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Abstract

Many problems in real life are, at least approximatively, of linear nature and can be
mathematically examined with the aid of linear spaces. It is natural to measure the size
of objects occurring in the problems and such an operation is called a norm. If the space
and the norm fit well together, they constitute a Banach space. A norm associates every
vector with a nonnegative number or infinity, and the Banach space consists of those
vectors whose associated number is finite. Different norms give rise to different Banach
spaces.

In this dissertation, which contains three articles, different types of weighted com-
position operators on Banach spaces, consisting of analytic functions defined on the
unit disc of the complex plane, are examined. Since the vectors are functions, there are
two basic linear operations to consider. One way to modify the vector is by multiplying
it with another function. Such an operator is said to be a multiplication operator if it is
well defined. Another way to modify the vector is to first transform the input via a func-
tion and make the original vector act on the modified input. Such a transformation is
done by a composition operator, since the resultant vector is a composition of the origi-
nal vector and the function transforming the input. A combination of a multiplication
operator and a composition operator is said to be a weighted composition operator.

In one of the articles, a certain class of integral operators on weighted Bergman
spaces are examined. The exact value of the essential norm of such operators, which
can be represented as a mean of weighted composition operators, is calculated. An-
other article deals with the connection between some operator-theoretic properties of a
weighted composition operator on the Banach space BMOA and the behaviour of cor-
responding functions. Compactness, weak compactness and complete continuity are
examined. In the so far not mentioned article, the spectrum and essential spectrum are
determined for multiplication operators on some Banach spaces.






Svensk sammanfattning

Mainga naturligt forekommande problem i verkligheten kan lampligen beskrivas
matematiskt med hjilp av vektorrum. Det dr vanligt att man vill kunna mata stor-
leken av en vektor; att forse ett vektorrum med en sddan operation (norm), ger oss ett
sa kallat Banachrum, givet att normen och rummet samarbetar val. En given norm ger
alla vektorer ett varde, storre an eller lika med noll, eller odndligt. De med dndlig norm
utgor det sd kallade Banachrummet. Olika normer ger upphov till olika Banachrum.

I denna avhandling, som viasentligen bestar av tre artiklar, undersoks olika vari-
anter av sa kallade viktade kompositionsoperatorer pa olika Banachrum bestdende av
funktioner, analytiska pa den 6ppna enhetsdisken i det komplexa talplanet. Eftersom
vektorerna ar funktioner, existerar det tva enkla typer av linjara operationer. Den en-
klaste ar att forandra vardet av funktionen genom att multiplicerar den med en annan
funktion. En sadan transformation kan utféras av en linjar operator, en sa kallad mul-
tiplikationsoperator. Forutom vardet, kan indatat till funktionen fordndras. Denna typ
av transformation gors av en sa kallad kompositionsoperator. Kombineras dessa tva
linjara operationer fas en viktad kompositionsoperator.

I en av artiklarna betraktas bland annat viktade Bergmanrum och den vasentliga
normen av en klass integraloperatorer bestims. Dessa operatorer kan uttryckas som ett
kontinuerligt medeltal av viktade kompositionsoperatorer. Det dr dven intressant att
veta hurudana funktioner som, vid bildandet av en viktad kompositionsoperator, ger
upphov till vissa operatorteoretiska egenskaper hos operatorn. I en annan av de inklud-
erade artiklarna karakteriseras de funktioner som genererar en kompakt (compact),
svagt kompakt (weakly compact) respektive fullstandigt kontinuerlig (completely con-
tinuous) operator pa Banachrummet BMOA. Vissa egenskaper av en linjir operator kan
erhallas fran dess sa kallade spektrum, vilket beradttar nar en skalar forskjutning av op-
eratorn dr inverterbar. Det sista resultatet som behandlas i avhandlingen ar spektrumet
och vidsentliga spektrumet av en multiplikationsoperator pd vissa Banachrum.
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Chapter 1

Introduction

Linear systems and differential equations are often the mathematical problems ob-
tained, either in an exact manner from or as an approximation of, some problems en-
countered in life. A simple linear system can be represented as a matrix equation Ax = b,
where the matrix A can be viewed as a linear operator and the unknown variables con-
stitute a vector x in a vector space. The result of the operator acting on the vector of
unknowns is a vector b, which is assumed to be known. A generalisation of these con-
cepts give rise to (linear) functional analysis. It follows from the proof of [1, Theorem
3, p. 170] that all linear isometries C(Q,R) — C(Q,R) are of the form f + ¢ f o, where
P(Q) c {-1,1}, ¢: Q — Q is a homeomorphism and Q is a compact metric space. The
map f — Pf o ¢ is a weighted composition operator. In [8], Forelli proved that a cer-
tain subclass of weighted composition operators, mapping H?, p > 1, p # 2 onto itself,
is exactly the set of linear isometries on the given Hardy space. About 20 years later,
Kolaski [12] proved a similar statement on the weighted Bergman spaces.

The Hilbert matrix operator on spaces of analytic functions on the unit disk is often
represented as an integral operator f fol f(x)(1 —x2z)"! dx and it has arisen from the
Hilbert matrix in connection with the double series theorem, stating that for (a,,),, € €P
and (b,), € €1, where p~' +q7! = 1, p, g > 1, the inequality

1 1
ZZunbn(l +n+m)l < .L(Zafl]q [sz]q
n m Sln(T(/p) n n

holds. At first sight, the Hilbert matrix operator has nothing to do with a weighted
composition operator, but it turns out that in many cases an equivalent and more useful
representation is given by f Jol w,f o p,dt, where w,(z) = (1 - (1 —t)z)™! and ¢; = tw;.
One may ask if the situation is different if the domain for the analytic functions
changes. The Riemann mapping theorem gives a negative answer to that question in
proper nice subsets of the complex plane; at least concerning many interesting prop-
erties, for example, the existence of non-tangential limits, which are invariant under
the Riemann map. In higher dimensions C", n > 1, things are different, but most of
the focus in this thesis is on the one-dimensional case. When the spectrum of a gener-
alised Hilbert matrix operator was determined on ¢? by Rosenblum [23], he proved that

1



2 CHAPTER 1

there is an isometric map to an L?-space converting the Hilbert matrix operator into
a multiplication operator. Since the spectrum remains unchanged under such a trans-
formation, if zero is neglected, it is sufficient to know the spectrum of the acquired
multiplication operator. Therefore, knowledge of weighted composition operators can
solve other, not immediately related, problems.

1.1 List of publications
This thesis is based on the following publications.

PaperI [16] M. Lindstrom, S. Miihkinen, and D. Norrbo, Unified approach to spectral
properties of multipliers, Taiwanese J. Math. , 24(6) (2020), 1471-1495.
https://doi.org/10.11650/tjm/200205

Paper II [17] M. Lindstrom, S. Miihkinen, and D. Norrbo, Exact essential norm of gener-
alized Hilbert matrix operators on classical analytic function spaces, Adv. Math. 408
(2022), Paper No. 108598, 34 pp. 47B38 (30H20)
https://doi.org/10.1016/j.aim.2022.108598

Paper III [18]]. Laitila, M. Lindstrém, and D. Norrbo, Compactness and weak compact-
ness of weighted composition operators on BMOA, Proc. Amer. Math. Soc. 151
(2023), 1195-1207
https://doi.org/10.1090/proc/16203

The author of this thesis has made a significant contribution to all of the contained
publications.

The articles are reprinted with the permission of their respective copyright holders.



Chapter 2

Definitions and basic results

2.1 Preliminaries

For n e Zs, :={1,2,...} the open unit ball and its boundary in C" are given by

n n
IBn:{zE(E":|z|:‘ Z|zk|2<1} and Sn:{ze([:":|z|:w Z|zk|2:1}
k=1 k=1

respectively. For n = 1 the notations ID = By and T = $; are used. The vector spaces
of analytic functions are denoted HOLO(B,,), n € Z5;, and to continue with spherical
objects, the notations B, (a,r) = {z € C" : |z—4a| < r} and B(a,r) = By(a,r) will be used,
where r > 0 and a € C". For a normed space X and f € X, the similar notation Bx(f,r)
denotes an open ball with center f and radius r, where the distance between f and some
function g € X is measured by ||f —gl|x.

A homogeneous polynomial p: B,, — C of degree k € Z is a polynomial, not iden-
tically zero if k > 1, of the form

n

j
p(zl,ZQ,...,Zn): Z u(jl ///// jn)l_[Zl;l;

Z:/I:I jV:k u=1
fvezzo

where A rjin) eC, (jl,...,jn) S ZgO'

A function f € HOLO(B,,) can always be represented in its standard form, which
is f = ) ;2o Pk» Where py, k € Z5( are some homogeneous polynomials of degree k,
uniquely determined by f.

The gradient of a function f € HOLO(IB,,) is defined as

2
. n n,
Vf:C"—>C .ZH(—aZl...azn),

which in one dimension is given by the standard derivative, Df.

3



4 CHAPTER 2

The radial derivative of a function f € HOLO(IB,,) is given by

n a [e]
(RAG1 -z =)z f @z = )k pi(z)
k=0

k=1

and the fractional radial derivative is given by
(RPf)z)=) K pi(z), BeRR.
k=0

Operator-theoretic definitions

Let X and Y be Banach spaces. The Banach spaces encountered in this thesis are implic-
itly complex. A linear operator T: X — Y is said to be bounded if there exists a constant
C > 0 such that

ITflly <Clifllx, feX,

and the smallest such C is called the norm of T, denoted ||T||x_,y. The closed unit ball
of a normed space X is given by {f € X : ||f|lx < 1} and is denoted Bx. The notation
should not be confused with the notation for an open ball in a normed space, which
always contains an explicitly stated center and radius. From linearity, it follows that
ITllx—y = SupfeBX”TfHY' The dual of a Banach space X, denoted X*, is the Banach
space of all bounded linear functionals I: X — C with the naturally induced norm

lllx = sup [I(x)]

x€Bx

For a set M C X, the annihilator of M, denoted M+, is a closed subspace of X* given by
M*:={leX":1(x)=0 for all x € M}.
Weak and weak® sequential convergence are defined as

weak: Given f,, f € X, n € Zs;, letting n — oo the convergence f, — f means that
I(f,—f)— 0 for every I € X*;

weak™ Given [,,,] € X*, n € Z51, letting n — oo the convergence [, K) | means that
(l,=1)(f) > 0 for every f € X.

Let 7 be a topology on a set X and take a subset B C X. Then the relative topol-
ogy of T to B is denoted 7(B). The topological space (B, t(B)) will be denoted (B, 7).
The topologies 7, and 7 are the topologies induced by point-wise convergence on ID
and by uniform convergence on compact subsets of ID respectively. These topologies
are defined on HOLO(ID). On Banach spaces, the weak topology w(X) is defined as
the coarsest topology yielding that all functionals in X* are continuous. If (B,w) is
metrizable, w(B) coincides with the topology induced by weak sequential convergence
on B. For X*, the weak" topology w*(X") is the coarsest topology such that the map



x> fo, fl) =1(x), I € X* is continuous for every x € X, that is, the topology is gener-
ated by the sets {f,1(U), U c C open, x € X}. Again, if (B,, w") is metrizable for some set
B, c X*, the topology coincides the topology induced by sequential weak* convergence.
A standard result, which can be found in for example [19, Theorem 2.6.23], states that
the unit ball By is w*(Bx)-metrizable if and only if X is separable.

A bounded linear operator T: X — Y acting between normed spaces is said to be

1. invertible if it is bijective with a bounded inverse,

2. compact if it maps bounded sequences to sequences with a convergent subse-
quence,

3. weakly compact if it maps bounded sequences to sequences with a weakly conver-
gent subsequence,

4. completely continuous if it maps weakly convergent sequences to norm convergent
sequences,

5. an isomorphism if it is a bijection with a bounded inverse.

6. Fredholm if dimKer T < oo and dim(Y/RanT) < oo; according to Atkinson’s theo-
rem an equivalent definition is: there exists a bounded linear operator S such that
both ST —I and TS —I are compact.

In case (X, 7x) and (Y, ty) are topological spaces, a mapping S: X — Y is
7. a homeomorphism if it is a continuous bijection with a continuous inverse.

The algebra of bounded linear operators from a normed space X to a normed space
Y is denoted by £(X,Y) and £(X) := £(X, X). Similarly, the ideal to £(X,Y) of compact
operators X — Y is denoted by (X, Y) and K(X) := £(X, X).

