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Abstract

The analysis of ship voyages using Automatic Identification System (AIS) data plays

a crucial role in enhancing our understanding of maritime behavior and improving

navigational safety. In this study, we focused on elucidating ship voyages by applying

the elastic trend filter to AIS data and analyzing turns using circle-fitting techniques.

Our primary objective was to gain insight into a ship’s navigational characteristics

and decision-making processes during turning maneuvers.

To achieve this, we identified turns in the ship’s trajectory, approximated their

radii by fitting circles to the data points, and extracted the underlying route using

the elastic trend filter. The consistent turn radii observed in the results indicated

the presence of a common navigational strategy. However, variations in turn radii

were also observed, suggesting instances of sharper turns made to avoid obstacles

or navigate through constrained spaces.

To assess the accuracy of our circle fitting method, we compared its precision to man-

ual measurements and previous investigations, demonstrating its reliability. These

findings have important implications for autonomous ship control systems, naviga-

tional regulations, and marine safety. Recognizing ship maneuvers and their associ-

ated radii can contribute to enhancing navigation procedures and optimizing route

planning.

By leveraging the analysis of AIS data, our study contributes to advancing trans-

parency and providing novel insights into the navigational behavior of ships. The

acquired knowledge holds significance in understanding and explaining ship voyages,

making a valuable contribution to this field of study.

ix



Chapter 1

Introduction

1.1 Overview

Shipping is one of the backbones of today’s globalized economy that is highly in-

terconnected. Over 70% of goods will be transported by sea by 2050, which is

expected to double the demand for freight transportation [4]. Passenger ships, fer-

ries, fishing vessels, and recreational boats also sail the world’s oceans in addition

to commercial transport ships. To ensure the continued operation of the increas-

ingly globalized market economy, as well as the health and safety of passengers and

marine ecosystems, it is necessary to ensure the safety and security of diverse mar-

itime traffic. Automatic identification system (AIS), designed by the International

Maritime Organization (IMO) in the 1990s to increase safety and security at sea, is

complementary to high-frequency radars [5]. A ship that is equipped with an AIS

transceiver broadcasts its position to nearby vessels and authorities on a periodic

basis based on the Global Navigation Satellite System (GNSS). On-shore Vessel

traffic services (VTS) rely on the AIS to guide and plan traffic as adjacent vessels

use positional data that aids the vessel in collision avoidance [6]. Ships that use AIS

transponders transmit regular information, such as their location, course, speed,

destination, and ship identifier, as required under the international convention for

safety of life at sea (SOLAS) [7, 8]. It is possible to collect this information over time

and analyze it in order to identify normal patterns of behavior [9]. The behavior of
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a ship could indicate that it is being used for illicit activities if it exhibits anomalous

behavior. Tens of thousands of ships traveling between thousands of ports every day,

however, make it impossible to manually monitor the potential threat. Therefore, a

priority list for further investigation must be created using efficient and robust au-

tomatic data processing. In recent years, a variety of methods have been developed

to explain ship voyages and automatically detect anomalies in maritime AIS tracks

[10, 11, 12, 13, 14, 15]. Detecting anomalies within confined local areas is possible

through anomaly detectors developed in mentioned papers because vessel traffic is

to some extent predictable. The physical constraints of sea routes or mandatory

sailing routes also prevent vessels from acting arbitrarily. This makes such detectors

capable of detecting anomalies in vessel traffic patterns, like accidents or criminal

activities, and marking them as anomalies. Developed methods can also contain a

high number of false alarms, one of the common challenges in detecting anomalies

in a maritime environment.

Traditionally, before the era of Electronic Chart Display and Information Sys-

tems (ECDIS), route planning for ships was done with a ruler and compass. While a

voyage involves drawing lines on a chart, critical decisions have to be made through-

out. When navigating, a number of factors must be considered, such as weather

conditions, sea state, currents, traffic separation schemes, depths of water, and ma-

neuvering characteristics of the vessel.

Most of the studies have focused on using techniques to detect and restore the

anomaly AIS data based on route planning of a particular vessel, calculated from

machine learning models but several existing works ignored the changes in the ves-

sel’s direction in confined constraints due to the impact of size, speed or weather

conditions [16, 17, 18, 19]. To reduce the environmental impact and ensure the

efficiency, effectiveness, and safety of maritime transport, it is vital to understand

current maritime transport patterns, from how a single ship operates within a narrow

geographical context to how many ships operate within a wider geographical area.

Consequently, route plans can be decomposed into straight lines, circle sections, and

a few points of reference using simple rules and logic. This means reconstructing the

route plan and explaining the critical decision-making in an executed voyage might
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be possible, given navigational AIS data. Taking into consideration the ship’s ability

to turn within a constrained space such as a narrow channel or harbor is something

that should not be overlooked, especially during route planning. Factors such as

a ship’s size, speed, and shape affect its maneuvering characteristics, including its

turning circle and stopping distance. It is imperative to understand these factors in

order to ensure safe and efficient navigation of ships in confined waters.

This study delves into the significance of understanding the underlying reasons be-

hind ship maneuvers, addressing a crucial gap in the current understanding of vessel

behavior. Even while data from the AIS is useful for learning about ship operations,

it largely focuses on what a ship is doing rather than the reasons for its particular

maneuvers. This research intends to uncover insights that can help to a more thor-

ough understanding of maritime operations by examining the reasons underlying

ship motions. Moreover, the development of automated methods for extracting voy-

ages and key maneuvers from AIS data has the potential to facilitate the creation

of meaningful datasets for researchers. When enormous amounts of AIS data are

generated during a journey, it is crucial to simply record the pertinent navigational

points in order to prevent needless data storage. The availability of stored ”typi-

cal voyages and key maneuver” data can be a useful resource for route planning in

educational contexts and developing hands-on training exercises for training simu-

lators, which is especially pertinent to institutions like Aboa Mare. Additionally,

having access to the ’normal’ maneuver patterns for a specific route makes it easier

to spot anomalous maneuvers, potentially improving Vessel Traffic Services (VTS)

capabilities.

For research purposes, AIS data is extracted from “The Finnish Transport Infras-

tructure Agency”. The data was collected using a web socket API on Google Cloud.

The thesis consists of four main chapters. Chapter 1 gives an introduction to the

general research area, previous research done in the same area, the problem state-

ment, the research aims and the scope. Moreover, it also gives an overview of AIS

data and its workings. Chapter 2 reviews the historical context and methods al-

ready in use from earlier studies to explain ship maneuvering. Chapter 3 gives a

review of the methodology used on AIS data. Moreover, it explains the research
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framework which includes raw data acquisition, data wrangling and preprocessing,

feature analysis, dataset and the methods used to analyze the turning points in a

vessel’s journey. Chapter 4 shows the results obtained from methods implemented

on the AIS dataset. Chapter 5 discusses a more general and holistic picture of the

thesis and how it contributes toward the fulfillment of the research gap. Chapter

6 attempts to summarize the critical findings of the results and gives a holistic

overview of the nature of the research. Furthermore, it also explains the problems

and challenges that were faced during development and then provides suggestions

related to some future work in this field.

