

Football Match Prediction Using
Machine Learning

Author: Fredrik Sjöberg - 42011

Supervisor: Sepinoud Azimi Rashti

Master’s thesis in Computer Engineering

Åbo Akademi University, Finland

Faculty of Science and Engineering (FNT)

Information Technology

2023

Abstract

Football is the most popular sport in the world. It has become so popular since it is

easy to play and affordable. Football can be played both inside and outside almost

at any place in the world and little equipment is needed to play it. The rules are

simple and easy to understand. Since football is so popular, matches and

tournaments exhibit a high level of availability for both men and women at any age

worldwide. Therefore, it is not surprising that professional football constitutes a

colossal market. The most interesting aspect of football is of course the results of

the matches and how they can be affected to go in favour of one’s team. This is

where predicting the results of the football matches is useful.

Machine learning is an excellent method for making predictions. In this thesis

multiple machine learning algorithms and data sets are compared and analysed to

find the best approach. The higher prediction accuracy a model achieves, the more

accurate its predictions are. When predicting football match results, there are three

possible outcomes: win for the home team, draw, or win for the away team. To

tackle such classification problems using machine learning, multiclass

classification can be used.

One of the most important aspects of building a successful machine learning model

is to find a suitable data set and data features. Feature selection is difficult and can

be made in many ways, but it is decisive for the results of the predictions. Data sets

containing match statistics, team related features, and player related features, were

used in this thesis. They were tested with different machine learning algorithms, to

find the best possible combination.

Keywords: machine learning, multiclass classification, predictions, football

Table of Contents

1. Introduction .. 1

2. Machine Learning ... 3

2.1 Overview ... 3

2.2 Algorithms ... 9

2.2.1 Multiclass Classification .. 17

2.3 Problems and Solutions .. 18

3. Previous Research ... 22

3.1 Sport Predictions ... 22

3.2 Football Predictions .. 29

4. Implementation .. 34

4.1 Overview ... 34

4.2 Data Collection .. 36

4.3 Data Preparation ... 40

5. Prediction Models ... 48

5.1 Model Selections... 48

5.2 Team Attributes .. 49

5.3 Player Attributes ... 53

5.4 Match Statistics ... 56

6. Discussion ... 59

7. Conclusion ... 62

Svensk sammanfattning .. 63

Bibliography .. 68

Preface

I would like to thank my supervisor Sepinoud for her guidance and support

throughout the project. I would also like to thank my employer for letting me

prioritise my studies over work.

1

1. Introduction

Predicting the results of football matches is challenging. It is impossible to be done

perfectly even with the help of machine learning. If it would be possible, the

excitement of the sport would be lost and sports betting organisations would go

bankrupt. One of the primary factors that football has such a large popularity around

the world is that it is an unpredictable sport. In every match, it is possible for a

weaker team to win over a stronger team and no matter how superior the stronger

team is, it cannot be certain that it will win. Seemingly unpredictable events like

the weather and a lucky last-minute goal can be the decisive event that will help an

underdog defeat the giant. However, we know that it is possible to predict football

matches with an accuracy over 90% [1]. In this thesis we investigate which

approaches and strategies are the best to be able to achieve the most accurate

football match predictions using machine learning.

In the recent years, the amount of data available online about football and other

sports have increased massively. This has made it possible for researchers and

hobbyists to develop and improve football prediction methods themselves. The goal

of some people in this area is to find the best prediction methods for making as high

profit as possible in sports betting. However, in such cases the aim is also to find

the weak spots of the predictions of the sport betting organisations, rather than only

finding the best possible match predictions. The aim of this thesis is not to find the

best methods for making profit on sports betting sites, but purely to find out how

predictable the game of football really is and how the best possible predictions can

be made.

In this thesis multiple machine learning algorithms are compared, with the aim to

find the best possible model for football match predictions. Bayesian networks and

logistic regression are the most common algorithms to be used for football

predictions according to previous research papers on this topic. Except these

algorithms, the random forest algorithm was also chosen to be used in this

implementation. The wanted output of the created models are the overall result of

football matches and not the exact score. The three possible outcomes are win for

2

the home team, draw, or win for the away team. Multiclass classification is the most

suitable type of machine learning algorithms to solve such problems.

The second chapter of the thesis gives an overview of machine learning, machine

learning algorithms, and machine learning related problems and solutions. The

focus is on multiclass classification. The third chapter consists of an overview of

previous research in the topic. It also describes how football predictions and sport

predictions in general can be made. The fourth chapter describes the own

implementation done on football predictions. It consists of an overview and the data

collection and data preparation phases. In the fifth chapter the models of the

implementation are described, and the results of the models are visualised and

evaluated. The thesis ends with discussion and conclusion.

3

2. Machine Learning

Machine learning is a subset of artificial intelligence and computer science. It is a

technique that learns from data using algorithms, and tries to develop to improve

its accuracy. This chapter gives an overview of machine learning, machine learning

algorithms, and machine learning related problems and solutions.

2.1 Overview

Machine learning is an artificial intelligence technique that improves the

performance of computer systems of a task by letting them train and learn from

experience. Machine learning algorithms learn to make predictions from

observations and data instead of being programmed exactly what to do. However,

machine learning is still quite narrow, which means the problem must be defined

well so that the machine can focus on that desired activity [2]. A machine learning

model is the result of the training with a machine learning algorithm on a specific

data set. The machine learning algorithms must usually be modified to be used for

each case depending on the input data, which differ from case to case, and therefore

the machine learning models become unique. The goal of machine learning

algorithms and models is to maximize the accuracy of their predictions of the

desired output values [3].

The difference between problems in machine learning and manual programming is

that the algorithm is unknown in machine learning. An algorithm is like a recipe, it

is followed to perform tasks on the input data to generate the output data. In

problems that can be performed using manual programming, both the input- and

output data are known. In other problems the input data is also known, however,

the output data is unknown. Only the expected format of the output data is known,

such as numbers, yes or no, or categorical classifications. In other words, it is not

known how to transform the input data into output data. Machine learning can be

used to solve these types of problems. [4]

The first obvious step in machine learning is defining the problem. The data and

algorithm one needs, depend on what kind of problem is defined. The first practical

4

step in machine learning is data collection. Both the quantity and quality of the data

impact the results of machine learning models. The data set to use in machine

learning can be a mix of one or many data sources collected by oneself or already

existing data sources. The data sources can be, for example, databases, files, web

services, and other APIs. The data itself can contain numerical data, text data,

temporal data, and categorical data. Since the training of machine learning models

is dependent on the input data, some of the most important parts of machine learning

are the choice of what input data set to use and how to divide it into training- and

test data sets. Machine learning models rely on data to be able to know what to do,

the performance of previous models, and possible improvement points [2]. Machine

learning can also handle large volumes of data that is difficult to analyse using

regular data management tools, such data is called big data [2]. By leveraging large

data sets, learning algorithms can achieve higher accuracy, which have made the

use of big data popular in machine learning recently [4].

Since machine learning relies on data, the data set selection and feature selection

are very important parts of it. When the data set has been chosen, the next step is

data preparation, which consists of data cleaning, feature selection, and feature

extraction. Data cleaning is needed so that the values are represented correctly, and

noise and faulty data are removed, for example, missing data and duplicate values.

Feature selection is then done to make the data set more efficient in the machine

learning algorithm or model. Feature selection means that only the most important

features of the data set are selected for further use. This will reduce the training time

of the model, the model will be more comprehensible, and the result will have a

higher level of generalisation. The feature selection can be made based of how much

information the features give and what accuracy the features generate. However,

sometimes it can be difficult to determine whether a feature is unnecessary, it

depends on the other features in the data set and the dependencies between them.

Feature extraction reduces the number of features by combining them, without any

loss of information. A popular technique for feature extraction is Principal

Component Analysis (PCA), which reduces the number of features by combining

them linearly. This also makes the features uncorrelated, but all the important

information is still left. [3]

5

Machine learning works by manipulating data using mathematical functions. Both

the input and the generated output are represented mathematically. The input data

must therefore be converted to mathematical representations and the resulting

output data must be converted back to useful data again [2]. This is the case for text

data, which is often categorical data. This conversion process is called feature

encoding. The most known feature encoding technique is one-hot encoding. One

dummy variable is created for each categorical value in the data set. If an

observation belongs to a category, the dummy variable is set to 1, otherwise 0.

Another simpler feature encoding technique is label encoding. Every categorical

value is converted into a unique random number. However, this can cause problems

in machine learning algorithms which interpret the values as ordinal instead of

categorical.

The next step after the data preparation is to choose a machine learning algorithm

for the model. It is challenging to find the most suitable algorithm for a problem.

The performance of an algorithm depends on the type of data set used. The data set

exhibits varying degrees of compatibility with different machine learning

algorithms. However, the choice is not black and white, multiple algorithms can

perform equally well, and therefore it is usually recommended to try multiple

algorithms. Different types and examples of machine learning algorithms are

described in Chapter 2.2.

When the machine learning algorithm has been chosen, it is time to train the model

with the data set. The input data set must be split into two subsets: a training data

set and a test data set. The training data set should have more data than the test data

set, around 80% training data and 20% test data is a popular split ratio. The machine

learning algorithm is trained using the training data set. After the training episode,

the algorithm is supposed to make predictions on the new unseen data set, the test

data set, based on what it has learned from the training data. The machine learning

algorithms tries to find regularities in the training data to be able to make predictions

on the test data. The regularities are then generalised and built into the model. The

performance of the model on unseen data is called generalisation [5]. The model

must never be trained using test data, nor tested using training data [3]. Both

scenarios would generate a high test accuracy, however, the model has “cheated”

6

and will perform badly on new unseen data. The model has “cheated”, since it has

already seen the data which it is tested on, and therefore it has made a perfect fit for

it.

When the model has been tested, the output values and an overall result of the model

will be received. To be able to know how good the model is, it should be compared

with other models or previous research. The performance of machine learning

models can be evaluated to find its strengths and weaknesses. Usually, the result of

a machine learning model is termed as accuracy, however, it can only be calculated

for classification models. In regression an evaluation metric called R-squared is

used instead. R-squared measures the distance between the data points and the

regression line, which essentially is the error of the predictions. The output value

of the metric is a percentage between 0 and 100%. When the R-squared value is

100%, all the data point is predicted exactly right at the regression line. When the

R-squared value is 0%, the model has not been able to explain any of the variation

in the data around its mean [3]. Usually a higher R-squared value means a better

performance of the regression model. However, what percentage is considered as a

high R-squared value depends on the problem.

For classification models, the most common evaluation metrics are accuracy,

precision, recall and f1-score. A popular visualisation of the performance of

classification models is the so-called confusion matrix. It is a table that contains the

four different classification results: true positives, false positives, true negatives,

and false negatives. True positives are observations that are predicted and actually

positive, false positives are observations that are predicted positive but are actually

negative, true negatives are observations that are predicted and actually negative,

and false negatives are observations that are predicted negative but are actually

positive. In binary classification the size of the confusion matrix is 2x2 (two rows

and two columns), but confusion matrices work for multiclass classification too.

Then the size of the confusion matrix is n times n, where n is the number of classes.

[3, 6]

The accuracy of a classification model is all the correctly classified observations

divided by the total number of observations. The precision is how well the model

has made positive predictions. It is measured as the true positives divided by all

7

positives. The recall is how well the model have classified positives correctly. It is

measured as the true positives, divided by the true positives plus the false negatives.

The f1-score is a measure similar to accuracy. It is the harmonic mean of precision

and recall, and is measured as two times the precision times the recall, divided by,

the precision plus the recall. The f1-score is higher than the accuracy when the

number of observations in the classes are uneven. The output value of all these

metrics are percentages usually represented as decimals between 0 and 1. The

model performs better when the metrics has a value closer to 1. However, one must

be suspicious of a model that produce an accuracy of close to 100%, then there

might have been too little test data or the test data might have been leaked in the

training phase. [3]

One way to evaluate machine learning models is by using the so-called cross-

validation technique. In cross-validation the data set is randomly split into k subsets

of equal size [3]. One of the subsets is selected as test data, and all the other subsets

are used as training data. The test subset selection is repeated k times, so that every

subset has been used as test data. The result is then the average of all the tests. This

technique is called k-fold cross-validation and is the most common cross-validation

technique [3]. Cross-validation will both improve the performance of the model and

the generalisation of the results [6]. Another evaluation metric is the ROC (receiver

operating characteristic) curve [3]. It plots the connection between the true-positive

rate and the false-positive rate. The area under the curve is called the AUROC (area

under ROC curve). The greater AUROC, the better overall performance of the

model [6].

There are several types of machine learning approaches. The three main categories

are supervised learning, unsupervised learning and reinforcement learning.

Supervised learning is when the machine learns from labelled training data [7].

Labelled data is data that are tagged with some labels containing information such

as characteristics and classifications. The machine is given examples of input data

and their corresponding output data. By learning from these examples, the machine

tries to find patterns and using them it creates mathematical models that maps inputs

to outputs [8]. The model can then be used on new unseen data to predict the output

data. The two most common supervised learning model groups are classification

8

models and regression models. Classification models maps the input data into a

limited number of classes that have been predetermined [8]. Regression models

maps input data into a numerical domain with any value within the range.

In unsupervised learning, only the input data is known while the output is not

predetermined [4]. Since the supervisor does not tell the machine how the correct

output data should look like, the unsupervised learning algorithms must find out the

relations in the data themselves. They try to find similarities in the data and patterns

that occurs more often than others. By finding these patterns they can tell what

generally is going to happen with certain input data [4]. Unlike in supervised

learning, the training data used in unsupervised learning are not labelled. There are

not any predetermined classes either. The goal of unsupervised learning is therefore

to find classification labels for the data [8]. The models categorize the input data

into groups called clusters, by searching for commonalities in the data.

Unsupervised classification is called cluster analysis or clustering [9].

Semi-supervised learning is a machine learning approach that can be put in between

supervised learning and unsupervised learning. It is a mixture of them since it uses

both labelled and unlabelled training data. In semi-supervised learning the amount

of labelled data is usually much smaller than the amount of unlabelled data [8]. The

goal of semi-supervised learning is to learn a model to predict classes more

correctly with future test data than a model that has been learned using only labelled

data. Semi-supervised learning reminds of the way humans learn, for children the

environment is full of unlabelled data in the beginning but supervisors teach them

new labelled data gradually. [10]

Reinforcement learning is a machine learning approach which learns by receiving

a picture of the environment in which it operates. The machine has a specific goal

in the dynamic environment and any action that the machine does in it, impacts the

environment. The environment gives the machine feedback, which the machine can

use to learn from and improve itself. [8]

9

2.2 Algorithms

The core of the machine learning model is the machine learning algorithm itself.

