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Abstract

Following an invariant growth in the required computational performance
of processors, the multicore revolution started around 20 years ago. This
revolution was mainly an answer to power dissipation constraints restrict-
ing the increase of clock frequency in single-core processors. The multicore
revolution not only brought in the challenge of parallel programming, i.e.
being able to develop software exploiting the entire capabilities of many-
core architectures, but also the challenge of programming heterogeneous
platforms. The question of “on which processing element to map a specific
computational unit?”, is well known in the embedded community. With the
introduction of general-purpose graphics processing units (GPGPUs), dig-
ital signal processors (DSPs) along with many-core processors on different
system-on-chip platforms, heterogeneous parallel platforms are nowadays
widespread over several domains, from consumer devices to media process-
ing platforms for telecom operators. Finding mapping together with a suit-
able hardware architecture is a process called design-space exploration. This
process is very challenging in heterogeneous many-core architectures, which
promise to offer benefits in terms of energy efficiency. The main problem is
the exponential explosion of space exploration. With the recent trend of in-
creasing levels of heterogeneity in the chip, selecting the parameters to take
into account when mapping software to hardware is still an open research
topic in the embedded area. For example, the current Linux scheduler has
poor performance when mapping tasks to computing elements available in
hardware. The only metric considered is CPU workload, which as was shown
in recent work does not match true performance demands from the applica-
tions. Doing so may produce an incorrect allocation of resources, resulting
in a waste of energy. The origin of this research work comes from the ob-
servation that these approaches do not provide full support for the dynamic
behavior of stream processing applications, especially if these behaviors are
established only at runtime. This research will contribute to the general goal
of developing energy-efficient solutions to design streaming applications on
heterogeneous and parallel hardware platforms. Streaming applications are
nowadays widely spread in the software domain. Their distinctive charac-
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teristic is the retrieving of multiple streams of data and the need to process
them in real time. The proposed work will develop new approaches to ad-
dress the challenging problem of efficient runtime coordination of dynamic
applications, focusing on energy and performance management.
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Sammandrag

Efter en oföränderlig tillväxt i prestandakrav hos processorer, började den
flerkärniga processor-revolutionen för ungefär 20 år sedan. Denna revo-
lution skedde till största del som en lösning till begränsningar i energief-
fekten allt eftersom klockfrekvensen kontinuerligt höjdes i en-kärniga pro-
cessorer. Den flerkärniga processor-revolutionen medförde inte enbart ut-
maningen gällande parallellprogrammering, m.a.o. förm̊agan att utveckla
mjukvara som använder sig av alla delelement i de flerkärniga processor-
erna, men ocks̊a utmaningen med programmering av heterogena plattfor-
mar. Fr̊ageställningen ”p̊a vilken processorelement skall en viss beräkning
utföras?” är väl känt inom ramen för inbyggda datorsystem. Efter in-
troduktionen av grafikprocessorer för allmänna beräkningar (GPGPU),
signalprocesserings-processorer (DSP) samt flerkärniga processorer p̊a olika
system-on-chip plattformar, är heterogena parallella plattformar idag om-
fattande inom m̊anga domäner, fr̊an konsumtionsartiklar till mediapro-
cesserings plattformar för telekommunikationsoperatörer. Processen att
placera beräkningarna p̊a en passande h̊ardvaruplattform kallas för ut-
forskning av en designrymd (design-space exploration). Denna process
är mycket utmanande för heterogena flerkärniga arkitekturer, och kan
medföra fördelar när det gäller energieffektivitet. Det största problemet
är att de olika valmöjligheterna i designrymden kan växa exponentiellt.
Enligt den nuvarande trenden som föresp̊ar ökad heterogeniska aspek-
ter i processorerna är utmaningen att hitta den mest passande placerin-
gen av beräkningarna p̊a h̊ardvaran ännu en forskningsfr̊aga inom ramen
för inbyggda datorsystem. Till exempel, den nuvarande schemaläggaren
i Linux operativsystemet är inkapabel att hitta en effektiv placering av
beräkningarna p̊a den underliggande h̊ardvaran. Det enda mätsättet som
används är processorns belastning vilket, som visats i tidigare forskning, inte
motsvarar den verkliga prestandan i applikationen. Användning av detta
mätsätt vid resursallokering resulterar i slöseri med energi. Denna forskning
härstammar fr̊an observationerna att dessa tillvägag̊angssätt inte stöder det
dynamiska beteendet hos ström-processeringsapplikationer (stream process-
ing applications), speciellt om beteendena bara etableras vid körtid. Denna
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forskning kontribuerar till det allmänna m̊alet att utveckla energieffektiva
lösningar för ström-applikationer (streaming applications) p̊a heterogena
flerkärniga h̊ardvaruplattformar. Ström-applikationer är numera mycket
vanliga i mjukvarudomän. Deras distinkta karaktär är inläsning av flertalet
dataströmmar, och behov av att processera dem i realtid. Arbetet i denna
forskning understöder utvecklingen av nya sätt för att lösa det utmanade
problemet att effektivt koordinera dynamiska applikationer i realtid och
fokus p̊a energi- och prestandahantering.
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3. Hergys Rexha, Sébastien Lafond, and Karol Desnos. Energy-
efficient actor execution for sdf application on heterogeneous ar-
chitectures. In 2018 26th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP), pages
486–493, 2018.
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Chapter 1

Introduction

Digital computers have been the first to implement every technological and
scientific advancement from the 80’ to modern days. Their speed has been
increasing ever since at a rapid pace as predicted by the Moore Law in
1970. In reality, Gordon Moore predicted the transistor count inside chips
will proceed to grow exponentially, defining still today’s industry trends,
not the operational speed!

With the increase of transistor count inside the chip, the operating fre-
quency also increased giving way to various interpretations of Moore’s law
that might predict the speed of computers. The increase in chip frequency
produced a natural increase in heat generation, which was kept under con-
trol with the lowering of the supply voltage. The supply (currently it has
reached at 1.29V) voltage reduction has its own limits for transistors to be
operating correctly, so the necessity to manage the heat resulted in stagna-
tion of the operating frequency at 2-5 GHz in the mid-2000s. So the only
way to meet the demands for more computational power was by squeez-
ing more computational logic, inside computing cores. The first dual-core
chip was introduced by IBM in 2001 (Power 4), and later many variations
of multicore chips came by, like the 64-core homogeneous chip TILE64, or
heterogeneous versions like the Cell BE used in PS3.

The multi-core revolution not only brought in the challenge of parallel
programming, i.e. being able to develop software exploiting the entire capa-
bilities of many-core architectures, but also the challenge of programming
heterogeneous platforms. The question of ”on which processing element to
map a specific computational unit?”, is well known in the embedded com-
munity. With the introduction of general-purpose graphics processing units
(GPGPUs), digital signal processors (DSPs) along with many-core proces-
sors on different system-on-chip platforms, and heterogeneous parallel plat-
forms are nowadays widespread over several domains, from consumer devices
to media processing platforms for telecom operators. Finding mapping to-
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gether with a suitable hardware architecture is a process called design-space
exploration. This process is very challenging in heterogeneous many-core
architectures, which promise to offer benefits in terms of energy efficiency.
The main problem is the exponential explosion of the space exploration.
Several examples from the industry 1 show that there is a trend of increas-
ing levels of heterogeneity in the chip. Selecting the parameters to take into
account when mapping software to hardware is still an open research topic
in the embedded area.

1.1 State of the art

For example, the current Linux scheduler has poor performance when map-
ping tasks to computing elements available in hardware. The only metric
considered is CPU workload, which as it was shown in recent work [1] does
not match true performance demands from the applications. Doing so may
produce an incorrect allocation of resources, resulting in a waste of energy.

Big Medium LITTLE

Task

?

Figure 1.1: Allocating hardware re-
sources to tasks, not energy efficient
in current schedulers

Because there is an actual lack
of efficiency in the current schedul-
ing decisions in the context of het-
erogeneous systems as shown in Fig-
ure 1.1, the focus of this research
is to design a runtime system that
could efficiently allocate resources
to tasks according to their need, fo-
cusing on energy efficiency.

At the same time in many
cases, signal processing systems and
streaming applications can be de-
scribed at several levels of abstrac-
tion using the dataflow program-
ming paradigm. For example, the
concept of Synchronous Dataflow
(SDF) graphs for streaming appli-
cations was developed and used ex-
tensively by Lee and Messerschmitt [2] as it is a modeling concept suited
to describe parallelism. Computations are executed in actors and data is
exchanged through FIFO buffers. For most of the current streaming ap-
plications, dynamic behavior has become very common and needs to be
efficiently supported by the programming paradigm. For example, video
coding and recent telecommunication [3] standards use adaptive algorithms

1http://www.engadget.com/2017/02/27/mediatek-helio-x30-deca-core-processor/
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that cannot be fully described and executed unless dynamic behavior is sup-
ported. Since the dataflow model offers a clear separation of computations
from data transfers, it is a natural choice as a programming paradigm in
our research.

1.2 Research Question

Several academic and commercial frameworks supporting the modeling, de-
sign, and analysis of streaming applications were proposed over the last
decade. The prevalent academic tool is the Ptolemy [4], a framework devel-
oped at the University of California at Berkley. It supports the modeling
and design of heterogeneous systems using a variety of dataflow-based mod-
els of computation. In the industry, the LabView software commercialized
by National Instruments is probably the most popular one. It uses the
dataflow programming language G to model parallel applications. Several
other frameworks exist, including Simulink, CoFluent Design, StreamIt [5],
PEACE [6], Graphiti, and PREESM [7].

The origin of this research work comes from the following ques-
tion: how to better support the dynamic behavior of stream pro-
cessing applications, especially if these behaviors are established
only at runtime?

The community in the Embedded Systems Laboratory at Åbo Akademi
University has worked for the past years with dataflow-based languages,
runtime systems, and many-core platforms, focusing recently on heteroge-
neous architectures. Previous work in this community developed the notion
of crossover point [8] which can be determined with a combination of static
and runtime analysis and is based on the chunk size of work used in the
kernel. This determines when to move the mapping of a specific kernel from
the CPU to the GPU. Previous activities also focused on the development
of accurate power models [9, 10] and new approaches for runtime energy
management [11, 12, 13] of parallel applications deployed on heterogeneous
platforms.

The concept of Fitness of computation on a particular processing unit
has been largely studied. A recent work [1] shows that the type of instruc-
tions to be executed is a key factor in determining the execution strategy on
big.LITTLE platforms. In [14] it is shown through experimental work that
the load level of a task is not the right metric for determining an energy-
efficient strategy for heterogeneous platforms. Several factors should be
considered for making the optimal energy-efficient decision when executing
on heterogeneous many-core platforms.

This research work is a direct and logical continuation of the previous
research works, presented above, conducted at Åbo Akademi University in
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cooperation with researchers from several Finnish and foreign universities
and the industry, pushing the research effort into the development of runtime
supports for elastic stream processing applications.

1.3 Scientific objectives and expected im-
pact

1.3.1 Scientific objectives
The broad goal of the research is to design a method for achieving portable
and efficient streaming applications. To achieve this goal, the following
question needs to be continuously answered at runtime: where to map a
specific workload on a given architecture with the awareness that workload
execution should reach the intended requirements of performance, energy ef-
ficiency and/or reliability?
Hypothesis: The main hypothesis is based on the fact that techniques
and methods developed for the embedded world could be extended to the
streaming domain. So, tools previously used in the design process for em-
bedded systems could be developed further to support the dynamic behavior
of stream computing systems.
Expected objectives: Overall, this research will contribute to developing
the adoption of dataflow-oriented programming languages. More concretely
the objectives are the following:

• Provide runtime energy management for dynamic streaming applica-
tions.

• Provide runtime performance management for dynamic streaming ap-
plications.

• Provide runtime support for flexible composition and concurrent exe-
cution of several dynamic streaming applications.

Expected research results: This work is expected to develop meth-
ods and techniques to efficiently manage at runtime the dynamic behavior
of stream processing applications. It will participate in demonstrating the
large impact dataflow-oriented programming languages can have on the de-
sign flow of stream processing applications.

1.3.2 Effects and impact beyond academia
Having a widely adopted stream programming paradigm and runtime frame-
work would affect most consumer electronics industries (media processing
devices, mobile phones, etc.) and telecommunication industries (base sta-
tions, media gateways, etc.). The work will participate in the middle-term
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objectives of making dataflow-based application design a) optimal for pro-
gramming parallel, heterogeneous processors, b) portable, and c) efficient
and scalable.

1.4 Research Contributions

This research will contribute to the general goal of developing energy-
efficient solutions to design streaming applications on heterogeneous and
parallel hardware platforms. Streaming applications are nowadays widely
spread in the software domain. Their distinctive characteristic is the retriev-
ing of multiple streams of data and the need to process them in real time.
Examples of such applications can be found in application domains such as
banking systems, video conferencing, multimedia processing, Telecom(5G),
etc.

The main motivation for this research arose from the observation that
current solutions do not provide full support for the dynamic behavior of
stream processing applications. Therefore the proposed work will develop
new approaches to address the challenging problem of efficient runtime co-
ordination of dynamic applications, focusing on energy and performance
management. As ICT infrastructure in Europe in 2012 consumed 1,6% of
the world’s electrical energy consumption [15], this work could lead to an
important impact in terms of worldwide energy consumption.

1.5 Thesis Organization

The thesis is organized into six chapters. Chapter I is an introduction to the
research area with an analysis of the state-of-the-art work, research ques-
tions posed in the thesis, and research contributions of the thesis. Chapter
II contains a description of the main notions used throughout the research in
order to develop energy efficiency models. In Chapter III there is a descrip-
tion of the mechanism used in the research for controlling the load during
task execution. Chapter IV, is the heart of the research, with original con-
tributions through the research in order to answer research questions set at
the beginning. Chapter V is a brief summary of the original publications
and a summary of each paper. Chapter VI ends with a discussion of the
conclusions and future work which develop from the thesis work.
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Chapter 2

Background

2.1 Definition of Energy and Power in
computing platforms

Through the process of evolution of electronic and computer systems, the
progress was defined in terms of density and speed. Increased density would
mean, different geometries of semiconductor devices. Processing speed was
also affected by this increase in density, more computation resources, and
more data storage in chips, leading to higher levels of parallelism and com-
putations completed per unit of time. Managing the power dissipation of
computing systems has been a challenge of architects for a long time. This is
a problem found in many domains of computing: from large-scale data cen-
ters [16] [17], to high-end servers [18], going through battery-operated de-
vices such as smartphones, laptops, and even IoT devices [19, 20]. To main-
tain the trend of higher performance as the number of transistors per chip
rises, designers have resorted to more elaborate processor designs (pipelin-
ing, superscalar, SMT) and to high clock frequencies. Unfortunately, power
requirements have grown exponentially as chip density and clock frequency
have risen. One way to control power density is to use more of the chip area
for cache memory. Memory transistors are smaller and have a power density
an order of magnitude lower than that of logic. As chip transistor density
has increased, the percentage of chip area devoted to memory has grown
and is now often half the chip area. Even so, there is still a considerable
amount of chip area devoted to the processing logic. Energy is often con-
sidered one of the most fundamental metrics, especially in battery-operated
devices, where the availability of it is limited to the capacity of the battery.
But even in non-mobile systems energy consumption is ranked as one of the
leading operating costs which means there is a high need for the reduction
of it. Power which is measured in Watts(W) is the rate of energy dissipation
and is the metric that relates to the current delivery and voltage regulation
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inside the chip. Another metric of interest is power density which is the
dissipated power per unit area and is studied for thermal analysis; 200W
dissipated in 4cm2 surface could be very difficult to cool down.

2.1.1 Power efficiency compared to Energy effi-
ciency

In the literature, you can find in usage the terms of Power efficiency and
Energy efficiency as the same concept. However there is a clear distinc-
tion between the previously mentioned terms. Power in a CMOS circuit
is defined by the voltage the circuit operates and the current flowing as a
function of time.

P (t) = V (t)xI(t) (2.1)

where V and I are instantaneous values of voltage and current. Generally, in
many systems, the voltage is constant so the power depends on the current
drawn by the system, such that the power follows the change of the current.
The energy consumed by the system over a period from t=0 to t=T would
be:

E =

∫ T

t
P (t) dt (2.2)

and is denoted by the area of the graph below the power curve P(t) like
in Fig 2.1. Two systems having different power dissipation P(t) and P’(t)
consume different amounts of energy, respectively E and E’. From the Fig-
ure 2.1, we can tell that system S is more energy efficient and power efficient
than system S′. The discussion is different in the comparison between sys-
tem S and S′′ in Fig 2.2. The power characteristic of system S′′ shows that
the power values are under those of system S but the time S′′ takes to com-
plete the work is larger and the energy is calculated over the interval 0 to
T′′ as:

E =

∫ T ′′

t
P ′′(t) dt (2.3)

Clearly, we can state that if E′′ < E, then S′′ is more energy efficient than
S because the amount of work is not connected to completion time. The
discussion for power efficiency depends on metrics like peak power and av-
erage power. If we account for the whole interval of time from 0 to T′′ then
the average power is:

Pavg(S) =
E

T ′′ (2.4)

Pavg(S′′) =
E′′

T ′′ (2.5)

The peak power is the highest value the power curve should not exceed
while the system is running. It’s actually imposed by the system design. If
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Figure 2.1: Relation between power and energy for two power curves

Figure 2.2: Power and energy efficiency for systems with different competi-
tion times.

this metric is considered system S′′ power values are under system S, so is
more power efficient. Peak power constraints can be set for 2 reasons:

• constraints in the actual power that the supply can provide

• maximum temperature that the system can support

2.1.2 Power-performance tradeoffs
Figure 2.2 shows the trade-off that exists between performance and energy
which has many practical implications. Especially in the domain of mobile
devices, where most of the time the focus is not only on pure computational
performance but also on network connectivity, managing a high variety of
workloads, and battery life. So the push to deliver more and more perfor-
mance has shed new and strong light on energy and power. Many metrics
are proposed in the literature for grasping the inverse relationship between
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power and performance. The energy-delay product(EDP) [21] is used often
in order to evaluate systems taking into account both energy and perfor-
mance, and not discriminating systems only by the power dissipation. For
the systems analyzed in Equation 2.5

EDP (S) = E × T

EDP (S′′) = E′′ × T ′′

A second metric of evaluation is performance-per-watt used to characterize
the energy efficiency [22]. In this metric, we can notice sometimes actually
the calculation of 1/E. The performance can be interpreted in different
ways, such as; throughput, latency, or frequency of computations. If the
performance is accounted as the inverse of latency then we would calculate:

performance− per − watt =
1

T
× 1

P
=

1

E

A third metric is energy-delay squared(ED2P ) where the energy consumed
by the system is multiplicated with the square of the delay, giving this way
more emphasis to the performance.

2.2 CMOS circuits power

CMOS circuit power is divided into several categories: dynamic power,
leakage power (or static power), and short circuit power. We will focus next
on the two major sources of power dissipation: dynamic and leakage.

2.2.1 Dynamic Power
The dominant part of power in CMOS systems is dynamic power, which
is related to the switching activity of the transistors and the subsequent
charging of the load capacitance. The dynamic power formula is as below:

P = ACV 2F

C is the aggregate load capacitance of the circuit, while A and F are
respectively the switching activity factor of a node (probability that the
node will change the state), and the operating frequency. The C parameter
can be reduced by using small transistors and small interconnecting wires
in non-critical parts of the circuit. By using small cores instead of large
processors, or dedicated caches instead of large ones we can impact lowering
the C factor.

Voltage V is the supply voltage of the transistors which for decades has
been decreasing steadily as a result of advancements in process technology.
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On average for each technology generation the operational voltage has de-
creased by 30% [23]. Based on graphs in [24] we can see that the supply
voltage VDD has been reduced to 0.65V for the 5nm process technology with
the prospective of 0.6V supply voltage for the 2nm node. According to the
ITRS projection [25] there will be a gradual decrease of both the working
voltage and threshold voltage of the transistor as shown in Figure 2.3.

Figure 2.3: ITRS specification for supply voltage Vdd and the threshold
voltage of the transistor

2.2.2 Static Power
The overall power dissipation in CMOS circuits is given by the following
formula.

P = ACV 2f + V Ileak

11



The first part of the equation represents the dynamic power of the circuit
and is spent by charging and discharging the capacitive load of the transis-
tors inside the CPU. The second term shows the other part of power, which
is called leakage power or static power. This part of power dissipation is
lost due to the presence of the leakage current (Ileak) in the CMOS tran-
sistor. While for dynamic power by reducing the working voltage we could
have benefits in terms of power saved, and hide the reduction of speed with
techniques such as parallelism and pipeline, in the static case this technique
won’t provide a reduction in the leakage power. The leakage current is a
combination of subthreshold current and gate-oxide leakage.

Ileak = Isub + Iox

In [26] authors show how the subthreshold leakage depends on the threshold
voltage and supply voltage.

Isub = K1We−Vth/nVθ(1− e−V Nθ)

where K1 and n are derived experimentally, W is the gate width, and Vθ

is the thermal voltage. In normal room temperature Vθ is about 25.85mV
and increases linearly with the temperature. If the subthreshold current
increases in the chip, then the temperature of the device will also increase
which will provide a further increase in the leakage. According to the above
equation, there are two ways to decrease Isub. One way would be to decrease
the source voltage possibly setting it to zero so the exponential in parenthesis
will go to one and the entire factor goes to zero. The second way would
be to increase the threshold voltage Vth, which will provide a significant
decrease in the Isub current. But the relation between f and Vth tells that
every increase of the voltage will decrease the operating frequency, so lower
the speed.

f ∝ (V − Vth)
α/V

Gate width W is another parameter that influences the subthreshold cur-
rent, and in the calculations, the W represents the combined widths of the
transistors in a chip. For the gate-oxide current according to [26] the key
influencing factors would be:

Iox = K2W

(
V

Tox

)2

e−αTox/V

where K2 and α are experimentally derived. Tox is the oxide thickness in
the transistor and will scale down proportionally with the feature process.
Taking into consideration that both subthreshold and gate oxide depend
on the number of transistors, techniques that maintain the performance
without increasing the density in the chip would be a solution in low-power
architectures.

12



2.2.3 Reducing the leakage power
Scaling transistor size with the newer generation of process technology has
been followed by a continuous reduction of the source voltage V , with the
aim of reducing the dynamic power dissipation. Following that reduction,
also the Vth scaled down bringing an increase in the static power dissipation.
Currently, the static part of power is becoming more and more significant,
which brings attention to the right management of this part of power dis-
sipation. The right addressing of this issue is particularly of paramount in
handheld devices which are supposed to be “ON”, but not active all the
time. In this context minimizing the static power is more important than
focusing only on dynamic energy consumption. In practice, there are some
techniques used during chip manufacturing such as the use of multiple sup-
ply voltages [27], multiple threshold voltages [28], transistor stacking [29]
and power gating [30].

More significant power reductions are being archived with new tran-
sistor design structures like gate-all-around (GAAFET) transistors [31].
GAAFET’s advantages over current FinFET transistors includes lowered
leakage current (as gates are present on all four sides of the channel), as
well as the ability to adjust channel width for higher performance or lower
power consumption.

As discussed in [32] the GAA-FinFET exhibited superior SCE(Short
Channel Effect) characteristics thanks to the improved sub-channel leakage
suppression by the narrow fin. The GAA-FinFET (compared to conven-
tional FinFET) can be employed as a knob for suppressing SCE as well
as for improving series resistance. Furthermore, while the device struc-
ture of GAA-FinFET is very similar to that of conventional FinFET, there
are several flavors that will be considered in production, like GAA verti-
cally stacked nano sheets(NS) FETs, and Forksheet(FS) FETs, culminating
to N/PMOS devices stacked on top of each other to form complementary
FETs(CFETs) [33]. Which is being consodered as the ultimate CMOS ar-
chitecture [33].

Delivering high current(data-center SoCs might draw between 100 to
200 amperes) to a huge number of transistors is becoming one of the major
bottlenecks in high-performance SoC design. As the size of transistors de-
creases continuously, the interconnects that supply them with current must
be packed ever closer and be made ever finer, on the other hand this in-
creases the resistance and raises the power dissipation. This matter clearly
impacts negatively the efficiency of the power delivery system. Without a
big change in the way electrons get to and from devices on a chip, it won’t
matter how much smaller we can make transistors.

As a partial solution to this problem chip manufacturers [31], are con-
sidering major advancements in the power delivery of the new transistor
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design, called back-side power delivery.

The back-side PDN(Power Delivery Network) has the additional ad-
vantage of being physically separated from the signal network, so the two
networks no longer compete for the same metal-layer resources. It also
means that the metal layer characteristics no longer need to be a compro-
mise between what power routes prefer (thick and wide for low resistance)
and what signal routes prefer (thin and narrow channels). You can simulta-
neously tune the back-side metal layers for power routing and the front-side
metal layers for signal routing and get the best of both worlds.

This, in turn, will enhance transistor performance and reduce their
power consumption. Also, back-side power deliver eliminates some potential
interference between data and power connections.

2.2.4 Thermal influence in MPSoCs power dissi-
pation

From the above descriptions of the Ileak formula, we see that there is a
cyclic relationship between power and temperature. The thermal situation
of the chip is dependent on the power dissipated and the stacking of the
transistors. On the other hand, if the temperature is high, then the static
power dissipation will increase, bringing more heat to the chip. To assess the
interaction between temperature and power dissipated during workload exe-
cution, we run experiments on two popular MPSoCs from INTEL and ARM.
The workloads were chosen as representative of the mobile domain from a
popular suite like EEMBC. For CPU testing is used CoreMarkPro1 set of
workloads, which is composed of an integer and floating-point workloads,
meant to exercise different components of the CPU in multiple threads.

We use 1000 iterations of the equation solver workload for exercising
the MPSoCs with only the active fan as a cooling system. We monitor the
current consumed during the execution with an oscilloscope. The results
of the current measurement for the two cases are shown in Figures 2.5
and 2.4. The red frame shows the interval during which the workloads are
executed. For the ARM case (Figure 2.4), before the workload starts we see
a current consumption of 0.6A. After the start of the workload, the current
consumption reaches levels of 2.2A, and continuously increases up to 3.2A,
a value at which the temperature of the chip is so high that could bring
physical damage to the semiconductor. As a protective measure, the board
is switched off as can be noticed at the end of the measuring interval. As
the same workload is executed during the window interval the continuous
increase of power dissipation is attributed to the raise of chip temperature
which produces additional static power for the level of approximately 5W.

1http://www.eembc.org/coremark/index.php?b=pro.htm
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The same experiment is repeated with the INTEL MPSoC (Figure 2.5), but
in this case, the current remains constant during the workload execution
showing better thermal management.
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Figure 2.4: Measurement of current consumption in the ARM chip during
the execution of the workload
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Figure 2.5: Measurement of current consumption in the INTEL chip during
the execution of the workload

For having an explanation of the increase of static power we measure the
temperature increment on each chip for equation solver workload, while the
experiments are conducted in a highly refrigerated environment as explained
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in [34]. From Figure 2.6 we can notice the continuous increase of the tem-
perature while the workload is in execution. While in the case of INTEL
(Figure 2.7) the temperature reaches a stable value while not increasing
anymore. One explanation for the change in the static power component
could be the presence of the double of cores in the ARM chip.
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Figure 2.6: Measurements of the linear workload execution on ARM chip
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Figure 2.7: Measurements of the linear workload execution on INTEL chip

2.2.5 Energy consumption in multi-core chips
In 2004, the main CPU producers abandoned the continuous increase of
the clock frequency, as a result of the power density reached inside a chip.
Energy can be saved by using a design where work can be distributed among
slower, low-voltage CPU cores that can work together in a parallelized task.
The main reason for not working with low voltage would be the increase in
leakage energy. The amount of energy needed to complete a task is divided
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Figure 2.8: Total, static, and dynamic energy across Vdds [35]

into two categories, dynamic and static.

Etotal = Edynamic + Estatic = (CV 2
DD + IleakVDD)Ttask

The dynamic energy is linked with the task being executed, while the static
energy comes from the presence of leakage current during the time the task is
executed. The static part of the energy consumed during workload execution
is the main limit to the level of energy efficiency that can be achieved.
When the source voltage (VDD), is bigger than VT the frequency scales
linearly with the source voltage. As VDD approaches VT the frequency scales
exponentially since the transistor is no anymore in the fully-activated zone.
As the operating voltage is lowered the presence of static energy increases
because the task requires more time to complete. As it can be seen in
Figure 2.8, at a certain level of the operating voltage the static energy is
larger than the dynamic energy. According to [35] the operating voltage for
which the energy is minimal is called Vopt, found by having the derivatives
of static and dynamic energy with respect to VDD.

2.3 The notion of heterogeneity

In the past two decades as continuous power constraints were placed in front
of chip designers, the focus was set on design styles that could guarantee
better power solutions. The multi-core design secured certain power/per-
formance opportunities which satisfied some use cases. Another area of
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architectural design could be explored, by using processing elements that
have different characteristics of power/performance ratio inside a single chip.
These techniques include:

1. heterogeneous on-chip parallelism in which processing elements have
the same ISA, but with different configurations or microarchitectures.

2. heterogeneous on-chip parallelism with different processing elements
with different ISAs.

3. heterogeneous parallelism with hardware accelerators for special com-
putations.