1.2 Problem Statement

According to the Organisation for Economic Co-operation and Development (OECD),

over 70-90% of the trade goods traded in the world are transported by ships [20].

As a result, maritime traffic and ship sizes are increasing. Because of high invest-

ment costs and geographical constraints, the infrastructure at ports and terminals

restrains the growth in the size of ships along waterways. Since both human and en-

vironmental impacts are involved in maritime logistics, the margin for error becomes

very small. An example can be taken by the grounding of the Ever-Given ship in

the Suez Canal in 2021 illustrating the severe consequences of human error in mar-

itime transport. The cause of maritime collisions has been evaluated statistically by

engineers using historical collision data [21, 15]. In each area over a given period of

time, there can only be a limited number of incidents collected on which statistical

analysis can be performed. With the help of land-based and satellite-based stations,

the AIS collects a large amount of maritime traffic data [22]. Insights into maritime

traffic behavior and route estimation can be gained from the existing AIS data, as

well as anomalous behavior can be detected.

Examining a voyage entails a thorough review of all the data points in the AIS

dataset that have been assigned to a specific ship. The research is guided by the

following questions: Based on the historical AIS data, how can maritime routing

patterns be discovered automatically and efficiently? To discover patterns and create
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a network that represents maritime traffic, what algorithms might be applied? In

order to efficiently process huge amounts of maritime information, how can we design

and implement methods that can process huge amounts of maritime information?

By answering these questions, researchers will be able to derive valuable information

from the detailed analysis of voyage data, that helps advance maritime analytics,

optimize routes, and improve decision-making in a variety of areas, including vessel

traffic management, transportation planning, and maritime safety.

1.3 Research Aim

Explaining the voyage of a vessel can benefit a number of people in several ways.

Ship navigator officers plan the voyage manually which can be a time-consuming and

tiresome job, and sometimes human errors can be involved which can result in dis-

astrous events. With the help of my research, voyage planning can be autonomous,

and navigators who are unfamiliar with a sea area, and who don’t have information

about past experiences, would be able to plan a voyage easily due to the availability

of vessel routes taken in the past. This way they will be able to know what would

be the best practice in the considered area. In addition, avoiding technical disasters

can also help the global economy as a single canal blockage due to a vessel can cost

up to $9.6 billion of global trade [23].

I am trying to solve the problems explained in Section 1.2. Gaining a thorough

grasp of how ships react and function throughout various maneuvers is the goal of

ship maneuverability analysis. Researchers, naval architects, and maritime experts

can accomplish the following goals by studying ship maneuverability:

1. Safety Assessment: When evaluating the safety of ship operations, especially

during crucial maneuvers like turns, ship maneuverability is examined. Under-

standing a ship’s moving capabilities and limitations can help in identifying

potential dangers and risks, allowing for the formulation of safer navigational

plans and the application of appropriate safety precautions.

2. Port and Waterway Planning: Planners of ports and waterways must consider

ship maneuverability. Planning professionals may provide the best possible de-
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sign and layout for port infrastructure, including navigation channels, berths,

and turning basins, by examining how ships maneuver in constrained areas

like ports, canals, or locks. By doing this, congestion and delays are reduced,

and safe and effective vessel movements are guaranteed.

3. Collision Avoidance and Traffic Management: Systems for traffic management

and collision avoidance depend on an understanding of ship maneuverability.

Researchers can create advanced algorithms and models for assessing collision

risk, predicting trajectories, and optimizing traffic flow by studying ship be-

havior during maneuvers. This makes it possible to implement efficient traffic

management plans and create smart navigational systems to avoid collisions

and raise overall maritime traffic safety.

4. Environmental Impact Assessment: Assessing ship maneuverability aids in

determining how vessel operations impact the environment. Researchers can

assess the impacts of ship movements on sensitive coastal areas, marine ecosys-

tems, and air quality by observing turning behavior and maneuvering patterns.

The development of sustainable shipping practices, coastal zone management,

and environmental impact assessments all benefit from this information.

Overall, the goal of studying ship maneuverability is to increase marine safety, en-

hance port and waterway planning, create collision avoidance systems, and evaluate

how vessel operations affect the environment. Gaining knowledge of ship maneuver-

ability will help stakeholders in the marine sector make informed decisions, imple-

ment effective measures, and guarantee the efficient and safe movement of ships.

1.4 Research Scope

While the goal of this research is to offer insightful information on a ship’s movement

during turning maneuvers and to discover maritime routing patterns automatically

and efficiently, it is crucial to recognize the study’s inherent limitations. These

restrictions are caused by various factors, such as data availability, methodology

constraints, and contextual considerations. Contextualizing the results and ensur-

ing a fair interpretation of the research findings depends on being aware of these
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limitations. When generalizing the findings and assessing the application of the find-

ings in realistic marine contexts, it is imperative to take the following constraints

into account.

1. Data Availability: AIS data quality and availability are crucial to the research

scope. In this study, the spatial and temporal limitations of the dataset used

may limit the analysis and findings. Moreover, the usage of specific dataset

can constrain the generalizability of results.

2. Turning Point Extraction Methods: In this research, turning points from AIS

data are extracted using trend-filtering techniques. Even though trend filtering

can be an effective technique, choosing the right algorithm and parameter

settings can ensure improved accuracy and robustness. However, this research

does not cover alternative methods for identifying turning points or comparing

multiple algorithms extensively.

3. Limited Contextual Information: Positioning and navigation information are

primarily provided by AIS data, but certain contextual details may influence

ship behavior during turns. In the analysis, factors such as vessel cargo, in-

tended route, and navigational conditions are not directly taken into account.

Rather than looking at comprehensive contextual data, the research scope

focuses on ship trajectory analysis.

4. Simplified Turning Analysis: The research mainly focuses on identifying turn-

ing points and turning radii to characterize ship-turning behavior. The anal-

ysis may not include all aspects of ship maneuvering during turns, such as

acceleration profiles or particular turning methods used by different vessel

types, even though these measures offer insightful information.

5. Generalizability: The dataset and vessels used in the study could have influ-

enced the research findings. Different vessel types, sizes, or operational cir-

cumstances might demonstrate different turning behaviors that aren’t entirely

covered by the defined scope. Only three ships’ behavior is taken into account

in this study. Further validation and the use of a more varied dataset could

be necessary in order to generalize the results to the entire marine industry.
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In conclusion, the main contributions of this thesis are summarized as follows:

1. Generate a benchmark route plan based on standard navigational rules and

practices.

2. Develop methods for reconstructing the route plans from historical AIS data.

3. This paper proposes different trends on AIS data using Trend filtering methods

such as Elastic Filtering.

1.5 AIS Data

In this study, as a first step towards explaining voyages and calculating radius, we

will develop methods for reconstructing the route plans from historical AIS data.

Before developing, it is necessary to know the AIS data and its guidelines. Moreover,

it is also important to have knowledge about wheel over point and turning radius

of a ship because when planning a passage, it is imperative that a ship adjusts its

course correctly and follows the new intended course precisely.

