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___________________________________________________________________ 

 

Ischemic disease, caused by inadequate blood supply to organs or tissues, poses a 

significant global health challenge. Early detection of ischemia is crucial for timely 

intervention and improved patient outcomes. Myocardial perfusion imaging with 

positron-emission tomography (PET) is a non-invasive technique used to identify 

ischemia. However, accurately interpreting PET images can be challenging, 

necessitating the development of reliable classification methods. In this study, we 

propose a novel approach using MS-DenseNet, a lightweight attention network, for 

the detection and classification of ischemia from myocardial polar maps. Our model 

incorporates the squeeze and excitation modules to emphasize relevant feature 

channels and suppress unnecessary ones. By effectively utilizing channel 

interdependencies, we achieve optimum reuse of interchannel interactions, enhancing 

the model's performance. To evaluate the efficacy and accuracy of our proposed 

model, we compare it with transfer learning models commonly used in medical image 

analysis. We conducted experiments using a dataset of 138 polar maps (JPEG) 

obtained from 15O_H2O stress perfusion studies, comprising patients with ischemic 

and non-ischemic condition. Our results demonstrate that MS-DenseNet outperforms 

the transfer learning models, highlighting its potential for accurate ischemia detection 

and classification. This research contributes to the field of ischemia diagnosis by 

introducing a lightweight attention network that effectively captures the relevant 

features from myocardial polar maps. The integration of the squeeze and excitation 

modules further enhances the model's discriminative capabilities. The proposed MS-

DenseNet offers a promising solution for accurate and efficient ischemia detection, 

potentially improving the speed and accuracy of diagnosis and leading to better 

patient outcomes. 

___________________________________________________________________ 
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1. LITERATURE OVERVIEW 

1.1. Introduction 

This thrilling era, which many have dubbed the "Information Age" to reflect the exponential 

growth of available data, is truly remarkable. The visual data has also increased dramatically, 

with a rise in both videos and images. Around 300 hours of YouTube videos get uploaded 

online every minute, and that's just a fraction of the total amount of media created each year. 

Information on healthcare is being generated at an exponential rate and analyzed for insights 

every second. The healthcare sector currently accounts for roughly 30% of global data 

volume. By 2025, the CAGR (compound annual growth rate of data) of healthcare data would 

have reached 36% [1]. That's a rate that's 11% quicker than the media and entertainment 

industry and 10% faster than the financial services industry [1]. 

 

It is not possible for humans to keep up with the exponential growth of data, so researchers 

are constantly looking for machine-based solutions to the problem of data classification. 

Computer vision, an interdisciplinary area that studies how computers acquire knowledge of 

digital images, is responsible for automatic image-based data analysis (which also includes 

medical data). The goal of computer vision is to automatically do activities that human and 

animal visual systems can. Classification, detection, and segmentation are typical 

applications of image analysis [2]. The goal of the algorithm in the classification challenge 

is to divide an image into two or more distinct categories. Lung nodules, for instance, can be 

categorized as benign or malignant, and visuals can be sorted into those with cats and those 

with dogs. The purpose of the algorithm in the detection task is to locate objects in 2D or 3D 

space, such as the identification of lung nodules in Computed Tomography (CT) scans. The 

algorithm's goal in the segmentation challenge is to provide a pixel-wise delineation of 

pathology or an organ, such as the surface of a lung, kidney, spleen, or tumor in a CT, 

ultrasound, or Magnetic Resonance Imaging (MRI) image. 

 

In this thesis, we apply transfer learning to a medical problem of practical importance—the 

classification of images from nuclear imaging for the diagnosis of myocardial ischemia—at 
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the interface of medicine and computer science. This research has the potential to improve 

the accuracy and efficacy of healthcare diagnosis by shedding light on how transfer learning 

might be implemented in real-world procedures. 

 

This thesis is broken down into five sections: the introduction, the ischemia heart disease, the 

artificial intelligence, the materials and methods, the experimental results, the discussion and 

the conclusion. As a whole, the thesis starts with an explanation of the issue and the suggested 

solution, moves on to the execution, and then discusses the outcomes. Each section of the 

thesis will be organized as follows.  

 

The most important ideas presented in this thesis are outlined in the Introduction/Literature 

Overview (Chapter 1). The purpose of this chapter is to expose the reader to the study's basic 

principles, as well as its primary themes and overarching goals. This chapter focuses on the 

organization of the thesis, the identification of the issue, and the placement of the solution. 

Artificial intelligence and myocardial ischemia are two of the major concepts that are defined 

in literature overview. Furthermore, the purpose of this chapter is to offer empirical proof 

that the stated issue is indeed a serious one. Finally, it tries to explain why this study is an 

important addition to the field and how it builds on earlier findings. Data collection and pre-

processing specifics for this study are included in Materials and Methods (Chapter 2), along 

with the overall workflow of ischemia detection from polar maps. The outcomes of this study 

and potential future research topics are covered in Results and Discussion (Chapters 3-4). 

Finally, we concluded the findings of our thesis in Chapter 5. 

1.2. Motivation 

Heart disease has been a leading cause of mortality and disability worldwide over the past 

three decades. One-third of all fatalities in 2019 were attributable to the disease, which 

includes stroke and heart attack [3]. Research published in the journal Circulation found that 

deaths from cardiovascular disease rose during the pandemic, affecting Hispanic, Black, and 

Asian individuals disproportionately [4]. An analysis of fatalities in the United States 

from March-August 2020 found that 339,076 were caused by cardiovascular disease and 

76,767 were caused by cerebral artery disease, which affects the brain's vascular system [3].  
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Consequently, cardiac diseases must be addressed and managed carefully which also 

includes myocardial ischemic condition. This is why high-tech imaging methods like nuclear 

imaging are so important for early identification of potentially fatal diseases. Positron 

Emission Tomography (PET) imaging and other nuclear imaging methods have received a 

lot of headlines lately for their potential to aid in the detection of myocardial ischemia [5]. 

The interpretation or analysis of images acquired by PET-MPI (Myocardial Perfusion 

Imaging) is generally undertaken by medical professionals. Clinical interpretations can be 

greatly improved by using AI-enhanced computer-aided diagnosis (CAD) tools [6] [7]. 

Furthermore, AI techniques can be beneficial in some jobs, such as image classification in 

medicine, a crucial issue to identify diseases. For instance, making a diagnosis of cardiac 

ischemia using polar map image-data is fundamentally a classification problem. In these 

situations, doctors need to determine if a given polar map shows a normal (high perfusion) 

or abnormal (low perfusion) state of health [5] [8]. 

 

Deep learning, the subfield of machine learning that makes use of multilayered neural 

networks, has attracted a lot of attention in recent decades. With the help of convolutional 

neural networks (CNN), deep learning has achieved remarkable success in image-based 

data classification and analysis tasks. In the field of medical imaging research, numerous 

effective classification algorithms have been implemented using machine learning 

approaches [9] [10] [11]. Many medical professionals have heard of and used successful 

classifiers like the support vector machine (SVM) and k-nearest neighbor (k-NN) [12] [13]. 

Deep learning (DL) has been the method of choice recently for solving previously intractable 

problems and significantly improving the performance of traditional machine learning 

methods. Furthermore, DL is not a specialized approach; rather, it is a disruptive force in 

many other scientific areas. Researchers in the field of medical imaging must thus 

immediately and fully use DL technology. 

 

CNNs have quickly risen to prominence as one of the most widely used methods for image 

classification since the 2012 ImageNet competition [14]. Therefore, researchers in the field 

of medical imaging have looked to CNNs to help them with medical image classification 
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problems so that doctors may make more informed diagnoses [15]. Simply said, a CNN is a 

prediction model which analyzes and categorizes images by feeding with a large training 

dataset [16]. CNNs have shown promising results in many areas, but they have yet to be 

widely embraced for use in medical image classification problems, where real-world data is 

typically scarce and computational resources are expensive. Ethical concerns can arise when 

attempting to gain access to medical records stored in bioinformatics facilities [15] [17]. The 

difficulties of creating a unique CNN can also be met through the use of transfer learning. 

Predictive capability of a CNN model trained on a huge dataset can be leveraged on new 

tasks [18] [19] [20]. This technique is known as Transfer Learning (TL). The performance 

and effectiveness of DL in classification problems is enhanced by transfer learning, 

according to a number of published research [21]. Since these pre-trained models were 

developed for use with natural data, applying them to the classification of medical images 

remains an intriguing and difficult area of study [22]. 

1.3. Previous Studies in Ischemia Diagnosis 

There have been several notable studies related to ischemia detection from polar maps and 

classification using transfer learning and machine learning. In this section, we will 

summarize key studies related to our work as shown in Table 1.  

Table 1. Previous studies found in ischemic detection. 

 

Klen et al. [23] demonstrated the potential of machine learning in detecting myocardial 

ischemia using polar map data from PET myocardial perfusion imaging. The authors 

compared various ML algorithms, including logistic regression (LR), support vector 

Ref. Applications Clinical 

Interpretation 

Custom 

CNN 

TL ML MS-

DenseNet 

Best 

Accuracy 

[7] Ischemia Detection    ✓  71-72% 

[23] Ischemia Detection - ✓ - ✓ - Upto 88% 

[24] Ischemia Detection ✓ ✓ - - - 83% 

[25] Ischemia Detection - - ✓ - - 86% 

[26] Ischemia Detection  ✓ ✓   82% 

[27] Myocardial Infarction  ✓    93-95% 

[28] Ischemia Detection  ✓    94-95% 

Our work Ischemia Detection - - ✓ ✓ ✓ 97% 
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machines (SVM), and random forests (RF), and reported a (0.75-0.88) accuracy score with 

10-fold cross-validation and (0.70-0.87) accuracy score with a separate holdout dataset. 

Teuho et al. [24] applied custom CNN to polar map data for automatic detection of 

myocardial ischemia. They compared CNN-based methods for detecting ischemia with 

clinical interpretation. CNN based model achieved 83% accuracy. However, it was 5% less 

than the accuracy of clinical interpretation which is 87%. 

Seyed et al. [25] presented various transfer learning models for automatic detection of 

ischemia from polar maps. In this study, the VGG19 model achieved 85% accuracy which is 

2% higher than that of custom CNN model presented by Teuho et al. [24]. The accuracy was 

further improved to 86% by incorporating ensemble learning in Seyed et al. study. 

For ensemble learning ML, 16 features were used in the study of Luis Eduardo et al. (2018) 

[7]. ML identified patients with myocardial ischemia and those at increased risk of MACE 

with accuracies of 0.72 and 0.71, respectively. In another study (2020), Luis et al. 

implemented DL architecture based on transferred layers from the  neural network of 

ResNet50. DL showed accuracy at 82% with sensitivity around 87% [26]. 

In 2017, Acharya et al. focused on automatic detection of myocardial infarction using 

convolutional neural network [27]. Using ECG beats with and without noise removal, this 

study's average accuracy was 93.53% and 95.22 percent, respectively. Another study found 

that Deep CNN had an acc of 94.95% for segment 1 (2 seconds) and 95.11% for segment 2 

(5 seconds) when determining whether or not an ECG was normal or abnormal [28]. 
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1.4. Ischemia Heart Disease 

Insufficient blood and oxygen delivery to the heart muscle is the hallmark of myocardial 

ischemia, a medical condition typically caused by the blockage or constriction of coronary 

arteries. In this section, we discussed etiology, pathophysiology, and clinical manifestations 

of myocardial ischemia as follows: 

1.4.1. Etiology 

Myocardial infarction, sudden cardiac death, and angina are just a few of the potentially 

serious side effects of myocardial ischemia, a pathological state that develops when the flow 

of oxygenated blood to the heart muscle is insufficient as shown in Figure 1. Myocardial 

ischemia is caused by a complex combination of environmental, genetic, and behavioural 

variables, which has a multifactorial etiology. This thorough analysis goes into great detail 

into the causes of myocardial ischemia. 