2.3.1 Microarchitectural Heterogeneity
The simplest form of heterogeneous parallelism is incorporating inside a
single chip, cores that have different configurations or microarchitectural
designs. Some cores could have the same basic design but work at different
frequencies for having different levels of efficiency. One of the first examples
of single-ISA heterogeneity is ARM’s big.LITTLE approach [36]. This de-
sign includes a “big” power-hungry core type for achieving high performance
(e.g. ARM Cortex-A15) and “LITTLE” energy efficient low power core (e.g.
ARM Cortex-A7), organized each into groups of cores called cluster. Both
core types have the same architecture but differ in the microarchitecture im-
plementation which gives them a different power and performance behavior.
Cache memory and communication are implemented in such a manner that
allows fast switching of tasks between cores, and clusters are organized in
such a way that all cores can be used at the same time. More recent ex-
amples [37] try to increase the number of clusters present inside a chip to
provide the better granularity of the power and performance selection. In
this case, the first gear of the CPU subsystem is a high-performance (HP)
ARM Cortex-A78 at 3GHz that is designed with high-speed library cells.
The second gear is made of the ARM Cortex-A78 clocked at 2.6GHz, and
designed for balanced performance(BP). The third gear of the subsystem
is composed of four ARM Cortex-55 which are designed to provide high
efficiency (HE). The promised achieved power and performance behavior is
shown in Figure 2.9

2.3.2 Architectural Heterogeneity
While a single-ISA chip is a natural way of having heterogeneity and achiev-
ing better energy efficiency through different configurations or designs of
cores inside a chip, a more aggressive way to exploit heterogeneity is by
having multiple-ISA computational units. While using cores with different
architectures is a natural way for architectural heterogeneity, the workload
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Figure 2.9: Tri-cluster implementation power/efficiency [37]

combination of CPU and graphical processing unit(GPU), has reached good
levels of adoption. GPUs were first introduced for workloads that have high
levels of parallelism and regularity, such as gaming, and graphics. While at
first the power dissipation of such units could seem very high (e.g. 200W)
and not possible to reach energy efficiency, the case is that by providing
parallel single instruction multiple threads (SIMT) the calculation over-
head is reduced for phases like fetch and decode. According to [38] the
GPUs are an opportunity to further increase the performance while still
staying within the power limits, providing a potential 10x reduction to the
energy-per-operation.

2.4 Hardware techniques for energy man-
agement

As showed before the dynamic power is related to parameters such as C, V,
and f, increasing the preasure on the working voltage in order to leaverage
the maximum power reduction by adjusting the voltage (V). Two techniques
are on the forefront of the power management with hardware techniques:

• Dynamic Voltage and Frequency Scaling (DVFS)

• Dynamic Power Management (DPM)
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2.4.1 Dynamic Voltage and Frequency Scaling
(DVFS)

In computing systems, applications do not require the highest performance
of the CPU continuously. Often the task CPU is running completes before
its deadline, and for the time remaining (called slack), the CPU enters low
power mode. The intuition behind DVFS is that by reducing the speed of
the CPU during execution, the task could finish with zero slack, and the
source voltage of the CPU can be reduced to save power. By lowering at the
same time frequency (f) and voltage (V ) the dynamic power would have a
cubic reduction, while the energy consumed will have quadratic reduction.

DVFS in multiple processors system on chip(MPSoC)

With the advent of multi-core era, it is important to understand how to ap-
ply dynamic voltage scaling to be even more influential in reducing power
dissipation inside the chip. It is a design decision with three alternatives:
apply DVFS to the chip level, use voltage scaling separately for each core,
or set group of cores which share the same clock domain. Using core level
DVFS would mean having multiple clock domains and a synchronizer cir-
cuit between them. The positive side of having multiple clock domains
would be to break the long clock tree distribution that in high density
chip becomes a problem [39]. The other alternative for managing DVFS
in chip-multiprocessor(CMP) would be to organize cores into different volt-
age/frequency islands, and cores inside an island to share the same clock
domain. As shown by [40] this approach outperforms the others, since the
additional complexity of having per-core DVFS does not bring significant
benefits in terms of energy savings.

2.4.2 Dynamic Power Management

Even though much attention is focused in techniques for the management of
the dynamic power being consumed during workloads execution, with the
recent advances of process technology, static power is rapidly increasing [41].
In this context reducing the leakage power of the chip becomes imperative
in the pursuit of reducing the overall power dissipation. Techniques used for
lowering the dynamic energy consumption, such as frequency and voltage
reduction, help in lowering the static power dissipation but still their effect
its marginal in the leakage of the transistors. Therefore techniques that
focus in reducing the leakage current of the transistors are needed. These
techniques belong to the so called DPM (Dynamic Power Management)
strategy. The main idea is that the leakage current is proportional to the
number of transistors that are powered inside a chip, and by adjusting the
number of cores active inside a chip, according to the processing needs,
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we lower the level of the static power due to the current leakage. Today’s
modern Unix-based OS’s offer capability for making usage of such principle
by dynamically adjusting the number of cores used in a multi-core chip,
based of the CPU utilization, number of threads running in the system,
or type and prediction of workloads to be run. E.g. in Linux systems, it
is present a module for the implementation of the DPM strategy which is
called hotplug governor. For this governor the decisions are primarly based
on the CPU load, with changing to the highest frequency if the runtime
tunable “up threshold” is crossed. If on the other had the “down threshold”
is crossed the governor send the frequency to the next lower point from the
frequency table. The main novelty of this governor is to set cores online
and offline based on different sampling windows of the CPU utilization. In
modern mobile devices where there is the presence of graphical processing
unit (GPU), the management of graphic cores is also of great importance.

2.4.3 Hybrid strategy management
In these works [42, 43], authors explore the usage of both DVFS and DPM
in the context of multi-core architectures for energy reduction. Their work
is based mostly of the mobile architectures and the decision of ratio to use
between DPM and DVFS is based on the type workload and on the level of
which workloads are present.

2.5 Software hooks for energy manage-
ment

In order to have a full potential from the strategy of power reduction, we
need to explore possible actuators that reside on the software side.

2.5.1 Workload parallelization
With the unsustainable power dissipation of the previous unicore chips due
to the continuous rise in clock frequency, there was on obvious move to-
wards multicore design. In the multicore era, in order to exploit the full
potential of many core chips the programming model should be oriented
towards exposing the natural parallelism inside the software. In theory ex-
posing software parallel units of execution, (e.g. threads) in the same level
as the core availability in the chip can provide speedup in terms of execu-
tion time. In powerful machines its even demonstrated the exposing of the
same number of threads as the CPU leads to an underutilized performance
capabilities [44]. As authors show in [44], with a high number of cores,
maximum benefits can be gained by exposing parallelism to a scale bigger
than the number of available cores in the CPU. The level of parallelism is
dependent of several factors connected with the structure of the software
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but also sometimes with the input level. From the Amdahl’s law by know-
ing the parallel fraction p of a software we can calculate the speedup of the
parallelization with a factor n [45]. According to the research [37, 46, 47]
this can impact not only the performance but also the energy efficiency.

2.5.2 Core type selection

From a technological point of view using dedicated cores for a specific types
of tasks is the optimal choice in terms of efficiency, we get the most per-
formance with the smallest power dissipation. Heterogeneous architectures
give the possibility to have this matching between core type and task to be
executed. In reality, there are many factors that limit this bright prospective
of boosting efficiency. From the chip production point of view the hetero-
geneity level must be kept to a certain degree, because the more a core is
specialized the smallest the range of application that could benefit from it is.
From the runtime system prospective, matching the performance require-
ments with the level of efficiency is a difficult task knowing the variability
of workloads that especially the mobile domain faces.

2.5.3 Load level

Since release of 2.6.23 Linux has a modular scheduling framework, where
can be placed many scheduling classes which implement different scheduling
policies. The linux scheduler has the task of allocating hardware execution
units to system processes, in order to provide maximal performance and
throughput while minimizing power dissipation. Perfect scheduling would
require the prediction of future behavior of process submission in the sys-
tem and also their characteristics. The kernel tracks down how much time
a process spends executing, but there is a need to assess the impact of this
time on the overall CPU engagement. The terminology used in the sched-
uler is load, which represents an instantaneous quantity of how much is the
process loading the CPU (on the contrary of usage, which shows a cumu-
lative property). Modern calculation of load includes assessing per-entity
load tracking (pelt). A process is contributing to the system load not
only if is running but also if is ready to run. The load is calculated on
1ms scheduling periods and pelt is evaluated to include the contribution
of a process not only in the current window of scheduling but also on the
previous windows [48]. In current schedulers, the load includes the effect of
processes which are not runnable but blocked, since they also contribute to
the load of the system.
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2.5.4 Summary
It is in the middle 2000s that power consumption has been recognized as a
serious design constraint for chip manufacturers. While on mobile devices
and embedded systems the focus is mostly on the energy consumed by
the battery, in desktop systems the problem is often related to thermal
issues. The dissipated power in the chip is so high that the normal cooling
systems cannot maintain normal working temperatures inside the silicon.
This was the reason for the change to the multi-core era, trying to continue
in the performance advancement with a more controlled power and thermal
budget.

In recent years the focus has shifted from the continuous race to achieve
higher hardware performance, to power-aware computing systems where
power and energy efficiency are of great paramount. Dynamic and static
power dissipation in multi-core chips is the focus of the research community
and industry. Hardware and software mechanisms have been explored in
order to provide every time better levels of energy efficiency in a scenario
where the number of computing devices is continuously and unstoppably
rising.
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Chapter 3

Utilization level scaling

Utilization level or workload, is a metric which is traditionally used by the
scheduler to schedule tasks and map them on the CPU. Task mapping in
a certain core influences its utilization factor and also the power usage of
the core. The way “load” is measured is by accounting the utilization of
all tasks mapped to the core, in order to have a number (as a percentage)
that tells “how much the core has space left”. This parameter could result
beneficial for lowering the power usage of the CPU.

3.1 Real time schedulers

Pre-emptive operating systems are based on scheduling algorithms with
priority metrics. Scheduling prescribes a runtime environment in which
tasks, with a priority attribute, are dispatched in priority order. Priorities
traditionally are, essentially, considered static. Tasks are either runnable, in
which case they are held on a (priority ordered) run queue; delayed, in which
case they are held on a notional (time-ordered) delay queue; or suspended, in
which case they are awaiting an event which may be triggered externally (via
an interrupt) or internally (from some other task). Most existing hard real-
time systems are implemented using a static table-driven schedule. Priority-
based scheduling has many advantages over this static approach ( [49] ).
In essence, these advantages all relate to one theme: increased flexibility.
However, in order to challenge the role of static scheduling as the premier
implementation model, priority-based scheduling must:

• provides the same level of predictability

• account for different application characteristics

• have safe implementation candidates
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3.2 Sched deadline

sched deadline provides a scheduling policy for real-time applications by
implementing a resource reservation algorithm in the Linux kernel. The al-
gorithm is called CBS (Constant-Bandwidth Server) and is used for resource
reservation in an EDF (Earliest Deadline First) scheduler [50]. Resource
reservation mechanism is important in providing temporal isolation of the
tasks in order to allow real-time scheduling capabilities in general-purpose
operating systems. The technique is based on the idea of giving each task
a ’reservation’ with characteristics(Qi, Ti), meaning that each task is guar-
anteed a run of maximum Qi every period of Ti. If a task tries to run more
than Qi inside a period then the scheduler throttles the task until the end
of the current period. So, each task is assured with some running time,
with a mechanism to not let it exceed the reservation. CBS is an aperiodic
server algorithm that implements CPU reservations differently from other
algorithms in the group like Constant Utilization Server or Total Bandwidth
Server [51]. In CBS, if the fraction of CPU time given to a task is Us then its
contribution to CPU utilization is no bigger than Us, even in case of CPU
overloading. The algorithm keeps track of two parameters for each task,
such as qi (the amount of time the task has left for the current reservation),
and di (the scheduling deadline of the task). The last parameter is used to
assign dynamic priority to the tasks. CBS operation is like this: when a
task wakes up at time t the scheduler checks if the current deadline di can
be used (qi < (di − t)Qi

Ti
), otherwise a new deadline is generated di = t+ Ti

and qi is reinitialized to Qi. While a task is running its remaining runtime
is depleted with dqi = −dt, until the runtime qi becomes 0 in that moment
the task is throttled and cannot be selected for execution. After going to
the throttled state the task can exit that state when t = di, after which
the remaining runtime is recharged to Qi and the deadline is postponed to
di = di + Ti, decreasing the priority of the task.

3.2.1 Control groups in Linux

One of the earliest partitioning mechanisms in the Linux kernel for process
aggregation in terms of resource tracking are control groups(cgroups). A
cgroup is able to associate a set of tasks with specific parameters, to a set of
subsystems, which most of the time are resource controllers that put limits
or schedules resources [52]. Cgroups provide many types of controllers.
cpu- This provides a guarantee for a minimum number of CPU slices when
the system is busy.
cpuacct - Provides accounting for CPU usage from a group of processes [53].
cpuset - This binds a set of processes to a set of CPUs or NUMA nodes [52].
memory - This controller limits the process memory, kernel memory and
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swap memory used by cgroups.
blkio - Control and limit access of cgroups to block devices.
perfevent- Allows access to performance counters related to a group of pro-
cesses.

3.2.2 Multiprocessor scheduling
In multiprocessor systems, real-time scheduling techniques can be divided
in two groups: partitioned and global. In partitioned scheduling, there are
queues specific to a CPU, on the contrary in the global scheduling fashion,
structures are shared among CPUs(cores). In Linux systems there is a mix
of techniques, every CPU has its own run queue but the processes can move
from one queue to the others. In sched deadline there is also a run queue
for each CPU and are provided operations for moving processes from one
queue to the other. Cpuset is one mechanism to ensure that a process or
group of processes to run on a specific CPU (or list of CPUs) and memory
nodes. Another mechanism of Linux to select specific CPUs for execution
is processor affinity. With Linux system call sched affinity() it can be set
the schedulability of a process or thread, to specific CPU(CPUs). With
processor affinities it can be realized different scheduling schemes such as
global partitioned or clustered scheduling [54].

3.2.3 User space API
The two main attributes of sched deadline scheduler are: timing guarantees
and enforcing timing confinement. The first one gives each task certainty
of a given time for execution which the task will benefit from, while the
second confines each task in its temporal interval protecting the other tasks
in the system. For the API two new system calls have been used in the
SCHED_DEADLINE class, which are sched_setattr() and sched_getattr().
The prototype of the systems calls is shown below:

Listing 3.1: Prototype of new system calls

#include <sched . h>
struct s ch ed a t t r {

u32 s i z e ;
u32 s ch ed po l i c y ;
u64 s c h e d f l a g s ;
/∗SCHED OTHER, SCHED BATCH∗/
s32 s ched n i c e ;
/∗SCHED FIFO, SCHED RR∗/
u32 s c h e d p r i o r i t y ;
/∗SCHED DEADLINE∗/
u64 sched runt ime ;
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u64 s ched dead l i n e ;
u64 sched pe r i od ;

} ;
int s c h e d s e t a t t r ( p i d t pid , const struct s ch ed a t t r ∗

attr , unsigned int f l a g s ) ;
int s ch ed g e t a t t r ( p i d t pid , const struct s ch ed a t t r ∗

attr , unsigned int s i z e , unsigned int f l a g s ) ;

3.3 Controlling synthetic application uti-
lization level

In controlling the utilization level of a CPU or core, there is a need for a
repeatable approach of a load generator generating different kinds of loads
on a multicore system that can be spread across cores using different poli-
cies. In our work for synthetically achieving different levels of utilization
in MPSoCs, we used a load generator called Spurgbench [55]. With this
approach, we maintain a specific utilization level according to the parame-
ters that we give to the tool. Different utilization levels are used to stress
hardware cores for energy measurements. The load generator has two re-
sponsibilities, 1) to direct control flow between the operation and the idle
state and 2) to estimate the instantaneous cycle count of the operation. The
state machine of the tool has three states: operation, sleep and estimate,
and the transitions between these states are illustrated in Figure3.1. Spurg-

Figure 3.1: State machine of load generator operation

bench works in phases starting with phase 1 in state operation. On the
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transition from estimate to operation the load-generator enters a new phase
i + 1. Each phase has a set of parameters calculated in the estimate phase.
At the beginning of phase i the load generator will transition between the
operation and sleep states o(i) times, and then enter the estimation state.
In reality, the tool uses a double loop construct such that o(i) = n(i)∗m(i).
The inner loop executes n(i) times and has the purpose of increasing the
sleep time needed. In this manner is possible to have a sleep time longer
than Trun. The outer loop executes the inner loop m(i) times and is used
to control the time between measurements. For further details on the uti-
lization calculations refer to [55]. The load generated from the tool consists
of operations. Different implementations of operations can be used with
Spurgbench, but we searched for one that can exercise different parts of
the hardware such as cores, ALUs, floating-point units, memory interfaces,
memory hierarchy, and other units. The characteristic of load should be
such that can be controlled in the utilization level and also adapt to the
changing performance of the system. The execution time should be small
enough to give the controller the granularity to adapt the utilization level
in a fast way. In Listing3.2 there is a description of the operation used.

Listing 3.2: Operations used to generate load with Spurgbench

int opera t ion ( )
{

int i ;
double a = 2 . 0 ;
for ( i =0; i< 1000 ; i++) {
a ∗=2.0;
}

return 0 ;
}

3.4 Controlling real application utiliza-
tion level

In our experiments for validating the energy efficiency model, we used a
real-world application that comes from the Synchronous Dataflow (SDF)
Models of Computation (MoCs) world. As an application case study we
choose to use an SDF implementation of a stereo matching application from
the computer vision application class [56]. The idea behind stereo matching
is to compare input images taken by near cameras in order to produce as
a result the depth of a scene. The algorithm used in this application offers
a great opportunity for expressing parallelism which serves our approach
based on parallel instances of an actor. The stereo matching application is
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composed of 12 actors and two tunable parameters which can be used for
having a high degree of parallelism of the most compute-intensive actors
which are: CostConstruction, AggregateCosts and ComputeWeights. The
parameters are nbDisparity and nbOffsets. The first represents the number
of distinct values that can be found in the disparity map, while the second
influences the size of the pixel area to be considered for the correlation
calculus. We control the utilization level of the most intensive actor using
SCHED_DEDLINE scheduler and adjusting the parameters of the period(T),
runtime(q), and deadline(d).

3.5 Summary

This chapter explained the notion of real-time schedulers, together with a
new scheduler class recently introduced into the Linux kernel. Control-
ling the scheduling of the software components is a crucial part of the aim
of achieving better energy efficiency. Today new classes of schedulers and
mechanisms in Linux systems, make it possible to implement efficient strate-
gies for benefiting from multi-core heterogeneous platforms.
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Chapter 4

Contribution of the Thesis

In this chapter are discussed the novel contributions of this research work on
the energy-efficiency in multi-core heterogeneous platforms. New concepts
such platform configuration points, or known techniques such as offloading,
are used and explored in order to increase energy-efficiency in various use
cases.

4.1 Energy Efficiency in heterogeneous
systems

Energy today is the biggest challenge faced by computer systems for nearly
every class of computer. First, power must be brought in and distributed
around the chip, and modern microprocessors use hundreds of pins and
multiple interconnect layers just for power and ground. Second, power is
dissipated as heat and must be removed.

An important factor that chip designers and users need to consider is
energy and energy efficiency. As explained in chapter two, power is simply
energy per unit of time: 1 watt = 1 joule per second. There exists always
the dilemma: which metric to consider for comparing processors: energy
or power? In general, energy is always a better metric because it is tied
to a specific task and the time required for that task. The energy to com-
plete a workload equals the average power times the execution time for the
workload.

One of the strategic objectives considered with the use of Multiproces-
sor System-on-Chip (MPSoC) is energy. Energy consumption is an intrinsic
metric that is dependent on multiple factors, like the ratio of dynamic and
static power dissipation, the execution time of the application, and physical
plus architectural features. For defining a winning strategy for minimizing
energy consumption, there is a need for a detailed analysis of the inter-
play of such factors and their impact on the objective. As the diversity of
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workloads increases, the optimal choice for mapping software to hardware
becomes a challenging problem. One of the recent techniques explored by
researchers involves using heterogeneity in order to achieve better perfor-
mance and energy results( [57], [58], [59]). As explained in Chapter 2,
there are in usage different types of heterogeneity, but in common is the
intuition of using it as a mechanism to save energy. By matching the task
with the appropriate hardware execution unit, the required result would be
the task completion within the timing requirements with the least energy
spent. There is a recent industry trend towards increasing the level of het-
erogeneity inside a chip for power-saving purposes ( [60], [61]). Also, from
ARM the latest technology in the matter named DynamIQ 1 provides many
options for organizing high-performance and energy-efficient cores inside a
cluster. Following this trend, there is a need to study more in detail the
characterization of the power dissipation in multicore heterogeneous plat-
forms using different systems actuators present at the OS or hardware level.
Because the consideration of parameters such as type of core, frequency and
core utilization rate affect the power dissipation, we are going to explore the
impact of these arguments on the energy efficiency of heterogeneous MPSoC

4.2 Characterizing MPSoC power dissi-
pation in heterogeneous systems

One of the earliest heterogeneous architectures designed for power efficiency
is Big.LITTLE from ARM [62]. As explained in Chapter 2 it is a single-ISA
heterogeneous architecture base on two types of cores, the one optimized
for energy efficiency, and the one optimized for performance which is power
hungry. In this type of platform, we introduce a new concept which we name
Platform Configuration Point. A single configuration point is composed
of the joint state of platform variables which affect the power dissipation
of the platform. These variables are system knobs that can be modified
at runtime in order to produce an effect on the resulting power that the
hardware platform dissipates. As system knobs we focus on:

• Dynamic Voltage and Frequency Scaling (DVFS)
• type and number of cores to use in the heterogeneous system
• number of cores to use (level of parallelism)
• utilization level of the core (load level)

In order to better characterize the power of a heterogeneous platform, we
explore the configuration points which provide high levels of energy effi-
ciency for different levels of performance. The configuration analysis will
be based on specific performance levels required by the application. Taking
into account the number of DVFS levels for each core, the number of cores,

1http://developer.arm.com/technologies/dynamiq
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and the utilization levels each cluster is able to provide, there is a large
number of possible configurations to consider. Furthermore, with modern
architectures, that aim to increase the level of heterogeneity, the number
of configuration points will grow exponentially. As a parameter inside each
configuration point, we use also the utilization level of the core running a
specific task, as described in Chapter 3 the mechanism is based on a class of
real-time scheduler called SCHED_DEDLINE. A well-known execution strategy
of tasks for a CPU is called Race-to-Idle [63], where the logic is to use the
highest possible frequency in order to finish the task as soon as possible, in
order to minimize time. The reason behind this is the energy consumption
minimization, but as shown in [64] this strategy is not working in mod-
ern MPSoC which have different power characteristics. In Heterogeneous
Multi-core Processing (HMP) there is a different footprint of the power dis-
sipation, in relation to the execution strategy. Recent studies ([65, 66]) show
that achieving energy efficiency in heterogeneous architecture under a mod-
erate load level on a core should be kept constant. In other words, we should
try to keep the cores busy most of the time. A strategy coined with the
name ”never-to idle”. Using the never-to-idle strategy scheduling heuristic,
we search for the near-optimal energy efficient configuration between the
number, type, frequency level of cores, and utilization level considering as a
requirement the performance characteristic of the tasks to map. Using the
utilization level as a scaling factor for changing the power behavior of the
platform, brings our strategy close to the philosophy of the Never-to-Idle
strategy which proves to be more energy efficient in HMP world.

Figure 4.1: ARM Cortex-A7 core power dissipation for different utilization
levels
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In Figure 4.1 is drawn the graph that shows the relation between the
utilization level of the core and the power dissipation, for different frequency
levels. The test is performed with ARM Cortex-A7 energy efficient core
architecture [62], which is used in some mobile multi-core chips like Exynos
5 Octa core [67]. The counterpart of the energy-efficient core is the one that
is optimized for performance and consumes much more power than the first
core type.

 

 

 

 

 

 

 

Figure 4.2: ARM Cortex-A15 core power dissipation for different utilization
levels

In Figure 4.2 is shown the power dissipated by the ARM Cortex-A15
core, which is an architecture optimized for high performance in complex
workloads. As noticed by the lines on the two graphs, the power increase is
linear with the utilization rate. We experiment with loads from 10 to 90%
explicitly trying to avoid the Race-to-Idle strategy of running at a 100%
utilization level and full. As described in Chapter 2 there is a strong impact
of the supply voltage in the power dissipation which can be noticed in the
difference of going from 1.1GHz to 1.3GHz or from 1.5GHz to 1.7GHz where
we see the difference in the supply voltage, from 1V to 1.1V or from 1.1V
to 1.25V.

4.2.1 Energy Efficiency at the core level
As a workload for running in each core type, we choose the workload gener-
ator called Spurg bench discussed in Chapter 3. The workload is composed
of floating point operations designed to stress many parts of the core micro-
architecture. The performance of core types is measured in operations/s
achieved in different Configuration Points. From the power measurement
data, as shown before, we can assess the energy efficiency of each core type
under different levels of utilization and different frequencies. We express the
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energy efficiency using the achieved number of operations per joule metric
(ops/J). In Figure 4.3 are shown the energy efficiency figures for different
frequencies of the ARM Cortex-A7 core type for different utilization levels.
As noticed from the almost convex shape of the curves the highest level of
efficiency is achieved for utilization around 60% - 70% and not the highest
level present in the experiments which is 90%.

 

 

 

 

Figure 4.3: ARM Cortex-A7 core energy efficiency

The same conclusion can be derived from the graphs in Figure 4.4, where
the ARM Cortex-A15 core shows the highest levels of efficiency around 60%-
70%.

Figure 4.4: ARM Cortex-A15 core energy efficiency

34



4.2.2 Energy Efficiency Model
From the measurements conducted in the two core types before we can cal-
culate the energy efficiency level of all configuration points derived from a
platform powered by Exynos 5422 MPSoC. This chip contains two clusters
of 4 cores with the A7 core composing the LITTLE cluster and A15 the big
cluster. On each cluster, the DVFS is at the cluster level, and the cluster
provides 1-4 cores available for execution.
From the energy model, we can plot the efficiency levels as a function of per-
formance for all possible configuration points. Figure 4.5 shows the best and
worst efficiency configurations for all reachable performance levels. From the
Figure, we can observe that up to the performance level of 2e+5 operations
per second, the density of configuration points is high and the difference be-
tween the efficiency of the worst and best configurations is large. Moreover,
up to this performance level, there are configurations providing the highest
possible efficiency level. After this performance level, the configuration den-
sity is decreasing and the highest possible efficiency levels are not reachable
anymore.
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Figure 4.5: Efficiency vs. Performance for all configuration points

4.2.3 Summary
In this section, we discussed the characterization of energy efficiency in het-
erogeneous MPSoC. We introduced the concept of platform configuration
point and analyzed the achievable energy gains when exploiting at the same
time heterogeneity, voltage and frequency scaling, and utilization rate con-
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trol techniques.

We proposed an approach to build an energy efficiency model and derive
a characterization of the platform based on platform configurations. We
analyzed the energy efficiency variation for different platform configurations
providing the same level of performance. We show that trading the number
and type of core with frequency and voltage level and core utilization rate
can lead to substantial energy gain.

4.3 Energy efficient scheduling in SDF
applications

Achieving an energy-efficient application execution on multi-core heteroge-
neous architectures requires an overall view and deep understanding of the
underlying software and hardware. First, the software needs to expose the
right amount of parallelism in order to utilize the capabilities of the hard-
ware, and then an efficient mapping of the software to hardware needs to
be found. All of these objectives should be accomplished with respect to
the application performance constraints. Different MoCs have been used for
modelling applications; SDF [2], Cyclo-Static Dataflow (CSDF) [68], Kahn
Process Network (KPN) [69]. One of the main purposes of these MoCs is to
expose parallelism inside the application. In general, applications described
by Dataflow Process Networks (DPNs) consist of a set of entities from which
the application is composed, which are called actors. Actors communicate
through FIFO buffers, and each actor can execute (fire) as soon as its input
buffer contains enough data tokens (consumption rate). After execution,
the actor produces a certain number (production rate) of data tokens in its
output buffer(s). The popularity of these models comes from the simplicity
of analyzing the application structure.

In dataflow MoCs an application is defined as a graph of concurrent
tasks which communicate with each other through FIFO buffers. Syn-
chronous Dataflow (SDF) [2] is probably the most used DPN, especially
in signal processing applications. Inside a graph of actors, the production
and consumption rates of the actors are fixed numbers, which enable a static
analysis of the graph. Another valued property of SDF, not present in KPN,
is the possibility to schedule the graph at compile time, as long as the graph
is schedulable, deadlock-free, and consistent. In SDF actors are stateless,
which practically means that an actor can start several replicas of itself in
parallel if enough data tokens are available. With the exposed available
parallelism, we can develop mapping techniques exploiting the benefits of
using heterogeneous processors to achieve energy-efficient execution of ap-
plications. In order to enable the energy-efficient execution of a software
application based on the concept of platform configuration points, we need
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to change the scheduling and mapping of an application according to con-
figuration points that provide high levels of efficiency. We choose from the
model a configuration with a high level of energy efficiency and call this con-
figuration point as Configuration of Interest (COI). To verify our approach,
as a case study, we take the Stereo Match application discussed in Chapter
3. Our intention is to apply the COI on the computerWeights actor and
change the default schedule provided by the tool PREESM [7].

