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The electricity market in Finland is in a surrounding unseen in decades. 

This raises the question about the performance of forecasting tools in an 

unpredictable environment. This study aims to investigate the performance 

of autoregressive integrated moving average (ARIMA) and seasonal 

autoregressive integrated moving average (SARIMA) models in forecasting 

electricity consumption in Finland. A literature review was conducted to 

provide a comprehensive understanding of time series analysis and the 

application of the selected models. The results revealed that SARIMA 

models generally provided higher accuracy in forecasting electricity 

consumption, with accuracy ranging from 90.7% to 95.5%. In contrast, 

ARIMA models had an accuracy of between 88.7% to 94.3%. The SARIMA 

models were more successful in predicting fluctuations in consumption, 

while ARIMA models were better suited for datasets with reduced noise.  
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1 Introduction 

 

This chapter provides a succinct overview of the topic, explains its relevance, 

and outlines the structure and objectives of this thesis. Additionally, it 

presents the research questions and the methods employed to address 

them. 

 

1.1 Introduction 

 

In February 2022, Russia initiated an attack on Ukraine, serving as the final 

catalyst for the escalation of energy prices in Europe. In the ensuing weeks, 

Western nations began isolating Russia from international trade. Given that 

Russia accounted for 40% of Europe's imported gas demand in 2021 (IEA, 

2022), inflation soared to unprecedented levels. 

 

Figure 1: Consumer price index Finland (Tilastokeskus 2022) 

Apart from petrol prices, the cost of electricity has also received widespread 

media attention. Consumers have faced challenges due to abrupt increases 
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in electricity bills, while electricity providers have suffered losses due to 

contracts signed prior to the unexpected shift in production. Consequently, 

electricity providers have raised their prices. For instance, Helen, a Helsinki-

based energy company, implemented an average price increase of 58% for 

their permanent contracts in August 2022. (Lassila, 2022) 

 

Figure 2: Consumer Electricity Price (Tilastokeskus, 2022) 

The current state of the European electricity market is distinctive, resulting 

from a combination of already surging prices and a sudden energy shortage. 

Electricity consumption in Finland exhibits a seasonal pattern, primarily due 

to the high energy demand for heating during winter. An intriguing aspect of 

this situation is whether the soaring prices will compel individuals and 

companies in Finland to reduce their energy consumption or whether 

electricity usage will remain at similar levels as in previous years. 
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1.2 Objective 

 

This study aims to provide insights into the performance of models in a 

unique situation that is not necessarily predictable by trends. While these 

models have been adapted for forecasting electricity prices, consumption, 

and production, the recent market situation and its impact on model 

performance has yet to be evaluated. To achieve this research objective, the 

thesis will address the following research questions: 

1. Which of the Time series models give the better accuracy forecasting 

the electricity consumption? 

2. Which of the models suit the dataset better? 

 

1.3 Method 

 

The thesis will conduct a literature review on the theory underpinning time 

series analysis and the methods related to forecasting using time series 

models. The literature review will commence with a broader focus on time 

series analysis theory before narrowing down to specific models selected and 

their practical application in the empirical study conducted after the literature 

review. 

Both research questions will be answered in the empirical study, where 

autoregressive integrated moving average (ARIMA) models and seasonal 

autoregressive integrated moving average (SARIMA) models will be 

compared in terms of their forecasting performance. Forecasting models will 

be developed, and data will be preprocessed using Jupyter Notebook, which 

employs Python as the programming language. The models will utilize 

Finnish electricity consumption data. The study will compare the two models 

based on the accuracy of their forecasts for future electricity consumption. 
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1.4 Structure of thesis 

 

The forthcoming thesis will be organized as follows: A literature review will 

first be conducted, focusing on the theory of time series analysis and the 

forecasting methods employed in the empirical study. The methods will be 

elucidated, the data used in the study will be described, and the results will 

be discussed. Upon presenting the study's findings, potential avenues for 

future research will be explored.  
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2 Theory 

 

This chapter aims to establish a theoretical framework for time series 

analysis, addressing the process of developing models and generating 

forecasts. The chapter commences with an introduction to the fundamental 

concepts of time series and their characteristics, followed by a discussion of 

forecasting methods and their practical applications. 

2.1 Time Series 

 

A time series is defined as observations arranged chronologically 

(Kirchgässner, Wolters & Hassler, 2012). Cryer (1986) posits that the 

objective of time series analysis is to comprehend or model the mechanism 

responsible for the occurrences within the time series or to analyze 

quantitative data for the purpose of generating predictions or forecasting 

future values of the series. 

Persons (1919) identifies four components of time series:  

1) Trend – Long-term development. 

2) Cycle – A cyclical component with periods exceeding one year. 

3) Seasonal Cycle - A cyclical component with periods within a year. 

4) The residual – Seemingly random values that do not belong to any of 

the cycles. 

 

2.1.1 Trend 

 

In time series analysis, measurements are frequently taken at regular 

intervals, such as yearly, monthly, daily, or hourly. Although values in a time 

series can generally be random, the possibility of a shift to relatively higher or 

lower values over time exists. This change in the time series is referred to as 
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a trend, which typically results from alterations in factors surrounding the 

values. (Anderson, Sweeney, and Williams, 1999) 

Anderson et al. (1999) delineate various trend patterns:   

1) Linear trend 

2) Nonlinear trend 

3) Linear declining trend 

4) No trend 

 

 

Figure 3: Linear Trend 

In figure 3, the fluctuation in values on the y-axis is irregular, but as we 

progress further on the x-axis, the values are higher. This gradual growth in 

the values is an upward trend in the time series. This trend is visualized with 

a trendline in the figure.  
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Figure 4: Nonlinear Trend 

Figure 4 demonstrates a Nonlinear trend. The trend consists of steady 

growth, which is followed by a phase of rapid increase in values and a 

leveling at the end of the trend.  

 

Figure 5: Linear Declining Trend 

Anderson et al. (1999) point out that trends can also be declining.  
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Figure 6: No Trend 

It is also possible that the data has no trend. The horizontal trendline 

visualizes the missing trend in figure 6. 
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2.1.2 Cycle 

 

Although a trend may be discernible over an extended period, most data 

points do not precisely align with the trend line. The data generally fluctuates 

and appears on both sides of the trendline. If the data exhibits a recurring 

sequence exceeding a calendar year, it can be considered a cyclical 

component (Anderson et al., 1999) 

 

Figure 7:Trend and Cyclical Components of a Time Series 

Numerous time series exhibit cyclical components. Anderson et al. (1999) 

cite economic data as an example of a time series that often contains multi-

year-lasting fluctuations in variables. For instance, if the inflation rate 

oscillates between moderate and high, several time series depicting prices or 

price variation have an increasing trend line with values regularly fluctuating 

above and below the trend line. (Anderson et al., 1999)  

1995 2000 2005 2010 2015 2020 2025
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2.1.3 Seasonality 

 

In contrast to the cyclical component of time frames, which is identifiable as 

regular variation over a multi-year time frame, time series may demonstrate a 

consistent pattern over one-year periods. As an example, Anderson et al. 

(1999) name the sales volume of seasonally used products, such as 

swimming pool equipment which reaches its peak sales during spring and 

summer. The component displaying seasonal fluctuation is named the 

seasonal component. Anderson et al. (1999) point out that seasonality can 

occur on a monthly, weekly, or hourly basis. 

 

2.1.4 The residual 

 

The residual, or irregular component, accounts for values unaffected by 

trend, cycle, or seasonality. Often referred to as noise, irregular values result 

from short-term, unforeseen, and nonrecurring factors influencing the time 

series. Owing to the random characteristics of these values, they are 

unforeseeable and fall outside the scope of predictions made for the time 

series. (Anderson et al., 1999) 

 

2.2 Time Series Analysis 

 

Time series analysis entails the process of forecasting or predicting future 

values within a time series. Forecasting methods can be classified as 

quantitative or qualitative. Quantitative methods can be employed if: 

1. Past information of the variable being predicted is available 

2. The information available can be quantified 

3. One can assume that the pattern recognizable will continue in the 

future 
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If all the necessary prerequisites are satisfied, it is possible to generate 

forecasts or predictions of future values utilizing either a time series approach 

or a causal approach (Anderson, Sweeney, & Williams, 1999). In cases 

where historical data are solely comprised of past values, the analytical 

process is referred to as a time series method. This method aims to discern 

patterns within the data and exploit them to produce future value predictions. 

Time series methods exclusively base their predictions on historical values 

and the forecasts derived from them (Anderson et al., 1999). 