 

Figure 1. Ischemic heart condition caused by infarction or insufficient oxygenated blood 

flow. 

a) Atherosclerosis 

The main factor causing myocardial ischemia is atherosclerosis [29]. It is a long-lasting 

inflammatory condition that causes atherosclerotic plaques to form in the artery walls as a 
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result of the slow buildup of inflammatory cells, lipids, and fibrous tissue. These plaques can 

obstruct the coronary arteries completely or partially, which would reduce blood flow 

to myocardium. A number of processes contribute to atherosclerosis development: 

• Endothelial dysfunction: The onset of atherosclerosis is marked by endothelial 

dysfunction. Reduced ability to vasodilate, increased vascular permeability, pro-

inflammatory, and pro-thrombotic states are its defining characteristics [30]. 

Endothelial dysfunction can be caused by many things, including smoking, high 

blood pressure, hyperlipidemia, and diabetes mellitus. 

• Lipid accumulation: Low-density lipoprotein (LDL) particles that are carrying 

cholesterol infiltrate and become entrapped in the artery intima. Oxidized LDL 

(extremely atherogenic) is created when these particles go through oxidative 

alteration. By stimulating endothelial, smooth muscle, and macrophage cells, 

oxy-LDL can cause an inflammatory response. 

• Plaque and inflammation development: Activated endothelial cells release 

adhesion molecules, which promote the attraction of circulating leukocytes, 

especially monocytes, to the artery intima. Monocytes change into macrophages 

once they reach the intima, which absorbs ox-LDL particles and develops into 

lipid-rich foam cells. Foam cell buildup, smooth muscle cell division, and 

extracellular matrix synthesis all contribute to the development of atherosclerotic 

plaques. 

• Plaque development and complications: Atherosclerotic plaques can advance to 

induce luminal constriction, which lowers blood flow and causes myocardial 

ischemia. Plaques that have thin fibrous cap, a substantial necrotic core, and a 

significant amount of inflammatory cells are thought to be weak and more prone 

to rupturing. Acute coronary events, e.g. myocardial infarction, and thrombus 

development are both caused by plaque rupture. 

b) Coronary artery vasospasm 

Vasospasm, or sudden and temporary constricting of coronary arteries, can result in 

myocardial ischemia by limiting the flow of blood to myocardium [31]. Vasospasm can 

happen on its own or be brought on by things like being exposed to the cold, going through 
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stressful situations, or using cocaine. Endothelial dysfunction, an increase in the generation 

of vasoconstrictor chemicals, and improved cardiovascular smooth muscle contractility are 

all factors in the underlying mechanism of vasospasm. 

c) Thromboembolic events 

These events are yet another potential factor in myocardial ischemia. The development of 

blood clots can take place outside of or inside the coronary arteries, with the clots then having 

the potential to embolize coronary circulation. Thrombi can develop as a result of 

endothelium damage, hypercoagulable states or blood stasis, which can result from genetic 

factors, acquired diseases, or the use of particular drugs [32]. 

d) Structural abnormalities 

The occurrence of myocardial ischemia can be attributed to the modification of blood flow 

and the hindrance of oxygen supply to heart muscle, which can be caused by structural 

anomalies of the coronary arteries, whether they are congenital or acquired [33]. Congenital 

anomalies are infrequent occurrences; however, they can have notable impacts, especially 

among the younger population. The aforementioned instances comprise single coronary 

artery, anomalous coronary artery origin, and coronary artery fistula, that may result in 

compromised blood supply and ischemia. 

The development of coronary artery anomalies can be attributed to a range of factors 

including pathological conditions, physical injury, or medical procedures. Coronary artery 

dissection is a medical condition characterized by a breakdown of arterial wall layers, leading 

to the obstruction of blood flow and consequent ischemia. During cardiac operations e.g. 

percutaneous coronary intervention or coronary artery bypass grafting, iatrogenic coronary 

artery injuries may arise, resulting in compromised blood flow or adverse effects such as 

dissection, thrombosis, or restenosis. Kawasaki disease is a type of acute systemic vasculitis 

that primarily affects young children. It has the potential to cause coronary artery aneurysms, 

occlusions or stenosis, which can lead to myocardial ischemia or infarction. 

1.4.2. Pathophysiology 

Myocardial ischemia is a condition characterized by insufficient delivery of oxygen to the 

heart muscle, also known as myocardium, resulting from a decrease or constriction of blood 
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flow. The pathophysiological mechanisms underlying myocardial ischemia are intricate and 

multifactorial, encompassing a cascade of interrelated processes that culminate in cellular 

impairment and consequent injury to the myocardial tissue [34]. 

Myocardial ischemia is primarily caused by a discrepancy between the supply and demand 

of oxygen in the myocardium. The phenomenon can manifest due to various factors, such as 

heightened myocardial workload, diminished blood oxygen-carrying capacity, or a 

confluence of both. Coronary blood flow is the primary determinant of oxygen supply to the 

heart muscle. However, this flow can be negatively impacted by various factors, including 

vasospasm, atherosclerosis or thromboembolic events. In contrast, the determination of 

myocardial oxygen demand is contingent upon various factors, including contractility, heart 

rate, and wall stress. Ischemia occurs when the myocardium's oxygen demand surpasses the 

available supply [35] [36]. 

Myocardial cells experience a lack of oxygen during an ischemic period, which results in 

their inability to sustain aerobic metabolism. Consequently, individuals transition to 

anaerobic metabolism, resulting in a reduced energy production rate and the buildup of 

hydrogen ions and lactate. The alteration in metabolic processes causes a reduction in the pH 

within the cell, thereby compromising its functionality and initiating a series of deleterious 

consequences on the myocardium [37]. 

The presence of hydrogen ions and lactate in ischemic myocardium can initiate various 

cellular processes, such as hindrance of ion transportation through the cell membrane, 

modifications in intracellular calcium regulation, and the stimulation of proteolytic enzymes. 

The perturbation of ion transportation through the cellular membrane may result in cellular 

depolarization and consequent impairment of membrane integrity. The aforementioned 

phenomenon may lead to an increase in the entry of extracellular calcium ions, thereby 

exacerbating cellular dysfunction and promoting cellular demise [38].  

Myocardial ischemia has an impact on intracellular calcium handling. The presence of 

ischemia may result in a disturbance in the regulation of calcium within the cells of the 

myocardium, ultimately resulting in an increase in the concentration of calcium ions within 

the cell. The aforementioned phenomenon has the potential to negatively impact the 

contractility of the myocardium. Additionally, it can facilitate the activation of multiple 
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proteolytic enzymes, such as phospholipases and calpains, which can exacerbate the 

impairment of cellular structure and function [39], [40].  

Prolonged ischemia can cause a gradual deterioration in myocardial function due to the 

absence of oxygen and nutrients. This can ultimately lead to irreversible cellular damage and 

death. Cell death caused by ischemia, known as necrosis, usually initiates in the 

subendocardial area of the heart. This region is particularly susceptible to ischemic damage 

due to its high oxygen requirements and restricted collateral blood supply. In cases where the 

ischemic episode endures, there is a possibility for the progression of necrosis, which can 

affect a greater extent of the myocardium, ultimately resulting in the emergence of 

myocardial infarction [41]. 

The reinstatement of blood circulation to the ischemic heart muscle, commonly known as 

reperfusion, is a crucial measure in the treatment of myocardial ischemia. Reperfusion injury, 

a well-known phenomenon, can also be a contributing factor to myocardial injury during 

reperfusion [42]. Reperfusion is a process that involves the reintroduction of nutrients and 

oxygen to the ischemic myocardium. This process can lead to the generation of reactive 

oxygen species (ROS), which have the potential to cause oxidative damage to cellular 

components, including lipids, proteins, and DNA. Furthermore, the process of reperfusion 

has the potential to trigger the initiation of inflammatory cascades and the mobilization of 

leukocytes towards the affected myocardial tissue, thereby intensifying the extent of tissue 

injury [43]. 

The pathophysiology of ischemia encompasses a significant aspect related to the emergence 

of arrhythmias, which are electrical abnormalities that result from the modifications in 

cellular electrophysiology caused by ischemia [44], [45]. The ischemic myocardium's 

electrical instability can present itself in different forms of arrhythmias, which can range 

from premature beats that are relatively harmless to fibrillation or ventricular tachycardia that 

can be life-threatening. 

The primary cause of electrical changes in the ischemic myocardium is the disparity of ion 

concentrations through the cell membrane, along with changes in the function of transporters 

and ion channels The build-up of extracellular potassium in ischemic events may result in a 

reduction of the resting membrane potential, thereby influencing the electrical stimulation of 
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myocardial cells and facilitating the onset of arrhythmias. Likewise, the dysfunction of 

intracellular calcium regulation may play a role in the development of arrhythmias by 

impacting the myocardium's contractile performance and refractory period. 

In addition, the diverse characteristics of ischemic injury have the potential to generate areas 

of electrical non-uniformity in the myocardium. These regions can act as a foundation for the 

onset and spread of reentrant arrhythmias. Reentry is a physiological process in which 

electrical impulses circulate repeatedly within the cardiac tissue, resulting in the persistence 

of an irregular heartbeat. The formation of reentrant circuits may be facilitated by areas of 

unidirectional block or slow conduction in the ischemic myocardium [46]. 

Arrhythmias that are induced by ischemia can have noteworthy clinical implications, 

considering that they may impede cardiac output and worsen myocardial ischemia by 

augmenting myocardial oxygen demand. In instances of heightened severity, the emergence 

of malignant ventricular arrhythmias, e.g.  fibrillation or ventricular tachycardia, may result 

in hemodynamic collapse and sudden cardiac fatality [47]. 

The pathophysiology of myocardial ischemia is a multifaceted and dynamic phenomenon 

that entails a complex interplay of structural, metabolic, and electrical alterations within the 

myocardium, as evidenced by the available literature. Myocardial ischemia is primarily 

caused by an inequilibrium between the supply and demand of oxygen in the myocardium, 

which can trigger a series of cellular responses such as disrupted ion transportation, modified 

calcium regulation, and the initiation of proteolytic enzyme activity. Prolonged ischemia can 

lead to injury, cellular dysfunction, and eventual cell death. Furthermore, the electrical 

fluctuation of the ischemic myocardium may contribute to the emergence of arrhythmias, 

which can result in noteworthy clinical implications and worsen myocardial ischemia. 

1.4.3.  Clinical Manifestations 

Depending on factors like duration, severity, and location, myocardial ischemia can cause a 

wide range of different clinical manifestations. A few examples of common symptoms are: 

• Chest pain due to insufficient blood supply to the heart muscle is called angina 

pectoris [48, p. 12], [49]. Depending on the duration, frequency, and triggers, angina 

can be characterized as stable, unstable, or variant [48]. 
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• Myocardial ischemia can occur in a silent form, known as silent ischemia, and only 

be discovered by chance during cardiac testing [50]. 

• A heart attack, also known as the myocardial infarction, occurs when muscle of 

heart’s cells die from a lack of oxygen for an extended period of time [51]. Those 

affected may have acute chest pain, difficulty breathing, nausea, vomiting, and 

profuse sweating. 

• Failure of the heart to pump blood adequately is known as heart failure, and it can be 

the result of either persistent myocardial ischemia or myocardial infarction [52]. 

• Ischemic events can set off arrhythmias, or abnormal cardiac rhythms, which can 

have fatal implications including ventricular fibrillation or ventricular tachycardia 

[53]. 

1.5. Advanced Imaging Modalities for Myocardial Ischemia 

Myocardial ischemia happens when there is a decrease in the blood supply to the heart muscle 

and therefore a lack of nutrients and oxygen. Ischemia must be diagnosed quickly and 

evaluated precisely in order to be effectively treated and managed. Recently developed 

imaging techniques have allowed for more precise diagnoses, more precise risk assessments, 

and more precise revascularization procedures. In just over a thousand words, this article 

discusses the most useful advanced imaging techniques for myocardial ischemia. 

