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Abstract

Many problems in real life are, at least approximatively, of linear nature and can be
mathematically examined with the aid of linear spaces. It is natural to measure the size
of objects occurring in the problems and such an operation is called a norm. If the space
and the norm fit well together, they constitute a Banach space. A norm associates every
vector with a nonnegative number or infinity, and the Banach space consists of those
vectors whose associated number is finite. Different norms give rise to different Banach
spaces.

In this dissertation, which contains three articles, different types of weighted com-
position operators on Banach spaces, consisting of analytic functions defined on the
unit disc of the complex plane, are examined. Since the vectors are functions, there are
two basic linear operations to consider. One way to modify the vector is by multiplying
it with another function. Such an operator is said to be a multiplication operator if it is
well defined. Another way to modify the vector is to first transform the input via a func-
tion and make the original vector act on the modified input. Such a transformation is
done by a composition operator, since the resultant vector is a composition of the origi-
nal vector and the function transforming the input. A combination of a multiplication
operator and a composition operator is said to be a weighted composition operator.

In one of the articles, a certain class of integral operators on weighted Bergman
spaces are examined. The exact value of the essential norm of such operators, which
can be represented as a mean of weighted composition operators, is calculated. An-
other article deals with the connection between some operator-theoretic properties of a
weighted composition operator on the Banach space BMOA and the behaviour of cor-
responding functions. Compactness, weak compactness and complete continuity are
examined. In the so far not mentioned article, the spectrum and essential spectrum are
determined for multiplication operators on some Banach spaces.
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Svensk sammanfattning

Många naturligt förekommande problem i verkligheten kan lämpligen beskrivas
matematiskt med hjälp av vektorrum. Det är vanligt att man vill kunna mäta stor-
leken av en vektor; att förse ett vektorrum med en sådan operation (norm), ger oss ett
så kallat Banachrum, givet att normen och rummet samarbetar väl. En given norm ger
alla vektorer ett värde, större än eller lika med noll, eller oändligt. De med ändlig norm
utgör det så kallade Banachrummet. Olika normer ger upphov till olika Banachrum.

I denna avhandling, som väsentligen består av tre artiklar, undersöks olika vari-
anter av så kallade viktade kompositionsoperatorer på olika Banachrum bestående av
funktioner, analytiska på den öppna enhetsdisken i det komplexa talplanet. Eftersom
vektorerna är funktioner, existerar det två enkla typer av linjära operationer. Den en-
klaste är att förändra värdet av funktionen genom att multiplicerar den med en annan
funktion. En sådan transformation kan utföras av en linjär operator, en så kallad mul-
tiplikationsoperator. Förutom värdet, kan indatat till funktionen förändras. Denna typ
av transformation görs av en så kallad kompositionsoperator. Kombineras dessa två
linjära operationer fås en viktad kompositionsoperator.

I en av artiklarna betraktas bland annat viktade Bergmanrum och den väsentliga
normen av en klass integraloperatorer bestäms. Dessa operatorer kan uttryckas som ett
kontinuerligt medeltal av viktade kompositionsoperatorer. Det är även intressant att
veta hurudana funktioner som, vid bildandet av en viktad kompositionsoperator, ger
upphov till vissa operatorteoretiska egenskaper hos operatorn. I en annan av de inklud-
erade artiklarna karakteriseras de funktioner som genererar en kompakt (compact),
svagt kompakt (weakly compact) respektive fullständigt kontinuerlig (completely con-
tinuous) operator på Banachrummet BMOA. Vissa egenskaper av en linjär operator kan
erhållas från dess så kallade spektrum, vilket berättar när en skalär förskjutning av op-
eratorn är inverterbar. Det sista resultatet som behandlas i avhandlingen är spektrumet
och väsentliga spektrumet av en multiplikationsoperator på vissa Banachrum.
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Chapter 1