Region of interest (ROI)

Figure 4.6: Gantt chart of the scheduling of actors in the stereo matching
application

In the chosen COI there is a parallelism of eight, meaning that the two
clusters of the big.LITTLE architecture are busy with each core running a
thread that is a copy of the computeWeights actor. In Figure 4.6 is shown
the modified schedule from the PREESM tool with the parallelism required
from the selected actor. In the Figure, we have highlighted the Region Of
Interest (ROI) in which we are interested. In that region, we will enforce
the frequency and utilization level of each cluster. The configuration we are
interested in is 60%/1.1 GHz/4A15/60%/200 MHz/4A7, which means that
4 threads will run in the big cluster at the utilization of 60% with 1.1GHz of
frequency and 4 other threads will run on the A7 cluster with the utilization
of 60% and frequency of 200MHz. We want to compare the energy spent
during the ROI, with the default schedule which is run by the tool and
means using the race-to-idle strategy. For the sake of comparison, we ex-
periment with another configuration point that has lower efficiency than the
COI. In Figure 4.7 we show the energy consumed for the ROI in 3 different
configuration points:COI, race-to-idle configuration and another configura-
tion with lower efficiency from the model. The results show that the COI
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Figure 4.7: Energy comparison of different configuration points

achieves energy savings compared to the other strategies of execution.

4.3.1 Summary
In this subsection, we showed the applicability of the energy efficiency model
in a real use case application. With the help of the SDF MoC we were able
to obtain the level of parallelism suitable for the heterogeneous multi-core
platform used in the experiments. By selecting the optimal configuration
we showed that we’re able to have up to 30% energy reduction for a single
actor compared to the default strategy proposed by the tool. This model
applied to the rest of the actors could provide even more energy benefits.

4.4 Power models through hardware per-
formance counters

In Section 4.2 we discussed the characterization of the energy efficiency of
heterogeneous MPSoC, where the concept of platform configuration point
was introduced to set a level of performance and energy efficiency. In such
a case the energy efficiency model was created by measuring the perfor-
mance and power dissipated by the MPSoC in possible platform configura-
tion points. High levels of heterogeneity recently introduced in embedded
architectures, mentioned before in Section 4.2, yields an increase in the de-
sign space exploration to find efficient use of platform actuators. By increas-
ing the number and type of cores, and also the granularity of the voltage
islands, together with the number of voltages and frequency levels for each
computing element, there is an increasing number of operating points on
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which the platform may perform. In this scenario making the right choice
for execution could have a tremendous impact on energy efficiency. Another
important factor to consider in today’s multi-core architectures is heat. The
temperature of the chip has a major effect on the power dissipation of to-
day’s systems [70], which makes it an important factor to account for in
order to make the optimal energy-efficient choice.

To manage efficiently the workload scenarios faced by mobile devices,
edge devices in IoT, or nano data centers, there is a need to continu-
ously monitor power data in order to choose the optimal power and perfor-
mance trade-off. Unfortunately, most of the hardware platforms today are
not equipped with power sensors, which significantly complicates energy-
efficient management of the system settings. In the absence of a physical
way to measure the power dissipated inside the chip, there is a need to
predict the power dissipation related to running software. Furthermore,
knowing the impact of static power on the overall chip dissipation figure,
we need to account also temperature, in order to have what we call a ther-
mally aware energy efficiency model. As studied by [71] power prediction
based on Hardware Performance Counters (HPC) is a reliable way to esti-
mate power dissipation. Experimenting with the big.LITTLE architecture
with two clusters of A7 and A15, measuring the core power dissipation we
can predict power based on the following formulas:

PA15 = (
N−1∑

n=0

βnEnV
2
DDfclk)

︸ ︷︷ ︸
dynamic activity

+βbV
2
DDfclk︸ ︷︷ ︸

BG dynamic

+ f(VDD, T )︸ ︷︷ ︸
static

(2)

PA7 = (
N−1∑

n=0

βnEnV
2
DDfclk)

︸ ︷︷ ︸
dynamic activity

+ f(VDD, fclk)︸ ︷︷ ︸
static and BG dynamic

(3)

where N is the number of events selected, βn is the weight given to a cer-
tain event, En is the number of events per second divided by the frequency
(fclk) in MHz, VDD is the operating voltage and T is the temperature of
the core. By defining the coefficients of the above formulas by using the
regression method and a set of training workloads, we can also assess the
performance of the application in terms of Instructions per Second (IPS).
In this way, we can build the energy efficiency model based on platform
configuration points that take into account the temperature of the chip.
Sampling the HPC during the run of an application, the runtime system
can estimate the power and react in case of an increase of the power dissi-
pated, by changing the configuration point of the application running.
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Figure 4.8: Energy efficiency of configuration points from the model

In Figure 4.8 are shown all platform configuration points set in the
efficiency-performance plane. As we can notice, by going towards high lev-
els of performance the density of the points decreases, which means that we
have fewer options for configuring the running application. A useful sce-
nario, for consulting the model is the case when the temperature changes
during the application running.

Figure 4.9: Application reconfiguration due to temperature change

By starting execution in temperature t1 (Figure 4.9) the application
has certain efficiency and performance, in case the temperature increases
to t2 then the configuration point drops in energy efficiency, that is why
the application has to move to another configuration point which provides
better efficiency in with the new thermal conditions. The same scenario can
be found on the right part of Figure 4.9 with a higher starting performance
requirement.
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4.4.1 Summary
The continuously growing depth of heterogeneity in today’s multi-core chips,
plus the absence in the commercial MPSoCs of physical resistors for mea-
suring the power dissipation in the hardware, brings a further need for esti-
mating the power with a different approach. The usage of HPCs for power
estimation is a proven technique that provides low levels of error in pre-
dicting the power. In characterizing the energy efficiency of the multi-core
chip by configuration points, we remove the need for estimating the power
in each of the possible configuration points. By sampling the counters in a
configuration point and consulting the model we can estimate the efficiency
of other configurations.

From the configuration points in the model, we estimate that only 1%
of them represents the highest levels of efficiency. Including temperature in
the power estimated is an additional value in the applicability of the model
in cases of changing thermal conditions.

4.5 Reaching efficiency through mobile
offloading

At the moment, human society is already in the era of the Internet of Ev-
erything(IoT). The usage of IoT, based on embedded devices is rapidly
growing. The report from Global System for Mobile Communications As-
sembly (GSMA) [72] has shown that the total number of connected devices
is estimated to reach 24.6 billion by 2025. This growth is fueled mainly by
the increase in different application types populating our digital life. Smart
terminals, smart voice assistants, and autonomous driving are a few exam-
ples of applications that will increase dramatically the number of connected
devices and also the amount of data produced. On top of this development
is also artificial intelligence technology which is fueled by the vast amount of
data being produced. In this new ecosystem, challenging requirements are
set for future networks in terms of bandwidth, latency, reliability, and energy
efficiency. Edge computing can theoretically provide high bandwidth, low
latency, and the computing agility required by today’s new digital services.
Edge computing [73] refers to a concept in which a distributed architecture
decomposes the large-scale computing of the central node into smaller and
easier-to-manage parts, and then moves them to edge nodes for processing.
The edge nodes are geographically located close to terminal devices and
have higher transmission speeds and low latency. The edge refers to the
base station or server close to the user side. One key aspect of the edge is
that many of the devices may be battery-powered or deployments are power
limited. The more energy efficient the processing is done at the edge, the
more computation can be done with the same power budget. Application
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complexity and power consumption are increased when distributed AI is
deployed to edge devices. Moreover, the increase in the number of devices
produces a significant rise in the energy consumed by the technology [74],
thus playing a concern in future strategies for curbing energy consumption.
There are different strategies to lower power dissipation in MPSoC and
consequently the energy consumed. Yet, frequently targeting only the MP-
SoC is not enough in reducing energy consumption, since other parts of
the platform might consume more energy [75]. Depending on the platform
type, I/O connected, and the type of applications executed on it, differ-
ent execution strategies might be the solution to energy conservation. For
instance, the Race to Halt strategy is proved to be a solution if the CPU
is not the major power consumer in the platform [76]. By contrast, if the
static power dissipation of the platform is relatively low, the execution with
a lower clock frequency of the application might save energy by going slowly
to the application results [76]. In order to have a holistic approach, we need
to find a working configuration of the platform where the energy consumed
is minimized.
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Figure 4.10: Energy measurement, at CPU and platform level

In Figure 4.10, are shown the energy measurements of the experiments
of running an AI neural network in single board computer (SBC). The exper-
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iment is conducted in different CPU frequencies and the energy is measured
at the CPU and platform level. The resultant energy consumed is shown in
the green line. From this graph, we see that in this case, the winning strat-
egy for energy minimization is having a middle frequency for minimizing
the overall platform energy consumption.

4.5.1 Computational Offloading
In the present time, we are witnessing a change in user computing pref-
erences toward mobile computing technologies. Cloud services offered for
mobile platforms are increasing in number. Also, the number of smart-
phones used is going to increase shortly soon with the usage of different
services like e-learning, gaming, entertainment, and health care. AI tech-
nology is continuously increasing its presence in applications running on
mobile devices in different sectors like natural language processing (NLP),
entertainment, working, etc. Even though continuous technological and
performance improvements, embedded mobile computing devices come with
physical constraints, such as processing power and, sometimes more impor-
tantly, battery life. Also, many AI applications are challenging in terms of
computational requirements.

In the case where local resources are inadequate for on-device inference,
computation offloading is an encouraging technique that offloads the infer-
ence tasks from end devices to edge servers. The design principle of edge
inference via computation offloading is explained in Figure 4.11.

Figure 4.11: Edge inference computational offloading

The mobile platform transfers the acquired data for remote inference in
case the available connection bandwidth is adequate and the required energy
for local computation is high. If the total platform power to compute task
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w is pl, then the energy consumed by executing the task locally is pl ∗ w
sl
,

where sl is the speed of local computations. Otherwise with pi the power of
the system while idling and pt the power of the platform while transmitting,
the energy to offload the task can be defined as:

pt ∗
(
di + do

B
+ 2 ∗ ttcp

)
+ pi ∗

w

sr

where di and do are data to send and receive from a remote site, B is
the bandwidth of the connection and sr is the speed of the remote site in
executing the task. In this case, the offloading mechanism saves energy if:

pl ∗
w

sl
> pt ∗

(
di + do

B
+ 2 ∗ ttcp

)
+ pi ∗

w

sr
(4.1)

Depending on parameters like B or do, di, pl, pt the energy-efficient solution
might vary. Also, the model used for the AI application might make a
difference in the energy-efficient choice. Performing object detection in a
mobile platform is computationally expensive and energy demanding. We
experimented by running an object detection algorithm such as Single Shot
Detector (SSD), locally in a mobile platform or offloaded to a remote server.
In Figure 4.12 graph c), is plotted a comparison of the performance vs.
energy efficiency reached by the local platform and the remote side. We can
notice that the mobile platform can achieve performance up to 1.2fps, and
if we need an additional frame rate, the computation should be offloaded to
the remote side. While from Figure 4.12 graph a), we show that offloading
is energy efficient if the bandwidth of network transmission is as high as
possible. On the other hand from graph b) we see that local computation
is energy efficient if we use middle core frequencies instead of high or low
frequencies.
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Figure 4.12: Energy/frame of a mobile platform versus remote computation
efficiency

We experimented by running AI models for image recognition in a mobile
platform equipped with Exynos 5422 chip, which is a big.LITTLE architec-
ture with two clusters ARM Cortex-A7 and ARM Cortex-A15. Having at
disposal 8 cores organized in two clusters and many DVFS points, configu-
ration points are numerous. By running AI models in many configuration
points we noticed that only by using A15 cores we were able to achieve
performance, while A7 cores have an insignificant impact on running AI
models.
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Figure 4.13: Energy efficiency of object detection models in the ODROID
platform

We run five different models in platform configuration points that use
A15 cores and plotted the values of energy/frame achieved by the models in
different configuration points. The results are shown in Figure 4.13 where we
see that the mobile platform achieves different energy efficiency results for
different models. The worst energy efficiency figures are shown by YOLO v3
which needs the highest energy/frame for performing detection. The lowest
level of energy/frame is shown by SSD MobileNet model which is the most
energy-efficient of what we measured, and also gives a better performance
range that can be achieved by the mobile platform.

4.5.2 Summary
In the search for an energy-efficient execution strategy, is not sufficient to
focus only on the MPSoC of the platform to find optimal configurations in
terms of energy conservation. In the presence of a digital data explosion,
many components of the mobile platform need to be taken into account
when searching for the optimal execution strategy. In this context com-
putational offloading is a promising technique able to improve energy con-
servation while still achieving the performance requirements of many new
applications. In the decision for offloading, particularly the bandwidth of
the communication with the remote server is crucial for deciding to offload
execution to the edge server. If the bandwidth is high enough then offload-
ing becomes an efficient approach to save energy. Also with AI applications
in embedded environments, not all platform configurations are acceptable
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to run the algorithm. A large amount of performance is needed in order
to run such an algorithm, and also trading off a bit of accuracy for more
energy efficiency is very important in the mobile world.

4.6 Cloud-based telemetry data acquisi-
tion for improving processing plat-
form efficiency

The upsurge in data produced in the digital environment fuels the rapid
growth of AI applications, which need data to train and refine predictions.
Mobile devices and IoT are on top of this data explosion, with CISCO
predicting 85 Zettabytes generated by people, machines, and IoT in 2021,
which is 4 times more than data managed in the cloud data centers. New
applications are putting increased pressure on requirements like latency, pri-
vacy, security, reliability, and power dissipation. In this scenario, many AI
engines are set to be closer to the data sources like in network edges. Also,
major cloud providers like AWS, Azure, Google Cloud, and IBM Cloud are
increasing the services they offer for IoT applications often with support for
edge capabilities. Greengrass is a software product offered by Amazon that
provides local computing, messaging, data management, sync, and ML infer-
ence capabilities to edge devices. Azure IoT Edge, from Microsoft, provides
the ability to run AI, Azure and third-party services, and custom business
logic on edge devices using standard containers. Google has designed the
edge TPU (tensor processing unit) for edge inference, which has a smaller
size and lowers power consumption than cloud TPU. Nvidia has designed
Jetson TX2 for efficient AI computing. These devices make the inference
process at edge servers more applicable. The need for edge devices comes
mostly from the fact that in certain scenarios predictability is cardinal to
the success of the application. E.g. in an Industrial edge system, the need
for determinism of the response time is crucial to the well functioning of the
work chain. Moreover, there is a requirement for the operational automa-
tion of factories and other industrial environments, which can be done with
data analytics and machine-learning-based AI technologies. These use cases
deploy edge systems for real-time control of the operations. The collection
of large amounts of data is required from different system components like
applications, edge platforms, and networks. Single-sourced and static data
acquisition cannot meet these data requirements, which need to acquire in-
formation for different components in the production chain. It is therefore
desirable to have a framework that integrates multiple telemetry approaches
from different components. The telemetry framework brings a solution to
this problem. The framework is composed of two parts as can be seen in
Figure 4.14. On the left side, we have the edge node which is a highly
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heterogeneous platform capable of handling AI applications with Convolu-
tional Neural Network (CNN) for performing real-time inference. An agent
is present on the edge node with the requirement of collecting telemetry
from several components like application, hardware platform, and network
connection. Once collected these metrics are sent to the right part of the
framework, which is composed by the cloud side. On the cloud end these
data are ingested and processed for immediate actions in case of tuning the
edge or the data are stored for later analytics and machine learning.

Figure 4.14: Telemetry framework

Selecting the right edge platform technology depending on the use case is
paramount for achieving important requirements like performance, latency,
and energy efficiency. Two well know edge platform competitors are sys-
tems based on GPU and those based on reconfigurable hardware (FPGA). In
many cases, FPGAs are praised for their fitness in some application use cases
which deal with AI inference. To check these assumptions on the achievable
latency and performance of FPGA platforms for CNN-based edge applica-
tions, we evaluate two different platforms for the role of the edge node: an
Nvidia Jetson AGX Xavier (as a representative GPU-based platform) and
a Xilinx ZCU102 (as a representative FPGA-based platform). The Xavier
is an embedded GPU platform that promise to offer high compute den-
sity and good energy efficiency for AI-related applications. The Xavier is
equipped with 512 CUDA cores with Volta architecture GPU running at
1.37GHz and a 16GB LPDDR4X @ 2133MHz memory with a bandwidth of
137 GB/s, and a flash storage eMMC 32GB. The Xilinx Zynq UltraScale+
MPSoC ZCU102 board has a 16nm XCZU9EG FPGA, an onboard 4GB
64bit DDR4 RAM with a peak bandwidth of 136Gb/s. We target to check
AI inference capabilities, and the power dissipation of the two platforms
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while running neural network algorithms. The experiments are conducted
using YOLOv3 and SSDResnet50Fpn algorithms for object detection which
perform inference on a 420p video file. In Figure 4.15 we report the mea-
surements done for both platforms for metrics such as end-to-end delay (EE
latency) to process a single frame and the number of frames per second
processed for a single dissipated watt (FPS/Watt) while running the two
AI models mentioned before. The neural network is fed with the same video
file and the power is measured on the entire platform. FPGA architecture
is able to achieve good latency in time-sensitive jobs due to the circuit-level
customizations on its massively parallel computing units.
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Figure 4.15: Edge platform technology comparison

From Figure 4.15 we notice that there is a clear advantage of the FP-
GAs platforms versus GPUs to be used especially in streaming applica-
tions, this is noticeable in terms of latency and energy efficiency. The
SSD Resnet 50 FPN is a heavier model compared to YOLO, requiring 178.4
Gops compared to 65.63 Gops of the other side.

Nowadays, FPGA platforms are widely used in industries ranging from
telecom to aerospace. Its advantage over ASIC, in terms of design change,
even after the product has been deployed in the field, has expanded the
use of FPGAs. This feature allows the designer to upgrade from a remote
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location eliminating the need for fabrication from scratch.

Another factor driving the growth of the FPGA market is the demand
for extensive computation in applications which gives a new direction to the
FPGA industry. Moreover, cloud computing and data processing in data
centers have emerged as significant areas of application for FPGAs.

The diversity of Deep Neural Network (DNN) is also reflected in how
much parallelism is available at each level mentioned earlier. Thus, any fixed
hardware architecture that instantiates a fixed number of parallel compute
elements communicating in a fixed fashion has limitations on how efficiently
it can execute a DNN. Especially considering the rapidly-advancing tech-
niques for creating efficient DNNs, adaptability is key to staying efficient in
the changing DNN inference landscape. In this context, the key advantage
of FPGAs is the adaptable, fine-grained, massively parallel nature of the
computing and memory resources offered. For example, the Xilinx FPGA
devices facilitate a wide range of Deep Learning Processing Unit (DPU)
architectures that can take advantage of the multiple levels of parallelism
and can tailor to the specific requirements of a given DNN topology and the
application-specific design constraints.

FPGA-embedded platforms are enabling applications where differentia-
tion is key, power efficiency is critical, systems must be extremely responsive,
and the latest algorithms and sensors need to be quickly deployed. With
such platforms, the need for fast and automated decisions is even more
emphasized, which gives greater importance to the collection of a broad
telemetry range. E.g. the continuous monitoring of the AI model fitness in
the edge platform could make straightforward, the retraining of the current
model in the cloud and updating the version at the edge, or the deployment
of another model which fits better on the current platform. The energy effi-
ciency of the application and platform is of great importance in certain use
cases, in such scenarios, the power dissipation of the platform is constantly
monitored and the application performance could be adjusted in order to
fulfill the power requirements.

4.6.1 Summary
The large compute and storage requirements associated with DNN deploy-
ment necessitate acceleration. Furthermore, different constraints might be
imposed on the accuracy, cost, power, model size, throughput, and latency
depending on the use case. Real-time and safety-critical applications such as
augmented reality, drone control, and autonomous driving are not suitable
for offloading to the cloud due to low-latency requirements and data trans-
mission overhead. In cloud-computing and ML-as-a-Service contexts, data
centers face ever-increasing throughput requirements to process astronom-
ical scales of data [77], bringing additional challenges in energy efficiency
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to minimize operating expenses. While cloud service latency is less critical
compared to embedded scenarios, it still translates directly into customer
experience for interactive applications.

In this context, the cooperation edge/cloud is vital in assuring certain
requirements in energy efficiency, power, latency, and performance. The
holistic telemetry collection becomes crucial in the process of providing
real-time control of the different components in the chain of application
execution. The telemetry collection and utilization framework provides a
solution to this challenge by bringing together the best of the edge and cloud
worlds.
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Chapter 5

Overview of Original
Publications

In this chapter is presented an overview of the original publications. Each
publication is described in the main problem to research, and the results of
the publication. At the end of each publication, is mentioned the author
contribution. At the end of the chapter is presented the connection of the
papers and their relation to the main research question.

5.1 Paper I: Core Level Utilization for
Achieving Energy Efficiency in Het-
erogeneous Systems

The paper focuses on the issue of energy budget which is becoming a con-
straint in all computing systems. From mobile devices to supercomputers,
the focus has shifted from performance to energy and power efficiency. De-
sign metrics are not anymore solely based on performance, as the energy
efficiency of application executions is becoming a predominant design re-
quirement. In addition to established voltage and frequency scaling tech-
niques, several semiconductor chip manufacturers introduced heterogeneous
multi-core processors to increase the level of energy efficiency. The usage
of this heterogeneity is complicated by the scheduling and mapping deci-
sions needed to be made at runtime for application execution. The intuition
behind this work is that in order to exploit the full potential of such archi-
tectures we need to make the right decisions because parameters such as
type of core, frequency, and utilization usually affect the power dissipation
and performance.

This paper analyses achievable energy gains when exploiting core-level
utilization in addition to other control techniques such as heterogeneity,
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voltage, and frequency scaling. We build an energy efficiency model based
on platform configurations defined by core types, the different voltage, and
frequency levels, and the core utilization rate. Based on the built model, we
analyze the energy efficiency variations for different platform configurations
providing the same level of performance. We show that trading the number
and type of core with frequency and voltage level and core utilization rate
can lead to substantial energy efficiency gains.
Author’s contribution: The idea of using hardware and software actu-
ators to control the energy efficiency of modern multi-core chips and the
notion of platform configuration point was developed together with the co-
authors. The experimental environment and the model building were set up
by the author. Results and summary of the model prediction were discussed
and defined with the co-authors. The author contributed to the write-up of
the paper and the presentation.

5.2 Paper II: Exploring Energy Efficiency
Model Generalization on Multicore
Embedded Platforms

In this paper, we investigate the relationship between the energy efficiency
model and the type of workload executed in modern embedded architec-
tures. Following the work done in Paper I, from the energy efficiency model
obtained, we select a few configuration points to verify that the prediction
in terms of relative energy efficiency is maintained through different work-
load scenarios. As workloads, we use a combination of synthetic generators
and real-world applications from the embedded domain. In our experi-
ments, we use two different architectures for testing the model generality,
which provides examples of real systems. First, we have a comparison of
the efficiency obtained by the two architecturally different chips (ARM and
INTEL) in different configuration points and different workload scenarios.
Second, we try to explain the different results through the thermal manage-
ment done by the two different chips. As a result, we show that only in the
case of workloads highly composed of integer instructions the two architec-
tures converge in the same direction. In the case of workloads with high
levels of integer instructions, we need another model to find high-energy
efficiency configuration points. Another observation that we made by the
results obtained from these experiments, is the limited efficacy of synthetic
benchmarks when assessing proper energy efficiency comparison. This can
be explained by the fact that static power effects are not strongly present
while executing synthetic benchmarks with only certain types of execution
units stressed, which explains the different energy efficiency results between
synthetic and real workloads.
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Author’s contribution: Continuing from the previous work the au-
thor and co-author decided to explore the model generality at the level of
different types of workloads and also different chip architectures. The au-
thor proposed to explore the model usage in INTEL and ARM as main
contenders. The experimentation infrastructure and implementation were
completed by the author. The author and co-author discussed the results
and formulated the conclusions. The author worked on the paper writing
and presented the paper.

5.3 Paper III: Energy-Efficient Actor Ex-
ecution for SDF Application on Het-
erogeneous Architectures

In dataflow MoCs an application is defined as a graph of concurrent tasks
which communicate with each other through FIFO buffers. Synchronous
Dataflow (SDF) [2] is probably the most used DPN, especially in signal
processing applications. Inside a graph of actors, the production and con-
sumption rates of the actors are fixed numbers, which enable a static analysis
of the graph. Another valued property of SDF, not present in KPN, is the
possibility to schedule the graph at compile time, as long as the graph is
schedulable, deadlock-free, and consistent.
In SDF actors are stateless, which practically means that an actor can
start several replicas of itself in parallel if enough data tokens are available.
With the exposed available parallelism, we can develop mapping techniques
exploiting the benefits of using heterogeneous processors to achieve energy-
efficient execution of applications.
In this paper, we demonstrate a mapping technique to achieve energy-
efficient application execution, integrated into the workflow of the Parallel
and Real-time Embedded Executives Scheduling Method (Preesm) tool.
Preesm is a development framework for the rapid prototyping of dataflow
applications. Applications developed with Preesm target execution in het-
erogeneous MPSoC, where the proposed approach defines the optimal plat-
form configuration to run an actor under defined performance constraints.
We define platform configurations by the following set of parameters: level
of parallelism, number of cores, type of cores, DVFS, and utilization rate.
Through experimental results, we show that the highest platform configu-
ration point in the energy efficiency table provides an energy reduction of
more than 30%, compared to the standard schedule proposed by the tool,
within a single actor execution. By using a second platform configuration
point from the energy efficiency table we show that the relative efficiency is
preserved for the actor.

Author’s contribution: The purpose of the work was to check the
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applicability of the energy efficiency model inside a real tool used for de-
veloping and prototyping SDF applications. The author and co-authors
suggested the idea of integrating the model in a real-world application and
the author run experimental evaluations for energy savings. The paper was
written with the contribution of all authors.

5.4 Paper IV: Energy Efficiency Platform
Characterization for Heterogeneous
Multicore Architectures

Runtime estimation of power dissipation and performance is crucial in every
computing platform. In mobile systems, a special focus is set on energy
efficiency in order to achieve the longest possible battery life and at the
same time adhere to performance requirements. Powered by heterogeneous
MPSoC’s, mobile systems are called to reach an energy-efficient state of
execution, with a runtime system or scheduler that requires knowledge of the
current performance and power dissipation. Today, highly heterogeneous
architectures provide many actuators to reach better efficiency, the effect of
which is usually unknown at runtime.

In this paper, we propose a fast approach to build an energy efficiency
model based on hardware performance counters. Our approach obviates the
need for power sensors present at the chip level and deals with high numbers
of execution modes. In building the energy efficiency model we account for
the change in temperature which, as we show, has an impact on the optimal
energy efficiency choice. The proposed approach reduces significantly the
time to characterize the energy efficiency of a MPSoC and includes the
environment temperature as a variable in determining the energy efficiency.
The novelty of this approach compared to previous works is that it doesn’t
necessarily need power sensors for measuring the power dissipation in each
configuration point, but by sampling the counters on one configuration point
we can characterize the efficiency of other configuration points. From all
the points in the model, we show that less than 1% of them represent the
highest levels of energy efficiency possible, in all the performance spectrum’s
offered by the platform. Also, we include the environment temperature as a
variable for defining the need for application reconfiguration. As we show by
the experiment if the temperature changes, by re-configuring the application
execution we can gain up to 33% in terms of energy efficiency.

Author’s contribution: The author’s idea of extending the energy
efficiency model to make use of Program Counters in the estimation of
the instant power dissipation is explored in this paper. Both authors con-
tributed to the clarification of the structure of the paper and to the review
of the paper. The author conducted the experimental part, which was later
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interpreted by the two authors.

5.5 Paper V: Towards very low-power
mobile terminals through optimized
computational offloading

Energy consumption is a major issue for modern embedded mobile comput-
ing platforms, and with new technological developments, such as IoT and
Edge/Fog computing, the number of connected embedded mobile comput-
ing systems is rapidly increasing. Heterogeneous multi-core CPUs seek to
improve the performance of these platforms, with a particular focus on en-
ergy efficiency. By using different techniques like DVFS, core mapping, and
multi-threading, a substantial improvement in the achievable CPU energy
efficiency level for MPSoC can be observed. However, controlling only the
CPU power dissipation has a limited effect on the overall platform energy
consumption. Other components of the platform, including memory, disk,
and other peripherals, play an important role in the energy efficiency of the
platform and need to be taken into account. The availability of different
sleep strategies at various levels of the platform makes the energy efficiency
issue even more complex.

In this paper, we set the view of energy efficiency at the entire plat-
form level and discuss computation offloading as a mechanism to help in
reaching the optimal platform energy-efficient state. As an application, we
consider object detection performed on several types of images to define
when offloading is beneficial to the platform’s energy efficiency. We survey
the energy efficiency of different neural network algorithms in an embed-
ded environment, with the possibility to perform computation offloading.
Computational offloading is the mechanism of moving heavy tasks to more
powerful computing units. This mechanism can be a winning strategy for
achieving good levels of energy efficiency in the case of highly demanding
applications.
We concluded that if the bandwidth of the network connection is large
enough, then the offloading strategy turns out to be more energy-efficient
than local computing. We surveyed the energy efficiency of different neural
network algorithms in an embedded environment and concluded that not
many neural networks for object detection can be handled by average em-
bedded platforms. In some cases, to improve the accuracy between 20% to
30%, the cost in degrading energy efficiency is 170% to 180%.

Author’s contribution: The main idea of the paper comes from the
author, which extends the previous notion of configuration point to the
entire platform, taking into account this time the whole platform power.
Both authors discussed the idea of using offloading as an alternative to
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local execution. The author set up a range of experiments and executed
them. The interpretation of the results is done by the author. The paper
writing was done in collaboration with the other authors.