1.5.1 What is AIS Data?

A short-range coastal tracking system known as the Automatic Identification System

(AIS) is used by ships today. It serves both vessels and shore stations by providing

identification and positioning information. Navigation safety has been improved

by AIS since radar was introduced [24]. The system operates in the Very High

Frequency (VHF) maritime band and provides digital positional awareness. The

system provides additional information to assist situational awareness and assists

with identifying ships, target tracking, search and rescue operations, and simplifying

information exchange [25].

With the AIS, vessels continuously send their identities, positions, speeds, and

courses, as well as other relevant information, to all AIS-equipped ships in their

range. In addition to managing maritime traffic and reducing marine navigation

hazards, the system works in conjunction with a shore station to enhance maritime

safety. Figure 1.1 different routes AIS data can be transmitted [1].
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Figure 1.1: An example of AIS System Overview [1]

1.5.2 Working of AIS

In an AIS unit, automatic location and movement data are obtained by using the

vessel’s Global Positioning System (GPS) system or an internal sensor. A combi-

nation of this information and programmable information from the AIS unit (such

as Maritime Mobile Service Identity (MMSI) number, the name of the vessel, the

destination, and the cargo type) is then transmitted regularly at regular intervals

while receiving AIS information from other vessels. There is the option of using an

antenna splitter instead of the antenna that transmits from the VHF radio for the

AIS unit. It is important to use an active antenna splitter that is suitable for AIS

and VHF radios.

SOLAS requirements: Under the IMO Convention for SOLAS [26], all ships with

a gross tonnage over 300GT engaged on international voyages as well as all passenger

ships, regardless of size, must be equipped with AIS.

There are two types of classes in AIS:

1. Class A: This requirement applies to all passenger ships and vessels with a

displacement of 300 GT or more engaged on international voyages.

2. Class B: Designed for vessels that are not SOLAS-compliant and provides

9



limited functionality. A pleasure craft is the most common vessel to use this

type of propeller.

There are two dedicated VHF channels or frequencies that AIS operates on [27]:

1. AIS 1: Works on 161.975 MHz- Channel 87B (Simplex, for the ship to ship)

2. AIS 2: 162.025 MHz-Channel 88B (Duplex for the ship to shore)

There are four different types of data that AIS devices exchange and transmit, i.e.

static, dynamic, voyage-related, and short safety-related messages.

1. Static Information

The data presented in Table 1.1 is broadcast every 6 minutes and on request

by a competent authority.

2. Dynamic Information

The data presented in Table 1.2 depends on speed and course alteration. This

data, typically, can be seen on the chartplotter. The AIS transceiver sends the

dynamic information every 2 to 10 seconds depending on the vessel’s speed

while underway, and every 3 minutes while the vessel is at anchor.

3. Voyage-related information

The data presented in Table 1.3 is broadcasted every 6 minutes when data is

amended or on request.

4. Short safety-related messages

These messages are in the form of free-format text messages which are ad-

dressed to one or many destinations or all stations located in the area. These

messages can be related to content like iceberg sightings, buoy missing, etc.
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Information Description
MMSI number Vessel’s unique ID

IMO number
Company issues a unique seven-digit number to
each vessel and it can refer to the ship owner or
company.

Name and Call Sign
Name: Name of the vessel, max 20 characters.
Call Sign: International radio call sign is assigned
to each vessel during the process of its registration

Dimensions of ship Length and Beam are measured in meters

Type of ship
Ship is categorized on the basis of the cargo it
transports and its size. The type of ship can be
passenger, reserved, cargo, tanker, etc.

Location of position
fixing antenna

Location of positioning system’s (e.g. GPS) an-
tenna onboard the vessel

Table 1.1: Static Information in AIS

Information Description
Navigation Sta-
tus (NAVSTAT)

It indicates the status of the vessel “at anchor”,
“under way using engine” or “not under command”

rate-of-turn (ROT) It indicates the vessel’s position with respect to
right or left, 0 to 720 degrees per minute.

speed-over-ground
(SOG)

It indicates the speed of the vessel with respect
to 0.1 knot resolution from 0 to 102 knots - vessel
moving relative to the surface of the Earth

Position Accu-
racy (POSACC) Ship’s position with accuracy indication

Geographical Coordi-
nates

It indicates the vessel’s location with respect to:
Longitude – to 1/10000 minute
Latitude – to 1/10000 minute

Course over ground
(COG) Relative to true north to 0.1 degree

True Heading 0 to 359 degrees calculated using gyro compass

Position Timestamp It is measured in Coordinated Universal Time
(UTC)

Table 1.2: Dynamic Information in AIS
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Information Description
Ship’s draught 0.1 meter to 25.5 meters

Type of cargo Types can include dangerous goods, harmful sub-
stances, marine pollutants, etc.

Destination and
Estimated Time Ar-
rival (ETA)

Destination – max 20 characters
ETA at destination – UTC month/date
hour:minute

Route plan (Way-
points)

Route plan consists of waypoints and legs. A way-
point is a single coordinate within a route, at which
a vessel stops or changes its course.

Table 1.3: Voyage related Information in AIS

1.5.3 Limitation of AIS Data

As AIS is a relatively new technology (circa 2000), long-term records are rarely kept

because the transmitted messages require so much physical space. In spite of the

fact that AIS only represents received data, the greatest limitation is what is not

received. Following are some of the key points to which AIS data is limited.

• AIS information may not be accurate. It is possible for ships to display the

wrong destination. They might have forgotten to enter their final destination

after leaving a port. It’s possible that they overlooked updating their naviga-

tional status as well. Due to the fact that it depends on active input from a

human, it is far too simple for this ”voyage data” to be incorrect.

• The AIS information could be misinterpreted. It is now the responsibility of

the receiver to appropriately interpret the data, assuming that the information

being transmitted by another vessel is accurate.

• Officer on Watch (OOW) could become over-reliant on AIS. The information

on the screen can appear uncomfortably reliable when utilized on an ECDIS.

• AIS is not available on all smaller ships. AIS is only required on the following

vessel categories (depending on Gross Register Tonnage (GRT)), according to

SOLAS:

1. Cargo ships >300 GRT on international voyages

2. Cargo ships >500 GRT on all voyages
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3. All passenger ships

• OOW should be aware that AIS may be disabled on certain ships, thus negat-

ing any information they might receive from them if AIS is installed.

• OOW should not assume that the information received from other ships might

be inaccurate or not of the same precision as information available on their

vessel.

However, collision avoidance should not solely be dependent on AIS information. A

vessel’s AIS system is merely a source of additional information for the OOW, and it

only serves to assist in navigating the vessel. Human expertise on bridges can never

be replaced by AIS and radar is the most reliable way to identify moving vessels..

In summary, AIS only contributes to better navigation safety through its assistance

to OOW/VTS. The installation of a standalone AIS system is just a matter of

plugging in a few cables and turning it on, since AIS is typically integrated with

ship bridge systems or multi-functional displays.
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Chapter 2

Literature Review

In the past decades, AIS data has been extensively utilized in maritime research.