Introduction

Linear systems and differential equations are often the mathematical problems ob-
tained, either in an exact manner from or as an approximation of, some problems en-
countered in life. A simple linear system can be represented as a matrix equationAx = b,
where the matrix A can be viewed as a linear operator and the unknown variables con-
stitute a vector x in a vector space. The result of the operator acting on the vector of
unknowns is a vector b, which is assumed to be known. A generalisation of these con-
cepts give rise to (linear) functional analysis. It follows from the proof of [1, Theorem
3, p. 170] that all linear isometries C(Q,R)→ C(Q,R) are of the form f 7→ ψf ◦φ, where
ψ(Q) ⊂ {−1,1}, φ : Q→ Q is a homeomorphism and Q is a compact metric space. The
map f 7→ ψf ◦φ is a weighted composition operator. In [8], Forelli proved that a cer-
tain subclass of weighted composition operators, mapping Hp, p > 1, p , 2 onto itself,
is exactly the set of linear isometries on the given Hardy space. About 20 years later,
Kolaski [12] proved a similar statement on the weighted Bergman spaces.

The Hilbert matrix operator on spaces of analytic functions on the unit disk is often
represented as an integral operator f 7→

∫ 1
0 f (x)(1 − xz)−1 dx and it has arisen from the

Hilbert matrix in connection with the double series theorem, stating that for (an)n ∈ ℓp
and (bn)n ∈ ℓq, where p−1 + q−1 = 1, p, q > 1, the inequality∣∣∣∣∣∣∣∑n

∑
m

anbn(1 +n+m)−1

∣∣∣∣∣∣∣ ≤ π
sin(π/p)

∑
n

a
p
n


1
q
∑
n

b
q
n


1
q

holds. At first sight, the Hilbert matrix operator has nothing to do with a weighted
composition operator, but it turns out that in many cases an equivalent and more useful
representation is given by f 7→

∫ 1
0 wtf ◦φtdt, where wt(z) = (1− (1− t)z)−1 and φt = twt .

One may ask if the situation is different if the domain for the analytic functions
changes. The Riemann mapping theorem gives a negative answer to that question in
proper nice subsets of the complex plane; at least concerning many interesting prop-
erties, for example, the existence of non-tangential limits, which are invariant under
the Riemann map. In higher dimensions C

n, n > 1, things are different, but most of
the focus in this thesis is on the one-dimensional case. When the spectrum of a gener-
alised Hilbert matrix operator was determined on ℓ2 by Rosenblum [23], he proved that
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2 CHAPTER 1

there is an isometric map to an L2-space converting the Hilbert matrix operator into
a multiplication operator. Since the spectrum remains unchanged under such a trans-
formation, if zero is neglected, it is sufficient to know the spectrum of the acquired
multiplication operator. Therefore, knowledge of weighted composition operators can
solve other, not immediately related, problems.

1.1 List of publications

This thesis is based on the following publications.

Paper I [16] M. Lindström, S. Miihkinen, and D. Norrbo, Unified approach to spectral
properties of multipliers, Taiwanese J. Math. , 24(6) (2020), 1471-1495.
https://doi.org/10.11650/tjm/200205

Paper II [17] M. Lindström, S. Miihkinen, and D. Norrbo, Exact essential norm of gener-
alized Hilbert matrix operators on classical analytic function spaces, Adv. Math. 408
(2022), Paper No. 108598, 34 pp. 47B38 (30H20)
https://doi.org/10.1016/j.aim.2022.108598

Paper III [18] J. Laitila, M. Lindström, and D. Norrbo, Compactness and weak compact-
ness of weighted composition operators on BMOA, Proc. Amer. Math. Soc. 151
(2023), 1195-1207
https://doi.org/10.1090/proc/16203

The author of this thesis has made a significant contribution to all of the contained
publications.

The articles are reprinted with the permission of their respective copyright holders.



Chapter 2

Definitions and basic results

2.1 Preliminaries

For n ∈Z≥1 := {1,2, . . .} the open unit ball and its boundary in C
n are given by

Bn =

z ∈Cn : |z| =

√√
n∑
k=1

|zk |2 < 1

 and Sn =

z ∈Cn : |z| =

√√
n∑
k=1

|zk |2 = 1


respectively. For n = 1 the notations D = B1 and T = S1 are used. The vector spaces
of analytic functions are denoted HOLO(Bn), n ∈ Z≥1, and to continue with spherical
objects, the notations Bn(a, r) = {z ∈ C

n : |z − a| < r} and B(a, r) = B1(a, r) will be used,
where r ≥ 0 and a ∈ Cn. For a normed space X and f ∈ X, the similar notation BX(f , r)
denotes an open ball with center f and radius r, where the distance between f and some
function g ∈ X is measured by ∥f − g∥X .

