarna. Sökmotorsökningar är textfält där användaren kan

skriva vad som helst. Forskare kunde använda de oanonymiserade datan för att

identifiera personer genom att granska användarens sökningar efter restauranger i

deras hemstad och släktnamnssökningar. Risken i AOL-exemplet var att man kunde

identifiera individer vars data var anonymiserade, baserat p̊a bland annat fritextfält

som innehöll identifierande och känslig information.

Ett annat exempel fr̊an 2006 är händelserna kring Netflix-data. Netflix släppte

ut data där de ocks̊a hade anonymiserat användarnamn. Problemet med datan var

att om n̊agon hade förkunskap om mer unika datapunkter, kunde de koppla samman

data med användare [9]. Det här kan kallas k-anonymitet. Begreppet k-anonymitet

betyder att datan man behandlar har minst k stycken liknande datapunkter. Som ett

exempel kan nämnas att om k stycken användare har samma data och deras andra

direkt identifierande data har anonymiserats, kan man inte direkt lista ut vilken av

de k stycken människorna en viss k-anonymiserad datapunkt handlar om.

Sista exemplet i detta kapitel är sociogram. I och med att företag s̊asom Face-

book har vuxit, har forskning p̊a sociogram utförts [12]. Sociogram skapas genom

att man observerar datastrukturen som bildas fr̊an nätverk av alla kontakter och

användare p̊a sociala medier eller dylikt. Sociogram uppst̊ar av personer (noder) och

deras kontakter (kanter). En nod kan ha en viss mängd kanter, och grannarna till

n̊agon nod därtill ha en viss mängd kanter. Grannarna kan ocks̊a ha gemensamma

grannar vilket kan vidare analyseras eller användas till identifiering. D̊a det kommer

till anonymisering av sociogram kan det vara sv̊art att fördunkla dessa faktorer om

man vill beh̊alla datans användbarhet. Även om man anonymiserar faktorer i no-

derna (direkt identifierande data) kan man änd̊a identifiera noder baserat p̊a deras

grannskapsgraf genom att jämföra den med de oanonymiserade datan.
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Beroende p̊a vad man vill använda data till kan man göra vissa kompromisser

med dataintegriteten i samband med anonymisering utan att förlora användbarhet.

10.4 Anonymiseringsmetoder

För att veta vad andra anonymiseringsprojekt eller verktyg gör kan man analysera

dem. För avhandlingen analyserades en mängd verktyg och anonymiseringssätt för

att senare analysera om de kommer att fungera i det aktuella fallet.

Ett europeiskt verktyg, µ-Argus, är ett verktyg byggt för att anonymisera mikro-

data. Mikrodata är en datatyp som används av institutioner och folkräkningsdata.

Med µ-Argus kan en anonymiserare importera sina mikrodata för att köra anonymi-

sering. Anonymiseraren väljer n̊agra parametrar för sina datakolumner och µ-Argus

anonymiserar data genom att bland annat lägga till brus och konkatenera flytande

nummerfält. Eftersom µ-Argus är byggt för mikrodata är det inte direkt tillämpbart

i v̊art användningsfall. [1, 3]

Tokenbaserade hashningsalgoritmer är en metod som ocks̊a har använts för att

anonymisera data. Det finns dock problem med tokenbaserade hashningsalgoritmer

som anonymiseringsmetod. Många hashningsalgoritmer kan bli knäckta med relativt

lätt h̊ardvara och relativt kort tid. Knäckningsmetoden som Kumar et al. [2] beskri-

ver kräver att angriparen har statistisk kunskap om data och att data har en hög

niv̊a av samstämmighet.