Since AIS is based on VHF signals, which have a limited range, rather than satel-

lites, most research has focused on narrow and congested waterways. It has been

identified by vessel operators that route planning sometimes involves long journeys

which can cause inappropriate cost estimation [11]. As a result, it is considered a

bad voyage plan. In [28], a data-driven methodology is proposed that can develop

an optimized route considering the ship’s dimensions, weather, and load conditions.

This method divides the voyage into open and local sea passages. On the basis of

speed, these passages are simplified to pattern nodes. After this process, two types

of algorithms are applied to the dataset i.e. K-Means algorithm for the classifi-

cation of pattern nodes on the basis of routes in the open sea and Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) algorithm for the identi-

fication of connection points on the basis of routes in the local sea. It is possible to

determine the most navigated routes between two ports through a combination of

representative routes in open sea passages as well as link points in local sea passages.

Additionally, research based on the usage of AIS data to produce adequate infor-

mation for Maritime Spatial Planning (MSP) is currently being conducted at the

European level [29]. Integrating AIS with MSP offers a promising perspective for

European Marine Strategy Framework although AIS data was originally applied to

navigation safety; as data accessibility improved, it was used for diverse purposes.

14



These purposes include vessel traffic management, fisheries management, and in-

formed decision-making. The application of AIS data can be divided into three

stages, i.e., basic, extended, and advanced [2]. Approximately two to three applica-

tion fields are present in each stage, totaling seven (refer Figure 2.1). Furthermore, a

most recent application that has become famous, is whale-watching operations. To

estimate whale-watching efforts in areas with cetacean populations, big data analy-

sis based on AIS messages can be useful [30]. It is recommended that the responsible

authorities promote the installation of AIS transponders at least on all vessels au-

thorized to conduct whale-watching activities since the proposed methodology relies

heavily on the number of vessels equipped with AIS transponders.

Figure 2.1: Application of AIS data in different areas [2]

The system that learns the normal behavior of vessels, detects anomalies and pre-

dicts the motion using an artificial neural network trained with AIS data is explained

in [31]. The researchers have taken a few steps to analyze data which includes per-

forming data mining to extract motion patterns and then defining those motion

patterns. To simplify things, motion pattern is defined by kinematic and attribute

information with only one variable i.e., its origin. The kinematic information will in-

clude the ship’s location and velocity, both of them in two dimensions. The training

data used for anomaly detection is partitioned into two regions, one region corre-

sponding to the hypothesis (normal behavior) and the other to the anomaly. The
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anomaly detector is proposed for vessel motion which is based on adaptive kernel

density estimation.

A novel approach to detect anomalies in AIS data based on the ship’s position

is introduced in [32]. To identify anomalies in AIS data accurately, parameters

like longitude, latitude, and speed have been taken into account [32]. In order to

satisfy the subsequent research and application based on trajectory, it is necessary

to delete the abnormal points in the raw data. The proposed method classifies

AIS abnormal points and processes them separately according to the longitude and

latitude, speed, acceleration, and direction information in AIS data. It is worth

noting that the proposed method only needs the AIS data of the ship itself and

does not need the support of the historical track data. In addition, the cubic spline

interpolation method is used to repair the trajectory after eliminating the abnormal

points, which further improves the continuity and integrity of the trajectory. The

results of processing actual ship trajectories show that the method proposed in this

paper can identify all kinds of trajectory abnormal points in AIS data effectively.

Another research paper gives an insight into the process going on behind black box

predictors by reasoning the solution to the automatic docking problem [33]. This

problem includes guiding the vessel from the open sea towards a particular des-

ignated point in a harbor area by taking into account the environmental factors,

non-linear motions, speed limit, and distance to other ships and obstacles. Re-

searchers have explained that in trajectory and collision avoidance, deep reinforce-

ment learning agents perform well. The agent was trained using Proximal Policy

Optimization (PPO) and Local Interpretable Model-Agnostic Explanations (LIME)

is applied to each data point once for every action. LIME is used to make approx-

imations related to the behavior of the predictor for a single prediction. Another

model Kernal SHAP is used, which is built on LIME framework and provides the

functionality of removal of features by sampling the background data and replac-

ing the missing features with random samples because setting the value to 0 is not

helpful. Moreover, Linear Model Trees (LMTs) were also applied to the dataset and

later advantages and disadvantages were calculated for each algorithm.

With the help of an unsupervised approach that can work on real-time systems,
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[34] explain a framework that can learn AIS maritime traffic patterns automatically.

In addition to data collected by terrestrial AIS receiver networks, the proposed

methodology is also effective in situations where information is highly disrupted due

to spatial gaps in coverage or significant temporal differences due to satellite revisits.

By using Bayesian inference, the approach could be used to detect low-likelihood

behavior in real-time.

An overview of the AIS system is presented in [35], along with an assessment of data

quality and vulnerabilities for decision-making in maritime situational awareness

scenarios. In addition to improving safety and security at sea, AIS data quality

assessment would help detect AIS problems earlier. This would increase decision-

makers situation awareness, and improve AIS data quality assessment.
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# Author Method Description Pros Limitation

1 B. Ristic

This study uses adaptive kernel
density estimation to build
anomaly detector for vessel
motion.

Successful prediction of
motion of vessel using
Gaussian sum tracking
filter

Limited to the historic
data analyzation

2 Shuguang Chen

Construction of anomaly
detector on the basis of
different variables like
speed, distance etc.

Abnormal data can
be easily detected.

It is a possibility
that the detector
only works on
several ships.

3 H. Rong

Critical analysis is done on
automatic docking problem
by considering the processes
happen behind black box.

Easy navigation guide
for vessels

The detection method
of ship behavior
is only limited to
one factor i.e. distance.

4 Michele Vespe

Unsupervised learning of
AIS maritime traffic
patterns automatically
using Bayesian inference
method.

The tool supports route
planning, surveillance
technology and vessel
position prediction.

The method utilizes
only AIS historic or
real-time data.

5 C. Iphar
Data quality assessment
on the basis of false and
spoofed messages.

Increased situational
awareness of decision
makers and improved
maritime safety and
security.

Risks model is not
defined in-case if the
assessment fails on
some data, that model
can be followed to
avoid further damages.

6 Jie Cai

Data-driven methodology is
introduced to identify most
navigated routes between two
routes using K-means and
DBSCAN algorithms.

Reliable routes can be
provided to support
decision-making at
pre-fixture stage.

Solely relying on AIS
data can make predicted
methods less reliable.

7 Le Tixerant M.

AIS data processing and
analysis can be used to
produce adequate maritime
traffic density information.

Incorporating AIS data
into maritime spatial
information systems can
provide a clear way to
facilitate dialogue in MSP

Requires specialized
knowledge of hardware
and software to handle
high volume of raw data.

8 Dong Yang A review on usage of AIS
data and its applications.

Future research
applications are explained
that can be implemented
on AIS data.