Causal forecasting techniques presuppose the existence of a cause-and-

effect relationship between one or more variables. As an illustration, 

Anderson et al. (1999) cite the connection between advertising expenditures 

and sales volume, with the former typically exhibiting a positive correlation 

with the latter, meaning that increased advertising leads to higher sales. This 

relationship can be characterized by a regression, which can subsequently 

be employed to forecast future sales volumes. 

Qualitative forecasting methods depend on expert opinion. The judgment and 

expertise of individuals well-versed in a specific field can be harnessed to 

generate forecasts. The advantage of qualitative forecasting techniques lies 

in their applicability to variables that are not quantifiable or for which historical 

data are either unavailable or ill-suited to the task. (Anderson et al., 1999) 

 

2.3 Time series forecasting models 

 

Forecasting is essential in addressing various practical issues, such as 

budgeting for staff and resources, making investment decisions, and 

determining appropriate attire for the following day. Hyndman and 

Athanasopoulos (2018) state that some phenomena are easier to predict 

than others, and the predictability of a specific event or quantity depends on 

several factors, including: 

1. The level of understanding of the factors contributing to the event or 

quantity. 
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2. The amount of data available. 

3. The extent to which forecasts influence the object being forecasted. 

Hyndman et al. (2018) provide the example of electricity demand forecasting. 

Demand is primarily driven by weather and other factors with smaller 

contributions to values. Ample data is available for factors such as wind 

speed and temperature, as well as historical electricity demand. Moreover, 

the technology and expertise required to develop models linking demand to 

key driver variables yield generally accurate forecasts. 

Forecasting conditions can vary significantly in terms of time horizons, 

determining factors, data patterns, and other aspects. Methods can range 

from simple, like the naïve method using the most recent observation as a 

forecast, to complex, such as neural networks. The choice of method 

depends on the available data and the predictability of the forecast subject. 

(Hyndman et al., 2018) 

 

2.3.1 Forecast accuracy 

 

Evaluating forecast accuracy is crucial when selecting a model. Hyndman et 

al. (2018) define a forecast error as the difference between an observed 

value and a forecasted value. In this context, "error" does not imply a mistake 

but rather an unpredictable component of an observation. Anderson et al. 

(1999) describe the forecasting error using Equation 2.1:  

𝐸𝑟𝑟𝑜𝑟 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

Equation 2.1 

According to Hyndman et al. (2018), forecast errors should be measured on 

the same scale as the data to avoid scale-dependent accuracy methods that 

cannot be used for comparison across series with different units of 

measurement. 

Hyndman et al. (2018) present the mean absolute error (MAE) as a 

commonly used error measure, given by Equation 2.2: 
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𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑡|) 

Equation 2.2 

The MAE is popular for comparing forecast methods for a single time series 

or multiple series with similar units due to its simplicity and ease of 

computation. 

Anderson et al. (1999) introduce the mean squared error (MSE) as another 

approach for measuring forecast accuracy, defined by Equation 2.3: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖−𝑥𝑖

)

𝑛

𝑖=1

² 

Equation 2.3 

Where n is the number of observations, 𝑦𝑖 is the observed value at time i and 

𝑥𝑖 is the predicted value at time i.  

 

Percentage errors, which are independent of the units in which the data is 

measured, are used to compare performance between data sets with 

different units of measurement. The percentage error 𝑝𝑡 is given by 𝑝𝑡 =

100𝑒𝑡/𝑦𝑡 , where 𝑦𝑡 is the measure at time t. The most commonly used 

measure is mean absolute percentage error: 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(|𝑝𝑡|) 

Equation 2.4 

The measures that are based on percentage errors get infinite or undefined 

values if the measure is 0, or alternatively extreme values if some of the 

measures are close to zero. Further disadvantages with percentage-based 

error include that they often assume that the unit of measurement has a 

meaningful zero. For example, in cases of measures on the interval scale, 

such as temperature, the use of percentage error is not recommended. 

(Hyndman et al., 2018) 

Relative error measures seek to remove the scale of data, which can be 

problematic in some cases. Relative errors have a statistical distribution with 
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undefined mean and infinite variance, and they can only be computed when 

multiple forecasts exist for the same time series. (Hyndman & Koehler, 2006) 

Hyndman and Koehler (2006) introduce a measurement of error that 

circumvents the problems associated with relative error measurements. By 

scaling the error using the values derived from the Mean Absolute Error 

(MAE) in the forecast method, the definition of scaled error is established as: 

𝑞𝑡 =
𝑒𝑡

1
𝑛 − 1

∑ |𝑌𝑖 − 𝑌𝑖−1|𝑛
𝑖=2

 

Equation 2.5 

A value less than one for 𝑞𝑡 means that the forecast is at a more precise level 

compared to the average values obtained from forecast method in MAE. If 

the value is greater than one, the forecast can be regarded as worse than the 

average values obtained from the forecast method in MAE. 

The mean absolute scaled error is calculated by: 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞𝑡|) 

Equation 2.6 

When MASE is less than 1, the method produces smaller errors than the 

forecast with values obtained for the measure. (Hyndman, 2006) 

Hyndman and Koehler (2006) propose employing scaled errors as a standard 

technique for comparing forecast accuracy across different scales. This 

approach has a meaningful scale, is not susceptible to previously mentioned 

issues, and is widely applicable. Hyndman and Koehler (2006) note that the 

only situation leading to undefined or infinite values for scaled errors would 

occur if all observation points were equal. Regression models often use R^2 

as a measure of model goodness, representing the proportion of variation in 

values explained by the regression model. (Colton & Bower, 2002) 

 

2.3.2 Smoothing methods 
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Anderson et al. (1999) introduce three forecasting methods: moving 

averages, weighted moving averages, and exponential smoothing. These 

methods share the common feature of eliminating fluctuations in data caused 

by irregular components in time series, and thus are referred to as smoothing 

methods. These methods are optimal for stable or stationary time series, 

which exhibit no significant trend or cyclical/seasonal fluctuations in 

measures. Smoothing methods are straightforward to use and generally 

provide high accuracy for short-range forecasts, such as predictions for the 

subsequent period. 

2.3.2.1 Moving Averages 

 

The moving averages method employs the average value of the most recent 

data values in a time series to predict the next period: 

𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑(𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑛 𝑑𝑎𝑡𝑎 𝑣𝑎𝑙𝑢𝑒𝑠)

𝑛
 

Equation 2.7 

The term "moving" arises from each new observation replacing the oldest 

one in the average calculation, causing the average to move forward as new 

observations are added to the time series (Anderson et al., 1999). For the 

moving averages method, the number of data values (n) included in the 

moving average must be chosen. Moving averages with different numbers of 

values vary in their forecasting accuracy. Anderson et al. (1999) suggest 

approaching the problem of determining the number of values in the moving 

average through trial and error to identify the length of the moving average 

that minimizes errors. 

 

 

2.3.2.2 Weighted Moving Averages 

 

The simple moving average includes an assumption about equal weights for 

the values in the calculation, whereas weighted moving average involves 
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determining varying weights for each of the calculation values. After 

determining the weights for the calculation, an average for n values is 

calculated and used as a forecast. Generally speaking, the weight for the 

most recent value is the highest, and the older the value is, the less the 

weight the value receives. The sum of weights should be equal to 1. 

(Anderson et al., 1999) 

According to Anderson et al. (1999), if we believe that the most recent value 

can be regarded as a better predictor of the future compared to the oldest 

one in the calculation, it should be given the largest weight. Moving forward 

in the calculation, the weight should gradually decrease while going 

backwards in values selected for the calculation. Anderson et al. (1999) point 

out that if the time series is highly variable, the optimal solution would be to 

select approximately equal weights for the values. 
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2.3.2.3 Exponential Smoothing  

 

Exponential smoothing has minimal data requirements and is therefore 

recommended as a method when a forecast is required for a large number of 

items. The method uses a weighted average of past values in the time series 

as in the smoothing methods previously presented. The difference between 

exponential smoothing and weighted moving averages is that instead of 

multiple weights, it utilizes only one weight for the most recent observation. 

The weights for other data values are determined automatically by the 

formula and they become smaller as the observations move to the past. The 

formula for the basic exponential smoothing model is presented below: 

𝐹𝑡+1 = 𝛼𝑌𝑡 + (1 − 𝛼)𝐹𝑡 

Equation 2.8 

where: 

𝐹𝑡+1 = forecast of the time series for period t + 1 

𝑌𝑡 = actual value of time series in period t 

𝐹𝑡 = forecast of the time series for period t 

 𝛼 = smoothing costant (0 ≤ 𝛼 ≤ 1) 

The equation demonstrates how the forecast for period t + 1 is determined by 

the weighted average of the actual value and forecast for period. The weight 

given for the actual value in period t is 𝛼 and the weight for the forecast in 

period t is 1- 𝛼. Anderson et al. (1999) 

 

2.3.2.4 Smoothing methods in practice  

 

Hansun and Kristanda (2017) examined the forecasting efficacy of simple 

moving averages (SMA), weighted moving averages (WMA), and exponential 

moving averages (EMA) in foreign exchange transactions. Their investigation 
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encompassed three currency pairs: EUR/USD, AUD/USD, and GBP/USD, 

with mean squared error (MSE), mean absolute percentage error (MAPE), 

and mean absolute scaled error (MASE) employed to compare the 

performance of the models. 