A homogeneous polynomial p : Bn→ C of degree k ∈Z≥0 is a polynomial, not iden-
tically zero if k ≥ 1, of the form

p(z1, z2, . . . , zn) =
∑

∑n
v=1 jv=k
jv∈Z≥0

a(j1,...,jn)

n∏
u=1

z
ju
u ,

where a(j1,...,jn) ∈C, (j1, . . . , jn) ∈Zn
≥0.

A function f ∈ HOLO(Bn) can always be represented in its standard form, which
is f =

∑∞
k=0pk , where pk , k ∈ Z≥0 are some homogeneous polynomials of degree k,

uniquely determined by f .

The gradient of a function f ∈HOLO(Bn) is defined as

∇f : Cn→C
n : z 7→

(
∂f

∂z1
. . .
∂f

∂zn

)
,

which in one dimension is given by the standard derivative, Df .

3



4 CHAPTER 2

The radial derivative of a function f ∈HOLO(Bn) is given by

(Rf )(z1, . . . , zn) =
n∑
k=1

zk
∂
∂zk

f (z1, . . . , zn) =
∞∑
k=0

k pk(z)

and the fractional radial derivative is given by

(Rβf )(z) =
∞∑
k=0

kβ pk(z), β ∈R.

Operator-theoretic definitions

Let X and Y be Banach spaces. The Banach spaces encountered in this thesis are implic-
itly complex. A linear operator T : X→ Y is said to be bounded if there exists a constant
C > 0 such that

∥T f ∥Y ≤ C∥f ∥X , f ∈ X,

and the smallest such C is called the norm of T , denoted ∥T ∥X→Y . The closed unit ball
of a normed space X is given by {f ∈ X : ∥f ∥X ≤ 1} and is denoted BX . The notation
should not be confused with the notation for an open ball in a normed space, which
always contains an explicitly stated center and radius. From linearity, it follows that
∥T ∥X→Y = supf ∈BX ∥T f ∥Y . The dual of a Banach space X, denoted X∗, is the Banach
space of all bounded linear functionals l : X→C with the naturally induced norm

∥l∥X∗ = sup
x∈BX
|l(x)|.

For a set M ⊂ X, the annihilator of M, denoted M⊥, is a closed subspace of X∗ given by

M⊥ := {l ∈ X∗ : l(x) = 0 for all x ∈M}.

Weak and weak∗ sequential convergence are defined as

weak: Given fn, f ∈ X, n ∈ Z≥1, letting n→∞ the convergence fn
w→ f means that

l(fn − f )→ 0 for every l ∈ X∗;

weak∗: Given ln, l ∈ X∗, n ∈ Z≥1, letting n→∞ the convergence ln
w∗→ l means that

(ln − l)(f )→ 0 for every f ∈ X.

Let τ be a topology on a set X and take a subset B ⊂ X. Then the relative topol-
ogy of τ to B is denoted τ(B). The topological space (B,τ(B)) will be denoted (B,τ).
The topologies τπ and τ0 are the topologies induced by point-wise convergence on D

and by uniform convergence on compact subsets of D respectively. These topologies
are defined on HOLO(D). On Banach spaces, the weak topology w(X) is defined as
the coarsest topology yielding that all functionals in X∗ are continuous. If (B,w) is
metrizable, w(B) coincides with the topology induced by weak sequential convergence
on B. For X∗, the weak∗ topology w∗(X∗) is the coarsest topology such that the map
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x 7→ fx, fx(l) = l(x), l ∈ X∗ is continuous for every x ∈ X, that is, the topology is gener-
ated by the sets {f −1

x (U ), U ⊂C open, x ∈ X}. Again, if (B∗,w∗) is metrizable for some set
B∗ ⊂ X∗, the topology coincides the topology induced by sequential weak∗ convergence.
A standard result, which can be found in for example [19, Theorem 2.6.23], states that
the unit ball BX∗ is w∗(BX∗ )-metrizable if and only if X is separable.