There are multiple options of machine learning algorithms for every type of

machine learning approach. However, the choice of machine learning algorithm is

not black and white. Although a problem seems to fit for a particular machine

learning approach, there might be other types of machine learning approaches and

algorithms that works equally well. The tree main types of machine learning

algorithms are regression, classification and clustering [3]. Machine learning

algorithms might consist of a set of rules, a tree structure or a type of network [7].

Regression is a method that shows the relation between variables by creating a

function that fits the data best. The output value is the dependent variable, which is

the effect of the input variables called independent variables. When the independent

variables are manipulated, they will cause a change in the dependent variable that

is measured. Regression algorithms are based on supervised learning. They are

specialised to predict numerical values. An example of a regression problem is to

predict the price of a house. It may learn features of the house and prices of other

similar houses in the same area.

The most known regression algorithm is linear regression. Since linear regression

is a supervised algorithm, it uses labelled training data to train a model to predict

labels of new unlabelled test data. The goal of the algorithm is to find a line that

best fits the dataset by finding relationships and dependencies in the data. This

means that linear regression predicts a continuous target variable, which can be used

to predict the outcome of any unseen test data. The equation of simple linear

regression can be written as a linear algebraic equation (y = a*x + b). However, in

machine learning multiple independent variables are usually used to predict one

single dependent variable. Then the equation can be expressed as in Equation 1,

where y is the dependent variable, x are the independent variables, a determine the

slope and e is the y-intercept. [3, 8]

y = a0 + a1 ∗ x2 + ⋯ + an ∗ xn + e

Equation 1. Linear regression

10

Classification algorithms are also based on supervised learning. Classification

algorithms predict categorical values instead of numerical values as regression

algorithms do. The categorical values to which the input data should be classified

into, are called classes. The classes are finite and predetermined for each problem.

A classification with only two classes is called binary classification. A classification

with three or more classes is called multiclass classification. An example of a

classification problem is to classify images into which animal that are pictured on

them. The classes could, for example, be dog, cat and horse. For a human such a

problem might be simple, but for large quantities of images it would be a boring

and time-consuming task. This is of course why machine learning and computers

in general are useful.

There are multiple popular classification algorithms. Some of them are decision

tree, random forest, support vector machine, k-nearest neighbour, logistic

regression and Naïve Bayes [3]. Decision tree is a classification algorithm that

shows the results as a flowchart, which often looks like a treelike structure. The

decision tree classifies the input data by flowing through the tree [10]. The tree

consists of nodes with edges (branches) between them. The first node has no

incoming edges and is called the root. All the other nodes in the tree have exactly

one incoming edge. The last nodes in the tree have no outgoing edges and are called

leaves. Since each leaf has been assigned to one class, the leaves determine the

output values of the algorithm [8]. Most often the decision tree is a binary tree,

which means that each node has only two outgoing edges. Decision trees use

conditional logic to find the path of an input value to the output value [3]. In each

node there is a condition which determines to which node the data point should

continue to. In a binary tree the condition can be seen as an if-else statement, true

or false, or yes or no. Decision trees can also be used for regression. Then the leaves

are numerical values instead of classes.

Random forest is a classification algorithm which consists of decision trees.

However, the random forest algorithm uses multiple trees instead of just one as the

decision tree algorithm. A random forest trains the trees with random subsets of the

original data set, and the result is determined with a majority vote between the trees.

This makes random forests more generalised than individual decision trees [3].

11

Random forests can also be used for regression. Then the numeric prediction is

made by taking the average of the output of the trees [3]. An example of a random

forest structure and its decision trees is visualised in Figure 1.

Figure 1. A random forest structure where the green nodes create the decision path.

Support vector machine is a classification algorithm that can be used for both

classification and regression problems. It classifies the input data into two classes,

which makes it a binary linear classifier. The data points in a space are separated

into the two classes so that the gap between them is as wide as possible. New test

data is then mapped to a class based on which side of the gap they are on. Support

vector machine can also perform nonlinear classification. This can be done using

the so-called ‘kernel trick’, which projects the data on a higher dimension feature

space. [10]

K-nearest neighbour is a classification algorithm that can be used for both

classification and regression problems. It classifies data points that are close to each

other to the same class. It looks at the k nearest neighbours of a new point, and the

new point is then added to the class which most of its neighbours are belonging to.

K can be any number, but an odd value of k makes the occurrence of a tie less

probable. In case of a tie, the class can be chosen based on the class of the closest

neighbour, randomly, or after decreasing or increasing the value of k. K-nearest

12

neighbour is a simple algorithm, but it can be effective for problems like searching

for similar items. [3]

Logistic regression is a supervised algorithm related to linear regression. The most

significant difference between them is that linear regression is a regression

algorithm while logistic regression is a classification algorithm, despite its name.

Logistic regression predicts categorical dependent variables while linear regression

predicts continuous dependent variables. Logistic regression is usually used as a

binary classification algorithm and therefore the output can be one of two classes,

like true or false, and yes or no. The output value is determined using probabilities

of a data point being in one of the two classes. The probabilities are calculated using

a sigmoid function, which is an activation function. It multiplies each feature with

a weight and then add them up. The output values to which the sigmoid function

maps the input values, must be between 0 and 1. The data points that are lower than

a threshold value, are classified to one of the classes, and the data points that are

higher than the threshold value, are classified to the other class. The equation of

logistic regression can be expressed as in Equation 2, where y is equal to the

outcome probability, and z is a model parameter which includes the x-value, the

midpoint of the curve and the scale of the curve. The resulting probability will

always be in the range between 0 to 1, which is required in a sigmoid function. [3,

8]

𝑦 =
1

1 + 𝑒−𝑧

Equation 2. Logistic regression

Logistic regression can be seen as the cousin of the linear regression. In a sense,

logistic regression is linear regression on which a sigmoid function has been applied

[3]. In Figure 2. the difference between linear regression and logistic regression is

visualised. Logistic regression produces a S-shaped curve which is called sigmoid

curve or logistic curve. Since the output values must be between 0 and 1, input

values that go to negative or positive infinity will have an output value of 0 and 1

respectively. Linear regression on the other hand, simply produces a continuous

line. However, a common problem for both logistic regression and linear regression

13

is multicollinearity [3]. Multicollinearity is when an independent variable is

strongly correlated with another independent variable. It is a problem since it makes

it difficult for the model to find significant effects of changing the independent

variables, although they might be of great importance.

Figure 2. Linear regression on the left, logistic regression on the right.

Naïve Bayes is a classification algorithm and a special case of a so-called Bayesian

network. A Bayesian network is a graphical model based on probabilities. The

nodes in the graph are random variables and the edges are conditional probabilities

of the variables. The dependencies between the random variables are calculated

using Bayes theorem. It describes the conditional probability of an event, which

means the probability of an event happening given that another event has happened

before. The Bayes Theorem is based on previous knowledge of the conditions that

are related to the event. The equation of Bayes Theorem is expressed in Equation

3, where A and B are events. It is expressed as the conditional probability of A

happening when B is true, is equal to, the conditional probability of B happening

when A is true, times the probability of A, divided by the probability of B. [3, 11]

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

P(B)

Equation 3. Bayes Theorem

The graph of a Bayesian network is a directed acyclic graph (DAG), because of the

conditional probabilities and dependencies between the nodes in the graph. In such

a graph, there are no cycles or self-connections allowed, which means that each

14

edge goes from one node to another without creating a loop. Learning a Bayesian

network can be divided into two main steps: structure learning and parameter

learning. Structure learning is finding out the directed acyclic graph that best

represents the relationships in the data. This can be done by using algorithms like

the DAG search algorithm and the K2-algorithm. In the beginning they give all

DAG structures the same probability, and then they search for the structure that

gives the maximum probability for the data, which is called the Bayesian score.

Parameter learning means learning the distribution of conditional probabilities. The

maximum likelihood estimator is the method used for parameter learning. It

estimates the parameters of the probability distribution by maximising a likelihood

function so that the probability of the data is as high as possible. [11]

Naïve Bayes is a more restricted form of Bayesian network. Naïve Bayes assumes

that all the attributes are independent of each other [12]. The class nodes should

have no parents, and are therefore the root nodes. Each node can only have one

parent and the nodes corresponding to the attribute variables should have no

connections or edges between them [12]. An example of the Naïve Bayes structure

is visualised in Figure 3. The c-node is the class node and the a-nodes are the nodes

corresponding to attribute variables. Naïve Bayes can be used for both binary- and

multiclass classification and it works well with both small and large datasets [3]. It

usually performs better using categorical input data than using numerical input data.

Naïve Bayes is good at predicting data based on historical results [3].

Figure 3. Naïve Bayes Structure

Naïve Bayes is a popular classification algorithm because it is simple to construct

since it doesn´t need structure learning. The classification process is also efficient

since the attributes are assumed to be independent. However, it also creates a

problem when selecting features for the model. Features that are correlated to each

15

other, may not perform well in a Naïve Bayes model. This can be solved by

selecting feature subsets using, for example, the forward selecting method or the

best-first search algorithm [12]. The most significant difference between Naïve

Bayes and logistic regression is the classification type. Naïve Bayes is a generative

classifier, which means that it learns the probability distribution of the data and

understands how the data looks like in general. Logistic regression on the other

hand, is a discriminative classifier, which means that it learns decision boundaries

and divides the data using those boundaries [8].

Clustering is a type of unsupervised machine learning algorithms. Clustering is the

unsupervised equivalent to the supervised classification algorithms. The goal of

them both is to divide the input data into separate classes or clusters, however in

clustering there are no predetermined classes, like there are in classification [9].

Instead of dividing the input data set according to how the training data was divided,

clustering divides the data using statistical methods where data with common

features are grouped into the same clusters. Clustering can also be seen as dividing

the original data set into subsets with similar data [9, 13]. There are different types

of clustering methods, for example partitional clustering, density-based clustering

and hierarchical clustering.

Since the human intelligence is based in our brains, they are an interesting topic in

artificial intelligence and machine learning. Artificial neural networks are learning

algorithms that imitate the functions of biological neural networks in the brain [4].

The brain consists of billions of neurons which are connected to each other. The

neurons are information messengers. They use different frequencies that are

summed when going from neuron to neuron [4]. They can be seen as weights, which

can be represented in a computer as zeros and ones. A neural network consists of

multiple layers. The first is the input layer, in the middle are the hidden layers and

last comes the output layer [3]. The neurons receive their input from all neurons on

the previous layer, and their own output are forwarded to every neuron on the

following layer [4].

As machine learning is a subset of artificial intelligence, deep learning is a subset

of machine learning. Deep learning is based on artificial neural networks, and

‘deep’ means that there are multiple layers used (at least two hidden layers) [3].

16

Deep neural networks woks like artificial neural networks. Each layer combines the

values from the previous layer, and therefore they develop all the time by learning

more and more complicated functions [4]. The abstraction increases for every layer,

which means that unnecessary data that do not help to solve the problem are hidden

or not considered. Deep learning uses hyper parameters, chosen by oneself, to set

up the model. The most important hyper parameters are the number of hidden

layers, the number of neurons in the hidden layers and weight initialisations [3].

Deep learning has become interesting recently since it is not focused to do one

specific thing, but can be used for many different purposes. It can also make use of

large amounts of data, like big data, if the computer systems are powerful enough.

Deep learning also finds the best features from the data set by themselves, which

makes the work simpler [4]. In other types of machine learning, one must do the

feature extraction and feature selection by hand or using algorithms, but deep

learning does the feature extraction automatically. Neural networks are mostly used

for classification problems, but can also be used for regression problems.

Three popular neural network types in deep learning are artificial neural network

(ANN), recurrent neural network (RNN), and convolutional neural network (CNN).

In artificial neural networks, a biological neuron is represented as a mathematical

model called perceptron. It takes features as input and tries to classify them into

classes by separating them with a line or plane. ANN uses sigmoid functions for the

separation, and therefore the ANN algorithm is like logistic regression. However,

logistic regression only uses one perceptron, while ANN uses one for each neuron

in their networks. In addition, the output of ANN is only the class association, but

in logistic regression the probability of a variable belonging to a class is also

provided. RNN is a neural network architecture that can handle sequential data. It

is especially suitable for language translation, speech recognition and text

generation. In an RNN, the neurons can have connections between themselves in

the same layer in addition to connections between the layers [4]. CNN is a specific

type of an artificial neural network, that is especially useful in image recognition.

In ANN, each input is related to only one pixel in the image, but in CNN the spatial

relationship between the pixels is also considered. [14]

17

2.2.1 Multiclass Classification

The most basic classification algorithms are binary classification algorithms, which

only have two classes. Multiclass classification algorithms, which have more than

two classes, are much more complicated. Some multiclass classification problems

may have more than thousand different classes, for example in image recognition

and text translation [15]. Multilabel classification is similar to multiclass

classification, however, in addition to having many classes multilabel classification

can also assign one or more classes to each observation [15]. The difference

between the three types of classifications can be seen in, for example, image

classification. If the images only picture ‘a cat’ or ‘a dog’, it is binary classification.

If the images picture ‘a cat’, ‘a dog’ or ‘a human’, it is multiclass classification.

However, if the images pictures ‘cats’, ‘dogs’ and ‘humans’ and they can be mixed

in a single image, for example ‘a human’ and ‘a dog’ in the same image, it is

multilabel classification.

Many binary classification algorithms can naturally be used for multiclass

classification, while other can be transformed to be used for it. Algorithms that can

be used naturally for both binary- and multiclass classification are decision trees,

k-nearest neighbour, Naïve Bayes and neural networks. Decision trees classifies the

observations using a tree-like structure. Each leaf in the tree represents one class.

In binary classification the decision tree only has two outputs, and therefore two

leaves. However, more leaves can be added, thereby representing multiple classes,

which enables multiclass classification. Since the random forest classifier is built

out of decision trees, it will also work for multiclass classification. [16]

K-nearest neighbour can naturally be used for multiclass classification. New data

points will be added to the category which most of its neighbours belong to, also if

there are more than two classes. Naïve Bayes can also be used for multiclass

classification. The observations will be categorised to the class with the highest

probability of all classes, whether there are two or more classes. In neural networks

the number of output neurons can be increased to enable it for multiclass

classification, so that each output neuron represents one class. Each neuron tells the

probability of the observation belonging to that class. [16]

18

Other binary classification algorithms can be transformed to be used for multiclass

classification using either the One-vs-rest strategy or the One-vs-one strategy. The

One-vs-rest strategy (One-vs-all, OVA) uses one binary classification model for

each class, where the class is put against all other classes. The One-vs-one strategy

(All-vs-all, AVA) uses one binary classification model for each pair of classes. In

both strategies the observations are classified to the class with the highest score.