5.6 Paper VI: Data Collection and Uti-
lization Framework for Edge AI Ap-
plications

Edge systems are the deterministic embedded communication and real-time
control engines that reside at the edge of the network and are closest to the
physical world of factories and other industrial environments, e.g., motion
controllers, protection relays, programmable logic controllers, and similar
systems. Clock frequencies in gigahertz, larger memory sizes, higher num-
bers of input/output ports, and the latest encryption engines might seem to
offer solutions for future requirements that are as yet unknown. However,
when dealing with the timescale of industrial equipment, which has critical
subsystems that operate on a scale of hundreds of microseconds (or less) but
need to operate in factories and remote locations for decades, relying solely
on a cutting-edge multicore embedded processor to scale in the Industrial
Internet of Things (IIoT) space is risky. It could result in a short-sighted
catalyst leading to a series of difficult and costly marketing and engineer-
ing trade-offs focused on managing functional timing issues stemming from
performance bottlenecks. A much higher degree of freedom in scaling is
desperately needed at the IIoT edge due to the timescales involved. Such
scaling freedom can be unlocked by using programmable hardware that aug-
ments the software running on the embedded processor cores. The assumed
scenario for this work is the following: an industrial system (it could be
for example a patrolling robot or a manufacturing conveyor) is streaming
live a video over a 5G network and requests as a service detected objects
from the video stream. The object detection service is executed from the
Multi-access Edge Computing (MEC) of the used 5G base station.

The main assumptions of the work are the following: (a) an FPGA plat-
form can provide lower latency than more traditionally used GPU platforms
for this type of application. This is due to the datapath architecture of the
FPGA and DPU, which does not require to first “flood” a large number of
Streaming Multiprocessors (SM) as in a GPU; (b) taking advantage of the
DPUs, we can reach higher throughputs in terms of the number of processed
frames per second; (c) the FPGA platform will provide a better energy ef-
ficiency solution compared to CPU and GPU-based solutions.
This paper proposes an edge/cloud telemetry collection and utilization
framework for applications where reliability, latency, power efficiency, and
high computational capacity are critical. For instance, vehicle safety as well
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as vehicular visual and non-visual sensing systems could be potential use
cases. We evaluate GPU based platform against the FPGA platform for
the role of edge node in an AI computer vision application and set up our
framework with the FPGA platform induced by latency and power efficiency
numbers provided. We define the cloud-side components of the data lake
architecture which will serve later as valuable input for training machine
learning networks on the cloud side. In the end, we discuss the reaction
time of the cloud side of the framework and FPGA implementation issues
which is good to consider when developing AI-based applications on recon-
figurable platforms.

Author’s contribution: The idea of building a framework for col-
lecting telemetry from multiple sources was discussed and created by all
authors. The author suggested the discussion on the type of edge technol-
ogy to choose in case specific types of applications. The choice of cloud
services and experimentation on the cloud and edge parts were performed
by the author. Paper writing has been performed by both authors. The
presentation of the paper has been done by the author.

5.7 Papers connection

In Figure 5.1, is drawn a diagram which shows the connection between
original publications done during this research work.

Publication 1 starts the exploration of possible ways to address the re-
search question. From there derives the implementation part with Publi-
cations 2 and 3 where the validation of the model built before is done in
different architectures and a real world streaming application. From this
flow generates Publication 4 which complements the work done so far by
generalizing even more the process of model building. Publication 5 ad-
dresses another side of the first question by dealing with overall platform
consumption considering not only the MPSoC, while Publication 6 seeks in
reaching approaches for achieving better energy-efficiency in edge systems.
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Chapter 6

Conclusions and Future
Work

Throughout the thesis we stressed the need for better energy efficiency in
computing systems. Without bringing to much focus on data centers and
big server farms, which today account for a small percentage of computing
devices meanwhile the number of mobile, and IoT devices, also edge/fog sys-
tems is exploding. New applications with new requirements are emerging in
every sector like: industry, entertainment, telecom, drone control systems,
etc. If in this picture is added the rapid advancement of AI technology due
to the high amount of generated data, then the pressure on the execution
platforms to be energy efficient is really high. Especially in cases where the
mobile platforms are battery powered, or operate on low power levels. Tran-
sistor scaling has reached a point where energy efficiency at the transistor
level is not providing high benefits as before.

It is clear that the transistor efficiency itself is not enough, and there is
a need of cooperation between hardware and software in the challenge to
achieve better power proportionality. Mobile platforms today are equipped
with powerful MPSoC which recently, as a industry standard, have het-
erogeneity inside of them as a mechanism to achieve better adaptability
between hardware availability and software needs. Knowing the power pro-
portionality problem in computing systems, heterogeneity is a promise to
increase the energy spent by doing useful work using the concept of fitness
of the software in type of core.

The contribution of this thesis is exploring system actuators and het-
erogeneity in order to achieve better energy efficiency in mobile multi-core
platforms. We introduce the concept of platform configuration point to char-
acterize the energy efficiency level of the MPSoC, and also to make optimal
choices considering the entire platform energy efficiency, taking into account
multiple components of the platform such as memory, disk, networking, etc.

60



We consider the utilization rate of a task as a possible parameter that
could provide benefit in the our search for more efficient software execu-
tion. A discussion for differences between strategies such as race-to-idle
and pace-to-idle are developed inside the thesis. We discuss the problem
of an ever increasing level of heterogeneity implemented in modern multi-
core chips, with this resulting in an exponential explosion in the number
of platform configuration points that need to be calculated in the energy
efficiency model. While also the absence of physical sensors for measuring
the power dissipation in the MPSoC, makes it harder to have real-time fig-
ures from the power plane. Another contribution of the thesis is providing
a methodology for deriving thermally aware energy efficiency models, based
on hardware performance counters for estimating the power dissipation of a
software task. Including temperature of the chip in the estimation of power,
gives better flexibility in making possible software re-configurations.

In today’s panorama of the hierarchy of computing systems, there are
many steps in which information flows: from sensors/wearables/IoT device,
to mobile devices, edge/fog systems, near cloud and far cloud. In making
sure to achieve some emerging application requirements like: latency, re-
liability, adaptability, predictability, and energy efficiency, and also being
able to handle the performance requirements of AI applications, edge sys-
tem have been from some time on the focus of the research and related
industries. In order to handle these new requirements, there is the need for
the collection of important metrics (telemetry), from different links in the
chain flow. In this thesis we propose a telemetry collection and utilization
framework, which gives the ability to automatize the work of edge devices
while improving some important KPIs like energy efficiency, performance,
and platform utilization without service interruption. This framework gives
the collaboration of “two worlds”, edge and cloud. While the edge is fo-
cused in the activity of application execution and telemetry collection, in
the cloud happens telemetry monitoring/storage, and the machine learning
process in order to improve the AI models that run on the edge.

6.1 Future directions

As an interesting future direction the author foresees the usage of machine
learning as the core of the runtime system which collaborates with the sys-
tem scheduler to correct the application scheduling and also provide the
right mapping of the tasks into the execution units of a highly heteroge-
neous platform. Reinforcement Learning(RL) [78], and Deep Reinforcement
Learning(DRL) [79], could be interesting options for both resource manage-
ment and increasing the energy efficiency of platform units. Designing a
strategy with an intelligent agent which learns, the energy efficiency model
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of the platform, and the characteristics of the running workloads, while
on battery operated devices considering at the same time the SoC(State-of-
Charge) could result in a more holistic approach to the energy minimization
problem. The objective of the agent will be to suggest the right actuators
selection for achieving the optimal energy efficiency, taking into consider-
ation the application performance and also the fitness of the application
into the optimal execution engine. Further policy based execution that for
example consider extending the battery health or external conditions [80]
could be a meaningful addition to the reinforcement learning algorithm.
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Abstract—Energy budget is becoming a constraint in all
computing systems. From mobile systems to supercomputers,
the focus has shifted from performance to energy and power
efficiency. Design metrics are not anymore solely based on
performance, as the energy efficiency of application executions
is becoming a predominant design requirement. In addition
to established voltage and frequency scaling techniques, sev-
eral semiconductor chip manufactures introduced heterogeneous
multi-core processors to increase the level of energy efficiency.
The usage of this heterogeneity is complicated by the scheduling
and mapping decisions needed to be made at run-time for
application execution. In order to exploit the full potential of
such architectures we need to make the right decisions, because
parameters such as type of core, frequency and utilization
usually affect the power dissipation and performance. This
paper analyses achievable energy gains when exploiting core
level utilization in addition to other control techniques such as:
heterogeneity, voltage and frequency scaling. We build an energy
efficiency model based on platform configurations defined by
core types, the different voltage and frequency levels and the
core utilization rate. Based on the built model, we analyze the
energy efficiency variations for different platform configurations
providing the same level of performance. We show that trading
the number and type of core with frequency and voltage level
and core utilization rate can lead to substantial energy efficiency
gains.

I. INTRODUCTION

According to the advisory company Gartner, Inc the hand-
held device market is one of the fastest growing sectors in the
computer industry. Battery operated devices are continuously
facing different type of workloads with different performance
requirements. All these variances in software should be exe-
cuted on hardware with sometimes a limited energy budget.
The limited amount of energy is one reason why many of
such computing devices are taking advantages of multiple
processors system on chip (MPSoC) [1]. The design space of
such platforms is very broad [2] and explored by researchers
with the conclusion that multi-core heterogeneity can provide
energy savings [3]. Mostly savings come from the appropriate
choice of execution unit to use, for a specific job.

The next rising problem is how to map the execution of
parallel applications on multi-core platforms. This has been
an investigated area with a rich variety of objectives [4]
[1] . Some of the key objectives are: performance, fairness,
predictability, reliability etc...

One of the strategic objectives considered with the use of
MPSoC is energy. Energy consumption is an intrinsic metric
that is dependent on multiple factors. Beside the ratio of
dynamic and static power dissipation, the execution time of
the application and the physical architectural features must be
considered in order to define a winning strategy for minimizing
energy consumption. As the type of workload is diverse, the
optimal choice for mapping software to hardware becomes a
challenging problem. One of the latest techniques explored by
the research community involves using heterogeneity in order
to achieve better performance and energy levels. Because the
consideration of parameters such as type of core, frequency
and core utilization rate affect the power dissipation, in this
paper we are going to explore the impact of these arguments
on the energy efficiency of heterogeneous MPSoC. More

precisely we investigate how, dynamic voltage and frequency
scaling (DVFS), core heterogeneity and core utilization influ-
ence the overall energy efficiency of heterogeneous MPSoC
based computing systems.

II. SCOPE OF THE WORK

With the improvements provided in the semiconductor pro-
duction technology, industry is able to provide an impressive
level of integration at transistor level. This process gave birth
to MPSoC. However with post Dennard scaling [5] the power
density increased with every processor generation. Recent
studies show that after 2005 for the same chip area the power
dissipation increased by a factor of 2 [6] for every process
technology. That is why in the recent years, industry has turned
towards architectures with multiple core types on a single chip.
These architectures can offer different levels of programmable
logic beside conventional cores, which altogether can result in
a more convenient choice compared to symmetric architectures
[7, 8]. The platforms based on this technology are able to
offer execution to a wide range of workloads, varying from
memory databases (requiring a small computation power) to
multimedia applications which can be computational hungry.
Mapping workloads on many-core architectures has followed
different objectives such as: performance, latency, throughput
and reliability [9, 4].
One of the latest concerns is mapping for energy efficiency.
In addition to power gating unused cores, the conventional
techniques for achieving energy conservation are DVFS and
the use of different core types in modern architectures, which
are called heterogeneous microarchitectures (HM) [3].

A typical heterogeneous architecture is the big.LITTLE
architecture introduced by ARM [10]. This architecture is
equipped with two type of cores, one optimized for perfor-
mance and the other optimized for energy efficiency. The
cores are organized as a MPSoC and have different micro-
architectural organizations but share the same ISA, which
provides a binary compatibility between the two types of
cores. In addition to the power reduction offered by DVFS
and core power gating, exploiting the distinct characteristics
of the different cores makes the big.LITTLE architecture an
attractive platform to achieve high levels of energy efficiency.

As Imes and Hoffmann conclude in their study [11] for
achieving energy efficiency in heterogeneous architecture un-
der a moderate load, load levels on core should be kept
constant. In other words we should try to keep the cores busy
for most of the time. A strategy coined with the name "never-
to idle". Using the never-to-idle strategy scheduling heuristic,
we search for the near optimal energy efficient configuration
between the number, type and frequency level of cores, consid-
ering as a requirement the performance characteristic of the
tasks to map. In [12] authors build an energy model based
on real hardware measurements on HMP and use a convex
optimization framework for decide about the efficient trade off
between DVFS and DPM. As a validation mechanism they use
a dataflow signal processing application for their predictability.
In difference we propose including the utilization level for
making the right decision scheduling. We consider a system



with full HMP instead of a cluster scheduling considered from
the authors. This gives us more flexibility in the scheduling
decisions.

This paper considers the possibility to control the load level
of each core to improve further the energy efficiency under
different performance constrains. As a performance constraint
we consider levels of throughput required. Recently new
Linux scheduling framework, called sched_deadline, provides
the possibility to define the utilization level of tasks. The
sched_deadline scheduler is now available in most of the
standard Linux distributions. As a new element in our study
we will explore task utilization parameter to obtain a near
optimal configuration. In this paper we consider a clustered
MPSoC composed of two independent clusters, one optimized
for performance and the other for energy, where each cluster
can have a single voltage and corresponding frequency level.
A schematic of the heterogeneous architecture is shown in
Figure 1.

big.LITTLE architecture
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Fig. 1: Schematic of heterogeneous architecture

In this paper we answer the question which platform
configuration provides the most energy efficient execution
under different performance constraints? under the following
assumptions:

• the application has a configurable level of parallelism
• the hardware platform that can activate different type of

core organized in clusters
• the platform provides as actuators different DVFS levels

and core utilization rates
In this work the core utilization rate is also considered as a

parameter indeed, taking advantage of the recently introduced
sched_deadline scheduler [13]. Indeed, previous work already
demonstrated that core utilization rate can have a clear impact
on the power efficiency of multi-core architectures [14].

We define the platform configuration as the:
• number of parallel instances from the application to be

executed
• number and type of cores to utilize
• DVFS level of the clusters
• load level (utilization rate) of each cluster.

The configuration analysis will be based on specific perfor-
mance levels required by the application. Taking into account
the number of DVFS level for each core, the number of cores
and utilization levels each cluster is able to provide, there
is a large number of possible configurations to consider. For
example, if we have N cores divided in two types of cluster Nb
and NL, each core type has Fb and FL frequency levels and
the levels of utilization of the tasks are L. Then the number
of configurations will be:
C = Nb ∗NL ∗Fb ∗FL ∗Lb ∗LL+Nb ∗Fb ∗Lb+NL ∗FL ∗LL

In this work we consider that DVFS can be applied at the
cluster level and that all tasks mapped to a cluster have the
same level of utilization (load level). Taking into consideration

the former constraints the cardinality of the configuration
space is |C|=64 008.

III. RELATED WORK

There is a large body of work focusing on energy efficiency.
The closest to our work is the paper from Sozzo and Durelli
[15]. In their work the authors suggest a runtime system which
monitors the throughput of the applications through heartbeat
framework with the goal of minimizing the power under a
performance requirement. They consider in the configuration
space, only the type of core to use and the frequency level.
Differently here we also consider the level of utilization as
an additional parameter in the configuration space. Moreover,
they proposed an analytic model for calculating the power
dissipation, while in our work we build power model based on
experimental data. In [16], authors discuss about parallelism
inside the application and how it can be exploited in order to
achieve better energy efficiency. Parallel sections of the appli-
cation are not known during execution, as in some case even
the minimum level of required performance is unknown. By
expressing explicitly these two parameters in the application
source code, in various phases, a run-time power manager
can make the optimal decisions for resource allocation. In
contrast with this work, in our paper beside DVFS and the
level of parallelism, we exploit heterogeneity, which give the
possibility to choose between different core types, to evaluate
the possibility to achieve better energy efficiency.

In [17] authors present a scheduling and mapping algorithm
that decides between heterogeneity and DVFS for executing
streaming applications in clustered MPSoC. The examples
mentioned are modeled as Dataflow applications which need to
be executed above a certain level of throughput and latency.
The algorithm is able to adapt to the changes in execution
by removing tasks from the least used cluster in order to
shut them down. In contrast with this work we do not limit
our focus to only hard real time applications and explore the
parallelism inside the application in order to make an optimal
mapping decision. We also take into account the level of
utilization of the core, in selecting an optimal configuration.
Lukefahr and Padmanabha [3], consider the effectiveness of
two techniques for achieving energy efficiency. DVFS and
heterogeneous michroarchitectures are the focus of the study
where they try to solve the following problem: at which
granularity during software execution should the decisions be
made about the use of former mentioned techniques? They
propose an analysis tool called PaTH which defines an optimal
schedule for achieving Pareto-optimal energy savings, for a
given architecture. At the end they come to the conclusion that
a combination of the two techniques is better for achieving
energy efficiency, in case of coarse granularity in software
phases. Differently from this work we explore the impact of
core utilization on the scheduling and mapping decisions for
achieving a set of performance levels.

The fitness of a workload into different core types inside
a heterogeneous system, is explored by Van Craeynest and
Jaleel in [1]. They propose a mechanism to try to find the
best mapping between workload and core type in order to get
an efficient execution. By collecting metrics from workload
profiling information they try to estimate the performance
impact when the task is mapped on a specific type of core.
The results show better scheduling decisions which will affect
the performance and energy consumption. Differently in our
paper we do not use any performance counters for estimat-
ing the power dissipation but base our approach on power
models constructed from experimental data. In the work of
Santanu and Muck [18] are considered different heterogeneous
architectures. They propose a control system in order to over-
come the problems encountered by standard Linux scheduler
which is unable to deal with high degree of heterogeneity.



The approach is composed by three phases called: sensing,
estimation, and balance. The balancing mechanism is executed
for each scheduling epoch and manages efficiently the archi-
tectural resources following dynamic changes in the workload.
In our work we focus on architectures that are composed of
two type of cores that can be enabled simultaneously in a more
lightweight process.

The usage of DVFS and thread scheduling has been well
studied in different works. In [19] authors try to improve the
power efficiency through frequency scaling and scheduling.
They propose a technique for estimating the power efficiency
metric in different application phases, with various frequencies
and core types. This technique uses hardware performance
counters (HPC) like number of fetched and retired instructions,
cache hits/misses, number of predicted branches and IPC. In-
stead of focusing on performance counters for power efficiency
we concentrate on energy efficiency as a more valuable metric
(especially for battery operating devices).

Price theory economics model has been introduced in [20]
to make the right decision for achieving a performance level
under the minimum power requirement. The proposed frame-
work is distributed and coordinates DVFS, task migration and
load balancing for achieving the specified performance under
a certain thermal design (TPD). The framework is composed
by different agents (core agent, cluster agent, task agent and
chip agent) which interact with each other to define the right
price for the computation unit cycles.

In contrast with the previous works, our work focuses
on energy efficiency while providing different application
level performances. We consider the impact of utilization
level variances in energy efficiency when selecting platform
configurations.

IV. EXPERIMENTAL SETTINGS

In our experiments we use the ODROID XU4 development
board from HARDKERNEL which is powered by a Samsung
Exynos 5422 octa core SoC. The CPU is organized with
two clusters, one with 4 ARM Cortex A7 and the other
with 4 ARM Cortex A15. Clusters work independently using
HMP (Heterogeneous Multi Processing). Cores share the same
instruction set architecture (ISA) but have different michroar-
chitecture, giving A7 cores a more lightweight implementation
of the pipeline. For measuring the power dissipated by the
ODROID we used a RaspberryPI connected through its I2C
pins to the power supply of the ODROID board. On the Rasp-
berryPi we run a Datalogger software which samples current
and voltage values every 100 ms. We use similar measuring
infrastructure as in [21]. The ODROID development board is
installed with Linux version 4.2.0-rc7-74, gcc version 4.9.2.
The board is connected through an Ethernet port without any
other connection, in order to minimize the power dissipated by
the board. For achieving more accuracy from measurements
we removed the power dissipated by the active cooling of the
board. The system will run only the essential services.

In order build our models and follow the strategy of
not executing with maximum load to the highest frequency,
as suggested by experiments in [16], we need a workload
generator able to maintain a constant utilization level on the
cores. To build our power and energy models, we use Spurg-
bench [21] which is a multi-core load generator written in
python, able to sustain various utilization levels in terms of
operations per second on different number of threads. Spurg-
bench supports as parameters the number of operations to
be executed, the rate of execution to be sustained and the
number of instances (threads) to achieve that utilization. We
use floating point operations as the work load generated by
Spurg-bench.

For each experiment we run the workload with utilization
levels from 10% to 90%, avoiding the run at 100%. We

increase by 10% the utilization every time. First, with one
instance of Spurg-bench running on the A7 cluster having only
one core, we explore the entire range of available frequencies
with a varying utilization from 10% to 90%. Then a similar
run is performed on the A15 cluster. For each experiment we
log the power data with the RaspberryPI, and collect also the
performance data from the application in terms of operations
per second. Each data point in the graphs is obtained by
running experiments 10 times. For each frequency and each
utilization level we take the average power dissipation from the
logs. In the second stage of the experiments we measure the
power dissipated by running multiple threads in each cluster.
A work flow schematic of the experiment is shown in Figure 2.
The frequency governor cpufreq in Linux gives the possibility

Fig. 2: The work process of the experiment

to define 14 frequency levels on the A7 cores, from 200MHz
to 1.4GHz and 18 levels on the A15 cores from 200MHz
to 2GHz. With these intervals correspond 4 discrete voltage
levels for driving the cores. The voltage and frequency levels
for both cores are shown in Tables II and I.

TABLE I: Frequency and voltage relation for A15

TABLE II: Frequency and voltage relation for A7

A diagram of the components involved in the experiments
can be seen on the Figure 3.

V. MODELS

We built a power model for each core type using exper-
imental settings described in the previous section. Based on
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Fig. 3: Experimentation infrastructure

the obtained power model, we derive the energy efficiency
of the different cores at different utilization (load) levels. We
then list in a table the energy efficiency and corresponding
performance level for all possible platform configurations. We
can therefore use this table to select the most energy efficient
configurations for level of performance.

A. Power models

In modeling power dissipation for the big.LITTLE ar-
chitecture, we did choose a top down approach based on
measurements done directly on the hardware. The advantages
of this approach compared to bottom up are the accuracy level
and reliability. For each type of core, a model is derived under
different frequencies and utilization levels. As mentioned pre-
viously these models are obtained using as a workload Spurg-
bench with floating point operations. Floating point operations
generally exercise most of the pipeline michroarchitecture.
To build the models, we first measure the power dissipated
by both clusters with different number of cores engaged
at different levels of load. The results for different number
of cores are shown in Figures 4 and 5. Because of space
constraint we choose to show only one frequency for each
cluster.

Fig. 4: Power dissipation for LITTLE cluster at 1.3 GHz

Fig. 5: Power dissipation for big cluster at 1.9 GHz

As described on Figure 2, to obtained the core level power
dissipation we sequential increase the number of cores. The
core level power dissipation is derived by subtracting the
different measured cluster-level power dissipations. The results
of the power dissipated by the two different cores under
different levels of utilization are shown in Figures 6 and 7.
From the figures we can observe for different frequency (and
corresponding voltage) the near-linear relationship between
utilization levels and power dissipation.

Fig. 6: Power dissipation at the core level of ARM Cortex-A7

 

 

 

 

 

 

 

Fig. 7: Power dissipation at the core level of ARM Cortex-A15

B. Energy efficiency results
From the power measurement data we can asses the energy

efficiency of each core type under different levels of utilization
and different frequencies. We express the energy efficiency
using the achieved number of operations per joule metric. For
different utilization and frequency levels, we derive the corre-
sponding core level energy efficiency. Figure 8 and 9 show the
energy efficiency of one A7 and A15 core respectively. From
the figures we observe for all frequency a non-linearity of the
energy efficiency. Therefore, we can expect different efficiency
level for different platform configurations if the utilization rate
of the core can be controlled. From the figures we notice the
efficiency variation range from around 10% to 60% depending
on the frequencies and type of core.

 

 

 

 

Fig. 8: Energy efficiency of ARM Cortex-A7 core



Fig. 9: Energy efficiency of ARM Cortex-A15 core

C. Energy efficiency tables
From the measurements and derived efficiency values, we

can construct what we call an energy efficiency table as shown
in Table III . The table has three columns. The first specifies
the type of configuration we have in terms of active process-
ing unit type, utilization sustained and frequency level. The
second refers to the performance level of the corresponding
configuration. The third column specifies the dissipated power
for that configuration. The fourth column contains the energy
efficiency value derived from the two previous columns. The
efficiency table includes the full configuration space, listing
all possible combinations between number of cores in each
cluster, core type, frequency level and core utilization.

TABLE III: Energy efficiency table .
C(Lb/Fb/Nb/Ll/Fl/Nl) Perf.(op/s) P(W) Efficiency(op/J)

90%/2 GHz/4A15/90%/1.4 GHz/4A7 377 886 8.80 572 154
90%/1.9 GHz/4A15/90%/1.2 GHz/4A7 377 401 7.77 542 614
90%/2 GHz/4A15/80%/1.4 GHz/4A7 376 122 8.72 610 402

90%/1.9 GHz/4A15/90%/1.4 GHz/4A7 390 718 7.78 600 850
90%/1.7 GHz/4A15/90%/1.4 GHz/4A7 380 526 6.84 621 047
80%/1.9 GHz/4A15/90%/1.4 GHz/4A7 379 898 6.88 619 590
90%/1.9 GHz/4A15/70%/1.4 GHz/4A7 379 015 7.63 623 948
90%/1.7 GHz/4A15/80%/1.2 GHz/4A7 366 459 6.70 629 088
70%/1.9 GHz/4A15/90%/1.4 GHz/4A7 364 930 5.87 646 022
90%/1.9 GHz/4A15/30%/1.4 GHz/3A7 325 356 7.15 512 412
80%/2 GHz/4A15/50%/1.4 GHz/3A7 325 036 6.94 518 683

. . . .

Therefore, we sort the table according to the efficiency level
of all configurations. A view of the resulting table, sorted in
descending order, is given in Table IV. Because of the lack of
space we show only the beginning and the end of the table.

TABLE IV: Ordered Energy efficiency table .
C(Lb/Fb/Nb/Ll/Fl/Nl) Perf.(op/s) P(W) Efficiency(op/J)

60%/1.1 GHz/4A15/60%/200 MHz/4A7 136 790 1.39 1 287 932
60%/1.1 GHz/4A15/80%/200 MHz/4A7 140 511 1.41 1 285 211
60%/1.1 GHz/4A15/70%/200 MHz/4A7 138 377 1.40 1 283 870
70%/1.1 GHz/4A15/60%/200 MHz/4A7 154 722 1.62 1 279 862
70%/1.1 GHz/4A15/80%/200 MHz/4A7 158 443 1.64 1 277 141

. . . .
10%/2 GHz/1A15 8 000 0.18 42 962

10%/1.7 GHz/1A15 6 922 0.16 42 890
90%/2 GHz/1A15 72 028 1.99 36 165

Using the obtained sorted table, we can look up though
the configuration space to find the most energy efficient
solution for a required application performance. The selected
configuration will define the level of parallelism, the number
and type of cores and the corresponding level of utilization to
achieve the most energy efficient execution at the requested
performance level.

In Figure 10 we show the power dissipation of ten perfor-
mance groups which are composed of various configuration
options. For illustration purpose, the presented performance
groups are only a subset of those obtainable from the table.

For the same ten performance groups, Figure 13 shows the
corresponding energy efficiency results. On the figures each

performance group is composed by different configuration
solution providing the same performance level (expresses in
operations per second).

          

       

 

Fig. 10: Power vs. performance

We observe that depending on the selected configurations
the variation in energy efficiency can be considerable. For
example when requesting a performance level of 74871 oper-
ations per second, the difference in energy efficiency between
possible configurations is reaching 631 %. For this particular
performance level, we observe that the increase in efficiency
is provided by adding one A15 and three A7 cores, having the
cores clocked at a lower frequency, decreasing the utilization
level on the A15 and increasing it on the A7. In other words,
the number of cores was traded for lower clock frequencies
and different utilization levels.

From the energy model we can plot the efficiency levels
as a function of performance for all possible configurations.
Figure 11 shows the best and worst efficiency configurations
for all reachable performance levels. From the Figure we can
observe that up to the performance level of 2e+5 operations
per second the density of configuration points is high and
the difference between the efficiency of the worst and best
configurations is large. Moreover, up to this performance
level there are configurations providing the highest possible
efficiency level. After this performance level the configuration
density is decreasing and the highest possible efficiency levels
are not reachable anymore.

VI. APPLICATION CASE STUDY

In the previous section we presented our approach to built
the energy efficiency model and table, using the synthetic
load generator Spurg-bench. Using the proposed approach and
exploiting the newly sched_deadline policy, we show in this
section achievable results for an application case study.
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Fig. 11: Efficiency vs. Performance for all configuration points



A. Sched_deadline algorithm
In order to implement our strategy taking into account the

utilization rate of a task on a specific core, we need to assign
to target tasks a specific level of utilization which has to be
sustained during execution. There is no direct way in common
Linux schedulers to enforce such a constraint. Lately a differ-
ent scheduler framework has been introduced in mainstream
Linux. It offers the possibility to explicitly express the level
of utilization of a task. For each task the sched_deadline
policy needs three parameters: the task runtime, its period and
deadline. Therefore, by assigning a specific task runtime value
we can obtain a corresponding task utilization level.