No novel approach
is introduced.

9 Dong Yang
Analyzing AIS data
to make whale-watching
operations more sustainable.

Methodology can be used
to estimate seasonal
and annual trends in
whale-watching effort.

Sufficient AIS terrestrial
stations need to be
installed for achieving
complete coverage and
maximum reception of
broadcasted messages.

Table 2.1: Literature review summary
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Chapter 3

Methodology

3.1 Overview

The approach used in this research to examine ship maneuverability during turn-

ing maneuvers is described in this chapter. To get insights into ship behavior, the

methodology includes data collecting, preprocessing, turning point extraction, turn-

ing analysis, and statistical tools. To analyze turning points in a vessel journey,

an analytical approach using elastic trend filters [36] is proposed. This approach is

particularly aimed at constructing a system that reflects vessel traffic. Additionally,

this approach aims to improve the practice of maritime voyage planning, which is

typically done manually by a ship’s navigation officer, because there are no methods

available for detecting critical maritime waypoints efficiently based on the analysis

of large amounts of historical data.

The purpose of this chapter is to provide an overview of how to prepare data for ap-

plying an Elastic Trend Filter. The chapter is divided into four main sections: raw

data acquisition, data wrangling and preprocessing, feature analysis, and dataset

and evaluation metrics. In section 3.2, the process of collecting and obtaining data

from various sources is discussed. It is crucial that the data collected in this stage is

of high quality in order for the algorithm to be accurate and useful. In section 3.3,

the process of cleaning, transforming, and organizing the raw data is presented.

Trend Filtering applications require high-quality data, which is a time-consuming
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and complex process. The accuracy and reliability of the data are ensured through

techniques such as data imputation, normalization, and outlier detection. In sec-

tion 3.4, the most relevant variables or features are taken into account and it also

discusses the feature selection technique used for this study. In section 3.5, infor-

mation related to the dataset that has been used in this study is described. In

section 3.6, the methods used on the data to explain the vessel’s journey are ex-

plained in addition to how they are applied and why they are chosen for analyzing

ship’s turns.

3.2 Raw Data Acquisition

The dataset is provided by the Novia University of Applied Science in collaboration

with Aboa Mare and Turku University of Applied Sciences (Turku AMK) which

I have used throughout my thesis. The data is extracted and saved every minute

and data in this study is based on historical AIS records spanning from October

2022 to December 2022, which included more than a hundred thousand positional

records. The data is downloaded in Comma-Separated Values (CSV) format using

API developed by ARPA project by Novia and Turku AMK. In Original Data,

there are 12 variables. Those variables are MMSI, Longitude, Latitude, SOG, COG,

NAVSTAT, ROT, POSACC, Raim, Heading, Timestamp, Timestamp external. To

illustrate the vastness and coverage of the historical AIS dataset, Figure 3.1 shows

200 million AIS positional records. Analyzing vessel journeys requires taking into

account the time and feature variables. An important consideration when analyzing

multiple vessels’ journeys is their time frame. It can also help identify areas of

congestion and other issues due to patterns and trends in vessel movement. It is

also possible to gain valuable insights into a vessel’s journey by analyzing its specific

features in addition to its time variables. Under certain conditions or in certain areas,

a vessel’s size, speed, maneuverability, and draft can all have an impact on its ability

to navigate. Focusing on a specific vessel’s journey during a particular time frame

can help to provide a more detailed and focused analysis. Regarding the journey

of the ship ‘M/S Viking Glory’, focusing on its movements during the months of

October to December can provide a more focused analysis of its journey. This time
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frame may be significant for several reasons, such as the weather conditions during

this period or specific events or activities in the area.

Figure 3.2 shows the real-time vessel tracking information. With the help of this

website, through AIS data, it is possible to monitor the location of ships, boats, and

other vessels at any time and anywhere in real-time. To explain vessel voyages, this

thesis incorporates vessel segmentation as part of its proposed approach. Another

important factor of this website is that it provides users with real-time vessel traffic

so that the fastest and safest maritime routes can be identified. This has helped me

analyze voyages critically. Blue markers in Figure 3.2 indicate ship location in real-

time, by clicking them further information related to the ship is shown, for example

vessel information, past track, route forecast, navigational status, speed/course,

draught, etc.

Figure 3.1: The historical AIS dataset is enormous, as illustrated by a visualization
of around 200 million potential records.
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Figure 3.2: On Marine Traffic website selection can be made according to vessel
segments and sub-segments [3]

3.3 Data Wrangling and Preprocessing

First of all, duplicates and missing values are removed from the data so that suitable

results can be extracted. After that, three ships are selected for the analysis i.e.

FINN Sky (Cargo ship), Viking Grace, and Viking Glory. To obtain the data of the

related ships, the data is filtered out on the basis of their MMSI numbers. When this

step is done, normalization and feature engineering are applied to the dataset. To

analyze the position of the vessel and the rate at which it takes the turn, longitude,

and latitude variables are taken into account.

3.4 Feature Analysis

Figure 3.3 shows the position of three ships of interest using the longitude and

latitude variables obtained from AIS data, i.e. longitude and latitude. The longitude

and latitude variables are used to identify the location of ships and to visualize ship

routes and patterns. In Figure 3.4, each ship’s position is represented by a green

marker point on the map, and the lines connecting these points show the path taken

by each ship. Figure 3.5 shows a closer look on a 10min journey of a vessel and
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pop-up indicates the MMSI belonging to that vessel. A detailed analysis of AIS

data can provide useful information about ship behavior, such as speed, course, and

destination. Using this data, shipping routes can be optimized, maritime safety and

security can be improved, and the environmental impact can be reduced.

Figure 3.3: Basemap

Figure 3.4: Location of Selected Vessels Journey
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Figure 3.5: 10-min detailed Vessel Journey and its location on Folium

3.5 Dataset

A ship’s position, speed, and other information can be shared with other ships and

shore stations through the Automatic Identification System (AIS). Ground stations

collect AIS data and is available for companies who can pay for the data. Tracking

the movement and behavior of ships can be done by analyzing this data. The dataset

is provided by the Novia University of Applied Science, located in Turku and Vaasa,

Finland. The university acquires AIS data from the nearby sea areas where ships are

regularly passing through. The original size of the data is 84MB and it comprises of

12 variables: mmsi, longitude, latitude, sog, cog, navstat, rot, posacc, raim, heading,

timestamp, timestamp external. Table 3.1 describes the above-mentioned variables

in AIS data with respect to its definitions.
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Variables Description

MMSI
It is a unique 9-digit identification number that is
assigned to every vessel by the IMO. It is used for
identifying and tracking ships through AIS.

Longitude
It’s a geographic coordinate that specifies the po-
sition of a ship on the Earth’s surface. It refers to
the east-west position.

Latitude
It’s a geographic coordinate that specifies the po-
sition of a ship on the Earth’s surface. It refers to
the north-south position.

SOG It is the speed at which the ship is moving relative
to the Earth’s surface.