Logistic regression is a binary classification algorithm that can be transformed

using one of these strategies to be used for multiclass classification. [15, 16]

2.3 Problems and Solutions

To be able to receive improved and valid results, machine learning algorithms are

usually computed multiple times. A so-called epoch occurs each time the whole

training data set is used for training the machine learning model. When the problem

and input data is complex, more repetitions are needed [2]. However, the result

should not radically change even though the input data changes. If it does, the model

has not been good enough and so-called overfitting or underfitting has occurred.

Overfitting and underfitting are the most common causes of poor results in a

machine learning algorithm or model. Overfitting is when the ability of a model to

solve the problem suddenly is not increasing anymore [17]. It occurs in the training

process when the model starts to also learn noise. It means that a model cannot

generalise seen data to unseen data well enough [18]. Overfitting causes the model

to perform well on the training data, but badly on new testing data. Instead of

learning how the data behave, the model has learned all the data by rote. That means

it has also memorised noise and abnormalities in the training data [17]. When the

model encounters new type of information in the test data set, the model will

struggle to understand it according to the procedure learned using the train data set.

So, even if the model is a perfect fit to the training data, it is not guaranteed that the

prediction accuracy of the testing data will be high [7].

The causes of overfitting are usually a too small train data set, too much noise in

the train data set, or too many inputs in the algorithm. There are multiple strategies

for reducing and avoiding overfitting. A method that is good at avoiding overfitting

19

is the so-called early stopping method. Its purpose is to stop the training before the

accuracy of the model stops increasing or starts decreasing [17]. The training

accuracy increases always overtime, but the validation accuracy increases in the

beginning but slows down and eventually starts decreasing in the end. At the same

time the training error decreases overtime while the validation error first decreases

but after a time it starts to increase [17]. The difficult part is to find where the point

is that the accuracy and error rate shifts at. The point can be found by following the

validation accuracy while the training is going on. After each epoch the accuracy is

evaluated and when the accuracy stops improving or starts worsening the training

should be stopped [18]. Often validation is made between the training and testing

in the early stopping method. Validation helps to find the best values for the hyper-

parameters (for example size of neural network). This increases the generalisation

level and reduces the bias while increasing the variance [18]. When the model has

been finalised using the validation data set, finally the test data set is used to test

the final model.

Since noise learning is one cause of overfitting, one solution to reduce the

overfitting is to reduce the amount of noise. That can be done by removing unused

or unimportant data and features. Unimportant features can also be given less

weight than the other features so that they are not taken into consideration as much

as the other ones [18]. Often overfitting can be reduced by expanding the training

data set. Especially if the model is complicated, more parameters are needed to

achieve good results [18]. Small data sets are overall more vulnerable to overfitting

than large data sets [17].

Underfitting is the opposite of overfitting. Instead of having a too good model that

learns all the test data as in overfitting, underfitting occurs when the model is too

simple to represent the variability of the data [17]. Unlike overfitting, underfitting

means that a model performs badly on both training- and test data. The solutions

for reducing or avoiding underfitting is practically like the solutions for overfitting.

To achieve a higher accuracy of the model the important features must be increased

and therefore a larger data set must be used. Another solution is to complicate the

model or increase the training time or number of epochs and iterations.

20

In Figure 4. the different results of a supervised model are visualised. When

underfitting has occurred, the model has not been able to represent the data in an

optimal way. Such a model will have high error rate in both the training- and test

data. When the model is balanced, the accuracy is optimised and the model can be

used on new unseen data still with high accuracy. The model ignores outlier points

and noise. However, when overfitting occurs, the model has been fitted to the

training data too well. It considers every point in the training data, since it has not

been generalised enough. The model will not be able to produce high accuracy on

unseen data.

Figure 4. From the left: Underfitting, balanced and overfitting in supervised

learning.

Overfitting and underfitting occurs especially in supervised learning. However,

there are equivalents to them in unsupervised learning as well, which occurs in

clustering. In unsupervised learning the equivalent to overfitting and underfitting is

the problem of finding the optimal number of clusters to use [9]. The equivalent to

overfitting is when the number of clusters are too many in proportion to the data

points. This will lead to the clusters only including a few data points each, and that

they are not clustered according to their similarities. The equivalent to underfitting

is thus the opposite, which is when the number of clusters are too few so that the

data points are clustered together although they do not have many common traits

between them. The different results of a clustering model are visualised in Figure

5.

21

Figure 5. From the left: Underfitting, balanced and overfitting in unsupervised

learning.

Another cause of overfitting and underfitting are too many inputs in the algorithm.

When there are too many inputs, the model will have a high accuracy on average

but with a low consistency. For some data sets the model may work well, but for

other data sets it may work badly. To solve this, the so-called bias-variance trade-

off must be improved. Bias-variance trade-off means the balance between the bias

and the variance in a model [18]. Since we want the machine learning model to be

generalised and perform as good as possible on new unseen data, the so-called

generalisation error should be minimised [5]. This can be done by keeping the bias

and variance in balance. Bias in machine learning is how much a model learns

unnecessary things, like noise, and makes too many assumptions. Variance in

machine learning is how well the model can handle changes in the training data set

[5]. Bias can be seen as the training error rate and variance as the testing error rate.

It would be optimal to include all the patterns found in the input data, but still have

a high level of generalisation of the data, but they interfere with each other so they

cannot be achieved simultaneously. A model with a low bias and a high variance

will result in overfitting [5]. On the other hand, a too high bias means that the

training error rate has been high and this will result in underfitting. A model with a

low bias is usually more complex, and a model with high bias is usually less

complex [5]. Therefore, the bias-variance trade-off can also be seen as a trade-off

in complexity [18]. Although, these points can help in building a successful model,

everything depends on the data set and the model must be build different from case

to case. The key in building a machine learning model while avoiding overfitting

and underfitting, is to compromise between accuracy and consistency [18].

22

3. Previous Research

Predicting results in sports have always been popular, especially betting on the

winner or exact result. However, in the recent years the ability to predict things

have increased drastically thanks to development in techniques and data gathering.

Using machine learning we can now find relations between different factors that

influence the result of sports, that we were not aware of previously. The increase of

available data about sports, also helps to improve the ability to make predictions.

Nowadays the results of a game or competition can be found in seconds and

statistics of them can be analysed in detail. This chapter describes how sport

predictions can be made in general and how especially football predictions can be

made.

3.1 Sport Predictions

Predicting results in sports are in the interest of various groups of people. Managers

and agents want to predict the results of competitions to be able to change the

outcome to their advantage. The teams or athletes may want to know their status

compared to other competitors ahead of a competition. Fans want to predict the

results to know how well their athlete or team will do. Predicting sport results are

also of high importance in so-called fantasy leagues, which have grown in

popularity recently. They are based on the results of real-world sports, and the

participants receive points based on how well they have predicted the outcome. The

predictions are usually made by choosing a team of players from different teams,

that the participant think is going to do well in the near future. Fantasy leagues are

most often based on team sports, for example football, American football and ice

hockey.

Since the business of sports in general is enormous, predictions of results in sport

are of course also associated with money. Sports betting is a large market globally,

especially thanks to the growth of online betting. It is expected to grow even more

when more and more people around the world can watch sports [19]. The most

popular sports in betting differ from country to country, but overall, the most

23

common ones are team sports like football, basketball, cricket and American

football, racing sports like track cycling and horse racing, and other sports like

tennis, Esports and boxing [19].

Betting is when one predicts a result and then playing money on it. There are two

main types of sports betting, either one must predict the exact score of the game, or

one must predict the overall result of the game, which essentially is who will win.

When predicting the overall result, there are three possible outcomes; win for the

home team, draw, or win for the away team. Home and away are used to explain

which team are playing on their home ground. If the game is played on a neutral

ground, the home team are usually drawn randomly. The three different outcomes

are usually represented as ‘1’ for a home win, ‘X’ for a draw and ‘2’ for an away

win. If the right answer is predicted, one will retrieve more money than the stake

depending on the odds, however if the prediction is wrong the stake is lost.

Betting odds are becoming more and more popular due to online betting, and the

number of sports and competitions available on betting sites are increasing all the

time. Betting odds are said to be the most accurate probability forecast for sports

[20]. It is especially useful to use odds in sports where the probability of the

outcome varies from game to game. In sports or games where the probabilities of

the outcome are even, there are no direct use of odds. Betting odds can be seen as

the potential win relative to the stake.

The probability is how likely it is that an event will happen. The range is between

zero and one, where zero means that the event is impossible to happen and one

means that the event will happen with all certainty. Odds are related to the

probability and can be calculated using a simple formula. The odds are the ratio

between the probability of an event to happen and the probability of an event not to

happen. For example, if the odds of an event to happen are 1:2, it will happen in

one out of three times and the probability of it is 0.33 or 33%.

Betting odds however are usually represented a little bit different from normal odds.

A traditional way of displaying betting odds is using fractional odds. Fractional

odds are the win to be paid out to the bettor in case of a correct bet, relative to the

stake. In case of a win, one will retrieve the stake plus the fractional odds times the

24

stake. This means that only the potential win can be seen from the fractional odds

and not how much one will retrieve in the total with the stake included. For

example, if the fractional odds of a game are 1/2 and the bet is correct, one will

retrieve the stake plus half of the stake as a winning price. The probability of it to

happen is 67%. If the fractional odds of a game are 1/1 and the bet is correct, one

will retrieve the stake two times. The probability of it to happen is 50%. If the

fractional odds of a game are 2/1 and the bet is correct, one will retrieve the stake

three times. The probability of it to happen is 33%.

Betting odds can also be displayed as decimal odds. Decimal odds are more

comprehensible than fractional odds, since they directly tell how many times the

stake that one will retrieve if the bet is correct. Using the same examples as for

fractional odds; if the fractional odds are 1/2 the decimal odds are 1.5, which means

the money one will retrieve if the bet is correct will be 1.5 times the stake. If the

fractional odds are 1/1 the decimal odds are 2, which means the money one will

retrieve if the bet is correct will be 2 times the stake. If the fractional odds are 2/1

the decimal odds are 3, which means the money one will retrieve if the bet is correct

will be 3 times the stake. So fractional odds can be converted to decimal odds by

converting the fractions to decimals and add one.

A bookmaker is a person or organisation that organise sport betting events. For the

bookmakers to make a profit from the betting, they must manipulate the odds to not

match the true probabilities of the outcome. If the odds would be the same as the

probabilities of the outcome, all the money put as stake would be given back as

wins to the bettors, and there would be no profit left for the bookmakers. The

bookmakers manipulate the odds by increasing the probabilities of all the possible

outcomes so that the total probability goes over 100%. For example, the true

probabilities of the outcome of football games have been proven to be less than the

odds with a few percent [21]. This will cause the total wins paid out to the bettors

to be lower than the total stakes. The leftover is the profit of the bookmakers. This

also means that there are more people losing their money in sports betting than there

are people winning money.

Bookmakers takes help from data- scientists and analysts to make predictions of

sport results [21], but they don´t predict the results only by themselves. They use

25

the predictions of the public to balance the odds so that they will make more profit.

Still, it is quite surprising how well the odds match the result of games, which means

that the public can predict sport results quite accurately without the help of sport

experts, bookmarkers or machine learning models.

However, except that many people are addicted to and lose their money on sports

betting, match fixing and money laundering are also problems caused by sports

betting. When there are much money on the line, some people want to take risks

and illegal actions to be able to win. Match fixing can be done by bribing the referee

or competitors of the game, and means that they try to manipulate the game to have

the outcome of the match-fixers bets. According to a report made by Sportradar

[19], the occurrence of match fixing is increasing in sports worldwide, due to the

fast growing of the market. The most cases of suspicious games have occurred in

football, e-sports and basketball. In football most cases occur in the lower-level

competitions, where there are not as many organisations that governs or monitors

the betting. The players are more vulnerable targets for match-fixers in lower league

tiers since their athlete education and income is not at the same level as in higher-

level leagues.

According to the annual match fixing report by Sportradar [19], the most popular

sport in betting is by far football, with a market of over 700 billion Euro and over

50% of the sports betting made in 2021. Other popular sports in betting in 2021

were tennis and basketball. In these three sports, the greatest number of suspicious

matches also occurred. The most popular competitions in sports betting in 2021

were UEFA Champions league (football), English Premier League (football), and

Indian Premier League (cricket). According to Sportradar, match fixing has become

more widespread after the COVID-19 pandemic, spreading to new sports and

lower-level leagues.

There are significant differences between sports and competitions in how well their

results can be predicted. One of the primary factors is how much the strengths of

the competitors differ from each other. If the difference in strength is high, the result

will be more predictable. This can be the case in so-called closed leagues, where

the teams do not change depending on their performance after a season. This means

that bad teams still must play against teams that are considerably stronger than

26

them, instead of being relegated to a lower-level league with teams with more

matching strength. Leagues with one or a few teams that are relatively superior to

the other teams, will also be more predictable. Another factor that can improve the

predictability is if seeding is used in knockout competitions. Seeding is when

stronger competitors are drawn to compete against weaker ones, so that the strong

competitors have a fair chance to reach the final (if the games would be drawn

randomly, two strong competitors might have to face each other already in the first

rounds of the knockout stage). Sports and competitions that can end in a draw, is

usually more difficult to predict than sports with only ‘win’ or ‘loss’ as possible

outcomes [22].

One of the most effortless sports to predict are sports with high difference in the

strength of the competitors, like Formula 1. The team with the best cars and the best

driver of that team will win most of the races. Some of the most difficult sports to

predict are football and ice hockey. Since they are relatively low scoring sports, it

is difficult to predict the outcome although one of the teams may have a strength

advantage. Low scoring sports are more difficult to predict because the probability

that a weaker team can beat a stronger team is higher since one single goal is more

crucial and can be scored with luck. Sports like basketball and tennis are more

predictable since they are high scoring sports, in which luck and unpredictable

events have less importance on the outcome.