Maskininlärningsmetoder som ADS-GAN har använts för att generera synte-

tiska data. Yoon et al. [4] experimenterade med en modifierad ADS-GAN, eller

“Adversarial Generative Adversarial Network”. ADS-GAN är en populär maski-

ninlärningsmetod där tv̊a skilda nätverk samverkar. Det ena nätverket lär sig att

skapa datan som liknar de ursprungliga data, medan det andra avvisar data som

liknar det ursprungliga utbudet för mycket. Med denna metod måste man finjuste-

ra hur liknande data man till̊ater. Man måste ocks̊a träna modellen om man vill

synkronisera utbudet att likna produktionsdatans tillst̊and.
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10.5 Projektkrav

Projektkraven är att ha ett system som kan anonymisera produktionsdata för bruk

i en testmiljö. De anonymiserade datan måste vara giltiga data som fungerar enligt

förväntningarna i testmiljön. Om data inte fungerar p̊a samma sätt som i produk-

tionsmiljön kommer de inte vara till nytta. Samtidigt f̊ar inte de anonymiserade

datan inneh̊alla persondata. Det önskas inte heller behöva lägga onödigt mycket

tid p̊a att underh̊alla anonymiseringssystemet. Anonymiseringsprogrammet önskas

skrivas med TypeScript. Datan befinner sig i en relationsdatabas och tabellerna är

sammankopplade genom primära och sekundära nycklar.

10.6 Jämförelse av metoder

Efter att projektkraven har tagits upp kan det analyseras hur bra de tidigare me-

toderna passar till dessa krav. Även om en given metod inte kan användas direkt i

implementationen, kan vissa delar av den tas som inspiration till vad som kan göras.

Anonymiseringsverktyget µ-Argus kan inte direkt användas i det här använd-

ningsfallet, d̊a datan inte är mikrodata. Det intressanta med µ-Argus är sättet det

hanterar siffror. Konkatenering och buller är metoder som kan implementeras utan

att använda µ-Argus.

Hashing är lite sv̊arare att andvända säkert, men om hashing kombinerars med

andra metoder kan den i teorin användas. Hashing är i princip en enkelriktad algoritm

som kan ändra ett ing̊angsvärde till ett annat p̊a ett s̊adant sätt att det är sv̊art

att hitta det ursprungliga ing̊angsvärdet med hjälp av utg̊angsvärdet. Nyckelordet

är destruktivt. Vissa hashingalgoritmer är destruktiva, vilket innebär att med data

man f̊ar ut ur algoritmen kan man inte direkt f̊a ut det ursprungliga värdet. För

varje destruktivt hashade värde finns det en hel mängd möjliga ursprungliga värden.

Beroende p̊a hur destruktiv algoritmen är, kan mängden möjliga ursprungliga värden

vara väldigt stor. En sidoeffekt av en större mängd möjliga ursprungliga värden

kommer upp om destruktiv hashning används för att anonymisera primärntycklar

och främmande nycklar; mängden av rader i databasen kan ändras. Detta kan vara
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bra, eftersom det kan p̊averka nätverksutseendet. Om mängden noder ändras genom

att olika noder och deras kanter läggs ihop kommer den anonymiserade grafen se

annorlunda ut, och det kan vara sv̊arare att identifiera grafen.

Även om ADS-GAN-metoden är intressant är den növändigtvis inte en praktiskt

användbar lösning. Problemet med ADS-GAN är att det inte finns n̊agot som säger

att den kan användas i en relationell databas. Däremot finns det källor [19] där

motsatsen nämns. ADS-GAN har m̊anga fördelar, men den passar bättre för en mer

enkel databasdesign. Det positiva med ADS-GAN är att den i teorin är bra för att

skapa syntetiska data som liknar de ursprungliga datan, men inte är exakt lika eller

för nära de ursprungliga datan.

10.7 Implementering

Till implementeringen bestämdes det att begränsa anonymiseringsprojektet till att

bara använda tv̊a tabeller av datamodellen. Datamodellen är en relationsdatabas och

alla tabeller har referenser till varandra eller är refererade av en annan tabell. De tv̊a

tabellerna som fokuseras p̊a kallas för Tab-1 och Tab-2. Tab-1 best̊ar av bland annat

en primärnyckel (PK) som är en sträng av längden max 10 och är mänskligt läsbar.