The essential norm of an operator T € £(X,Y) is defined to be the real number

Lelg(l)gy)HT —Lllx-y-

If X is a normed space, the spectrum of T € L(X) is defined as the subset o(T) of C,
consisting of the numbers A such that T — AI is not invertible. Similarly, the essential
spectrum o,(T) C C is the set with the property that A € ¢,(T) if and only if T — AI is
not Fredholm. It is well known that both the spectrum and the essential spectrum are
compact, non-empty sets.

If two maps a4,b: M — R satisfies a(x) > b(x) (or a(x) < b(x)), it means there is a
constant C > 0 such that a(x) > Cb(x) (or a(x) < Cb(x)) for all x € M. The notion of a
and b being equivalent means that both a(x) > b(x) and a(x) < b(x) hold and is denoted
by a(x) =< b(x). If T is an isomorphism X — Y, then ||Zf]ly < ||fllx, f € X and ||g|ly =
||I‘1g| « § €Y. In this case X and Y are isomorphic, which is denoted by X ~ Y. If the
isomorphism is an isometry, that is || Zf||y = ||f||x for all f € X, the relation is denoted
X =Y and the spaces are said to be isometrically isomorphic.
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The adjoint to an operator T € L(X,Y)is given by T*: Y* = X", v* > T*p", y* € Y7,
where T*y* =y*T: X — C.
A Banach space X is reflexive if one of the following equivalent statements holds:

* The canonical embedding 1: X — X™,x — [, is onto (an isomorphism), where
I.(F)=F(x), Fe X".

* By is weakly compact.

General results

The first part of the following well-known result is also called the uniform boundedness
principle and can be found in, for example, [19, p. 45].

Proposition 2.1.1 (Banach-Steinhaus theorem). Let X be a Banach space and Y a normed
space. If F =0 is a family of bounded linear operators X — Y such that supr.z||Tx|ly < oo
for each x € X, then

supl|Tllz(x,v) < oo
TeF

Moreover, if there are T, T,, € L(X,Y), n € Z5; such that lim,_,,||T,,f = T flly = 0 for all
feX, thenlim, o supegllT,f —Tflly = 0 for every compact set K C X.

Proof of the second part: Let K be a compact subset of X and € > 0. Then there is a finite
collection of open balls Bx(f;,€), j € {1,...,]} covering K. Let N be large enough to
ensure

S max ([T, T <e.

sup max [[T..f; - Tf,

For n> N, it holds for all f € K that

(T, - T)f||X< m1n ||T ~T)(f - fi+ )y

.....

< qin 10~ g -l

<L =Dl min (- f]HX+e<||<T T)llzx,y)e +e

From the first statement sup,,||(T,, - T)llz(x,y) < oo and the second statement follows. [

Another useful tool is the following corollary to Hahn-Banach extension theorem.

Proposition 2.1.2. Let X be a normed space and Y C X be a closed proper subspace. Then
for each x € X\ 'Y, there exists an F € X* with ||F||x- = 1, F(x) = infyey“x—y”X > 0 and
F|,=0.

Y

Choosing Y = {0}, one obtains a useful and well-known characterisation of the norm
of a vector x € X: ||x|lx = sup;cp,.|l(x)|. The section ends with some standard results,
whose proofs are included for completeness.



Lemma 2.1.3. Given two topologies Ty, T, and a set B, assume (B, ty) is a compact topo-
logical space and (B, 1) is a Hausdorff topological space. If T, C 1y, then t; = Ty, and as a
consequence, the spaces (B, t1) and (B, t,) are identical.

Proof. Since 1, C 1y, the space (B, t;) is Hausdorff. Let U € t;. Then C = B\ U is a
closed subset of B, and hence compact. Indeed, for any open cover {U]-} of C, the family
{U; U (B\ C)} will be an open cover for B, and by compactness, there is a finite subcover
{U; U (B\ C)}jes, which also covers C C B. Clearly, {U,}}¢; is a finite subcover of C.
Furthermore, 7, C 77 yields that given a subset of B any cover consisting of elements
in 1, will also be a cover with respect to 7y, therefore, compactness is inherited to
the space with a coarser topology. Since C is compact in (B, 1,), it follows from the
space being Hausdorff that C is closed in (B, 1;), and hence U € 7. Indeed, given that
C is compact in (B, 1), it can be separated from any b € B\ C, by disjoint open sets
CcUc€erand b e Uy € 1. Hence, Upep\c Up is a open subset disjoint from C, so that
B\ C = Upep\c Uy is open, which yields C is closed. O

Lemma 2.1.4. In a normed space a set M is weakly bounded if and only if it is bounded in
norm.

Proof. Assume M is weakly bounded. Consider the family {T,,: X* —» C, m € M}, where
T, (x*) = x*(m). For every m € M, the boundedness of T,, is provided by an application
of the Hahn-Banach theorem (Proposition 2.1.2). The assumption of M being weakly
bounded yields that sup,,cps| T (x*)| < oo for every x* € X* and by the uniform bounded-
ness principle the following equality, obtained by Proposition 2.1.2, is finite:

sup sup |T,(x")] = sup||m||x.

meM x*€Bx+ meM
The equality immediately gives the other direction of the statement, therefore, a set is
bounded (in norm) if it is weakly bounded. O

Lemma 2.1.5. Let X be a Banach space. Every operator L € C(X) is completely continuous.

Proof. Let (x,), be a sequence converging weakly to x,. Lemma 2.1.4 yields that (x,,), is
bounded (in norm). Hence, the image (L(x,)), is relatively compact and

K= {L(x) ], U0

is compact. Since the weak topology w is the smallest topology granting | € X* to be
continuous (X,w) — (C,||), it follows from Lemma 2.1.3 that the compact metric space
(K, |Illx) and the Hausdorff space (K, w) are identical from a topological standpoint.
Since L(x,) — L(xg) in the weak topology, the convergence also holds with respect to the
norm topology. O

The following result is well known (see for example [19, Propositions 1.11.8 and
1.12.9]).

Lemma 2.1.6. An isomorphism X — Y preserves separability, reflexivity, dense sets and
compact sets.
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2.2 Relevant Banach spaces

Let y be a finite measure on a set M C C", p € [1,00[. The LP-spaces are defined as

1
P
LP(M, p) = {f M — Cis p—measurable : ||fll ) = (J IfIP dy) < oo}.
M

The definition can naturally be extended to include L*(M, u) as the space
1
P
L®(M, p) = {f M — Cis p—measurable : ||f1|jepg ) 0 = lim(J |f|pd;4)
p—\ Jm

= inf sup|f(z |<oo}

M
I

The short form LP will be used instead of L (M, u) when there is no ambiguity.
Let M = Z; and p be the standard counting measure on M; the sequence space P
is defined as

1
o P
€7 = () € TV [(t)ullr :=[Z|tn|”] <oof, p>1;
n=1

= {(tn)n € CM : ”(tn)n”.fw = Supltnl < OO}
n

Due to some geometric properties involving cg, this special closed subspace of ¢*°
should not be left out:

o= {(tn)n €0 lim t, = o}.
n—-oo
The vectors (e,), form a Schauder basis for ¢y, where e, is the sequence in which all
elements are zero except for the n:th element, which is 1.
Banach spaces of analytic functions

The normalised Lebesgue measure on a measurable set M C C" is denoted by m. For
p €[1, 0], the Hardy spaces are defined as

HP(B,) = {fEHOLO n) e s, := sup lfrlle(s, ,,,)<<><>}

O<r<1

If p € Rand v € L'(B,, m), the Bergman-Sobolev spaces are defined as

A7 5(B,) = {f cHOLO(B,): (1 + RFf] 15, <0,

where dA,(z) = v(z)dA(z) = v(z)c,dRezy...dRez,dImz;...dImz, and c, is a constant
such that LB dA(z) = 1. Itis assumed that v: B, —]0, 00 is radial, that is, v(z) = v(|z]), z €



B,; continuous. Without loss of generality, it is assumed that IIB v(z)dA(z) = 1. The

standard weighted Bergman spaces, which is a closed subspace of Lg :=LP(B,,dA,) are
obtained when f = 0. In the case of n = 1, the polar representation is useful, that is,
dA,(re't) = v(r)dA(re') = v(r) ™40,

Some other natural types of spaces are the growth spaces

H°(B,) = {fGHOLO Nl s, = sup V(Z)If(Z)I}

zeB,

and Bloch-type spaces

B,(B,) = {f € HOLO(B,) 1l = IVl (m,) = 1 2} + sup V(Z)I(Vf)(Z)I},

2 n
where the weight function v satisfies all of the properties mentioned above, except
IIB =1, which is replaced by sup g [v(z)| = 1. In [17] and [20] they are re-
ferred to as welghted Banach spaces of analytlc functions. This name has a less precise
literal meaning, and hence, the name growth spaces is used in this thesis. A radial
weight function implies that the space is rotationally symmetric, that is, if f € X, then
wf € X for all w € §,;, and hence, the norm of the evaluation functionals 9,: f + f(z)
satisfies ||0,]lx_c = ||6|Z|HX—>C' The evaluation maps are, henceforth, assumed to be
bounded.

The subscript a will denote the weight function v(z) = v,(z) = Mx ,(1 - |2|*)%, where
My , is a normalisation constant dependent on both the type of space X, but also the
parameter a.

Henceforth, for proper subspaces of HOLO(ID), the notation (B;) or (ID) will be
dropped completely.

A necessary tool to achieve some of the results obtained in the articles is the small
growth spaces. They, together with the small Bloch-type spaces are defined as

{feHoo |hmv Nf (2) }andBO,,,:{feB |llrnv NDf (z) }

and equipped with the norms from H® and B, respectively. The spaces HY and By, are
closed subspaces of H° and B, respectively. Another useful subspace of (H:°)* is

‘H)° {FE(H ) F|B is To—continuous}.

If By is dense in By with respect to 7, it has been proved in [2, Theorem 1.1] that
“HS° is isometrically isomorphic to (HY)* with the isomorphism given by the restriction
of the restriction map R: (H®)* — (H?)*. This is, hereafter, assumed to hold for the
considered growth spaces. In the same article, it is mentioned that as a consequence of
a result by Ng, [22, Theorem 1], the map 1y: f + Of, f € H,°, 67(F) = F(f), F € 'H;? is
an isometric isomorphism from H;° onto (*H;°)*. For this, it is necessary that (Bys, 79) is
compact, which is proved by elementary means below (see Lemma 2.2.1). As mentioned
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in Lemma 3.1.13 and [2, Corollary 1.2], one can conclude that (H?)* = H®. Similarly,
for @ > 0, the space (Bg,)" is isomorphic to A'! and (A')* is isomorphic to B, (see [26,
p. 1150]).

This thesis will also include some results on the space BMOA (the space of analytic
functions of bounded mean oscillation), defined as

BMOA = {f € HOLO(D) : |Ifllpmoa = If (O) +supllf o a5 = f(a)lly2 < 00})

aceD

where 0,, a € D is the automorphism of the disc, D — D: z + {=%. The evaluation

functionals are bounded and the following estimate holds for f € BMOA (see [9, p. 95]):

1 1
If@NSLﬂ0H+§”ﬂbMOAbg1iEL

The counterpart to the small spaces for BMOA is the space VMOA (the space of
analytic functions of vanishing mean oscillation), defined as

VMOA = {f € HOLO(D) : lim I 0 0, — f (@)= = 0},

equipped with |||lgproa- It also holds, for the closed subspace VMOA, that its dual is
isomorphic to H', and (H')* is isomorphic to BMOA (see [9, Theorem 7.3 and Theorem
7.1]). In particular, VM OA™ ~ BMOA.

As a consequence of John-Nirenberg’s lemma, f — |f(0)| + ||f o 0, — f ()|l is for
p €[1,00[ an equivalent norm to ||||gp;04 0N BMOA.

Next, some well-known results, which are useful considering Banach spaces of ana-
lytic functions, are presented:

Lemma 2.2.1. The topological space (By, Tg) is compact.