B. Model validation
For evaluating our approach we consider an application

which can express different levels of parallelism and have
specific deadlines. We use the Blackscholes applicaton from
the PARSEC benchmark as a case study. This application
calculates the prices of an European options portfolio, based
on a partial differential formula. The Blackscholes bench-
mark represents a wide range of partial derivative equation
(PDE) solvers which are used in financial analysis [22]. The
application takes as an input a portfolio with a number of
options. Then the portfolio, divided between threads, is pro-
cessed concurrently. The application contains mainly floating
point operations and is CPU intensive. The application is
largely scalable and has a small parallelization overhead.
The application executes as the following: at the beginning
the main thread initializes the portfolio of options, then it
spawns worker threads which process part of the data in a
parallel. Each thread executes BlkSchlsEqEuroNoDiv function
to compute options prices. During the experiments we use up
to 8 threads in the parallel region of the application and only
measure the behavior in that region, which is called the Region
of Interest (ROI). A diagram of the parallelization model of
the application is shown in Figure 12.

Fig. 12: Parallelization model of the benchmark

We execute the application with its native input set which
has 10 million options and follow the subsequent approach for
validation. From Figure 13 we choose performance groups and
run Blackscholes in configurations defined in the groups. We
measure the achieved performance of the parallel region (ROI)
in number of options calculated per second.

The goal of the validation is to verify the relative energy
efficiency among configurations inside one performance group
is preserved for the application case study. For validation
purpose, we select the last 3 groups of configurations from
Figure 13, those having the highest performance level from
our model. We then execute the Blackschole application and
measure the corresponding power dissipation and performance
for the six selected configurations. The measured performance
levels achieved by different configurations within a group did
not vary more then 10%. The resulting energy efficiency is

          

       

 

Fig. 13: Performance vs. efficiency levels

shown in Figure 14. In addition Figure 14 shows the achieved

      

 

Fig. 14: Performance vs. efficiency for blackscholes

average performance levels for each configuration. The relative
efficiency difference within a configuration group is shown.
The differences in efficiency range from 33% to 81%. As
we can see from the comparison of Figures 13 and 14 our
model is able to indicate the most efficient configuration for
each group. The differences in percentage between Figures
13 and 14 can be explained by the large number of memory
instructions present in Blackscholes compared to the synthetic
load generator Spurg-bench.

To further evaluate our approach, we compare the efficiency
of few configurations with and without using Sched_dealine.
Figure 15 shows the differences in efficiency levels when using
the utilization rate as a configuration parameter. We can see
that by taking into account the utilization rate we can achieve
better efficiency.
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Fig. 15: Comparison of efficiency with and without utilization factor

VII. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the achievable energy gains
when exploiting at the same time heterogeneity, voltage and
frequency scaling and utilization rate control techniques. We
proposed a approach to build an energy efficiency model and



table based on platform configurations. We analyzed the en-
ergy efficiency variation for different platform configurations
providing the same level of performance. We show that trading
the number and type of core with frequency and voltage level
and core utilization rate can lead to substantial energy gain.

As future work we see the possibility of building a more
general model based on a better mix of instructions, giving
the possibility to represent a larger variety of real world
applications. We plan to consider the possibility of a runtime
system, which will divide the execution of an application in
phases. For each phase the appropriate architecture configu-
ration can be established, and selected at runtime. This will
provide an energy efficient runtime system at the granularity of
application phases. In this work we considered the utilization
at cluster level. It would be interesting to explore the impact of
using different utilization rates inside a cluster, and study the
trade-off between configuration space complexity and resulting
energy gain.
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Hergys Rexha, Sébastien Lafond

Originally published 2018 26th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP)

©2018 IEEE. Reprinted with permission.

2





Exploring Energy Efficiency Model Generalization
on Multicore Embedded Platforms

Abstract—In this paper we investigate the relation between
energy efficiency model and workload type executed in mod-
ern embedded architectures. From the energy efficiency model
obtained in our previous work we select a few configuration
points to verify that the prediction in terms of relative energy
efficiency is maintained through different workload scenarios.
A configuration point is defined as a set of platform tunable
metrics, such as DVFS point, DPM level and utilization rate.
As workloads, we use a combination of synthetic generators
and real world applications from the embedded domain. In our
experiments we use two different architectures for testing the
model generality, which provide examples of real systems. First
we have a comparison of the efficiency obtained by the two
architecturally different chips (ARM and INTEL) in different
configuration points and different workload scenarios. Second
we try to explain the different results through the thermal
management done by the two different chips. At the end we show
that only in the case of workloads highly composed by integer
instructions the results from the two architectures converge
and show the need for a specific model trained with integer
operations.

I. INTRODUCTION

Energy consumption is a key issue in today’s electronic
systems, ranging from IoT nodes to server farms. Information
technology has acquired a big part of our everyday life,
requiring a large amount of energy. The number of computing
systems we use today has never been so high in the past,
and is rapidly increasing [1]. The current energy production
figures show that in Europe, only a small part of the energy
required is produced from renewable sources, relaying mostly
in fossil fuels, with a related strong impact in the environment
in terms of GHG (green house gasses) emissions. Recently the
world meteorological organization in its buletin said that the
levels of CO2 in 2016 had an unprecedented increment [2],
giving an alarm about the levels of greenhouse gases and the
resulting climate changes. As Europe has always been a leader
in policies for environmental protection and carbon reduction
initiatives, in the future guidelines, there is a high pressure
to increase the energy efficiency of electronic devices [3]. No
matter if we consider a data center or mobile devices, the
imperative is still the same: a decrease in energy consumption
is nedded. Depending from the computing domain, approaches
have been long proposed for achieving reduction in the energy
consumption. One of the largest markets in electronic devices
which has had the fastest rise in the past years, is the
mobile systems domain. Exposed to a huge number of use
cases, mobile devices face different requirements which often
trade-off with low energy consumption. The most obvious
requirement is performance, which affects directly the power
dissipation of mobile systems. Today‘s processor chips are
reaching levels of performance which are able to cope with

the most performance hungry applications. In the future,
different applications like virtual reality, artificial inteligence
and machine learning will increase the level of performance
required from processor chips. The problem in this scenario is
that we need also to be efficient. Recent approaches from the
industry try to achieve better energy efficiency through the use
of heterogeneous systems, which enclose different computing
elements inside a single chip [4]. Recently, industry proposes
an increased level of heterogeneity present on a multiprocessor
system on chip (MPSoC) with approaches like [5] and [6]
where we go beyond the idea of a two cluster heterogeneity,
by adding another cluster of cores considered as middle level
performance, obtaining a tri-cluster heterogeneity. In this way
authors promise to cut power dissipation by 50%1. Also,
from ARM we have the latest technology named DynamIQ 2

providing many options for organizing high performance and
energy efficient cores inside a cluster. In this paper we follow
the work done in [7], which builds an energy efficiency model
based on platform configuration points. Platform configuration
points are combinations of available actuators present in
today‘s heterogeneous architectures. In the next section, we
will present the ideas behind this work and the questions raised
which we try to answer in this paper.

A. Why we did this work?

In our previous work we experimentally build an energy
efficiency model for two widely used ARM core types which
compose the ARM big.LITTLE architecture (Cortex A-15 and
Cortex A-7). The energy efficiency model is based on synthetic
workload composed mostly from floating point instructions. In
the following steps we would like to validate the generality of
the model with different instruction mixes and verify that the
relative efficiencies of the model points are still valid. The
main research questions that we try to address in this work
are the followings:

1) Can we have a general energy efficiency model, without
looking at the type of load/instructions?

2) Are the relative energy efficiency values for different
configuration points kept for different instruction mixes?

In our definition of platform configuration point we use
configurable actuators available in today‘s platforms. In het-
erogeneous platforms they are defined by:

• The number and type of cores to utilize for computations
• The frequency each type of core can have
• The utilization rate to be used by each type of core

1http://www.mediatek.com/products/smartphones/mediatek-helio-x30
2http://developer.arm.com/technologies/dynamiq



The combination of the previous parameters defines a platform
configuration point. From the energy efficiency model in [7]
we derive a lookup table composed of all the configuration
points available on a given platform and the related perfor-
mance and energy efficiency values they provide.

Furthermore, in our experiments we use another architecture
to compare energy efficiency results achieved by platform
configuration points in different workload types. We choose
two sets of configuration points to be used during the ex-
periments. In the ARM architecture, the selected platform
configuration points are described in Table I. As a second
architecture we choose Intel Atom, and define the configura-
tion points presented in Table II. For both architectures, in
the four configuration points chosen we use the maximum
executing parallelism available and a mix of choices when
applying or not, utilization control and DVFS. We enforce
utilization control on a particular thread by means of a real
time type scheduler, which is named sched deadline. For more
information on the methodology used and the details of the
configurations, refer to [7]. With utilization control, which is
expressed in percentage, we select the load level the core will
reach while running the computations. Beside the description
of each configuration point, the resulting performance and effi-
ciency values are reported in the tables. These values originate
from the energy efficiency model in [7]. Our investigations for
the previous questions lead us to the forthcoming questioning:

3) Do ARM and Intel architectures provide the same energy
efficiency?

4) Do the thermal characteristics play a role in the efficiency
of the configurations, especially when controlling the
load?

We will try to answer these questions through a wide set of
experiments as they will be presented in section 3.

II. RELATED WORK

There are not many works who analyse the relation between
the composition of the workload being executed and the right
choice to execute it in a highly energy efficient way. The
closest to this topic is the work in [8] where the authors show
that by taking into account the mix of instructions from the
workload, an energy efficient mapping could be done in a
heterogeneous systems. By knowing which core type is best
for a certain workload the scheduling decisions could be taken
in such a way to achieve high levels of energy efficiency. The
authors promise to save energy in the interval 7.1% to 31.3%
if a workload-aware scheduler will be used. In contrast with
their work we want to validate the results obtained before
with our energy model, in the context of different workload
type. In our second test case we use real world applications
which represent embedded applications. In [9], authors try to
answer the question whether ISA plays a significant role in
the energy efficiency of different architectures. They analyze
three architectures with different workload types with the
conclusion that there is nothing more energy efficient in one
ISA compared to another. In [10] authors investigate the
effects of static power consumption on the energy efficiency

of two popular embedded processors like ARM and Atom.
For different benchmark types they show that if the right level
of static power is present in the processor (from the design
phase), than by choosing the right thread level parallelism,
better energy efficiency could be achieved. In contrast with
this work we measure from the experiments the static part of
the dissipated power and discuss the effect of the static power
on the energy efficiency differences between two popular
embedded architectures such as Intel and ARM. We show that
there is a significant difference in the static power between the
two architectures when full parallelism is used. We believe that
this difference has a strong impact on the results related to the
energy efficiency. In [11], authors propose a runtime system
which manages several workloads by taking into account
performance requirements and application variability, with the
goal of achieving better energy efficiency. The results claim
to improve energy efficiency by 33% compared to existing
approaches. They use the number of memory references per
instruction as a key metric for classifying the workloads
in three groups. Based on this behaviour they optimize the
mapping process. This work considers only heterogeneity and
DVFS as basic actuators for energy efficiency. In contrast
in this work we consider the possibility to use core level
utilization as an additional feature which can produce benefits
in terms of energy efficiency. We use the relative presence of
simple instruction types as a characterization of the workload.

III. EXPERIMENTAL SETTINGS

In this section we will present the hardware and software
tools that we used during our experiments and also the used
measurement framework.

A. Hardware platforms

We use two hardware platforms in these experiments. A
summary of their characteristics can be found in Table III.

B. Measurement framework, interval definition with the oscil-
loscope

The ODROID board is installed with Linux Ubuntu 14.04,
kernel 4.2.0, GCC 4.9 while the UP board is installed with
Ubilinux 3.0, kernel 4.4.0 GCC 4.9. While performing the
experiments on both boards the minimal services of Linux
system are running. For power measurements we use an
external power supply with a current/power IC monitor [12].
The supply voltage is maintained stable at 5V, and the power
data are logged with an interval of 10 ms, in order to have a
good trade-off between accuracy and resolution of the logged
data. To investigate on the effects of chip temperature on
the power dissipation we use a two channel PC oscilloscope,
PicoScope 2205 [13], with one channel connected to the board
power supply rail, measuring the current consumption, and the
other channel used to measure the voltage level of a selected
GPIO pin from the board. We use that pin as a synchronizing
START/STOP signal for collecting power data. We run the
workloads in a back to back fashion and during this time we
collect the power data for each separate run. The performance



TABLE I
PLATFORM CONFIGURATION POINTS USED IN THE EXPERIMENTS WITH ARM ARCHITECTURE

Name Configuration Performance (op/s) Energy Efficiency (op/J)

C1 4A15/1.1GHz/100% + 4A7/0.6GHz/100% 217433 900442
C2 4A15/2GHz/100% + 4A7/1.4GHz/100% 377885 572154
C3 4A15/1.1GHz/60% + 4A7/0.6GHz/60% 154912 1010780
C4 4A15/2GHz/60% + 4A7/1.4GHz/60% 284522 657773

TABLE II
PLATFORM CONFIGURATION POINTS USED IN THE EXPERIMENTS WITH INTEL ARCHITECTURE

Name Configuration Performance (op/s) Energy Efficiency (op/J)

C1 4 Intel Atom/1.1GHz/100% 207641 105669
C2 4 Intel Atom/1.92GHz/100% 208550 106566
C3 4 Intel Atom/1.1GHz/60% 106326 164171
C4 4 Intel Atom/1.92GHz/60% 120481 119743

TABLE III
SUMMARY OF THE USED PLATFORMS

Intel ARM

Architecture x86 ARM v.7 ARM v.7

Processor Atom z8350 Cortex-A7 Cortex-A15

Cores 4 4 4

Frequency 1.92 GHz 1.4GHz 2.0GHz

Width 2-way 2-way 3-way

Issue OoO In Order OoO

L1 Data 32 KB 32KB 32KB

L1 Instr 24KiB 32KB 32KB

L2 2MB 512KB 2MB

Memory 4GB DDR3L 2GB LPDDR3

SIMD AVX NEON NEON

Tech Node 14nm 28nm 28nm

Platform DevBoard DevBoard DevBoard

Products UPBorad ODROID XU4 ODROID XU4

data are logged in a different file in terms of instructions per
second or workloads per second. For more accurate results,
each experiment is repeated 5 times and the average values
of performance and power are reported. A diagram of the
experimental framework is showed in Figure 1.

C. Presentation of the benchmarks: type of loads, synthetic
vs. real

We used two categories of workloads for our experiments.
The first category is composed of synthetic instruction mix,
which are obtained from a synthetic workload generator called
epEBench [14]. This benchmark uses several funcion mod-
els (Table IV) which use simple type of instructions. The
benchmark is designed to integrate synthetic workload with
analytical approach in analysing the energy efficiency of multi-
core systems. In our experiments, we utilize an important pa-
rameter from the benchmark, which is the ability to control the
workload-level executed by the processing core. This behavior
is defined as the utilization rate in a real applications [14].
Furthermore with this benchmark we are able to simulate
different type of instruction mixes through the use of function

Testing 
Applications

Power 
Data

Utilization control
Frequency control
Level of parallelism

Operations/s
Workloads/s

ODROID XU4
UP BOARD

Fig. 1. Diagram of experiment infrastructure.

models and by means of the Linux pthread library we can
select a specific level of parallelism.

The second workload category is composed of real world
applications related to the embedded system domain. These
applications are selected from CoreMarkPro3 benchmark suite.
It offers real-world examples of applications with different
instruction mix. The workloads in CoreMarkPro are divided
in two main categories: floating-point and integer. In our
experiments we choose 4 workloads, 2 from each type. A
description of their composition is made in Figure 2. The
workloads used are:

• Linear Algebra workload which is a mathematical solver
of equations through the Gaussian elimination method.

• FFT Radix 2 workload performs transformations with
Radix2 on the input.

• XML parser workload parses an XML string and creates
an ezxml structure with subsequent final validation of the

3http://www.eembc.org/coremark/index.php?b=pro.htm



TABLE IV
SET OF CURRENTLY USED LOAD FUNCTIONS FROM EPEBENCH.

Nr. Load Function Inst. Type Description
1 run dmul64 SIMD muldiv (SIMD) Double precision mult.
2 run smul32 SIMD muldiv (SIMD) Single precision mult.
3 run dsub64 SIMD addsub (SIMD) Double precision sub.
4 run dmul muldiv FP multi.
5 run dadd addsub FP addition
6 run imul muldiv Fixed point mult.
7 run iadd addsub Fixed point addition
8 run branch branch Branch
9 run imem mem Memory access (int)

results.
• Secure Hash Algorithm (SHA256) workload is composed

from a subset of cryptographic hash functions with di-
gests of 256 bits.
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Fig. 2. Instruction mix of the chosen workloads from CoreMarkPro.

D. Temperature experiments

We have conducted experiments to measure the relation
between power dissipation and chip temperature during work-
loads execution. The workloads from CoreMarkPro benchmark
were run one after each other and the temperature of the
chip was measured at 10 ms intervals. At the same time,
the power data were logged with the external meter. With
the collected data we can plot the relations between power
and chip temperature during the execution time. Because of
the large power dissipation during the execution of some of
the workloads, especially in the Exynos 5422 chip, all the
experiments concerning CoreMarkPro benchmark were run in
a refrigerated environment with a controlled temperature of -
18◦C. Also the development boards were equipped with a fan
powered with an external supply. With this infrastructure we
were able to perform experiments without reaching the critical
temperature of the core, where if so happens, the system will
be turned off in order to prevent physical damages of the
silicon.

IV. RESULTS

In this section we present some of the results which shed
some light over the questions presented in the first sections. We
first explore the generality of the energy efficiency model with
regard to the executed workload. Then, through the synthetic
benchmark, we value the impact of utilization control on

the energy efficiency of different instruction types. At the
end, a comparison of the two architectures regarding energy
efficiency and a possible explanation for their difference will
be discussed.

A. (Answer to question 1): The impact of workload type on
the relative energy efficiency of the configuration points

We run the selected workloads from the CoreMarkPro
benchmark at the highest degree of parallelism offered from
the chosen platforms. The workloads are executed with 1000
iterations and the throughput is collected in terms of workloads
per second as a performance metric. The average power dissi-
pation is measured during execution time. In Figure 3 we show
the energy efficiency results from the Exynos chip with the
real world workloads for the selected platform configuration
points. In general for the first three workloads there is not a
significative difference in the efficiency provided by C1 and
C3 configuration points. We remind that the only difference
between these configuration points is the utilization control
which is enforced in C3 at 60%, while in C1 the core reaches
100%. Both of these configurations set the cores at their
middle level frequency ( 1GHz for A15 and 600MHz for A7)
choosing a relaxed execution strategy or otherwise called the
pace-to-idle approach where the execution is set at the lowest
possible speed while still keeping the performance require-
ments. The difference although in energy efficiency remains
high with C2 and C4 which enforce the race-to-idle strategy,
or running at the fastest speed. Demonstrating that going at
the fastest speed is not energy efficient. Remarkably during the
cryptographic function execution we have different results of
relative energy efficiency for the platform configuration points.
Here, C1 and C2 show better energy efficiency than C3 and
C4. This behaviour is against the model predictions.

The results for Intel are presented in Figure 4. Here, in
the linear equation solver configuration C3 provides the best
efficiency result, which is in accordance with the model (Table
II), and the others three provide almost the same level of
efficiency. We observe same behaviour with minor changes
in the xml parsing workload and also in the FFT application.
In the Secure Hash Algorithm still the best efficiency of the
group is achieved by the C1 and C2 configurations, results that
are the opposite compared to Table II. Apparently in the case
of a strong presence of integer instructions in the executed
workload, the actual model is not able to select the highest
energy efficiency configuration point.

B. (Answer to question 2):Impact of load control on efficiency

We want to answer the question of whether the utilization
control has an impact on efficiency, and evaluate if this impact
is more important in some type of workloads rather than
others. We use epEBench multi-core energy benchmark for
generating workloads based on the function models presented
in Table IV. The workloads are executed through the set
of previously described configuration points (C1-C4). The
performance data are collected in terms of instructions per
second and the power data are logged through the external



meter. The results are presented in Figures 5, 6 and 7.
According to the results for the ARM platform, C1 and C3
provide almost the same level of energy efficiency through all
the model types used. The same happens between C2 and C4.
In the case of workloads composed by integer additions and
multiplications we cannot notice the behaviour observed from
SHA256 workload in Figure 3.
In Intel (Figures 6 and 7), configuration C3 provides a slight
better energy efficiency compared to C1, C2 and C4 which
are together at the same level. While again as in ARM this
observance is repeated through all the model used. Apparently
for both architectures there is no significant difference in
the energy efficiency levels achieved for different instruction
types. Also, utilization control has the same effect indepen-
dently of the instruction type executed.

Fig. 3. Energy efficiency for the Exynos 5422 SoC workloads from Core-
MarkPro
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Fig. 4. Energy efficiency for the Atom x5 SoC with workloads from
CoreMarkPro

C. (Answer to question 3):ARM vs. Intel, which architecture
provides better energy efficiency?

This question is highly debated in the academic and indus-
trial community circles. In our experiments we tackle both
sides of the problem with a double scenario. On one side we
use real applications from the embedded domain to measure
the energy efficiency levels achieved in both architectures, on
the other side we test again the architectures by using an
energy benchmark which enables us to define the workload

model to execute. In the experiments conducted with the real
world applications, Intel succeeded to be more energy efficient
than ARM in all the workloads. Even in the XML parser
which shows the lowest scores in terms of energy efficiency.
A possible explanation for low scores is the poor ILP present
in the application, versus the highest ILP of the workload set
found in the FFT workload which shows the highest scores
in energy efficiency. A possible explanation for the difference
between ARM and INTEL can be found by the presence of
more static power dissipated in the Exynos chip. From the
graphs in Figures 8 and 9 we observe the relation between
power dissipated and chip temperature during the execution of
Linear Algebra workload in configuration C1 and C3. Here, for
ARM we can see a positive slope in the temperature curve for
the two configuration points, the slope is more emphasized in
configuration C1 with higher temperatures reached at the end
of execution. This observation guides us to the conclusion that
more static power is present in the power data, so even though
ARM shows better performance (more cores present in chip),
still energy efficiency scores are in favour of Intel Atom. As
a comparison we have conducted the same experiments in the
INTEL architecture and measured Atom z-8350 temperature
and power with the same workload. The results are plotted
in Figures 10 and 11. We can notice in the graphs that
the temperature of the chip reaches a steady state from the
beginning of the experiment and remains constant through the
execution, leading to less static power dissipation.

A total different picture is obtained in the second case,
with different function models used in the epEBench syn-
thetic benchmark. ARM architecture provides better energy
efficiency in almost all the models used, except for branches,
which show better results in Intel. This could be related to the
better branch predictor present in the Atom processor.
Furthermore in Intel, there is not much difference in efficiency
between the single point and double point operations, while
in ARM single precision operations are more energy efficient
than double precision. We believe this is due to the presence
of heterogeneity in ARM architecture, with the A7 cores
providing increased levels of efficiency. Also, the energy
efficiency achieved in the workloads composed by SIMD
instruction is higher in ARM than Intel, understandably if we
consider the presence of NEON execution engine in the ARM
platform.

D. (Answer to question 4): Thermal characteristic influence
on the energy efficiency results

From the temperature experiments conducted in the previous
subsection we could notice the presence of an increased power
dissipation in ARM compared to Intel, leading to a difference
in energy efficiency scores. The previous experiments were
conducted in a highly refrigerated environment, as a result a
controlled rise in chip temperature. In a second experiment we
remove the boards from the controlled environment and try to
execute again the Linear workload with 1000 iterations and
with only the active fan as a cooling system. We monitor the
current consumed during the execution with an oscilloscope.



Fig. 5. Energy efficiency for the Exynos 5422 SoC with function models
from epEBench
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Fig. 6. Energy efficiency for the Atom x5 8350 SoC with function models
from epEBench

In Figure 12 we can see the results obtained in ARM. The red
line show the interval frame of the workload execution, before
starting we can see an idle current consumption at an average
level of 0.6A. After the start of the workload the current
consumption reaches levels of 2.2A and while subsequent
iterations of the workload are executed the current consump-
tion grows until it reaches levels of 3.2A where the power
dissipated reaches values that increase chip temperatures to
critical values. As a safety measure the system is switched off,
as we can notice that at the end of the execution frame the
oscilloscope is recording 0A on the current consumption. Since
the same workload is executed multiple times, the subsequent
increase in power dissipation is attributed to the static power
dissipated in the chip, with a value more than 5W associated
with it.
The same experiment is conducted in Intel Atom with the
result shown in Figure 13. The current consumption remains
stable in the execution window which shows better manage-
ment of the thermal effects with subsequent control of the
static power dissipated.
On the other side, the execution of synthetic loads produces
different levels of static power dissipated. We observe that
only special type of instructions while executed inside a loop
produce more static power than others. In Figure 14, we notice
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Fig. 7. Energy efficiency for the Atom x5 8350 SoC with function models
from epEBench
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Fig. 8. Measurements on ARM with linear workload and C1 configuration
point

the gradual rise in current consumption while executing a loop
of memory instructions. This increase is associated with the
continuous rise in power dissipated, due to the increment of
static power part. If we compare with the INTEL platform, in
Figure 15, there is not such perception of linear increase in
power dissipated. For this workload such behaviour explains
the similar results in energy efficiency values for the two
platforms even though in ARM we have double number of
cores with consequent better performance. Such behaviour is
not present for all instruction types, for example while exe-
cuting double precision multiplications thermal effects result
in a more stable power scenario as we can see in Figure 16.
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Fig. 9. Measurements on ARM with linear workload and C3 configuration
point
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Fig. 10. Measurements on INTEL with linear workload and C1 configuration
point

0 20 40 60 80 100 120 140
0.5

0.75

1

1.25

1.5

1.75

2

Time (s)

P
ow

er
 (

W
)

0 20 40 60 80 100 120 140
−4

−2

0

2

T
em

pe
ra

tu
re

 °C

 

 

Temperature
Power

Fig. 11. Measurements on INTEL with linear workload and C3 configuration
point
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Fig. 12. Measurement of the current consumption during the execution of
linear workload from the benchmark suite
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Fig. 13. Measurement of the current consumption during the execution of
linear workload from the benchmark suite
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Fig. 14. Measurement of the current consumption during the execution of
integer memory instructions in the ARM platform

0 100 200 300 400 500 600
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cu
rre

nt
_c
on

su
m
tp
io
n

current
gpio START/STOP signal

Fig. 15. Measurement of the current consumption during the execution of
integer memory instructions in the INTEL platform

V. CONCLUSIONS

In this paper we answer questions regarding the generality
of the previous obtained energy efficiency model [7], in the
context of the embedded systems domain. We select two
hardware platforms for running experiments, which are based
on two popular embedded architectures such as ARM and
INTEL. In the experiments with real applications from the
CoreMarkPro suite, ARM and Intel show results approxi-
mately in accordance with the model values for workloads
with evenly distributed instruction mixes. In case of workloads
with high levels of integer instructions, we need another model
to find high energy efficiency configuration points.

When we try to investigate the effect of utilization control
on the energy efficiency with different instruction types, we
use the multicore energy benchmark epEBench, which exe-
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Fig. 16. Measurement of the current consumption during the execution of
double precision instructions multiplication instructions in the ARM platform

cutes custom function models. We use 9 type of function
models which test most common instruction types, with results
in ARM that show no significant difference in the energy
efficiency provided by utilization control on some special type
of workload.

In Intel, utilization control seems to provide overall better
energy efficiency results than in ARM, with workloads com-
posed from branch instructions resulting more susceptible to
a control load level in terms of energy efficiency.

Comparing the absolute results of energy efficiency between
the two architectures produces a two faced picture. When using
real applications as workloads Intel shows better efficiency
levels than ARM in all the applications tested. We get a total
different result when using synthetic workloads, where ARM
shows better absolute values of energy efficiency in almost
all the instruction types used. The performance provided
by 8 cores in ARM is larger than the additional increase
in power dissipated. Exception is made for branches and
memory operations. With branches, Intel shows far more better
efficiency than ARM. The performance with this type of load
is almost the same in the two platforms, but less power is
dissipated in Intel and we think this is due to a more efficient
branch predictor in the Atom core. With purely memory load,
we measure the same results in energy efficiency, even though
in ARM the performance is much higher in terms of operations
per second. The results are explained with a more stable level
of power dissipated in Intel compared to ARM with this type
of load. Another observation that can be made by results
obtained from these experiments, is the limited efficacy of
synthetic benchmarks when assessing properly energy effi-
ciency comparison. This can be explained by the fact that
static power effects are not strongly present while executing
synthetic benchmark with only certain type of execution units
stressed, as shown in section 4D, which explains the different
energy efficiency results between synthetic and real workloads.

