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Abstract 

Background: The Internet of Things (IoT) has led to widespread adoption of 

software-defined networking (SDN) to manage IoT networks. However, 

challenges like scalability, performance, and security necessitates self-adaptation 

capabilities in SDN-based IoT networks.  

Objective: This study aimed to systematically map research on self-adaptation 

approaches, issues, and metrics in SDN-based IoT networks.  

Method: Following systematic mapping guidelines, an extensive literature search 

was conducted across scientific databases. After screening, 32 relevant studies 

were selected for analysis. Data extraction and synthesis was performed to identify 

adaptation approaches, publication trends, and key issues. 

Results: Machine learning and deep learning are the prevailing methods for 

adaptation. Most research findings have been disseminated through academic 

journal articles, with the highest number of 11 studies published in 2020, followed 

by a gradual decrease. These studies primarily address significant challenges, 

including scalability, congestion, energy efficiency, service quality, and security. 

Conclusion: This mapping study offers a current overview of research in the field 

and identifies areas where further investigation is needed, which can serve as a 

roadmap for future research. Expanding the focus beyond SDN-IoT, exploring 

novel adaptation approaches, and creating reusable frameworks are suggested as 

promising research avenues. These insights provide a basis for advancing research 

on self-adaptive SDN for IoT. 
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1 Introduction 

The rapid expansion of embedded systems and their computing and 

communicating capabilities has produced a new era of Internet technology, 

commonly referred to as the Internet of Things (IoT). Coined by Kevin Aston in 

1999, the Internet of Things (IoT) is a network of "things" that possess sensing 

capabilities and limited computational power and can communicate the data they 

sense using standard protocols. [1, p. 3]. This network of smart objects provides a 

large amount of the data that can be used for further processing and analysis. 

Essentially, IoT is a network of intelligent objects with sensing and computational 

capabilities. [1, p. 3]. 

A software-defined network (SDN) architecture is commonly used as the primary 

communication backbone for many Internet of Things (IoT) systems. This 

technology allows IoT networks to automatically adjust themselves using a 

software. Imagine it as a system that keeps an eye on IoT devices, figures out if 

something is going wrong, and then makes changes to fix the problem in real-time. 

It's like having a smart system that can constantly check, think, and make 

improvements as needed [2]. 

SDN makes it possible to have a centralized control plane that manages network 

resources and routes traffic. This makes it easier to manage IoT networks, which 

often have several devices and sensors that are connected to each other. However, 

as the number of devices and sensors in an IoT network grows, the network 

becomes more complicated. This results in problems such as network congestion, 

latency, and downtime, which can be tackled using self-adaptation strategies. In 

short, including self-adaptability is a smart option in many software-heavy 

systems. Adaptation methods consist of fixed, pre-defined actions discovered 

based on domain knowledge or they consist of novel behaviors or entities 

introduced at runtime [3]. 
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1.1 Need for a systematic mapping analysis  

Above mentioned problems can hinder the performance of SDN-based IoT 

networks and how self-adaptation strategies can be used to remedy these issues. 

Self-adaptation has been the subject of research for quite some time [1]–[3]. In the 

context of self-adaptation in SDN-based IoT networks, a systematic mapping 

analysis can help identify current research trends, the most often employed self-

adaptation strategies, and open research issues. 

A systematic mapping study (SMS) is a rigorous method for identifying, 

categorizing and synthesizing research on a particular topic. The purpose of an 

SMS is to provide an overview of existing research and to identify gaps and 

opportunities for future research. 

In the case of self-adaptation in Software-Defined Networking (SDN)-based 

Internet of Things (IoT) networks, an SMS can be useful for several reasons: 

1.1.1 Identifying research trends 

An SMS can help identify the current state of research on self-adaptation in SDN-

based IoT networks. This can help researchers and practitioners to understand the 

most active research areas, the most common research methods used, and the most 

promising avenues for future research. 

1.1.2 Identifying gaps 

 An SMS can also help identify gaps in existing research. For example, it may 

reveal areas where there is very little research or where existing research is not 

sufficient to address important challenges. 

1.1.3 Identifying challenges 

 An SMS can help identify challenges and issues that need to be addressed to 

enable effective self-adaptation in SDN-based IoT networks. This can include 

technical challenges related to network architecture and protocols, as well as 

broader challenges related to governance, privacy, and security. 
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1.1.4 Facilitating forthcoming research 

An SMS can provide a foundation for future research on self-adaptation in SDN-

based IoT networks. By identifying research gaps and challenges, it can help guide 

future research efforts to address important questions and advance the state-of-the-

art. 

Generally, a systematic mapping study on self-adaptation in SDN-based IoT 

networks can be a valuable tool for researchers and practitioners looking to 

understand the current state of research, identify gaps and challenges, and guide 

future research efforts. 

The study's findings are used to shed light on the current status of self-adaptation 

in SDN-based IoT networks and to answer the questions, which are mentioned in 

Section 3.4. The findings can be of interest to researchers and practitioners who 

are interested in self-adaptation in SDN-based IoT networks and can aid in 

identifying the most significant research problems and gaps in the field. This 

detailed mapping study adds to the knowledge of self-adaptation in SDN-based 

IoT networks and lays the groundwork for future research in this field. 

The remaining chapters are organized as follows: Chapter 2 delves into the 

fundamental aspects of the subject, while Chapter 3 outlines the study's design. 

Chapter 4 provides insights into the execution of the systematic mapping study, 

and Chapter 5 unveils the findings. Chapter 6 engages in the discussion and gap 

analysis, while Chapter 7 evaluates potential threats to validity. Finally, Chapter 8 

offers a concise summary and draws conclusions for the thesis. 
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2 Background 

In this chapter, the foundational concepts of the thesis are described.  

2.1 Self-adaptation 

Self-adaptation in computer engineering is the capacity of a system to dynamically 

modify its behavior and/or structure in response to changes in its environment or 

internal state. Self-adaptive systems are designed to be more robust and resilient, 

capable of withstanding unanticipated events or changes, and able to optimize their 

performance over time.  

According to [4, p. 1], modern software-intensive systems are expected to function 

under uncertain conditions and without interruption. Changes in the operational 

environment, fluctuations in the availability of resources, and differences in user 

objectives are examples of potential sources of uncertainty. Traditionally, such 

ambiguities are the responsibility of system operators. However, these 

management tasks can be complex, error-prone, and costly. The purpose of self-

adaptation is to allow the system to collect additional data about uncertainties 

during operation, so that it can manage itself based on high-level goals. The 

system uses additional data to resolve uncertainties, and based on its objectives, 

reconfigures or adjusts itself to accommodate changing conditions. 

Self-adaptation in computer engineering can be achieved through various methods, 

including:  

• Algorithms for machine learning that enable the system to learn from 

experience and make data-driven decisions to adapt to changing conditions. 

• Rule-based systems that define a set of rules for the system to adhere to 

and reconfigure them as needed to achieve the desired result. 

• Evolutionary algorithms that mimic natural selection to optimize the 

performance and behavior of a system over time. 

• Continuous monitoring of the system's output and adjusting its input to 

achieve a desired set of goals through feedback control loops. 
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Self-adaptive systems are used in a wide range of places, from self-driving cars to 

smart homes, where they can improve the performance, dependability, and safety 

of the system.  

2.1.1 Management system model of adaptive systems 

The model consists of four parts, as stated in [4, p. 5]. 

• Environment 

• Managed system 

• Feedback loop 

• Adaptation Goals 

 

Figure 2.1: Conceptual model of self-adaptive system. Adapted from [1, p. 6] 

2.1.2 Environment 

In self-adaptive systems, the environment refers to the external world, which can 

consist of users, physical and virtual elements [4, p. 5]. The external environment 

can be sensed using sensors and can be modified using effects. The difference 
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between an environment and a self-adaptive system is how much control the 

system has over itself [4, p. 6]. 

2.1.3 Managed system 

According to [4, p. 7], the word "managed system" has been used interchangeably 

with terms like "managed element," "system layer," "core function," "base-level 

system," and "controllable plant." It is the application software that provides the 

intended functions and services to the system's users. This software is designed 

and developed to meet the specific needs and goals of the system and is 

responsible for processing data and performing user-requested tasks. 

2.1.4 Feedback loop 

Feedback loop play a crucial role in self-adaptive systems, as they allow the 

system to monitor and adjust its behavior in real time. The feedback loop of a self-

adaptive system typically involves the following steps: 

• Monitor: Monitors the system and collects data about its execution 

context and internal state. This provides the up-to-date information 

needed for adaptation. 

• Analyze: Analyzes the data collected by the Monitor and determines if 

the system needs to adapt. It identifies possible adaptation strategies.  

• Plan: Formulates an adaptation plan to achieve the adaptation strategy 

identified by the Analyze component. It determines the actions needed 

to adapt. 

• Execute: Executes the adaptation plan formulated by the Plan 

component. It applies the changes to the system. 