Proof. By Montel’s theorem, the bounded set By is relatively compact in HOLO(ID)
with respect to 7y. Let f, € By», n € Z5; and f € HOLO(ID) be such that f, — f with
respect to 7y. For every 0 < R < 1, it holds that

sup v(z)|f (2)| < sup v(2)|f (2) - fu(2)| + 1, n € Zy;.
zeRID zeRID

Let n — co to conclude that sup,.ppv(2)[f(z)] < 1 for all 0 < R < 1, which yields the
statement.
O

Lemma 2.2.2. Let X ¢ HOLO(ID) be a Banach space. The following statements are equiva-
lent:

(1) ||"lx is finer than the compact open topology, .
(2) ||llx is finer than the topology of point-wise convergence, Ty.

(3) 0,€ X", ze D (the point evaluations are bounded).
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(4) For every compact set K C ID the evaluation maps {9, : z € K} are uniformly bounded.

Proof. First, a topology 77 is finer than a topology 7, on X if and only if Id : (X, 7;) —
(X, 7p) is continuous.

(1) = (2) is true, because the open sets in 7, are included in 7.

(2) = (3): Recall that 6, is bounded if and only if its kernel is closed. Take f,, € Ker 9,
with f, — f € X, with respect to the norm, as n — co. It follows from the assumption
that 0,(f) = f(z) = lim,, f,(z) = 0, hence, Ker ¢, is closed.

(3) = (4): For a compact set K C D, it holds that sup, ¢ |0,(f)| = sup,ex|f (2)] < oo for
all f € X. Since 0, € X*, z € K, it follows from the Banach-Steinhaus theorem (uniform
boundedness principle) that sup, [|0,||x+ < co.

(4) = (1): Take an arbitrary compact set K C ID and a sequence f, € X such that
lfullx — 0. It follows from (4) that

SuI}glfn z)| = SUPI5 (fn) |<SUPIIO Il 11 fullx-
ze

Therefore, lim,_,, sup,cx|f,(2)| = 0, proving the statement, since 7 is metrizable. [

Lemma 2.2.3. Let X C HOLO(ID) be a Banach space with 6, € X*, z € ID. Then the topolo-
gies T, (Bx) and ty(By) coincide and are metrizable. If X is also reflexive, then w(By) coincide
with to(Byx) and is metrizable. Furthermore, the space X is separable.

Proof. According to Lemma 2.2.2, it holds that SUPfep, sup,cx|f(z)| < oo for every com-

pact set K c ID, so by Montel’s theorem B := By c HOLO(D) is compact. Since
T,(B) C tg(B), it follows from Lemma 2.1.3 that 7, (B) = 7¢(B) and hence

T (Bx) ={UNBx : U € 7(B)} = {U N Bx : U € 7y(B)} = 79(Bx)-

Since 7(y(Byx) is metrizable, so is 7, (Bx).

If X is reflexive, (Bx, w(By) is compact and Lemma 2.1.3 yields that w(Byx) = 7,(Bx)
and most of the statements follow from the first part. Since (Bx, w(By)) is metrizable, so
is (1Bx, w*(1(Bx))) = (Bx=, w*(Bx+)). By [19, Theorem 2.6.23] X* is separable and hence
X is separable. O

2.3 Weighted composition operators

Weighted composition operators appear in some form in all articles included in this
thesis. Given two Banach spaces of analytic functions X,Y ¢ HOLO(BB,,), n € Z,; con-
taining the constant functions (written C C X, Y), a weighted composition operator W
is an operator that transforms f € X into an analytic function if o ¢ € Y. Some natural
demands are that ¢ is an analytic selfmap of B, and since 1 € X, it follows that € Y
for W to be well-defined. It is also sensible to write Wy, , instead of W.

If @ is the identity, the map Wy, ,,: f > ¥ f is a multiplication operator, also denoted
Ml,t» and hence, one can also write WlPr‘P = M¢Cq) as a composition of a multiplica-
tion operator My: f — ¢ f and a composition operator C,: f > f o ¢. In general, for
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WWP: X — Y to be bounded, it is sufficient but not necessary that both Ml/,: X ->Y
and Cy: X — X are bounded. Indeed, er’"‘P”,C(X,Y) < ||M4,||£(X’Y)HC(’)||L(X) proves suf-
ficiency and if X = Y = L?(ID,dA) n HOLO(ID), the standard non-weighted Bergman
Hilbert space, the operator Wy, ,, is bounded for the choice i: z+> (1 - z)_% and ¢: z+—
3z, although My f ¢ Y for all f € X.




Chapter 3

Summary of the results

3.1 The essential norm of some integral operators acting in a
bounded manner on weighted Bergman spaces and growth
spaces

Integral operators on weighted Bergman spaces

Let f e HOLO(D): z+ } 17, axz*. The Hilbert matrix operator H is defined on a subset
of HOLO(ID) as follows:

:sz+n+l , 2eD.

n=0 k=0

For example, the function z — ) ;7 ,z", z € ID does not have a Hilbert matrix opera-

tor transform. Following the proof of Diamantopoulos (5], the Hilbert matrix operator
! f

transform can be written as H(f)(z) = dx on a Banach space on which the poly-

. 1
nomials are dense and Jo [[04]|dt < o0. leen such a space, this representation can indeed
be used on any function belonging to the space and it is, hence, valid on all linear sub-
spaces.
The Hilbert matrix operator is a prime example of an integral operator of the form
Ig: f »—>f0 x)dx, where

¢ K: I DxID — Cis analytic in both arguments;

* lim,_,; K(z,t) € [0,00][ for all t €]0,1[ and

* SUPyep SUP,ep\p(1,¢)/K (2 w)| < oo for all € > 0.
These will be referred to as the three kernel conditions.

The following result is a special case of [17, Cor 5.3].

13
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Theorem 3.1.1. If Ix € L(A}), p—2> a > 0 has a kernel that satisfies the conditions above,
and the two technical conditions (3.1.1) and (3.1.2), then

1
||IK||e,Af,—>Az:J‘ limx;(t)K(z,xZ(t))—Mdt, p-2>a=0,
0 z—1 (l _t)T

where x,(t) = 1_(1t_t)z.

A crucial part of the proof of the result is that Ix can be represented as

I (f)(2) = L X(OK (%, () f(r(2) dt,

where ¢;(z) = x,(t), t €]0,1[, ze D.

The operator Ix can in other words be seen as a mean of weighted composition op-
erators, namely f Iol T;Cy,(f)dt, where T;: z > x;(t)K(z,x,(t)) is analytic in ID for
all ¢ €]0,1[. This representation for the Hilbert matrix operator was introduced by Dia-
mantopoulos and Siskakis in [6], in which case Ty(z) = m
corollary to Theorem 3.1.1:

. This yields the following

Corollary 3.1.2. For p—2 > a > 0 the essential norm of the Hilbert matrix operator acting
on Ah is given by

T
P TC
1HIl, 47 _ 47 ZJ s—dt = .
a4 Ra ta o 2+a
o o )

For Theorem 3.1.1 to hold true, the possible pole for K(-,-) at (1,1) cannot be of a
high order. On the weighted Bergman spaces, a sufficient demand, in addition to the
three kernel conditions, are the following technical assumptions: there exists 0 < € < %

such that
1 1 C+%
'r sup sup (——z) Ti(z)| < o0 (3.1.1)
0 cej2-¢,2[z€B(Le)ND -t
and for0<r<1,
sup |Ty(re'?)| S |Ty(r). (3.1.2)
0€]0,27[
Recall condition (CUBA) from [17]:
! T2llv(z)? o di
J sup L <. (CUBA)
0 zed; (Dopyr) v(Py(2))P (1—t)P

The following lemma could be generalised to other weights than v, and the state-
ment is a better version of the nonoptimal one in [17, Remark 5.5]:

Lemma 3.1.3. An integral operator Iy : Aﬂ - A’;, p—2>a >0, which satisfies the three
kernel conditions, (3.1.1) and (3.1.2) also satisfies condition (CUBA).
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Proof. First, although for a fixed 0 < Ry < 1, it holds that

U <Pt D.g,) =D forall 6€]0,1],
te]d, 1]

it is also true that for every € > 0, using U, := D\ B(1, ¢), it holds that

v 1 20 (1-[2)?
< sup|K(e ¢ - —ayp (T,

a SUPy,ep SupzeU IK(z, w
<2v

’

=

l—t

where (1 —|z|)* < v,(z) < 2%(1 —|z])* and ¢4(z) < ¢4(|z]), z € D, t €]0,1[ have been used.
2+

Sincet> (1-t) 7

P is integrable on |0, 1], there exists, for every € > 0, a constant C. > 0
such that

1 12 1 1 2
T, T
[ Mty Bt o (1, Mo 0
0 22 (Dorgs) Vali(2)? (1= 0 2BLAD vy (¢y(2)P (1-1)7

By applying v,(z) < (1 —|z|)* and (3.1.2), it follows that

1 1 2 1 a
T, Potrdt T, 1-1z)r | 1
[ Dty i (1, [0k 1P
0 2eB(LEND v, (dy(2))7 (1—1)p 0 zeBLanD (1-¢y(|z]))? 11
1 24a
1
SJ sup |Ty(z)||—— -z ! dt,
0 zeB(1,e)ND 1—t
which proves the statement.
O
The upper bound
The upper bound is obtained from the estimate
IHgll, 4 4» < sup sup|(I—L)( |f HT)(
eA A feB p |Z|<R £ (Pt D<R[

2 1
+R P||I L“AF—»APJ- i > sup Mdt,
0 (1—1)7 zed; ' (Dore) va(i(2))?
where L € £(Ah) is a compact operator, 0 < R < 1, Dcg; = RD N ¢4(ID), and D,g; =
D\ D<g . Notice that for t €]0,1[ the function ¢,: ID — ID is a bounded Mdobius map,
and hence, it is univalent and maps circles to circles. It follows that ¢;!(Dsg;) = D\
<Pt_1(DsR,t) and (p;l(DsR,t) = ¢;{(RD)NID (see Figure 3.1 for a visualisation). For a fixed

t, it holds that
lim | ) ¢ (Dore) = (1),
t'€]0,¢[
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which has a clear connection with the expression for the essential norm given in The-
orem 3.1.1. However, it is also worth pointing out that for a fixed 0 < R < 1, it holds
that

: -1
lim ) ¢! (Do) =D.
t'€]0,t[

Figure 3.1: Two pictures of the region ¢;!(D< ).

To continue, for a complex (or real) Banach space X, the concept of M-ideals, the
metric compact approximation property, property (1,) and the notion of a X containing
a copy of another space Z are introduced.

A projection P : X — X is called an L-projection if ||x||x = ||Px||x + ||x — Px]||x, for all
xeX.

A closed subspace Y C X is called an M-ideal if Y+ is the range of an L-projection.

The Banach space X is said to contain a copy of a space Z if there is a subspace Y € X
such that Y is isomorphic to Z.

The Banach space X has the metric compact approximation property if for every com-
pact set K C X and every € > 0, there is a compact operator L € £(X) with [|L]|zx) <1
such that ||(I - L)x||x < e for all x e K.

A separable Banach space X satisfies property (m,,) if for every weakly null sequence
(x1)n € X and x € X it holds that

lim supli, + lx = limsup(ic Iy + )7
The following lemma is inspired by [3].
Lemma 3.1.4. Let p > 1. For every € > 0 there is a C. > 0 such that
lla+blP —|al’| < elalP + Cc|blP  for all a,b € C. (3.1.3)

Proof. Observe that if b = 0 the statement is always true. From the case a = 0 it follows
that C. > 1. Excluding the case a = 0 or b = 0, and dividing (3.1.3) by |a’, the lemma
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can be restated as
¥e>03C>0:|[1+2f -1|<e+CclzlP VzeC\{0}. (3.1.4)

Let € > 0. A sufficient lower bound on C, is given by 2” + 1 when |z| > 1, because

1 p
||1+z|p—1)§(1+|z|)”+1 §|z|P((E+1) +

11|P
;‘ )S(2p+1)|z|p.