A bounded linear operator T : X→ Y acting between normed spaces is said to be

1. invertible if it is bijective with a bounded inverse,

2. compact if it maps bounded sequences to sequences with a convergent subse-
quence,

3. weakly compact if it maps bounded sequences to sequences with a weakly conver-
gent subsequence,

4. completely continuous if it maps weakly convergent sequences to norm convergent
sequences,

5. an isomorphism if it is a bijection with a bounded inverse.

6. Fredholm if dimKerT < ∞ and dim(Y /RanT ) < ∞; according to Atkinson’s theo-
rem an equivalent definition is: there exists a bounded linear operator S such that
both ST − I and T S − I are compact.

In case (X,τX ) and (Y ,τY ) are topological spaces, a mapping S : X→ Y is

7. a homeomorphism if it is a continuous bijection with a continuous inverse.

The algebra of bounded linear operators from a normed space X to a normed space
Y is denoted by L(X,Y ) and L(X) := L(X,X). Similarly, the ideal to L(X,Y ) of compact
operators X→ Y is denoted by K(X,Y ) and K(X) :=K(X,X).

The essential norm of an operator T ∈ L(X,Y ) is defined to be the real number

inf
L∈K(X,Y )

∥T −L∥X→Y .

If X is a normed space, the spectrum of T ∈ L(X) is defined as the subset σ (T ) of C,
consisting of the numbers λ such that T − λI is not invertible. Similarly, the essential
spectrum σe(T ) ⊂ C is the set with the property that λ ∈ σe(T ) if and only if T − λI is
not Fredholm. It is well known that both the spectrum and the essential spectrum are
compact, non-empty sets.

If two maps a,b : M → R satisfies a(x) ≳ b(x) (or a(x) ≲ b(x)), it means there is a
constant C > 0 such that a(x) ≥ Cb(x) (or a(x) ≤ Cb(x)) for all x ∈ M. The notion of a
and b being equivalent means that both a(x) ≳ b(x) and a(x) ≲ b(x) hold and is denoted
by a(x) ≍ b(x). If I is an isomorphism X → Y , then ∥If ∥Y ≍ ∥f ∥X , f ∈ X and ∥g∥Y ≍∥∥∥I−1g

∥∥∥
X
, g ∈ Y . In this case X and Y are isomorphic, which is denoted by X ≃ Y . If the

isomorphism is an isometry, that is ∥If ∥Y = ∥f ∥X for all f ∈ X, the relation is denoted
X � Y and the spaces are said to be isometrically isomorphic.
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The adjoint to an operator T ∈ L(X,Y ) is given by T ∗ : Y ∗ → X∗, y∗ 7→ T ∗y∗, y∗ ∈ Y ∗,
where T ∗y∗ = y∗T : X→C.

A Banach space X is reflexive if one of the following equivalent statements holds:

• The canonical embedding ι : X → X∗∗,x 7→ lx is onto (an isomorphism), where
lx(F) = F(x), F ∈ X∗.

• BX is weakly compact.

General results

The first part of the following well-known result is also called the uniform boundedness
principle and can be found in, for example, [19, p. 45].

Proposition 2.1.1 (Banach-Steinhaus theorem). Let X be a Banach space and Y a normed
space. If F , ∅ is a family of bounded linear operators X → Y such that supT ∈F ∥T x∥Y <∞
for each x ∈ X, then

sup
T ∈F
∥T ∥L(X,Y ) <∞.

Moreover, if there are T ,Tn ∈ L(X,Y ), n ∈Z≥1 such that limn→∞∥Tnf − T f ∥Y = 0 for all
f ∈ X, then limn→∞ supf ∈K∥Tnf − T f ∥Y = 0 for every compact set K ⊂ X.

Proof of the second part: Let K be a compact subset of X and ϵ > 0. Then there is a finite
collection of open balls BX(fj ,ϵ), j ∈ {1, . . . , J} covering K . Let N be large enough to
ensure

sup
n>N

max
j∈{1,...,J}

∥∥∥Tnfj − T fj∥∥∥Y < ϵ.
For n > N , it holds for all f ∈ K that

∥(Tn − T )f ∥X ≤ min
j∈{1,...,J}

∥∥∥(Tn − T )(f − fj + fj )
∥∥∥
X

≤ min
j∈{1,...,J}

∥∥∥(Tn − T )(f − fj )
∥∥∥
X

+ max
j∈{1,...,J}

∥∥∥(Tn − T )fj
∥∥∥
X

≤ ∥(Tn − T )∥L(X,Y ) min
j∈{1,...,J}

∥∥∥(f − fj )
∥∥∥
X

+ ϵ ≤ ∥(Tn − T )∥L(X,Y )ϵ+ ϵ.