• Knowledge: Represents the shared knowledge between the components 

like system models, goals, rules, etc. This knowledge base is used 

throughout the adaptation process. 

The continuous feedback loop between these components allows a self-

adaptive system to monitor itself and dynamically adapt its behavior at 
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runtime in response to changes. The MAPE-K loop enables autonomous 

and robust adaptation. 

The feedback loop of a self-adaptive system can be either reactive or proactive. 

Reactive systems respond to changes in their environment, whereas proactive 

systems anticipate changes and take action to prevent problems before they occur. 

2.1.5 Adaptation goals 

Adaptation objectives are used to define the state of the intended system in 

response to environmental changes and can be functional or non-functional. 

Typically, adaptation objectives are specified by the system designers, but can also 

be dynamically modified based on the environment. The primary purpose of 

adaptation goals is to provide a systematic and efficient method for self-adaptive 

systems to continuously monitor, analyze, and modify their behavior to ensure the 

system's efficacy in dynamic environments. 

2.2 Internet of things 

The Internet of Things (IoT) is a topic that has been covered by various sources, 

including Forbes [5] and Cisco [6]. According to Forbes [5], IoT refers to the 

interconnection of devices, objects, and machinery through the Internet, generating 

and sharing data with each other. This connectivity and data exchange can result in 

operational efficiency and valuable insights in industries such as healthcare, 

transportation, and manufacturing. Cisco [6] describes the IoT as an 

interconnected network of devices that can be used to collect and analyze data to 

improve decision making and create innovative solutions. Forbes [5] further 

elaborates that IoT can revolutionize several industries by improving efficiencies, 

reducing costs, and enhancing the overall customer experience. However, both 

sources highlight the importance of addressing the security, privacy, and ethical 

concerns associated with the IoT, as the data generated by these interconnected 

devices can be sensitive and personal. 
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2.2.1 Evolution of IoT 

The technologies that created the foundation for connected systems by attaining 

easy integration into daily life, widespread public acceptance, and significant 

advantages through the use of connected solutions can be considered the founding 

solutions for the development of the Internet of Things (IoT) [7]. The Figure 

shown below shows a series of technological advancements. 

 

Figure 2.2: Evolution of IoT. Adapted from [2, p. 80] 

2.2.2 IoT and complex interdependence amongst technologies 

As mentioned earlier, IOT has evolved over a period of a few decades and its 

foundation rests on the complex interdependence of technologies. The IoT 

paradigm can be divided into four planes, as services, local connection, global 

connectivity, and processing [7]. This division can be seen in the Figure 2.3 below. 

 

Figure 2.3: IoT interdependence. Adapted from [2, p. 85] 
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The service plane is composed of two parts:  

1. Devices or things  

2. Low-power connectivity 

 

According to [7], this connectivity layer provides services that combine 

connectivity for things and low-power devices. Low-power connectivity is 

responsible for linking local implementation devices, such as wearables, laptops, 

smartphones, household appliances, smart eyewear, factory machinery, vending 

machines, automobiles, UAVs, and robotics. In contrast, the majority of 

contemporary technologies are wireless and frequently programmable. The range 

of these connectivity technologies is quite constrained, and they are responsible for 

the connectivity between Internet of Things devices and the nearest hub or 

gateway to the Internet. Local connectivity is responsible for delivering internet 

connections to numerous IoT deployments based on their physical location, 

application domains, or service providers. 

2.2.3 IoT networking components 

Five broad categories of IoT networking components are generally described in the 

literature. However, the components described here are the main components that 

play a role when establishing any IoT network, divided into six types: 1) IoT 

nodes, 2) IoT routers, 3) IoT LAN, 4) IoT WAN, 5) IoT gateways, and 6) IoT 

proxy [7, p. 87]. The Figure below shows the typical implementation of the IoT 

network. 
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Figure 2.4: IOT networking components 

1. IoT Node: An IoT node is a physical object equipped with internet 

connectivity and data transmission capabilities. Typically, it consists of a 

small sensor or actuator designed to collect and transmit data to other 

interconnected devices. 

2. IoT Router: An IoT router is a networking device used to link IoT nodes to 

other networks or the Internet. With functions such as security, bandwidth 

management, and network monitoring, it acts as the focal point for data 

transmission and routing. A network of IoT devices connected to a local 

network, such as a home or office network, is known as an IoT LAN (local 

area network). Within a small space, it enables devices to exchange data 

and communicate with one another. 

3. A network of IoT devices connected to a local network, such as a home or 

office network, is known as an IoT LAN (local area network). Within a 

small distance, it allows devices to exchange data and communicate with 

each other. 

4. Wide Area Network (IoT WAN): An IoT WAN (Internet of Things Wide 

Area Network) is a network that connects IoT devices over a larger 

geographic area, such as a city or region. For data transmission over longer 

distances, cellular or satellite networks are typically used. 

5. IoT Gateway: An IoT Gateway is a device that links IoT devices to other 

networks or the Internet. It typically connects local IoT networks to the 

Internet and has features such as protocol translation, data filtering, and 

security. 
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6. IoT proxy: A software component known as IoT proxy sits between IoT 

devices and other network resources, such as servers or databases. Devices 

can communicate securely and effectively with other resources because 

they intercept and process requests and responses. 

2.3 Software-defined networks 

According to VMware [8], SDN (Software-Defined Networking) is a network 

architecture that separates the control and data forwarding functions of traditional 

networking equipment, such as routers and switches. In an SDN environment, the 

network control is decoupled from the forwarding hardware and placed in a 

centralized software-based controller, allowing network administrators to program 

and manage the network from a single location. This architecture enables 

organizations to create a more agile and efficient network that can quickly adapt to 

changing business needs. Additionally, SDN facilitates the creation of network 

overlays, virtualizing the network infrastructure, and providing logical separation 

of traffic for increased security and performance. VMware further explains that 

SDN solutions can be deployed in various network types, including data centers, 

wide area, and even wireless networks, providing greater flexibility and scalability. 

 

Figure 2.5: SDN block diagram  
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As can be seen in the Figure 2.5, the control plane exerts its control through the 

control-forward communication interface. The controller and network equipment 

are responsible for managing data traffic resulting from communication between 

terminals, and the network device generates a forwarding Table to determine how 

to process the traffic [9, p. 47]. 

2.3.1 Advantages and core technology 

The SDN architecture comprises four planes: data plane, control plane, application 

plane, and management plane; and two interfaces: the SDN control data plane 

interface (CDPI) and the SDN northbound interface (NBI). The data plane 

includes network elements with SDN data paths, which are responsible for 

forwarding and processing data. The control plane includes the SDN controller, 

which is responsible for converting SDN application requests and providing an 

abstract model of the network. The application plane includes SDN applications 

that can interact with the controller through the NBI. The management plane is 

responsible for static tasks such as configuring network elements and defining the 

scope of SDN applications. The CDPI is the interface between the control and data 

planes, controlling forwarding behaviors and providing performance inquiry and 

event notifications. The NBI provides an abstract network view and allows 

applications to control the network's behavior. 
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3 Study design 

According to [10], a systematic mapping study "provides a structure of the type of 

published research reports and results by categorizing them and frequently 

provides a visual summary, a map of its findings." This systematic mapping study 

can be broken down into three well-defined phases: planning, conducting, and 

reporting. The phases are depicted in the Figure given below, and the subsequent 

Chapters describe each phase in detail. 

3.1 Planning 

The planning phase of a systematic mapping study consists of the following steps: 

(i) identifying the need for the study, (ii) defining the research objectives and 

questions, (iii) defining the protocol to be followed to conduct the study, and (iv) 

reviewing the protocol and, if necessary, returning to step (iii).   

3.2 Conducting 

The following are the steps for the conducting phase. 

3.2.1 Search and selection 

The search and selection process involve (1) the application of a designated search 

string to chosen digital libraries, (2) followed by the merging and removal of 

impurities. (3) Selection criteria are then applied to identify primary studies for 

inclusion. After completion of these steps, the final set of primary studies is 

acquired. A detailed account of this stage is presented in Chapter 4.1. 

3.2.2 Data extraction 

The process involves iterating through a set of primary studies selected and 

extracting relevant information based on the research questions.  
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3.2.3 Data synthesis 

The extracted data were summarized and analyzed. The results of the data 

synthesis will be used to answer the research questions. 

 

3.3 Results 

This Chapter describes the concluding aspect of the systematic mapping study, in 

which the extracted data and mapping study are discussed, and the key findings are 

reported.  

3.4 Research goals and questions 

The purpose of this systematic mapping study is to identify, classify and evaluate 

the current literature related to “self-adaptation in SDN-based IoT networks” and 

present the results of the research questions in a structured and systematic manner. 

In accordance with the guidelines [11], the research questions are founded on the 

Population, Intervention, Comparison, Outcomes, and Context (PICOC) criteria. 

• POPULATION: SDN-based IoT network 

• INTERVENTION: Self-adaptation in SDN-based IoT networks 

• COMPARISON: Not applicable. 