Henceforth, assume that C. > (2P +1). If |z] < 1, it follows that

11 +2P — 1| = max{|1 + 2P 1,1 - |1+ 2/} <max{(1+ |z}’ - 1,1 - (1 —|z])"}

(P kS PNkt N (P o
s;(k)M —'Z'k;(k)'z' sk%(k)—z 2l

If 2P|z| < ¢, the inequality (3.1.4) holds for any C.. Else, both 2?|z| < 2P and
€ \P
C€|Z|p 2 Ce(z_p) ’
are true, and hence, (3.1.4) holds if Ce(z%)p > 2P, equivalently,

2p(p+1)

C.>
€e="¢gp

2p(p+1)

This proves (3.1.3) with C. = max{2F + 1, =——}. O

To give more details to Lemma 3.2 in [17], in which case a more general weight v is
used, the following results will be stated using a radial, continuous weight function v,
which belongs to L!(ID,dA) and satisfies v(r;) < v(ry), 0 <1, <r, <1 and lim,_,; v(r) = 0.
Moreover, the proof of [17, Lemma 3.2] is not complete, since it is not evident that {I —
L, :ne€Zs}1is 19-7g equicontinuous. A complete proof will be presented culminating
in Lemma 3.1.11, which can be compared to [17, Lemma 3.2] considering the weighted
Bergman spaces. To verify the statement, the convex combination L, used consists of
dilation operators, which are defined as

D,: HOLO(D) - HOLO(D): f + f,, r €[0,1], where f,(z) = f(rz), zeD.

In this thesis the dilation operator is considered as an operator Ah — A}.
The following lemma follows from Lemma 2.2.3 and the fact that Ag, p > lis reflex-
ive.

Lemma 3.1.5. Let p > 1. The space Al is separable and the topologies T := w(Byr) =
TO(BAg) = Tn(BA;V:) renders (BAg,T) a compact metrizable topological space.

The following result is well known.

Lemma 3.1.6. For f € A}
Hm||(I =D;)fll 2 = 0.
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Proof. Let f € Ab. First, by the maximum modulus principle

21 P 271 P 27 P
[ Ipaneenfas= [ lrepenifar< [ lripetpar

holds for all R, 1, p €]0,1[, so that

J jzn )pe™)|” dt v(p) dp<f j )" dt v(p)dp.

Take € > 0 and choose R close enough to 1 in order to ensure that

(I -D,)fIF <e forallre€l0,1].

LP(ID\RD)

Considering the Taylor expansion of f, it follows that sup,.pplf(z) — f(rz)| tends to
zero as r — 1, and hence,
lim|(I - D, )z = 0

A large part of the proof of property (m,) is based on the proof of [3, Theorem 2].

Lemma 3.1.7. Let p > 1. The weighted Bergman space AY has the metric compact approxi-
mation property, satisfies (m,) and does not contain a copy of ('

Proof of the metric compact approximation property:

The dilation operators D,: AY — A} are compact and by subharmonicity their norm
is less than or equal to 1. In the weighted Bergman spaces they tend strongly to the
identity as r — 1, and by the Banach-Steinhaus theorem the convergence is uniform in
any compact set K ¢ Ab. Some details of the statements are given in Lemma 3.1.6. [

Proof of (m,):
Fix € >0 and let f, f, € A, n e Z., with f, — 0 weakly as n — co. Define

Weu(2) := max{||f (2) + fu(2) = |fu(2)P = 1f (2)P| - €lfu(2)FP, 0}, zeD.

Since 8, € (Ab), it follows that lim,,_, ., We n(2z) = 0 for all z € ID. Furthermore, by Lemma
3.1.4

If + £ult =1FlP = IFP| < |If + Fult = 1FulP |+ IF P < €lfulf + CelfIP +If1P

on D. Therefore, W ,, < C.|f|P +|f|’ and by the dominated convergence theorem,

lim | W.,dA, =0.

n—oo

Moreover, |If + ful? = |ful? = |fIP| < W, + €l ful?, and since f, "=~ 0 weakly, sup,[|fyll7 is
a finite constant, according to Lemma 2.1.4, denoted by C. This yields

JID“f +fn|p - |fn|p - |f|p|dAv < J;D We,n dAv + ellfnllig < j]D We,n dAv + EC'
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so that

timsup [ [If+ P <15 -IfP|d4, < Ce.

n—o0

Let € — 0 to obtain

lim fDHf P 1P —1fP] 44, =o0.

It follows that

limsupj If + fulPdA, llmsupj AP +|fIPdA,.
D

n—o0

Proof of Ab not containing a copy of €':

Since reflexivity is passed on to subspaces and images of isomorphisms (Lemma 2.1.6),
the weighted Bergman spaces (p €]1,0[) cannot contain a copy of the non-reflexive
space £'. O

Since Ab, p €]1,00] is separable according to Lemma 3.1.5, an application of [11,
Corollary 3.6] together with Lemma 3.1.7 yields that the subspace K(AD) is an M-ideal
in £(AD).

The following two results are stated in, for example, [7, Theorem 4.10.1] and [25
Theorem II1.2.4] respectively:

Proposition 3.1.8 (Riesz representation theorem). Let T be a compact topological space
and L € C(T,C)* be linear. Then there exists a uniquely determined complex Radon measure
pon T such that

L(x) = J;x(t)dy(t), x e C(T,C).

Proposition 3.1.9 (Hahn-Banach separation theorem). If X is a normed space and Vi, V,
are disjoint convex sets of which Vi is open. Then there is a linear functional ¢ € X* such
that

Rep(vy) < Rep(vy) forallvy e Vi, vy e V.

In the spirit of Kalton ([10, p. 151-152]), the following two lemmas are proved:

Lemma 3.1.10. When p > 1, every operator k € K(Ab)* can be extended to v, € L(AD)* in a
norm-preserving way such that v,(S) =lim,_,; v.(SD,), S € K(Ag).

Proof. The topological spaces (B 4r\.,w") and (B¢, w) are compact according to Alaoglu’s
theorem and reflexivity, and (by Tychonoff’s theorem) the product space Q := B APy XB 4p

equipped with the product topology is also compact. Let x € K(Ab)* and V: K(AD) —
C(Q,C), where V(S): (u*,g) > u*(Sy), S e K(AD). By Proposition 2.1.2,

VSl = sup IV(S)(u,g)l= sup [u*(Sg)=IISllaz_ a2,
(w,8)€Q (" 8)eQ
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that is, V is a linear isometry onto V(K(Ag)) C C(Q,C), which is therefore closed. This
yields that V(K(Ab)) is a Banach space. As a consequence, the bounded inverse theorem
ensures that V has a bounded inverse. It follows that & := ko V™! € V(K(AD))*. Since
Q is compact, the Riesz representation theorem (Proposition 3.1.8) can be applied to
obtain

#(8) = Ls‘wig)du(u*,g), $ e V(K(AD) c C(Q,0)

where p is a uniquely determined complex Radon measure on Q. This means that
)= | VS )= [ wisedueg), s exial)
Let us define v,: E(Aﬁ) — C by
n()= | wsednig)

It follows from Proposition 2.1.2 that

L|u*<5g>||dy<u*,g>| <18l [#[(Q) < o0, S € £(AD),

which yields v, € L(AbY*. Since lim,_||(I —Dr)f||A;; =0forall fe Ab (Lemma 3.1.6), it
follows that for all S € £(AD),

[v.(S) = v.(SD,)| = UQ u'(Sg)du(u”,g) - JQ u'(SD,g)du(u’, g)
< | W ST-D)9)|du(u’,
jQw( (1-D)g)ldu(u" g)

< ||S||L||<1 ~D)gll 42 [dp(u,g)|

By the dominated convergence theorem, the right-hand side tends to zero as r — 1. The
norm is preserved, because for all $ € £(A}) and r €]0,1[

L CE2 [v.(SD,)| S (5Dl
T NSDillgrpap  NSHAE 42Dl A a2 NSHAP 42

”K”IC(A’VJ)*

Let r — 1 to conclude the statement.

The convex hull of a set A is defined as

n

COA := U Zajtj:ajeA;thO;j:1,2,...; itjzl ,
j=1

nelzl j:l

and it is the smallest convex set containing A.
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Lemma 3.1.11. There are increasing sequences (t,,), C]0,1[ and (N(n)), with N(n) € Zs,
for each positive integer n such that lim,,_,., r, =1 (and lim,_,,, N(n) = o) for which

lim sup supv(z)|(I-L,)f(z)=0 (3.1.5)
”_“X’feBAp |z|<R
for all R €]0,1[ and
JLIEOHI —Lullgp_ap =1, (3.1.6)

where L, = Z,Ij:(:) Ck,n Dy, for some constants ¢y, > 0 with ZkN:(Z) Ckn=1forallneZ;,.
Proof. First, it will be proved that for all f € A},
nli_>r1;10||(I—Ln)f||A5 =0. (3.1.7)

Let € > 0, and consider any two increasing sequences (r,,),, |0, 1[ and (N(n)), with

N(n) € Zs,, for each integer n € Z-, such that lim, ,,,r, = 1. Furthermore, let (Ck,n)i\i(z)f

n € Zs1 be any convex combination. By the Minkowski inequality and Lemma 3.1.6

N(n) N(n)
I =L)fllgz < Y conlld=Dp)flle < D exne=e
k=n k=n

whenever n is large enough, which proves (3.1.7).
Turning to (3.1.5), let r,,, N(n), ¢, be as above and take R €]0,1[. Since the norm
topology is finer than the compact open topology o(A}), equation (3.1.7) implies

lim sup|(I-L,)(f)(z)|=0 forevery f e AP,

n—)oolzlSR
Next, it is proved that

lim sup sup sup|L,f(z)|=0
0=0nez;, feBy, (0,6)nAb I2I<R

from which it follows that

lim sup sup sup|(I-L,)f(z)| =0, (3.1.8)
020neZ:1 fe, (0,0)nAb FI<R

where
By, (f,0) ={g € HOLO(D) : sup|f(z) — g(z)| < 6} € 7o.

[z|[<R

Take € > 0 and observe that the maximum modulus principle yields

N(n)

sup|L,f(2)| < ) ek lslugmkf(z)( < suplf (2]

|z|<R k=n
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It follows that for 0 < 6 < e

sup sup sup|L, f(z)| < e.
NE€Z> feB.,(0,6)nAY 2I<R

Next, notice that (B,r,7() is compact according to Lemma 3.1.5, therefore, there is a
v

finite subcover {BTO(fj, 6)}; . C {BTO(f,é)}feB of B,p. It follows that for f € B 1
= Ag v v

su v(z)|(I-L z
Pri<r (2l ) < min sup D = fi)z )+ max sup| I-L,)(fj)(z |
Supj<g v(2) jelL]] |z|<R jelLI]jzi<R

< sup - supl(I=Ly)(f)(z)|+ max sup lo.ll[|(T = L) (£ -
feBy(0,0)N2B,p |2I<R jelLIT|z1<R

In accordance with (3.1.8), the first term is arbitrarily small by the choice of 6 > 0 and
by (3.1.7), the right-hand side tends to zero as n — co. This proves (3.1.5).

Finally, it will be proved that for each n € Z;, thereis an L, € co{D, ,D
that

rerr -} Such

1
0= Lullggag) < 1+ .

Assume that this is not true, that is, there exists a ny € Z5; such that for all L € C :=
co{Drn0 Drn ,,s+--}, it holds that ||T — L||£(A5) >1+ nio The open convex set B(I, 1+ nio) and
the convex set C are therefore disjoint. Let ¢ be the separating functional, obtained by

Proposition 3.1.9, for which Re¢(T) < Re¢(L) for all T € B(I, 5, L ) and L € C. It can be
LAl = 1. Notice that for any S € £(Ab),

[6(5)] = min|tp(S)| = min[Re(t(5)) + iIm (1b(5))| < [Rep(t0S)| < |20 5)

teT
N ”‘PHc Ay = L.

Moreover, using T =1+1S € B(I, 1+ - L) where ISllgppp =Tand 0<r<1+ —, one can
conclude that

where t; is chosen so that Im(t()(j)(S)) = 0. It follows that |

Rep(T —I)=Rep(rS) =rRed(S).
Hence, for every 0 < r < 1+ni0 thereexistsa T € B(I, 1 +nl—0) with Re¢(T -I) = r, which
yields
0<Rep(L-I)-Rep(T -I)=TRep(L-1I)—
thatis, r <-Re¢p(I-L)forall Le C. Since 0 <r <1+ nlo is arbitrary, it holds that
1
1+ — <-Rep(I-L) (3.1.9)
0

for all L € C. As a small remark, Proposition 2.1.2, yields that, for each L € C, there
exists ¢ such that

py S =Ll = —Repr(I - L),

ny ~ LeC
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The convexity of C allowed a functional that satisfies (3.1.9), independent of L.