Bunker and Thabtah [23] have proposed a framework for sport result prediction. It

includes six main steps: domain understanding, data understanding, data

preparation, modelling, evaluation and deployment. It is like the procedure of most

machine learning problems. Domain understanding means to know the problem and

the characteristics of the sport in question. The problem could be to predict the

overall result, the exact numerical results of the matches or to predict which matches

it should pay off to bet on. The characteristics of the sport are of course important

to know to be able to find the factors that impacts the outcome of matches. The data

used in the model must be understood as well. The data can be match statistics,

team related, or player related. The amount of publicly available data online about

sports have been increasing, which makes it more straightforward for researchers

and hobbyists to collect the data needed for their sport predictions. If there are no

27

suitable data sets publicly available, it is of course possible to extract online data to

make an own database and data sets. [23]

In team-sports the most important feature types for predicting the outcome, are

previous match statistics, team related features and individual player related

features, of both the competing teams [24]. In individual sports the most important

feature types for predicting the outcome are player related features and previous

match statistics [25]. However, the prediction model will not perform well if the

features are not processed before use. Most researchers in sports predictions do

feature selection and feature extraction before using the machine learning algorithm

[26]. As for all machine learning problems, one of the most important aspects to

achieve a good result in sport predictions is the feature selection. The original data

set can be divided into feature subsets [23]. The different subsets can include

features like, for example, match related features, team related features, standings

features and betting odds features. The subsets can be tested individually combined

with a machine learning algorithm to select the best features. Feature selection

algorithms can also be used to find the most important features.

Data preparation is important to achieve valid results out of the machine learning

model. Feature extraction must be made on all the used features. Beyond that, match

related features must be handled differently to other external features [23]. Since

the match statistics are known only during or after the match has been played, they

must be treated differently. Usually, an average of each match related feature is

calculated to be used in the model. The best number of matches to be used for the

averaging process has been found to be the past 20 matches [27]. The target variable

must then be defined. For classification problems in sport predictions the target is

the class variable, which usually consists of three values (home win, draw, or away

win), but can also consists of only two values (home win or away win) [23].

The choice of machine learning algorithms according to the selected features is also

of great importance. The most common machine learning algorithms in sports

predictions are classification algorithms. The wanted output is usually the overall

result of the game as win, draw or away win. The other option is to predict the total

score of a game. Regression algorithms can be used for such numerical prediction

problems. The most used classification algorithms in sport predictions are different

28

types of artificial neural networks [23]. Other classification algorithms suitable for

sport predictions are Bayesian networks and logistic regression. Artificial neural

networks are suitable for sport predictions since they can be flexible on how to

interpret the class variables. They can also deal with dependencies between the

input variables, while Bayesian networks on the other hand see all input variables

as independent to each other.

In the modelling phase the chosen algorithms can be used for testing on the different

feature subsets, to find the best possible combination. Sport prediction data sets can

be split into training- and test data sets in multiple ways. Bunker and Thabtah [23]

argue that the best option is to do the training test split round-by-round, especially

for sports where each team plays exactly one match per round. The order of the

matches still must be considered; matches should only be predicted based on

previous matches. They argue that the best way is to use a few rounds as test data

equally spread within all the rounds. For each test round, the training data should

consist of all the previous rounds. The average of the accuracies of all the tests

could then be used as the overall model accuracy. Another way to do the training

test split round-by-round is by using a block of the first rounds as training data, and

a block consisting of a few of the last rounds as test data. This is slightly simpler

since only one accuracy is produced and an average of the tests is not needed. If the

amount of data in the original data set is higher and includes multiple seasons, the

training test split can be done by splitting season-by-season instead of round-by-

round. Although, in most sports the strength and player of the teams changes each

season and therefore it could be misleading to do the predictions based on previous

seasons. Another option is to predict the results match-by-match. In that case the

training data is all the previous matches and the match in question is the test data.

However, if the goal is to predict the outcome of a whole season, this option

demands the training data to be updated for every match. [23]

Machine learning based sport predictions most often use prediction accuracy as the

main evaluation metric. A classification matrix can be used to visualise the results

in classification problems. Since class values of sport prediction data sets usually

are quite balanced, classification accuracy can be used to measure the model

performance [23]. In many sports there are slightly more home wins than away wins

29

due to the home advantages. There are more wins than draws, however, since there

are two types of wins the class values are still quite balanced. When predicting the

overall result of a game (home win, draw or away win), the prediction accuracy of

the model must be over 33% to be higher than chance. A model with a prediction

accuracy below 50% can still be considered as unsuccessful. A model with a

prediction accuracy of between 70% and 90% is good, although it is subjective and

depends on the type of problem in question. If the prediction accuracy is close to

100%, it is usually a sign of overfitting rather than a perfect model. It is difficult to

find an average prediction accuracy of all sports predictions since they cannot all

be compared to each other. However, most research papers have claimed a

prediction accuracy of between 60% and 80%, with around 70% being the average

[26].

Since most sport prediction models use data of previous game results, cross-

validation is not appropriate to use for evaluating sport predictions [23, 28]. If

temporal data is used in cross-validation, the classification algorithm may see

training data that has happened later in time than the test data, which would not be

possible in a real-world scenario. If sport predictions are supposed to be made on

game to game, the chronological order of the data must be preserved, and therefore

cross-validation is not a suitable option for evaluation. However, it is not a problem

when match results are not considered or when only previous match results are used

for a whole season at a time.

3.2 Football Predictions

Football is one of the most difficult sports to predict. That a team has a high strength

advantage over the opponent does not automatically means that it will win. Since

football is a low scoring sport, the probability of a weaker team winning or drawing

against a stronger one, is higher than in many other sports. In football, the results

may depend on features of individual players, the tactics and motivation of the

teams, the recent form of players and teams, and external factors like weather and

home ground [24]. Which ground the match is played on, is an important factor due

to the home advantage phenomenon. The team playing on their home ground will

have more experience of the weather conditions and the pitch, which type and

30

condition may vary between grounds. The away team must travel to the ground of

the opponent and the travel distance might impact their energy. In addition, there

are usually more home fans than away fans in the stadiums, which will help the

home team since it receives more positive support while the away team might

receive disturbances and heckling.

The percentage of home wins, away wins, and draws, are different from league to

league and changes between the seasons. Overall football matches most often end

up in a home win, followed by away win, and least often in a draw. Around 45% of

matches end up in a home win, 30% in an away win, and 25% in a draw [29, 30].

During the 2020/2021 season many leagues played without fans due to the COVID-

19 pandemic. During that season the home win percentage decreased to around

40%, and the away win percentage increased to 35%. This proves that home

advantage, especially when fans are attending, has a great impact in football. [29]

Although football is difficult to predict in comparison to other sports, studies have

shown that it is possible to achieve a high prediction accuracy. According to the

review on sport predictions made by Horvat [26], most football match predictions

achieve a prediction accuracy between 55% and 70%, but there are a few studies

that claim they have achieved prediction accuracies up to 90%. In the last years

several studies have been made on making football match predictions, some more

determined to achieve the highest possible prediction accuracy and other more

focused on finding a successful model for future research serving as a benchmark.

Owramipur et al [1] used Bayesian networks in their football match predictions in

2013. They achieved an outstanding prediction accuracy of 92%, however, they

only focused on one team for one specific season (FC Barcelona, Spanish La Liga

2008-2009). They used multiple types of features for their predictions, both

psychological and non-psychological. The values of main features that affected the

result mostly in favour of one team, were when the average age of the players was

in the middle, the result of the five last games were good, there were not any injured

main players, the psychological state of the players was good, the performance of

all the players was high, and the weather was good.

31

Shin and Gasparyan [31] used virtual data collected from a video game to predict

football matches in 2014. They collected data of player attributes from ‘FIFA

2015’, which is a football video game made by EA Sports. The matches they

predicted were one season of Spanish La Liga. They used multiple models for their

prediction, with algorithms like, for example, the support vector machine, logistic

regression and Naïve Bayes. The results using virtual data were compared with

results using real data, which were collected based on average performances in

previous matches. Some models using virtual data achieved a higher prediction

accuracy than models using real data. The best model for both data categories were

the one using linear support vector machine. Using virtual data, the model achieved

an accuracy of around 79%, while using real data the model achieved an accuracy

of around 73%. Their research proved that virtual video game data is not always

totally artificial and imaginary, but instead it could be used for predicting real world

scenarios with good results.

Tax and Joustra [28] made football match predictions for the Dutch League

Eredivisie in 2015. They used different feature sets including match statistics and

betting odds from a period of 13 seasons. They used multiple classification

algorithms, which they compared with each other using the different feature sets.

When all match features were used, Naïve Bayes and artificial neural network

resulted in the highest classification accuracy of 54.7%. When a hybrid model of

both the match- and betting odds features were used, they achieved a classification

accuracy of 56.1%.

Prasetio and Harlili [32] used logistic regression to predict football match results in

2016. However, they only used two possible outcomes: home win or away win.

They used multiple seasons of the English Premier League for training, to predict

the 2015/2016 season of the same league. The main features they used were “home

offence”, “home defence”, “away offence”, and “away defence”, out of which the

defence-related features were the most important. The prediction accuracy of their

model was 69.5%.

Razali et al [33] used Bayesian networks in their research on football match

predictions in 2017. They predicted the results for three seasons of the English

32

Premier League (EPL), using match statistics as the main factors. They achieved an

average accuracy of 75.09%.

Chen [34] made football match predictions based on player features in 2019. The

predictions were made on multiple seasons of Spanish La Liga. The origin of the

player features was from the football video game FIFA. Three algorithms were

compared: convolutional neural network, random forest and support vector

machine. The best result was achieved using the convolutional neural network with

an accuracy of over 57%. Using the other two algorithms an accuracy of around

54% was achieved.

Rahman [35] predicted football match results using deep learning in 2020. The data

set used contained rankings and team performances based on previous football

match results of international teams. The matches predicted were the matches in the

FIFA World Cup 2018 (international football world championships). The

predictions were made using artificial neural networks and deep neural networks.

The model predicted the overall result of FIFA World Cup 2018 group stage

matches correctly with an accuracy of 63.3%.

Taspinar et al [30] made football match predictions for Italy Serie A League in

2021. They predicted the match results for multiple seasons using features based on

match statistics. When using a logistic regression model on all the features, they

achieved an average classification accuracy of 88.85%. However, they concluded

that the accuracy could be improved by selecting effective features. When they only

selected the most important features, the accuracy increased to 89.63%.

As for sport predictions in general, the most used machine learning algorithms for

football predictions are Bayesian networks, logistic regression and artificial neural

networks. It is recommended to test several of them to find the best method in

combination with a particular data set [22]. All three algorithms suit well for

classification problems like predicting the overall result in football matches.

However, the prediction accuracy could be improved by treating the match result

as only two classes: home win and away win [30]. Although this would only be

realistic when predicting knockout competitions where there are no draws, since in

football leagues draws are usually allowed.

33

Since the outcome of football matches are not evenly balanced between home wins,

away wins, and draws, the machine learning models will also tend to predict the

outcomes unevenly. It is most difficult to predict draws correctly since there are

least number of matches with such an outcome. Moreover, the draw is ‘in between’

home win and away win, which means that the statistics of a match ending in a

draw are similar to other situations (home win and away win on each side) [30]. On

the other hand, home wins and away wins are the extremes and therefore simpler to

classify. The difficulty of predicting draws correctly can be seen in many research

papers [28, 30, 34]. An important direction to improve the overall prediction

accuracy of one’s model, is to improve the predictions of matches ending in a draw

[30].

As we have seen, football match prediction using machine learning has been studied

in multiple research papers during the recent years. However, many of them have

not extensively compared different methods with each other, but instead focused on

a specific method or algorithm. Many research papers also focused on a specific

type of football related data for the predictions, instead of comparing the

performance of, for example, team attributes and match statistics. To contribute to

the research on how to find the best frameworks and methods for football

predictions using machine learning, I decided to make my own implementation

where I compare multiple methods and data types.

34

4. Implementation

In the same pace as artificial intelligence and machine learning are developing, so

does also football predictions. The amount of available statistical data of matches

and players in the game are increasing all the time. Every move and touch on the

ball that the players do can be tracked on the field. However, football is a difficult

sport to predict since luck and surprises are inherent factors. As we have seen in the

previous chapter, machine learning models can still achieve high prediction

accuracy on football matches. This chapter describes the own implementation that

I have done on football predictions, to contribute to the research on how to find

optimal frameworks and methods for football predictions using machine learning.

4.1 Overview

This implementation includes the whole process of machine learning, starting with

data collection, followed by data preparation, model development, and model

evaluation. The steps in the implementation process also largely follow the

proposed framework for sport result predictions made by Bunker and Thabtah [23],

in which the main steps are domain understanding, data understanding, data

preparation, modelling, evaluation, and deployment. The goal of the

implementation is to test and compare different approaches for football predictions

using machine learning and to achieve a prediction accuracy that is higher than the

average prediction accuracies of previous research in football predictions.

According to Horvat [26], the average prediction accuracy for football predictions

ranges from 55% to 70%. A prediction accuracy of above 60% was set up as an

initial goal for this implementation.

This implementation predicts the overall result of football matches in a particular

season of a particular football league of high professional standard. The overall

results signify whether a football match ends in a win for the home team, a draw,

or a win for the away team. The exact numerical result of the matches, that is the

number of goals scored by each team, is not predicted. Since the overall result can

35

have three different outcomes (or classes), the machine learning problem of this

implementation is a multiclass classification problem.

The data used in this implementation were collected from free publicly available

sources online. The data used in the implementation consist of match statistics, team

related attributes and player related attributes. The different types of data are first

tested separately and then merged to test if this will improve the model

performances. Multiple machine learning algorithms are used in the

implementation, not only to try to achieve the highest possible prediction accuracy,

but also to compare how the algorithms perform in football prediction problems

overall. Since this implementation is a multiclass classification problem, the

machine learning algorithms chosen are algorithms that support multiclass

classification. All the different data types are tested on all the algorithms, to find

the best possible combination of data set and algorithm. Although this requires the

creation of many different models, the work is still reasonable since one can use the

same data sets in all the algorithms with just small adjustments. Moreover, the basic

structure of the machine learning algorithms can be the same regardless of the input

data set used.

The predictions are done on the whole season at once. In models where the match

statistics are used, the data must be kept as temporal data. In such cases, the test and

training data are split so that the test data follow the training data in chronological

order. Then the predictions are done match by match, although the goal of the

predictions is still to achieve high prediction accuracy for the complete season. The

implementation is not developed for the purpose of predicting single matches.