COG It is the direction in which the ship is moving rel-
ative to the Earth’s surface.

NAVSTAT It is the status of the ship, such as ”underway using
engine”, ”at anchor”, ”moored”, etc.

ROT It is the rate at which the ship is turning.

POSACC It is the accuracy of the position reported by the
ship’s GPS system.

Receiver Autonomous
Integrity Monitoring
(RAIM)

It is a system used to ensure the integrity of the
GPS signal.

Heading It is the direction in which the ship is pointing.

Time stamp It is the time at which the position data was
recorded.

Time stamp external It is the time at which the AIS signal was received
by a ground station.

Table 3.1: AIS data used throughout thesis

3.6 Data Analysis Methods

To decompose voyage data into simple, explainable segments, we propose the fol-

lowing two approaches:

1. Defining a ship navigational model based on information available in funda-

mental navigational rules.

2. Represent voyages in a small latent feature space: Represent the route in terms

of maneuvers (turn rudder, increase engine power etc.)

Motivated by the fact that traditional navigation consists of decomposing the route

into straight lines and circles segments, we propose to formulate the problem as a
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piecewise regression problem where the goal is to decompose the realized path in

terms of interconnected circle arcs and straight lines.

The decomposition of a route into piecewise linear and arc segments can be seen as

a trend-filtering problem. Linear Detection of non-stationary components such as

outliers, level shifts, and measurement trends have been studied extensively in the

time-series analysis literature [37]. Trend estimation has been applied in a variety

of different fields, including macroeconomics[38], finance [39], and in biological and

medical sciences [40, 41]. Furthermore, in system identification, trend filtering has

been used to remove trends, outliers, level shifts, and slopes that would otherwise

deteriorate the identification accuracy [42, 43].

Several trend estimation techniques have been studied in the literature, including

Hodrick-Prescott (H-P) filtering [38], ℓ1 trend filtering [44], empirical mode de-

composition [16], smoothing splines [45], moving average filtering [46] and linear

programming with a fixed number of kink points [17]. However, if an underlying

dynamical system has generated the measured time-series, standard trend filtering

methods may produce poor results since they do not distinguish trends in data from

effects of the system dynamics or input signals [43]. Thus, if the data depend on a

known input signal, the input and dynamics of the system should be accounted for

when estimating the trends.

In signal processing, elastic trend filtering is used to extract smooth and sparse

trends from noisy data. In short, elastic trend filtering approximates a noisy signal

x with x̂ by solving the convex optimization problem [36]

minimize
x̂

∥x − x̂∥2
2 + λ1∥D2x̂∥1 + λ2∥D2x̂∥2

2,

where λ1, λ2 > 0 are scalar parameters tuned to determine the sparseness and

smoothness of the estimate x̂, and D2x̂ denotes the second difference of x̂. The

elastic trend filtering is a generalization of the H-P trend filter (when λ1 = 0) and

the ℓ1 trend filter (when λ2 = 0).

In applications where we want to remove high-frequency noise from a signal whilst

preserving its low-frequency features, trend filtering is particularly useful. In this
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research, AIS data is analyzed using elastic trend filtering to extract the underlying

trajectory of a vessel from noisy position data. There are many sources of noise in

AIS data, including measurement errors, missing data, and other sources that can

obscure the true path of a vessel. These issues are addressed by elastic trend filtering,

which smooths the data while preserving the essential characteristics of the vessel’s

trajectory. A basic principle of elastic trend filtering is to minimize a cost function

based on both squared differences between the filtered data and the original data

and second-order differences between the filtered data (i.e., the curvature). As long

as these two terms are balanced, elastic trend filtering can extract the underlying

trends of a signal while avoiding overfitting.

It is important to know that there are many different algorithms and implemen-

tations of elastic trend filtering, each with its own strengths and weaknesses [47].

There are several popular approaches, such as variation regularization or basis pur-

suit denoising. A preprocessing step is typically required to remove missing values,

outliers, and other sources of noise from AIS data before applying elastic trend fil-

tering. Using this filtered trajectory, one can estimate the vessel’s speed, course, and

turn rate, as well as predict its future trajectory. Three ships are chosen to apply

an elastic trend filter so turning points in the whole ship journey can be observed.

After getting smooth trends by applying a trend filter to the vessel’s trajectory, the

second difference of that trajectory is taken. The second difference of the position

refers to the acceleration. The rate of change (first difference) of a position x(k), at

time instance k, is

∆x(k) = x(k) − x(k − 1) (3.1)

and the second difference is

∆2x(k) = ∆x(k) − ∆x(k − 1) = x(k) − 2x(k − 1) + x(k − 2). (3.2)

Significant changes in acceleration often accompany turning points or changes in

the ship’s movement, which is what explains the connection between the second

difference and turning points. By analyzing a ship’s second difference in position,
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we can detect when it changes direction and experiences a change in acceleration. It

is possible to identify peaks or valleys in the ship’s acceleration data by examining

the second difference over time. A peak or valley indicates a significant change in

acceleration rate, thus indicating a potential turning point and zero acceleration

means that the ship is moving with constant velocity. A large positive/negative

peak or valley may represent a sharp turn or maneuver, whereas a smaller peak or

valley may indicate a smooth change. Analyzing the second difference of a ship’s

acceleration data can, therefore, guide the detection and characterization of turning

points, providing insights into the ship’s navigation and movement patterns.

The radius of turning points in a vessel’s journey is calculated using Circular arcs.

The radius of the turn can be estimated by fitting a circular arc to a portion of the

vessel’s trajectory. For estimation, the vessel’s trajectory is analyzed in segments

in order to find the turning points. It is important that these segments contain

the relevant data prior to, during, and after the turn. Essentially, this involves

measuring how far the vessel’s trajectory deviates from a circular path. To calculate

the radius, a circular arc is fitted to each turning point segment. This is done by

using the Equation 3.3 of a circle with radius r centered at (x0, y0)

r2 = (x − x0)2 + (y − y0)2 (3.3)

or equivalently in parametric form

x = x0 + rcos(θ) (3.4)

y = y0 + rsin(θ) (3.5)

An accurate representation of a vessel’s trajectory during a given turn is represented

by its radius. Calculating the radius of the vessel’s turns and fitting circle arcs

provide insight into its maneuverability and navigational behavior.
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3.7 Wheel-Over Point and Turning Radius

Route planning is influenced by a ship’s ability to turn tightly after altering the

course and stay on the new intended course. Due to the inertia of the ship, it

typically takes some time for a ship to react when the wheel is turned. Therefore,

the wheel must be spun before the turning point of the ship. It is often referred

to as “the wheel over the position”. A ship must initiate a turn at the wheel-over

position in order to arrive safely on the new track.

Turning around at one point is impossible for large vessels. Due to this, it is impor-

tant not to overlook the ship’s ability to turn within constrained spaces. Making a

turn requires a vessel to know its wheel-over position.

3.7.1 How to Determine the Wheel-Over Point

In order to come onto the desired new track safely, a ship needs to commence a

turn at the Wheel Over Point (WOP). It becomes critical to determine the wheel-

over point if the cross-track error is minimal in narrow channels or confined waters.