From the first statement supn∥(Tn − T )∥L(X,Y ) <∞ and the second statement follows.

Another useful tool is the following corollary to Hahn-Banach extension theorem.

Proposition 2.1.2. Let X be a normed space and Y ⊂ X be a closed proper subspace. Then
for each x ∈ X \ Y , there exists an F ∈ X∗ with ∥F∥X∗ = 1, F(x) = infy∈Y

∥∥∥x − y∥∥∥
X
> 0 and

F|Y ≡ 0.

Choosing Y = {0}, one obtains a useful and well-known characterisation of the norm
of a vector x ∈ X: ∥x∥X = supl∈BX∗ |l(x)|. The section ends with some standard results,
whose proofs are included for completeness.
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Lemma 2.1.3. Given two topologies τ1, τ2 and a set B, assume (B,τ1) is a compact topo-
logical space and (B,τ2) is a Hausdorff topological space. If τ2 ⊂ τ1, then τ1 = τ2, and as a
consequence, the spaces (B,τ1) and (B,τ2) are identical.

Proof. Since τ2 ⊂ τ1, the space (B,τ1) is Hausdorff. Let U ∈ τ1. Then C = B \U is a
closed subset of B, and hence compact. Indeed, for any open cover {Uj } of C, the family
{Uj ∪ (B \C)} will be an open cover for B, and by compactness, there is a finite subcover
{Uj ∪ (B \C)}j∈J , which also covers C ⊂ B. Clearly, {Uj }j∈J is a finite subcover of C.

Furthermore, τ2 ⊂ τ1 yields that given a subset of B any cover consisting of elements
in τ2, will also be a cover with respect to τ1, therefore, compactness is inherited to
the space with a coarser topology. Since C is compact in (B,τ2), it follows from the
space being Hausdorff that C is closed in (B,τ2), and hence U ∈ τ2. Indeed, given that
C is compact in (B,τ2), it can be separated from any b ∈ B \ C, by disjoint open sets
C ⊂ UC ∈ τ2 and b ∈ Ub ∈ τ2. Hence,

⋃
b∈B\CUb is a open subset disjoint from C, so that

B \C =
⋃
b∈B\CUb is open, which yields C is closed.

Lemma 2.1.4. In a normed space a set M is weakly bounded if and only if it is bounded in
norm.

Proof. Assume M is weakly bounded. Consider the family {Tm : X∗→C, m ∈M}, where
Tm(x∗) = x∗(m). For every m ∈M, the boundedness of Tm is provided by an application
of the Hahn-Banach theorem (Proposition 2.1.2). The assumption of M being weakly
bounded yields that supm∈M |Tm(x∗)| <∞ for every x∗ ∈ X∗ and by the uniform bounded-
ness principle the following equality, obtained by Proposition 2.1.2, is finite:

sup
m∈M

sup
x∗∈BX∗

|Tm(x∗)| = sup
m∈M
∥m∥X .

The equality immediately gives the other direction of the statement, therefore, a set is
bounded (in norm) if it is weakly bounded.

Lemma 2.1.5. Let X be a Banach space. Every operator L ∈ K(X) is completely continuous.

Proof. Let (xn)n be a sequence converging weakly to x0. Lemma 2.1.4 yields that (xn)n is
bounded (in norm). Hence, the image (L(xn))n is relatively compact and

K := {L(xn)}n ∪ {L(x0)}
X

is compact. Since the weak topology w is the smallest topology granting l ∈ X∗ to be
continuous (X,w)→ (C, |·|), it follows from Lemma 2.1.3 that the compact metric space
(K,∥·∥X ) and the Hausdorff space (K,w) are identical from a topological standpoint.
Since L(xn)→ L(x0) in the weak topology, the convergence also holds with respect to the
norm topology.