• OUTCOMES: A classification of primary studies reflecting the current 

state-of-the-art of self-adaptation in SDN-based IoT networks  

• CONTEXT: SDN-based IoT networks 

 

RQ1. What approaches (methods, algorithms, techniques, frameworks, 

schemes, and protocols) exist for self-adaptation in SDN-based IoT 

networks? 

Rationale: By understanding the existing approaches, researchers can 

identify gaps in the literature and propose new techniques to improve the 

efficacy of self-adaptation in SDN-based Internet of Things (IoT) 

networks. 
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RQ2. What are the publication trends? 

Rationale: Reason for this question to identify the existing state of 

research on self-adaptation in the domain of SDN based IoT networks over 

the years. 

RQ3. What problems/issues are addressed in the literature?  

Rationale: This question is important and relevant because it can help 

researchers Figure out the most important problems/issues and gaps in the 

study. By knowing about these problems/issues and gaps, researchers can 

suggest new study ideas and solutions that can solve the problems/issues, 

fill in the gaps, and move the field forward. 
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Figure 3.1: Systematic mapping study process 
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4 Conducting the systematic mapping study 

4.1 Search and selection process 

In a systematic mapping study, the search and selection procedures are a critical, 

multi-stage process that provides comprehensive coverage of the investigated 

topic. It must be carefully documented so that other researchers can verify the 

procedures and results.  

The first step in this process is conducting an initial search of the chosen databases 

and libraries. Next, articles are merged, duplicates removed, and relevance 

assessed using the selection criteria. Irrelevant articles are further excluded by 

reviewing the abstracts and titles.   

The subsequent step is known as "data extraction," during which relevant 

information is collected to form the basis of the study. In the final step, we 

synthesize the collected data. The illustration below depicts this process. 

 

Figure 4.1: Search and selection procedure 
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4.1.1 Initial search 

To obtain an initial set of primary studies, we used the advanced command search 

feature, and the libraries/databases used were IEEE Xplore, ACM, Science Direct, 

Web of Science, Scopus and Wiley. All these libraries/databases are well 

established and host a wide spectrum of peer-reviewed publications. The search 

was performed by considering only the abstract of studies and the Figure above 

shows the initial results. 

 

The general form of the search string used was as follows: 

(*) wildcard. The general form of the string was customized for ScienceDirect, 

which is given below. 

 

We ran an automatic search on the selected libraries: IEEE Xplore, Scopus, ACM, 

Science Direct, Wiley Online Library, and Web of Science. We have introduced 

the generic search string using the PICOC criteria. A different search string was 

proposed for each library and is given below in Table 4.1. Automatic search on the 

selected libraries gave 614 initial primary studies. 

 

 

 

((self-* OR adapt*) AND ("Software defined network" OR SDN) AND 

(“Internet of things” OR IOT)) 

((self-adaptation OR self-adaptive OR self-adapting) AND ("Software 

defined network" OR SDN) AND (“Internet of things” OR IOT)) 
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Table 4.1: Search string 

Digital 

Library 

Search String 

IEEE 

Xplore 

("Abstract":self* OR "Abstract":adapt*) AND 

("Abstract":"Software defined network" OR "Abstract":SDN) 

AND ("Abstract":"Internet of things" OR "Abstract":IOT) 

ACM (( self\-* OR adapt* ) AND ( "Software defined network" OR 

SDN ) AND ( "Internet of things" OR IOT )) 

Science 

Direct 

((self-adaptation OR self-adaptive OR self-adapting) AND ( 

"Software defined network" OR SDN ) AND ( “Internet of 

things” OR IOT)) 

Scopus ABS ( ( ( self-*  OR  adapt* )  AND  ( "Software defined 

network"  OR  sdn )  AND  ( "Internet of things"  OR  IOT ) ) 

)  AND  ( LIMIT-TO ( SUBJAREA ,  "COMP" ) ) 

Wiley 

Online 

"self-* OR adapt*" in Abstract and ""software defined 

network" OR SDN" in Abstract and ""internet of things" OR 

IOT" in Abstract 

Web of 

Science 

((self-* OR adapt*) AND ("Software defined network" OR 

SDN) AND (“Internet of things” OR IOT)) (Abstract) 

 

4.1.2 Title and abstract screening 

Throughout the merging phase, we simultaneously conducted a screening process 

for titles and abstracts to filter out studies that didn't meet our search criteria. 

While some studies could be disregarded based on their titles alone, most required 

assessing their abstracts too. We carefully examined keywords and sentences to 

determine if the study addressed the desired topic. Studies that didn't cover the 

desired topic were excluded, while those that seemed relevant or potentially 

relevant based on the title and abstract screening were selected for further 

consideration. This resulted in the removal of 270 studies, leaving us with 32 
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studies to proceed with in the next phase. Our rigorous screening process enabled 

us to narrow down the selection effectively. 

4.1.3 Merging and impurity removal 

Digital libraries/databases often contain duplicate publications, which can be 

addressed using reference managers such as Zotero, EndNote, etc. These reference 

managers remove duplicates by checking the title, authors, and publication year. If 

there are two different versions of the same study, the older version is also 

removed. In addition, digital databases/libraries contain a wide range of 

publication types such as conference proceedings, textbooks, magazine articles, 

etc. that are not peer-reviewed research documents. These non-research 

publications are excluded as well. 

4.1.4 Application of selection criteria 

To determine the relevance of potentially relevant studies for our mapping study, 

an assessment is necessary, as not all studies returned by the initial search can be 

utilized. To filter primary studies and only include those significantly relevant to 

the research questions, selection criteria are used. During this stage, potentially 

relevant studies are filtered based on inclusion and exclusion criteria, which 

examine the title, abstract, and keywords. If a study meets all the inclusion criteria 

and none of the exclusion criteria, it is added to the collection of primary studies. 

If it does not meet the criteria, it is excluded. If a study cannot be clearly excluded 

based on the given criteria, a thorough full-text investigation is conducted to make 

a final decision.  

The inclusion criteria for primary studies are: 

• Discusses self-adaptation. 

• Presents an approach, method, algorithm, technique, or framework.  

• Related to software-defined networks. 

• In the context of IoT networks. 

• Written in English. 
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• Published in a peer-reviewed journal, conference, or workshop related to 

computer science, computer engineering, or software engineering. 

Furthermore, if multiple papers present the same test automation approach, only 

the most recent one will be included. 

The exclusion criteria for primary studies are: 

• Not related to self-adaptation. 

• Does not present an approach, method, algorithm, technique, or 

framework. 

• Not related to software-defined networks. 

• Not in the context of IoT networks.  

• Not written in English. 

• Not published in a peer-reviewed journal, conference, or workshop related 

to computer science, computer engineering, or software engineering. 

Only the most recent paper presenting the same self-adaptation approach will be 

included. If the selected papers meet all the criteria, they will be chosen for data 

extraction; otherwise, they will be excluded as irrelevant. 

4.2 Data extraction 

Data extraction is a critical step in a systematic mapping study. It involves the 

systematic and structured collection of the data from the identified studies that 

meet the inclusion criteria. Data extraction Table is given below. The Table is 

partitioned into two sections: general information and self-adaptation in SDN-

based IoT networks. The data extraction Table was used to collect necessary 

details, including the extractor’s name, extraction date, and a unique identifier. 

Furthermore, study particulars, such as title, authors’ names, publication year, and 

source (conference, journal or workshop), were extracted. Second part of the Table 

was used to collect data regarding the research questions presented earlier. 
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Table 4.2: Data collection  

Data Item Value Additional 

notes 

General 

Data extractor's name   

Data extraction date   

Study identifier   

Bibliographic reference (title, authors, 

year, journal/conference/workshop 

name) 

  

Author affiliations and countries   

Publication type (journal, conference, or 

workshop) 

  

Self-adaptation in SDN-based IoT Networks 

RQ1: Approaches(methods, algorithms, 

techniques, frameworks)? 

  

RQ2: Publication trends for studies 

covering self-adaptation in SDN-based 

IoT networks? 

  

RQ3: Problems/issues addressed in the 

literature? 

 

  

 

4.3 Data synthesis 

Following the data extraction, the subsequent step is data synthesis, whereby the 

extracted information is systematically evaluated and condensed in a manner that 
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is illustrative. There are two main phases of the data synthesis process: vertical 

analysis and horizontal analysis. 

4.3.1 Vertical analysis 

During vertical analysis, we scrutinize data extracted from primary studies to 

gather information about each parameter in our classification framework. The line 

of argument synthesis method is applied, where we first analyze each study 

separately to document its main features based on the classification framework, 

and then analyze the set of studies to identify potential patterns and trends. 

4.3.2 Horizontal analysis 

During horizontal analysis, we carefully examine the data collected from the 

primary studies to find any connections between the different categories assigned 

to each research question. It helps researchers identify patterns and differences, 

make cross-sectional comparisons, and test hypotheses. Data visualization and 

benchmarking are common uses. However, it's important to combine horizontal 

analysis with other methods for a comprehensive understanding of the research 

topic. 
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5 Results 

In this chapter, we present the results of the vertical and horizontal analysis 

conducted on the extracted data. The complete list of studies, from which the data 

has been extracted, can be found in the appendix. 