The programming languages used in the implementation are Python and SQL.

Python is considered as one of the best programming languages for machine

learning. SQL is used to query data from an SQLite database. Data preparation is

made in the code editor Visual Studio Code. The machine learning model

development is made with Python in Jupyter Notebook. Jupyter Notebook is an

optimal tool for machine learning, especially since the code can be divided into

cells so that loading data multiple times is not needed when experimenting. It is

also a suitable tool for making visualisations.

36

4.2 Data Collection

Data collection is the first practical step in machine learning. However, before the

data sets for the machine learning models can be created, one must know what data

to use. Knowing what impacts the outcome of the sport in real-life is needed to

achieve a successful sport prediction model. To know the main characteristics of

the sport that will impact the machine learning problem, is called domain

understanding [23]. In football the results depend on the performance of individual

players, the performance of the teams overall, and external factors like weather. The

data used in this implementation include player attributes, team attributes, and

match statistics. Some combination of these three categories of football data have

usually been used in previous football match prediction research. When testing all

three of them, as well as combinations of them, one will understand how they

impact the results of football matches and which combinations are the best for

predicting the results. Since the predictions were supposed to be made on a whole

season at a time, external factors like weather data were not considered in this

implementation. The weather on a particular match day obviously cannot be known

beforehand.

The quantity and quality of football data available online vary much from source to

source. Both the quantity and quality of the data sets used in machine learning

models influence the results. Match statistics of high standard leagues can

effortlessly be found online, not only live scores and results of the current season,

but also statistics from years back. The statistics can be found in data source types

like CSV files and databases. The most effortless way to collect data for machine

learning developers, is of course to directly find these kinds of ready data sets that

suits their problem. However, if there are no suitable data sets for one’s problem,

online data can be extracted. The match statistics can be extracted from websites

and API:s with live scores and results from many previous seasons. Most data

sources about football match statistics include basic statistics like goals, possession,

corners, cards, and fouls. Data sources with more in-depth match statistics like

player performances during the game can be more difficult to find, especially ones

that are free and publicly available. Some well-known websites with football

statistics are Sofascore.com, Flashscore.com and Transfermarkt.com.

37

The data sets used in this implementation are a mix of already existing data sources

and data collected from websites. The base data set used in the implementation is a

data set named ‘European Soccer Database’ published by Hugo Mathien on Kaggle

[36]. Kaggle is a community of data scientists and machine learning developers,

where data sets are published for others to find and use in, for example, machine

learning development. The ‘European Soccer Database’ consists of football data

from eleven of the greatest football leagues in Europe. The database is published

on Kaggle as an SQLite database. The football data in the database consists of

match data, team attributes, and player attributes from season 2008 to 2016.

Overall, it sums up to around 25 000 matches, 11 000 players, and 300 teams. The

match statistics include statistics like goals, shots, fouls, cards, and possession. All

the players who played in a match are listed in the match data as keys, which can

be used to join the players with their player attributes. Besides that, the match data

also includes betting odds from several betting sites and metadata like date, teams,

season, and stage of the match. [36]

The team- and player attributes in the database originate from the football video

game EA Sports FIFA. It is a video games series developed by the video game

company Electronic Arts, labelled as EA Sports. They release a new game for every

season, which have made it the best-selling sports video game franchise in the

world. Every new game is named so that it reflects on which year the season will

end, for example the season 2015-2016 is covered in the game called ‘FIFA16’. EA

Sports FIFA is based on authentic real world football leagues and players, thanks

to its partnership with the international football association FIFA. The player

attributes in the game are based on real life performances and are updated many

times during the season [37]. The player attributes and ratings are on a scale from

1-99, where 99 is the best rating. The team attributes are based on the players in the

team and overall team performance. Although the team- and player attributes in EA

Sports FIFA are regarded as one of the best ratings of footballers in the world, they

are still subjective and cannot be totally accurate. For example, players in high

standard leagues often have higher ratings automatically. Even though the team and

player attributes would be totally accurate according to the real world, player

performances will still fluctuate from match to match, and therefore they cannot

alone give perfect football match predictions. Virtual football data from video

38

games have been proven to be able to achieve accurate football match predictions

[31] and were therefore chosen to be tested and compared with other types of data

in this implementation.

As described in the overview of the implementation, one season of a particular

league had to be chosen. For the implementation the German Bundesliga was

chosen, which is the highest football league division in Germany and one of the

best leagues in the world. Any of the other leagues in the ‘European Soccer

Database’ would have worked equally well, but Bundesliga was chosen since it has

not been used as much as other top European leagues in previous football prediction

research papers, and because it is an interesting league being one of the greatest

leagues with close connections to the Nordic countries. The season 2015-2016 was

chosen for the implementation since it is the most recent season available in the

‘European Soccer Database’. The German Bundesliga has 18 teams and during one

season there are totally 34 stages and 306 matches (one home match and one away

match against every other team in the league).

The team- and player attributes in the ‘European Soccer Database’ were sourced by

Mathien from the website Sofifa.com, which is a database for statistics in the EA

Sports FIFA game [36]. The team attributes in the database include team ratings of

their build-up play, chance creation, and defence types. However, these attributes

are quite detailed and for some reason the overall team ratings were missing in the

database. That is why some additional team attributes were collected, which then

were added to the data set. These team attributes were the overall rating of the

teams, and their defence, midfield and attack ratings. These team attributes were

sourced from Fifaindex.com [38], which is a database for statistics in EA Sports

FIFA like Sofifa.com. Only the team attributes for the selected league and season

(German Bundesliga, 2015-2016) were collected and added to the data set.

The match statistics of the German Bundesliga season 2015-2016 in the ‘European

Soccer Database’ lacked clean values for some attributes. For example, the goals

were embedded in a piece of code and it would have required much cleaning to

extract the relevant values. However, the most significant limitation of the data was

that there was no attribute for directly determining the overall result of the match,

that is ‘home win’, ‘draw’ or ‘away win’. This could of course be calculated by

39

looking at the scored goals for the teams in each match, but that would have required

some extra coding. Instead, a second data source including match statistics from the

chosen league and season was used. The data source is a CSV file sourced from

DataHub.io, which is a data hub for open data (free to use for everyone) [39]. This

data file includes similar match statistics and metadata as the ‘European Soccer

Database’, but with cleaner and more complete data for all attributes and with the

important addition of the missing ‘overall result’ attribute. This attribute is named

‘FTR’, shortened from ‘full time result’. The three possible values are ‘H’ for ‘home

win’, ‘D’ for ‘draw’ and ‘A’ for ‘away win’. These will be the output classes of the

football prediction classification.

A diagram of the data used in the implementation, is visualised in Figure 6. The

sources of the team attributes are the ‘European Soccer Database’ and the website

Fifaindex.com. The ‘European Soccer Database’ is the only source of the player

attributes, while the only source of the match statistics used in the implementation

is the data set from DataHub.io. All three different data categories are joined with

match data to form the final data sets. The source of the match data is the same data

set from DataHub.io as the one used for match statistics. The match data consists

of the date, home team, away team and overall result of the match. The matches are

sorted in chronological order.

Figure 6. Diagram of the data sources used for the data sets in the implementation.

40

4.3 Data Preparation

In machine learning, the next step after data collection is data preparation. It

consists of data cleaning, feature selection and feature extraction [3]. In this step

one need to know what input data to use and what output data one wants. To know

what data to use, the data sets one work with need to be known. In this

implementation the goal was to use three different main data sets: one data set with

team attributes, one with player attributes, and one with match statistics. The data

preparation was made in Visual Studio Code using SQL and Python. To be able to

explore and query the SQLite database European Soccer Database in Visual Studio

Code, the SQLite extension was installed.

The base of every data set contains the same attributes, the match data. The date,

the teams, and the overall result of every match, were taken from the data set

sourced from DataHub.io. The overall result is the attribute called FTR, and it

serves as the output data in the football prediction models. This attribute is the most

important in the data sets, since the accuracy of the classification predictions is

determined on how correctly this attribute can be predicted. The teams in each

match consist of the name of the home team and the away team. However, the team

names and the FTR attribute are represented as text data. The text data must be

converted into mathematical representations using feature encoding. The three

possible classes of the FTR attribute were dummy encoded to the numbers 0, 1, and

2. The team names were also encoded using dummy encoding, where every class is

represented as a number instead of the text. There are 18 teams in the German

Bundesliga, and therefore 18 possible classes for the home- and away team

attribute.

The team attributes table in the main database, the European Soccer Database,

includes team ratings on build-up play, chance creation, and defence types. The

table includes a total of 25 attributes, of which three are different kinds of ids and

one is the date when the team attributes were updated. However, of the remaining

21 attributes, only nine include numerical values. The rest of the attributes are called

“classes of the attributes” and consists only of simplifications of the numerical

values. The numerical values have been grouped according to some specific ranges

41

into a few classes in text form. For example, the values of the build-up play speed

of the teams have been grouped into either slow, balanced, or fast. It is unnecessary

to use both the numerical and classificational approach. Since the numerical values

are more precise, only those nine attributes were included in the final team attributes

data set.

To make an efficient data set for machine learning, only data that is relevant to

one’s problem must be used. Since the European Soccer Database includes around

300 teams, it was clear that only the 18 relevant teams from the German Bundesliga

season 2015-2016, had to be queried from the team attributes table. The team

attributes table does not have a country-id, which meant the relevant teams had to

be queried using the team-ids instead. The team-ids for the 18 teams could be found

by querying one stage of the 2015-2016 German Bundesliga season from the match

table, since every team will only play one match in each stage and therefore there

will only be 18 team-ids visible without duplicates or missing values.

All the team attributes for the relevant teams were queried together with their team

names. The team names were needed to be able to join the team attributes with the

match data sourced from DataHub.io. The match data does not use the same team-

ids as the European Soccer Database does, and therefore the data must be joined

using the team names instead. However, the team names are also different in the

two data sources. Football teams usually have a long official name, but it is common

to use a shortened version. This can obviously lead to different versions of the team

names in different places, especially when the team names are not in English. In

this case the European Soccer Database uses a longer version of the German

football teams, than the match data from DataHub.io uses. For example, the

European Soccer Database uses the team names FC Schalke 04 and Borussia

Mönchengladbach, while the match data uses Schalke 04 and M’gladbach. To be

able to join the two data sources using the team names, the team names used in the

match data was mapped to the team-ids in the team attributes query. The final query

result was exported to a CSV file, which can effortlessly be done in Visual Studio

Code after an SQLite database have been queried using the SQLite extension.

In the FIFA video game, the main ratings of teams are the overall rating and the

overall ratings in different fields: defence, midfield, and attack. The overall ratings

42

are calculated based on more detailed team attributes, which also are found in the

European Soccer database. However, for some reason the overall team ratings were

missing in the database, and therefore the overall ratings were added to the team

attribute data set manually from a website. In situations where one need to retrieve

data from websites, a normal approach is data scraping. In data scraping data can

be imported from websites using computer programs, to be saved in files on one’s

own computer. In this case, the additional data needed included just four attributes

for 18 teams. Therefore, this data was added to the team attributes data set manually.

It would have been more work to create a data scraping program to retrieve the

specific data automatically, than simply copying the 72 values manually.

The next task was to join the team attributes with the match data. This was done

using Python in Visual Studio Code. The match data from DataHub.io was first

joined with only the team attributes from the European Soccer Database. However,

when figuring out that the overall ratings were missing from the data set, the match

data were joined with the team attributes including the overall ratings instead. The

match data was first extracted from the match statistics from DataHub.io. The

original data source is a CSV file, and was read to a Pandas data frame. Pandas is a

common Python library used for data analysis. The CSV file including the team

attributes and overall ratings, was also read to a Pandas data frame. The two data

frames were joined on the team names. The final data set was to include all matches

of the selected season, with the team attributes of the teams facing each other in

every match. Therefore, the match data was the base data frame, and joined with a

left join with the team attributes two times, ones for the home team and ones for the

away team. An ‘h’ and an underscore were added in front of the attribute names of

the home team, and an ‘a’ and an underscore were added in front of the attribute

names of the away team, to be able to distinguish between the attributes of each

team.

The player attributes table in the main database, the European Soccer Database,

includes player ratings on attributes like shooting, passing, physicality, pace,

movement, defence, and goalkeeping. It is by far the largest table in the database,

since it includes attributes of over 10 000 players for each season and version. The

player ratings change from season to season, but can also be updated during a

43

season. The player attributes table includes a total of 42 attributes, of which three

are different kinds of ids and one is the date when the player attributes were updated.

Of the remaining 38 attributes, three include text data: a player’s preferred foot,

attacking rate and defence rate. These attributes were also removed from the data

set. The 35 remaining player attributes all include numerical ratings between 1 and

99, which makes feature scaling unnecessary in the modelling phase.

To retrieve the player attributes for every team in the 2015-2016 season of the

German Bundesliga, the match table must be used like for the team attributes.

However, it does not make sense to add all the players of a team to every match,

since there are only eleven players in the start of a match and a few players may

come in later in the match as substitute players. The players sitting at the bench will

not impact the result of the match, and therefore their attributes are unnecessary to

use. Luckily, the match table includes the starting eleven of every team for every

match. The substitute players are not included in the table and even though they

would be, the use of substitute players would be very complex, since then one would

have to add weights to the data according to how long they have been on the pitch

to make the predictions realistic. In the match table the players are represented as

player-ids, which can be used to join it with the player attributes table. The ‘match’

table also includes coordinates of the players on the field, which makes it possible

to determine what formation a team uses and where each player is positioned.

However, the players in the match table are ordered with the goalkeeper first, then

the defenders, the midfielders and lastly the attackers, so the position of players can

roughly be determined without using the coordinates.

The joining of the player attributes and the match data was more difficult than

joining the team attributes with the match data. For every match, all the player

attributes of the 22 players involved in the match are to be used. This means that

the player attribute table had to be joined with the match data 22 times. To be able

to do the joins more effortlessly, the player attributes were first joined with the

match data in the European Soccer Database, and after that joined with the FTR

column of the match data from DataHub.io. The joins could therefore be done using

SQL only within the European Soccer Database. The select of the query consisted

of the date, the home team-id and the away team-id from the match table, and all

44

the player attributes of the 22 players from the player attributes table. The match

table was joined with the player attributes table using left-joins on the player-ids.