Tab-2 best̊ar av bland annat en primärnyckel som är ett 32bit positivt heltal och en

främmande nyckel (FK) som refererar till primärnyckeln i Tab-1. Övriga intressanta

data som de tv̊a tabellerna inneh̊aller är datum.

För att utföra anonymisering av nätverksfaktorer (Som nämndes i sektion 10.3

[12]) utförs “binning”, eftersom nätverken av anonymiserade rader inte bildar lik-

nande mönster. Binning i detta fall implementeras med Faker-js [20] för PK i Tab-1

och med Seedrandom [23] för PK i Tab-2. För att Tab-2s FK ska vara synkroniserad

med PK i Tab-1 måste operationen vara upprepbar. Det väljs att anropa faker.seed

med existerande PK i Tab-1 eller FK i Tab-2 för att ge Faker ett frö. Efter att

värdet är seedat kan till exempel faker.company.name anropas för att f̊a ett bin-

nat värde för det ursprungliga värdet. Binningsfaktorn testades för olika mängder

syntetiska (inkrementerande siffror) och mera realistiska värden (skapad av o-seedad

faker.company.name). Resultaten kan ses i Tabell2 och Tabell5.
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Metoden som nämns ovan producerar mänskligt läsbara strängar längre än 10

tecken. Primärnykelfältet i Tab-1 kräver en max 10 tecken l̊ang sträng. Strängen

kan förkortas genom att förkorta vanliga ord som ’and’ till ’&’ (Se Tabell 4) eller

genom att ta bort vokaler (Se Kod 5). Med förkortningsmetoden erh̊alls närap̊a

mänskligt läsbar text vars längd kan bestämmas genom att ange ett maximalt värde

p̊a inparametern.

För att göra binning för sifferbaserade fält som Tab-2s PK kunde faker.numbers-

.integer användas, men det finns snabbare lösningar. Seedrandom [23] användes för

att generera en seedad slumpmässig siffra med en viss decimalprecision. Med detta

kan binning skapas snabbt (Se Kod 4 och Tabell 3)

Övrigt intressant som implementerades för att gynna anonymisering var tillägg

av brus i kontinuerliga data som till exempel datumfält. Med datumfält används PK

i Tab-1 och FK i Tab-2 för att seeda ett slumpmässig brusvärde vilket multipliceras

med ett värde för att f̊a en maximal brusniv̊a. PK i Tab-1 och FK i Tab-2 används för

att ha samma relativa brusmängd för att undvika ordningsförändringar i datumfält

mellan Tab-1 och Tab-2.

Fritextfält anonymiseras genom att räkna antalet ord och multiplicera strängen

“words ” med det antalet varefter vi tar bort sista mellanslaget. Övriga fält anony-

miseras med binningmetoden men använder andra Faker-moduler.

10.8 Diskussion

Vissa problem med prestanda dök upp under implementeringen. I den skala som

önskas presterar den versionen av Faker [20] som används inte tillräckligt bra (Se

Tabell 6). För PK i Tab-1 och FK i Tab-2 måste en enklare binningsmetod anropas

t.ex. genom att använda hashingalgoritmer. Metoden faker.seed i Faker är l̊angsam

att anropa. P̊a grund av detta är de övriga fälten som anonymiseras med Faker-

metoder inte seedade. Det innebär att om anonymisering körs flera g̊anger i rad p̊a

samma data, kommer resultaten att vara olika för de övriga fälten. Om prestanda

inte är kritiskt kan seedade Faker-metoder användas för mer konsekventa anonymise-

ringar när det behövs. Man borde dock var försiktig med de frövärden som används,
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eftersom fel frö kan avslöja data.

10.9 Slutsats

Denna avhandling visar att implementeringen är ett fördelaktigt alternativ till ano-

nymisering av produktionsdata till bruk i testomgivningar. Genom att använda den-

na implementering kan en hög kvalitet p̊a kod upprätth̊allas och testmetodik kan

förbättras. Detta är viktigt för att säkerställa att systemen fungerar korrekt och

p̊alitligt i produktionsmiljön, samtidigt som användning av riktiga produktionsdata

för testbruk undviks.
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