Vertical analysis aims to provide quantitative insights relevant to the research 

questions. It involves comparing various elements or categories within a dataset to 

determine their relative proportions or changes over time. Essentially, vertical 

analysis examines the vertical arrangement of the data by assessing the relative 

significance or distribution of different factors or variables within a particular 

context. 

5.1 Result analysis of RQ1 

Our first research question is, “What approaches (methods, algorithms, techniques, 

frameworks, schemes, and protocols) exist for self-adaptation in SDN-based IoT 

networks?”  

As can be observed in the Figure below, there are a variety of approaches present 

in the literature. Some approaches were utilized in multiple studies, while others 

were specific to individual studies. Certain studies did not explicitly specify a 

particular approach and instead referred to a broader framework or model. Several 

approaches were used only once, such as the ADS scheme, while machine learning 

and deep learning were employed in several studies. The Figure 5.1, given below, 

displays the occurrences of different approaches in each study. 
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Figure 5.1: Self-adaptation approaches 

As can be seen in the Figure 5.1, given above, that most used techniques are based 

on machine learning and deep learning. Machine learning-based techniques are 

discussed in these studies S9, S15, S22, S23, S29 and deep learning-based 

techniques are discussed in these studies S10, S11, S14, S28, S3. In the Table 

below, the individual approaches are mentioned, along with the studies in which 

they appeared and the number of times they appeared. 
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Table 5.1: Self-adaptation approaches 

Types of approaches Study Ids 

Number of 

Occurrences 

SEE-ADS Scheme S1, S25 2 

Load balancing (based on 

M/M/1 queue and open flow 

protocol) S2, S26 2 

Capacity management 

framework (Game theory) S3 1 

Self-adaptive management 

framework (ONOS and 

ODL) S6 1 

 MINOS platform  S5 1 

Machine learning (ML), 

multi-objective optimization 

(MOO)-based techniques S7 1 

Machine learning 
S9, S15, S22, 

S23, S29, S7 5 

Deep learning 
S10, S11, S14, 

S28, S32 5 

Fuzzy normalized neural 

network S24 1 

Semantic-aware and policy-

based security orchestration 

framework (SAPSOF) S12 1 

Search-based software 

engineering technique S13 1 

QoS-aware adaptive flow-

rule aggregation scheme S16 1 

 Cyber deception and moving 

target defence (MTD) S17 1 
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techniques 

FlowJustifier based on Trust-

based request prioritization 

algorithm S18 1 

Genetic programming  S19, S30 2 

Multi-agent deep Q-networks 

(MADQNs) S20 1 

Mobi-flow (Mobility-aware 

flow-rule) placement 

scheme) S21 1 

HSPC-SDN approach S22 1 

Aloe, an auto scalable SDN 

orchestration framework S28 1 

Application aware QoS 

routing algorithm (AQRA) S31 1 

5.2 Definition of approaches 

In this section we will provide a brief introduction to the approaches mentioned 

above. 

5.2.1  Scalable and energy-efficient anomaly detection scheme 

This has been developed as a novel solution to address the challenges encountered 

in anomaly detection within large-scale systems, with particular emphasis on 

energy efficiency. Anomaly detection holds immense significance across domains 

such as cybersecurity, industrial automation, and network monitoring, as it 

assumes a critical role in identifying aberrant behaviors or events crucial for 

ensuring the dependability and security of systems. 

5.2.2 Load balancing 

 It is a crucial aspect of network management and can be achieved by leveraging 

the M/M/1 queue model and the OpenFlow protocol. The M/M/1 queue 
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characterizes the length of a queue within a system that operates with a single 

server. In this system, incoming jobs follow a Poisson process for arrivals, and the 

service times for each job are exponentially distributed. The M/M/1 queue is 

denoted in Kendall's notation and represents the most basic form of queueing 

models[3]. It is highly valuable for research purposes as it allows for the derivation 

of closed-form expressions for various important metrics. Additionally, an 

extension of this model, known as the M/M/c queue, involves multiple servers to 

further explore more complex scenarios in queueing theory. 

5.2.3 OpenFlow protocol 

The OpenFlow protocol is a networking technology that separates the control and 

data planes and provides innovation and flexibility in network management and 

operations[4]. In the OpenFlow architecture, the control plane is centralized, 

allowing network administrators to have a global view and programmable control 

over the network devices [13]. This separation allows researchers and network 

operators to experiment with new protocols, services, and network configurations 

without disrupting the underlying infrastructure [13]. OpenFlow facilitates the 

development of innovative network architectures by providing a standardized 

protocol for communication between the control and data planes, allowing the 

dynamic control of network flows and enabling the deployment of new network 

services [13].  

5.2.4 Game theory  

This is a branch of applied mathematics that studies how decision-makers interact 

with each other in various scenarios, trying to understand the strategic behavior 

behind their actions[5]. In the context of Self-Adaptive Software-Defined 

Networking-based Internet of Things networks, Game Theory provides a powerful 

tool to model and analyze complex behaviors among different entities, such as 

devices or services, competing for resources while aiming to optimize their 

performance. By considering game-theoretical concepts like Nash Equilibria or 

Pareto optimality, researchers can design SDN-based IoT systems capable of 

adapting themselves efficiently and effectively under changing conditions [6]. 
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5.2.5 Self-adaptive management framework 

A self-adaptive management framework is a system designed to autonomously 

control and manage distributed networks, such as Software-Defined Networking 

(SDN) controllers in the Internet of Things (IoT) environment [7]. The primary 

goal of this framework is to enable dynamic, flexible, and self-adaptive network 

controllers that can automatically respond to business demands and changes in the 

underlying network topology [16]. Two popular SDN controllers used in a self-

adaptive management framework are ONOS (Open Network Operating System) 

and ODL (OpenDayLight) [16].  

ONOS (Open Network Operating System) and ODL (OpenDaylight) are open-

source platforms for managing and controlling network infrastructure in Software-

Defined Networking (SDN) environments. The focus of ONOS is on scalability 

and resilience, offering a modular architecture and supporting various network 

applications and protocols. ODL, on the other hand, prioritizes flexibility and 

programmability, providing rich APIs and plugins for developers to build 

customized network applications. These platforms contribute to the advancement 

of SDN by enabling open, interoperable, and innovative networking solutions. 

5.2.6 MINOS 

The MINOS platform is a software-defined, multiprotocol IoT networking solution 

designed to address challenges related to elasticity, heterogeneity, and mobility in 

IoT environments [8]. It dynamically deploys and configures networking protocols 

based on application requirements and changing network conditions. The 

architecture comprises three interconnected planes: the Data Communication 

Plane, the Control Plane, and the Application Plane. Within this platform, 

experiments were conducted to compare the performance of two supported 

protocols, Adaptable-RPL and CORAL-SDN, with the standard RPL in a smart 

city network scenario [17]. The results demonstrate that dynamic protocol 

configuration through MINOS enhances network performance and adaptability. 
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5.2.7 Multi-objective optimization (MOO) techniques 

The SDN-Enabled Adaptive and Reliable Communication Approach, focuses on 

enhancing the Quality of Service (QoS) in IoT applications by combining 

Software-Defined Networking (SDN), Machine Learning (ML), and Multi-

objective Optimization (MOO) techniques[9]. The approach predicts link reliability 

using an ML-based k-nearest neighbors algorithm and employs NSGA-II for 

finding Pareto-optimal communication paths balancing end-to-end delay and path 

reliability. An adaptive decision mechanism in the SDN controller selects suitable 

paths for various IoT applications (real-time, delay-sensitive, or task offloading) 

based on packet types. Experiment results show the approach's effectiveness in 

optimizing QoS for IoT applications. 

5.2.8 Machine learning 

As can be seen in the Table above several studies (S9, S15, S22, S23, S29, S7) are 

using machine learning for self-adaptation. Machine learning (ML) is a subfield of 

artificial intelligence (AI) that revolves around the creation and development of 

algorithms and models. Its primary goal is to empower computer systems to learn, 

make predictions, and make decisions without relying on explicit programming. 

This is achieved through the utilization of mathematical models and algorithms, 

enabling computers to effectively analyze and interpret vast volumes of the data. 

By doing so, machine learning allows computers to identify patterns within the 

data and subsequently generate predictions or take appropriate actions. 