1.5.1. Cardiac Magnetic Resonance (CMR) 

Magnetic fields and radio waves are used in cardiac magnetic resonance imaging (CMR), a 

noninvasive imaging method, to provide high-resolution images of the heart's function and 

structure [54], [55]. Myocardial ischemia can be evaluated with CMR since it measures 

perfusion, vitality, and contractile function of the heart. 

Myocardial tissue properties can be evaluated thanks to CMR's high spatial resolution and 

strong soft tissue contrast. Furthermore, it does not use contrast chemicals and does not 

require ionizing radiation. Patients experiencing claustrophobia or those who have had metal 

implants are not good candidates. 
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1.5.2. Positron Emission Tomography (PET) 

Injectable radiotracers that produce positrons are used in Positron Emission Tomography 

(PET), a nuclear-imaging technique. Myocardial ischemia may be evaluated with precision 

with PET because of the quantitative information it offers on metabolism, blood flow, and 

viability in the heart muscle [56]. 

The fundamental benefit of PET is its capacity to identify ischemia with high sensitivity and 

specificity, and to evaluate the severity and extent of the disease. By locating viable 

myocardium that could gain from revascularization, it can also guide revascularization 

techniques. PET is less widely available than other imaging modalities because it subjects 

patients to radiation that is ionizing and calls for the use of a cyclotron facility for the 

synthesis of radiotracers. 

1.5.3. Single-Photon Emission Computed Tomography (SPECT) 

Myocardial perfusion and function can also be evaluated with Single-Photon Emission 

Computed Tomography (SPECT), an alternate nuclear imaging technique which employs 

gamma-emitting radiotracers [57]. Because of its low cost and widespread availability, 

SPECT is often employed in the diagnosis of myocardial ischemia. 

Wall motion anomalies, ejection fraction, and myocardial viability are only a few of the 

functional cardiac parameters that can be assessed with SPECT. It can also be used to direct 

revascularization decisions by pinpointing ischemic regions in need of treatment. However, 

SPECT patients to radiation that is ionizing and has inferior spatial resolution than PET and 

CMR. 

1.5.4. Computed Tomography Angiography (CTA) 

Noninvasively capturing high-resolution pictures of the coronary arteries, computed 

tomography angiography (CTA) relies on X-ray technology. Myocardial ischemia can be 

evaluated by measuring parameters including plaque composition and coronary artery 

stenosis [58], [59].  

Coronary computed tomography angiography (CTA) has excellent diagnostic accuracy for 

diagnosing serious coronary artery disease as well as can provide useful information 

regarding coronary anatomy, which is essential for planning revascularization treatments. 
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When comparing, invasive coronary angiography (CTA) results in significantly lower 

radiation doses for patients. Patients with renal impairment may have issues with the 

application of iodinated contrast agents, that are necessary for the procedure [59]. 

1.5.5. Contrast Echocardiography 

To better see the heart's anatomy and function, contrast echocardiography uses ultrasonography in 

combination with intravenous contrast chemicals. Myocardial ischemia patients benefit greatly 

from its use since it allows for a more accurate evaluation of myocardial perfusion and viability [60].  

The benefits of contrast echocardiography are its non-invasive characteristics, extensive 

accessibility, and comparatively lower expenses in comparison to other sophisticated 

imaging techniques. Furthermore, the procedure does not subject patients to radiation that is 

ionizing and can be conducted either in the outpatient facility or at patient's bedside. The 

utilization of contrast agents facilitates enhanced demarcation of the endocardial border, 

superior evaluation of regional wall motion anomalies, and assessment of myocardial 

perfusion, thereby aiding in the identification and measurement of ischemia [61], [62]. 
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1.6. Artificial Intelligence 

The goal of artificial intelligence (AI) research is to develop computer systems with 

capabilities analogous to those of the human brain, including perception, language 

processing, decision-making, and decision-making based on incomplete or conflicting data. 

The performance of AI systems may be improved over time by analyzing data with statistical 

models and algorithms to learn. 

 

Figure 2. Artificial Intelligence and its sub-specializations. 

Some examples of artificial intelligence, as shown in Figure 2, are: 

 

1. Rule-based systems: Systems that rely on a set of rules established in advance to guide 

decision-making and behavior are called rule-based systems [63]. 

2. Machine Learning: Machine Learning (ML) refers to pre-programmed computer 

systems with the ability to learn new tasks automatically [64]. They utilize algorithms 

to sift through data in search of trends or forecasts. 

3. Deep Learning: When it comes to analyzing data and finding patterns, deep learning 

is a sort of machine learning that employs artificial neural networks that mimic 

the function and structure of the human brain [65]. 

4. Natural Language Processing: One branch of artificial intelligence, Natural 

Language Processing (NLP), is devoted to just processing and comprehending human 

language so that computers can do the same [66]. 
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Numerous sectors, from healthcare and banking to retail and manufacturing, can benefit from 

AI's many features. Numerous medical procedures, from diagnosis to treatment planning to 

drug development to patient monitoring, can all benefit from the usage of AI. Security and 

data privacy, algorithmic prejudice, and the possibility of job displacement are just a few of 

the ethical, legal, and societal problems brought up by the use of AI in healthcare. In spite of 

these obstacles, AI has great promise for enhancing healthcare delivery in many ways, 

including through better diagnosis and treatment, lower healthcare costs, and better patient 

outcomes [67]. 

1.6.1. AI in Medicine 

The use of AI in medicine has potential to dramatically improve diagnostic precision and 

therapy timeliness. Images, genetic data, and Electronic Health Records (EHRs) are just a 

few examples of the types of medical data that may be analyzed by AI to uncover trends and 

predict patient outcomes [68]. The ability to detect and diagnose illnesses at an early stage is 

one area wherein AI has shown great promise in the medical field. AI algorithms may 

examine medical pictures like MRIs, X-rays, and CT scans to look for symptoms of cancer 

and other illnesses in their earliest stages [69]. The sooner a disease is identified and treated, 

the better the chances of a positive prognosis and even survival for the patient. The use of AI 

in tailoring care to an individual patient is another promising area of application [70]. AI 

systems can determine the best course of therapy for an individual patient by studying their 

medical records, genetic data, and other relevant data. Positive therapeutic results and fewer 

unwanted side effects may result from this. 

 

AI has applications beyond just medical diagnosis and treatment, including better patient 

monitoring and overall care. For instance, AI systems may monitor things like a patient's 

vitals, medication intake, and activity levels to look for deviations that could point to a 

deterioration in health. By stepping in before issues arise, physicians and other medical staff 

can hopefully improve patient outcomes. Despite these positives, however, there are also 

many questions and issues that arise when AI is used in the medical field. AI algorithms' 

possible propensity for prejudice and inaccuracy is a major cause for worry. Incorrect or 

improper diagnoses or treatment suggestions might be generated by AI systems if they were 

trained using biased or insufficient datasets. 
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The prospect for AI to supplant human decision-making and clinical knowledge is another 

source of concern. Medical experts and other professionals will still need to play a pivotal 

role in patient care, even with the help of AI for diagnosis and treatment planning. 

There are additional ethical and legal questions that need to be answered before AI may be 

used in the medical field. Concerns concerning patient security and data privacy are 

prompted, for instance, by the employment of artificial intelligence systems for such analysis 

[71]. Patient information must be protected and managed in accordance with applicable laws. 

Overall, AI has great potential to dramatically alter the medical industry by enhancing 

diagnostic precision and treatment timeliness. AI 

1.6.2. Machine Learning 

Machine learning (ML) is the core branch of AI concerned with development of algorithms 

with the ability to analyze data and draw conclusions or spot trends. To learn from experience 

and get better over time, ML algorithms employ statistical methods of data analysis. 

 

 

Figure 3. Categorization of machine learning. 

Machine learning may be broken down into numerous subfields as shown in Figure 3: 
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1. Supervised learning: involves the utilization of a labelled dataset to train an 

algorithm, whereby both the input data and desired output are provided. The 

algorithm acquires knowledge of the correlation between the input characteristics and 

the outcome variable, thereby enabling it to generate forecasts for novel, unobserved 

data. Frequently utilized supervised learning methodologies encompass logistic 

regression, linear regression, decision trees and support vector machines [72].  

 

2. Unsupervised learning: is a machine learning technique whereby an algorithm is 

trained on dataset that lacks labelling, and only input features are available for 

analysis. The objective of the algorithm is to identify patterns or structures inherent 

in the data. This mode of learning proves to be advantageous in applications such as 

dimensionality reduction, clustering, and anomaly detection. Unsupervised learning 

methods that are frequently employed include hierarchical clustering, k-means 

clustering, and PCA (principal component analysis ) [73].  

 

3. Reinforcement learning: is a type of machine learning algorithm that enables an agent 

to learn how to make the right choices by responding to an environment. The agent 

receives feedback in the form of rewards or the penalties for its actions and utilize 

this information to update its decision-making strategy over time. The learning agent 

is subject to a feedback mechanism that involves receiving either penalties or rewards 

for each action it undertakes. This feedback is then utilized to update the agent's 

knowledge and enhance its decision-making capabilities. Reinforcement learning 

methods have extensive applications in various domains, including robotics, control 

engineering, and artificial intelligence for gaming, as exemplified by AlphaGo [74], 

[75]. 

 

In addition to healthcare, retail, finance, and manufacturing, ML has numerous potential uses 

in other sectors. ML has several potential applications in the healthcare industry, including 

the prediction of patient outcomes, the discovery of new medication targets, and the 

enhancement of medical image processing [67]. 
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Concerns about algorithmic prejudice and the possibility of employment displacement are 

only two examples of the ethical, legal, and societal issues brought up by ML's application. 

Despite these obstacles, ML has potential to revolutionize the healthcare system by 

increasing diagnostic precision, streamlining treatment, lowering costs, and improving 

patient outcomes. 

1.6.3. ML in Computer-Aided Diagnosis 

For many years, medical professionals have relied on computer algorithms to help them 

analyze medical images and make diagnoses; recently, however, machine learning (ML) has 

shown considerable promise in this area of computer-aided diagnosis (CAD) [76]. With the 

use of CAD systems, medical image analysis may be performed more precisely and rapidly, 

easing the burden on radiologists while also enhancing patient care. Multiple ML methods, 

such as supervised and unsupervised learning and even deep learning, can be applied to 

computer-aided design (CAD) [15]. Algorithm training on a labelled dataset where the 

accurate diagnoses are known beforehand is what supervised learning is all about. Data is 

clustered or grouped according to similarities or differences without being given the proper 

diagnosis in advance, as is the case with unsupervised learning [73]. One sort of neural 

network, known as "deep learning," excels at handling massive, intricate data sets. 

 

Though ML's applications in CAD have shown much potential, several obstacles and 

restrictions must still be overcome. Training ML algorithms require huge, high-quality 

datasets, which presents a significant difficulty in and of itself. In the case of uncommon 

diseases or conditions, acquiring such data sets can be arduous and costly. Further 

complicating matters, ML algorithms may be biased or inaccurate. Algorithms run the risk 

of providing incorrect or improper diagnoses or treatment suggestions if they were trained 

on biased or inadequate data. To accurately diagnose a population, it is crucial that the data 

used for training be as diverse and representative as possible [77], [78]. 

 

By enhancing the accuracy of medical image analysis and diagnosis, machine learning has 

the potential to significantly impact the field of computer-aided diagnosis. Radiologists can 

get help from ML algorithms in spotting and categorizing anomalies, which could lead to 

quicker diagnosis and better care. The application of ML in CAD is fraught with difficulties 
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and restrictions, but the field of medical imaging stands to gain much from exploring its 

possibilities. 