Ship size, water depth, and speed all factor into determining the wheel-over point.

Other factors include the deadweight and speed of the ship. The most significant

component is likely the ship’s speed, which dictates how much inertia must be

overcome before the ship starts to turn. Following are the examples that should be

considered when determining the position of the wheel:

• Current course: 90-degree turn - It means that the ship is traveling in a

direction that is due east.

• Next course: 45-degree turn - It means the ship will make a turn to the right

and travel in a direction that is northeast considering the current course of

the ship 90 degrees True.

• Speed Over the Ground (SOG): 12 knots - It means the ship is traveling at a

speed of 12 nautical miles per hour relative to the surface of the Earth.

• Turning Radius (TR) (TR = SOG/ROT) = 1.0 nm - TR of a vessel is a

measure of the minimum radius of the circle that it can turn while maintaining
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a constant speed and ROT. If the TR is calculated as TR = SOG/ROT and

is equal to 1.0 nautical mile (nm), then it means that the vessel requires a

minimum distance of 1.0 nm to complete a turn of 360 degrees.

• Length Over-all (LOA): 235 meters - LOA describes the maximum length of

a vessel, including any protrusions or extensions. This measurement is taken

from the tip of the bow to the end of the stern and includes any extensions

such as the anchor, bowsprit, or bulbous bow. Knowing the LOA of a ves-

sel is important for a variety of reasons, including determining the vessel’s

docking requirements, cargo capacity, and ability to navigate through certain

waterways.

• Point-of-overcoming the inertia (POI): 1.5 x LOA = 352.5 meters also known

as the execution point wherein the ship starts to turn. (Such info is posted in

the wheelhouse poster [3] (see Figure 3.7 for reference)).

• Wheel Over Line (Wheel Over Line (WOL)): It refers to a navigational ma-

neuver carried out by a ship. In order to bring the ship’s heading or course

precisely over a given line or track, the ship’s wheel (helm) must be turned.

The ship can securely sail along planned paths or through limited spaces by

performing a WOL maneuver. It aids in keeping the ship on course and en-

ables it to navigate around any dangers or obstacles that may be present on

either side of the desired line.

Calculating the trajectory for a constant-radius turn consists of determining the

Center of Turn (COT) point and the WOL and WOP illustrated in Figure 3.6. The

resulting theoretical ship trajectory consists of piece-wise linear trajectories and

circle segments when the ship turns.
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Figure 3.6: Illustration of how the WOL, COT for a constant radius, turn can be
determined

Figure 3.7: Wheelhouse Poster [3]

3.7.2 The Turning Radius of a Ship

A vessel’s pivot point follows roughly a circular path when the ship is turning with

a constant rudder angle. A ship’s turning radius is determined by the radius of this

circle. As the ship is moving, it is affected by the depth of the water, and by the

length of the ship. The general rule is that the turning circle of a long ship will be

larger. This rule means that a longer ship will typically need a larger area to make

its full turn. A ship’s final diameter is determined by the type of rudder and the
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steering effect it produces, with the distance between the rudder and the hull also

playing a significant role. It is more efficient for the rudder to turn a boat when the

clearance between the rudder and hull is smaller. As a result, the turning circle and

turning radius will be affected by the following factors:

• Structural design and length of the ship.

• Draught and trim of the ship.

• Size and motive power of the main machinery.

• Distribution and stowage of cargo.

• Even keel or carrying a list.

• Position of turning in relation to the available depth of water.

• Amount of rudder angle required to complete the turn.

When examining a ship’s maneuverability and how the ship handles different sit-

uations, it is important to consider both wheel-over-point and turning radius. It

is difficult for a ship with a large turning radius to maneuver in tight spaces, for

instance. Alternatively, ships with a small turning radius may be more agile in

rough weather, but less stable. Watchkeepers can know at each waypoint the pa-

rameters they must maintain to correctly negotiate a course change by calculating

and drawing wheel-over-points on charts. The OOW, for example, will know the

correct parameters to use for negotiating the turn because he/she knows the ROT

equals the ship’s speed divided by its radius of turn.

Taking into consideration the ship’s ability to turn within a constrained space is

something that should not be overlooked. Traditionally, route planning was done

with a ruler and compass pen. Given a fixed speed-over-ground u (SOG) and rate-

of-turn θ̇ (ROT), the turning radius can easily be calculated. For a fixed u, the time

t it takes to traverse a full revolution of a circle of radius r is t = 2πr/u. Likewise,

for a fixed ROT, the time it takes to traverse a full revolution is t = 2π/θ̇ (assuming

that θ̇ is given in rad/s). Combining the expressions gives the turning radius

r = u

θ̇
,
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cf. Figure 3.8.

A ship must be maintained on the planned course during the course of a voyage in

order to avoid a hazard or danger, especially when it travels through traffic lane

separations, passes shorelines, or passes rocks. Because of the limited availability

of sea room, cross-track distance should be kept to a minimum or zero. Using the

ship’s turning radius in conjunction with the wheel over position is a technique

that ensures the ship stays on track during and after a course alteration in order

to minimize cross-track distances and to keep the vessel safe from potential hazards

while making course changes.

r

θ

Circumference C = 2πr

u

Figure 3.8: Tuning circle of a ship/vessel
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Chapter 4

Results

4.1 Overview

The examination of turns in the ship’s course was made easier by applying the elastic

trend filter to the AIS data. We learned more about the ship’s navigational qualities

and behavior by fitting circles to these turns. The findings from the analysis of turns

using the circle-fitting approach are presented in this section, along with a discussion

of their consequences.

4.2 AIS Data Analysis

In order to improve operations and ensure maritime safety, AIS data analysis plays

a crucial role. As the Viking Glory ship navigated through the water, AIS data

provided valuable insights into its navigation patterns. Applying an elastic trend

filter to the data is one innovative method of analysis. AIS data is smoothed by

using this filter, removing noise and irregularities to reveal the underlying trend. A

more accurate representation of the ship’s trajectory and movement is possible by

applying this filter. The elastic trend filter is applied to all three ships separately

and every ship’s journey is analyzed individually. Figure 4.1 shows the original

vessel trajectory in addition to the trend filter applied to the dataset. Figure 4.2

visualizes the second difference of the trajectory highlighting the positive peaks
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and sharp edges. A turning maneuver is the next step after the AIS data has

been processed using the elastic trend filter. Calculating the radius of a turn is

commonly done by using the circle equation method. As a result, the ship’s path

during a turn is approximated by a circular arc derived from this mathematical

method. On the right of Figure 4.1, the red markers highlight the turning points in

a vessel’s journey, and these turning points are the main focus of the ship’s journey.