ML applications in SDN-IoT include network traffic prediction, anomaly 

detection, QoS optimization, resource management, and network fault 

prediction/self-healing. ML models analyze historical and real-time data to 

accurately predict traffic patterns, detect anomalies, optimize QoS parameters, 

allocate resources intelligently, and predict network faults [10]. These ML 

techniques enhance network performance, resource utilization, security, and 

reliability. 
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5.2.9 Deep learning 

Deep learning, a subset of machine learning, can be applied in SDN-based IoT 

networks for self-adaptation. Deep learning models excel at analyzing complex 

patterns and large-scale data. They can be used for traffic classification, anomaly 

detection, predictive analytics, resource management, fault detection and recovery, 

and energy optimization [11]. Deep learning enables the network to dynamically 

adapt and optimize based on changing conditions. However, it requires significant 

computational resources and labeled data for training, and its decision-making 

process can be difficult to interpret [12]. Overall, deep learning shows promise in 

enhancing performance, security, and resource efficiency in SDN-based IoT 

networks.  

Deep learning offers several approaches and methods for self-adaptation in SDN-

based IoT networks: 

• Deep Reinforcement Learning combines deep learning with reinforcement 

learning for adaptive decision-making based on feedback and rewards. It 

optimizes resource allocation, routing decisions, and QoS management. 

• Deep Neural Networks (DNNs) handle complex patterns and large-scale 

data. They are used for traffic prediction, anomaly detection, fault 

diagnosis, and QoS optimization[13]. 

• Convolutional Neural Networks (CNNs) analyze images and find 

applications in image-based anomaly detection, video surveillance, and 

security-related self-adaptation tasks. 

• Recurrent Neural Networks (RNNs) analyze sequence data and are used for 

time-series analysis, such as network traffic prediction, fault detection, and 

event-based self-adaptation. 

• Generative Adversarial Networks (GANs) generate synthetic data to 

augment training datasets, enhancing robustness and diversity of deep 

learning models. They are used for data generation in scenarios with 

limited real-time data. 
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• Autoencoders perform data representation and dimensionality reduction. 

They support anomaly detection, network optimization, and feature 

extraction in SDN-based IoT networks. 

The selection of the approach relies on the particular self-adaptation task, the data 

accessible, and the requirements of the network. Ongoing efforts by researchers 

involve investigating and creating novel techniques to tackle the difficulties 

encountered in this domain. 

5.2.10 Fuzzy normalized neural network 

In the context of SDN-based networks, a fuzzy normalized neural network (FNNN) 

combines fuzzy logic and neural network techniques. The FNNN takes input 

variables, applies fuzzy logic membership functions, normalizes the inputs, and 

uses a neural network architecture for decision-making [14]. It learns from labeled 

data to establish relationships between inputs and adaptation actions. The FNNN's 

fuzzy logic and learning capabilities enable it to handle uncertainty and complexity 

in the network. It autonomously makes adaptive decisions, such as resource 

allocation or routing optimizations, to enhance network performance, security, and 

resource utilization. Careful consideration must be given to network architecture, 

training data, fuzzy logic rules, normalization techniques, and learning algorithms 

during the design and implementation of the FNNN. 

5.2.11 Semantic-aware and policy-based security orchestration framework 

The semantic-aware and policy-based security orchestration framework 

(SAPSOF) is a solution specifically developed for managing security in scenarios 

involving software defined networking (SDN), network function virtualization 

(NFV)-aware systems, and the Internet of Things (IoT) [15]. Its primary objective 

is to achieve autonomous and conflict-free security orchestration while optimizing 

the allocation of virtual Security functions (VSF) and service function chaining 

(SFC) [16]. By leveraging Semantic technologies, the framework can comprehend 

and process the underlying semantics of IoT system models and management 

policies. This capability enables dynamic detection and resolution of conflicts 

during the orchestration process. The framework comprises several key 
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components, including Semantic-aware Orchestration, Knowledge-based Inference 

Engine, and Policy Interpreter. These components work collaboratively to 

effectively manage and ensure the consistency of security orchestration policies. 

Additionally, the framework considers factors such as Quality of Service (QoS), 

available resources, and security conditions to make informed decisions. 

Ultimately, this framework streamlines security management by applying semantic 

understanding and policy-based approaches, enabling efficient security 

orchestration in complex SDN, NFV, and IoT environments. 

5.2.12 Search-based software engineering (SBSE) 

 (SBSE) is a subfield of software engineering that utilizes search algorithms and 

optimization techniques to tackle various software engineering challenges. When 

applied to Software-Defined Networking (SDN), SBSE can optimize and automate 

different aspects of SDN, such as network management, configuration, and 

resource allocation.  

SBSE algorithms can automatically generate optimal network topologies for SDN, 

which can minimize congestion, maximize bandwidth utilization, or reduce 

network latency by exploring different routing strategies [17]. Resource allocation 

in SDN can also be optimized using SBSE techniques, which considers factors 

such as traffic patterns, bandwidth requirements, and Quality of Service (QoS) 

constraints, to suggest resource allocation strategies that maximize network 

efficiency and satisfy application-specific requirements [18].  

Furthermore, SBSE algorithms can assist in determining the optimal placement of 

network functions in an SDN infrastructure, which can minimize communication 

delays and maximize system performance by analyzing factors such as traffic 

patterns, latency requirements, and resource availability [19]. SBSE can also be 

employed to search for optimal configuration parameters for SDN controllers, 

considering several factors such as network topology, traffic patterns, and 

performance objectives, which can lead to improved controller performance, and 

network efficiency  [20].  
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SBSE also includes Pareto search which has been commonly adopted in the 

presence of multiple objectives to be optimized in Search-Based Software 

Engineering (SBSE). It searches for a good approximation of the problem's Pareto 

optimal solutions, from which the stakeholders choose the most preferred solution 

according to their preferences [21].  

5.2.13 QoS-aware adaptive flow-rule aggregation scheme 

A QoS-aware adaptive flow-rule aggregation scheme is a mechanism designed to 

enhance network performance and quality of service (QoS) in software-defined 

networking (SDN) environments. This scheme aims to optimize the efficiency of 

flow rule processing in SDN controllers by dynamically aggregating similar flow 

rules into a single rule, thereby reducing the overall number of rules that need to 

be processed [22]. By leveraging intelligent algorithms and QoS metrics, such as 

bandwidth requirements, latency constraints, and packet loss tolerance, the scheme 

intelligently groups and merges flow rules that share common QoS characteristics 

[22]. This adaptive approach ensures that network resources are utilized efficiently 

while maintaining the desired QoS levels, ultimately improving network 

performance and reducing the processing overhead in SDN controllers. 

5.2.14 Cyber deception and moving target defense 

In the domain of SDN networks, cyber deception and moving target defense 

(MTD) techniques are employed to enhance network security and mitigate cyber-

attacks. Traditional network defense techniques, based on static configurations and 

services, are insufficient in countering sophisticated attacks [23]. MTD, however, 

offers an intelligent and proactive countermeasure by constantly reconfiguring the 

underlying systems, making it difficult for attackers to exploit vulnerabilities[32] 

[33]. By dynamically changing potentially vulnerable points and system 

parameters, MTD confuses attackers and nullifies their reconnaissance activities, 

thus reducing the effectiveness of cyber-attacks [24]. MTD can be effectively 

implemented in SDN environments, which provide flexibility and centralized 

control over network operations [34] [35]. The use of artificial intelligence 

techniques, such as Bayesian attack graph analysis, can further enhance the 
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effectiveness of MTD in decision-making and security risk assessment[24]. 

Additionally, MTD can be integrated with other tools and countermeasures already 

deployed in the network without affecting their behavior [27]. The emergence of 

technologies like NFV and FPGA programmable acceleration cards has enabled 

the implementation of more sophisticated MTD techniques [28]. Furthermore, 

combining MTD with cyber deception methods, such as signal games, can 

improve the effectiveness of network defense [29]. Overall, MTD techniques in 

SDN networks provide proactive and dynamic defense mechanisms to protect 

against evolving cyber threats and ensure network security [30] . 

5.2.15 FlowJustifier 

Sarwar et al. (S18) [31] proposed a technique for mitigating DDoS attacks on SDN 

controllers in the IoT environment using trust management. In the study, it is 

argued that software-defined network (SDN) controllers are susceptible to 

Distributed Denial of Service (DDoS) attacks. These attacks involve 

overwhelming the controller with an excessive number of new data flows, causing 

network failures for legitimate users. This vulnerability is even more concerning in 

the context of the Internet of Things (IoT) because IoT networks are typically open 

and more susceptible to such attacks.  

The paper presents “FlowJustifier”, a request prioritization algorithm based on a 

trust return value list, which assigns confidence values to users based on their 

network activities and prioritizes their requests accordingly. The algorithm aims to 

reduce the load on the controller and make the defense against attacks more 

effective. The paper evaluates the performance of FlowJustifier using simulations 

and compares it with other existing techniques. The results show that FlowJustifier 

can achieve higher throughput, lower latency, and lower packet loss rate than other 

techniques. 

5.2.16 Genetic programming 

Genetic programming (GP) is a technique that uses evolutionary algorithms to 

automatically generate computer programs that can solve a given problem. GP can 
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be applied to the domain of self-adaptation in SDN-based IoT networks to learn 

and update the data-forwarding logic of the network based on the changing 

conditions and requirements. One paper [32] delves into the concept that rather 

than generating distinct adaptation plans, the goal should be to alter the underlying 

logic and code of the operational system. This modification enables the system to 

acquire the ability to autonomously prevent future anomalies without relying on 

frequent self-adaptation triggers. 