1.6.4. Deep Learning and Image Classification 

Deep learning is a specialization of machine learning that makes extensive use of networked 

computers programmed to act as neural networks. In recent years, it has emerged as a potent 

resource for many fields, including computer vision, NLP, and speech recognition. The field 

of medical imaging has benefited greatly from deep learning in recent years, especially in the 

application's ability to classify images. Automated analysis of medical images for the 

detection of features or patterns is known as medical image classification [79]. Diseases can 

be diagnosed more accurately, treatment outcomes can be tracked, and surgical procedures 

may be planned with more precision with this information. Since deep learning can learn and 

adapt to new situations automatically, it has been shown to be especially useful in this 

domain. Among deep learning's many benefits for medical picture categorization is its speed 

and accuracy in handling massive datasets. Because of the prevalence of the use of huge 

datasets in the training of machine learning models in the medical profession, this is of 

paramount importance. Using their intuitive understanding of data, deep learning algorithms 

can swiftly modify their settings to maximize precision. Automatic feature extraction from 

image data is another area where deep learning excels [80]. Extracting features for use in 

traditional picture classification methods is a laborious and prone-to-error process. On the 

other hand, deep learning algorithms can be trained to discover how to independently and 

accurately locate important data features. 

 

Diagnostic imaging for diseases as diverse as lung cancer, breast cancer, and Alzheimer's 

disease has all benefited from the application of deep learning in recent years. Using 

mammography scans as training data, a deep learning network was able to detect breast 

cancer with an accuracy of 90.5% [81]. With a sensitivity of 88.5% and a specificity of 

90.1%, another study employed deep learning to classify brain MRI data as normal or 

abnormal automatically [82]. Deep learning has been applied to image segmentation, the 

process of splitting an image into segments, in addition to classification [83]. This can help 

in the diagnosis of malignancies and the localization of blood arteries inside medical pictures. 

One study even managed to achieve 95% segmentation accuracy for liver cancers in CT scans 
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using deep learning, proving its usefulness in this field [84]. There are certain drawbacks to 

using deep learning for image classification on medical image data, despite the many benefits 

it provides. Big labelled data sets are needed to train the algorithms, which presents a 

significant problem [85]. Due to ethical and privacy concerns reasons, the medical industry 

presents unique challenges when it comes to gathering labeled data. It's also important that 

deep learning models can be understood by humans. It can be difficult to decipher how a 

deep learning algorithm arrived at a certain conclusion, leading to the common perception 

that such algorithms should be avoided. Especially in the realm of medicine, where knowing 

the rationale behind a treatment or diagnosis suggestion is crucial, this can be a major issue. 

 

Finally, it's clear that deep learning has emerged as a powerful resource for diagnostic image 

categorization. Its strengths include fast and precise data processing, the capacity to extract 

features automatically from image data, and a relatively small memory footprint. Despite the 

difficulties of applying deep learning in medicine, such as the requirement for vast volumes 

of labelled data and the requirement for interpretability of models, this field of study has great 

promise for advancing medical diagnosis and treatment. 

1.6.5. Transfer Learning and Feature Extraction 

Machine learning relies heavily on the integration of several key ideas, including transfer 

learning and feature extraction. Feature extraction is the process of choosing and extracting 

useful characteristics from a dataset [86], while transfer learning is the application of 

information gained in one domain to another [20]. This section will discuss the synergy 

between feature extraction and transfer learning, as well as the advantages of each and the 

most common approaches of implementing them. 

 

Using what you've learnt in one context or field and applying it to another is called transfer 

learning. When training data is scarce for the intended job or building a model from scratch 

is too computationally intensive, transfer learning can be an invaluable tool in the machine 

learning approach [19]. By leveraging the weights and topologies of previously trained 

models, transfer learning can be used to boost the effectiveness of newly learned models for 

similar tasks [19] [20], [87]. 
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The best features in a dataset can be isolated through a procedure known as feature extraction. 

The goal is to make the data lower dimensional, or simpler so that it can be more easily 

processed and analyzed. Image recognition, audio recognition, and NLP are just few of the 

many fields that can benefit from feature extraction [88], [89] [90] [91]. It shines in 

circumstances where dataset is huge and complicated, making it difficult to spot the most 

important elements. 

 

Particularly in deep learning, the two techniques of transfer learning and feature extraction 

are frequently utilized simultaneously. Models trained using deep learning have multiple 

levels of processing power and can pick up a wide variety of features. However, training such 

models from scratch is likely to be time-consuming and computationally costly. Through the 

process of transfer learning, we can employ previously learned models to solve a fresh 

problem. As a result, features learned by pre-trained model for new problem can be fine-

tuned via feature extraction [92]. 

 

As for feature extraction and transfer learning, there are a number of well-known methods. 

In order to avoid overfitting, the majority of transfer learning projects employ a fine-tuning 

strategy in which an already-trained model is retrained on a different dataset. The pre-trained 

model can also be used as a fixed feature extractor, in which case its weights are not updated 

during the training process, and only weights of the newly added layers are trained [93]. 

 

Common methods for extracting features include independent component analysis (ICA), 

principal component analysis (PCA), and the non-negative matrix factorization (NMF) [94]. 

PCA is a linear method that projects the data over the lower dimensional space in order to 

reduce the data's dimensionality. ICA is a method for decomposing multivariate signals into 

component non-Gaussian signals. The NMF method decomposes a matrix into a collection 

of basis coefficients and vectors that could be used to symbolize the information. 

 

TL (Transfer Learning) and feature extraction have many advantages. In the first place, 

transfer learning helps us train models over smaller amounts of data by reusing information 

from larger ones. This can be especially helpful in cases when collecting huge amounts of 
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labeled dataset would be time-consuming or costly. Second, feature extraction can aid in 

reducing data dimensions, making it more manageable and amenable to analysis. In some 

cases, this can even improve processing speed and precision [95]. 

 

Furthermore, machine learning model generalization can be enhanced through transfer 

learning and feature extraction. Overfitting occurs when a model works well on training data 

but adversely on new and unseen data [96]. This issue can be avoided through information 

transfer across tasks. By decreasing data dimensions and removing unimportant 

characteristics that may contribute to overfitting, feature extraction can also aid to improve 

the generalization of models. 

 

CNN models that have been trained on one task and are then made available for use on 

another task are what we call "pre-trained models". Pre-trained models are effective because 

of the high-powered computing resources used during training and the large datasets used to 

feed their hidden layers. You can find pre-trained models (also called networks) in public 

repositories on the internet, such as the Keras applications repository and the TensorFlow 

hub [97], [98]. Many ML issues, such as image recognition and audio categorization, are 

amenable to these networks. Models that have already been pre-trained are judged according 

to how well they do in ImageNet competition. To improve their image recognition 

performance on the ImageNet dataset, scientific teams from all over the world enter an annual 

competition to propose an architecture for CNN . 

 

More than 14 million photos in over 20,000 categories make up the massive ImageNet 

dataset. A human annotated each image in the collection. Annotation works to assign labels 

to photos in order to determine what category they belong to. The goal of the ImageNet 

competition is to create an accurate image classification system that can be applied to this 

database. By the middle of 2022, top-1 accuracy for pre-trained networks on this dataset had 

increased to 85.7%, and top-5 accuracy had reached 97.5% (EfficientNetV2L) [99]. 
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1.7. Proposed Approach: MS-DenseNet Model 

In order to perform better on image identification tasks, the MS-DenseNet deep learning 

model combines the benefits of the well-liked DenseNet architecture with the Multi-Scale 

(MS) method. In a research MS-DenseNet: Multi-Scale Dense Networks for Resource 

Efficient Image Classification introduced by Hieu Le and colleagues is utilized [100]. 

With the feed-forward convolutional neural network design known as DenseNet, each layer 

is connected to every other layer. This strategy promotes feature reuse, which lowers the 

number of parameters the network needs and increases network efficiency. However, features 

scale in the input image, which might be a crucial element in image identification tasks, is 

not taken into consideration by the original DenseNet architecture [101]. 

The creators of MS-DenseNet added a multi-Scale method to the DenseNet architecture to 

overcome this problem . In the Multi-Scale technique, the input image is processed at many 

scales, enabling the network to collect features at various granularities. As a result, the 

network is better able to identify items in the input image that are varied sizes and forms 

[102]. 

Each DenseNet block in the MS-DenseNet architecture is made up of a number of 

convolutional layers, which are followed by one transition layer. In order to reduce the size 

of network, the transition layer compresses the channel dimension and shrinks the spatial 

dimensions of the feature maps. All DenseNet nodes are given an extra module developed 

by the authors called Multi-Scale Dense (MSD). The MSD module concatenates the outputs 

after processing the feature maps at various sizes, assisting the network in capturing multi-

scale information [102]. 

The effective usage of resources is another important aspect of MS-DenseNet. Through the 

use of depth-wise separable convolutions, the scientists developed a novel method for 

lowering the number of parameters in the network [103]. By doing this, the network's 

performance is not sacrificed while the number of parameters is reduced. Additionally, the 

scientists devised a brand-new training method called progressive scaling, which entails 

exposing the network to images of progressively larger sizes while training it. This method 

enables the network to learn features at various scales [104]. 
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Figure 4. Proposed architecture of MS-denseNet. 

In Figure 4, we used a well-known transfer learning DenseNet model as a backbone 

architecture of our proposed model. To reduce the size of the model, we installed three dense 

blocks. Inside each dense block, we replaced the regular convolution layers by Depth-wise 

Separable Convolution (DWSC) layers and incorporated Squeeze and Excitation (SE) 

module to highlight the useful feature channels while suppressing useless feature channels. 

1.7.1. Depth-wise Separable Convolution 

Convolutional neural networks (CNNs) have sophisticated techniques that try to minimize 

computational complexity while maintaining the performance of ordinary convolutions. One 

such technique is called depth-wise separable convolution (DWSC) [105]. Deep learning 

models may be trained more quickly and effectively thanks to DWSC, which is especially 

useful for applications like semantic segmentation, object detection, and picture recognition. 

Convolution is divided into two steps as shown in Figure 5: depth-wise convolution and 

point-wise convolution, to achieve this [106]. 

A collection of filters are convolved with the input feature maps in a conventional 

convolution to create an output feature map for each filter. The input and output 

channels, input spatial dimensions, and filter size all influence how computationally 

complicated this operation is. Large-scale model training and deployment are hampered by 

the growing computational burden and memory needs that come along with expanding deep 

learning models. 
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Figure 5. Depth-wise separable convolution followed by SE module inside the dense block. 

 

By breaking down the typical convolution operation into two components, Depth-wise 

Separable Convolution resolves this problem: 

• Depth-wise Convolution: This process creates just as many output channels as the 

input channels by applying a single filter to every input channel separately [106], 

[104]. As a result, the computational complexity is greatly reduced. Each filter only 

affects one channel. The following formula yields the depth-wise convolution: 

 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  =  𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑖𝑛𝑡𝑝𝑢𝑡  ×  𝑆𝑖𝑧𝑒𝑓𝑖𝑙𝑡𝑒𝑟  ×  𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑡𝑝𝑢𝑡  × 𝑊𝑖𝑑𝑡ℎ𝑖𝑛𝑡𝑝𝑢𝑡 

 

• Point-wise Convolution: After applying a point-wise 1x1 convolution to the output 

channels, the depth-wise features acquired in the previous step are combined [104], 

[106]. If necessary, this operation is in charge of expanding the number of output 

channels. The following formula yields the point-wise convolution: 

 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  =  𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑖𝑛𝑡𝑝𝑢𝑡  ×  𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑖𝑛𝑡𝑝𝑢𝑡  ×  𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑡𝑝𝑢𝑡  × 𝑊𝑖𝑑𝑡ℎ𝑖𝑛𝑡𝑝𝑢𝑡 

 

Depth-wise Separable Convolution considerably lowers the memory requirements 

and computational complexity by splitting the normal convolution into these two parts. 

DWSC makes deep learning model deployment and training more effective by reducing the 

number of parameters and operations by a factor of (𝑆𝑖𝑧𝑒𝑓𝑖𝑙𝑡𝑒𝑟   ×   𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑜𝑢𝑡𝑝𝑢𝑡) when 

compared to regular convolution. 
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1.7.2. SE Module 

The Squeeze-and-Excitation (SE) module is an architectural improvement for neural 

networks that aims to enhance the representational capacity of Convolutional Neural 

Networks (CNNs) by dynamically recalibrating feature responses on a per-channel basis. The 

efficacy of the "Squeeze-and-Excitation Networks" module presented by Jie Hu, Li Shen, 

and Gang Sun was demonstrated by its success in winning the championship for the 

“classification task of the ImageNet Large Scale Visual Recognition Challenge” in 2017 

[107]. 