Their findings indicated that EMA was the most suitable method for Forex 

data, as it exhibited the lowest MSE, MAPE, and MASE values across all 

currency pairs. WMA ranked second in accuracy across all error measure 

types, while SMA demonstrated the poorest performance. Nonetheless, 

Hansun and Kristanda (2017) asserted that all models performed adequately 

in the test. 

Reghunath and Raghavan (2005) showcased the application of simple 

moving averages in their research on water resources in the Nethravathi 

River region of southern India. They utilized simple moving averages to filter 

the data on monthly water levels in the area's observation wells to reveal 

concealed long-term trends in water table fluctuations. A 12th-order moving 

average was employed in their study. 

Lauren and Harlili (2014) integrated simple moving averages with machine 

learning models to forecast trend patterns in stock closing prices. Their 

investigation utilized moving averages with durations of 5 and 10 days for 

short-term averages, and 20 and 50 days for long-term averages. Various 

combinations of these durations were tested in the experiment, with the 5 

and 20-day combination yielding the most favorable outcomes and the 

highest likelihood of generating profit in stock trading. 

Moving averages are extensively employed in the technical analysis of 

stocks. Detry and Gregoire (2001) define technical analysis as a method 

whereby future stock prices are predicted by identifying predefined patterns 

in historical price data. By employing moving averages of varying lengths and 

comparing short-term moving average prices to long-term moving average 

prices, the analysis generates buy or sell signals: if the short-term moving 

average exceeds the long-term moving average, the subsequent day is 

deemed a buy day, and vice versa. 
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Detry and Gregoire (2001) replicated a prior study that demonstrated the 

capacity of variable-length moving averages to predict stock price changes 

the following day. The experimental results corroborated the earlier study's 

conclusions, revealing that variable-length moving averages were capable of 

accurately predicting prices in 13 out of 15 instances. 

2.3.3 Autoregression 

 

Autoregressive models are forecast methods where the forecasted variable is 

predicted by using a combination of linear variables from the past values. 

The term autoregression comes from the model being a regression of the 

value compared to itself. (Hyndman et al., 2018) 

Autoregressive model of order p can be written as: 

𝑦𝑡 = 𝑐 +  ϕ1𝑦𝑡−1 + ϕ2𝑦𝑡−2 + ⋯ + ϕ𝑝𝑦𝑡−𝑝 + ε𝑡  

Equation 2.9 

where ε𝑡 is white noise. This model is referred to as an AR(p) model. 

(Hyndman et al., 2018) 

Hyndman et al. (2018) demonstrate autoregressive models and their 

flexibility: the figures below show AR (1) and AR (2) models. Changes in 

parameters ϕ1…ϕ𝑝 result in two different looking patterns in time series:  

 

Figure 8: Autoregressive models AR (1) and AR (2) -Hyndman & Athanasopoulos (2018),  Forecasting: 

Principles and Practice, Chapter 8.3 
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Whereas variance error ε𝑡 affects only on the scale on the series.  

AR (1) is written by 𝑦𝑡 = 18 − 0,8𝑦𝑡−1 + ε𝑡  

and AR (2) is written by 𝑦𝑡 = 8 +  1,3𝑦𝑡−1 + 0,7𝑦𝑡−2 + ε𝑡  

where ε𝑡 is normally distributed white noise with a variance of 1 and mean 0.  

For an AR (1) model, when: 

ϕ1 = 0,  𝑦𝑡 is equal to white noise. 

ϕ1 = 1  and c = 0, 𝑦𝑡 is equivalent to a random walk. 

ϕ1 = 1 and c ≠ 0, 𝑦𝑡 is equivalent to a random walk with drift. 

ϕ1 < 0, 𝑦𝑡 tends to fluctuate between positive and negative values. 

(Hyndman et al. 2018) 

Autoregressive models are usually restricted to stationary data, which will be 

discussed in the next chapter. In these cases, there are constraints of the 

parameter values:  

For AR (1): -1 < ϕ1 <1. 

For AR (2): -1 < ϕ2 <1, ϕ1+ϕ2 < 1 

(Hyndman et al. 2018) 

 

2.3.4 Stationary Time Series 

 

Hyndman et al. (2018) characterize stationary time series as those that 

exhibit the overall nature of the time series without reliance on the specific 

portion being observed. In essence, the time series should maintain a 

consistent scale, irrespective of the point at which it is examined. 

Consequently, time series exhibiting seasonal fluctuations or trends cannot 

be considered stationary, as these patterns differentially influence values at 

distinct time points. Hyndman et al. (2018) also note that a white noise series 

is stationary, as it is not dependent on time and should exhibit randomness at 
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any given moment. It is important to recognize that time series with cyclic 

patterns can be deemed stationary if the aforementioned criteria (absence of 

seasonality or trend patterns) are satisfied. This is attributable to cycles 

lacking a fixed length, precluding the interpretation of future peak or trough 

points based solely on time series observation. In summary, stationary time 

series lack predictable patterns and appear as horizontal lines with constant 

variance. (Hyndman et al. 2018) 

 

2.3.4.1 Differencing 

 

Differencing is the act of transforming a time series into a stationary series by 

using differences between consecutive values instead of the values 

themselves. Differencing may help in stabilizing the mean and variance of the 

time series by eliminating the changes in the level of observations. This 

reduces or eliminates the trend and seasonality from the time series. 

(Hyndman et al. 2018) 

Hyndman et al. (2018) present the random walk model as a method of 

differencing:  

𝑦𝑡
′ = 𝑦𝑡  − 𝑦𝑡−1 

Equation 2.10 

What is notable is that differenced series have T-1 values. The cause of this 

is the inability to calculate 𝑦𝑡
′ for the first observation.  

The differenced series can be regarded as white noise; hence it can be 

written as: 

𝑦𝑡  −  𝑦𝑡−1 =  𝜀𝑡 

Equation 2.11 

The equation can be rearranged as the random walk model: 

𝑦𝑡  =  𝑦𝑡−1 +  𝜀𝑡 

Equation 2.12 
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Random walk models are widely used for non-stationary series in the field of 

finance and economics. The typical random walks include both lengthy 

periods of apparent ups or downs and unpredictable changes in direction. 

Predictions created applying these models are equal to the last observation 

as the future movements are unpredictable. (Hyndman et al. 2018) 

Hyndman et al. (2018) present seasonal differencing as an alternative way to 

create stationary time series. The method calculates differences between 

observations and their counterparts from the same part of the seasonal cycle: 

  

𝑦𝑡
′ = 𝑦𝑡  −  𝑦𝑡−𝑚 

Equation 2.13 

 

Where m is the number of seasons, as known as lag-m differences. The 

name comes from the method, where the observation after a lag of m periods 

is subtracted from the value.  

If the data appears to be white noise, then the use of formula: 

𝑦𝑡  =  𝑦𝑡−𝑚 +  𝜀𝑡 

Equation 2.14 

is suggested for the original data. As in equation 2.12, the forecasts for this 

model are equal to the last observation.  

A way to determine if there is a need for differencing is to take a unit root test, 

which are statistical tests for hypothesizes. These tests determine whether 

differencing is required. There are multiple tests available, some of which 

might give different answers compared to others, due to different 

assumptions in the tests. These tests are usually included in packages for 

statistical programs. (Hyndman et al 2018) 
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2.3.4.2 Backshift notation 

 

The backwards operator (B), or lag (L) in some references is expressed by: 

𝐵𝑦𝑡 = 𝑦𝑡−1 

Equation 2.15 

Which means that B operating on 𝑦𝑡 shifts the data back one period. A shift 

back of two periods is expressed by: 

𝐵(𝐵𝑦𝑡) = 𝐵2𝑦𝑡 = 𝑦𝑡−2  

Equation 2.16 

Operating with data from different periods require different backshifts, for 

example for monthly data a shift back of twelve periods could be used to 

receive the same month previous year. (Hyndman et al. 2018) 

Operator B can be used to describe the process of differencing. A first 

difference can be expressed by:  

𝑦𝑡
′ = 𝑦𝑡  −  𝑦𝑡−1 = 𝑦𝑡  −  B𝑦𝑡 = (1 − 𝐵)𝑦𝑡 

Equation 2.17 

and in general, the difference in dth order can be expressed by: 

(1 − 𝐵)𝑑𝑦𝑡 

Equation 2.18 

The backshift operator can be used to combine differences, as it can be 

treated using algebraic rules. In particular, the terms can be multiplied 

together if B is involved. (Hyndman et al. 2018) 

  



 

24 
 

 

2.3.5 Moving average models 

 

As an alternative of using the latest values of the forecasted variable in a 

regression, models with moving averages use forecast errors in a model 

resembling regressions. Moving average model of order q:  

𝑦𝑡 = 𝑐 + ε𝑡  + θ1ε𝑡−1 + θ2ε𝑡−2 + ⋯ + θ𝑞ε𝑡−𝑞 

Equation 2.19 

where 𝜀𝑡 is white noise. (Hyndman et al. 2018) 

Moving average models should not be mixed with the moving averages in 

smoothing, discussed earlier in the thesis. According to Hyndman et al. 