The paper suggests a way to make IoT networks smarter by using a technique 

called Genetic Programming (GP). This technique helps the network constantly 

improve and change the way it manages and forwards data in Software-Defined 

Networking (SDN)-based IoT networks. The paper evaluates the performance of 

the solution using synthetic and industrial data, and shows that it can achieve 

higher throughput, lower latency, lower packet loss rate, and lower adaptation 

frequency than other techniques. 

5.2.17 Multi-agent deep Q-networks (MADQNs) 

Multi-agent deep Q-networks (MADQNs) have been proposed as a solution to 

address various challenges in software-defined IoT networks. MADQNs leverage 

deep reinforcement learning techniques, specifically deep Q-networks (DQNs), to 

optimize resource allocation policies, enable computation offloading decisions, 

and facilitate self-learning softwarization capabilities [33]. In these networks, 

DQNs estimate the expected long-term rewards of potential actions based on 

observed network conditions and resource states [27]. The deep reinforcement 

learning approach enables the MADQN agents to learn optimal policies through 

experience interacting with the IoT network environment. By using DQNs, the 

MADQN agents can continuously update their decision-making policies to 

maximize cumulative future rewards. This data-driven approach facilitates 

adaptive resource management and control in complex, dynamic software-defined 

IoT networks. 
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5.2.18 Mobi-flow 

According to the study [34], Mobi-flow is a mobility-aware adaptive flow-rule 

placement scheme. It aims to maximize the performance of software-defined 

access networks (SDANs) by predicting the future locations of end-users and 

dynamically adapting flow-rules based on these predictions. The scheme consists 

of a path estimator that predicts user locations and a flow-manager that determines 

the optimal placement of flow-rules at access points. Mobi-Flow utilizes an integer 

linear programming approach to determine the optimal number of access points. 

The scheme does not introduce any client-side changes and can be integrated with 

existing SDN architectures. Its practical applications include IoT environments 

with both static and mobile users. 

5.2.19 HSPC-SDN 

HSPC-SDN stands for Heuristic Driven Self-Configuring Proactive Controller for 

QoS-Centric Software Defined Network. It is a controller designed for QoS-centric 

software defined networks (SDN). The HSPC controller utilizes heuristic-driven 

techniques to perform various tasks such as risk assessment, path selection, and 

fault recovery in the network. It considers factors such as dynamic link-quality 

information, cumulative congestion degree, probability of successful transmission, 

and link quality change index to make informed decisions [35]. Additionally, the 

HSPC controller applies genetic algorithms to perform disjoint multiple 

forwarding cum failure recovery path selection, ensuring fault-tolerant 

communication with QoS guarantees [35]. The HSPC controller leverages network 

availability information, minimal distance, and strictly no-shared component 

criteria to select multiple disjoint forwarding and recovery paths. Overall, the 

HSPC controller aims to enhance the reliability, performance, and fault tolerance 

of SDN networks. 

5.2.20 Aloe 

Aloe is an auto scalable Software-Defined Networking (SDN) orchestration 

framework developed specifically for Internet of Things (IoT) applications and 
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services. Instead of relying on large service-grade SDN controller applications, 

Aloe utilizes multiple lightweight controller instances called microcontrollers (μC) 

[36]. This distributed controller approach reduces performance bottlenecks and 

minimizes flow-setup delay. Aloe operates on Commercial Off-The-Shelf (COTS) 

hardware and open-source software, ensuring cost-effectiveness and accessibility. 

Its architecture and modules are interoperable and robust, allowing for customized 

configurations based on application requirements. The framework includes a set of 

Application Programming Interfaces (APIs) for autonomous and language-

independent application deployment. Aloe emphasizes availability and fault-

tolerance, even in the face of network partitions or failures. Performance testing of 

Aloe showcases its efficiency and functionality, demonstrating significant 

improvements compared to other frameworks. 

5.2.21 AQRA 

The Application-Aware Quality of Service (QoS) Routing Algorithm (AQRA) is a 

routing algorithm that aims to optimize QoS in SDN-based IoT networks. AQRA 

takes into consideration the network performance, which directly impacts the 

Quality of Experience (QoE) for users [32]. Traditional routing strategies may not 

possess QoS awareness and may fail to meet the QoS requirements of emerging 

network applications and services [33]. AQRA tackles this challenge by 

addressing the multi-constrained nature of QoS routing, which is a complex 

problem in routing research [34]. The algorithm incorporates concepts from 

machine learning, such as reinforcement learning (RL), to achieve adaptive routing 

and enhance QoS [32]. 

5.3 Result analysis of RQ2 

"What are the publication trends for studies covering self-adaptation in SDN-based 

IoT networks?" 

Chart below showing the number of studies published in each year.  
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Figure 5.2: Years of publication 

It can be observed that most studies were published in the year 2020, with fewer 

studies appearing in subsequent years. This decline in the number of studies can be 

attributed to our focus on SDN-based IoT networks. In 2006 [37], Rohr et al. 

published a classification scheme for self-adaptation research, which served as one 

of the pioneering taxonomies in the field. A classification scheme that organizes 

self-adaptation based on various dimensions. These dimensions include origin, 

activation, system layer, controller distribution, and operation. By considering 

these factors, the classification scheme provides a structured framework for 

categorizing different approaches and understanding the diverse aspects of self-

adaptation in a systematic manner. If we search based on these factors, more 

publications can be seen. 

In computer engineering, various types of publications are used to share research 

and scholarly work. These include research papers, conference papers, journal 

articles, technical reports, books, and theses. Research papers and journal articles 

present original research with rigorous peer review, while conference papers focus 
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wide range of topics, and theses/dissertations are written by graduate students. The 

choice of publication depends on the nature of the work and the target audience. 

Figure below shows the type of publication. 

 

      Figure 5.1: Publication type 
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Table 5.2: Issues addressed in studies. 

Issues Study ID  Number of studies 

Scalability S1,S21,S25,S26,S27,S5,S6 7 

Energy consumption S2,S25,S29,30 4 

Network congestion S3,S12,S18,S19, S24, S31, 

S32 

7 

Quality of service S3,S7,S15,S22,S26,S31 6 

Security vulnerabilities S8,S11,S16 3 

Anomaly detection S14 1 

DDoS attack S10,S17,S23 3 

Application awareness S28 1 

Flow Table overflow S15,S32 2 

Packet loss, path 

selection 

S13 1 

Concurrency of multi-

task application in real-

time 

S4 1 

Network performance S20, S9 2 

Resource management S3 1 

5.5 Definition of issues 

5.5.1 Scalability 

Scalability is a major challenge in SDN-based IoT networks due to the massive 

number of devices and huge volumes of the data traffic [38], [39]. The centralized 

control plane of SDN architectures faces scalability issues in terms of flow setup 

rate, flow Table size, and control overhead as the network grows [38]. Potential 

solutions involve hierarchical controller designs, clustering, optimized monitoring 

and routing algorithms, and localizing traffic management [39]. Enhancing the 

scalability of SDN control and data planes is an active research area to enable 

future massive IoT deployments. 
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5.5.2 Energy consumption 

SDN-based IoT networks face several issues related to energy consumption. 

Firstly, IoT devices often operate on limited power sources, requiring careful 

management to ensure prolonged device lifetime [40]. Secondly, as the network 

scales with increasing device and traffic numbers, scalability becomes a challenge, 

necessitating efficient energy management techniques. Dynamic network 

conditions, including device mobility and network reconfiguration, also need to be 

addressed while maintaining energy efficiency. Additionally, network protocol 

overhead can contribute to increased energy consumption, requiring optimization 

and reduction of unnecessary control traffic. Balancing energy efficiency with 

low-latency communication poses another challenge, as energy-saving techniques 

may introduce latency and slower response times [41]. Moreover, security 

considerations must be considered, ensuring that energy-saving measures do not 

compromise network security. The heterogeneity of IoT devices further 

complicates energy management, requiring compatibility with SDN-based 

infrastructure. 

5.5.3 Network congestion 

Network congestion refers to a situation where the demand for network resources 

exceeds the available capacity, leading to a degradation in network performance. It 

occurs when there is a high volume of the data traffic or when network resources, 

such as links or routers, become overloaded. Network congestion can result in 

increased latency, packet loss, reduced throughput, and overall degradation of 

network quality. Resolving network congestion is crucial to ensure efficient and 

reliable data transmission in communication networks.  Congestion in SDN-based 

IoT networks can be addressed through various techniques, such as intelligent 

network management systems that integrate AI modules to guarantee QoS and 

QoE based on delay, loss rate, and jitter [42]. 
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5.5.4 Quality of service 

Providing Quality of service (QoS) guarantees is important in SDN-based IoT 

networks to meet the diverse requirements of IoT applications [43], [44]. The 

centralized control and global network view of SDN can enable efficient QoS 

management through intelligent traffic engineering, priority-based routing, and 

dynamic resource allocation [43]. However, existing SDN architectures lack 

standard interfaces and mechanisms for QoS control [53]. Key research efforts 

focus on extending SDN to integrate QoS configuration protocols like OpenFlow 

for priority queueing, rate limiting, and traffic policing on network devices [52]. 