Using the circle equation, it is necessary to make certain assumptions in order to

calculate the turn radius. The ship’s speed during the turning maneuver is often

assumed to remain constant throughout the maneuver. The filtered AIS data points

corresponding to the turn are fitted to a circle based on this assumption (refer to

Figure 4.3). The calculated radius value is 0.9977. It is important to note that

the accuracy of calculating the radius when the ship takes a turn is dependent upon

many factors, including the quality of the AIS data, the data point’s time resolution,

and the assumptions used. While this approach offers useful estimates, it can also be

applied to analyze a ship’s navigation performance and understand its maneuvering

characteristics.

Figure 4.1: 800-1100 points taken from Viking Glory Journey present in AIS Data
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Figure 4.2: Second Difference of Viking Glory Journey

Figure 4.3: Fitted Circle when Viking Glory commences a turn

A similar approach is applied to two other ships in addition to the Viking Glory

vessel using an elastic trend filter and the circle equation to calculate the radius when

the ship commences the turn. Figure 4.4 shows the Viking Grace ship’s trajectory

along with the smoothing of the data, which is achieved using an elastic trend filter.
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On the right side of Figure 4.4, red markers represent the turning points in the

ship’s journey. It is easier to notice the sharp turns in the ship’s journey by taking

the second difference of the trend-filtered data. Figure 4.5 shows large positive

peaks which means a sharp maneuver. Moreover, it also indicates that the change

in acceleration rate is significant. Now the radius of the turn can be calculated

using Equation 3.3, and the calculated value of radius is 0.0392 (refer to Figure 4.6).

Figure 4.7 shows the journey of a cargo ship i.e. Finn Sky Ship along with the

filtered data that helps smoothen out the journey. In this journey, there are no

such sharp maneuvers that could be considered to fit the circular arc. Figure 4.8

shows that the turn made in the journey is a rather smooth change indicating minor

maneuvers.

Figure 4.4: 800-900 points taken from Viking Grace Journey present in AIS Data
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Figure 4.5: Second Difference of Viking Grace Journey

Figure 4.6: Fitted Circle when Viking Grace commences a turn
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Figure 4.7: Finn Sky (Cargo Ship) Journey present in AIS Data

Figure 4.8: Second Difference
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Chapter 5

Discussion

This thesis investigates AIS data’s use in analyzing and explaining ship voyages. It

has been possible to gain valuable insights into ship navigational behavior, including

turning maneuvers, by applying techniques such as elastic trend filtering and circle

equation calculations. This chapter discusses the study’s findings, compares them

with previous studies, and outlines its advantages and disadvantages.

As a result of applying the elastic trend filter to different ships in AIS data, the

underlying trajectory of the ships were extracted, and turning maneuvers were de-

tected. It provided crucial information about the vessel’s navigational characteris-

tics when the turn radius during these maneuvers was approximated using the circle

equation method. The findings of my investigation provided crucial insights into the

ship’s turning behavior. It is observed that radii calculated during different maneu-

vers are consistent, for example, indicating a systematic approach to navigation by

the crew. Furthermore, the study identified instances of steeper turns, which could

be suggestive of avoiding obstacles or maneuvering in restricted regions.

I also compared my findings to other studies in the field of explainable ship journeys

utilizing AIS data, I saw some commonalities as well as some unexpected findings.

[18] examined vessel movement patterns in a similar manner, but utilized a different

process, such as graph evolution analysis. This study focuses on topological voyage

graph features to asses stationary behavior. Study [19], on the other hand, looked

at ship voyages from a broader perspective, encompassing not only turning maneu-
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vers but also the arrival and departure of ships from a Korean port. Their findings

explained pattern analysis for speed over ground, course over ground, and ship po-

sition, which my study did not explore. As a result, combining the findings of our

study with those of study [19] may provide a more complete knowledge of ship voy-

ages and navigational decision-making. One of my approach’s primary advantages

is its simplicity and ease of implementation. The elastic trend filter and circle equa-

tion method are simple and efficient in computation, allowing for rapid AIS data

processing. Furthermore, the results of our research provide useful insights into

ship journeys, assisting in the study of navigational behavior and probable decision-

making aspects. However, it is critical to recognize the limitations of my approach.

To begin, the accuracy of the estimated turn radii is dependent on the assumptions

established, such as maintaining constant speed during maneuvers. Deviations from

these assumptions may cause radii to be calculated incorrectly. Furthermore, the

resolution of the AIS data and any data gaps may have an impact on the precision of

the results. Finally, our study was limited to turning maneuvers; a more thorough

examination that included other characteristics of ship journeys could provide more

comprehensive insight.

Several future directions can be identified based on the results and restrictions of this

study. The accuracy of the results could be improved by using additional filtering

techniques, such as the elastic trend filter, with varying settings or investigating

other techniques like Kalman filtering. Second, including additional variables in

the analysis, like speed, weather, and traffic volume, might give a more complete

picture of the factors affecting ship journeys. Finally, utilizing machine learning and

artificial intelligence approaches for anomaly detection and predictive analysis may

lead to new insights into and explanations for ship voyages based on AIS data.
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Chapter 6

Conclusion

In this study, we primarily focused on the analysis of turns through the fitting of

circles and investigated the idea of explainable ship journeys using AIS data. We

were able to derive the ship’s underlying trajectory and locate turning maneuvers

by using the elastic trend filter on the AIS data. We calculated the radii of these

turns using the circle fitting approach, which gave us important information about

how ships navigate and make decisions. My research has shown how important it

is to comprehend ship turns and their radii in the context of maritime safety and

navigational techniques. A standardized approach to navigation is suggested by

the similar turn radii seen throughout numerous maneuvers, showing the existence

of navigational standards and patterns. Insights on specific navigational issues en-

countered by ships, such as obstacle avoidance or maneuvering in crowded places,

are provided by differences in turn radii, such as sharper turns with smaller radius.

Circle fitting method’s accuracy and dependability have been confirmed by compar-

isons with traditional measurements and previous investigations. This strengthens

reliability when using circle fitting techniques and AIS data to analyze ship voyages

and comprehend navigational behavior.

This study’s implications go beyond the confines of academia. The creation of

navigational rules can benefit from knowledge about constant turn radii, making

maritime operations safer and more effective. Maritime authorities can use this

data to recognize deviations from established standards and implement targeted
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measures to reduce risks and enhance security during navigation. The knowledge

gathered from the analysis of turns can also be used to help create autonomous

ship control systems. The agility of autonomous or semi-autonomous vessels can be

improved, and safer and more predictable navigation can be promoted, by including

standardized turning patterns in their algorithms. There are restrictions to take into

account in any study. Turns were the only feature of ship travel that I examined; I

did not include changes in speed or route optimization. By adding more variables

and performing a more thorough examination of ship behavior based on AIS data,

future studies may build on this investigation.

In conclusion, the use of elastic trend filtering with circle fitting algorithms to ana-

lyze turns and the analysis of explainable ship journeys using AIS data have both

yielded substantial insights into ship navigational behavior. The results have ramifi-

cations for navigating rules, ship safety, and the creation of autonomous ship control

systems. This study expands the realm of explainable ship journeys and shows how

AIS data analysis has the potential to increase transparency and enhance naviga-

tional procedures in the maritime sector.
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