(2018), moving average models are used for forecasting of future values, as 

moving average smoothing is used to estimate trends.  

Hyndman et al. (2018) demonstrate the moving average models in the figure 

below including MA (1) and MA(2): 

 

Figure 9: Moving average models MA (1) and MA (2) -Hyndman & Athanasopoulos (2018), 

Forecasting: Principles and Practice, Chapter 8.4 
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MA (1) is written by 𝑦𝑡 = 20 + ε𝑡  + 0,8ε𝑡−1 

and MA (2) is written by 𝑦𝑡 = ε𝑡 − ε𝑡−1 + 0,8ε𝑡−2 

where ε𝑡 is normally distributed white noise with a variance of 1 and a mean 

of 0. 

changing the parameters θ1,   .  .  .  , θ𝑞 will result in different time series 

patterns. Equally to autoregressive models discussed earlier, variance error 

ε𝑡 affects only on the scale of the series. (Hyndman et al. 2018) 

 

2.3.6 ARIMA 

 

Siami-Namini and Namin (2018) present stochastic models utilized in time 

series forecasting. Auto-Regressive Moving Average (ARMA) is the most 

well-known method for a single time series time series data, which is a 

method combining autoregressive and moving average models. Auto-

Regressive Integrated Moving Average (ARIMA) is a type of ARMA, which 

includes integrated differencing. 

Siami-Namini et al. (2018), describe the key elements of the model as 

following: 

• Autoregression (AR). A regression model utilizing observations and 

lagged observations (p). 

• Integrated (I). The part of the model with the purpose of making a time 

series stationary (d). 

• Moving Average (MA). An approach taking the dependency between 

variables and residual errors into account (q).  

Hence, if a simple form of an AR model of order p can be written as: 

𝑥𝑡 = 𝑐 +  ∑ ∅𝑖 𝑥𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

 

Equation 2.20 
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Where 𝑥𝑡 is the stationary variable, c is constant, the terms of ∅𝑖 are 

autocorrelation coefficients at lags 1…. p and the residuals, 𝜀𝑡, is white noise 

with a mean of 0 and variance of 𝜎𝜀
2. An MA model of order q can be written 

in the form: 

𝑥𝑡 = 𝜇 +  ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

 

Equation 2.21 

Where 𝜇 is the expectation of 𝑥𝑡, 𝜃𝑖 are the weights applied to the values and  

𝜀𝑡, is white noise with a mean of 0 and variance of 𝜎𝜀
2. Adding these models 

together will create an ARMA model of order (p, q): 

𝑥𝑡 = 𝑐 +  ∑ ∅𝑖𝑥𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

+ ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

 

Equation 2.22 

Where ∅𝑖 ≠ 0, 𝜃𝑖 ≠ 0, and 𝜎𝜀
2 > 0. The parameters p and q stand for AR and 

MA. (Siami-Namini et al. 2018) 

ARIMAs are capable of using non-stationary time series data, as the 

“integrated” (I) component uses differencing to convert the time series to a 

stationary one. The general form of an ARIMA model is ARIMA (p, d, q). 

(Siami-Namini et al. 2018) 

As in ARMA models, in ARIMA models p equals the order of the 

autoregressive part and q the order of the moving average part. The 

“integration” added to ARIMAs is linked to the term d, which stands for the 

degree of differencing involved. A full ARIMA model can be written as: 

𝑦′𝑡 = 𝑐 +  ϕ1𝑦′𝑡−1 + ⋯ + ϕ𝑝𝑦′
𝑡−𝑝

+ θ1ε𝑡−1 + ⋯ + θ𝑞ε𝑡−𝑞 + ε𝑡 

Equation 2.23 

Where 𝑦′𝑡 is the differenced time series. The model includes both lagged 

values and errors of 𝑦𝑡. It should be taken into consideration that the 

stationary and invertibility conditions that applied to moving average models 

and autoregressive models also apply to ARIMAs. (Hyndman et al. 2018) 
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Hyndman et al. (2018) further analyze the formula by listing special cases: 

ARIMA (0, 0, 0) = White noise 

ARIMA (0, 1, 0) with no constant = Random walk 

ARIMA (0, 1, 0) with a constant = Random walk with drift 

ARIMA (p, 0, 0) = Autoregression 

ARIMA (0, 0, q) = Moving average 

According to Hyndman et al. (2018) combining the components of the models 

in order to create more advanced ones make the use of backshift notations 

easier. The equation 2.23 can be written in backshift notation as: 

 

(1 − ϕ1𝐵 − ⋯ + ϕ𝑝𝐵𝑝)  (1 − 𝐵)𝑑
𝑦𝑡

= 𝑐 + (1 + θ1𝐵 + ⋯ + θ𝑞𝐵𝑞) 

Equation 2.24 

The constant c effects on the long-term forecasts obtained from ARIMA 

models. Hyndman et al. (2018) list the effects on forecasts as: 

• If c = 0 and d = 0, the long-term forecasts will go to zero. 

• If c = 0 and d = 1, the long-term forecasts will go to a non-zero 

constant. 

• If c = 0 and d = 2, the long-term forecasts will follow a straight line. 

• If c ≠ 0 and d = 0, the long-term forecasts will go to the mean of the 

data. 

• If c ≠ 0 and d = 1, the long-term forecasts will follow a straight line. 

• If c ≠ 0 and d = 2, the long-term forecasts will follow a quadratic trend. 

(Hyndman et al., 2018, p.313) 

Hyndman et al. (2018) posit that the value of d is associated with the size of 

the prediction interval. When d is equal to zero, the standard deviation of 

long-term forecasts eventually converges with the standard deviation of the 

historical data. The value of p plays a significant role in the context of data 

exhibiting cyclic trends. 
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Chen & Lei (2016) assert that ARIMA models are characterized by their 

simplicity and adaptability, leading to their increased popularity. The versatility 

of ARIMA has facilitated its implementation in numerous forecasting studies. 

Nochai and Nochai (2006) investigated the application of an ARIMA model for 

predicting oil palm prices. They employed an ARIMA (2,1,0) model for farm 

prices, ARIMA (1,0,1) for wholesale prices, and ARIMA (3,0,0) for general oil 

palm prices. The study was prompted by the oil crisis in Thailand during the 

early 2000s, when the government encouraged the use of oil palm and other 

biodiesel alternatives. Model evaluation was conducted using MAPE, which 

ranged between 13,23 and 5,27, indicating high forecast accuracy. 

Chen, Yuan, and Shu (2008) compared an ARIMA model with simple 

exponential smoothing and two-parameter exponential smoothing to forecast 

property crime rates in a Chinese town. The ARIMA model demonstrated 

superior fitting and accuracy compared to the other methods, with a MAPE of 

948. 

 

2.3.7 SARIMA 

 

Seasonal ARIMA models (SARIMA) are ARIMAs including additional 

seasonal terms. According to Hyndman et al. (2018) seasonal ARIMA 

consists of:  

𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)𝑚  

Equation 2.25 

Where m = number of observations per year. In the equation, (p, d, q) is the 

non-seasonal part of the model, and (P, D, Q)m is the seasonal part.  