Developing QoS-aware routing algorithms and controllers can also improve 

service differentiation in SDN-based IoT networks [53].   

5.5.5 Security vulnerabilities 

Security vulnerabilities refer to weaknesses or flaws in a system, network, or 

application that can be exploited by attackers to gain unauthorized access, disrupt 

operations, or compromise the confidentiality, integrity, or availability of the data 

or resources. These vulnerabilities can exist due to design flaws, programming 

errors, misconfigurations, or outdated software components. Several studies (S8, 

S11, S16) have identified various security vulnerabilities, including software 

vulnerabilities, configuration vulnerabilities, hardware vulnerabilities, social 

engineering vulnerabilities, and network vulnerabilities. 

5.5.6 Anomaly detection 

Anomaly detection is an important technique for identifying potential security 

threats and attacks in Internet of Things (IoT) environments. By analyzing network 

traffic patterns, anomaly detection can detect when unusual or unexpected activity 

occurs that deviates from normal behavior [45]. This enables early detection of 

issues like malware infections, network intrusions, and abuse of vulnerabilities 

before significant damage occurs. 
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5.5.7 Distributed denial of service (DDos) 

 (DDoS) attacks pose a major security threat in SDN-based IoT networks due to 

the centralized control plane [38]. DDoS attacks can overwhelm SDN controllers 

by flooding them with invalid requests and traffic flows. This disrupts the 

controller's ability to install flow rules and manage the network. Potential 

mitigation techniques include controller load balancing, fast attack detection 

systems, flow rule optimization, and machine learning for automated DDoS 

protection [47]. Further research is needed to develop adaptive and robust DDoS 

defense mechanisms tailored for SDN-based IoT environments.   

5.5.8 Application awareness 

Application awareness is an important capability in SDN-based IoT networks to 

enable tailored traffic management and resource optimization [43]. The centralized 

control plane of SDN allows controllers to identify flows and analyze traffic based 

on the requirements of IoT applications. This application-level visibility facilitates 

policy-based network control, dynamic QoS provisioning, and improved security 

[52]. Key enablers include application fingerprinting, deep packet inspection, 

machine learning for traffic classification, and open APIs for communicating 

application requirements to the SDN control layer. Further research on application 

aware SDN architectures and algorithms can enhance quality of service and 

efficiency in IoT networks. 

5.5.9 Flow Table overflow 

Flow Table overflow is a key scalability challenge in SDN-based IoT networks 

[38]. SDN switches maintain flow Tables containing forwarding rules installed by 

the controller. However, massive volumes of granular flows from high-density IoT 

devices can overwhelm switch flow Tables. This leads to frequent flow evictions, 

requests for new rules, and degraded network performance [47]. Potential 

solutions include optimizing flow rule wildcards, hierarchical flow management, 

compressing/deduplicating rules, and using fast caching structures like TCAMs. 
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More research is required to develop efficient flow Table management 

mechanisms to prevent overflow as IoT scale increases. 

5.5.10 Packet loss 

Packet loss is a critical concern in SDN-based IoT networks due to constraints 

such as unreliable wireless links and resource limitations [39]. Intelligent path 

selection algorithms enabled by the centralized network view of SDN can mitigate 

packet loss. The controller can dynamically calculate optimal paths based on 

metrics such as link quality, congestion, and latency. Machine learning techniques 

can also help predict network conditions and proactively re-route flows via reliable 

paths [48]. However, factors like control plane latency and outdated network views 

can degrade the performance of path selection schemes. Further research on 

responsive and predictive path optimization mechanisms is important to minimize 

packet loss in software-defined IoT networks. 

5.5.11 Concurrent multi-task applications 

Supporting concurrent multi-task applications is important in SDN-based IoT 

networks. The diversity of IoT use cases leads to multiple applications with varied 

requirements executing simultaneously. SDN controllers must manage 

concurrency issues like race conditions, deadlock, and resource contention when 

installing flow rules for concurrent apps [46]. Potential solutions involve 

scheduling mechanisms, policy conflict resolution, and intent-based abstractions to 

automatically handle concurrency. Machine learning can also help predict 

application behaviors and patterns to optimize concurrent executions. Further 

research is needed to develop SDN controller platforms that provide robust 

concurrency support for multi-task IoT environments. 

5.5.12 Network performance 

Optimizing network performance is critical in SDN-based IoT networks due to 

massive traffic volumes and stringent application requirements [43]. SDN's 

centralized control enables global visibility and programmability to monitor 

performance and dynamically optimize resources. Controllers can exploit real-time 
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network insights to efficiently route flows, balance loads, mitigate congestion, and 

provision QoS to enhance performance [52]. Machine learning can also help 

predict network demands and proactively allocate resources. However, control 

plane latency and overhead should be minimized to prevent degrading 

performance. Further research on high-performance traffic engineering and 

resource optimization mechanisms tailored for IoT is needed. 

5.5.13 Resource management 

Efficient resource management is critical in SDN-based IoT networks due to 

massive device densities and workloads [47]. Key issues include radio resource 

allocation in wireless domains, optimizing forwarding rules and flow Tables in 

switches, controller load balancing, and coordinated data/control plane resource 

provisioning [56]. The centralized network view of SDN allows holistic 

monitoring and abstraction to dynamically optimize resource utilization. However, 

control plane latency and synchronization issues can degrade efficiency. Further 

research on fast and adaptive resource control algorithms tailored to IoT 

environments is required to address these resource management challenges. 
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6 Discussion and gap analysis 

This systematic mapping study was conducted to uncover valuable insights 

regarding self-adaptation in SDN based IoT networks. This chapter aims to 

describe and interpret the significance of our findings by discussing the results 

obtained from the vertical and horizontal analysis introduced in the previous 

section. 

Regarding self-adaptation approaches (RQ1), no single approach encompasses all 

aspects, there are a few approaches (machine learning and deep learning 

approach) that are more commonly utilized than others. These approaches are 

mostly utilized for scalability and security issues. Other approaches are used only 

once so we conclude that certain approaches have gained more popularity than 

others and application of approaches depends on the context. 

Regarding publication trends (RQ2), the majority of selected studies, 17 studies 

were published as research articles and the rest were published at conferences. In 

2020, 11 publications were published but then we can see a drop in publications. 

The drop is due to the criteria we have selected for finding the publications. But if 

we follow the classification scheme [37], more publications can be seen. 

Regarding issues, mentioned in the literature (RQ3), it was noted that scalability 

and network congestion were leading the issues. Which makes sense because IoT 

networks can consists of hundreds or even thousands of resource-constrained end 

devices that frequently send small packets of the data to the network. This can 

easily overwhelm the control and data planes of traditional SDN architectures that 

are designed for more traditional network traffic patterns. Network congestion is 

closely related to scalability. With huge numbers of devices transmitting data, even 

small data flows can add up and congest the links in the network. 

Other notable issues were energy consumption, quality of service and security 

vulnerabilities. Energy consumption and quality of service are closely tied to 

scalability and network congestion. As IoT networks scale to large numbers of 

devices, energy consumption increases proportionally with more data 
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transmissions.  On the other hand, Network congestion directly leads to poor 

quality of service in terms of latency, packet loss and reliability. Congestion 

avoidance mechanisms like traffic engineering help provide QoS but require 

energy-intensive control and computation. 

The gap analysis revealed several limitations and open research questions that 

present opportunities to significantly advance the research on self-adaptation in 

SDN-based IoT networks. A major gap is the restricted scope focusing only on 

SDN-IoT networks. Expanding the scope to include related research areas could 

provide broader insights into adaptation approaches and issues. Additionally, the 

heavy emphasis on technical network-level challenges indicates a need for further 

studies on higher-level business and human factors that influence adaptation 

requirements. There is also a lack of comparative quality evaluation between 

different self-adaptation techniques in terms of metrics like overhead, complexity, 

reliability, and optimality. The dominance of context-specific solutions 

demonstrates a need for more generalized and reusable adaptation frameworks that 

can be tailored to diverse use cases. Emerging network paradigms like 6G and 

edge computing have not been investigated and require dedicated research on their 

self-adaptation needs. The declining publication trend post 2020 highlights a 

shortage of recent studies that need to be addressed. Other gaps involve assessing 

user satisfaction, business impact, interactions between multiple coexisting 

adaptations, autonomous learning capabilities, and comparing centralized versus 

distributed control tradeoffs. Overall, addressing these knowledge gaps presents 

immense opportunities to significantly strengthen and propel research on self-

adaptation in SDN-based IoT networks. Focused efforts on these limitations can 

both deepen understanding of core issues and broaden scope into new domains, 

ultimately advancing the state-of-the-art. 