The match data had to be filtered on the 2015-2016 season of the German

Bundesliga and the player attributes had to be filtered on one specific version. The

version of the player attributes was chosen as the first official release of the FIFA16

player ratings. However, some players move clubs within a season and some player

ratings may have been incomplete during the first release, so the query resulted in

246 matches instead of the original 306 matches. In addition, 27 matches included

player attributes with null values, which had to be removed, and therefore reduced

the final match total to only 219 matches. The final query result was exported to a

CSV file.

Since the teams in each match were represented as ids, the team names in the match

data from DataHub.io had to be converted to the team-ids used in the European

Soccer Database. This was done using Python in Visual Studio Code. A conversion

table was created, that included all the 18 teams with their team names and their

respective team-ids in the European Soccer Database. The table was left joined with

the match data two times, ones for the home team and ones for the away team.

When the team names were integrated in the data set, it could be joined with the

‘FTR’ column of the match data from DataHub.io. The join was done using a left

join on the team names of each match.

The match statistics data used in this implementation was sourced from DataHub.io.

The data source is a CSV file with match statistics of the German Bundesliga season

2015-2016. It includes information about the matches, such as date, participating

teams, statistics, and betting odds. The statistics of the two teams are separated in

the names of the attributes, so that the statistics of the home team are attributes

including an ‘H’, and statistics of the away team are attributes including an ‘A’.

The match statistic attributes are the number of goals, shots, shots on target, fouls,

corners, yellow cards, and red cards, that have occurred during the match.

Furthermore, the overall result of the match (the FTR attribute that is also used in

the match data combined with the team attributes and player attributes) and the

goals scored are divided into both the fulltime- and halftime results. The betting

odds have been gathered from over ten different betting sites, and consist of the

45

odds for home win, draw or away win. However, these statistics are not used in the

implementation, since the most accurate betting odds are finalised exactly before

the start of a match and therefore cannot be gathered for all matches of a whole

season before the season has even started.

Although the match statistics data set from DataHub.io includes clean data and most

of the attributes needed to make predictions, there was a major obstacle. The match

statistics cannot be used directly to predict the results of the football matches, since

the statistics obviously have been gathered after the matches have ended. It does

not make sense to make predictions on matches that have already occurred, instead

previous matches must be used for the predictions. The statistics of every match

had to be converted into averages of previous matches. This makes the predictions

more logical, but in a real-world problem the result of upcoming matches cannot be

predicted using match statistics, except for the next upcoming match of a team.

However, in this implementation the whole season was predicted at a time, but the

chronological order of the matches was kept so that the results of matches later in

time are not “leaked” in the learning process of the machine learning models.

The data preparation of the match statistics was done with Python in Visual Studio

Code using the Pandas library. The first step was to read the data from the original

data source file into a Pandas data frame. Only relevant attributes were read into the

data frame, the betting odds were not considered. The type of every numerical

attribute was changed to float instead of integer, so that they would be simpler to

handle when calculating averages. The columns representing goals scored for each

team in a match were copied, so that there would be one column representing goals

scored and one column representing goals conceded for each team in a match.

In many football league tables online, the results of the last few matches for each

team are visible. This gives a hint of the current form of a team. A team that has

won all their recent matches is in form, but a team that has not won any of their

recent matches is in poor form. The FTR attribute was used in the implementation

to utilize the form of the teams. The FTR column was copied so that the form of

each team can be seen in every match. The values were converted to numerical

values to be able to calculate the averages. For each team, a win was set to two, a

46

draw to one, and a loss to zero. Thus, teams with a higher average exhibit superior

form.

Since the collected data only includes statistics from one season, the first matches

of the season will not have any data to make the averages on. Therefore, the

statistics of the last match of the 2014-2015 season of every team were added to the

data frame manually. The next step was to calculate the averages of the match

statistics. For each match, the statistics of the specific match had to be changed into

the averages of the past matches. For football match predictions, it has been found

that the best number of matches to be used for the averaging process, is the past 20

matches [27]. This was also chosen as the maximum number of past matches

considered in the averaging process of this implementation. In the 19 first stages of

the season, only the number of available past matches were considered.

The averages were calculated using a temporary table to keep track of the statistics

of past matches. A for-loop was used to iterate over the matches. In the beginning

of every iteration, the match statistics were saved to temporary variables together

with the stage number. The stage number was the same as the iteration order, which

was kept track of using a variable. The statistics were to be saved in the temporary

table, however, first the averages had to be calculated. Otherwise, the statistics of

the current match would also be considered in the averages and thus leaking

statistics that only should be seen after the match has ended.

Next the average of every attribute was calculated using the past match statistics in

the temporary table. The temporary table was filtered on the team names and a sum

of every attribute was calculated. The sums were then divided by the number of

past matches used, to receive the final averages. The averages were rounded to three

decimal places and then added to match statistics replacing the match statistics for

the current match. Next the match statistics of the current match, which were saved

to temporary variables, were added to the temporary table. The statistics of the two

teams in every match were separated in the temporary table so that it would be

simpler to find past statistics for a specific team. Lastly the stage number was

increased by one, and if it had reached 20 the match statistics of the teams in the

current match that had the lowest stage number in the temporary table, were

removed from the table so that the maximum number of past matches would not

47

exceed 20. When all the matches had been iterated, the final data frame was saved

to a CSV file.

The final data sets are shown in Figure 7. The player attributes data set consists of

774 columns, the team attributes data set consists of 30 columns, and the match

statistics data set consists of 22 columns.

Figure 7. The attributes of the three final data sets.

48

5. Prediction Models

When the data collection and data preparation are done, data sets that can be used

in the machine learning models are possessed. This chapter describes the prediction

models created in the implementation and the evaluation of their results.

5.1 Model Selections

The machine learning algorithms used in this implementation were chosen based

on their type, popularity, and use in previous research in football predictions. Since

multiclass classification is needed, the chosen algorithms must be able to support

it. The Naïve Bayes algorithm was chosen because it is one of the most known

machine learning algorithms and it has been used in previous research in football

predictions. Logistic regression and random forest were chosen since their approach

is very different, and therefore more possible types of algorithms for making

football predictions could be tested.

Every machine learning algorithm was implemented using Scikit-learn, which is a

Python library specialised in machine learning operations. The target in the models

is the FTR attribute, which consists of match results as categorical values.

Therefore, the CategoricalNB method was used in the Naïve Bayes implementation.

The random forest algorithm was implemented using the RandomForestClassifier

method, with 100 decision trees as the ‘n_estimators’ parameter. The logistic

regression algorithm was implemented using the LogisticRegression method. So

that the algorithm could handle multiclass classification, the ‘multi_class’

parameter was set to ‘ovr’ (One-vs-rest). To balance the number of predictions per

class, the classes were given weights in some logistic regression models. The

weights were based on the average distribution of match results in football, which

is around 45% for home wins, 30% for away wins, and 25% for draws [29]. The

frequency distribution of the results in the 2015-2016 German Bundesliga season,

is visualised in Figure 8. They are similar to the average distribution. However, the

actual distribution was not used, since it should not be known before the matches

have been played. The weights were switched around so that the weight for the

49

draws was the greatest. It was calculated with an equation where the proportions

between the values was considered. The final weights were 42% for draws, 35%

for away wins, and 23% for home wins.

Figure 8. The frequency distribution of the match results (the FTR attribute).

5.2 Team Attributes

The team attributes data sets were used with each of the three selected machine

learning algorithms. By combining the algorithms with different subsets of the

original data sets, multiple models were created. A subset in this context is a part

of the original data set, for example, to test the performance using just a few of the

original features. New subsets were tested with all the three algorithms to receive

an overview of their performance, and not only the result of one single model.

The data set was split randomly into training data and test data, so that 70% was

training data and 30% was test data. Before the overall ratings of the teams were

added to the team attributes data set, the data set was tested in the models. The

original team attributes data set included nine team attributes and the team name of

both the home team and the away team. These 20 attributes were used in the first

models. The prediction accuracy of the Naïve Bayes model was 51.1%. The logistic

regression model achieved a prediction accuracy of 53.3% and the random forest

model a prediction accuracy of only 43.5%. The achieved accuracies were decent

compared to previous research, bearing in mind that these were the first tests. To

validate the models more accurately, the k-fold cross-validation technique was

used. Using 10-fold cross-validation, the results were similar. Logistic regression

achieved an average accuracy of 52%, Naïve Bayes an average of 51%, and random

forest an average of 45%.

50

The most interesting aspect of the first tests, was to receive an estimate of the feature

importance. The feature importance can be used for feature selection in the model

testing phase. The feature importance using the random forest algorithm with the

original team attributes data set, is visualised in Figure 9.

Figure 9. The feature importance of the original team attributes data set using the

random forest algorithm.

According to the feature importance in Figure 9, the dribbling and passing in the

build-up play, the defence pressure, and the chance creation crossing, were the most

important attributes in this model. Another interesting finding is that the away team

seems to be more important than the home team in predicting the outcome of a

match. The next tests were done using a subset of the original team attributes,

including the four most important attributes from the first test and the team name

of each team. The models using these ten attributes performed better than the first

models. All the three new models improved by a few percentages, the best one still

being the logistic regression model, now with an accuracy of 59.4%.

When the team names were removed from the subset, the models performed more

balanced. The prediction accuracy of the logistic regression model decreased to

57.6%, but the accuracy of the random forest model increased to 54.3% and the

Naïve Bayes model achieved an accuracy of 52.2%. The confusion matrices of the

three models using the subset with eight attributes, are visualised in Figure 10. We

51

can see that the best precision occurred for the home win class, but the highest recall

occurred for the away win class. Overall, the f1-score was highest for home wins

and worst for draws. The most common faulty predictions by the models, were that

a match would end up in an away win instead of a draw or home win.

Figure 10. Prediction accuracy and confusion matrix of each model. From the left:

Naïve Bayes, logistic regression and random forest.

The second version of the team attributes data set also included the overall ratings

of the teams. When the four new attributes were added to the data set, the number

of attributes per team was 14, which brings the total number of attributes in the data

set to 28. The feature importance of this data set, according to the random forest

model, is visualised in Figure 11.

Figure 11. The feature importance of the team attributes data set including overall

ratings using the random forest algorithm.

52

Using the whole data set, the prediction accuracy of the models was 52.2% for

Naïve Bayes, 54.3% for logistic regression and 51.1% for random forest. According

to the 10-fold cross-validation scores, logistic regression achieved an average

accuracy of 53%, Naïve Bayes an average of 48%, and random forest an average of

46%. The same four team attributes as in the original data set, can be found among

the top attributes for feature importance of this data set. We can also see that the

midfield rating of the teams is the most important overall field rating.

Since the same four team attributes were again among the top attributes for feature

importance using the additional overall ratings, they were again chosen to be used

in subsets for more tests. The overall rating of the teams was removed and the

midfield rating was added to the subset. According to the feature importance the

defence rating and the attack rating have quite similar importance, however, in the

most tests the models performed better using the defence rating instead of the attack

rating. The logistic regression model achieved a prediction accuracy of 63.0% using

the four original attributes, the midfield rating and the defence rating. The result of

the model is visualised in Figure 12. However, we can see that barely any draws

were predicted. When running the same algorithm and data with weights, the

accuracy decreases a few percentages, but the recall of the draws was improved.

For the Naïve Bayes and random forest models, the prediction accuracy did not

change much regardless of combination of overall ratings together with the four

original attributes, but according to the 10-fold cross-validation scores all three

models improved by a few percentages using the six mentioned attributes.

Figure 12. The best single prediction result using team attributes data was achieved

using logistic regression with a data set of six attributes.

53

Although the data set that achieved the best single result among the team attributes

data sets, included some overall ratings, the addition of the overall ratings did not

improve the predictions significantly. In most of the tests, the logistic regression

algorithm performed the best according to the prediction accuracy. However, it

predicted only a few draws, and the f1-score of the draw class was very low. The

Naïve Bayes algorithm performed slightly better than the random forest algorithm

using team attributes data.

5.3 Player Attributes

The player attributes data sets were used with each of the three selected machine

learning algorithms. By combining the algorithms with different subsets of the

original data sets, multiple models were created. The data set was split randomly

into training data and test data, so that 70% was training data and 30% was test data.

The original player attributes data set included 35 attributes per player in every

match and the team name of both the home team and the away team, which brings

the total number of attributes to 772. These attributes were used in the first models.

The prediction accuracy of the Naïve Bayes model was only 42.4%, however, it

was done using the method GaussianNB instead of CategoricalNB. The

CategoricalNB method did not function properly due to different set of values in

the features. The logistic regression model achieved a prediction accuracy of 50.0%

and the random forest model a prediction accuracy of 56.1%. The logistic

regression model was even able to predict draws without weights, which the

original data sets using team attributes and match statistics were not able to do.

Using 10-fold cross-validation, Naïve Bayes achieved an average accuracy of 50%,

logistic regression an average of 42%, and random forest an average of 53%.

Since the number of attributes in the first models was so high, the feature

importance of an attribute was calculated by taking the mean of all players. This

resulted in 35 attribute groups plus the team name attributes. The estimates of their

feature importance are visualised in Figure 13. The away team attribute is clearly

standing out of the rest attributes. All the goalkeeper related attributes had low

feature importance, which was to be expected because the goalkeeper ratings of all

players in a match were included in the data set. However, the attributes of the

54

players are ordered in the data set according to their position on the field during

matches. By removing every goalkeeper related attribute, except those for the first

and the twelfth player, only the attributes of the goalkeepers were left. Every normal

player attribute of the goalkeepers was also removed. These changes in the data set

improved the results of the Naïve Bayes and logistic regression models with a few

percentages, but the random forest model performed slightly worse than in the first

test.

Figure 13. The feature importance of the original team attributes data set using the

random forest algorithm.

For the next models, some attributes with a low feature importance were removed

to test if it would improve the model predictions. When only a few attributes were

removed, the predictions worsened. However, when half of the attributes were

removed, the Naïve Bayes model achieved a prediction accuracy of 53.0% and the

random forest model a prediction accuracy of 56.1%. This time the logistic

regression model performed worst, achieving a prediction accuracy of only 39.4%.

The confusion matrices of the three models are visualised in Figure 14. Using 10-

fold cross-validation, the results were similar. Random forest achieved an average

accuracy of 54%, Naïve Bayes an average of 51%, and logistic regression an

average of 43%.

55

Figure 14. Prediction accuracy and confusion matrix of each model. From the left:

Naïve Bayes, logistic regression and random forest.