 

The SE module encompasses a pair of primary operations, namely Squeeze and Excitation. 

The aforementioned operations serve to capture spatial information on a global scale and 

recalibrate feature responses on a per-channel basis [107]. 

 

The squeeze operation is utilized to produce a channel-wise descriptor by aggregating the 

feature map across its spatial dimensions, namely height and width. This terminology 

encapsulates spatial data on a worldwide scale, condensing it into a more concise format. The 

process of obtaining a descriptor of size C × 1 × 1, where C denotes the number of channels 

in input feature map, is commonly achieved through the utilization of Global Average 

Pooling (GAP) [104]. 

 

The objective of the excitation operation is to re-adjust the feature responses of each channel 

through the acquisition of a non-linear correlation between the various channels. For this 

purpose, a neural network consisting of a non-linear activation function (ReLU) and two fully 

connected (FC) layers of small size is utilized [108]. The initial fully connected (FC) layer 

decreases the dimensionality of the descriptor to C/r, where r denotes the reduction ratio, 

commonly established at 16. Subsequently, the second FC layer restores the descriptor to its 

original size equals C × 1 × 1. The ultimate result is subjected to a sigmoid activation function 

to generate channel-specific weights within the interval of [0, 1]. These weights are 

subsequently applied to the initial input feature map to derive the recalibrated feature map. 
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The integration of the SE module into pre-existing Convolutional Neural Network (CNN) 

structures, such as Inception and ResNet, has yielded noteworthy enhancements in 

classification precision, while incurring only a slight rise in computational expenditure and 

model intricacy, as per the findings of researchers [104]. The SE module's principal benefit 

is its capacity to simulate interrelationships among channels, enabling a network to 

selectively accentuate or diminish particular characteristics depending on their significance 

for a given task.  
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2. AIMS AND HYPOTHESIS 

In this section, we present the aims and hypothesis of our study, which focused on 

classifying ischemic and non-ischemic images from myocardial polar maps using the MS-

denseNet model. 

2.1. Aim of The Study 

The primary aim of our study was to develop a robust and accurate classification model for 

identifying ischemic and non-ischemic images from myocardial polar maps. Ischemic heart 

disease is a leading cause of morbidity and mortality worldwide, and early and accurate 

diagnosis plays a crucial role in patient management and treatment planning. By leveraging 

the power of deep learning and transfer learning techniques, we aimed to develop a model 

that could effectively differentiate between ischemic and non-ischemic regions in 

myocardial polar maps. 

2.2. Hypothesis 

The proposed MS-denseNet model will achieve higher accuracy in classifying ischemic and 

non-ischemic images from myocardial polar maps compared to other transfer learning 

models. We hypothesize that the MS-denseNet model, with its densely connected layers 

and multi-scale features, will be able to capture complex patterns and features present in 

myocardial polar maps that are indicative of ischemia. This comprehensive feature 

representation, coupled with the transfer learning approach, allows the model to leverage 

knowledge learned from pre-training on large-scale datasets, thereby enhancing its 

performance in classifying ischemic and non-ischemic images. 

2.3. Justification 

The choice to use transfer learning and specifically the MS-denseNet model stems from its 

proven success in various computer vision tasks and medical imaging applications [104]. 

Transfer learning enables the model to leverage the knowledge acquired from pre-training 

on large-scale datasets, such as ImageNet, which helps in capturing generalizable features 

that can be applied to specific tasks [92]. Furthermore, the dense connectivity pattern in the 

MS-denseNet architecture facilitates feature reuse and enables effective information flow, 
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making it suitable for capturing intricate details in complex images like myocardial polar 

maps. 

3. MATERIALS AND METHOD 

3.1. Patients Selection 

Between 2007 and 2011, a total of 138 patients with symptoms of obstructive CAD were 

hospitalized to Turku University Hospital, and their data is utilized in this thesis. Patients 

were included if they exhibited symptoms consistent with stable chest discomfort. 

Additionally, a prognostic for obstructive CAD was generated before testing. All patients 

gave their permission after being fully informed. The study obeyed the principles and rules 

presented in the Declaration of Helsinki and was approved by ethics board of District 

Hospital of Southwest Finland. Stenström's research provides further information on the 

patient population in the study [109].  

 

Figure 6. Patient data classified into ischemic and non-ischemic labels. 

A total of 189 participants were initially enrolled, however, only 138 were ultimately 

included because they provided sufficient ICA and PET perfusion data in the form of stress 

imaging polar maps. Figure 6 presents the division of patient data into ischemic and non-

ischemic labels. 
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3.2. Data Acquisition 

For initial imaging, a Discovery VCT PET/CT scanner was employed (GE Healthcare Co., 

US). CT coronary angiogram (CTA) and MPI with a PET/CT hybrid were the imaging 

modalities of choice. A CT-based attenuation correction was performed, and then an 

adenosine stress perfusion PET was performed. Two minutes before the start of scan, 140 

micrograms of adenosine per kilogram of body weight were administered intravenously. The 

patient received an intravenous bolus of oxygen-15 tagged water (900 to 1100 MBq) over 

the course of 15 seconds (Radiowater Generator, Hidex Oy, Finland). The heart's perfusion 

was then evaluated using a dynamic mode acquisition (14x5 seconds, 3x10 seconds, 3x20 

seconds, and 4x30 seconds). The acquired image-based data was then reconstructed using a 

2D ordered expectation-maximization method (2D-OSEM) with the following parameters: 

35 cm field of view, 2 iterations, 128x128 matrix size, a 6.0 mm Gaussian post-filter, and 20 

subsets. 

Clinicians used invasive coronary angiography, or ICA, as part of their data collection 

process. For stenoses with a moderate degree (30-80%), fractional flow reserve (FFR) 

measurements were also performed. An expert reader used automated edge-detection 

software to undertake a quantitative study of ICA angiograms. Therefore, >50% ICA stenosis 

or FFR 0.8 was used to characterize obstructive CAD. No matter how thin the coronary artery 

was, if the fractional flow reserve (FFR) was more than 0.8, it was considered to be non-

significant. 

A single reader who was unaware of the ICA results utilized Carimas software (Turku PET 

Centre, Finland) to quantitatively analyze PET perfusion pictures during motion. Once the 

heart's orientation was determined manually, the program could easily identify the 

myocardium. Further, the final ROIs were fine-tuned by hand as necessary. Through 

mathematical modelling with a single tissue compartment model, we were able to derive 

quantitative polar maps of MBF values (stress) expressed in ml/g/min15. After settling on a 

value of 2.3 ml/g/min as the cutoff for ischemia stress MBF, we used the Rainbow colour 

scale to uniformly scale MBF values of stress in polar maps from 0 to 3.5 ml/g/min. 
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3.3. Pre-processing 

A total of 138 stress MBF polar maps with accompanying ICA labels will be used in the 

assessment. The labels used as a benchmark will be determined by analyzing ICA data. Based 

on the ICA's definition of obstructive CAD, we will assign an ischemia (1) or non-ischemic 

(0) classification to each polar map. High-resolution 2D JPEGs of polar maps were obtained 

via the Carimas program. Images were first exported from Carimas at 1024 x 1024 pixels in 

size, before being automatically cropped and reduced in size to 256 by 256 pixels as part of 

the processing pipeline. All pixel values were transformed into the range [0,1]. All three of 

the RGB channels were used to generate the polar maps. Images of polar maps are provided 

as examples in Figure 7. 

 

Figure 7. Non-ischemic states are depicted by the red and yellow colours. Ischemia is 

represented by blue and green colours. 

After computer analysis, polar maps were classified as ischemia or non-ischemic. The 

process of labelling images is crucial to supervised learning classification problems. The ICA 

reference data were used to assign a value of 0 or 1 to each feature on the polar maps. A.txt 

file with the labels in sequential order was created. 

3.4. Workflow 

Here we demonstrate how transfer learning was used to categorize polar map images for 

signs of ischemia. In the end, a unified python code was constructed that incorporates MS-

DenseNet and 12 pre-trained models, together with the necessary libraries for training and 

evaluating the models, after a selection of pre-trained models was chosen for this study. In 
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this pipeline, data was fed to the desired model for deep feature extraction. Once features 

were extracted, the classical ML techniques were used to identify ischemia. K-fold cross-

validation was also incorporated to improve model accuracy. The code was executed, and 

then the outcomes were analyzed and represented graphically (Figure 8).  

 

Figure 8. Classification pipeline to identify ischemia. 

3.4.1. Coding 

A unified code was developed to encompass all pre-trained models and their corresponding 

hyperparameters, in order to accommodate all 12 selected models including MS-

denseNet and the need for adjustments during training. The Tensorflow library served as the 

primary framework for the implementation of neural network layers, architecture and 

hyperparameters modifications in the models. Furthermore, Keras library is employed to 

implement crucial configurations on pre-existing models. The environment and 

interpreter managers utilized in this study were Python (version 3.8) and Anaconda IDE, 

respectively. As per the methodology employed, the pre-existing models were retrieved from 

Keras repository and subsequently consolidated into a singular .Py file. The training and 

evaluation of models were carried out using Anaconda IDE as the Python environment 

manager, with the utilization of essential Python packages such as Pandas, Tensorflow, 

Sklearn, and Numpy. The code was developed and implemented on Kaggle community 

environment (online) and the Windows 10 Pro operating system. 

The general framework for executing pre-trained models is outlined as follows: 
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a) Importing necessary libraries 

b) Uploading data 

c) Deep feature extraction by desired model  

d) K-fold cross-validation 

e) Machine learning classification 

f) Evaluating performance metrics 

 

3.4.2. Base Model 

The initial stage of implementing transfer learning in any machine learning task involves the 

careful selection of a pre-existing model. The pre-existing Convolutional Neural Network 

(CNN) models must undergo training for the image classification task in this scenario. Pre-

existing models designed for the purpose of image classification can be found in numerous 

libraries and publicly accessible websites. Keras Applications and Tensorflow Hub are 

widely recognized as two prominent repositories that curate a comprehensive array of pre-

trained models for classification of images, which are considered to be at the forefront of the 

field. The present study involved the acquisition of pre-trained models from Keras repository. 

According to extant literature, certain models, namely VGG16, VGG19, and Inception, have 

been found to exhibit satisfactory performance in the context of binary classification in 

medical imaging tasks. Conversely, certain models have garnered comparatively less 

scrutiny within this field, including the DenseNet and EfficientNetB lineages. Table 2 

presents a summary of the chosen pre-trained models, including their respective top-1 and 

top-5 accuracy scores on the source task [99]. 

Table 2. Selection of pre-trained models and their summary [99]. 

Model Size 

(MB) 

Top-1 

Accuracy 

Top-5 

Accuracy 

Parameters 

Xception 88 79.00% 94.50% 22.9M 

VGG16 528 71.30% 90.10% 138.4M 

VGG19 549 71.30% 90.00% 143.7M 

ResNet50 98 74.90% 92.10% 25.6M 

ResNet101 171 76.40% 92.80% 44.7M 
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ResNet152 232 76.60% 93.10% 60.4M 

InceptionV3 92 77.90% 93.70% 23.9M 

InceptionResNetV2 215 80.30% 95.30% 55.9M 

MobileNet 16 70.40% 89.50% 4.3M 

MobileNetV2 14 71.30% 90.10% 3.5M 

DenseNet121 33 75.00% 92.30% 8.1M 

DenseNet169 57 76.20% 93.20% 14.3M 

 

3.4.3. K-fold Cross Validation 

The utilization of k-fold cross-validation is a prevalent resampling methodology utilized to 

evaluate the effectiveness and generalization capabilities of ML models in an increasingly 

dependable and impartial manner. The aforementioned methodology aims to mitigate the 

constraints associated with utilizing a solitary train-test division, which could result in an 

over or underestimation of veritable effectiveness of the model owing to probable partialities 

in the data segmentation. K-fold cross-validation involves the division of the initial dataset 

into 'k' partitions of equal size, with no overlap between them. The model is trained iteratively 

by the algorithm for 'k' iterations, where in each iteration, 'k-1' folds are utilized for training 

while the remaining fold is used for validation. As a result, every individual data point has 

the chance to be included in the validation set precisely once, thus affording a thorough 

assessment of the model's efficacy across diverse data subsets. In our project, the extracted 

features by desired model underwent 5-fold cross-validation as shown in Figure 9. 
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Figure 9. K-fold cross-validation, where k = 5. 