Since K(A) is an M-ideal, it follows from the definition that £(Ab)* = K(AD)* @,
K(AD): and ¢ = (I = P)¢p + P.p = v, + v, , where v, is given in Lemma 3.1.10 and P;
is the L-projection with PL(L(AD)) = K(AD)L. The definition of v, does indeed grant
P v, = 0. Together with inf;cc|v.(I —L)| = 0 (Lemma 3.1.10), this yields

1 . .
1+ . < ilélé(—RE([)(I—L)) = irelé(—]%ev*(l —L)=Rev, (I)=-Rev, (I) <Rev_lla2)

=villgay < ”‘f’”z:(A’;y =L

where the last inequality holds true due to ||(],I)H£(Ap)* = Vallzapye + 1V Ll g2y~ This is a

contradiction with the conclusion that for all n € Z, there is an L, € co{D,,,D;, ,...}
1
such that ||I—Ln||£(szz)<l+ﬁ. O

Lower bound

For the lower bound a suitable approximate identity will be used. To reduce ambiguity
of the term approximate identity, it is in this thesis defined to be a sequence or net
(f¢)c in a Banach space X ¢ HOLO(ID), which tends to zero everywhere except at one
point, & € D, as ¢ — co. The norm of fc is, however, 1 for all c. In many spaces X C
HOLO(ID) the sequence approximates an evaluation map, ||f.gllx — g(&) =0:(g) asc —
oo for suitable functions, g. It is often sufficient if g € X can be continuously extended
to ID U (B(&,€) N D) for some € > 0. A final observation is that, as a consequence of
the maximum modulus principle, it is impossible to create an approximate identity of
analytic functions gathering mass to & € ID. The mass must be moved to the boundary!
Chapter 4 contains a small survey on the approximate identities used in [16] and [17].

The approximate identity is created by multiplying the body of the approximate
identity on AP, z — (1 —z)™, ¢, E]O’l%[’ where ¢, increases to 2 as 1 — oo, with a
function that neutralises the weight v in a radial fashionas z » 1. If v =v,, a >0
the function is given by g: z — (2(1 - z))_%. Notice that the body of the approximate
identity is directing the mass towards 1. Finally, normalisation of the function yields
an approximate identity, for which it is easy to see point-wise convergence to zero on ID
as n — oo. Lemma 3.1.5 grants that point-wise convergence implies weak convergence,
and hence, the effect of the compact operators in the definition of the essential norm
will be nullified. Indeed, for a Banach space X, every L € K(X) is completely continuous
by Lemma 2.1.5. If L € K(X), T € £(X) and (f,), € Bx is a weak null sequence, then

IT(flllx < (T = L)(fullx + IL(fu)llx

which yields lim,,_eol|T(fy)llx < IT ~ Lllx_x and

B I T(F,)l < Il
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There are other interesting relations between the integral operator Iy and the inte-
grand in the form of a weighted composition operator. In fact, in [17] it is proved that
forp-2>a>0,

ts S_2+a
(1-tp" " p’

which together with Theorem 3.1.1 yields the interesting identity ([17, Section 9]):

1
0

Again, it is the weighted composition operator representation, which apparently allows
the essential norm to pass by the mean value operator in this case.

IT:Col|, a2 4z = lim To(2)

1
:L IT:Copll, a2 42 2t (3.1.10)

e,Ab AP

Growth spaces

A similar identity to (3.1.10) is obtained, in [17], for integral operators on the standard

growth spaces:
1
J th(i)f dt
0

l

Concerning the essential norm of the Hilbert matrix operator the following result can
be found in [17, Example 7.5]:

1
= [l et @l

e H® HE

Theorem 3.1.12. For 0 < a <1 the essential norm of the Hilbert matrix operator acting on

HY is given by
T

sin(am)’

Hlle e e =

The upper bound of the essential norm of such an integral operator can be obtained
similarly to the corresponding result on weighted Bergman spaces. The result obtained
in Lemma 3.1.11 is in [20, Proposition 2.1] proved to hold, without invoking the theory
of M-ideals, using the standard sliding hump technique. The compact operators L,, n €
Z, are again convex combinations of the dilation operators induced by an increasing
sequence (1), tending to 1 as n — co. The uniform weights (¢ ,,),, = (n~1), are sufficient.
The following lemma is necessary to obtain the lower bound of the essential norm in
the way it is done in [17].

Lemma 3.1.13. It holds that (HO)* = (‘H)* = H®, where the Banach spaces are equipped
with their natural norms. Furthermore, the relative topology w*((*H,")") to By is metriz-
able and (11_{1 o R*)|B(H0)“ : (B(HS)H,w*((HB)**)) — (Byg, Tr) is a homeomorphism.

Proof. It was mentioned in Chapter 2 that the restriction R: *H® — (HJ)* is an iso-
metric isomorphism. Thus, the adjoint operator R*: (HY)* — (*H°)* is an isometric
isomorphism. Together with the preliminaries this proves the first statement.
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To prove that w*(Bp)-) is metrizable, recall that it is sufficient for *H;” to be separa-
ble (see for example [19, Theorem 2.6.23]). The separability follows from the following;:
Claim: For a sequence (z,,), C ID with an accumulation point in ID, it holds that

00)*

/H /HDO *
*H® =span{o,, ze D} ' (#)

=span{o, , n € Z}
Proof of Claim: Since (Byg, T¢) is metrizable, consider a sequence (f,,), C By with f, —
f € By on compact subsets of ID as n — co. Then clearly 6,(f,) = f,(z) — f(z) = 0,(f) for
all ze ID as n — oo, which yields that 0, € "H;° for all ze ID. Let (z,),, C ID be a sequence

(Hy°)

with an accumulation point in ID. The space span{é,, z € D} is the smallest closed

subspace of (H;°)* containing {6,, z € D}, hence,

(]

H®) —
span{d, , n€ Zy1} " " e span{d,, z € D}

H)*
( v) C*Hgo'

Assume that at least one of the inclusions above is proper. Let

/HOO *
F e'H;° \spanfo,,, n€Zs} * )

By Proposition 2.1.2, there is a functional F, € (*H;°)" with F,(F) > 0 and F,(G) = 0 for
/H(X) *

all G € span{o, , ne Zs) " ) . Let ig: H°® — ("H{°)* be the isometric isomorphism,
f > 0y. It follows that there is an f € H;°, not identically zero, which is mapped to F,,
and hence, f(z,) = 0, (f) = F.(9;,) = 0 for all n € Z,. From the identity theorem for

analytic functions, it follows that f = 0, which is a contradiction. Therefore,

(g0

span{o, , n € Zs, }‘Hv = span{d,, z € D}

H)*
( v) :*H.:}X).

O

Continuing the proof of Lemma 3.1.13, it is now clear that if a sequence (F,,), C
Bigey = tg(Byge) converges in w*(Bye)y) to some F, € Byy):, then the sequence con-
sisting of F, ,,(0,) = 52(11_{1 (Fon)) = L;Il(F*,n)(z), n € Zs, converges to lﬁl(F*)(Z) forallze D
as n — co. This means that (f,), := (l;-[l(F*,n))n C Bpg converges in 7. According to
Alaoglu’s theorem (B ), w*((*H,°)*)) is compact, which yields

5 |y By (Bt W (CH®Y) = (Bryge, )
is a homeomorphism.
To conclude the proof it follows from R being an isometric isomorphism from (*H;°)

to (H?)* that R*|B(HO)H t (Bgoyo w'(Byoy)) = (Begy, w*(Bimg)-)) is a homeomorphism.

Indeed, it is clearly a bijection since R* is an isometric isomorphism (HO)* — (*H)".
Let (v3)a C B 10y be a net converging to y** with respect to w*((HJ)™). Take x* € *HS.
Now Rx* € (H?)* and

Rx—y;(—(xx-) — yz—:(Rx*) _)yx—x—(Rxx—) — (Ra(-y*x—)(xx—)’
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proving that the net (R*y;’) € (*H;°)" converges to R'y™ € ("H,°)", again by Alaoglu’s
theorem (B(Hg)mw*((HS)**)) is compact, and therefore, R* is a homeomorphism.
Finally, the homeomorphism (B(Hg)ﬂ,w*(B(HB)H) — (Byg, Tr(Bpse)) is given by

(17} oR* = (7o R .
H |B(*Hgo)* |B(H79)“) (1 )|B(H9)“

O

When dealing with growth spaces, H;°, in comparison to the weighted Bergman
spaces, it is not as easy to find a sufficient condition for point-wise convergence to im-
ply weak convergence, because the lack of reflexivity. However, Lemma 3.1.13 is a
stable bridge, leading past the obstacle. Weak convergence on HY can be compared
to weak” convergence of the image of H;° under the injection, iy|y0, into the bidual,
(HY)*, which in turn has a nice relationship with H°. From the different structure
of the space the map z — (1 —z)™ will be replace by z — 2" and if v = v,, then the
weight-neutraliser is given by g: z +— (2(1 —z2))™%, a > 0, which will guide the mass to
1. To ensure that our test-functions belong to the smaller space, H?, the candidate test-
function are multiplied with z +— H,,(z), H,(z) = (1-z)*, where ¢, > 0 and lim,, ,,,c,, =0
suitably fast. As in the Ab-case the approximate identity is obtained by normalisation.
The fact that (Byg, 7,) is homeomorphic to (B(HB)”,W*(B(H%M)) (see Lemma 3.1.13) is
crucial. It follows that if f, — 0 in 7, as n — oo, where (f,), € By C By, it also holds
that ((R*)~! o 1y)(f,,) — 0 with respect to w*((H?)*). For y* € (H9)* it holds that

(R) o) (fi)®") = (tr(fu) o RHW) = 1 (i) (R™'9") = (R™'Y) fy = 97 (),

from which it can be concluded that f, — 0 in w(HY).

To be able to conclude that f, — 0 in w(HS?), one only has to realise that i: H) — HS®
is continuous, so for every functional ! € (HS°)* the map [ o € (H?)*, and hence, f, — 0
in w(HY) implies f, — 0 in w(HS). Notice that the adjoint operator of the inclusion map
is a restriction map (compare to [20, p. 878]).

A final remark of interest is the different subsets of ID that are used to obtain the
lower bound. The crucial region is the intersection of ID and a small disc centered at 1
in the case of A}, and for H® the crucial region is a small part of the real line inside ID
touching 1. These regions are reasonable, because integration of an area, which is done
in the Ab-norm needs a set with positive area and due to the approximate identity, it
is clear that the set must touch 1. The Hy°-norm is constructed with a supremum, and
hence, a line is sufficient.

A special case of an operator X — X defined as

1
fi L T,Cy,(f)dt,
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where T;Cy, (f)(z) = Ti(2)f (¢(2)), z€ D, T; € X and ¢: ID — D analytic, is obtained if
the symbols T; and ¢, are constant with respect to t. Such an operator is, in fact, a
weighted composition operator.

3.2 A characterisation for (weak) compactness and complete
continuity of a weighted composition operator on BMOA

The compactness of weighted composition operators Wy, , = $C,: BMOA — BMOA
was characterised in [13] by Laitila using three conditions. As a part of [18] it is
showed that one of the conditions is redundant. Before proceeding, for z,a € D, ¢ €
BMOA and ¢ an analytic selfmap of ID, the following notations will be used: L(a) :=

log1 7, 04(2) = {55, @ul2) 1= Oy 0 9 0 04, (P, 9,0) = [P(@)]lpally2 and f(, ,a) =

”lzb 00— lzb(a)”Hz-
In [18] the following is proved:

Theorem 3.2.1. If Wy, , € L(BMOA), then the following statements are equivalent:

3|l oos-p@],. =0;

(i) Timjga)1 [ () all 2 = 0 and limyg g1 log =2

(i1) Wll)’(P : BMOA — BMOA is compact;
(iii) WWP : BMOA — BMOA is weakly compact;
(iv) WWP : BMOA — BMOA is completely continuous.

Concerning (i)=(ii), what is proven is in fact that the two conditions given in (i),
which are two of the three conditions Laitila used in [13], are in fact sufficient to prove
Laitila’s third condition, hence, the result follows from Laitila’s result in [13]. The re-
dundant condition is

lim sup J |¢oab(§)|2dm(£):0for allRe(0,1), (3.2.1)
t=1 o) <R IE(@,b,t)

where E(¢@,b,t):= (£ € T: |(gp)(&)| >}, t €[0,1].