The feature importance of the attributes used in this data set was balanced with

small differences, which makes it difficult to make further feature selections. The

feature importance is visualised in Figure 15. The 19 attributes used per player were

on average more important than the 18 removed attributes.

Figure 15. The feature importance of the data set including half of the original

player attributes, using the random forest algorithm.

Since the number of attributes in the original data set was so high, the number of

possible combinations of them are also very high. However, all further tests with

player attributes data sets resulted in worse prediction accuracies than in the

mentioned tests. In some models only one attribute of each player was tested. The

overall rating and the potential of a player are examples of attributes that describe

56

the overall quality of a player more accurately. However, only a few of these

attributes achieved a prediction accuracy of over 50% on their own. Since the

playing position of the player attributes are known, we can look at the feature

importance of the overall rating attribute for each player to compare their

importance. It seems like the order from most to least important are attackers,

midfielders, goalkeepers, and defenders. A higher player position also has a higher

number, for example, the home attackers of the home team are number 8, 9, and 10

and the attackers of the away team are number 19, 20, and 21. Their feature

importance is visualised in Figure 16.

Figure 16. The feature importance of the players’ overall rating.

5.4 Match Statistics

The match statistics data sets were used with each of the three selected machine

learning algorithms. By combining the algorithms with different subsets of the

original data sets, multiple models were created. The data set was split into training

data and test data chronologically, so that the first 70% of all the matches was

training data and the last 30% was test data. The original match statistics data set

included nine team attributes and the team name of both the home team and the

away team. These 20 attributes were used in the first models. The prediction

accuracy of the Naïve Bayes model was 52.2%. The logistic regression model

57

achieved a prediction accuracy of 51.1% and the random forest model a prediction

accuracy of 55.4%.

The feature importance of the data set could be analysed after the first tests. The

feature selection in future models is based on the feature importance. The feature

importance using the random forest algorithm with the original match statistics data

set, is visualised in Figure 17. We can see that the red card attribute clearly has the

least importance. Red cards usually have a significant impact on match results, but

red cards from previous matches have a low impact on the results, except when a

key player receives suspension from the next matches due to a red card. The form

attribute also seems to be of low importance, although it usually indicates which

team will win. Surprisingly, the number of fouls made by the home team has

especially high feature importance.

Figure 17. The feature importance of the original match statistics data set using

the random forest algorithm.

The models performed more balanced when the red card columns were removed,

but they did not achieve a higher accuracy than using the whole data set. When

other attributes were removed, the models always performed worse. This suggests

that the whole original data set was the best data set to use, and that if more match

statistics would have been added the models, they may have performed even better.

The random forest algorithm achieved the highest prediction accuracy in almost all

58

the tests. The worst algorithm for the match statistics was logistic regression. Again,

it was mostly due to its inability to predict draws without the use of weights. When

weights were added to the models, the logistic regression achieved a lower

prediction accuracy but a higher f1-score for draws. The results of the three models

using the whole match statistics data set, are visualised as confusion matrices in

Figure 18. Since the values of the attributes are in different scales, feature scaling

was tested on the logistic regression models. However, it did not improve the

results.

Figure 18. Prediction accuracy and confusion matrix of each model. From the left:

Naïve Bayes, logistic regression and random forest.

The training accuracies of the Naïve Bayes and logistic regression models were

slightly higher than their test accuracies, however, the training accuracies of the

random forest models exceeded 90%. This is a sign of overfitting, which in this

case may be due to a too small data set. To validate the models more accurately, the

k-fold cross-validation technique could have been used. However, since the match

statistics data consists of previous match results, cross-validation is not appropriate

to use [23, 28]. If temporal data is used in cross-validation, the models would see

training data that has happened later in time than the test data, which would not be

possible in a real-world scenario. The model that achieved the highest prediction

accuracy using match statistics, was the random forest model that used the whole

original data set, achieving a prediction accuracy of 55.4%.

Link to the GitHub repository which includes the notebook used for making the

predictions: https://github.com/fredriksjoberg17/MasterThesis

https://github.com/fredriksjoberg17/MasterThesis

59

6. Discussion

Many different combinations of data sets and algorithms were tested in the

implementation. Most of the models achieved a prediction accuracy of around 50%.

A few of the best models reached over 60%, but the worst models barely reached

40%. The best model used six team attributes with the logistic regression algorithm,

and it achieved a prediction accuracy of 63.0%. It is in the range between 55% and

70%, which is the average prediction accuracy achieved by football predictions

[26]. The initial goal of this implementation was to achieve a prediction accuracy

of above 60%, which was reached.

The logistic regression algorithm performed the best using the team attributes data

sets. The Naïve Bayes algorithm performed slightly better than the random forest

algorithm with the same data sets. However, using the player attributes data sets,

the results were completely switched. Now random forest performed the best,

followed by Naïve Bayes, while logistic regression performed very badly. The order

was the same using match statistics data sets, but the differences between the

algorithms were smaller. One of the reasons why the performance of a particular

algorithm changes when the data set is changed, is the number of features in the

data set. The random forest algorithm generally performs well when the number of

features is high, but may struggle when the number of features is low. This can also

be seen in this implementation, when the random forest algorithm performed best

on the player attributes data set, which by far had the most features out of the three

original data sets.

The Naïve Bayes algorithm performed most balanced out of the tested algorithms.

It did not perform best with any of the original data sets, but some Naïve Bayes

models performed the best by a little margin using smaller subsets. It is common

for the Naïve Bayes algorithm to perform well generally, but it can still be less

accurate compared to other classification algorithms [40]. Naïve Bayes assumes

that all the attributes are independent of each other, which was not the case for many

attributes used in this implementation [12]. The random forest algorithm performed

best using both player attributes and match statistics, but worst using team

attributes. The logistic regression algorithm was responsible for the best single

60

model performance, and was the best algorithm for team attributes overall.

However, it was the worst algorithm for both player attributes and match statistics.

The average prediction accuracy of all models was around 52% for every tested

algorithm. Therefore, it is difficult to determine which algorithm is the best for

predicting football matches according to this implementation. Logistic regression

using team attributes was the best combination of algorithm and data set, random

forest was the best algorithm using match statistics and player attributes, but Naïve

Bayes was the most balanced algorithm.

The performance of the three types of data sets is more distinguishable. The team

attributes data set performed best on average and produced the best single model.

On average the team attributes models achieved a prediction accuracy of around

54%, and its best model achieved an accuracy of 63.0%, The match statistics models

achieved an average accuracy of around 53% and its best model achieved an

accuracy of 55.4%. The player attributes models achieved an average accuracy of

only around 51% and its best model achieved an accuracy of 56.1%. The team

attributes data set clearly was the best for football predictions according to this

implementation. Although the number of features in the data set was low compared

to the player attributes data set, it performed well also after feature selections and

removals. Some tests with mixed data types were also done in the implementation.

The most important team attributes and player attributes were joined and tested on

the algorithms. The highest accuracy was achieved by a logistic regression model

with a prediction accuracy of around 52%, but the average was around 50%.

One reason why the match statistics data set did not perform as well as the team

attributes data set, may be that the values of some match statistics did not differ

from each other enough, and therefore did not make any significant impact in the

generalisation of the data. Since the values were averages, many attributes with low

values, like scored goals, did not differ from each other as much as for other

attributes, like fouls. It can also be one reason why fouls had the greatest feature

importance according to Figure 17. However, feature scaling was tested in some

logistic regression models, but it did not improve the results. The primary reason

why the player attributes data set performed worst, was the size of the data set. The

team attributes data set and the match statistics data set both included 306 rows, one

61

for every match played in a German Bundesliga season. However, the player

attributes data set only included 219 rows due to incomplete data or null values.

Since the number of features in the original data set included over 700 features, it

means that the number of features was larger than the number of observations. This

can lead to overfitting, especially for logistic regression. This is one reason why

logistic regression performed so badly with player attributes in this implementation.

Although some models achieved a high prediction accuracy of over 60%, all the

models shared a common issue. They were unable to accurately predict draws. It

can be seen in the confusion matrices in Chapter 5, for example on the result of the

best model in Figure 12. We can see that the recall is very low, and the precision is

not over 50%. The confusion matrix of a well performing model should show a

clear diagonal line of true predictions, which cannot be seen in many models in this

implementation. It can be seen in Figure 19, which is a confusion matrix of the

training results of a Naïve Bayes model. Weights were used to increase the number

of predicted draws for models with a low f1-score of the draws. This improved the

f1-score of the draws, but the overall prediction accuracy usually decreased. The

difficulty of predicting draws correctly have been noticed in many research papers

[28, 30, 34]. Draws are difficult to predict because least number of matches end up

in a draw, and because the class in the middle is the most difficult to predict [30].

Figure 19. Training results of a Naïve Bayes model.

62

7. Conclusion

Football match prediction using machine learning can be performed using various

techniques and methods. According to previous research [26], most football match

predictions achieve an accuracy of between 55% and 70%, and so did the

predictions in this implementation. The highest prediction accuracy achieved in this

implementation was 63.0%, using six team related attributes with the logistic

regression algorithm. To achieve a higher accuracy, the predictions could have been

made using multiple seasons of data so that the models would have had more data

to train on. The primary factor why a greater accuracy was not achieved in this

implementation, was that the models were not able to predict enough draws

correctly in relation to home wins and away wins.

Many previous studies about football match predictions have used Bayesian

networks, logistic regression, and artificial neural networks. In this implementation,

the Naïve Bayes algorithm did not perform best with any type of data, but it was

the most balanced algorithm. Logistic regression performed best using team

attributes, and random forest performed best using player attributes and match

statistics. In future research, artificial neural network could be compared with these

algorithms and tested on the three different data sets used in this implementation.

The framework for sport result predictions made by Bunker and Thabtah [23]

worked well for football predictions in this implementation.

This thesis supports the argument that virtual video game data could be used for

predicting real football matches with great accuracy. Although it is impossible to

predict football match results perfectly, it is possible to achieve accuracies that are

much greater than for randomly made predictions. By comparing multiple different

combinations of machine learning algorithms and data sets, surprisingly accurate

football match predictions can be achieved.

63

Svensk sammanfattning

Förutsägelse av fotbollsmatcher med hjälp av

maskininlärning

Fotboll är världens populäraste sport. Den har blivit så populär tack vare sin

enkelhet och förmånlighet. Fotboll spelas världen över av personer tillhörande alla

kön och i alla åldrar. Därför är det ingen överraskning att det rör sig mycket pengar

inom professionell fotboll. Det intressantaste inom fotboll är förstås själva

resultaten av matcherna och vad som påverkar dem. För att kunna påverka

resultaten måste man kunna förutsäga dem med hjälp av data. Maskininlärning är

en utmärkt metod för att göra förutsägelser. I den här avhandlingen analyseras och

jämförs olika metoder och strategier för att hitta det bästa tillvägagångssättet. Ju

bättre noggrannhet som en metod uppnår i sina förutsägelser, desto bättre anses den

vara. Fotbollsmatcher kan sluta på tre olika vis: vinst för hemmalaget, oavgjort eller

vinst för bortalaget. För att hantera sådana förutsägelser kan man använda flerklass

klassificering.

Förutsägelse av fotbollsmatcher är inte en enkel uppgift. Det är omöjligt att

förutsäga dem exakt, även med hjälp av maskininlärning. Om det skulle vara

möjligt, skulle spänningen i sporten förloras och vadslagningsbyråerna skulle gå i

konkurs. En orsak att fotbollen har fått en så stor popularitet är att den är så

oförutsägbar. I varje match är det möjligt för ett svagare lag att vinna över ett

starkare, inte bara med hjälp av taktiska drag, utan också med hjälp av tur. Faktorer

så som vädret och hemmafavör kan leda till oväntade resultat.

Under de senaste åren har mängden tillgängliga data om fotboll och andra sporter

ökat enormt. Det här har möjliggjort för forskare och privatpersoner att själva

utveckla och förbättra metoder för att förutsäga fotbollsmatcher. För vissa personer

är målet med förutsägelserna att uppnå en så hög vinst som möjligt i vadslagning.

Däremot är då också syftet att hitta svaga punkter i vadslagningsbyråernas

förutsägelser, och inte bara att förutsäga de rätta resultaten på matcherna. I denna

avhandling är målet endast att analysera hur bra man kan förutsäga fotbollsmatcher

med hjälp av maskininlärning.

64

Översikt av maskininlärning

Maskininlärning är ett delområde inom artificiell intelligens och datavetenskap. Det

är en teknik som lär sig av data med hjälp av algoritmer och försöker uppnå bättre

och bättre resultat. En maskininlärningsmodell är resultatet av tränandet med en

specifik maskininlärningsalgoritm och specifika indata. Maskininlärning går ut på

att en maskin tränas att göra förutsägelser från observationer och tidigare

erfarenhet. Det enda som vi behöver berätta för maskinen är vad vi vill att ska

förutsägas och med hjälp av vilka data. Skillnaden mellan manuell programmering

och maskininlärning är att omvandlingen av indata till utdata är okänd i

maskininlärning. I manuell programmering är både indata och utdata känd, och vi

vet hur algoritmen ska skapas för att omvandlingen ska fungera korrekt.

Omvandlingsprocessen i maskininlärning är däremot okänd. Utseendet på utdata

kan vara känt, men inte vilken indata som resulterar i vilken utdata.

Det första steget i maskininlärning är att definiera problemet. Valet av indata och

maskininlärningsalgoritm beror på hurudant problem som är definierat. Det första

praktiska steget i maskininlärning är datainsamling. Både kvaliteten och kvantiteten

på data påverkar maskininlärningsmodellernas resultat. Följande steg är

databehandling, vilken består av datarensning och val av attribut. Data som

innehåller felaktiga värden eller saknar värden måste tas bort eller korrigeras. Data

i textformat måste dessutom konverteras till numeriska värden, eftersom

maskininlärning använder sig av matematiska funktioner. Attributen kan väljas

enligt hur relevanta de är eller hur bra resultat de ger i testmodeller.

Följande steg efter databehandlingen är valet av maskininlärningsalgoritm.

Maskininlärning kan delas in i tre huvudtyper: övervakat lärande, oövervakat

lärande och semi-övervakat lärande. Övervakat lärande använder indata som är

klassificerade, medan oövervakat lärande använder indata som inte är klassificerade

från början, utan det är helt och hållet maskinens uppgift att hitta någon slags

struktur. De vanligaste typerna av maskininlärningsalgoritmer är regression och

klassificering, som båda hör till övervakat lärande. Regression är en metod som

visar relationen mellan variabler genom att skapa en funktion som passar data.