The evaluation criterion, such as precision or root mean square error, is calculated for every 

cycle, and the ultimate evaluation is derived by taking the average of the criteria over all 'k' 

cycles. The aforementioned procedure serves to reduce the impact of biases resulting from 

data partitioning and produces a more precise and consistent evaluation of the model's 

authentic efficacy. The utilization of k-fold cross-validation is especially advantageous in 

scenarios where datasets are limited, as it optimizes the use of available data for both training 

and validation objectives. Nevertheless, it is worth noting that utilizing k-fold cross-

validation may necessitate additional time and computational resources in comparison to a 

solitary train-test split, given that the model must undergo training and evaluation k times. 

Notwithstanding the aforementioned trade-off, k-fold cross-validation persists as a 

significant and indispensable methodology for evaluating the efficacy of machine learning 

models, aiding professionals in the processes of hyperparameter tuning, model selection, and 

feature selection. 

3.4.4. Machine Learning Classification 

The utilization of Classical Machine Learning (ML) methodologies has been extensively 

applied in diverse domains, which included but not limited to CV (computer vision), natural 

language processing (NL), speech recognition, and others. Classical machine learning (ML) 

has demonstrated significant achievements in various domains. However, the emergence of 
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deep learning, a branch of ML that employs artificial neural networks (ANN) to represent 

intricate data patterns, has propelled the field forward and resolved issues that were 

previously deemed challenging or unfeasible for classical ML methodologies. In this project, 

we use following classical ML techniques to identify ischemia from features extracted by 

desired models, as shown in Table 3: 

Table 3. Classical machine learning techniques. 

Abbreviation Algorithm Technique 

SVM Support Vector Machines Supervised Learning 

RF Random Forest Supervised Learning 

AdaBoost Adaptive Boosting Supervised Learning 

KNN K-Nearest Neighbors Supervised Learning 

XGBoost Extreme Gradient Boosting Supervised Learning 

Bagging Bootstrap Aggregating Ensemble Learning 

MLPClassifier Multi-layer Perceptron classifier Supervised Learning 

 

1. The Support Vector Machine (SVM) is a widely used supervised learning algorithm 

in the field of machine learning that is primarily utilized for addressing classification 

and regression problems. The Support Vector Machine (SVM) algorithm functions 

by identifying the most effective hyperplane that can accurately distinguish between 

classes through the feature space. The algorithm exhibits effectiveness in addressing 

spaces with a high number of dimensions and incorporates the kernel trick method to 

handle datasets that are not linearly separable. The utilization of diverse 

kernel functions e.g. polynomial, radial basis function, and sigmoid kernels, enables 

the linear separation of classes in higher-dimensional spaces to be more efficient. The 

Support Vector Machine (SVM) algorithm endeavours to optimize the margin, which 

is characterized as the separation between hyperplane and closest points of data from 

each class, known as support vectors. The optimal decision boundary, which is 

determined by selecting the hyperplane at maximum margin, is considered to be a 

crucial factor in the generalization abilities of Support Vector Machines (SVMs). The 

Support Vector Machine (SVM) demonstrates adaptability and efficiency in terms of 



 

42 
 

Master’s thesis in Biomedical Imaging 

memory usage, as it solely necessitates the retention of support vectors to anticipate 

results [110]. The utilization of this technique has been extensively employed in 

various domains, such as natural language processing, computer vision, and 

computational biology. However, the support vector machine (SVM) algorithm 

exhibits certain constraints, including susceptibility to kernel choice and related 

parameters. Furthermore, Support Vector Machines (SVM) may demonstrate 

protracted training periods and restricted scalability in managing voluminous 

datasets. Notwithstanding these limitations, Support Vector Machine continues to be 

a prevalent and resilient option for numerous machine learning assignments, 

particularly when dealing with data of high dimensionality and intricate decision 

boundaries  [111]. 

 

2. The Random Forest (RF) method is a resilient and adaptable ensemble learning 

approach utilized to tackle classification and regression issues within the field of 

machine learning [112]. The ensemble technique incorporates the forecasts of 

multiple base models, such as decision trees, to improve overall accuracy and reduce 

overfitting. The ensemble's decision trees are constructed by utilizing a random subset 

of training data, which is acquired via random subset of features for node splitting, 

and a bootstrap sampling. This approach fosters diversity among the trees. The 

Random Forest algorithm employs a technique of aggregating the results of 

individual decision trees through averaging for regression or consensus voting for 

classification tasks. This approach effectively mitigates the influence of individual 

tree biases and leads to enhanced generalization capabilities. It is widely recognized 

for its ability to effectively manage datasets that are of a large scale and possess 

numerous features. Additionally, it is known for its inherent ability to resist 

overfitting and its capability to rank the importance of features. Moreover, it has the 

capability to effectively handle imbalanced datasets and address the issue of missing 

data. Random Forest (RF) may exhibit limitations with respect to interpretability 

owing to its opaque nature, and its time of prediction may be prolonged, owing to the 

numerous trees utilized in the ensemble. Notwithstanding its limitations, Random 

Forest algorithm continues to be widely utilized and effective in addressing intricate 
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machine learning challenges, delivering exceptional precision and consistency across 

a broad range of applications [113]. 

 

3. AdaBoost, short for Adaptive Boosting, is an advanced ensemble learning technique 

utilized to tackle classification and regression problems in the context of supervised 

machine learning [114]. The aforementioned approach is a potent technique that 

functions by amalgamating the results of numerous feeble learners, usually in the 

form of superficial decision trees, to produce a model that is more precise and 

resilient. The fundamental tenet of AdaBoost entails iteratively adjusting the 

distribution of the training data by imparting greater weights to incorrectly classified 

samples. The aforementioned methodology motivates individuals with lower 

aptitudes to concentrate on difficult scenarios and progressively improve their 

abilities. Upon completion of training for each weak learner, algorithm calculates a 

weight for each based on its level of accuracy, whereby those with higher accuracy 

are assigned greater weights. In the prediction phase, AdaBoost algorithm aggregates 

the results of multiple weak learners by utilizing a weighted average for regression 

tasks or a weighted majority vote for classification tasks. The algorithm's ability to 

adapt and prioritize challenging instances results in enhanced generalization 

capabilities and decreased overfitting in comparison to individual models. AdaBoost 

is a machine learning algorithm that exhibits high efficacy in situations where the 

base learners exhibit moderate accuracy. Additionally, it has the capability to manage 

datasets with noise and high dimensionality. AdaBoost's performance can be affected 

by the presence of outliers and noisy data, as it prioritizes misclassified samples, 

potentially resulting in overfitting under specific conditions. Furthermore, the 

consecutive style of its learning procedure may lead to extended training durations in 

contrast to alternative ensemble techniques e.g. Random Forest. Notwithstanding 

these constraints, AdaBoost continues to be a widespread and resilient option for 

diverse machine learning implementations, providing elevated precision and 

performance enhancement compared to individual models [115]. 
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4. The k-Nearest Neighbors (kNN) algorithm is a supervised learning technique that is 

commonly used in machine learning for classification and regression purposes due to 

its simplicity and effectiveness [116]. The k-nearest neighbours (kNN) algorithm is a 

type of instance-based learning approach that operates by utilizing the training data 

directly, without necessitating explicit training or model building. The fundamental 

principle of the algorithm is centred on the notion of proximity or similarity, which 

is evaluated through distance metrics e.g. Manhattan, Euclidean, or Minkowski 

distance to quantify the association between instances [117]. In the process of 

predicting the label or value for a novel data point, the k-Nearest Neighbors (kNN) 

algorithm selects the k most similar neighbours from training data and computes the 

output based on their corresponding labels or values. In classification tasks, the k-

Nearest Neighbors (kNN) algorithm determines class labels by conducting a majority 

vote across the nearest neighbours [116]. Conversely, in regression tasks, the 

algorithm estimates the output value by computing the average of the values of the 

neighbouring data points. The selection of the parameter 'k' has a substantial impact 

on the algorithm's performance. Choosing smaller values may result in overfitting, 

while larger values may lead to underfitting. The k-Nearest Neighbor (kNN) 

algorithm is deemed suitable for addressing multi-class classification problems and 

can perform efficiently in spaces with high dimensions, given that a suitable distance 

metric is utilized. Although kNN is a straightforward algorithm, it presents certain 

drawbacks in relation to memory utilization and computational efficiency when 

handling extensive datasets. This is due to the requirement of storing the complete 

training dataset and calculating distances between every pair of instances. Despite its 

limitations, the k-Nearest Neighbors algorithm continues to be a favoured option for 

a range of machine learning applications, particularly in cases where the importance 

of interpretability, ease of implementation, and simplicity is emphasized [118]. 

 

5. XGBoost, also known as Extreme Gradient Boosting, is a proficient and sophisticated 

implementation of the gradient boosting algorithm utilized for tackling regression and 

classification tasks in supervised machine learning [119]. The XGBoost algorithm 

functions by sequentially training a series of weak learners, which are commonly 
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decision trees, on residual errors of previous learners in the sequence. The goal is to 

minimize a loss function that is differentiable. The loss function of the algorithm 

includes regularization terms that penalize the complexity of the model and assist in 

managing overfitting, leading to enhanced generalization abilities. XGBoost presents 

various benefits, including its capability to manage sparse data, mixed feature types, 

and missing values [120]. Additionally, it offers a mechanism for constructing trees 

in parallel, which facilitates the handling of datasets on a large scale and expedites 

the training process. The efficacy of the algorithm in various applications is enhanced 

by its ability to estimate the optimal tree depth automatically, as well as its 

incorporation of early stopping and cross-validation. XGBoost, akin to other boosting 

algorithms, exhibits sensitivity towards noisy data and is susceptible to overfitting 

when there are outliers. Moreover, the opaqueness of its black-box structure may 

constrain the interpretability in contrast to less complex models. Notwithstanding its 

constraints, XGBoost continues to be a prevalent option for diverse machine learning 

undertakings, due to its elevated precision, scalability, and adaptability, rendering it 

a potent instrument for addressing intricate predicaments and attaining cutting-edge 

performance across multiple fields [118]. 

 

6. Bagging (short for Bootstrap Aggregating) is a widely used ensemble learning 

method employed to tackle supervised machine learning tasks related to classification 

and regression [121]. The utilization of several base models, typically decision trees, 

to improve overall performance and reduce overfitting is a characteristic of the 

ensemble method. By collecting random samples from original training dataset with 

replacement, as is done in bootstrap sampling, bagging can generate numerous 

training sets. The distinct bootstrap samples are utilized to train each base model, 

which enhances model diversity and diminishes model variance. Through averaging 

for regression tasks or majority voting for classification tasks, bagging aggregates the 

results of individual base models in the prediction phase. The process of aggregation 

enables the ensemble to leverage the collective intelligence of a group, thereby 

decreasing partiality and fluctuation, and ultimately attaining enhanced 

generalization abilities. The utilization of bagging is especially beneficial when 



 

46 
 

Master’s thesis in Biomedical Imaging 

confronted alongside unstable base models which exhibit a tendency to overfit since 

the process of aggregation has a tendency to mitigate the idiosyncratic fluctuations of 

individual models. The ensemble nature of bagging may present constraints in terms 

of interpretability, and its performance may be subject to sensitivity based on the 

selection of base models. Furthermore, it is worth noting that the efficacy of bagging 

in mitigating bias may be comparatively lower than that of other ensemble methods, 

such as boosting. Despite the limitations associated with bagging, it continues to be 

a prevalent and potent approach for addressing intricate machine-learning challenges. 