Notice that the limit in (3.2.1) exists if the expression is bounded, and in [13] Laitila
proved that the expression is bounded if Wy, , € L(BMOA).

The proof in [18] is done by contradiction, and the first part is to show that: if the
limit in (3.2.1) is finite and strictly greater than zero, then a similar integral, which is
associated with a larger real value, is also bounded from above and away from zero
([18, Claim 4.1]). Using this estimate it is in [18, Claim 4.2] proved, with the aid of [18,
Lemma 3.4], that for every n large enough, there is an 7 € E,, such that

1 2
inf f °0p,| dm
re]o,1[ 1(rn) E,,N(”l)|¢ n|
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is bounded away from zero, where I(re'%) := {¢'* : |0 — t| < pi(1 - 1)}, r €[0,1], 0 € [0, 271],

E,:= {E eT: (((poahn)(é)| > \/1 ~1 _Ro(l —t%)}:

and (t,), c]0,1[ and (b,,),, € D with |@(b,,)] < R yield a sequential version of the redun-
dant condition (3.2.1).

Claim 4.3 in [18] provides an upper bound, which can be made arbitrarily small in
accordance with (i) and [18, Lemma 3.3]) resulting in a contradiction. Concerning [18,
Lemma 3.4], which has the longest proof in [18], the first part is similar to [14], but the
weight ¢ creates some asymmetry, which causes problems concerning the approxima-
tion of arbitrary intervals with dyadic intervals with respect to a specific asymmetric
measure given in Claim 4.2. The second part of the proof takes care of the problems re-
lated to the measure being asymmetric. On the one hand, the approximation is far from
exact, but on the other hand, the result it yields, Lemma 3.4, is quite versatile since the
demand of symmetry is dropped. The reverse, (i)<(ii) follows directly from [13].

Any compact operator T: X — Y between Banach spaces is clearly weakly compact
and also completely continuous by Lemma 2.1.5. A sufficient condition to grant that an
operator T € £(X,Y) between Banach spaces is neither weakly compact nor completely
continuous is given by the following lemma, which demands some more concepts.

A series ) ;7 x, C X, denoted ), x,,, in a Banach space is said to be unconditionally
convergent (UC) if }_, x4(,) converges (in norm) for every permutation o of Z, that is,
a bijective map on Z;.

A weaker property that a series can enjoy is being weakly unconditionally Cauchy
(wuC). This means that the partial sums of x*(x4(,)) form a Cauchy sequence in C for
every permutation o and x* € X*, and hence, ) , x*(x,) is unconditionally convergent,
which in C is equivalent to ) |x*(x,,)] < co.

A sequence (x,), in a Banach space X is a basic sequence if it constitutes a basis for

X
its closed linear span, span{x,, n € Zs,} , which is a closed subspace of X. A standard
result (see for example [19, Corollary 4.1.25]) is that (x,,),,, where x,, # 0 for all n € Z,
is a basic sequence in X if and only if there exists a constant C such that

k ko
Zanxn <C Zanxn (3.2.2)
n=1 X n=1 X

for all (a,), € C%=1 and k, > k; > 1.

To be able to prove Theorem 3.2.9, which states that if Wy, ,, € L(BMOA) is not com-
pact, then it can be neither completely continuous nor weakly compact, a handful of
lemmas are necessary. The common factor in proving the two statements lies in the
inability of a non-compact weighted composition operator on BMOA to fix a copy of c.
As with the essential norm and the power of M-ideal theory, a geometric touch connects
compactness with both weak compactness and complete continuity concerning an oper-
ator Wy, , € L(BMOA). Therefore, some results concerning the space ¢q are appropriate.
The following results (Lemmas 3.2.2-3.2.7) are classical.
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Lemma 3.2.2. Let (x,), be a bounded sequence in a Banach space X. The series ) , t,x,
converges for every (t,), € co if and only if ), x,, is a wuC-series if and only if there exists a
constant C such that for every integers k, >k > 1 and (t,,),, € cg it holds that

ky
Ztnxn <C sup [t
X

n=k, N€Z{k) ky)

Proof. On the one hand, assume that ), t,x, converges for every (t,), € cg. For k € Z5,
define Tj: c¢g — X such that Ti((t,),) = Zﬁ;l tyx,, k € Zsy. Clearly, Ty is a bounded
operator and for a given (t,), € ¢y the quantity sup,||Ti((¢,),)|lx is finite, because the

series ), t,x, converges. The uniform boundedness principle yields that

k
C:= sup sup tax,|| < oo,
keZZl (tn)nEBco n=1
and hence, for every x* € X*
k k
sup sup t,x*(x,)| = sup sup |x Ztnxn <C
(tn)HEBcO kezzl n=1 (tn)HEBCO kEZZI n=1

as a consequence of Proposition 2.1.2. By a suitable choice of (t,),, it is clear that

sup ) Jtllx"(x,)| < C.
(tn)nEBcO n=1

Since B, is elementwise dense in B, it follows by dominated convergence that

) Kl<c
n=1

On the other hand, for a wuC-series }_, x,,, define S (; ) : X"+ C as

k
X x*[Ztnxn], (kt(tn)n) [S Zzl X Byeo.
n=1

Clearly, S t,), € X™* for all k and (t,),, and from to the assumption of }_, x,, being wuC,
it follows that

[e¢]

sup sup  [Si g, (¢)] <) ()l < oo
kezzl (tn)neBW" n=1

for all x* € X*. The uniform boundedness principle yields that

k k
sup sup tnx,, = sup sup sup x* tnxn
kezzl (t,,)nEB[oo n=1 X kezzl (tn),,GBgoo X*EBX” n=1
= sup “Skr(tn)n ”X’”

(kr(tn)rl)GZZIXBﬂ‘x’
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is a finite constant, C’ > 0. Furthermore, for a sequence (t,), € ¢y and k; < k,, it holds
that

kz ¢ k2
Xt ¢O(n) g xn S C, tnxn S C’ Sup |t1’l|?
Z " sup |t Z z
n=k; n=k; NE€L{ky ky ]
NEZ[ky Jp) x

where the leftmost sum is assumed to be 0 if t,, = 0 for all integers n € [ky, k;]. It follows
that ):I:f:kl t,x, is a Cauchy sequence in X, and by completeness, ), t,x, converges in
X. O

Lemma 3.2.3. A convex set M in a normed space X is weakly closed if and only if it is closed
with respect to the norm topology.

Proof. Since the weak topology is coarser than the norm topology, it is sufficient to prove
that a closed convex set M is also weakly closed. Assume this is not the case and let M
be a convex set, closed with respect to the norm, such that there is an x; € M"Y \M. As a
consequence, there exists an open ball, B(xg, r) for some r > 0, that is disjoint from M. In
a similar manner to Lemma 3.1.11, an application of Hahn-Banach separation theorem
(Proposition 3.1.9) yields that there is a ¢p € X* with Re¢pxg <c <d < Repx forallx e M,
where |d —c¢| = r > 0. Since x is a weak cluster point to M, every set U that is open in the
weak topology and contains xy should have a nonempty intersection with M. However,
{xe X: |¢(x—x0)| < r} is an open set in the weak topology with no common elements

with M. Therefore, there are no xg € MY \ M, so the sets are equal. O

The following assumption can be worded as: Assume that T € £(X,Y) fixes a copy
of Co-

Lemma 3.2.4. Assume Xy C X is isomorphic to ¢y and that T € L(X,Y) such that T|x, is
an isomorphism onto some subspace Yy. Then T is neither completely continuous nor weakly
compact.

Proof. First, the operator Ty := T|x,: Xo — Y inherits the property of being completely
continuous or weakly compact. Using indirect proof, one can therefore neglect the op-
erator T and only consider its restriction.

Let I be an isomorphism ¢y — X, and assume that T, is completely continuous.
Since every norm-norm continuous operator is weak-weak continuous, it follows from
the assumption that Ty o I: ¢y — Y is completely continuous, in which case, the iden-
tity operator on ¢y, I = 161 TO‘1 oTyoly: cg — ¢y, is completely continuous. From Lemma
3.2.2, it follows that ) ,e, is a wuC-series in ¢y, and hence, (e;,), is a weakly null
sequence. This could also be seen from the explicit representation of an element in
(co)* = €. Since the identity is completely continuous, it should converge in norm to
zero, which is impossible, because |le, ||, =1 for all n € Z5;.

Assume instead that T is weakly compact. In a similar fashion to the procedure
used to disprove complete continuity, it follows that B, is weakly relatively compact
and in fact weakly compact since it is closed according to Lemma 3.2.3. According to
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the Eberlein-Smulian theorem B, is weakly sequentially compact. The partial sums,
Vg 1= Zﬁzl en, k € Z5, belong to B so there must exists a convergent subsequence of
(¥k)k- The candidates to limits are taken in ¢(, but every subsequence (y, ), converges
pointwise to (1,1,...) € ¢y and a contradiction is achieved.

O

Lemma 3.2.5. Given a basic sequence (x,,),, C X such that ), x, is wuC and ||x,||x > ¢ for
all n € Zsy and some c > 0, it holds that (x,,), is equivalent to a basis of cq. On the contrary,
if T: cg — T(cg) C X is an isomorphism, then (T (e,)),, is a basic sequence such that ), T(e,)
is wuC and ||T(e,)||x = ¢ for all n € Zsy and some c > 0.

Proof. Consider the map (t,), — 2, tuXx,. It is clearly a linear bijection if it is well
defined and surjective, since (x,,), is a basic sequence. The following diagram illustrates
how the assumptions come into play to prove that the map is well defined and surjective

cg — spanf{x, :neZsy} :

(x,) wuC

=
(t,) € co — Ztnxn converge.

infy[lx,llx>0 "

Lemma 3.2.2 proves that the map is well defined and the surjectivity follows from
Y . tnx, being Cauchy and inf,||x,||x > 0:

n n—-1
)tk )t
k=1 k=1

Lemma 3.2.2 also provides that (¢,), — ), t,x, is bounded from above. By the bounded

= [tulllxallx-
X

inverse theorem, (t,), — ), t,X, is an isomorphism cy — span{x, : n € Z5, }X for which
e, X,

On the contrary, T being an isomorphism yields immediately that inf,[|T(e,)||x = ¢
for some ¢ > 0, and for ¢ € X", the functional ¢T € (cy)*, which yields that }_, T(e,) is
wuC in X, because )} , ¢, is wuC in ¢y according to Lemma 3.2.2. To see that T(e,) is
a basic sequence, one applies the characterisation (3.2.2), and because (e,), is a basic
sequence, the statement follows from the linear operators T and T~! being bounded.

O

Lemma 3.2.6. Let X be a Banach space and (x,,),, € X a sequence, equivalent to the standard
basis of cy. Then for any (t,), € €* such that inf,|t,| > 0 the sequence (t,x,), is equivalent
to the standard basis of c.

Proof. Due to Lemma 3.2.5 and the assumption, the sequence (x,), is a basic sequence
with inf,||x,||x > 0 and ), x,, is wuC. None of these properties are affected by elemen-
twise multiplication by (t,),, where 0 <inf,|t,| < sup,|t,| < co. Another application of
Lemma 3.2.5 gives the result. O
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Lemma 3.2.7. If T € L(X,Y), (x,), C X is equivalent to the standard basis of ¢y and
IT (xp)|ly is bounded away from zero. Then there is a subsequence (ny)y C Zsy such that
both (T(xy,)); and (x,, )i are equivalent to the standard basis of co. In other words, the
assumption yields that T pfixes a copy of c.

Proof. Under the given assumptions, ), T(x,,) is wuC, and so is the series of an arbi-
trary subsequence. It follows that (T(x,)), is a weakly null sequence, bounded from
above and away from zero, and by Bessaga-Pelczynski selection principle there is a sub-
sequence (1 )x C Zy; rendering (T(x,, ))x a basic sequence. By Lemma 3.2.5, it follows
that (T(x,, ))x is equivalent to the standard basis of ¢y and so is also (x,, );- In fact, as a
consequence of Lemma 3.2.5, a subsequence to a sequence equivalent to the standard
basis of ¢y, is also equivalent to the standard basis of cy. O

The following lemma is found in [14, Proposition 6] and the proof uses the sliding
hump technique.