The seasonal part of the model consists of terms similar to the non-seasonal 

terms but involve a backshift in the seasonal period. Hydman et al. (2018) 

demonstrate the effect by writing 𝑆𝐴𝑅𝐼𝑀𝐴(1,1,1)(1,1,1)4 for quarterly data 

(m=4) as follows: 
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(1 − ϕ1𝐵)(1 − 𝛷1𝐵4)(1 − 𝐵) (1 − 𝐵)4
𝑦𝑡

= (1 + θ1𝐵)(1 + 𝛩1𝐵4)𝜀𝑡 

Equation 2.26 

Which means that the seasonal terms are multiplied by the non-seasonal 

terms. (Hyndman et.al 2018) 

Chang and Liao (2010) used SARIMA models in the forecasting of tourism 

departures to Taiwan. The data consisted of departures from 3 destinations: 

Hong Kong, Japan, and USA. After unit root testing, the data was differenced 

and empirical examination for models was conducted. The models selected 

were: 

• SARIMA(0,1,1)(1,0,1)12  for Hong Kong 

• SARIMA(0,1,1)(1,0,0)12 for Japan  

• SARIMA(1,1,0)(0,0,1)12 for the USA  

• SARIMA(1,1,1)(1,0,0)12 for total tourism in Taiwan. 

The MAPE for these models was low, ranging from 5,63% to 8,9%, which 

indicates that the models were highly accurate.  

Eni (2015) used SARIMAS to forecast rainfall in Nigeria. Due to the rainfall 

causing flooding in Nigeria, it is important to receive early warnings of rain in 

order to optimally use and manage water resources. SARIMA (1, 1, 1) (0, 1, 

1). According to Eni (2015), the results of forecasting rainfall for one year 

were promising, and the SARIMA model proved to be capable in forecasting 

rainfall. 
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2.4 Box-Jenkins Approach 

 

Identifying optimal models for time series analysis is a crucial step in 

conducting analyses or obtaining further information about the time series. A 

widely recognized strategy for identifying an appropriate model is the Box-

Jenkins approach (Cryer, 1986). 

Box and Jenkins (1976) propose a three-step strategy for finding an optimal 

model for a dataset: 

1. Model Identification 

2. Model Estimation 

3. Model Diagnostics  

Each step may be employed multiple times to identify the optimal model for 

the time series (Cryer, 1986). Bleikh and Young (2016) introduce a 

preliminary step before the main steps: determining the stationarity of the 

time series. According to Bleikh and Young (2016), Box and Jenkins 

recommend differentiating non-stationary time series to attain stationarity. 

Additionally, Bleikh and Young (2016) cite forecasting as a fourth step in the 

process. 

 

2.4.1 Model Identification 

 

Box & Jenkins (1976) state that during the identification phase of model 

building, no precise formulation for the problem is available. Consequently, 

statistically ineffective methods must be utilized. At this stage, Box and 

Jenkins (1976) suggest employing graphical methods while bearing in mind 

that these methods only provide preliminary results for subsequent stages of 

the process. 

As ARIMA models constitute a diverse group, selecting parameters such as 

the degree of differencing (d), the degree of the autoregressive process (p), 

and the degree of the moving average process (q) can be challenging (Bleikh 
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& Young, 2016). Model identification not only aims to narrow down the types 

of models used but also provides estimates of the model parameters. This is 

particularly useful during the estimation stage to provide initial values for the 

processes (Box & Jenkins, 1976). Methods used for model identification 

include information criteria, partial autocorrelation functions, and full 

autocorrelation functions (Magnus & Fosu, 2011). In practice, as there is no 

knowledge of the real autocorrelation and partial correlation functions, 

sample autocorrelation and sample partial autocorrelation formulas should be 

estimated based on the data. (Bleikh & Young, 2016) 

 

2.4.2 Model Estimation 

 

Box & Jenkins (1976) assert that the identification process frequently 

overlaps with the estimation process. The identification process results in a 

tentative formulation of the model, and the subsequent step is to obtain 

efficient estimates of the parameters. 

For simple autoregressive models, some straightforward techniques in model 

estimation can be employed due to the linear relationships between 

autocorrelations and autoregressive model parameters. As the process is 

complex and should be executed by computers, most statistical software 

include features enabling the use of the Box-Jenkins method. Non-linear 

least squares and maximum likelihood estimations are among the primary 

approaches for this procedure. (Bleikh & Young, 2016) 

2.4.3 Model Diagnostics 

 

Upon estimating the parameters, standard errors and confidence intervals 

must be derived. It is advised to incorporate additional parameters into the 

model and examine their significance, a process referred to as over-fitting. A 

prevalent method for this involves analyzing the residuals and their behavior 

within the model. (Bleikh & Young, 2016) 
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Box and Jenkins (1976) assert that the diagnostic check serves as a means 

of verifying the model's appropriateness for the specific task. Should signs of 

inefficiency be present in the model, the process offers insights on how the 

model might be altered to achieve the desired level of effectiveness. Once 

the correct model has been identified, a more intricate version is constructed, 

which brings the initial model identification into question due to the inclusion 

of supplementary parameters in the more detailed model. If the more 

complex model fails to demonstrate improved efficiency or if the additions do 

not yield superior results, it can be inferred that the initially identified model is 

optimal. 
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3 Empirical study 

 

This chapter will provide a short introduction to the data used in the empirical 

study and analyze it. The chapter will continue with a description of the 

models used and present the results of the study. 

 

3.1 Introduction to the data 

 

The electricity system of Finland consists of power plants, the transmission 

grid, regional and distribution networks. The power system in Finland is part 

of the inter-Nordic system that spreads to Sweden, Norway, and Eastern 

Denmark. Part of the Finish electricity network are links to both Estonia and 

Russia. (Fingrid, 2017) 

Finland is a part of the Nordic wholesale electricity market, where 70% of the 

trade takes place in the power exchange located in Oslo. The market covers 

the Nordic countries and the Baltic states but will be expanding to cover the 

whole of Europe, as the European union is aiming to create a European 

market. The internal market is part of the EU’s energy union and objectives 

concerning the security of energy supply. (Ministry of economic affairs and 

employment 2022) 
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Table 1: Supply and total consumption of electricity, 2021 (Tilastokeskus 2022) 

According to Tilastokeskus (2022) the Finish electricity consumption 

consisted in 2021 of 20,5% imported energy and the most important source 

of domestic energy was nuclear power with a share of 26,1%. Most of the 

energy is consumed by industry and construction (43,5%), and the 

households together with agriculture consume 28,3% of the energy.  
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3.2 Description of the dataset 

 

The dataset used in the study is consists of hourly electricity consumption 

measured in megawatt hours in Finland and is sourced from Fingrid. The 

dataset includes hourly electricity consumption data from 2017 to the end of 

2022, spanning a total of five years. The data is provided in csv format and 

contains a total of 44169 data points. 

 

Figure 10: Consumption of electricity in Finland 

The values in the dataset have a mean of 9381,09 and a standard deviation 

of 1561,54. The minimum value in the dataset is 5341, and the maximum 

value is 14542. The distribution of values in the dataset is skewed to the 

right, with a 25th percentile value of 822, a 50th percentile value of 9138, and 

a 75th percentile value of 10471. 

Visually inspected, the data is clearly seasonal, and it fluctuates between the 

cold winter season and warmer summer season. One could also notice that 

seasonality is not only yearly, but the consumption also varies between 

shorter periods. No clear trend pattern is recognizable from the data, which 

could indicate that the models will not need excessive amounts of 

differencing.  
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The data was preprocessed by aggregating the values into consumption by 

week, fortnight and month. The aggregation was done using the function 

resample in pandas, a library used for data analysis in python. The 

aggregation was done for the purpose of saving the amount of computing 

power required for the models to work, and for the sake of comparing the 

accuracy of models on different periods. 

 

3.2.1 Consumption, one-week periods 

 

As the data is resampled for weekly consumption of electricity, amount of 

datapoints drop from 44169 to 261. The mean for the data is 1587560,1724, 

the standard deviation is 252778,07708. The values fluctuate between 

1161397 and 2768911.  

 

Figure 11 : Electricity Consumption in Finland, Weekly Data 

Visually inspecting the data, it has no particular trend, which would mean that 

the time series is almost stationary. By using a rolling mean to visualize data, 
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one can expect to catch a trend pattern by smoothing out the noise in the 

data. 

 

Figure 12: Electricity Consumption in Finland, Weekly Data, Rolling Mean and Rolling Standard 

Deviation 

Figure 12 shows a weak, downward trend pattern. A pattern would indicate 

that the time series is non-stationary and will need differencing in order to fit 

the models. 

Another way of inspecting the data is to use the decompose function in 

python. This function separates the trend, seasonality and residual from the 

time series.  
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Figure 13: Electricity Consumption in Finland, Weekly Data Decomposed Trend Pattern 

Decomposing the time series confirms the suspicion of a downward trend 

pattern in the data. In order to receive confirmation of the need for 

differencing, a unit root test was conducted. The selected test was 

Augmented Dickey Fuller (ADF), which is included in python libraries used for 

the study. The ADF test results in a p-value of 0,02 and critical values of 1%: 

-3,456 for 1%, -2,873for 5% and -2.573 for 10%. The p-value is below the 

significance value of 0,05 and thus, the null hypothesis is rejected, and the 

time series is stationary.  