It offers improved stability and precision across a range of applications [10], [73]. 

 

7. The Multilayer Perceptron (MLP) is a type of the feedforward artificial neural 

network (ANN) that is commonly employed in supervised learning to address 

classification and regression challenges within the domain of machine learning [122].  

A Multi-Layer Perceptron (MLP) is composed of an initial layer for input, one or 

more intermediate layers that are hidden, and a final output layer. Each of these layers 

is comprised of numerous interconnected nodes or neurons. The synaptic connections 

among neurons are distinguished by weights that undergo modification during the 

training phase to reduce the discrepancy between anticipated and desired outputs. In 

neural networks, the activation function is typically a non-linear function, such as 

sigmoid or the Rectified Linear Unit (ReLU). The activation function is fitted to 

weighted sum of inputs for every neuron, resulting in the production of its output. 

The process of training a Multi-Layer Perceptron (MLP) typically involves the 

utilization of backpropagation, which involves the computation of loss function 

gradient with respect to each weight through the iterative application of the chain rule. 

This process entails the iterative adjustment of weights to minimize the loss. The 

optimization procedure involves the utilization of algorithms, e.g. stochastic gradient 

descent or the variations of it, to modify the weights by taking into account the 

computed gradients [123]. Multilayer Perceptron (MLP) has the ability to represent 

intricate and nonlinear associations within datasets, and its efficacy can be augmented 

by incorporating supplementary neurons and hidden layers. Multilayer Perceptrons 

(MLPs) may present certain constraints, such as vulnerability to local minima through 
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the optimization process, complexities in identifying the most suitable architecture, 

and obstacles in comprehending the acquired model. Despite the aforementioned 

limitations, Multilayer Perceptrons continue to be a popular option for various 

machine learning tasks, especially in the domains of predictive modelling and pattern 

recognition. This is due to their ability to effectively model complex relationships 

within datasets that have a high number of dimensions [73]. 
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4. RESULTS 

This chapter presents the outcomes of all conducted experiments. In order to fulfil the 

research goals of this thesis, the outcomes of the experiments are presented in three distinct 

sections. Initially, the presentation and comparison of performance metrics from all pre-

existing models are provided. Subsequently, following the introduction of optimal pre-

trained models, the efficacy of transfer learning is evaluated through a comparison between 

pre-trained models and a customized convolutional neural network. Finally, a comparison 

was made between the most effective pre-trained models and the proposed MS-DenseNet 

model by analyzing their performance metrics. 

4.1. Transfer Learning Analysis 

With feature extraction using VGG16, the Random Forest model achieves the highest 

accuracy at 0.833, followed by XGBoost at 0.812 and AdaBoost at 0.811, as shown in Figure 

10 and Table 4. The same ranking can be observed for Kappa and Precision metrics, with 

Random Forest and XGBoost consistently performing better than the other models. For F1 

score and Recall, XGBoost has the highest values, followed by AdaBoost and SVM. 

 

Figure 10. Summary of Evaluation Metrics for Method VGG16 with Different Machine 

Learning Methods. In this figure, each color represents a different evaluation metric. The 

VGG16 method was combined with various machine learning methods, and the 

corresponding evaluation metrics were measured and plotted. The legend provides a clear 

understanding of the color-coding used throughout the figure, enabling easy interpretation 

of the results. 
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Table 4. Comparative analysis of VGG16 when  combined with various machine learning 

models using multiple evaluation metrics. This table presents the performance evaluation 

metrics for various machine learning models. Each row corresponds to a specific model, 

and the respective columns display the corresponding metrics. The evaluation metrics 

provide insights into the models' performance in terms of accuracy, precision, recall, F1 

score, and Kappa coefficient. These metrics serve as indicators to assess the effectiveness 

and reliability of the models for classification tasks. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 80.4 78.6 58.4 79.0 82.1 

Random Forest 83.3 77.2 63.0 76.8 82.7 

AdaBoost 81.1 79.5 59.9 80.1 81.8 

KNN 79.8 77.0 55.7 76.9 82.2 

XGBoost 81.2 80.1 60.7 80.7 81.5 

Bagging 75.4 73.2 63.8 74.0 79.6 

MLP 77.6 60.2 39.8 75.8 74.5 

 

With feature extraction using VGG19, the AdaBoost model achieves the highest accuracy at 

0.862, followed by XGBoost at 0.834 and SVM/Random Forest/KNN, all with an accuracy 

of 0.826, as shown in Figure 11 and Table 5. The same ranking can be observed for F1 score, 

Kappa, Recall, and Precision metrics, with AdaBoost and XGBoost consistently performing 

better than the other models. 
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Figure 11. Summary of evaluation metrics of VGG19. See Figure 10 for the explanation of 

colors and symbols used in this figure. 

 

Table 5. Evaluation metrics of VGG19. See Table 4 for the explanation of metrics used in 

this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 82.6 81.4 63.2 81.5 82.9 

Random Forest 82.6 81.7 63.6 80.6 82.9 

AdaBoost 86.2 84.9 70.4 84.7 87.8 

KNN 82.6 80.2 61.8 80.0 85.4 

XGBoost 83.4 82.3 65.2 82.5 84.9 

MLP 74.0 63.8 38.9 74.1 75.5 

Bagging 72.5 76.2 59.4 74.4 78.7 
 

With feature extraction using ResNet101, the SVM model achieves the highest accuracy at 

0.854, followed by XGBoost at 0.847 and Bagging at 0.83, as shown in Figure 12 and Table 

6. The same ranking can be observed for F1 score and Kappa metrics, with SVM and 

XGBoost consistently performing better than the other models. For Recall and Precision, 

SVM and XGBoost have the highest values, followed by Random Forest and MLP. 
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Figure 12. Evaluation metrics of ResNet101. See Figure 10 for the explanation of colors and 

symbols used in this figure. 

Table 6. Evaluation metrics of ResNet101. See Table 4 for the explanation of metrics used 

in this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 85.4 84.2 68.8 83.9 86.7 

Random Forest 81.9 83.1 61.1 80.8 86.5 

AdaBoost 82.6 81.1 63.0 81.2 84.5 

KNN 82.5 80.0 61.6 79.9 85.6 

XGBoost 84.7 83.5 67.4 83.0 86.7 

Bagging 83.0 77.1 57.1 80.5 75.4 

MLP 76.2 77.6 50.9 81.2 84.6 
 

With feature extraction using ResNet50, the XGBoost model achieves the highest accuracy 

at 0.826, followed by AdaBoost at 0.819 and KNN at 0.818, shown in Figure 13 and Table 

7. The same ranking can be observed for F1 score and Kappa metrics, with XGBoost 

consistently performing better than the other models. For Recall, Random Forest has the 

highest value, followed by XGBoost and AdaBoost. For Precision, Random Forest and KNN 

have the highest values, followed by XGBoost. 
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Figure 13. Evaluation metrics of ResNet50. See Figure 10 for the explanation of colors and 

symbols used in this figure. 

 

Table 7. Evaluation metrics of ResNet50. See Table 4 for the explanation of metrics used in 

this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 80.4 78.5 58.3 79.2 81.1 

Random Forest 80.4 82.4 67.2 81.8 85.0 

AdaBoost 81.9 80.6 61.6 80.5 82.7 

KNN 81.8 79.1 59.9 78.9 85.1 

XGBoost 82.6 81.7 63.6 81.7 82.5 

Bagging 78.2 75.0 56.5 70.4 81.2 

MLP 76.8 73.1 33.7 77.0 79.1 
 

With feature extraction using MobileNetV2, the Random Forest model achieves the highest 

accuracy at 0.855, followed by XGBoost at 0.826 and Bagging at 0.812, as shown in Figure 

14 and Table 8. The same ranking can be observed for F1 score, Kappa, Recall, and Precision 

metrics, with Random Forest and XGBoost consistently performing better than the other 

models. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

SVM Random
Forest

AdaBoost KNN XGBoost Bagging MLP

Sc
o

re
 

Classical ML algorithms

Feature-extracted: ResNet50

Test_accuracy

F1_score

Kappa

Recall

Precision



 

53 
 

Master’s thesis in Biomedical Imaging 

 

Figure 14. Evaluation metrics of MobileNetV2. See Figure 10 for the explanation of colors 

and symbols used in this figure. 

Table 8. Evaluation metrics of MobileNetV2. See Table 4 for the explanation of metrics 

used in this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 
SVM 81.1 79.7 60.0 79.5 82.7 

Random Forest 85.5 80.3 67.8 83.6 83.8 

AdaBoost 75.5 76.3 53.1 76.4 78.1 

KNN 73.9 69.6 41.6 69.6 76.8 

XGBoost 82.6 81.9 63.9 82.0 82.2 

Bagging 81.2 74.5 79.2 78.8 62.6 

MLP 80.3 62.8 62.9 79.9 53.5 
 

With feature extraction using MobileNet, the Random Forest and XGBoost models achieve 

the highest accuracy at 0.877, as shown in Figure 15 and  Table 9. XGBoost has the highest 

F1 score at 0.869, followed by AdaBoost at 0.839 and Random Forest at 0.838. For Kappa, 

XGBoost and Random Forest perform better than the other models. For Recall, XGBoost has 

the highest value, followed by Random Forest and Bagging. For Precision, XGBoost has the 

highest value, followed by KNN and AdaBoost. 
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Figure 15. Evaluation metrics of MobileNet. See Figure 10 for the explanation of colors and 

symbols used in this figure. 

Table 9. Evaluation metrics of MobileNet. See Table 4 for the explanation of metrics used 

in this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 83.4 82.4 64.9 82.2 83.9 

Random Forest 87.7 83.8 72.8 85.5 85.2 

AdaBoost 84.8 83.9 68.0 83.7 85.6 

KNN 84.7 82.4 66.1 82.1 87.5 

XGBoost 87.7 86.9 74.1 86.7 88.3 

Bagging 80.4 83.8 57.3 83.8 83.5 

MLP 76.6 76.0 52.5 79.2 83.6 
 

With feature extraction using InceptionResNetV2, the Random Forest model achieves the 

highest accuracy at 0.834, followed by XGBoost at 0.833 and SVM at 0.819, as shown in 

Figure 16 and Table 10. The same ranking can be observed for F1 score and Kappa metrics, 

with Random Forest and XGBoost consistently performing better than the other models. For 

Recall, SVM has the highest value, followed by AdaBoost and Random Forest. For Precision, 

KNN and Random Forest have the highest values, followed by XGBoost. 
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Figure 16. Evaluation metrics of InceptionResNetV2. See Figure 10 for the explanation of 

colors and symbols used in this figure. 

Table 10. Evaluation metrics of InceptionResNetV2. See Table 4 for the explanation of 

metrics used in this table. 

Model Accuracy 

[%] 
F1_score 

[%] 
Kappa 

[%] 
Recall 

[%] 
Precision 

[%] 
SVM 81.9 81.1 62.6 81.6 82.3 

Random Forest 83.4 84.4 63.0 80.1 84.6 

AdaBoost 80.4 79.7 60.1 80.1 81.4 

KNN 81.9 79.5 83.3 79.5 83.3 

XGBoost 83.3 81.9 64.3 81.8 84.0 

Bagging 79.0 79.9 67.6 74.9 79.0 

MLP 65.3 46.8 18.0 64.7 65.1 
 

With feature extraction using InceptionV3, the XGBoost model achieves the highest 

accuracy at 0.79, followed by Random Forest at 0.775 and KNN at 0.767, as shown in Figure 

17 and Table 11. The same ranking can be observed for F1 score and Kappa metrics, with 

XGBoost and Random Forest consistently performing better than the other models. For 

Recall, XGBoost has the highest value, followed by Random Forest and AdaBoost. For 

Precision, XGBoost and Bagging have the highest values, followed by Random Forest. 
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Figure 17. Evaluation metrics of InceptionV3. See Figure 10 for the explanation of colors 

and symbols used in this figure. 