Lemma 3.2.8. Let (f,), be a sequence in VMOA with unit norm such that lim, || full2 =
0. Then there exists a subsequence (f,, ) of (fu)n such that the map co — span{f,, :k € Z}
that maps (t,), = Y ti fu, is an isomorphism.

Many of the BMOA (or VMOA) specific ideas and calculations in the following the-
orem can be found in some form in [13] (see also [15]).

Theorem 3.2.9. If Wy, , € L(BMOA) is not compact, then it can be neither completely con-
tinuous nor weakly compact.

Proof. 1f Wy, , € L(BMOA) is not compact, then there is a number A > 0 and a sequence
(a,), € D with lim,,_,|p(a,)] = 1 such that at least one of the following holds:

1. a(p,p,a,)> Aforall n,
2. (¢, @,a,) > A for all n.

Laitila proved in [13] that Wy, ,,: BMOA — BMOA is bounded if and only if

sup a(y, @,a) < co and sup (), @, a) < co.
aclD aclD
Lemma 3.2.4 yields that it suffices to prove that W, , € L(BMOA) fixes a copy of
cg- According to Lemma 3.2.7 and Lemma 3.2.8, it suffices to find a sequence (x,,), €
VM OA with unit norm such that ||x,||[g2 — 0 as n — co and ”Wl:b"l’(x”)”BMOA is bounded
away from zero. According to Lemma 3.2.6, the demand of unit norm can be relaxed to

0 <inf,[lxullpmoa < sup,liXullpmoa < oo
Assume (1) holds and let f,, := 0y(4,) — ¢(a,), n € Z;. It follows that for b € D

fuo 0= fu(b) = 0yp(a,) © b — Op(a,) © 0(0)
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so that 3
o 1-bpla,) | w-(-2)
fn Ub(z) fn(b) l—qo(an)b(l_(_z)w )
and 2 1 2\2
fy 0 op(2)— fy(b)? = AL mel)
|1—(—a))z|
This yields that
. 2
1fy 00— () = |—w|2>f PP i) = (1 - ). (3.2.3)
T |1 - (~w)

The last equality is due to the integrand resembling the Poisson Kernel in an exact way.
Since limy_|w(¢p(a,), b)| — 1, it follows that f, € VMOA. From the symmetry of w, it
can be concluded that lim,,_,|w(¢(a,), b)| = limjy (4, )—1l0p(¢(a,))] — 1 proving that

lim £, 0 0~ fu(b)IE = (3.2.4)

for every fixed b € ID. However, since w(a,,-) is an automorphism of the disc, equation
(3.2.3) yields

supl|fy, 0 0 = fu(b)llz2 = sup /(1 — |w(a,, b)*) = 1
belD belD

and since f,(0) = 0 it follows that [|f,llgp04 = 1 for all n. To prove that ||W‘P’(P(fn)” is
bounded away from zero, one can with some simple calculations obtain
||W¢’(P(ﬁ’)“BMOA > ”l,l)(ﬁn)(pun + (111) 00, — lub(an))((l)un _ (p(a”))”HZ
(Y, @ a,)
a(¢'¢’a”)_2||¢ooﬂn_lnb(an)HHZ =a(p, ¢,a,)- %
T’l

Since sup,.p f(¢, ¢, a) < oo and |@(a,)] — 1 as n — oo, it follows that

lim 1nf|| Wy, (fn)

—>00 ”BMOA 2 li,{gglfa(t,b, @,a,) = A>0.

Since f, # 0 for every n € Zs,, it can be concluded that HWBDW(f”)”BMOA is bounded
away from zero, and hence, Wy , € L(BMOA) is neither completely continuous nor
weakly compact in the case (1) holds.

The other possibility is that (2) holds, in which case it can be assumed that (2) does
not hold. In these settings, the function

2 ) 2 -1
g (2):=|log ——— | [log—=——
206l (°g1—<p<an>z](Ogl—kp(annz) el
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turned out to be useful. It is shown in [13] that g, € VM OA with a uniform upper bound
of the norm with respect to n. This was achieved by an application of the Littlewood-
Paley identity and an estimation of the Nevanlinna function. The uniform lower bound
is achieved by the standard estimate of the norm of the evaluation map (see [9, p. 95])

2
gn(z) (log l_q)(an)z)
I|gn||BMOA 2 L(2) = ), zeDD.

2 2
(log 1_|z|2 )(log 1_|(P(an)|2

Using z = ¢(a,), it follows that ||g,|lzp04 = 1. It remains to prove that lim,,_,||g,|l;2 =
0, which is a bit cumbersome. The following sketch shows that lim,,_,||g,l|[;;» = 0 for

all p > 1. It suffices to prove that Lr log

1—' dm(z) < oo, p > 2 and from rotational
(’J un z
symmetry of the norm, it can be assumed that r, = @(a,) is real and positive. The

convergence holds true if and only if there exists € > 0 such that
€ .
J- |log(1 —r,e™)|” dt < co.
0
The argument of (1 —r,e i) is bounded, so the above holds true if and only if

€ L e p
j |log|1—rne”|| dt:f ‘Elog(l—2r,,cost+r,3)
0 0

For 0 < e <2, it holds that cost < 1 -7, t € [0, €], which gives a new sufficient condition
to prove

dt < co.

e p 2rn
J 1og((1—rn)2+ﬁt2) dt:f |10g —rn)2+t2)|p@<oo
0 3 0 Vzrn

For r, > % and € < %, it can be concluded that

€ € € (o)
f [log((1 - )%+ 2P dt < f |log(t?)|” dt = ZPJ llog tP dt = 2PJ tPetdt < oo
0 0 0

—Ine

is true, and hence, the statement lim,,_,,||g,||z2 = 0 follows from the fact that the other

-1
part of g,, namely, (log ) is independent of z and tends to zero as n — co. The

1-lp(ay)”
existence of a positive lower bound of ”pr o(&n

estimates from [13].

”BMOA is similarly granted by some

O

Remark 3.2.10. An alternative way of proving that

€
j |log(1 —r,e™)|” dt < co.
0
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holds for some € > 0 is to use the formula
€ p dt o .
f Fe o= pJ m({t € [0,€]: |f(e™)] > A})dAP,
0 21 0

which is obtained by integrating with respect to values instead of arguments in the
definition of the norm. The approximations of |log(1 - rneit)| would still be the same
as above, and the result would be that the measure of the set in the integrand has an
upper bound, independent of n, which decays exponentially in accordance with the
John-Nirenberg lemma.

If the composition-symbol ¢ € HOLO(ID) is the identity, that is, ¢(z) = z, z € D, then
Wy, = My is a multiplication operator.

3.3 Spectrum and essential spectrum of multiplication operators

In [16] the spectrum and essential spectrum of a multiplication operator M, € £(X),
induced by a suitable analytic function u, is determined for quite general Banach spaces
X c HOLO(ID). These functions, u, form an algebra,

M(X):={u e HOLO(D): uf € X for all f € X},

which is a subset of X given that the constant functions belong to X. Another algebra,
which eases the use of approximate identities, is the disc algebra, defined as

A(D) = {f € (ID): f has a continuous extension to D).

Since continuity is preserved under uniform convergence, the disc algebra is a closed
subspace of H®. As a consequence of Mergelyan’s theorem (see [24, p. 386]), the disc
algebra is the uniform closure of analytic polynomials on the open unit disc ID.

Concerning the results, the methods used are largely based on [4], and for the spec-
trum the following holds ([16, Theorem 3.2]):

Theorem 3.3.1. Assume that C C X Cc HOLO(IB,,) is a Banach space and that the evaluation
functionals are bounded. Furthermore, assume that there is another Banach space Y such that
Ifllx =< “RNf”Y for some N € Zyq and all f € HOLO(IB,,), Y satisfies the given properties
for X and whose multiplier algebra M(Y) > H*®(B,,). If M,, € L(X), then

The next useful result can be found in, for example, [21]:

. . 2
Lemma 3.3.2 (Hartogs’ extension theorem). Let f be analytic in r < ):;7:1‘2]1 < R, where

0<r<R. Then f can be continued analytically to Z?zl |z]-)2 <R
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For the essential spectrum, similarly to [4], an application of Hartogs’ theorem yields
that:

Theorem 3.3.3. Under the additional assumption that P] B, —» C, P](z) =zj, j=1,...,n
are multipliers to a Banach space X, that is, and P] € M(X(IB,,)) for every j, the assumptions
given in Theorem 3.3.1 are sufficient to ensure that

o0.(M,) = () u(B,\rB,) = u(B,) = o(M,).

0<r<1

Notice that in [16, Theorem 4.1], the assumptions are insufficient for the proof given,
because the proof makes use of [16, Lemma 3.1], whose proof heavily depend on the
existence of a space Y with the given properties.

The method to obtain the essential spectrum when n = 1 is, however, quite space
specific and the results are given in the theorem below, which is part of [16, Theorem
4.13]:

Theorem 3.3.4. If X is one of the following spaces:
(a) B,(D), 0 < <1, with u €e M(B, (D)) = B, (D) c A(D);
(b) B(ID) with u € M(B(ID)) N A(D);

(c) Az,ﬁ( ) with u € M(A aﬁ( )):A’Z,ﬁ(ID)CA( ), where p>1,a>~1and g > 22,

then

0(M,)= ) u(D\rD).

0<r<1

As a disclaimer, the AZ p-case when p = 2, follows immediately from [4], but other
values of p > 1 demanded new precise estimations in the creation of [16]. For example,
in [16, Lemma 4.11], it is proved that, foragivenp >1, @ >-1and 20, if k € Z5; is
large,
| = (k+1)7+Fr=3,

where f; i is given by

= \k
1
fg’k:z|—>( +2£Z) , E€T, keZs;.

The upper estimate

o.(M,)C ) u(D\rD),

O<r<1

can be achieved by adding one more general condition to the space X, in addition to the
assumptions made in Theorem 3.3.1. The result is the following:
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Theorem 3.3.5. Assume that

(i) C c X,Y c HOLO(D) is a Banach space and that the evaluation functionals are
bounded,

(ii) M(Y)D> H®,
(iii) there is an integer N € Zy; such that ||f||x = HRNf”onr all f e HOLO(ID), and

(iv) if f(z9) = 0 for a function f € X and zy € D, then z — [@ ¢ x.

Z2—29

If M, € L(X), then
0,(M,) C ﬂ u(D\ rD).

0<r<1

For spaces X properly contained in H®, approximate identities are used to obtain

ﬂ u(D\ rD) C 0,(M,), (3.3.1)

0<r<1

to be more specific, normalised versions of the functions fr s, £ € T, k € Z5; are used.
These calculations are, however, very space specific, and the calculations demand that
u can be continuously extended to the closed disc ID, in which case (o.,<; #(ID \ D) is
the image of the complex unit circle T under the extension of u.

If X is such that all u € H* induce a bounded operator M,, € £(X), in which case
every condition involving Y can be neglected, one can also conclude (3.3.1) given that
M, € £(X), and X satisfies conditions (i) and (iv), given in Theorem 3.3.5. The proof
scratches the theory of interpolation sequences, and it is proved that: if M,, e HOLO(ID)
and A € Ny, #(ID\ D), a certain sequence of perturbations of M, — I\ are not Fred-
holm, and that this sequence tends strongly to M, — I 1. Since the set of non-Fredholm
operators is closed, (3.3.1) follows.

The final section contains some information about the two approximate identities
used in [16] and [17] respectively. The result concerning the approximate identity used
in [16] is an improvement of the main part of [16, Lemma 4.11].
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Approximate identities

The definition of an approximate identity, in the sense the term is used in this thesis,
can be found in subsection 3.1 where the lower bound of the essential norm is discussed.