  



 

39 
 

An autocorrelation plot on the non-differenced data shows that the values 

correlate with each other, the nearer others they are measured in the period.  

 

Figure 14: Electricity Consumption in Finland, Weekly Data, Autocorrelation 

 

Basically, looking at figure 14, one could conclude that the weather has an 

impact on the values. When the lag increases, the correlation decreases. 

This is logical as the temperature and other weather conditions have an 

effect on the consumption, and they tend to change slowly. This type of 

autocorrelation is not ideal for the Arima model; thus, some differencing is 

needed. 
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By differencing the time series once, the autocorrelations in the data is 

looking very different compared to figure 14. 

 

Figure 15: Electricity Consumption in Finland, Weekly Data, Autocorrelation of 1st Order Differenced 

Data 

 

In figure 15, the correlations drop significantly due to the unit of measure 

swhiching from absolute values to change in values. The previous value does 

not determine the next value like in the original data.  

The p and q in an Arima model can be estimated with visual inspections of 

the autocorrelation plot and partial autocorrelation plot. The partial 

autocorrelation plot measures the correlation of values after removing the 

effect of other lags. Partial autocorrelations can be used to estimate the last 

coefficient in an autoregressive model. The visual determination of p and q is 

not possible if both of the values are positive. (Hyndman et al. 2018) 

The data may follow an ARIMA (p, d,0) if the autocorrelation for differenced 

data is exponentially decaying or sinusoidal and if the partial autocorrelation 

has a significant spike at lag p, but no significant lags after it. One can expect 
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an ARIMA (0, d, q) if the partial autocorrelation is exponentially decaying or 

sinusoidal and in the autocorrelation plot there is a significant spike at lag q, 

but significant lags after it. (Hyndman et al. 2018) 

 

 

Figure 16: Electricity Consumption in Finland, Weekly Data, Partial Autocorrelation of 1st Order 

Differenced Data 

 

Inspecting the partial autocorrelation plot together with the plot in figure 15, 

one can see the values exponentially decaying, when in both of the plots, the 

correlation drops from 1 to below significance level. The assumptions for 

ARIMA (0, d, q) and ARIMA (p,d,0) were that either the autocorrelation plot or 

the partial autocorrelation plot display a significant lag and none thereafter. 

Inspecting the autocorrelation plot, one can see that the 2nd lag is beyond the 

level of significance, which would indicate that q is 2. On the other hand, 

inspecting the partial autocorrelation plot in figure 15, the 2nd lag is significant 

as well, which would indicate that p is 2. As both of the figures indicate a 

value > 0, they rule each other out and p or q cannot be determined visually.  
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As the study is comparing seasonal ARIMAs to ARIMAs, the seasonality of 

the data is a subject of interest. By using the function decompose, the 

seasonality pattern can be separated from the time series.  

 

 

Figure 17: Electricity Consumption in Finland, Weekly Data Decomposed Seasonality Pattern 

As expected, the data has a seasonality pattern that can be explained with 

the heating consuming electricity during the winter season. The pattern also 

shows some yearly spikes in consumption that separate from the main 

pattern. There is a spike downwards approximately in the middle of Q2 and a 

spike upwards at the end of Q3.  

The residual of the time series is the irregularities in the data. By 

decomposing the time series, it can be visualized as well. 
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Figure 18: Electricity Consumption in Finland, Weekly Data Decomposed Residual Pattern 

 

In figure 18, it can be interpreted that the distinguished spike in consumption 

in the third quarter of 2019 is irregular as can be expected. Other notable 

irregularities can be observed during the third quarters of the year. These can 

be caused for example by warmer periods during the fall.  

 

3.2.2 Consumption, two-week periods 

 

The time series aggregated to fortnight periods decreases the number of 

observations to 131. The mean of values for the dataset is 3163001,56, 

standard deviation 506371,23 and the values fluctuate between 1778723 and 

4880804.  
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Figure 19: Electricity Consumption in Finland, Data for Two-Week Periods 

Compared to the weekly data, the variation between the values are 

smoothed out a bit.  
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Figure 20: Electricity Consumption in Finland, Data for Two-Week Periods, Rolling Mean and Standard 

Deviation 

Compared to the rolling mean of weekly data in figure 12, one can see that 

the rolling mean in figure 20 is closer to the actual values. Unlike in figure 12, 

the rolling standard deviation in figure 20 has two higher spikes during the 

decrease in observations during 2018 and the increase in consumption in 

2019.  
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Figure 21: Electricity Consumption in Finland, Data for Two-Week Periods, Autocorrelation  

The pattern in the autocorrelation plot is similar in nature compared to the 

pattern in figure 14. It must me noted that measuring the data on two-week 

periods means that the observations of Autocorrelation in span the period of 

approximately one year, which explains the increase in autocorrelation 

towards the end of the observations in figure 21.  
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Figure 22: Electricity Consumption in Finland, Data Differenced in the 1st Order for Two-Week Periods, 

Autocorrelation 

The differencing in first order reveals that most of the autocorrelations are 

negative, which could indicate that the time series is too different. The 

autocorrelation in figure 22 plot does not display values with significant 

correlation. Comparing the figure 22 plot to the plot in figure 15, the amount 

of negative correlation has increased. 
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Figure 23: Electricity Consumption in Finland, Data Differenced in the 1st Order for Two-Week Periods, 

Partial Autocorrelation 

 

The partial autocorrelation in figure 23 has no significant values, and as in 

figure 22, the amount of negative correlation has increased.  

The ADT test for the data gives a result of 0,0000072, which is clearly below 

the level of significance and therefore the null hypothesis can be rejected. 

The decomposed time series illustrates a small downwards trend, as in 

weekly data, but according to the ADT test it is not significant enough for the 

time frame not being stationary.  
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Figure 24: Electricity Consumption in Finland, Data for two-week periods, Decomposed Trend Pattern 

One reason for the decreasing trend in figure 24 could be that decomposing 

function does not see the peak in consumption during 2019 as residual. As 

the consumption for the beginning of 2019 was higher than usual, it is 

regarded as a starting point for a trend that decreases during the year.  
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Figure 25: Electricity Consumption in Finland, Data for two-week periods, Decomposed Residual 

Pattern 

The residual plot does not confirm this, as the peak of consumption in 2019 is 

acknowledged in figure 25. An interesting observation in the residual plot 

could be made that the end of 2021 has a spike down. Overall, the amount of 

residual decreased vastly compared to figure 18. 
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Figure 26: Electricity Consumption in Finland, Data for two-week periods, Decomposed Seasonality 

Pattern 

In comparison to the decomposed seasonality of the time series for weekly 

data in figure 17, the pattern is could be regarded as less regular. One 

noticeable observation is that the spikes during fall of 2019 and 2021 are 

higher compared to the spikes illustrated for same time periods in figure 17. 

 

3.2.3 Monthly consumption 

 

Resampled data for monthly consumption of electricity includes 60 

datapoints. The mean for the data is 6905886,75, the standard deviation is 

1001736.82. The values fluctuate between 5348632 and 9120657. 
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Figure 27: Electricity Consumption in Finland, Data for monthly periods 

As expected, the variance in observations is smoothed further.  
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Figure 28: Electricity Consumption in Finland, Data for Monthly Periods, Rolling Mean and Std 

The rolling mean of measures is close to the actual values and the same 

peaks in rolling standard deviations that are illustrated in figure 20 are 

included.  

The ADF test results in a p-value of 0,00000037 with rejects the null hypothe

sis and the time series can be regarded as stationary.  
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Figure 29: Electricity Consumption in Finland, Data for Monthly Periods, Autocorrelation 

The observation period for the autocorrelation plot spans over 1,5 years, 

therefore the correlations decrease and increase during the period.  
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Figure 30: Electricity Consumption in Finland, Data for Monthly Periods, Decomposed Trend Pattern 

The decomposed trend pattern yet again displays a decreasing trend. What 

is notable in Figure 30 is that the trend begins from the late 2018, compared 

to the start of 2019 in figure 24.  

The seasonal pattern for monthly data is looking clearer compared to 

seasonal patterns in figure 26 and 17.  
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Figure 31: Electricity Consumption in Finland, Data for Monthly Periods, Decomposed Seasonal 

Pattern 

The seasonal pattern is regular, and in figure 31 no other spikes can be 

detected, as in figure 26 and 17. The downward spike during the start of the 

year could be due to Christmas holidays, as the utilization rate of industrial 

machinery drops.  
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Figure 32: Electricity Consumption in Finland, Data for Monthly Periods, Decomposed Residual Pattern 

Surprisingly, the residual plot has more fluctuation compared to figure 25. 