As a possible explanation of energy efficiency values is the

difference of the two architectures in managing thermal effects.
As we show by the experiments done with the oscilloscope
Intel is better in managing thermal effects than ARM, which
results in less static power present in Intel compared to ARM.
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Abstract—Heterogeneous systems promise to improve per-
formance and endurance of power constrained systems, by
utilizing computing elements of different power and performance
characteristics. Such systems provide the possibility to trade
number and types of core with Dynamic Voltage and Frequency
Scaling (DVFS) levels and core utilization rate to achieve op-
timal energy efficiency. Therefore by making smart decisions
on application scheduling and mapping we can exploit and
maximize the benefits of using heterogeneous processors. At the
same time, the application level of parallelism can conveniently
be exposed by dataflow Models of Computation (MoCs). In
this paper we show an energy efficient execution approach for
heterogeneous architecture. We demonstrate the approach on
a real-life streaming application modelled with Parameterized
and Interfaced Synchronous Dataflow (PiSDF). The presented
solution show how to integrate our approach in the workflow
of a dataflow application prototyping tool. The results that we
obtain demonstrate that, by using an optimal scheduling and
mapping, more than 30% of energy reduction can be achieved
on a single actor level.

I. INTRODUCTION

The past years had seen a rapid development in the amount
of data produced, processed and exchanged through comput-
ing systems, ranging from high end server farms to simple
household devices. And the trend of technology seems to fuel
even more this direction. Based on the data of electricity usage
ascribed to Information and Communication Technologies
(ICT) it is predicted that by the end of 2030 this sector
will use as much as 51% of global electricity production.
The ICT sector could be responsible for up to 23% of the
globally released greenhouse gas emissions in 2030 [1]. These
statistics confirm that we are living in an energy constrained
world and in the future, if we dont increase the amount of
energy generated from renewable sources, the impact on the
environment will be tremendous.

It is therefore imperative to increase the energy-efficiency
of computing devices. Energy efficiency in our days is a
top level concern not only in data centers and supercom-
puting environments but also in embedded devices (hand-
held, IoT, wireless devices) which are steadily increasing
in number [2]. In the past years industry witnessed a race
towards producing computer chips with increased performance
capabilities. Multi and many-core systems emphasized this
trend and were adopted to satisfy the performance requirement
from the application side. This led to an issue called dark

silicon, where not all part of a chip can be powered at the
same time [3]. Heterogeneous Multiprocessor System-on-Chip
(MPSoC) appear as a probable solution for energy efficiency
compared to homogeneous systems [4]. Especially single ISA
heterogeneous architectures offer a good trade-off between
energy-efficiency and programming efforts [5]. They consist
of multiple computing elements with different power and
performance characteristics, that share a single instruction set.

Finding the proper core diversity inside a MPSoC is a
difficult task as suggested by E. Tomusk and co. in [6][7].
This is especially true in mobile applications where there
are large workload variaties. Nowadays there are commercial
versions available from different vendors like Samsung [8] and
NVidia [9] which offer octa-core chips based on the ARM
big.LITTLE architecture. The current market trend produces
solutions with an increased level of heterogeneity. A recent
example is the tri-cluster SoC provided by MediaTek Helio
X30 [10], offering a deca-core over three clusters: one dual-
core ARM Cortex-A73 up to 2.5GHz, one quad-core ARM
Cortex-A53 up to 2.2GHz and one quad-core ARM Cortex-
A35 up to 1.9GHz.

Achieving an energy efficient application execution on mul-
ticore heterogeneous architecture requires an overall view and
deep understanding of the underlying software and hardware.
First the software needs to expose the right amount of par-
allelism in order to utilize the capabilities of hardware, and
then an efficient mapping of the software to hardware needs
to be found. All of these objectives should be accomplished
with respect of the application performance constraints.

Different Models of Computation (MoCs) have been used
for modelling applications; Synchronous Dataflow (SDF) [11],
Cyclo-Static Dataflow (CSDF) [12], Kahn Process Network
(KPN) [13]. One of the main purpose of these MoCs is to ex-
pose parallelism inside the application. In general applications
described by Dataflow Process Networks (DPNs) consist in a
set of entities of which the application is composed, that are
called actors. Actors communicate through FIFO buffers, an
each actor can execute (fire) as soon as its input buffer contains
enough data tokens (consumption rate). After execution the
actor produces a certain number (production rate) of data
tokens in its output buffer(s). The popularity of these models
come from the simplicity in analysing the application structure.

In dataflow MoCs an application is defined as a graph of



concurrent tasks which communicate with each other through
FIFO buffers. Synchronous Dataflow (SDF) [11] is probably
the most used DPN, especially in signal processing applica-
tions. Inside a graph of actors the production and consumption
rates of the actors are fixed numbers, which enable static analy-
sis of the graph. Another valued property of SDF, not present
in KPN, is the possibility to schedule the graph at compile
time, as long as the graph is schedulable, deadlock-free and
consistent. In SDF actors are stateless, which practically means
that an actor can start several replicas of itself in parallel, if
enough data tokens are available. With the exposed available
parallelism, we can develop mapping techniques exploiting the
benefits of using heterogeneous processors to achieve energy
efficient execution of applications.

In this paper we demonstrate a mapping technique to
achieve energy efficient application execution, integrated into
the workflow of the Parallel and Real-time Embedded Ex-
ecutives Scheduling Method (PREESM) tool. PREESM is a
development framework for rapid prototyping of dataflow
applications. Applications developed with PREESM target exe-
cution in heterogeneous MPSoC, where the proposed approach
defines the optimal platform configuration to run an actor
under defined performance constraints. We define platform
configurations by the following set of parameters:
• Level of parallelism achievable by an actor
• Number of cores to utilize
• Type of cores to utilize
• Dynamic Voltage and Frequency Scaling (DVFS) level of

a cluster
• Cluster utilization rate

II. RELATED WORK

Energy management in MPSoC has been studied with
different perspectives. The largest part of studies relates to
homogeneous multiprocessor system with voltage scaling at
core level or at the system level [11], [14], [15]. In these works
the general approach is to convert an original SDF graph to
Homogeneous SDF (HSDF) in order to expose parallelism
but with the shortcoming of increased memory usage and
complexity. On the other hand approaches proposed in [16],
[17] work directly on the level of SDF graph with the goal of
energy minimization. They perform a design space exploration
to find an energy efficient mapping for SDF applications on
a homogeneous MPSoC with voltage scaling capability at the
core level. In [15], authors propose an algorithm to find the
core frequency level for a specific schedule and mapping of
the SDF graph, for which the throughput constraints are met.
In contrast to the aforementioned works, our focus is put on
heterogeneous MPSoC, and consider ability to define voltage
and frequency at the cluster level which has been shown to
be a good trade-off [18], [19]. Moreover we use utilization
level in addition to the number and type of core to define
the platform configuration. We then use static schedules of
SDF applications to demonstrate the energy efficiency of some
platform configurations to run compute intensive actors. There
are a number of works which also consider heterogeneous

MPSoC as [20], [21]. In the first work authors consider a bin-
packing algorithm for achieving particular load distribution
which analytically is shown to minimize power dissipation.
They do not consider using all cores at the same time losing the
benefits provided by the energy efficient cores. In contrast our
strategy takes into account the full computing potential of the
platform with energy efficient and performance efficient cores
altogether. In [21] authors consider clustered MPSoC, with
the possibility of changing task allocation during runtime. By
doing so, there is a high potential of large overheads spent in
context switching, that can result in performance degradation.
In contrast we define a static schedule based on configuration
points that can be twice more energy efficient. The work
which is more near to ours comes from Jelena Spasic and
co. [22]. The authors propose and approach that determines
the processor type and replication factor for each task of an
SDF graph under throughput constraints. They try to balance
the load across all computing cores in order to use frequency
scaling as a main technique for achieving energy reductions.
In contrast our approach uses DPM and utilization rate as
additional parameters to gain even more energy reduction.

III. SHORT PRESENTATION OF PREESM

PREESM is an open-source rapid prototyping framework
developed for research and educational purposes [23]. Rapid
prototyping consists of extracting information from a system
in the early stages of its development. It enables hardware/soft-
ware co-design and favors early decisions that improve system
architecture efficiency.
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Fig. 1. Overview of PREESM workflow.

Figure 1 illustrates the different steps of the rapid proto-
typing workflow of PREESM. Inputs of the rapid prototyping
workflow consist of: an algorithm model specified with a
dataflow MoC, an architecture model respecting the System-
Level Architecture Model (S-LAM) semantics [24], and a sce-
nario providing mapping constraints and prototyping parame-
ters. The scenario ensures the complete separation of algorithm
and architecture models. The complete independence between
the architecture and algorithm models simplifies the porting
of an application on different targets.

In PREESM, the dataflow graph modelling the application
first undergoes transformations in preparation for the rapid
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prototyping steps. The main purpose of these graph transfor-
mation is to reveal all data, task, and pipeline parallelism of
the application. Then, static multicore scheduling and memory
allocation are executed to dispatch and order computations,
communications and memory accesses to the different archi-
tecture elements. Finally, the multicore scheduling information
is used to simulate the system behavior and to generate
compilable code for the targeted architecture. Our approach
is placed after the code generation step in PREESM workflow
from Figure 1.

IV. PROPOSED APPROACH

The proposed approach enables an energy efficient execu-
tion technique based on platform configuration points which
offer high levels of efficiency. In order to define those platform
configurations, we base our approach on power models built
from experimental data as in [25]. With the related perfor-
mance models we are able to construct energy efficiency mod-
els, which are the starting point of our energy minimization
approach. We define optimal platform configuration points for
running a particular actor with regard to it‘s performance level.
The intention of this work is to show that our model can
be efficiently used for deciding the schedule and mapping
of dataflow applications. We demonstrate the usage of our
strategy integrated in the workflow of a signal processing
application development tool (PREESM). With today’s archi-
tectures, which manage the execution of many short tasks
regularly, the impact of this technique could result in large
energy savings.

V. EXPERIMENT SETUPS

Our experiments intend to show that by setting the appro-
priate configuration for running a single actor from a dataflow
application we will benefit in terms of energy compared to the
schedule proposed initially by the tool.

A. Platform

We run our application on an ODORID XU4 development
platform provided by HARDKERNEL company. The board
is powered by an Exynos 5 MPSoC, which is an octa-core
composed of 4 ARM Cortex A7 and 4 ARM Cortex A15
organized in a big.LITTLE architecture with Global Task
Scheduling (GTS). The A7 cores can scale up to a frequency
of 1.4GHz while A15 cores can reach a frequency of 2GHz.
The development board is installed with Linux kernel 4.2. The
application is compiled with gcc version 5.4 with optimization
flag -02. For this platform, considering 9 utilization rates (from
10% to 90%) and 7 DVFS points, we reach total number of
possible platform configurations equal to 64 008.

B. Application overview

As an application case study we choose to use an SDF
implementation of a stereo matching application from the
computer vision application class [26]. The idea behind stereo
matching is to compare input images taken by near cameras
in order to produce as a result the depth of a scene. The

algorithm used in this application offers a great opportunity
for expressing parallelism which serves our approach based on
parallel instances of an actor. The stereo matching application
is composed of 12 actors and two tunable parameters which
can be used for having a high degree of parallelism of the
most compute intensive actors which are: CostConstruction,
AggregateCosts and ComputeWeights. The parameters are
nbDisparity and nbOffsets. The first represents the number of
distinct values that can be found in the disparity map, while the
second influences the size of the pixel area to be considered
for the correlation calculus. For more information about the
application refer to [27]. We choose to demonstrate our pro-
posed approach on the ComputeWeights actor, which for each
input pixel computes 3 weights based on the characteristics of
neighbouring pixels.

C. Scheduling the application
As a proof of concept for our approach we want to use plat-

form configuration points that provide high level of efficiency
to execute a single actor of the Stereo matching application. In
order to find high efficiency platform configuration points we
build an energy efficiency table based on the power and per-
formance models obtained in previous work [25]. The energy
efficiency table lists platform configuration points ordered by
their level of efficiency in a descending order. So at the top of
the table we have high energy efficiency platform configuration
points, which offer different types of scheduling and mapping
options. In addition to the platform configuration name, in
the energy efficiency table is shown the related performance
and energy efficiency. For more detailed information on how
the power and performance models see Table I [25]. From

Region of interest (ROI)

Fig. 2. Gantt chart of application schedule

the obtained energy efficiency Table I, we choose the highest
energy efficiency platform configuration point, which in this
case exposes the maximum level of parallelism (which for
this architecture is 8). This most energy efficient platform
configuration defines 4A15 cores clocked at 1.1GHz with a
utilization rate at 60% and 4A7 cores clocked at 200MHz with
a utilization rate at 60%. This platform configuration point is
defined as the Configuration of Interest (COI). Therefore in
the application schedule we will use 8 parallel instances of
the computeWeights actor.

We focus on a certain region of the execution where
compute Weights is run, as it is highligted on Figure 2. We
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call this window of execution as our Region Of Interest (ROI).
The platform COI is enforced using Linux cpufreq and cpuidle
drivers for setting the frequency and the number of cores
used. For controlling the utilization rate of the clusters we
use sched deadline [28] class of scheduler. We use a wrapper
for executing the modified version of the actor in order to be
able to enforce our COI for that particular region. A pseudo
code of the wrapper is shown below.

1 #include<cpufreq.h>
2 #include<pthread.h>
3 computeWeightsWrapper(){
4 cpufreq_modify_policy_governor(core,"userspace");
5 cpufreq_set_frequency(core, FREQ);
6 pthread_create();
7 pthread_join();
8 }

With the wrapper code, in line 4 we set the frequency
governor in userspace mode and in line 5 we set the frequency
according to the COI. Lines 6-7 support the model of execution
that we define for the modified actor code. The tool generates
a C file for each processing element in the architecture. So for
the architecture model used in PREESM, to represent octa-core
CPU, the tool generates 8 files named according to the core
they will execute. Each file contains calls to the actors executed
on that core, inter core communications and synchronizations.
Inside these files we insert our wrapper for setting the platform
configuration for the defined ROI. The wrapper code forces
that for each main thread executed on a core there is one
additional thread that contains the code for the computeWeights
actor as it is shown in Figure 3.

main thread

computeWeights 
function

new thread

join

Core X

wrapper code

utilization 
control

Fig. 3. Core computational model

TABLE I
ENERGY EFFICIENCY TABLE .

C(Lb/Fb/Nb/Ll/Fl/Nl) Perf.(op/s) P(W) Efficiency(op/J)
60%/1.1 GHz/4A15/60%/200 MHz/4A7 136 790 1.39 1 287 932
60%/1.1 GHz/4A15/80%/200 MHz/4A7 140 511 1.41 1 285 211
60%/1.1 GHz/4A15/70%/200 MHz/4A7 138 377 1.40 1 283 870
70%/1.1 GHz/4A15/60%/200 MHz/4A7 154 722 1.62 1 279 862
70%/1.1 GHz/4A15/80%/200 MHz/4A7 158 443 1.64 1 277 141

. . . .
10%/2 GHz/1A15 8 000 0.18 42 962

10%/1.7 GHz/1A15 6 922 0.16 42 890
90%/2 GHz/1A15 72 028 1.99 36 165

D. Utilization control

To control the utilization rate in which to run a cluster of
cores we use a new scheduling class, which is a Constant
Bandwidth Scheduler, based on the Earliest Deadline First
Algorithm. For implementing the control on the utilization
rate, at a certain bandwidth, we use the following control code
inside our actor.

1 s t r u c t s c h e d a t t r {
2 /∗ S i z e o f t h i s s t r u c t u r e ∗ /
3 u32 s i z e ;
4 /∗ P o l i c y (SCHED ∗) ∗ /
5 u32 s c h e d p o l i c y ;
6 /∗ Flags ∗ /
7 u64 s c h e d f l a g s ;
8 /∗ Nice v a l u e (SCHED OTHER, SCHED BATCH) ∗ /
9 s32 s c h e d n i c e ;

10 /∗ S t a t i c p r i o r i t y ( SCHED FIFO , SCHED RR) ∗ /
11 u32 s c h e d p r i o r i t y ;
12 /∗ Remaining f i e l d s are f o r SCHED DEADLINE ∗ /
13 u64 s c h e d r u n t i m e ;
14 u64 s c h e d d e a d l i n e ;
15 u64 s c h e d p e r i o d ;
16 } ;
17 s t r u c t s c h e d a t t r a t t r ;
18 r e t = s c h e d g e t a t t r ( 0 , &a t t r , s i z e o f ( a t t r ) , 0 ) ;
19 i f ( r e t < 0)
20 e r r o r ( ) ;
21 a t t r . s c h e d p o l i c y = SCHED DEADLINE ;
22 a t t r . s c h e d r u n t i m e = r u n t i m e n s ;
23 a t t r . s c h e d d e a d l i n e = d e a d l i n e n s ;
24 r e t = s c h e d s e t a t t r ( 0 , &a t t r , 0 ) ;
25 i f ( r e t < 0)
26 e r r o r ( ) ;

By setting a certain runtime inside each period of actor
execution we can keep a defined rate for running computations.

E. Measurements

We measure the power dissipation within the defined ROI,
where computeWeights is run. In order to demonstrate our
approach we need to verify the energy efficiency of our
platform configuration point compared to running that specific
actor at the highest performance platform configuration point.
All the measurements will be done inside the interval of
time in which computeWeights is executed. We collect 16k
of samples for a window of 5s which means we collect power
data every 0.3 ms.

For measuring power inside the ROI, we need a fast ap-
proach which records current consumed inside an interval that
varies in execution time. For our input pictures, the smallest
execution time is around 125ms. For setting the boundaries of
our ROI we use board GPIO pins as a flag to measure the start
and end time of the ROI. In this way we can have a precise
measure of the time it takes for executing the section of the
code in which we intend to apply the ”Configuration of Interest
(COI)” from our energy efficiency table. For measuring the
power dissipation we use an oscilloscope which on one probe
records the current drawn from the board and on the other
senses the voltage on the GPIO pin which is used as flag for
defining our ROI. The infrastructure is composed by several
components as it is shown in the Figure 4. On the application
side we set the load level, frequency point and amount of
parallelism we want to achieve. We then set the mapping in

4



order that each core has to execute one actor replica. As a
performance result we measure the execution time and number
of frames per second obtained by the application. The power
data are collected from a PicoScope 2205 oscilloscope.

Stereo 
Vision 

Application

ODROID XU4

Power 
Data

 Utilization control
 Frequency control
 Level of parallelism

Time of execution
Frames per second

Fig. 4. Measuring infrastructure

VI. RESULTS

We first measure the base board power dissipation. We
remove from the board any external peripheral, including the
fan, which is powered by an external supply. We connect to the
board through the serial console in order to exclude ethernet
port power. The results shown below represent the power
at the CPU-Memory subsystem level. We measure power
dissipation inside our ROI in three scenarios. In the first case
we set our platform at the interested configuration point, in the
second scenario we run at the highest performance platform
configuration point. In the third case, as a middle point, we
choose another platform configuration which provides a level
of parallelism of 8 and according to the energy efficiency
table has an efficiency level in between the previous points. In
Figure 5 we show the power dissipation if we choose to use
our COI for running the computeWeights actor. In Figure 6
we use the strategy to run everything at the fastest speed
possible for both clusters. In order to have a further validation
for the schedule we choose to run the application by setting
computeWeights in the third platform configuration point.
The power dissipation inside the ROI for the third platform
configuration point is shown in Figure 7. The power graphs
are composed by two running phases of the ROI. In phase A
we have 8 running actor replicas of computeWeights, in phase
B we are running only in the LITTLE cluster (the replicas
on the big cluster have finished working). The fluctuations in
power dissipation noticed mainly in Figures 5 and 7 are due
to the utilization control inside the actor code. The constant
bandwidth scheduler used in this case, alternates periods of
computations to periods of sleeping.

The energy consumed by the computeWeights actor in the
three scenarios is shown in Figure 8. As we can notice from
the results, we consume less energy if the highest efficiency
platform configuration point is used for our ROI. The second
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best result for less energy consumed comes from the ”middle”
energy efficiency level platform configuration. The worst en-
ergy results are measured by the race-to-idle strategy which is
the default schedule given by the tool. The difference between
the corner cases of energy consumption differ by more than
30%.

VII. CONCLUSION AND FUTURE WORK

In this paper we demonstrate the usage of an energy
efficient execution approach on a signal processing applica-
tion modelled with SDF. Our strategy focuses on a single
compute intensive actor of the stereo matching application.
The application is developed using PREESM tool. We propose
a technique for integrating our energy efficiency model inside
the workflow of PREESM. Through experimental results we
show that the highest platform configuration point in the
energy efficiency table provides an energy reduction of more
than 30%, compared to the standard schedule proposed by
the tool, within a single actor execution. By using a second
platform configuration point from the energy efficiency table
we show that the relative efficiency is preserved for the actor.

As a future work, we plan to extend our approach for
the complete set of actors in the application taskgraph, with
care of the performance aspect. We intend to validate the
assumption that the relative difference in efficiency of platform
configuration points is preserved for the application level.
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Abstract—Runtime estimation of power dissipation and perfor-
mance is crucial in every computing platform. In mobile systems,
a special focus is set on energy efficiency in order to achieve
the longest possible battery life and at the same time adhering
to performance requirements. Powered by heterogeneous SoC’s,
mobile systems are called to reach an energy efficient state of
execution, with a runtime system or scheduler that requires
knowledge on the current performance and power dissipation.
Today, highly heterogeneous architectures provide many actu-
ators to reach better efficiency, the effect of which is usually
unknown at runtime. In this paper, we propose a fast approach to
build an energy efficiency model based on hardware performance
counters. Our approach obviates the need for power sensors
present at the chip level and deals with high numbers of execution
modes. In building the energy efficiency model we account for
the change in temperature which, as we show, has an impact
on the optimal energy efficiency choice. The proposed approach
reduces significantly the time to characterize the energy efficiency
of a Multiprocessor System-on-Chip (MPSoC) and includes the
environment temperature as a variable in determining the energy
efficiency.

Index Terms—MPSoC, energy efficiency models, platform
configuration point, PMC, power models

I. INTRODUCTION

The past years have seen rapid development in the amount
of data produced, processed and exchanged through comput-
ing systems, ranging from high-end server farms to simple
household devices, and the trend of technology seems to fuel
even more this direction. Based on electricity usage ascribed
to Information and Communication Technology (ICT), it is
predicted that by the end of 2030 this sector will use as much
as 51% of global electricity production [5]. Following this
scenario, by the year 2030, the only ICT industry will be
responsible for up to 23% of the globally released greenhouse
gas emissions [5]. A 2016 report [24] says that the US
datacenters held 350 million terabytes of data in 2015, and by
2020 they will require 100TWh of electricity to operate. This
is the equivalent of 7 nuclear power stations like Olkiluoto 3
in Finland. There is also an increase of datacenters capacity
in Europe, with London, Frankfurt, Paris, and Amsterdam
which grew their electricity consumption by 200MW in 2017.
Countries like Ireland and Denmark in Europe are becoming
a data base for the world’s biggest tech companies and by the
next 5 years promise to increase the power consumption by

1TW [12]. The emergence of the Internet of Things (IoT)
with devices operating at the edge of the network, poses
a new challenge to the Cloud to provide efficient service
provisioning. IoT devices are low powered devices and their
usage promises to decrease the overall power consumption
by increasing energy efficiency, but their number could be
overwhelming with the consequence of having a ”rebound
effect” [9]. Cisco predicts that by the year 2020 in the world
will be 50 billion IoT devices, which is an order of magnitude
bigger than the number of smartphones and tablets working
today. So in this scenario, using the cloud services offered by
large datacenters to receive the data generated by IoT devices
will not be a sustainable solution in terms of cost, latency, and
environmental impact [6]. Recently the idea of edge devices
that provide the computation and storage closer to the source
of data has been formulated under the term of Edge or Fog
computing [25]. As an edge device example, we can mention
smartphones, as intermediates between body sensors and the
cloud services, gateways as intermediates for smart homes, or
nano data centers that manage the caching or processing of
video contents. By using these edge devices in the proximity
of data sources, we could have as an end result in a reduction
of energy consumption w.r.t. implementing the logic in the
cloud, and at the same time keeping latency requirements of
certain applications [17].

Therefore one key requirement of such computing sys-
tems is undoubtedly energy efficiency. Basically, this means
that systems should minimize their energy consumption to
complete the required task and achieve a satisfying energy
proportionality [20]. One of the largest consumers of energy
in computing environments is the CPU [8], which requires
special attention especially in the multicore era. Today mobile
devices are using the same CPU as traditional gateways or
cloudlets in Edge Computing. The need to achieve energy
efficiency in today’s MPSoC is stringent, especially for mobile
devices that operate on battery, and that is a clear scenario
where the end user wants a better experience and longer
battery life.

Workload variability makes the control of energy expen-
diture especially difficult in mobile CPUs. Mobile devices
are not the only which require energy efficient solutions,
but also cloud providers need to lower the energy cost of



computations and cooling [19]. Today large scale computing
facilities are using energy as a resource to be scheduled and
charge according to the energy consumption [14]. Heterogene-
ity shows a promise to increase the energy efficiency levels
achieved in MPSoC, hence several paths have been followed
by research and industry. For example, exploring heterogeneity
inside the CPU chip by using multiple technologies with
different power and performance characteristics or using cores
that alternatively behave as out-of-order computing elements
or as in-order cores [22]. Probably one of the most popular
and researched types of heterogeneity is the one provided by
different computing cores integrated into the same physical
chip. This type of heterogeneity is the one where computing
cores share the same Instruction Set Architecture (ISA) but
have different microarchitectures. However, an intelligent use
of these power and performance tradeoffs proves to be not
a simple challenge [23]. Being able to predict the optimal
choice between a number of hardware actuators such as the
number of cores, type of core and operating performance
point, or Dynamic Voltage and Frequency Scaling (DVFS), is
a difficult task that must be handled well in order to achieve
energy efficiency.

With asymmetric multiprocessing (AMP) architecture there
is a better way to respond to the diversity of applications
present in the mobile environment. We have compute-intensive
applications which need to produce results in real time and
must use fast cores in order to meet the deadlines. On the
other side, background processes that may be memory bound
require little computation and are more suitable to run on
simple cores that achieve better levels of energy efficiency.
Even within a single application, we have different “windows
of activity” which may require varying levels of computing
intensity, e.g. reading, scrolling, responding through different
messages inside a social media application. Recently industry
has moved towards increasing the level of heterogeneity found
inside a single chip. From examples such as ARM big.LITTLE
with two types of cores, to Mediatek tri-cluster MPSoC [16]
which promise to increase performance and reduce power
dissipation. DynamIQ from ARM [1] advances the concept
of big.LITTLE by providing better flexibility in the cluster
organization and frequency setting.

High levels of heterogeneity present in recently embed-
ded architectures produce an increase in the design space
exploration to find an efficient use of platform actuators. By
increasing the number and type of cores and the number of
voltages and frequency levels for each computing element,
there is an increasing number of operating points on which
the platform may perform. In this scenario making the right
choice for execution could have a tremendous impact on
energy efficiency. Temperature also has a major effect on the
power dissipation of today’s systems [15], which makes it an
important factor to account for in order to make the optimal
energy efficient choice.

To manage efficiently the workload scenarios faced by
mobile devices, edge devices in IoT, or nano data centers,
there is a need to continuously monitor power data in order to
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Fig. 1. Examples of possible platform configuration points in a multicore
architecture

choose the optimal power and performance trade-off. Unfortu-
nately, most of the hardware platforms today are not equipped
with power sensors, which significantly complicates energy-
efficient management of the system settings.

This paper follows our previous work which experimentally
builds an energy efficiency model based on platform config-
uration points, for ARM big.LITTLE architecture [21]. As
platform configuration point we denoted the set of platform
actuators such as number, type of core, core performance level
or DVFS and core utilization level. The model is derived by
testing all the possible configuration points of the platform.
Following the recent trend in platform complexity, this ap-
proach is difficult to apply in the case of the combinatorial ex-
plosion in the number of configuration points. The goal of this
paper is to explore new approaches in providing knowledge
of the platform energy efficiency to a runtime system based
on the concept of platform configuration points. We redefine
the set of parameters in the configuration point by removing
utilization level from the aforementioned description. Meaning
of the notion of platform configuration point is demonstrated
with several examples (from x to v) in a multicore platform
(Figure 1). In our energy efficiency model, we account for
the environment temperature variable, which provides valuable
information for the correct accounting of the CPU dissipated
power. Knowing the large impact that static power has on the
energy efficiency achieved in today’s CPUs the second purpose
of this work is to build thermally aware energy efficiency
models.

The contributions of this paper are the following:

• we propose an approach to characterize the energy ef-
ficiency of a hardware platform based on the notion of
configuration points.