One can observe that the achievement of a lower bound for the essential spectrum of
a multiplication operator on a Bergman-Sobolev space Azyﬂ(ID), B> ”T“, p>1l,a>-1
used the peak function:

= \k

(“252), feT,zeD

(gé,k)k : ’ Where fak(z) =

| fex
Weallr, )

as the approximate identity. However, the lower bound of the essential norm of the
Hilbert matrix operator H: A, — A", p>1, a > 0 was obtained using another approxi-
mate identity, namely,

Fé,c 1

, where F¢ (z) = — , £eT,zeD.
2° (1~

p— a

h =
( E,c)05c<% éz)HE

el b

The parameter ¢ is the point on the boundary T where the mass is concentrated as
k — oo or ¢ — 2. One can ask, what is the difference between these two approximate
identities? The obvious part of the answer is that each of them consists of different
mathematical functions and depending on context, one of them yields easier calcula-
tions. The function f; x can be used on many Banach spaces in its current form in con-
trast to F¢ ., where at least the value of ¢ must be adapted to the space the approximate
identity is used on. The image of one of the functions from each approximate identity
gives a hint about some other properties:

39
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Imz Imz

=
-

fis

W=

Rez Rez

Each line is either an increase or a decrease in value by a fixed amount. Denser
lines means, therefore, a steeper slope. Normalisation will not change the structure
of the image and a different k or ¢ will change the denseness of the contour lines and
placement, but not the characteristics of the shape. It is also evident from construction
that a contour line for f;  is a circle with center —1, where the mass is larger the further
away from —1 one observes. In comparison, the contour lines of the function h; . are
circles with center at it’s mass concentration point 1. Normalising the functions, and
considering the set

My(f) = [z D: |f(2) = ),

it is evident that the shape of M.,(h; ) is a circle, gathering mass equally from all
directions. However, for k large enough (so that the following set is not empty), the
set M.,(g1,x) is a narrow lune. It turns out that in the limit case, as k — oo all mass
is pushed tangentially to 1 from inside ID, which renders this approximate identity
useless when considering inscribed polygons with a corner at the mass concentration
point, or equivalently, suitable Stolz angles. To finish this section, some results of how
well the approximate identities gathers mass from a smaller disc B(1 —R,R), R €]0,1]
inscribed in ID, touching 1, are presented. This will prove the uselessness of (g7 x)x as
an approximate identity on inscribed polygons. It will be proved that for @« > -1 and
R€]0,1],

oo 2q+%+2a T(a+ 2 1 ag
S Y TR
22K

11+27(1—|z*)* dA(z) "~
ngkx) U q V1-r

3
a+3

and

T(a+1)
T($+1)2

2+a—-c’

N 24 1 11
[ e rdam 2 (G55 ) -
B(1-R,R) 2+a—-cTt 2 2 2

where A(q) el B(q) means lim,_, 4, ‘;é;; exists and lies in ]0, oo[. As R is smaller, some of

the mass gathered tangentially in ID to 1, will not make a contribution to the total mass
gathered by the approximate identities on B(1 — R,R) as the limit is taken. The mass
gathered non-tangentially is invariant. What can also be seen is, by putting R =1 in
(4.0.1), an improvement of the constant in the main part of [16, Lemma 4.11] is obtained
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in the case p is not an integer, where the pair (g, @) here, can be compared to ((k—j)p, y) in
the article. Only considering R = 1 would simplify the proof the asymptotic behaviour
of the peak function f;  (equation (4.0.1)), however, to obtain the above formula (4.0.1)
for general R €]0, 1], the following lemma is crucial:

Lemma 4.0.1. If 7 > & > -1 and f,g: [0,1[— [0,00[ are continuous an integrable with
£(0) €]0, o[ and g not indentically zero on 0, b[ for every 0 < b < 1, then

1
J J- (1—tr) 1 f(r)g(t)dedr T2 f(O)f = e(r)dr (€+1),
0

q5+1

Proof. Take p E]O [ and choose € €]0,1[ such that 0 < f(0)—p < f(x) < f(0) + p when
O0<x<e. Letg>0.
On the one hand, there exists M = M(¢) €]0, o[ such that

J J (1—rt)1t17¢ £ (r) dtdr<J f (1—et)t"max{1,et}f(r)dtdr
< max{1,e®} (J f(r dt)f( —et)1tdt
(S

ma;ile (J f(r dt)J- (1-1)7t"dt

d Ln+1).

E’UO £ t)ﬂ(q+ 1+ 1)

Notice that
jj (1—rt)Tt1re f(r)g(t)dtdr (1 jjt'vréf t)dtdr
<
L jo (L—rt)it1rE f(r)g(t)dtdr (1 - jj thré f(r)g(t)dtdr

1€ jjmréf tydtdr (4.0.2)
(1")jj § e f(r)g(t)dtdr

—00
q—» 0.

Since f(qg+1,n+1) ~ L+ , it holds that

q+l

5+1f J (1—tr)1t1r¢ f(r)g dtdr 'S“J- J tr) 1t f(r)g(t)dt dr

< ng]oé[HwM(a(L f(r)dt)cﬁ“mw Lo+ 1)

=2 ey | e[ srat)rs g

qA)OO
—

(4.0.3)
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On the other hand,

€ 1 € 1
J; L (1—tr)qt'lrff(r)gu)dtdreBm(f(()),p)fo fo (1—tr) 1t rég(t)dtdr

and

€ 1 € r
J; L (1—tr)qt'lrffg(t)dtazr:j0 J;(l—t)qt"r'g_"—lg(;)dtdr
_ J:(l - t)qt'?(f r‘gnlg(é)dr)dt
€ 1
:j (1 —t)qt‘s(f r”_‘(’_lg(r)dr]dt.
0 £

Now choose 6 = 0(€, p) €]0, €[ small enough so that

t
Je r”_‘s_lg(r)dr <p (recall that # — & —1 > -1 and g bounded),
0

and

1
J r”fé*lg(r)dr >0 (recall that ¢ # 0 and continuous),
t

whenever 0 < t < ¢ and define G := JOI r=¢=Lg(r)dr. Now

o 1 o
L (1 —t)qté[jt r”‘slg(r)dr)dteB]R(G,p)L (1—1)7t¢ dt,

€

which yields

(1 -t)1te( [} ¢V g(r)dr ) dt
0 €
foé(l—t)‘it‘fdt
[a -t)qté(jj rﬂ—é—lg(r)dr)dt fa- t)qvf(jj r'7‘5‘1g(r)dr)dt

. Lf(l - t)qt‘f(J%1 r'i-é-lg(r)dr)dt j05(1 — 1)t dt
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and hence, it follows that

Io Io (1—tr)it1ré f(r)g(t)dtdr
jo (1-t)1t¢ dt
(L —tr)tre f(r)g(t)dtdr (1—tr)itrég(t)dtdr
Jo Jo ¢ Jo Jo &
JO fO (1-tr qt']rég( )dtdr .[0 l—tqtc,.dt (4.0.4)

f (1-1¢) qté(J el (r)dr)dt

Jo (1—tﬂt5(j pi=€= lg(r)dr)dt‘

€ Br(f(0),p)Br(G,p)

The last quotient tends to 1 as g — oo in accordance with the following formula,
obtained similarly to (4.0.2):

[y =amet([Lrretgmdr)dr 51 -opE(f) e gt dr)de
< <

j0€(1—t)qté(jj r'v—é—lg(r)dr)dt - )qté(fb pI-&-1 (r)dr)dt

1-5) G| tedt
< o) [ 1
-3 JOZ t‘f(L% r'lf‘fflg(r)dr)dt
=,
Summarising, (notice that all parameters chosen are independent of g)
(1—tr)atr f(r)g(t)dtdr
lim JO JO ) €
g— —
fo 1 t)qt5 dt

Br(f(0),0)Br(G, p).

Finally, a simple version of (4.0.2) ensures that

Fy 1
J (l—t)qtgdt~j (1—t)”’t5df=ﬁ(q+1£+1)~@
0 0 1

as g — oo, which yields

—tr)ath ¢
q%ool"cf+1 J-J (1 —tr)1tTrs f(r)g(t)dtdr

.£+1
423 —tr)1¢ ¢
- q_>oor 5+1 f f (1 —tr)TtTr= f(r)g(t)dt dr € Br(f(0), p)Br(G, p).
Let p — 0 to finish the proof. O

Theorem 4.0.2. Let a > —1. Then

3 3
B(1-R,R) 2
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Proof. At the first equality below, the domain of integration is reflected through z = %,
and the second inequality is the substitution to polar coordinates z i re'! (see Figure
4.1 for information about the transformed path of integration):

Imz

r2 =(R+c¢)* +b?

r |
i b RZ=¢2+b2
R+c
t ! =cost
1 ‘ Rez
R ¢ U
r=2Rcost

Figure 4.1: Change of variables

\f |1+4W1—MFVdA@)=J~ 2291 - o~ 1P)* dA(2)
B(1-R,R) B(R,R)

% [2Rcost q dt

:2-[ j (4—4rcost+r2)2(2rcost—r2)“rdr—

0o Jo n
PR 2 2 2,3 2 2 2 2 dt
:2J- J (4—8rc0s t+4r°cos t) (4rcos”t —4rcos”t)*4cos” t rdr—
T

q
2

R
2q+3+2"‘J‘ 1—2rcos t+1r%cos t) 2a+2,l4a () _pya dr—
o Jo

(cost)

T AR q dt
:2‘1+3+2aj f (1—coszt+(1—r)zcoszt)z(cost)z"“r2 Traq —p)a dr?
o Jo
520 (21 2, 2. 2,3 2a+2 1 dt
— Dq+3+ QJ J (l—cos t+r°cos t) (cost)** (1 -7r) *“r“dr?
o J1

R
1+a
2q+2+2aJ- J- R )(1—7’1‘)21‘0“'1 1+a(1_ Vl—r) (m)a—l drdt
Fo-- 2T - iVE

_2tiee ol 1-VI—r) ™ 1) drdt
IJ (1-rt) o3yl [X]m arp((" )( p ) (Vi-r) —

By Lemma 4.0.1, it holds that

\f 1L+ 21(1 = |2P) dA(z)

B(1-R,R)

oo 20F1F20 01 1-Vi-r l+a L T(a+3)
= L r 27(10,1—(1—12)2[”)(—) (VI-n)*tdr—=2

TC r
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203434 P(q + 3) (1-(1-R)? 1 1-r)*t
_ienesd (R e,
TC qa+7 0 rat3
207343 T+ 3) (arm dr
m q‘“% ! \/21’—— 1(1+2r)2%3
2q+ S 12a [‘ a_,_ J‘ 1 )
B “*2 i [ +7’ a+2
2q+7+2a I‘(a + 7) 1 r®dr
o g Jam oy
O
Theorem 4.0.3. Let @« >—1and 0<R < 1. Then
(rm+n)
N 24 1 11 I(%+1)?
J‘ |1_Z|—C(1_|Z|2)adA(Z)C 3+a2—_ﬁ(ﬁ+_,_) :L .
B(1-R,R) +a—CTt 2 2°2 2+a—c
Proof. First, forevery0<A<landc<2+a,
fl Tra—c(1 _p)adr L\l max{1, A1) (1 —r)%dr
j rl+a- c ) dr J'Ol r1+a—c(1 —r)adr (4.0‘5)

max(L, 4}(1- )" o

T(a+D)BR2+a-ca+1) 0

Take 0 < p < 1 and choose 0 < 9 < 1 such that (1 —r)* € Bg(1,p) whenever 0 < r < o.
Similarly to the previous section, it holds that

| peara-gras@= [ Er-e-iprdae)
B(1-R,R) B(R,R)

2Rcost dt
—2J‘ J ~¢(2rcost —r?)® rdr—

g 2 2 2.a 2 dt
=2 (2cost) r~“(4rcos”t —4r- cos“ t)*4cos trdr?
23+2a c R

[J (cost 2"‘”%11?]([ rlra=c( —p)® dr)
0 0

23+2a c 1 dt R
J a+1—— \/_)(J r1+0(—C(1 _ r)“ dr)
0 2V1 =Vt \Jo
2+2a—c R
_?2 - ﬁ(a+%—%,%)(J0 rlra=c(q —r)adr)
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o
c—>2+a2_ (g+l,l) J- r1+a—C(1 r)a dr
(405 ' \2 2°2/\Jg
2¢ a1 1)\ (?
€Br(l,0)—Bl=+ =, = 1+a—cd
K p)nﬁ(2+22)J;r '
2 o 11 62+(1—C
_B 11 - ~ N A
R(L:p) T ﬁ(2 - 2 2)2+a—c
The conclusion is that
- 2 (1- |z|
. JBl Ryl 2 ‘(=129 dA(2) . IB(I—R,R) = ~dA(2)
111211 2¢ 11 1 = _)gn 2a a 1 1, 82+a—c EBIR(LP);
oz TRG ) e TB(S+ 33 5

where lim” can be either liminf or limsup. Let p — 0 to obtain the statement. O
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