Notably, the average residual value is close or under zero. 

 

3.3 Models 

 

 

The models used in empirical study are ARIMA and Seasonal ARIMA by 

pmdarima. The models are constructed by using the auto_arima function. 

The start values for p and q are 0 and the max values are 5 for p and q. The 

function loops trough the possible combinations for p, d and q and selects the 

best fitting model for the final forecast based on their AIC value.  

For seasonal ARIMA, the model additionally seeks the best fitting values for 

P, D and Q. The seasonal period for the models is 52 observations for the 
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weekly data, 26 observations for the fortnight data and 12 observations for 

the monthly data.  

The data is split into test and train data with the purpose of conducting a 

forecast of 6 months.  

 

Figure 33: Test-Train Split, Weekly Data 

For the weekly data, the train data consists of 240 observations and test data 

of 21 observations. The size of train data for fortnightly consumption is 120 

observations and the size of test data is 11 observations. The monthly 

consumption data is split to train data of 54 observations and test data of 6 

observations.  

The accuracy of the forecasting models is measured by mean absolute 

percentage error. As other forecasting error metrics are dependent on the 

scale of observations used and the study is conducted to 3 datasets with 

different time periods, mean absolute percentage error enables the possibility 

to compare the performance of all models.  
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3.4 Results 

 

Auto_arima selected the following models for the datasets:  

Weekly data ARIMA (2, 1, 0) SARIMA (2, 1, 0)(1, 0, 0) 52 

Two-week period data ARIMA (1, 0, 0) SARIMA (1, 0, 0)(0, 0, 2)26 

Monthly data ARIMA (2, 0, 5) SARIMA (1, 0, 0)(1, 0, 0)12 

Table 2: Models Chosen for the Study 

 

For weekly data, the optimal ARIMA model had a p of 2, d of 1 and q of 0. 

The seasonal terms were 1 for P and 0 for D and Q. The terms selected for 

fortnight data were 1 for p, and 2 for Q. The terms d, q, P and D were 0. For 

the monthly data, the terms for optimal models had some variation as the 

ARIMA had the terms 2 for p, 0 for d and 5 for q whereas the seasonal 

ARIMA had 1 for p and the terms d and q were 0. The seasonal terms for 

monthly data were 1 for P and 0 for D and Q.  

 

3.4.1 Weekly data results 

 

Mean absolute percentage error on the weekly time period for ARIMA (2, 1, 

0) was 11,3%, which translates to the accuracy of the forecast being 88,7%. 

For the SARIMA (2, 1, 0)(1, 0, 0) 52, the mean absolute percentage error 

was 9,3 %, which translates to the accuracy of 90,7%.  
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Figure 34: Forecast Values Visualized, Weekly Data 

Figure 34 visualizes the performance of both models and compares them to 

the actual values, labeled test. The forecasting period starts from the summer 

of 2022, which is typically at the bottom of yearly consumption. The 

visualization illustrates the inability of the ARIMA to foresee the increase of 

consumption, and the predicted values have no fluctuation. The SARIMA 

model is able to predict some increase in consumption, presumably based on 

the seasonality.  
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Figure 35: Forecast Values Visualized, Weekly Data Scale 2 

The visual inspection on a closer scale reveals that the fluctuations in the 

values of ARIMA are miniscule, and the difference to forecast values from the 

SARIMA model is evident.  

 

3.4.2 Two-Week Period Results 

 

Mean absolute percentage error on the two-week time period for ARIMA (1, 0, 

0) was 6,3%, which translates to the accuracy of the forecast being 93,7%. 

For the SARIMA (1, 0, 0)(0, 0, 2)26, the mean absolute percentage error was 

4,54 %, which means the accuracy of 95,46%.  
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Figure 36: Forecast Values Visualized, Data for Two-Week Periods 

Figure 36 visualizes the predictions for both of the values and compares 

them to the actual values. Both of the models were able to predict the yearly 

increase in consumption and both of the models can be regarded as 

accurate. Based on the visual inspection of figure 36, the Sarima model was 

able to predict fluctuation in the consumption, whereas the ARIMA was only 

able to predict the trend pattern for the rest of the year. 
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Figure 37: Forecast Values Visualized, Data for Two-Week Periods Scale 2 

Closer inspection of the values confirms the expectation that the SARIMA 

model was able to keep the forecasted values closer to the actual values, 

whereas the ARIMA predicted a continuous trend value. 

 

3.4.3 Monthly Data Results 

 

Mean absolute percentage error on the two-week time period for ARIMA (2, 0, 

5) was 5,73%, which translates to the accuracy of the forecast being 94,27%. 

For the SARIMA (1, 0, 0)(1, 0, 0)12, the mean absolute percentage error was 

7,96 %, which means the accuracy of 92,04%. What is notable for this 

timeframe is that the ARIMA model performed better than the SARIMA. 
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Figure 38: Forecast Values Visualized, Monthly Data 

Inspecting figure 38, it is clear that the lower accuracy of the SARIMA model 

is due to its forecasting values being too high. The forecasted values for the 

ARIMA model are higher compared to actual values, but the line is notably 

closer than the line for SARIMAs predicted values.  

  

Figure 39: Forecast Values Visualized, Monthly Data, scale 2 
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Closer inspection of the values confirms that the SARIMA did predict too high 

values for the electricity consumption, thus resulting in a significantly lower 

accuracy. What is notable in the ARIMA line is that the last value it predicted 

broke the trend of increasing consumption.  

 

3.4.4 Summary of results 

 

The study was conducted using optimal ARIMA and SARIMA models to 

predict electricity consumption data at weekly, two-week, and monthly 

intervals. For weekly data, the SARIMA (2, 1, 0)(1, 0, 0) 52 model was more 

accurate than the ARIMA(2, 1, 0) model. For two-week data, the SARIMA (1, 

0, 0)(0, 0, 2)26 model was more accurate than the ARIMA(1, 0, 0) model. For 

monthly data, the ARIMA (2, 0, 5) model was more accurate than the 

SARIMA(1, 0, 0)(1, 0, 0)12 model. 

Period ARIMA MAPE SARIMA MAPE 

Weekly data: 11,3% 9,3% 

Two-week period data 6,3% 4,54% 

Monthly data: 5,73% 7,96% 

Table 3: Study Results Summary 

Overall, visualizations of the forecasted values compared to actual values 

showed that the SARIMA models were better able to predict fluctuations in 

consumption compared to the ARIMA models. However, the ARIMA model for 

monthly data was more accurate than the SARIMA model, due to the 

SARIMA model predicting higher values. 

  



 

66 
 

 

4 Conclusions and Discussion 

 

This chapter discusses and concludes the results of the empirical study by 

answering the research questions. Following the discussion, 

recommendations for future research is made.  

 

4.1 Research Questions 

 

The aim of the study was to compare ARIMAs to seasonal ARIMAs and by 

doing that, answer the research questions. The thesis has succeeded to 

some degree in answering these questions, and the results of the empirical 

study were enough to give some expected answers, but also some surprising 

results.  

1. Which of the Time series models give the better accuracy forecasting 

the electricity consumption? 

Based on the results presented in the study, the SARIMA models were more 

accurate than the ARIMA models in predicting electricity consumption. The 

mean absolute percentage error (MAPE) for the SARIMA models was lower, 

indicating that they had a higher level of accuracy than the ARIMA models. 

The accuracy of the SARIMA models ranged from 90.7% to 95.5%, while the 

ARIMA models had an accuracy of between 88.7% to 94.3%. Thus, it can be 

concluded that the SARIMA models gave better accuracy in forecasting 

electricity consumption. 

2. Which of the models suit the dataset better? 

Overall, the SARIMA models were found to be more accurate than the 

ARIMA models in forecasting electricity consumption, while both the ARIMA 

and SARIMA models selected by the auto_arima algorithm were found to suit 

the datasets well. It is important to note that the performance of the models 
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may vary depending on the specific dataset being analyzed, and it may be 

necessary to try different models to determine which one is most suitable for 

a particular dataset.  

Perhaps the most interesting find of the study was that the for the monthly 

data, the SARIMA model could not outperform the ARIMA. Whether it was 

due to the ARIMA model performing better than expected or the SARIMA 

model performing worse than expected is up to debate. Based on the 

decomposed data, one could perhaps expect that due to the monthly data 

having such a clear seasonality pattern, the SARIMA would have performed 

better.  