• we include environment temperature in the energy effi-
ciency model and show the impact this variable has on
the relative efficiency of the points from the model.
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II. RELATED WORK

Exploring the usage of platform actuators for energy man-
agement was studied by different research works. The authors
in [23], [10], and [18] all propose the creation of a runtime
system which is able to manage the scheduling and mapping
of threads dynamically with the objective of maximizing the
energy efficiency of MPSoC. In [23] a load balancer schedules
the workload in periodic time frames called epochs, wherein
each, a set of actions are performed to set the threads in
the appropriate core type. The platform considered is highly
heterogeneous with 4 types of core and in each epoch the load
balancer estimates the performance and power of every thread
in each core type. This information is used by the internal
algorithm to decide where to map the threads. Similarly,
in [18] is proposed a runtime scheme which is used to
schedule dynamically workloads in a MPSoC. The approach
is based on the sense-decide-act policy and operates on
an aggressive heterogeneous environment. It uses regression
models for estimating performance and power of threads in
different core type and also the contribution of a thread in
a total load of a core. An evolutionary algorithm is used
to decide in each term the scheduling of the threads. The
authors in [10] propose a run-time task allocation approach
called SPARTA which categorizes task in computing bound or
memory bound and a heuristic that selects the configuration
that achieves the requested throughput with the minimal power
consumption. In these works is not considered the possibility
of DVFS as a mechanism to reduce power consumption and
also the hardware counters used for estimating performance
are not easily found in real hardware platforms. Sensors
for estimating the power consumption of different mapping
decisions are not available in many of today’s platforms.
Finding the optimal configuration for executing workloads in
a data-center in order to achieve better energy efficiency is
the goal presented in [11]. Authors present a programming
and execution platform called Empya that uses hardware and
software techniques to determine the best trade-off between
performance and energy consumption. The run-time system
continuously monitors application performance and energy
consumption through Running Average Power Limit (RAPL)
registers. As actuators, the system operates on the number of
threads to use and the power cap on the CPU. In contrast with
this, our work focuses on heterogeneous platforms where for
achieving energy efficiency we use actuators such as number,
type of core and DVFS point. In [26] authors target again
High-Performance Computing applications running on a single
node with the goal of reducing the energy consumption by
choosing the right configuration, which is composed of the
number of cores and DVFS level. The work is based on
the application-agnostic power model and the performance
model of the application is obtained with a supervised learning
method of regression. Frequency, number of cores and input
size are used in the regression model. The methodology is
clear and straightforward, but there is no mention of the
performance requirement which is the value we trade off for

less energy consumption.

III. CMOS POWER DISSIPATION

CMOS technology has been mostly used in MPSoCs due
to the fact that has quite good noise immunity and low heat
production while the device is in operation mode. Power in
these circuits can be divided into two categories: dynamic
power and static power. Dynamic power is created by the
circuit activity (transistor switching) and is dependent on the
usage scenario, clock rates, and I/O activity. Switching power
is dissipated during the transistor changing from 0 to 1 and
vice versa, the dynamic power is defined as:

Pdynamic = α ∗ C ∗ V 2
DD ∗ fclk (1)

where C is the load capacitance, VDD is the source voltage,
α is the activity factor and f is the operating frequency.
Static power is dissipated due to the leakage currents on
the transistors while they are in the “OFF” mode. The are
several sources of the leakage current which are strongly
influenced by the chip temperature. The dynamic part of the
power dissipated from the chip is modeled by two terms in
Equation 2, as a dynamic activity which relates to the active
running workloads and the background activity that represents
the system processes that run on the background. In Equation 3
the dynamic power is modeled by a single term due to the low
power dissipated by background processes in the A7 cluster.
Static power is modeled by the third term in Equation 2 and
is dependent on temperature and the supply voltage. For the
A7 cluster, there is no temperature sensor to monitor, hence
the static part is modeled together with the dynamic power
dissipation of background activity.

IV. PROPOSED APPROACH

Today embedded systems face a multitude of working
scenarios that range from burst in high performance requests,
to low power operation modes, going through the need to
provide sustainable performance in thermally constrained sit-
uations. To do an efficient managing of such a number of use
cases the runtime scheduling manager need to have refreshed
information about the effect of changing different actuators
on the running applications. Thus there is a need for an
energy efficiency model which is based on the current runtime
power data. The envisioned system diagram is shown in Figure
2, where our work in this paper is focused in providing
the platform configuration points database for helping the
scheduler decisions in reaching the optimal efficiency level
of the running applications.

The work in this paper is based on power models for
mobile CPUs based on hardware program counters (HPC). The
methodology for building such models is adopted from [27],
which presents a statistical method for identifying and using
hardware counters. Their analyses propose the usage of coun-
ters which show a high correlation to power and have also the
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Fig. 2. Proposed Approach schematics.

TABLE I
HARDWARE EVENTS USED IN THE POWER MODELS

Event list
Nr ARM Cortex-A7 ARM Cortex-A15
1 L2D CACHE ACCESS:0x16 L2D CACHE LD:0x50
2 MEM ACCESS:0x13 DP SPEC:0x73
3 L1I CACHE ACCESS:0x14 L1I CACHE ACCESS:0x14
4 UNALIGNED LDST:0x0F UNALIGNED LDST SP:0x6A
5 CYCLE COUNT:0x11 BUS ACCESS:0x19
6 INST SPEC:0x1B
7 CYCLE COUNT:0x11

smallest multicollinearity. The authors in [27] show that this
brings high model stability with an average error of 3,8%.

We start by building power models for two popular ARM
v7a architecture CPU’s, which are ARM Cortex-A7 and ARM
Cortex-A15. The micro-architecture limits the number of
events which can be sampled at once: 6 counters for A15
and 4 counters for A7 plus the cycle counter. The goal is
to search for those events which have the highest correla-
tion with power dissipation and at the same time show the
smallest intercorrelation with each other. To have high model
stability the predictors should be chosen to keep low levels
of multicollinearity in multivariate models. First, is measured
the correlation of all available events with the power, then
the counters are divided into clusters which include events
with high intercorrelation. Then, from each cluster is selected
the event which has more impact on the power dissipation
but keeping a low Variance Inflation Factor (VIF). The total
amount of events for the A7 is 40 and for the A15 in 120,
among these are selected 7 for the A15 and 5 for the A7.
The events used in the models are general and can be found
on most core types used in mobile systems. For each core
type, the events are listed on Table I. The power for A15
and A7 is divided in dynamic and static, plus the background
power which is related to the operating system activities.

The modelled formula for the power dissipation is showed
in Equation 2 and 3,

PA15 = (

N−1∑

n=0

βnEnV
2
DDfclk)

︸ ︷︷ ︸
dynamic activity

+βbV
2
DDfclk︸ ︷︷ ︸

BG dynamic

+ f(VDD, T )︸ ︷︷ ︸
static

(2)

PA7 = (

N−1∑

n=0

βnEnV
2
DDfclk)

︸ ︷︷ ︸
dynamic activity

+ f(VDD, fclk)︸ ︷︷ ︸
static and BG dynamic

(3)

where N is the number of events selected, βn is the weight
given to certain event, En is the number of events per second
divided by the frequency (fclk) in MHz, VDD is the operating
voltage and T is the temperature of the core.

The power model for the A15 has a thermal compensation
term for calculating the static power and background dissipated
power when the system is idling (Equation 2). In the power
model for A7 the static and background power are included in
the second term of Equation 3. This is related to the absence
of a thermal monitoring sensor in the A7 cluster. We have
calculated four sets of model coefficients for the parameters
in each cluster, representing the power with a different number
of cores for each CPU type. The model parameters for each
core type are given in Tables II and III. In the tables, it is
shown the event rate divided by the frequency in MHz, the
weight given to each coefficient and the statistical significance.
In some model terms, f and V are respectively the operating
frequency and voltage of each cluster (Table IV). The event
rates are divided by the operating frequency in order to avoid
correlation with it in the first term of power equations. The
power models need to be obtained only once by running on
the target platform a set of embedded representative workloads
which we call platform characterization set. After obtaining
the power model we compute the energy efficiency table
which provides a sort of database of all the possible platform
configuration points and the resulting performance, power
and energy efficiency values. By having this information the
runtime system is able to make decisions about the mapping of
a certain application with regard of the performance. If there
is a change in the environment temperature above a certain
threshold, then the power dissipation can be recomputed and
the table is redefined for the new thermal level.

These models are build by running the characterization
workload set in each of the operating points of both CPUs.
The set contains workloads that test different levels of the
microarchitecture and memory subsystem. In part is composed
of real applications from the embedded domain, and for the
other part synthetic benchmarks designed to stress specific
parts of the CPU. Having the power models and by measuring
the performance in terms on instructions per second (IPS) we
can obtain an energy efficiency model of the platform. The
model is presented as a table that lists all the platform con-
figuration points with the energy efficiency levels achieved in
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TABLE II
MODEL PARAMETERS AND P-VALUES FOR THE A15

Nr Coefficient Weight p-Value
1 Intercept -5e-4 p<e-4
2 EPH 0x11 ∗ f ∗ V 2 7.9e-10 p<e-4
3 (EPH 0x1b− EPH 0x73) ∗ f ∗ V 2 e-10 p<e-4
4 EPH 0x50 ∗ f ∗ V 2 8.7e-9 p<e-4
5 EPH 0x6a ∗ f ∗ V 2 e-8 p<e-4
6 EPH 0x73 ∗ f ∗ V 2 2.6e-11 p<2e-3
7 EPH 0x14 ∗ f ∗ V 2 6.4e-11 p<e-3
8 EPH 0x19 ∗ f ∗ V 2 1.9e-9 p<e-4
9 V 0.17 p<e-4

10 f ∗ V 2 1.6e-4 p<e-4
11 T 2.3e-2 p<e-3
12 T 2 2.9e-4 p<4e-3
13 V ∗ T 2 -3.5e-5 p<e-3
14 V ∗ T 1.1e-2 p<e-3

TABLE III
MODEL PARAMETERS AND P-VALUES FOR THE A7

Nr Coefficient Weight p-Value
1 Intercept -7.2e-4 p<0.003
2 EPH 0x11 ∗ f ∗ V 2 1.9e-10 p<e-4
3 EPH 0x14 ∗ f ∗ V 2 2.2e-10 p<e-4
4 EPH 0x13 ∗ f ∗ V 2 4.3e-10 p<e-4
5 EPH 0x16 ∗ f ∗ V 2 1.4e-9 p<e-4
6 EPH 0x0f ∗ f ∗ V 2 9.4e-11 p<0.0004

terms of instructions per Joule, performance point (instructions
per second) and the power dissipation (W). The table is used to
decide the optimal configuration point for an application that
has defined performance requirements. Once an application
is submitted into the system or is resumed by the scheduler,
the runtime system can sample the hardware counters in a
single frequency level and scans the table to find the optimal
configuration point, to run the application, in terms of energy
efficiency. In this work, we consider multi-threaded applica-
tions, which matches our methodology of achieving optimal
levels of energy efficiency by using configuration points that
possibly use several cores. In the case where the performance
requirement of the application changes, the control logic of
the runtime system can select another configuration point that
provides the requested performance level and has a high level
of energy efficiency. When the temperature of the environment
changes above a certain threshold, the power model can be
used to recompute the energy efficiency table in accordance
with the new temperature conditions. A temperature increase
in the outside environment produces an increased level of static
power in the CPU, which affects the relative efficiencies of the
configurations inside the energy efficiency table. The runtime
system can continuously monitor the power usage of the
running application in order to not exceed the Thermal Design
Power (TDP) of the CPU. By sampling the performance
counters of each running application the power model shows
the power dissipation at runtime of the running applications,
thus the runtime system can make a decision of reducing the
power dissipation of certain applications by choosing another
configuration point from the system.

The runtime system inputs temperature variations inside the
model and can recompute the energy efficiency table by taking
into account the new level of static power. The new table
needs to be searched for configuration points that satisfy the
performance request with the highest level of efficiency. A
basic schematic of the proposed approach is given in Figure 2.

V. EXPERIMENTAL SETUP

To evaluate our approach we used an ODROID XU3
development board from HARDKERNEL. The application
processor implements the ARM big.LITTLE architecture with
two clusters composed of 4 cores each. The big cluster consists
of a high-performance Cortex-A15 quad-core block, and a
low power Cortex-A7 quad-core CPU. The board description
is complete with a Mali-T628 GPU and 2GB LPDDR3 of
memory. The board contains 4 current sensors that offer
the possibility to measure power dissipation in four differ-
ent domains: big cluster (A15), LITTLE cluster (A7), GPU
and memory. Besides this, the board contains 4 temperature
sensors for the cores in the big cluster and one temperature
sensor for the GPU. The characteristics of the hardware can
be found in Table IV.

TABLE IV
CHARACTERISTICS OF THE EXPERIMENTAL BOARD

Characteristic ODROID Development Board
Model XU3
SoC Exynos 5422 Octa core
CPU’s Cortex-A15/A7

cores 4 + 4
Frequency A7 (MHz)

min 200
max 1400

Frequency A15 (MHz)
min 200
max 2000

Voltage A7 (V)
min 0.9
max 1.24

Voltage A15 (V)
min 0.9
max 1.36

To build the power model we used a set of benchmarks
from different application domains. We call the training set as
the platform characterization workloads. In the platform char-
acterization set we include a sequence of 76 workloads which
consists of a collection of synthetic and real world applications
from Roy Longbottom [4], PARSEC [7], CoremarkPro [2],
ParMiBench [13] and Multibench [3]. A full list of the used
workloads is in Table V.

The choice of the workload set is based on the idea of all-
inclusiveness of applications that characterize the embedded
systems domain.

Experiments were conducted in different environments to
account for the outside temperature change in the SoC power
dissipation. The goal here is to evaluate the change in the
energy efficiency table in accordance with temperature. For the
first environment, the board fan is running with 100% speed
with the system located in a highly refrigerated environment.
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Fig. 3. Configuration points from the model

In the second case, the board is working with the fan disabled
in a normal outside temperature to account for a high tem-
perature outside the environment. In the third case, the board
is working with the fan always on in a normal environment,
to justify the middle case. In Table, VI on Section V we will
show the result of the energy efficiency table computed in
different environments.

VI. RESULTS

By using the power and performance models defined previ-
ously we are able to derive an energy efficiency model which
is based on platform configuration points. In Figure 3 we show
the efficiency of all configuration points from the model. Each
point describes a single configuration that provides a certain
level of performance in terms of instructions per second and
energy efficiency. By going towards high levels of performance
we notice a decrease in the density of the points. This means
that fewer options for achieving good energy efficiency levels.
The list of configurations is organized as an energy efficiency
table that lists all possible configuration points with their
efficiency and performance. An example of the table derived
from the workloads in the training set of the power model is
shown in Table VII. By searching inside the table we find
several sets of configuration points that provide the same
performance but with different energy efficiency levels, some
of the sets are shown in Figure 4. First usage of the table
would be the one for choosing the optimal configuration point
based on a certain requirement for the performance level. As it
is shown by Figure 4, it is possible to gain in terms of energy
efficiency if we make the right choice for the configuration
point. As a second objective of our work, we wanted to test
the effect of temperature on the relative energy efficiency of
configuration points in the model. For testing thermal effects
on the efficiency model, we choose to run a testing application
with the system located in different environments. We run
Basicmath application from the ParMiBench suite [13]. In

environment 1, the system running in a highly refrigerated
environment (we call it “cold” case). In Environment 2, the
system is running without a fan with an outside temperature
of 25◦C (we call it “hot” case). Environment 3, consists of
the system running on a 25◦C outside temperature with the
fan always on at 100% speed (we call it “middle” case).
We noticed the relative order of configuration points changes
between the environments and so does the energy efficiency
levels achieved.

The top rows of the energy efficiency table for different
temperature environments are shown in Table VI. Different
temperature levels produce different order of configuration
points and efficiency levels achieved. This shows that there
is a need to change the platform configuration point when the
temperature changes significantly, in order to keep the high
levels of energy efficiency.

In Figure 5 we show a possible runtime scenario. We are
running Basicmath test application with a required level of
performance such as e.g. 1,61E+9 inst/s in a system with
a temperature t1, according to the model the optimal con-
figuration point for this performance level is composed by
2a7@400MHz + 4a15@500MHz. In the case, the temperature
increases to t2, then the efficiency of that configuration point
decreases and thus we need to reconfigure with the new table
that shows that we should execute the application by using the
following configuration 4a7@700MHz + 4a15@200MHz. An-
other example is shown with the performance requirement of
3,27E+9 inst/s, where again there is a need for reconfiguration
in order to keep high levels of energy efficiency.

The change in the environment temperature of the system
(from “cold” to “hot”) produces large differences in the energy
efficiency levels that the model defines as an optimal config-
uration point for the required performance. By looking at the
first 100 highly energy efficient configurations in the energy
efficiency table, we find few test cases, whereby changing the
configuration point when the system temperature changes the

6



Fig. 4. List of configuration points grouped in different performance classes

Fig. 5. Reconfigure examples in two temperature environments

Fig. 6. Configuration points with high energy efficiency levels

gain in terms of energy efficiency is up to 33%. By searching
for new target reconfiguration points we account for the same
performance or 5% bigger. An interesting observation can be
noticed in Figure 3 where all points are plotted in the energy
efficiency and performance graph. If we take the points from

Fig. 7. Power errors for configuration points with high level of energy
efficiency

the upper outer layer of the scatter plot we have a situation
like in Figure 6. Those points show the configurations with the
optimal energy efficiency for a certain level of performance
at a defined temperature. Or otherwise, we can think of the
graph as the result of scanning the model from the lowest
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TABLE V
PLATFORM CHARACTERIZATION SET

List of benchmarks
Suite Workload

CoremarkPro

core
linear alg-mid-100x100-sp
loops-all-mid-10k-sp
nnet test
parser-125k
radix2-big-64k
sha-test
zip-test

MultiBench

4M-check
4M-check-reassembly
4M-check-reassembly-tcp
4M-check-reassembly-tcp-cmykw2-rotatew2
4M-check-reassembly-tcp-x264w2
4M-cmykw2
4M-cmykw2-rotatew2
4M-reassembly
4M-rotatew2
4M-tcp-mixed
4M-x264w2
empty-wld
iDCT-4M
iDCT-4Mw1
ippktcheck-4M
ippktcheck-4Mw1
ipres-4M
ipres-4Mw1
md5-4M
md5-4Mw1
rgbcmyk-4M
rgbcmyk-4Mw1
rotate-4Ms1
rotate-4Ms1w1
rotate-4Ms64
rotate-4Ms64w1
x264-4Mq
x264-4Mqw1

MiBench

automotive/qsort
network/dijkstra
consumer/typeset
telecomm/adpcm

Parsec-3.0

blackscholes
bodytrack
canneal
dedup
ferret
fluidanimate
freqmine
streamcluster
swaptions

ParmiBench

Office/stringsearch
Network/Patricia/Parallel
Automotive/Susan/Parallel
Automotive/Bitcount/Parallel
Network/Dijkstra/Parallel
Office/stringsearch/Parallel

Roy-Longbottom

rl-linpack-neon
rl-linpack-FSSP
rl-whetstone
rl-busspeed
rl-dhrystone

Lmbench

lat ctx
lat fs
lat ops
lat proc
lat fifo
lat http
lat pagefault
lat select
lat sem
lat unix connect
lat mem rd
bw mem
tlb lmb3-tlb
line

Whetstone whetstone
Drystone dhrystone

TABLE VI
TOP ENERGY EFFICIENCY CONFIGURATIONS FOR THREE ENVIRONMENTS

Temperature Environment 1
Configuration Energy Efficiency (Ins/J) Power(W) Performance(Ins/s)

4a7/200MHz4a15/500MHz 1,517e+10 0,465 1,61e+09
4a7/200MHz4a15/700MHz 1,515e+10 0,599 2e+09
4a7/200MHz4a15/400MHz 1,512e+10 0,382 1,39e+09
4a7/200MHz4a15/300MHz 1,511e+10 0,305 1,17e+09
4a7/200MHz4a15/200MHz 1,50e+10 0,219 9,37e+08

.... .... .... ....
Temperature Environment 2

4a7/200MHz3a15/300MHz 1,424e+10 0,333 9,92e+08
4a7/200MHz3a15/500MHz 1,421e+10 0,518 1,32e+09
4a7/200MHz3a15/400MHz 1,420e+10 0,428 1,15e+09
4a7/200MHz3a15/600MHz 1,420e+10 0,608 1,48e+09
4a7/200MHz3a15/700MHz 1,416e+10 0,697 1,61e+09

.... .... .... ....
Temperature Environment 3

4a7/200MHz4a15/600MHz 1,49e+10 0,586 1,82e+09
4a7/200MHz4a15/400MHz 1,49e+10 0,415 1,39e+09
4a7/200MHz3a15/700MHz 1,49e+10 0,668 2e+09
4a7/200MHz3a15/500MHz 1,480e+10 0,511 1,61e+09
4a7/200MHz3a15/300MHz 1,486e+10 0,337 1,17e+09

.... .... .... ....

TABLE VII
ORDERED ENERGY EFFICIENCY TABLE .

C C(Nl/Fl/Nb/Fb) Perf.(inst/s) Pavg(W) Efficiency(inst/J)
1 4a7/200MHz/4a15/600MHz 2.219115e+09 0.699744 7.889801e+09
2 4a7/200MHz/4a15/500MHz 1.916094e+09 0.600826 7.885497e+09
3 4a7/200MHz/4a15/700MHz 2.475814e+09 0.788427 7.872383e+09
4 4a7/200MHz/4a15/800MHz 2.723064e+09 0.873142 7.861730e+09
5 4a7/200MHz/4a15/400MHz 1.601398e+09 0.501352 7.857119e+09
6 4a7/200MHz/4a15/300MHz 1.294310e+09 0.402370 7.830159e+09
7 4a7/200MHz/4a15/900MHz 3.042998e+09 1.010040 7.765476e+09
8 4a7/200MHz/4a15/200MHz 9.541939e+08 0.293673 7.763320e+09
9 4a7/300Mhz 4a15/600MHz 2.338974e+09 0.728441 7.647120e+09
10 4a7/300Mhz 4a15/500MHz 2.035953e+09 0.629523 7.642816e+09
11 4a7/300Mhz 4a15/700MHz 2.595672e+09 0.817124 7.629703e+09
12 4a7/300Mhz 4a15/800MHz 2.842923e+09 0.901839 7.619049e+09
13 4a7/300Mhz 4a15/400MHz 1.721256e+09 0.530049 7.614439e+09
14 4a7/300Mhz 4a15/300MHz 1.414169e+09 0.431067 7.587478e+09
15 4a7/200Mhz 4a15/1000MHz 3.310742e+09 1.173238 7.580142e+09
. . . . .

4078 1a15/1800MHz 1.193975e+09 1.795146 6.651129e+08
4079 1a15/1700MHz 1.176482e+09 1.776230 6.623477e+08
4080 1a15/1600MHz 1.101565e+09 1.670471 6.594337e+08

performance point and keeping only those points which have
higher performance and the highest possible level of energy
efficiency. As a further validation of our approach, we measure
in percentage the difference between the predicted power
dissipation and the measured power in configuration points
with high levels of energy efficiency. The results are shown
in Figure 7, where we notice the highest error is 2,82%. We
measure the model errors in configurations that provide the
highest levels of energy efficiency for different performance
levels. These are more intriguing configuration points, which
give the best of the platform’s energy efficiency. Knowing that
most of the time these points will be used as configuration
options, having a low error rate from the model is very useful.

VII. CONCLUSION

In this work, we present an approach for building an energy
efficiency model which is based on platform configuration
points. The target of the approach are heterogeneous platforms
which are continuously increasing the depth of heterogeneity.
The model is based on hardware performance counters which
are widely available in today’s CPU architectures. The set
of workloads for building the model is representative of the
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embedded domain which has shown to be more critical to the
energy efficient application execution. But also, the training
set, in inclusive of the IoT world. The novelty of this approach
compared to previous works is that it doesn’t necessarily
need power sensors for measuring the power dissipation in
each configuration point, but by sampling the counters on
one configuration point we can characterize the efficiency of
other configuration points. From all the points in the model,
we show that less than 1% of them (see points in Figure 7)
represent the highest levels of energy efficiency possible, in
all the performance spectrum offered by the platform. Also,
we include the environment temperature as a variable for
defining the need for application reconfiguration. As we show
by the tests if the temperature changes, by reconfiguring the
application execution we can gain up to 33% in terms of
energy efficiency.
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Abstract—Energy consumption is a major issue for modern
embedded mobile computing platforms, and with new techno-
logical developments, such as IoT and Edge/Fog computing, the
number of connected embedded mobile computing systems is
rapidly increasing. Heterogeneous multi-core CPUs seek to im-
prove the performance of these platforms, with a particular focus
on energy efficiency. By using different techniques like DVFS,
core mapping, and multi-threading, a substantial improvement
in the achievable CPU energy efficiency level for Multi-processor
system-on-chip (MPSoC) can be observed. However, controlling
only the CPU power dissipation has a limited effect on the overall
platform energy consumption. Other components of the platform,
including memory, disk, and other peripherals, play an important
role in the energy efficiency of the platform and need to be
taken into account. The availability of different sleep strategies
at various levels of the platform makes the energy efficiency issue
even more complex. In this paper, we set the view of energy
efficiency at the entire platform level and discuss computation
offloading as a mechanism to help in reaching the optimal
platform energy-efficient state. As an application, we consider
object detection performed on several types of images to define
when offloading is beneficial to the platform energy efficiency.
We survey the energy efficiency of different neural network
algorithms in an embedded environment, with the possibility to
perform computation offloading, and discuss the obtained results
concerning the level of object recognition accuracy provided by
different neural networks.

Index Terms—Energy efficiency, computation offloading, object
recognition, embedded computing platforms.

I. INTRODUCTION

In recent years, the number of connected devices has been
dramatically increasing, with predictions for 2025 suggesting
the number to reach over 8 Billion mobile broadband connec-
tions and over 5 Billion IoT connections [1]. Furthermore, new
classes of services are emerging requiring support in future
networks, such as rich 4K/8K video services for Mixed Reality
(MR) applications with tactile feedback [1]. These, together
with industrial automation control, autonomous ground, and
air vehicles will provide further challenging requirements for
future networks, noticeably from bandwidth, latency, reliabil-
ity, and energy efficiency perspectives. Edge computing can
theoretically provide high bandwidth, low latency, and the
computing agility required by today’s new digital services. On
the other hand, Information and Communication Technology
(ICT) drives an unstoppable process of ever-growing energy
consumption, with new devices, services, and data produced
at a rapid pace. The 5G and beyond network is set to support
huge volumes (in the order of TBs of data per day [2]) of
multi-dimensional data coming from different heterogeneous

nodes, devices, and applications. This raises major challenges
with respect to data transmission and processing. Ultimately,
such a vast amount of data together with low latency appli-
cation requirements, e.g., cloud gaming [3] calls for new ap-
proaches to perform processing in an energy-efficient manner.
One key aspect of edge is that many of the devices are battery-
powered or deployments are power limited. The more energy-
efficient the edge processing is, the more computation can
be done with the same power budget. Application complexity
and power consumption are increased when distributed AI
is deployed to edge devices. Furthermore, due to the ever-
increasing number of such devices, the technology is expected
to consume a significant amount of energy [4], thus playing
a major concern in future strategies of curbing down energy
consumption.

Multi-core heterogeneous CPUs promise to give a substan-
tial contribution to the increase of the energy efficiency in
edge platforms. Different strategies inside the MPSoC are
explored to achieve a reduction in power dissipation and
relative energy consumption. Nevertheless, it is not enough
to consider only one component, e.g., at the CPU level,
in the strategy for achieving energy efficiency, rather one
must consider energy consumption at the platform level [5].
Depending on the platform type, I/O connected, and the type
of applications executed on it, different execution strategies
might be the solution to energy conservation. For instance,
the Race to Halt strategy is proved to be a solution if the
CPU is not the major power consumer in the platform [6].
By contrast, if the static power dissipation of the platform
is relatively low, the execution with a lower clock frequency
of the application might save energy by going slowly to the
application results [6].

In this paper, we aim at locating the working configura-
tion in which the overall platform energy consumption is
minimized. Computational offloading is the mechanism of
moving heavy tasks to more powerful computing units. This
mechanism can be a winning strategy for achieving good
levels of energy efficiency in the case of highly demanding
applications. The goal of this paper is to analyze the impact
of computational offloading on modern embedded mobile
computing platforms, having multi-core heterogeneous archi-
tectures, to achieve platform-level energy efficiency in the
case of highly computational-demanding object detection and
recognition applications.

The main contributions of this paper are the following:
• We present experimental results including energy ef-



ficiency analysis of embedded environment from the
platform energy consumption perspective.

• We demonstrate computational offloading as a solution
to help to achieve the goals of platform energy efficiency
for embedded computing platforms.

• We analyse the energy cost of different neural networks
performing object detection and recognition on a mix of
input images.

The rest of the paper is organized as follows. In Section
II, we review the related work. In Section III, we develop
the discussion of energy efficiency extended to the platform
level. In Section IV, we present an offloading strategy aim-
ing at achieving energy efficiency. Section V is explained
AI approach for object detection and recognition. Finally,
we conclude with experimental testing and numerical result
discussion in Sections VI and VII.

II. RELATED WORK

Several works are addressing the topic of energy manage-
ment and computation offloading in mobile systems. More
specifically, offloading compute-intensive tasks towards more
powerful systems is a well-known research area, which dates
back to the ‘70s. In [7], the authors present a framework
for computation offloading that is based on a comparison of
local and remote cost of computations. The decision making
part of the framework predicts the communication bandwidth
for assessing the costs. In this work, we experimentally
validate different communication bandwidths and propose the
bandwidth as a metric for the offloading decision. In [8]–
[12] authors present offloading techniques that target battery-
operated devices with the characteristic of possible offloading
of single methods inside the task that needs to be executed.
By contrast, we focus on offloading the full task without
previously running it on the local or remote side. On the
energy management side of the multi-core architectures, [5],
[13] show the possibility to maintain low-power dissipation
and at the same time to accommodate computation-intensive
applications. In [5], authors propose an algorithm that selects
the best execution option in terms of energy conservation,
depending on the type of application and during runtime the
mapping decision might change depending on the phases of
the program. On the other hand, we adopt a joint approach
of finding the optimal execution configuration inside the
heterogeneous architecture and explore the usage of offloading
as a mechanism for achieving energy efficiency.