Bubble plot in Figure 6.1 shows the relationship between different kinds of 

approaches and issues and gaps in research on self-adaptation in SDN based IoT 

networks. The size of the bubbles indicates the prevalence of each approach and 

issue.  

Several insights can be drawn which are given below: 
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• Machine learning (ML) and deep learning (DL) dominate as the most 

widely applied approaches. However, other techniques like genetic 

algorithms, game theory, etc. are not as extensively explored. There is 

room for more comparative evaluation and novel applications of these less 

prevalent approaches. 

• Scalability and network congestion stand out as the most frequently 

addressed issues. 

• Every method appears to be dedicated to a specific range of concerns. For 

instance, ML/DL prioritize scalability and security. Broadening the 

utilization of methods such as ML to encompass a wider range of issues 

such as anomaly detection, network congestion can generate practical 

solutions.  

• As can be seen that several approaches and issues have minimal overlap, 

indicating potential opportunities. By combining the strengths of ML/DL 

and GA (genetic algorithm), it is possible to create algorithms that are more 

powerful and versatile than either technique on its own. For example, 

ML/DL algorithms can be used to learn the fitness function for a GA, 

which can help the GA to find better solutions more quickly. Similarly, 

GAs can be used to generate new candidate solutions for ML/DL 

algorithms to explore. 

• Few approaches have addressed application awareness, flow Table 

overflow, and concurrent applications in SDN-IoT networks. Dedicated 

efforts to adapt SDN-IoT networks to address these neglected issues will 

advance the field. These issues are important challenges that need to be 

addressed in order to make SDN-IoT networks more reliable and efficient. 

By dedicating efforts to adapt SDN-IoT networks to address these issues, 

we can advance the field and make SDN-IoT networks a more viable 

solution for a wider range of applications. 

• More approaches can be extended to tackle important issues like anomaly 

detection and security vulnerabilities. All intersections in the plot which do 

not have a bubble are also gaps. It means, there is the possibility to explore 

that area and determine whether it can generate useful solutions. For 
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example, open flow protocol can be studied further in the context of issues 

such as energy consumption, DDos attack or quality of service. 

 

 

Figure 6.1: Bubble plot 
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7 Threats to validity 

In this chapter, we explore the potential factors that could impact the validity of 

our study and discuss the strategies we implemented to minimize their effects. 

7.1 External validity 

External validity is concerned with the extent to which the final results and 

outcomes of a study can be applied or generalized to other contexts [48]. The 

generalizability of our study could be compromised by a significant threat, which 

involves a set of primary studies that may not adequately represent the research on 

our chosen topic. To address this concern, we performed an automated search on 6 

comprehensive software engineering databases, namely IEEE Xplore Digital 

Library, SCOPUS, ACM, Science Direct, Web of Science and Wiley, which are 

widely recognized for their extensive coverage. By utilizing these databases, we 

aimed to enhance the representativeness and inclusiveness of our study's primary 

studies. The external validity of our study could also be at risk due to the exclusion 

of primary studies conducted in languages other than English. However, given that 

English is widely regarded as the standard language for scientific papers, this 

potential threat is considered negligible. 

7.2 Internal validity 

Internal validity in a study refers to the extent to which the design is influenced by 

external variables [48]. To address biases and enhance internal validity, we 

diligently developed and validated a comprehensive study protocol that adheres to 

recommended guidelines provided in [49], [50] and [48] . 

7.3 Construct validity 

Construct validity pertains to the validity of primary studies and the extracted data 

in relation to the defined research question [48]. It evaluates whether the selected 

studies and the data obtained from them align with and accurately address the 

research question at hand. A significant concern is the potential lack of 

representativeness in the selected primary studies, which may not adequately 
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encompass the population defined by the research questions. To address this 

concern, we took measures to mitigate it. We developed a search string by 

incorporating the PICOC criteria and relevant terms extracted from the research 

question. This approach ensured the alignment of our search with the research 

question and increased confidence in the validity of the search strategy. 

In addition, we conducted preliminary searches on the 6 electronic databases and 

refined the search string based on the analysis of a set of sample studies. 

Subsequently, all relevant studies were screened using clear and deterministic 

selection criteria. 

7.4 Conclusion validity  

In our study on self-adaptation in SDN-based IoT networks, ensuring the 

trustworthiness of our conclusions is essential. We face several potential 

challenges to the validity of our findings. First, our search strategy was quite 

limited, confined to a specific set of digital libraries and a narrow search query 

focused on SDN-IoT networks. Expanding our search could have unearthed more 

relevant literature, strengthening our conclusions. Additionally, our focus on peer-

reviewed academic publications in selected venues may have introduced 

publication bias, potentially missing relevant research in other formats.  

The data analysis we conducted was relatively elementary, focusing primarily on 

frequencies and trends. To enhance our findings, it would have been beneficial to 

utilize more robust quantitative and statistical approaches, along with a variety of 

synthesis techniques. Additionally, it is important to note that our study's scope 

was confined to self-adaptation within the SDN-IoT context, which restricts its 

generalizability.  

Furthermore, the subjective nature of study selection could introduce bias, 

highlighting the potential benefit of involving multiple reviewers. Although we 

closely followed established systematic mapping guidelines [48], enhancing our 

research by expanding the search, considering various publication types, 

conducting more robust data analysis, and involving additional reviewers could 
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further validate our conclusions. Replicating the study over time is also 

recommended to ensure the conclusions remain robust. In summary, while our 

systematic approach provides a reasonable level of confidence in our conclusions 

within the defined scope, addressing these identified limitations can enhance their 

validity. 
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8 Conclusion 

This thesis presents a systematic mapping study on self-adaptation in SDN-based 

IoT networks with the goal of identifying and classifying the approaches/methods, 

issues and related metrics. To fulfill this goal, we answered the following 

questions: 

• What approaches (methods, algorithms, techniques, frameworks, schemes, 

and protocols) exist for self-adaptation in SDN-based IoT networks? 

• What are the publication trends for studies covering self-adaptation in 

SDN-based IoT networks? 

• What problems/issues are addressed in the literature?  

To conduct this study, we followed the guidelines on systematic reviews proposed 

in [49] and [48]. The initial set of potentially relevant studies consisted of 614 

publications. Through a rigorous, well-documented process, 32 primary studies 

were selected for the final set. The results present a picture of the current situation. 

The results of this systematic mapping study paint a picture of the current research 

landscape on self-adaptation in SDN-based IoT networks. 

Regarding the approaches explored (RQ1), the findings reveal that machine 

learning and deep learning are the most popular techniques at present. However, a 

variety of other approaches have also been investigated, indicating that research is 

still actively exploring different methods rather than converging on a single 

dominant approach. The choice of approach seems to depend largely on the 

specific context and adaptation task. 

Looking at publication trends (RQ2), we see that most studies were published as 

journal articles, with a peak in 2020 followed by a decline in 2021-2022. This 

drop-off is likely attributable to the relatively narrow focus on SDN-based IoT 

networks. Expanding the scope beyond this specificity could potentially uncover 

more publication activity. 

Finally, the key issues addressed (RQ3) demonstrate that scalability and network 

congestion are among the most pressing challenges driving research in this area. 
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However, concerns related to energy consumption, quality of service, and security 

vulnerabilities are also prevalent motivators for developing self-adaptive solutions. 

Here are some notes and recommendations for future researchers based on this 

systematic mapping study of self-adaptation in SDN-based IoT networks: 

• Expand the scope of the search beyond just SDN-based IoT networks to 

uncover more of the literature on self-adaptation approaches and issues. 

This specificity limited publications found after 2020. 

• Explore emerging adaptation approaches like evolutionary algorithms, 

swarm intelligence, etc. that were not prevalent in the mapped studies. As 

research evolves, new techniques beyond ML/DL may gain prominence.  

• Investigate adaptations for emerging network paradigms like 6G, which 

will bring new requirements and challenges beyond 5G IoT. Study how 

current adaptations extend to these next-gen networks. 

• Examine adaptations optimized for edge computing architectures as more 

processing moves to the edge in IoT networks. Edge-specific issues like 

localization, low latency, mobility etc. need to be considered. 

• Develop more standardized adaptation frameworks that can be tailored for 

different use cases. Current solutions are largely customized for specific 

contexts. Reusable frameworks can accelerate research. 

• Leverage knowledge from MAPE-K feedback loops for autonomous 

control. Integrate monitoring, analysis, planning and execution capabilities 

for robust adaptations. 

• Evaluate tradeoffs between distributed vs centralized control when 

designing adaptive SDN architectures. Distributed intelligence can aid 

scalability and fault tolerance.  

• Study interactions between adaptation mechanisms when multiple co-exist 

in a system. Ensure different controllers' actions are coordinated and 

consistent. 

I hope these recommendations provide some useful directions for advancing 

research on self-adaptation in SDN-based IoT networks. Findings from this 

mapping study can serve as a baseline for future works. 
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