Another explanation for the difference in performance could be drawn yet 

again from the decomposed time series on monthly level. The amount of 

residual is significantly reduced when the observation values are aggregated 

for a longer time period. As the models are based on autoregressive moving 

average models, which can be disturbed by the residual values, the 

importance of following the existing trend might have overcome the 

importance of following a seasonal pattern. In other words, as the noise in 

the data is reduced, following the short-term trend leads to better results.  
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4.2 Future Research 

 

Some areas of possible future research can be suggested based on the 

results of this study. As the unexpected result of SARIMAs losing in accuracy 

for on the monthly time period raises some questions about the optimal 

performance of these models.  

The performance of SARIMAs could be the subject of interest to focus on. As 

the model performs well on other timeframes and data, it would be interesting 

to find an answer about the optimal amount of training data for these models. 

The effect of splitting data into train and test data could be examined to find 

the appropriate level of relative amount of data needed for the model to 

function properly. An alternative view on the subject could be the absolute 

number of observations needed for training the models in order to establish 

an accurate forecast. 

Another standpoint regarding SARIMAs would be the seasonality factor. 

Should the model be given the cycle length of the larger fluctuation in the 

seasonality, or would it perform as well or better compared to ARIMAs if it is 

given the frequency of smaller cycles in the data? This is based on the 

finding that on monthly scale, the non-seasonal terms with minimized AIC-

values were different for SARIMA and ARIMA, which was unexpected as 

well.  
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5 Summary in Swedish – Svensk sammanfattning 
 

5.1 Utvärdering av prestanda hos tidsseriemodeller för 

prognostisering av elförbrukning i Finland 
 

5.2 Introduktion 
 

I februari 2022 genomförde Ryssland en attack på Ukraina, vilket fungerade 

som en slutlig katalysator för de stigande energipriserna i Europa. 

Efterföljande veckor började västvärlden isolera Ryssland från internationell 

handel. Detta resulterade i hög inflation och priserna på el påverkades som 

ett resultat. Situationen på marknaden är unik, på grund av att inom fem år, 

skiftade priset av el från en låg nivå på grund av Covid-19 till en högre nivå.  

 

Syftet med studien är att svara på följande forskningsfrågor: 

Vilken tidsseriemodell ger bättre precision för att prognostisera 

elförbrukning? 

samt  

Vilken av använda modell passar bäst för elförbruksdata?  

 

En litteraturöversikt av teorin bakom tidsserieanalys och prognosmetoder 

genomförs innan en jämförelse utförs mellan två modeller - autoregressivt 

integrerat glidande medelvärde och säsongsmässigt autoregressivt integrerat 

glidande medelvärde - som använder elförbrukningsdata från Finland. 

Jupyter notebooks och Python används för att utveckla och bearbeta 

modellerna. Studien jämför de två modellerna utifrån prognosernas 

noggrannhet för elförbrukning i framtiden. Slutligen presenteras resultaten.  
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5.3 Litteraturöversikt  
 

I tidsserieanalys tas mätvärden ofta vid regelbundna intervall, till exempel 

årligen, månatligen, dagligen eller timvis (Cryer, 1986). Även om värdena i en 

tidsserie generellt kan vara slumpmässiga, finns det möjlighet att de skiftar till 

relativt högre eller lägre värden över tid. Denna förändring i tidsserien kallas 

trend. Cykliska komponenter är återkommande sekvenser som sträcker sig 

över ett kalenderår. Säsongskomponenter visar regelbundna mönster över 

ettårsperioder. Den oregelbundna komponenten är de värden som inte 

påverkas av trender, cykler eller säsongsvariationer. (Anderson, Sweeney, 

and Williams, 1999) 

Tidsserieanalys är en metod för att förutse framtida värden. Om vissa 

förutsättningar är uppfyllda kan kvantitativa metoder användas. En metod är 

glidande medelvärde, där det genomsnittliga värdet för de senaste värdena 

används som en prognos för nästa period. Ett annat sätt är autoregressiva 

modeller, där framtida värden förutspås genom att använda en kombination 

av tidigare värden. För att skapa en tidsserieanalys krävs att den är stationär, 

det vill säga att den inte är beroende av tid och inte har några förutsägbara 

mönster. Icke-stationära tidsserier kan omvandlas till stationära genom 

differentiering. (Anderson et.al, 1999) 

En populär strategi för att hitta en lämplig modell för tidsserieanalys är Box-

Jenkins-metoden. Den består av tre huvudsteg: identifiering, skattning och 

kontroll av modellen. Dessa steg kan användas flera gånger för att hitta den 

optimala modellen. (Bleikh & Young, 2016) 
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5.4 Empirisk studie  
 

Finlands elsystem består av kraftverk, överföringsnätet, regionala nät och 

distributionsnät. Elsystemet är en del av det inter-nordiska systemet som 

sträcker sig till Sverige, Norge och östra Danmark. En del av det finska 

elnätet har förbindelser till både Estland och Ryssland. Finland är en del av 

den nordiska elmarknaden där 70 % av handeln sker på kraftbörsen i Oslo. 

Marknaden täcker de nordiska länderna och de baltiska staterna, men 

kommer att utvidgas för att täcka hela Europa, då EU strävar efter att skapa 

en europeisk marknad. 

Enligt Statistikcentralen (2022) bestod Finlands elförbrukning 2021 av 20,5 % 

importerad energi och den viktigaste inhemska energikällan var kärnkraft 

med en andel av 26,1 %. Största delen av energin konsumeras av industrin 

och byggsektorn (43,5 %), medan hushållen och jordbruket tillsammans 

konsumerar 28,3 % av energin. 

Studiens data består av timvisa elförbrukningsdata i Finland från Fingrid 

mellan 2018 och slutet av 2022. Data är visuellt säsongsbetonade och 

varierar mellan kalla vinter- och varma sommarperioder. 

För att jämföra noggrannheten hos modellerna på olika tidsperioder 

aggregerades datamaterialet till veckovis, tvåveckors och månatlig 

förbrukning. ARIMA- och säsongsbetonade ARIMA-modeller användes för att 

göra prognoser för en period av 6 månader. Valet av modellernas parametrar 

utfördes med funktionen Auto_arima, som värderar olika kombinationer av 

parametrar för modellerna och väljer de optimala för studien.  

Auto_arima valde följande modeller för datamängderna:  

• Veckodata: ARIMA (2, 1, 0), SARIMA (2, 1, 0)(1, 0, 0) 52  

• Tvåveckorsdata: ARIMA (1, 0, 0), SARIMA (1, 0, 0)(0, 0, 2) 26  

• Månadsdata: ARIMA (2, 0, 5), SARIMA (1, 0, 0)(1, 0, 0) 12 

Modellernas noggrannhet mäts med procentuella fel, kalkylerat med 

skillnaden mellan prognostiserade värden och faktiska värden i data. 
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5.5 Resultat  
 

För veckodata och tvåveckorsdata var prognosen med SARIMA mer exakt än 

ARIMA. För månadsdata var ARIMA mer exakt än SARIMA. Sammantaget 

visade visualiseringar av prognosvärden jämfört med faktiska värden att 

SARIMA-modellerna var bättre på att förutsäga fluktuationer i konsumtion 

jämfört med ARIMA-modellerna. Dock var ARIMA-modellen för månadsdata 

mer exakt än SARIMA-modellen, eftersom SARIMA-modellen förutspådde 

högre värden. 

Studiens syfte var att jämföra ARIMA-modeller med säsongsbetonade 

ARIMA-modeller (SARIMA) och därigenom besvara forskningsfrågorna. 

Avhandlingen har till viss del lyckats besvara dessa frågor, och resultaten 

från den empiriska studien gav både förväntade och överraskande resultat. 

Forskningsfrågan om vilken tidsseriemodell som prognostiserar elförbrukning 

med bäst precision kan besvaras med  att SARIMA-modellerna var mer 

exakta än ARIMA-modellerna för att förutsäga elförbrukningen. MAPE var 

lägre för SARIMA-modellerna, vilket indikerar att de hade en högre 

noggrannhet än ARIMA-modellerna. Noggrannheten för SARIMA-modellerna 

varierade mellan 90,7 % och 95,5 %, medan ARIMA-modellerna hade en 

noggrannhet mellan 88,7 % och 94,3 %. Därför kan det konstateras att 

SARIMA-modellerna gav bättre noggrannhet vid prognos av elförbrukningen. 

För at svara den andra forskningsfrågan kan det sägas att på generellt sett 

var SARIMA-modellerna mer exakta än ARIMA-modellerna för att förutsäga 

elförbrukningen. Både ARIMA- och SARIMA-modellerna som valdes av 

auto_arima-algoritmen ansågs passa data bättre. I framtida forskning kan det 

vara intressant att undersöka SARIMA-modellernas prestanda i förhållande 

till träningsdata och säsongsmönster för att optimera deras användning. 
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