III. ENERGY EFFICIENCY AT THE PLATFORM LEVEL

Multi-core heterogeneous CPUs have been introduced in an
attempt to increase the energy efficiency of mobile devices, by
using the appropriate computing element for the considered
task. Complex out-of-order cores are used to handle compute-
intensive tasks where performance is central to the outcome,
meanwhile, simple lightweight in-order cores provide support
for background repetitive tasks that run continuously, yet do
not have time constraints. Modern platforms offer a range of
different core capabilities: simple cores have simple data-path

and low power profile, medium-complexity cores introduce
more complex pipeline, and high-complexity cores work with
high levels of parallelism and high voltages. The use of high
voltages in complex cores comes with highly dynamic power
dissipation which will increase the temperature of the chip and
also the relative static power dissipation which comes as main
side effect [14]. The adoption of actuators in today’s MPSoC
can certainly provide energy efficiency at the chip level as
demonstrated in [15], [16] but cannot have a major effect in
the overall platform energy consumption. Other parts of the
system like memory and I/O result in high energy expenditure.
Lowering the core voltage (V ) can make transistors switch
slowly which, in turn, forces the frequency (f ) of the core
to a lower level. This can have a great impact on reducing
the dynamic power which is proportional to f ∗V 2. However,
it comes with the cost of increasing the running time of a
task which may increase the energy consumption of other
parts of the platform [17] and, therefore decrease the overall
energy efficiency of the platform. In Figure 1 we run a neural
network application on a Single-board Computer (SBC) and
we measured the energy consumption of the CPU, platform
and overall board for different CPU frequencies. As it can
be noticed from the results, the best strategy from an energy
point of view would be neither to use the low nor the high
clock frequencies, but setting the clock frequency in between.
The dots represent experimental data while the lines show the
polynomial curve fitting.

In our previous work [15] we explored the energy efficiency
of the MPSoC in multi-core heterogeneous architectures by
using the concept of configuration points, that is a tuple of
parameters, such as the type of cores used in computations,
number of cores, performance level of cores (DVFS), and
utilization level of the task using a core. By selecting for
execution a specific class of these points, we can achieve better
energy efficiency on the level of the CPU.
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Fig. 1: Measured CPU, base, and total energy consumption of the platform.

IV. OFFLOADING STRATEGY

Despite continuous technological and performance improve-
ments, embedded mobile computing devices come also with



physical constraints, such as processing power and, more
importantly, battery life. Many applications including natural
language processing, image recognition or online gaming, are
challenging in terms of computational requirements. Com-
putational offloading is a mechanism where a task can be
sent for computation to a more capable remote unit. As soon
as the remote machine has completed the task execution,
the results are sent back to the device which initiated the
offloading. In turn, computational offloading is expected to be
an effective solution to address the data explosion produced
by the massive increase of digital services most often run by
resource-constraint devices.

A. Application type

The range of applications that are deployed on embedded
mobile computing devices, for example in autonomous robots
or drones, potentially benefiting from offloading, is very
broad. 3-D mapping, speech recognition, object detection and
recognition are among the usual candidates for employing
computational offloading. Applications change between each
other with a diversity of factors e.g., concurrency, which might
be at the task level or at the data level as in streaming
applications. Emerging use cases are those requiring intelligent
image processing in drones for example, where first processing
of the captured images could be done on the drones, even
though computationally expensive pattern recognition to detect
certain special conditions, as fire or floods, could be done in
the edge. Another interesting application from Industry 4.0
seeks for achieving zero-defect manufacturing (ZDM), where
cameras provide 4k/HD video stream of the goods moving
in conveyor belts, and AI services deployed in the edge/fog
can provide the intelligence for identifying damaged parts and
controlling the robotic arm to sort the material in accordance.
In this work, we consider an object-detection application
run through a deep neural network. We run different neural
networks for object detection on images of different sizes
and background complexity. We then define what are the
conditions to consider to achieve an optimal solution when
offloading tasks.

B. Offloading criteria

Offloading is a natural solution when the application
presents real-time constraints that could not be met by the
mobile platform. Applications are divided into two parts: one
part is executed on the mobile platform and the second part,
which requires the majority of computations, is handled by
the remote server. The mobile platform could be considered
as an interface that handles requests or takes images from
a camera, and the remote side might be responsible for the
heavy computation. If we denote mobile platform speed as
sl and the application workload as w, the time needed to
compute locally would be w

sl
. Next, to offload to a remote

server, we need to send some input data denoted as di over
network communication, which has a bandwidth B, to a server,
whose speed is denoted as sr, and receive the results as do.
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Fig. 2: Energy efficiency of local and remote computation.

The synchronization with the remote side is achieved over
TCP protocol and the synchronization time is denoted as ttcp.
Overall the time spent to execute the remote computation is:

2 ∗ ttcp +
di
B

+
w

sr
+

do
B

Offloading increases the performance if the inequality holds:

w

sl
> 2 ∗ ttcp +

di
B

+
w

sr
+

do
B

=⇒

w ∗
(
sr − sl
sr ∗ sl

)
>

di + do
B

+ 2 ∗ ttcp
(1)

and this can happen in the following cases:
• large w: the amount of computation is considerable;
• sr � sl: the remote side is way faster than local side;
• di + do, the amount of transmitted and received data, is

small;
• B is large.
We can also notice that if w

sl
< di+do

B then offloading will
not increase performance even if the remote side is infinitely
fast (sl −→∞). In Figure 2 we show the result of performing
object detection, using an Single Shot Detector (SSD) neural
network as described below, locally by a mobile platform or
offloaded to a remote server for computation. In graph c), we
present a comparison of the performance vs. energy efficiency
reached by the local platform and remote side. We can notice
that the mobile platform can achieve performance up to 1.2fps,
and if we need an additional frame rate, the computation
should be offloaded to the remote side. Again from Figure
2, we notice in graph a) that offloading is energy efficient if
the bandwidth of network transmission is as high as possible,
on the other hand from graph b) we see that local computation
is energy efficient if we use middle core frequencies instead
of high or low frequencies.



Another factor that concerns mostly battery-operated de-
vices is energy. Despite technological improvements, battery
technology is still far behind the improvements made in
other areas of computing systems such as memory, CPU,
and screen. Therefore, offloading to extend battery life and
conserve energy is of paramount importance, and this criterion
can be named as offloading for energy efficiency. If the power
to compute task w by the mobile platform is pl, then the energy
consumed by executing the task locally is pl ∗ w

sl
. Otherwise

with pi the power of the system while idling and pt the power
of platform while transmitting, the energy to offload the task
can be defined as:

pt ∗
(
di + do

B
+ 2 ∗ ttcp

)
+ pi ∗

w

sr

In this case, the offloading mechanism saves energy if:

pl ∗
w

sl
> pt ∗

(
di + do

B
+ 2 ∗ ttcp

)
+ pi ∗

w

sr
(2)

The same observation applies as before, so: to save energy
we should look at the amount of data to be transferred, the type
of workload and the available bandwidth of the transmission
network.

V. OBJECT DETECTION IN IMAGES

All object recognition pipelines are usually composed of
3 stages: the detection phase, where objects of interest are
detected and located in bounding boxes, feature extraction
where the object inside the bounding box is analyzed to extract
features that represent it, and the recognition phase, where
labels are assigned to each object in the bounding box. In the
deep learning approach to object recognition, two components
are distinguished: the meta-architecture (or object detection
framework) and the base network.

A. Type of neural network meta-architectures

In this paper, we analyzed two different types of commonly
used neural network meta-architectures: SSD and You Look
Only Once (YOLO).

1) SSD: This general term is used to refer to architec-
tures that use a single feed-forward convolutional network
to directly predict classes and anchor offsets. This algorithm
eliminates proposal generation and subsequent pixel or feature
resampling and encapsulates computations into a single net-
work. This makes the system easy to train and integrates into
components that require detection [18].

2) YOLO: This introduces a new approach for the detection
phase. Instead of using an image classifier at the end, a single
neural network predicts bounding boxes and class probabilities
directly from the image. This gives the possibility to optimize
end-to-end performance. However, because of the detection
approach used in YOLO, small objects or groups of small
objects located next to each other might become difficult to
detect [19].

For local computation

For remote computation
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Fig. 3: Definition of the regions of interest

B. Base networks for feature extraction

Several networks, such as Resnet, VGG-16, Inception,
Xception, MobileNet, have been developed as base networks
performing feature extraction. Some of them, e.g., VGG-16,
VGG-19, Resnet-101, have a relatively large memory footprint
which makes them impossible to execute on embedded mobile
computing platforms, having limited memory capabilities.
Other solutions, like Resnet-50 and especially MobileNet, are
optimized for running on embedded computing platforms and
have therefore smaller memory footprints and computational
requirements. In this paper, we evaluate the following four
base networks: Resnet, MobileNet, Inception, and Xception,
as they are the ones designed to be executed on embedded
computing platforms.

VI. EXPERIMENTAL PLATFORM AND TESTING

As a central mobile platform, we use an SBC which will
run our main application. We run our application on an Odroid
XU4 development platform provided by HARDKERNEL. The
board is equipped with an Exynos 5 MPSoC, which is an
octa-core composed of 4 ARM Cortex A7 and 4 ARM Cortex
A15 organized in a big.LITTLE architecture with Global Task
Scheduling (GTS). The A7 cores (little cores) can scale up to a
frequency of 1.4 GHz, while A15 cores (big cores) can reach a
frequency of 2 GHz. The development board runs a Linux OS
with kernel 4.2. The board network connectivity is provided
by a USB Wi-Fi 802.11n dongle W522U, which is a dual-band
wireless USB adapter that provides maximum wireless speed
up to 300Mbps over two bands, with a maximum transmit
power of 18dBm. The drivers offer two work modalities, one
for full power transmission and the other for low power oper-
ation while listening for connections. We use both modalities
in our experiments. We define our Region Of Interest (ROI)
as illustrated in Figure 3. When the object recognition task is
executed locally, the ROI is defined as the execution time
of the used neural network to recognize an object in the
provided input image. When the object recognition task is
executed remotely, the ROI is defined from the moment the
TCP connection is negotiated with the remote server until the
moment the embedded mobile computing platform receives all
coordinates, size, and tags associated to all recognized objects.

For measuring the power dissipation inside the ROI, we
need an approach that records at a high sampling rate the
current consumed during variable execution and communica-
tion periods. For example, for the input pictures used in this
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paper, the smallest remote execution time is around 200 ms
while the longest execution time is around 1100 ms. For the
same set of used input pictures, the execution time of the
object recognition task on the embedded mobile computing
platforms range from 900 ms to 4 s. For setting the boundaries
of our ROI, we use one GPIO pin of the board as a flag to
measure the start and end the time of the ROI. For measuring
the power dissipation, while choosing to offload the task, we
use an oscilloscope with one probe recording the current drawn
from the board and the other sensing the voltage on the GPIO
pin, which is used as a flag for defining our ROI. The testbed
is composed of several components as shown in Figure 4.
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As a remote side, we use a server that is on the same LAN
as the Odroid board and listens for connections by the client.
We set the server for different performance levels, such as 5x
(five times faster than local side), 4x, and 2x. To measure the
power dissipated by the entire board during the ROI we used

an oscilloscope and a power meter, depending on the required
sampling rate, with measurements logged at a resolution of up
to 10 kHz.

The neural network used in the object detection and recog-
nition application is a CAFFE implementation of an SSD
meta-architecture with MobileNet [20] as a base network.
We tested the change in the neural network used for our
object detection. By using neural networks for object detection
recognition in embedded environments, the most stringent
limitation is the memory available on the device. With only
2 GB of memory, a few networks might be executed on the
board. We analyzed three pre-trained base networks: Resnet-
50, Inception and Xception implemented in Keras and trained
with ImageNet dataset. We used YOLO v3 neural network
which is implemented in the darknet framework and trained
with COCO dataset.

In the Odroid board, we have different options for run-
ning computations related to a certain application. Having 8
computing cores divided into two cluster types, with each
type of core being able to work in different performance
levels (DVFS), opens possibilities for selecting the optimal
energy-efficient way for running the application. We run the
object detection application on a single image with all the
possible configurations present in our experimental board and
we ranked the energy efficiency of each configuration. By
reviewing the results of the energy efficiency achieved for
each configuration we discover that only the configurations
using all four A15 cores, which provide high performance,
are ”relevant” for this use case. The best scores in energy
efficiency are only achieved by the configurations using all
four A15 cores at the middle range frequency. We consider
this configuration point as the one we will use in local
computations, providing the highest energy efficiency at the
platform level.

We executed the neural networks on a set of pictures
composed of mix images with high and low resolution, large
and small complexity in terms of the number of objects inside,
and with different backgrounds. When offloading the detection
and recognition task to the remote side, the input images were
transmitted with bandwidths from 1 to 60 Mbps.

VII. NUMERICAL RESULTS

Figure 5 shows the average energy consumed to process,
using SSD, an image with different execution speeds provided
by the remote and local side. We can notice that when using
offloading we reach similar energy efficiency for an achieved
performance level, regardless of the performance of the remote
side. The crossing with local computation is done from 0.5fps
to 0.7fps, and for higher performance, the energy cost to
perform the detection and recognition task locally is higher
than using computational offloading.

We also measured the energy efficiency for processing an
image by different types of neural networks. We used a mix of
images for testing different neural networks and the results of
the average energy consumed to process a frame are shown in
Figure 6. As shown, there is a large difference in the results



from each neural network: while we can notice that SSD-
MobileNet is the most efficient one in terms of energy, it also
provides the highest performance possible on the SBC. Next,
we have three other models that provide nearly similar results
of energy efficiency: Resnet, Inception and Xception with the
first one performing better in terms of energy and achievable
performance. Yolo is the one that is energy demanding and
has the highest requirements in terms of computations. In [21]
authors experiment with different base networks and report the
results of the accuracy that the networks provide in terms of
the mean Average Precision (mAP) score. They test different
meta-architectures with different base models and the results
show that SSD with MobileNet is overall the fastest one but
provides the lowest accuracy. According to [22], Xception
outperforms Inception and Resnet in terms of accuracy. On the
other hand, Resnet is less accurate than Inception. Regarding
YOLO, according to [23], this network is 20% to 30% more
accurate than SSD-MobileNet, but from Figure 6 we notice
that it is 170% to 180% less energy efficient. In comparison
with Resnet, Yolo is more accurate as described in [24].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed computation offloading as a pos-
sible mechanism to reach the optimal platform energy-efficient
state considering the energy consumption of all components in
the mobile system. As an application test case we considered
object detection and recognition performed on several types
of images to define when offloading is beneficial to the
platform energy efficiency. We identified the configuration
points, where the platform provides the maximum energy
conservation approach. We concluded that if the bandwidth
of the network connection is large enough, then the offloading
strategy turns out to be more energy-efficient than the local
computing. We surveyed the energy efficiency of different
neural network algorithms in an embedded environment and
concluded that not many neural networks for object detection
can be handled by average embedded platforms. In some cases,
to improve the accuracy between 20% to 30%, the cost in
degrading energy efficiency is 170% to 180%.

As future work, we consider to extend investigations with
more recent MPSoC like Kirin 960 and extend the discussion
of platform efficiency by including the GPU for the neural
network computations. We also plan to run experiments with
GPUs ranging from the ones present in smartphone chips, like
ARM Mali-G71 in Kirin 960, to NVIDIA GPUs present in
Jetson-TX2 with 265 CUDA Pascal cores and NVIDIA Xavier
with 512 CUDA Volta cores.
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Abstract—As data being produced by IoT applications contin-
ues to explode, there is a growing need to bring computing power
closer to the source of the data to meet the response-time, power
dissipation and cost goals of performance-critical applications
in various domains like Industrial Internet of Things (IIoT),
Automated Driving, Medical Imaging or Surveillance among
others. This paper proposes a data collection and utilization
framework that allows runtime platform and application data
to be sent to an edge and cloud system via data collection
agents running close to the platform. Agents are connected to a
cloud system able to train AI models to improve overall energy
efficiency of an AI application executed on a edge platform.
In the implementation part we show the benefits of FPGA-
based platform for the task of object detection. Furthermore
we show that it is feasible to collect relevant data from an FPGA
platform, transmit the data to a cloud system for processing
and receiving feedback actions to execute an edge AI application
energy efficiently. As future work we foresee the possibility to
train, deploy and continuously improve a base model able to
efficiently adapt the execution of edge applications.

I. INTRODUCTION

Edge computing is a fast-growing technology trend, which
involves pushing compute capabilities to the edge. Edge com-
puting can be described as a distributed computing paradigm
that brings computation and data storage closer to the loca-
tion needed to improve response times, save bandwidth, and
improve security.

Edge systems are the deterministic embedded communica-
tion and real-time control engines that reside at the edge of
the network and closest to the physical world of factories
and other industrial environments, e.g., motion controllers,
protection relays, programmable logic controllers, and similar
systems. Clock frequencies in gigahertz, larger memory sizes,
higher numbers of input/output ports, and the latest encryption
engines might seem to offer solutions for future requirements.
However, when dealing with the timescale of industrial equip-
ment, which has critical subsystems that operate on a scale
of hundreds of microseconds (or less) and need to operate in
factories and remote locations for decades, relying solely on a
cutting-edge multicore embedded processor is risky. A much
higher degree of freedom in scaling is desperately needed,
at for example Industrial edge system, due to the timescales
involved. Also there is a need for a more consistent approach
that allows determinism, latency, and performance to be easily
managed. At the heart of the current industrial revolution is
the roll-out of machine learning (ML) algorithms, specifically
deep neural networks (DNNs). They achieve impressive results
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Fig. 1. Basic schematic of the telemetry framework

in computer vision and speech recognition, and are increas-
ingly being adopted for other tasks. DNNs are first trained on
a labeled dataset, and afterwards can be used for inference
on previously unseen data as part of an application. The
large compute and storage requirements associated with DNN
deployment necessitate acceleration. Furthermore, different
constraints might be imposed on accuracy, cost, power, model
size, throughput, and latency depending on the use case. Real-
time and safety-critical applications such as augmented reality,
drone control, and autonomous driving are not suitable for
offloading to the cloud due to low-latency requirements and
data transmission overhead. In cloud-computing and ML-as-a-
Service contexts, data centers face ever-increasing throughput
requirements to process astronomical scales of data [13],
bringing additional challenges in energy efficiency to minimize
operating expenses. While cloud service latency is less critical
compared to embedded scenarios, it still translates directly into
customer experience for interactive applications. Traditionally,
machine learning research was focused on improving the
accuracy of the models without particular regard to the cost of
inference. This is evident in the older networks like AlexNet
and VGG, which are now considered large and with many
parameters [2]. However, as machine learning and DNNs move
into practical applications, compute and memory requirements
become a major concern.

II. USE CASE AND ARCHITECTURE OVERVIEW

The assumed scenario for this work is the following: an
industrial system (it could be for example a patrolling robot
or a manufacturing conveyor) is streaming live a video over
a 5G network and requests as a service detected objects from
the video stream. The object detection service is executed from
the Multi-access Edge Computing (MEC) of the used 5G base
station.
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The main assumptions of the work are the following: (a)
an FPGA platform can provide lower latency than more
traditionally used GPU platforms for this type of application.
This is due to the datapath architecture of the FPGA and
DPU, which does not require to first “flood” a large number
of Streaming Multiprocessors (SM) as in a GPU; (b) taking
advantage of the DPUs, we can reach higher throughputs in
terms of number of processed frames per second; (c) the
FPGA platform will provide a better energy efficiency solution
compared to CPU and GPU based solutions.

The main goals of the work are the following:
• Propose and implement a telemetry collection framework

that complements the use case scenario described above.
• Evaluate achievable latency, throughput and energy ef-

ficiency of common edge platform alternatives for the
selected use case and proposed architecture.

• Show the benefits off customizing computations at the
edge with the intelligence from the cloud side created
with the collected telemetry data.

A. Telemetry Framework

There is a need for big data analytics and machine-learning
based AI technologies for the operational automation of
factories and other industrial environments. These use cases
deploy edge systems for real-time control of the operations.
The collection of large amounts of data is required from
different system components like applications, edge platform
and network. The single-sourced and static data acquisition
cannot meet this data requirements. It is therefore desirable
to have a framework that integrates multiple telemetry ap-
proaches from different components. The telemetry framework
brings a solution to this problem. The main focus of this
work is to provide an end-to-end description and evaluation
of the proposed telemetry architecture which is described in
Figure 1. The framework can be divided in two parts: the
edge part which is described on the left of the Figure 1, and
the cloud part which is on the right side. At the edge side
of the schematic we have a highly heterogeneous platform
which is equipped, either with GPU or with re-configurable
hardware (FPGA). The platform is hosting an intelligent
application which uses a convolutional neural network (CNN)
for performing real-time video inference, and an agent which
is collecting several metrics from the application, platform,
and network called the telemetry agent. Metrics of various
components of the platform are collected and formatted as
a JSON object and sent to the other part of the framework.
On the cloud part the data is analyzed and actions are taken
as a feedback controlling the behaviour of the intelligence
performed on the edge side. A more detailed description of
the telemetry framework is available from [6].

III. EDGE PLATFORM TECHNOLOGIES

To support our assumptions on the achievable latency and
performance of FPGA platforms for CNN-based edge appli-
cations, we evaluate two different platforms for the role of the
edge node: a Nvidia Jetson AGX Xavier (as a representative

GPU-based platform) and a Xilinx ZCU102 (as a representa-
tive FPGA-based platform). The Xavier is an embedded GPU
platform which promise to offer high compute density and
good energy efficiency for AI related applications. The Xavier
is equipped with 512 CUDA cores with Volta architecture GPU
running at 1.37GHz and a 16GB LPDDR4X @ 2133MHz
memory with a bandwidth of 137 GB/s, and a flash storage
eMMC 32GB. The Xilinx Zynq UltraScale+ MPSoC ZCU102
board has a 16nm XCZU9EG FPGA, an on-board 4GB 64bit
DDR4 RAM with a peak bandwidth of 136Gb/s.

We aim at testing the AI inference capabilities, and the
power dissipation of the two platforms while running neural
network algorithms. The experiments are conducted using
Yolov3 and SSDResnet50Fpn algorithms for object detection
which perform inference on a 420p video file. In Table I we
report the measurements done for both platforms for metrics
such as end-to-end delay (EE latency) to process a single
frame and number of frames per second processed for a
single dissipated watt (FPS/Watt) while running two popular
object detection algorithms such as Yolo and SSD. The neural
network is fed with the same video file and the power is
measured on the entire platform. FPGA architecture is able to
achieve good latency in time-sensitive jobs due to the circuit-
level customizations on its massively parallel computing units.
From the results shown on the table there is a clear advantage

Platform Algorithm EE latency (ms) FPS/Watt
Xavier
AGX

Yolov3 120 0,3
SSD Resnet50 fpn 250 0,17

ZCU102 Yolov3 29,4 1,48
SSD Resnet50 fpn 200 0,37

TABLE I
INFERENCE CHARACTERISTICS OF THE CONSIDERED EDGE PLATFORMS

of the FPGAs platforms versus GPUs to be used especially in
streaming applications, this is noticeable in terms of latency
and energy-efficiency. The SSD Resnet 50 FPN is a heavier
model compared to Yolo, requiring 178.4 Gops compared to
65.63 Gops of the other side. Based on this evaluation, the
ZCU102 FPGA-based board will be used a the edge device in
the rest of the paper.

IV. EXPERIMENTATION METHODOLOGY

As described in section II the telemetry framework consist
mainly in two parts: the Edge and Cloud side.

A. Edge Side

On the edge side we are executing a CNN-based video in-
ference application which is quantized and pruned for running
on a FPGA device. We also collect the parameters which will
make up our telemetry data through an agent that is running
on the device. The agent collects telemetry data from three
categories as described below:

1) Application Telemetry: Latency of the application, FPS.
2) Model Efficiency Telemetry: Computational Unit utiliza-

tion, Memory Throughput, CPU utilization, Memory utiliza-
tion, AI model efficiency.
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3) Energy Efficiency Telemetry: Dissipated power, Temper-
ature of the module, FPS/Watt.

4) Communication Network Telemetry: From the network
side the agent collects parameters of the 4G modem used
in the experimental framework and these telemetry is sent
transparently to the cloud. The parameters collected include:
RSSI, RSRQ, RSRP, Temperature, DL/UP.

B. Cloud Side

The second part of the architecture consists of the cloud
side which offers services for securely receiving the telemetry
data, enriching those data with additional information (e.g.
timestamps), analyzing the information contained in the data,
providing feedback actions to the edge platform based on some
defined triggers and additional services such as further pro-
cessing, storage, and analytics. The practical implementation
used in this paper is based in the Amazon Web Services (AWS)
cloud environment.

C. Telemetry Architecture

In Figure 2 we can see the actual components in the
deployment of the telemetry architecture for both the edge and
cloud sides. In the edge platform we have deployed the AWS
IoT Greengrass software which provides the environment for
running lambda functions to control the hardware platform and
the application running on the platform.

The workflow of the process is as follows: At first on the
edge premises the telemetry agent is running and collecting
metrics from the application, AI neural network and hardware
platform. The collected information is packed into a JSON
object and sent to the Greengrass core (GGC) located on the
edge side. The GGC is registered with AWS IoT Core on the
cloud side and uses the MQTT protocol to forward the JSON
objects to the cloud. The IoT Core provides a Device Gateway
which manages active device connections and a powerful
Message Broker which routes the messages with low latency.
Once a message is received we use AWS IoT Rules to send
messages to further data processing and aggregation before
storing them to the S3 data bucket. Other rules are created
to call specific lambda functions on the edge which perform
actions like checking the achieved FPS by the object detection
application and if the value is above 30 fps, lowering the clock
frequency of the platform processing unit in order to save

power. Another rule checks for model efficiency, which is the
model fps divided by the ratio of peak accelerator rate and
model workload, and if the number is below a certain threshold
triggers a lambda function on the edge which downloads a new
model from a S3 models bucket, located in the Cloud, to the
edge premises to perform the inference with the new model.
In the telemetry framework in Figure 2 the video stream is
transmitted to the edge platform from the device via a 4G
or 5G connection. Beside the application, ML model, and
edge platform telemetry we also collect network telemetry as
explained above, which is sent to the cloud. This data can be
exploited for training machine learning models able to predict
the connection bandwidth from parameters collected from the
router. There are several policies that could decide the location
of the inference. By exploiting the telemetry data collected
from the router we can predict the bandwidth of the connection
and decide whether it is reliable to send the video stream to
the edge. There are several research work which show the
possibility to predict the current connection bandwidth based
on parameters like RSRP, RSRQ, and historic throughput [14,
1, 7]. In the case that the bandwidth is high enough, the stream
can be transmitted to the edge premises for faster inference,
otherwise the edge will decide to push the inference on the
device itself, resulting in slower inference time. The decision
on where to actually run the inference in this case will be made
on the cloud side based on the received telemetry, and from
the model results which predicts the available bandwidth. The
offloading decision, from edge to device, could be made by the
edge system also, which in case of high levels of utilization
can decide to send the intelligent application to the device.

V. RELATED WORK

There is a wide research work regarding the usage of data
analytics in making smart and fast decisions especially in
wireless networks [4, 8, 9, 10, 3]. Mainly the advances in IoT
and hardware/software technology have given the opportunity
to collect real-time data from user equipment or core devices
which are valuable in making decisions that will impact the
performance, adaptability, efficiency of the end-to-end system.
This collection of works emphasis more the need for gathering
telemetry data from different components of the end-to-end
application system. Beside the telemetry data collection there
is also to consider the edge component, which in many cases
is used to bring resources closer to device side and is a
central actor in the real-time applications as in [5, 12, 11].
In this paper we propose a framework that includes different
telemetry data, gathered from the edge platform, application,
network, and machine learning model with goal of providing
feedback to the edge or device premises plus creating a data
lake for training machine learning models at the cloud side.

VI. EXPERIMENTAL RESULTS

A. Latency measurements

Devices connect to AWS IoT and other services through
AWS IoT Core. Through AWS IoT Core, devices send and
receive messages using device endpoints that are specific to
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the used AWS account. There are two main communication
protocols for sending the data to the message broker in the IoT
Core service. One is MQTT, which is a lightweight and widely
adopted messaging protocol that is designed for constrained
devices, and the other is HTTPS over websockets. To evaluate
the proposed architecture, we measured the achievable mes-
sage latency when reaching the IoT Core and measured any
possible difference between the communication protocols. All

Protocol Mean Lat.(ms) Min(ms) Max(ms) Std. dev(ms)

MQTT 516,44 218 1652 169,45
HTTP 565,75 181 6600 415,91

TABLE II
LATENCY MEASUREMENTS OF SENDING DATA TO THE CLOUD

measurements were done with the Edge platform connected
to a commercial 4G network, and the IoT core deployed in
eu-west-2 region (London).

As shown in Table II, for the case of MQTT the average
latency is lower regardless of the fact that with Greengrass
there is an additional delay of the core software. Also the
spikes in case of HTTP are quite high bringing a real need
for local processing on the edge instead of relying only on the
cloud.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes an edge/cloud telemetry collection
and utilization framework for applications where reliability,
latency, power efficiency and high computational capacity is
critical. For instance, vehicle safety as well as vehicular visual
and non visual sensing systems could be potential use cases.
We evaluate GPU based platform against FPGA platform for
the role of edge node in an AI computer vision application
and set up our framework with the FPGA platform induced by
latency and power efficiency numbers provided. We define the
cloud side components of the data lake architecture which will
serve later as valuable input for training machine learning net-
works at the cloud side. At the end we discuss about reaction
time of cloud side of the framework and FPGA implementation
issues which is good to consider when developing AI-based
application on re-configurable platforms. As a future work we
foresee the creation of intelligent engines on the cloud side
based on the data collected through the telemetry framework.
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