Table 11. Evaluation metrics of InceptionV3. See Table 4 for the explanation of metrics 

used in this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 68.2 65.7 32.2 66.1 66.3 

Random Forest 77.5 73.4 50.5 75.2 78.2 

AdaBoost 73.8 72.6 46.0 73.0 75.4 

KNN 76.7 71.8 46.2 72.2 77.1 

XGBoost 79.0 77.8 55.8 77.9 78.7 

Bagging 74.0 70.6 46.8 73.4 77.9 

MLP 61.8 56.5 58.5 53.7 43.8 
 

With feature extraction using DenseNet169, the Random Forest model achieves the highest 

accuracy at 0.855, followed by KNN at 0.848 and XGBoost at 0.834, as shown in Figure 18 

and Table 12. The same ranking can be observed for F1 score and Kappa metrics, with 

Random Forest and KNN consistently performing better than the other models. For Recall, 

Bagging has the highest value, followed by Random Forest and AdaBoost. For Precision, 

KNN has the highest value, followed by Random Forest and Bagging. 
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Figure 18. Evaluation metrics of DenseNet169. See Figure 10 for the explanation of colors 

and symbols used in this figure. 

Table 12. Evaluation metrics of DenseNet169. See Table 4 for the explanation of metrics 

used in this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 79.1 77.9 56.3 78.0 79.0 

Random Forest 85.5 84.2 64.7 84.9 85.7 

AdaBoost 82.6 81.5 61.8 81.6 82.7 

KNN 84.8 83.2 67.1 82.3 87.3 

XGBoost 83.4 82.3 65.0 82.6 83.4 

Bagging 81.9 83.2 62.8 83.5 84.1 

MLP 57.7 50.2 37.2 63.2 50.0 
 

With feature extraction using DenseNet121, the K-Nearest Neighbors (KNN) model achieves 

the highest accuracy at 0.863, followed by Random Forest at 0.848 and AdaBoost and 

XGBoost both at 0.826, as shown in Figure 19 and Table 13Table 13. Evaluation metrics of 

DenseNet121.. For F1 score, Random Forest has the highest value, followed by KNN and 

XGBoost. For Kappa, KNN has the highest value, followed by Random Forest and 

AdaBoost. For Recall, Bagging has the highest value, followed by KNN and Random Forest. 

For Precision, KNN has the highest value, followed by Random Forest and XGBoost. 
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Figure 19. Evaluation metrics of DenseNet121. See Figure 10 for the explanation of colors 

and symbols used in this figure. 

Table 13. Evaluation metrics of DenseNet121. See Table 4 for the explanation of metrics 

used in this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 74.7 73.2 47.0 73.0 75.8 

Random Forest 84.8 86.2 67.7 83.3 85.2 

AdaBoost 82.6 79.6 62.9 79.0 82.9 

KNN 86.3 85.1 70.9 85.3 87.8 

XGBoost 82.6 81.1 62.7 80.8 83.4 

Bagging 80.4 72.1 56.7 83.0 81.0 

MLP 59.3 63.0 28.6 68.0 55.8 
 

With feature extraction using Xception, the Random Forest model achieves the highest 

accuracy at 0.797, followed by XGBoost at 0.79 and Bagging at 0.775, as shown in Figure 

20 and Table 14. For F1 score, Random Forest has the highest value, followed by XGBoost 

and AdaBoost. For Kappa, Random Forest has the highest value, followed by XGBoost and 

Bagging. For Recall, Bagging has the highest value, followed by XGBoost and Random 

Forest. For Precision, Bagging has the highest value, followed by Random Forest and KNN. 
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Figure 20. Evaluation metrics of Xception. See Figure 10 for the explanation of colors and 

symbols used in this figure. 

Table 14. Evaluation metrics of Xception. See Table 4 for the explanation of metrics used in 

this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 74.5 72.1 44.9 71.8 74.5 

Random Forest 79.7 78.9 65.0 78.4 81.0 

AdaBoost 75.4 72.9 46.7 72.9 75.4 

KNN 74.6 70.5 43.2 70.3 77.6 

XGBoost 79.0 76.6 54.2 76.9 78.8 

Bagging 77.5 70.9 47.9 76.9 84.7 

MLP 68.2 57.4 29.1 61.3 65.7 
 

In summary, MobileNet with Random Forest and XGBoost achieve the highest accuracy 

among the deep feature extraction models. DenseNet121 with KNN and VGG19 with 

Random AdaBoost also demonstrate strong performance. The other neural networks have 

relatively lower performance, with InceptionV3 and Xception being the lowest performers. 

4.2. Transfer Learning vs Custom CNN 

Based on the experimental results, the accuracy achieved by the top 3 deep feature extraction 

networks (VGG19, MobileNet, and DenseNet121) ranged from 0.862 to 0.877. On the other 

hand, the custom CNN achieved an accuracy of 0.83 [24], which is lower than all top 3, 
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VGG19, MobileNet, and DenseNet121 deep feature extraction networks. Interestingly, the 

clinical interpretation achieved the highest accuracy of 0.87 [24], which is higher than all the 

deep feature extraction models except for the MobileNet model with XGBoost, as shown in 

Table 15. 

Table 15. Comparing the performance of transfer learning against custom CNN and 

proposed MS-DenseNet model. See Table 4 for the explanation of metrics used in this table. 

Network   ML 

Model 

Accuracy 

         [%] 

F1_score 

[%] 

Recall 

[%] 

Precision 

[%] 

VGG19 AdaBoost 86.2 84.9 84.7 87.8 

MobileNet XGBoost 87.7 86.9 86.7 88.3 

DenseNet121 KNN 86.3 85.1 85.3 87.8 

Custom CNN 
 

83.0 76.0 65.0 93.0 

      Clinical interpretation 87.0 83.0 75.0 94.0 

MS-DenseNet AdaBoost 97.0 96.0 96.2 95.2 

 

4.3. Performance of MS-DenseNet 

It looks like the performance of the feature-extracted MS-DenseNet varies depending on the 

machine learning model used for classification. The AdaBoost model achieved the highest 

accuracy (97%) and F1 score (0.96), followed closely by the Random Forest model with an 

accuracy of 94.9% and F1 score of 0.903, as shown in Figure 21 and Table 16. The SVM and 

XGBoost models also achieved high accuracy scores, with SVM at 93.4% and XGBoost at 

93.5%. However, the KNN and MLP models did not perform as well, with KNN achieving 

an accuracy of 81% and MLP achieving an accuracy of 78.8%. 

In terms of precision and recall, the AdaBoost model achieved the highest precision and recall 

scores (0.952 and 0.962 respectively), followed by the Random Forest model with precision 

and recall scores of 0.823 and 0.958 respectively. The SVM and XGBoost models also 

achieved high precision and recall scores, but the KNN and MLP models did not perform as 

well in these areas. 
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Figure 21. Evaluation metrics of MS-DenseNet. See Figure 10 for the explanation of colors 

and symbols used in this figure. 

 

Table 16. Evaluation metrics of proposed model: MS-DenseNet. See Table 4 for the 

explanation of metrics used in this table. 

Model Accuracy 

[%] 

F1_score 

[%] 

Kappa 

[%] 

Recall 

[%] 

Precision 

[%] 

SVM 93.4 92.7 94.7 92.3 85.6 

Random Forest 94.9 90.3 91.4 95.8 82.3 

AdaBoost 97.0 96.0 98.0 96.2 95.2 

KNN 81.0 75.5 83.2 76.4 55.5 

XGBoost 93.5 93.0 93.8 92.9 87.7 

Bagging 87.7 88.2 90.4 902 58.2 

MLP 78.8 81.5 69.9 82.8 43.1 

 

Overall, the AdaBoost and Random Forest models seem to be the most effective for 

classification using the MS-DenseNet features, achieving high accuracy, F1 score, precision, 

and recall scores. The SVM and XGBoost models also show promise, while the KNN and 

MLP models may not be the best choice for this particular task. 
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5. DISCUSSION 

To adapt to the new realities of the digital economy, businesses must undergo digital 

transformation, a key process with far-reaching consequences. Companies now must undergo 

digital transformations to ensure they can compete in the digital economy, and this helps with 

thinking about the value of data in keeping and expanding enterprises. Instead, radiology and 

digital transformation require the precise identification of diseases via digital imagery. Many 

technological challenges related to disease identification have been significantly advanced 

by deep learning techniques, especially CNNs. 

So, we present a revolutionary lightweight architecture called MS-DenseNet, which is based 

on well-known mobile neural networks but has a smaller model size and improved accuracy 

when it comes to detecting ischemic disease in polar maps. As the backbone network, we 

opted for the state-of-the-art DenseNet, and we swapped out the standard convolution in 

dense blocks in favour of depth-separable convolution to reduce the model size and make 

more efficient use of the model parameters. Next, we added SE blocks into proposed network 

to emphasize the beneficial feature channels whilst suppressing the undesired feature 

channels; this made efficient use of channel interdependencies and allowed for the greatest 

reuse of inter-channel connections, which ultimately led to better model performance.  

In our work, we presented deep feature extraction methods by using pre-trained models in 

order to extract features from polar map data. The extracted features are then classified by 

machine learning algorithms with 5-fold cross-validation. With this method, we achieved up 

to 87% accuracy. Moreover, this accuracy is further improved to 97% by applying proposed 

model MS-DenseNet which outperformed all the previously related techniques to 

automatically identity ischemia from polar maps, as shown in Table 1. 

The experimental results demonstrate substantial efficiency advantages on patient data 

acquired by PET imaging. This suggests that the proposed method is superior to previous 

state-of-the-art deep learning models for detecting ischemia disease in polar maps and for 

image classification in general. We hope to refine the suggested model and increase the 
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accuracy with which ischemia illness can be detected in future work. We'd also wish to 

broaden its practical use. 

6. CONCLUSION 

In this thesis, we have explored the potential of transfer learning, specifically the MS-

DenseNet model, to enhance the accuracy of ischemia detection from polar maps. Our 

proposed MS-DenseNet model has demonstrated a remarkable improvement in accuracy 

compared to traditional methods, achieving an impressive 97% accuracy in ischemia 

detection. This represents a 10% improvement over the other highest accuracy of 87% that 

was achieved using traditional transfer learning techniques and clinical interpretation. 

 

Our study began with a comprehensive review of the literature on transfer learning and its 

applications in the field of medical imaging, particularly in ischemia detection from polar 

maps. We then conducted a thorough analysis of various pre-trained models and their 

performance in detecting ischemia. Based on this analysis, we identified the DenseNet model 

as a suitable foundation for our proposed MS-DenseNet model. 

 

We developed the MS-DenseNet model by modifying the DenseNet architecture, replacing 

regular convolution layers with depthwise separable convolution layers and additionally 

incorporating SE module to highlight the useful features channels while suppressing useless 

feature channels. Our experimental results revealed that the MS-DenseNet model 

significantly outperformed traditional transfer learning methods in ischemia detection from 

polar maps. The model's superior performance can be attributed to its enhanced ability to 

capture intricate patterns and subtle differences in the images, which are essential for accurate 

ischemia detection. 

 

The success of the MS-DenseNet model has important implications for clinical practice. By 

providing an accurate and reliable means of detecting ischemia from polar maps, our model 

has the potential to significantly improve patient outcomes by enabling earlier diagnosis and 

intervention. Moreover, the MS-DenseNet model could potentially be applied to other 

medical imaging tasks, further expanding its potential impact in the field of healthcare. 
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In conclusion, this thesis demonstrates the effectiveness of transfer learning and the MS-

DenseNet model in improving the accuracy of ischemia detection from polar maps. Our 

findings underscore the potential of leveraging advanced deep learning techniques to enhance 

the capabilities of medical imaging, ultimately leading to better patient care and outcomes. 

Future research could explore the integration of our model into clinical workflows and its 

application in other medical imaging tasks to further validate and expand its potential impact. 
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