Regression är speciellt bra på att förutsäga numeriska värden. Klassificering

förutsäger kategoriska värden i stället för numeriska värden. Alla möjliga värden

65

på utdata, som indata ska klassificeras i, kallas för klasser. Om det finns fler än två

klasser, kallas det för flerklass klassificering.

Efter att en maskininlärningsalgoritm har valts, kan modellen börja tränas med

indata. Indata måste delas upp i träningsdata och testdata så att delen träningsdata

är större. Testdata används för att testa hur bra maskininlärningsmodellen har lärt

sig av träningsdata. Det sista steget i maskininlärning är utvärdering av resultaten.

Den vanligaste måttet i utvärderingen är noggrannhet, alltså hur många procent av

observationerna som förutsades rätt.

Projekt

Det finns stora skillnader mellan olika sporter och tävlingar, med tanke på hur bra

man kan förutsäga dem. En av de viktigaste faktorerna är hur stor nivåskillnaden är

mellan de tävlande. En annan viktig faktor är hur många poäng eller mål som de

tävlande vanligtvis får i en tävling. Fotboll är en sport där lagen vanligtvis gör

relativt få mål, vilket försvårar förutsägelsen av resultatet. Ändå har vissa studier

inom förutsägelse av fotbollsmatcher lyckats uppnå noggrannheter närmare 90

procent [1]. De flesta studier har dock uppnått en noggrannhet mellan 55 och 70

procent [26]. De vanligaste maskininlärningsalgoritmerna som används för att

förutsäga fotbollsmatcher är naiv bayesiansk klassificerare, logistisk regression och

artificiella neuronnät.

Målet med detta projekt var att jämföra olika maskininlärningsalgoritmer och

metoder, och analysera hur bra man kan förutsäga fotbollsmatcher med hjälp av

dem. Projektet innefattar hela maskininlärningsprocessen, från datainsamling till

utvärdering av resultaten. I projektet förutsades resultaten på fotbollsmatcher i den

tyska högsta divisionen Bundesliga, säsong 2015–2016. Endast matchernas

slutresultat förutsades, alltså inte exakt hur många mål som lagen gjorde.

Förutsägelserna utfördes med hjälp av data som är relaterad till lagen som helhet,

de individuella spelarna och lagens tidigare matchresultat.

Flera olika datakällor användes i projektet. Data om lagen och spelarna hämtades

från en SQL-databas vid namn European Soccer Database. Den publicerades online

på Kaggle av Hugo Mathien. Databasen innehåller attribut, vars ursprungliga källa

är fotbollspelserien EA Sports FIFA. Lagens och spelarnas skicklighet inom olika

66

kategorier har betygssatts mellan 1–99, där 99 är det bästa möjliga betyget.

Databasen innehåller också matchresultat, men vissa attribut var ofullständiga eller

saknade värden. I stället hämtades matchstatistik på den valda ligan och säsongen

från en CSV-fil på Datahub.io.

Nästa steg efter datainsamling är databehandling. Databehandlingen utfördes i

programmet Visual Studio Code med programmeringsspråken Python och SQL.

För att kunna förutsäga matcherna med hjälp av de tre olika typerna av data, var det

nödvändigt att förena dem med information om varje match. Informationen som

behövs är vilka lag som spelade mot varandra och matchresultatet. Efter att lag- och

spelarattributen hade förenats med matcherna, togs onödiga attribut bort från

tabellerna. Tabellerna konverterades sedan till CSV-filer, för att enkelt kunna

hanteras i miljön för själva maskininlärningen.

Maskininlärningsmodellerna skapades med Python i Jupyter Notebook. Tre

maskininlärningsalgoritmer testades i projektet: naiv bayesiansk klassificerare,

logistisk regression och slumpmässig skog. Naiv bayesiansk klassificerare är

baserat på sannolikheter och är bra på att beakta tidigare händelser. Logistisk

regression är specialiserad på binär klassificering, men genom att använda flera

olika kombinationer av klasser fungerar den också för flerklass klassificering. En

slumpmässig skog består av flera beslutsträd, vilka är trädformade strukturer som

använder villkorlig logik.

Indata delades upp i träningsdata och testdata, så att 70 procent användes som

träningsdata och 30 procent som testdata. I den ursprungliga indata med lagattribut,

fanns det 20 attribut. Maskininlärningsmodellerna uppnådde noggrannheter runt 50

procent då alla attribut användes. De attribut som hade minst betydelse på resultatet

togs inte i beaktande i följande test. Det bästa resultatet med lagattribut, uppnåddes

av en modell som använde sex attribut med algoritmen logistisk regression.

Modellen lyckades uppnå en noggrannhet på 63 procent. I den ursprungliga indata

med spelarattribut fanns det 35 attribut för alla de 22 spelarna i en match. Eftersom

det totala antalet attribut blev så stort, testades kombinationer av endast några

attribut per spelare. Den bästa modellen som använde spelarattribut, använde

attribut över spelarnas totala skicklighet med algoritmen slumpmässig skog.

Modellen lyckades uppnå en noggrannhet på 54 procent. För att kunna använda

tidigare matchstatistik i förutsägelsen av kommande matcher måste man räkna ut

67

medeltal av attributen. Ett medeltal av statistiken, från de 20 senaste matcherna för

varje lag i varje match, räknades ut. Vid användning av tidigare matchstatistik är

det viktigt att beakta den kronologiska ordningen på matcherna, så att matcherna i

träningsdata har inträffat före matcherna i testdata. Den bästa modellen som

använde matchstatistik, använde algoritmen slumpmässig skog. Den lyckades

uppnå en noggrannhet på 55 procent.

Slutsats

Förutsägelse av fotbollsmatcher kan utföras på många olika sätt med hjälp av

maskininlärning. Enligt tidigare forskning uppnår de flesta förutsägelser av

fotbollsmatcher en noggrannhet mellan 55 och 70 procent [26]. Det stämmer

överens med det bästa resultatet som uppnåddes i mitt projekt. Den högsta

noggrannheten uppnådd var 63 procent, i en modell som använde lagattribut med

algoritmen logistisk regression. För att få ökad noggrannhet i projektet, kunde man

ha använt data från flera säsonger, så att modellerna skulle få mera data att träna på.

Den största orsaken till att inte en större noggrannhet uppnåddes i projektet, var att

modellerna inte gjorde tillräckligt många korrekta förutsägelser av oavgjorda

resultat, i relation till hemmavinster och bortavinster.

Många studier inom förutsägelse av fotbollsmatcher har använt naiv bayesiansk

klassificerare, fast i detta projekt presterade den sämre än logistisk regression och

slumpmässig skog i de flesta test som gjordes. En nackdel med naiv bayesiansk

klassificerare är att den antar att alla attribut är oberoende från varandra, vilket inte

är fallet i en stor del av den data som användes i detta projekt. Den bästa algoritmen

för lagattribut var logistisk regression, medan den bästa algoritmen för

spelarattribut och matchstatistik var slumpmässig skog. Naiv bayesiansk

klassificerare presterade dock mest balanserat utav de tre algoritmerna.

Fastän det är omöjligt att förutsäga resultaten i fotbollsmatcher perfekt, går det att

uppnå noggrannheter som är mycket större än slumpmässiga resultat. Genom att

jämföra flera olika kombinationer av maskininlärningsalgoritmer och indata kan

man uppnå förvånansvärt bra resultat.

68

Bibliography

[1] F. Owramipur, P. Eskandarian and F. S. Mozneb, “Football Result Prediction with

Bayesian Network in Spanish League-Barcelona Team,” International Journal of

Computer Theory and Engineering, vol. 5, no. 5, 2013.

[2] W. Rahman, in AI and machine learning, New Delhi, India, SAGE Publications Pvt

Ltd, 2020, pp. 19-20, 38-41.

[3] O. Campesato, in Artificial intelligence, machine learning, and deep learning,

Dulles, Virginia ; Boston, Massachusetts ; New Delhi, Mercury Learning and

Information, 2020, pp. 26-31, 39, 67-73, 87-89, 105.

[4] E. Alpaydin, in Machine Learning, Massachusetts, MIT Press, 2021, pp. 16-18, 105-

107, 127-129, 143.

[5] J. Rogel-Salazar, in Data Science and Analytics with Python, New York, Chapman

and Hall/CRC, 2017, pp. 102-104.

[6] Handelman et al, “Peering Into the Black Box of Artificial Intelligence: Evaluation

Metrics of Machine Learning Methods,” American Journal of Roentgenology, vol.

212, no. 1, pp. 38-43, 2019.

[7] T. Dietterich, “Overfitting and Undercomputing in Machine Learning,” ACM

Computing Surveys, vol. 27, no. 3, 1995.

[8] V. Nasteski, “An overview of the supervised machine learning methods,” Bitola,

Macedonia, 2017.

[9] N. Grira, M. Crucianu and N. Boujemaa, “Unsupervised and Semi-supervised

Clustering: a Brief Survey,” INRIA Rocquencourt, Le Chesnay Cedex, France, 2015.

[10] M. Mohammed, M. B. Khan and E. B. M. Bashier, Machine Learning: Algorithms

and Applications, Auerbach Publications, 2017.

[11] Liu et al, Computational and Statistical Methods for Analysing Big Data with

Applications, Australia: Academic Press, 2016.

69

[12] J. Cheng and R. Greiner, “Comparing Bayesian Network Classifiers,” University of

Alberta, Edmonton, Alberta, Canada, 1999.

[13] T. Soni Madhulatha, “AN OVERVIEW ON CLUSTERING METHODS,” IOSR Journal of

Engineering, vol. 2, no. 4, pp. 719-725, 2012.

[14] Choi et al, “Introduction to Machine Learning, Neural Networks, and Deep

Learning,” Translational Vision Science & Technology, vol. 9, no. 2, 2020.

[15] J. Brownlee, “4 Types of Classification Tasks in Machine Learning,”

https://machinelearningmastery.com/types-of-classification-in-machine-learning/,

Accessed 5 March 2023.

[16] M. Aly, “Survey on Multiclass Classification Methods,” 2005.

[17] H. K. Jabbar and R. Z. Khan, “METHODS TO AVOID OVER-FITTING AND UNDER-

FITTING IN SUPERVISED MACHINE LEARNING (COMPARATIVE STUDY),” Aligarh

Muslim University, Aligarh, India, 2015.

[18] X. Ying, “An Overview of Overfitting and its Solutions,” Journal of Physics:

Conference Series, vol. 1168, no. 2, 2019.

[19] Sportradar Integrity Services, “BETTING CORRUPTION AND MATCH-FIXING IN

2021,” 2022.

[20] E. Štrumbelj, “On determining probability forecasts from betting odds,”

International Journal of Forecasting, vol. 30, no. 4, pp. 934-943, 2014.

[21] L. Kaunitz, S. Zhong and J. Kreiner, “Beating the bookies with their own numbers -

and how the online sports betting market is rigged,” Cornell University, 2017.

[22] G. Fialho, A. Manhães and J. P. Teixeira, “Predicting Sports Results with Artificial

Intelligence - A Proposal Framework for Soccer Games,” Procedia Computer

Science, vol. 164, pp. 131-136, 2019.

[23] R. P. Bunker and F. Thabtah, “A machine learning framework for sport result

prediction,” Applied Computing and Informatics, vol. 15, no. 1, pp. 27-33, 2019.

70

[24] A. Almazov, “The main factor in predicting football bets,” https://alvin-

almazov.com/theory/the-main-factor-in-predicting-football-bets/, Accessed 10

April 2023.

[25] S. Wilkens, “Sports prediction and betting models in the machine learning age: The

case of tennis,” Journal of Sports Analytics, vol. 7, no. 2, pp. 99-117, 2021.

[26] T. Horvat, “The use of machine learning in sport outcome prediction: A review,”

WIREs Data Mining and Knowledge Discovery, vol. 10, no. 5, 2020.

[27] D. Buursma, “Predicting sports events from past results “Towards effective betting

on football matches”,” in 14th Twente Student Conference on IT, Twente, Holland,

2011.

[28] N. Tax and Y. Joustra, “Predicting The Dutch Football Competition Using Public

Data: A Machine Learning Approach,” TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, 2015.

[29] Betting Offers, “Home Advantage in Football: How Often Does the Home Team

Win?,” https://www.bettingoffers.org.uk/how-big-is-home-advantage-in-football/,

Accessed 7 February 2023.

[30] Y. S. Taspinar, I. Cinar and M. Koklu, “Improvement of Football Match Score

Prediction by Selecting Effective Features for Italy Serie A League,” MANAS Journal

of Engineering, vol. 9, no. 1, pp. 1-9, 2021.

[31] J. Shin and R. Gasparyan, “A novel way to Soccer Match Prediction,” Stanford

University, 2014.

[32] D. Prasetio and D. Harlili, “Predicting football match results with logistic

regression,” in International Conference On Advanced Informatics: Concepts,

Theory And Application (ICAICTA), Penang, Malaysia, 2016.

[33] Razali et al, “Predicting Football Matches Results using Bayesian Networks for

English Premier League (EPL),” in IOP Conf. Ser.: Mater. Sci. Eng., Malaysia, 2017.

[34] H. Chen, “Neural Network Algorithm in Predicting Football Match Outcome Based

on Player Ability Index,” Advances in Physical Education, vol. 9, no. 4, 2019.

71

[35] M. A. Rahman, “A deep learning framework for football match prediction,” SN

Applied Sciences, vol. 2, no. 165, 2020.

[36] H. Mathien, “European Soccer Database,”

https://www.kaggle.com/datasets/hugomathien/soccer, United Kingdom, 2016.

[37] R. Murphy, “FIFA player ratings explained: How are the card number & stats

decided?,” https://www.goal.com/en/news/fifa-player-ratings-explained-how-are-

the-card-number--stats-decided/1hszd2fgr7wgf1n2b2yjdpgynu, Accessed 13

March 2023.

[38] FIFA Index, “EA Sports FIFA16,”

https://www.fifaindex.com/teams/fifa16_73/?league=19&order=desc, Accessed

January 2023.

[39] DataHub.io, “season-1516,” https://datahub.io/sports-data/german-bundesliga,

Accessed January 2023.

[40] H. Bhavsar and A. Ganatra, “A Comparative Study of Training Algorithms for

Supervised Machine Learning,” International Journal of Soft Computing and

Engineering (IJSCE), vol. 2, no. 4, 2012.