The following result is well known (see for example [19, Propositions 1.11.8 and
1.12.9]).

Lemma 2.1.6. An isomorphism X → Y preserves separability, reflexivity, dense sets and
compact sets.
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2.2 Relevant Banach spaces

Let µ be a finite measure on a set M ⊂C
n, p ∈ [1,∞[. The Lp-spaces are defined as

Lp(M,µ) =

f : M→C is µ−measurable : ∥f ∥Lp(M,µ) :=
(∫

M
|f |p dµ

) 1
p

<∞

.
The definition can naturally be extended to include L∞(M,µ) as the space

L∞(M,µ) =

f : M→C is µ−measurable : ∥f ∥L∞(M,µ) : = lim
p→∞

(∫
M
|f |p dµ

) 1
p

= inf
m⊂M

µ(m)=µ(M)

sup
z∈m
|f (z)| <∞

.
The short form Lp will be used instead of Lp(M,µ) when there is no ambiguity.

Let M = Z≥1 and µ be the standard counting measure on M; the sequence space ℓp

is defined as

ℓp =

(tn)n ∈CM : ∥(tn)n∥ℓp :=

 ∞∑
n=1

|tn|p


1
p

<∞

, p > 1;

ℓ∞ =
{

(tn)n ∈CM : ∥(tn)n∥ℓ∞ := sup
n
|tn| <∞

}
.

Due to some geometric properties involving c0, this special closed subspace of ℓ∞

should not be left out:
c0 =

{
(tn)n ∈ ℓ∞ : lim

n→∞
tn = 0

}
.

The vectors (en)n form a Schauder basis for c0, where en is the sequence in which all
elements are zero except for the n:th element, which is 1.

Banach spaces of analytic functions

The normalised Lebesgue measure on a measurable set M ⊂ C
n is denoted by m. For

p ∈ [1,∞], the Hardy spaces are defined as

Hp(Bn) =
{
f ∈HOLO(Bn) : ∥f ∥Hp(Bn) := sup

0<r<1
∥fr∥Lp(Sn,m) <∞

}
.

If β ∈R and v ∈ L1(Bn,m), the Bergman-Sobolev spaces are defined as

A
p
v,β(Bn) =

{
f ∈HOLO(Bn) :

∥∥∥(I +R)βf
∥∥∥
Lp(Bn,Av )

<∞
}
,

where dAv(z) = v(z)dA(z) = v(z)cndℜz1 . . .dℜzndℑz1 . . .dℑzn and cn is a constant
such that

∫
Bn
dA(z) = 1. It is assumed that v : Bn→]0,∞[ is radial, that is, v(z) = v(|z|), z ∈
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Bn; continuous. Without loss of generality, it is assumed that
∫
Bn
v(z)dA(z) = 1. The

standard weighted Bergman spaces, which is a closed subspace of Lpv := Lp(Bn,dAv) are
obtained when β = 0. In the case of n = 1, the polar representation is useful, that is,
dAv(reit) = v(r)dA(reit) = v(r) rdrdθπ .

Some other natural types of spaces are the growth spaces

H∞v (Bn) =

f ∈HOLO(Bn) : ∥f ∥H∞v (Bn) := sup
z∈Bn

v(z)|f (z)|


and Bloch-type spaces

Bv(Bn) =

f ∈HOLO(Bn) : ∥f ∥Bv := ∥∇f ∥H∞v (Bn) = |f (z)|+ sup
z∈Bn

v(z)|(∇f )(z)|

,
where the weight function v satisfies all of the properties mentioned above, except∫
Bn
v(z)dA(z) = 1, which is replaced by supz∈Bn |v(z)| = 1. In [17] and [20] they are re-

ferred to as weighted Banach spaces of analytic functions. This name has a less precise
literal meaning, and hence, the name growth spaces is used in this thesis. A radial
weight function implies that the space is rotationally symmetric, that is, if f ∈ X, then
wf ∈ X for all w ∈ Sn, and hence, the norm of the evaluation functionals δz : f 7→ f (z)
satisfies ∥δz∥X→C

=
∥∥∥δ|z|∥∥∥X→C

. The evaluation maps are, henceforth, assumed to be
bounded.

The subscript α will denote the weight function v(z) = vα(z) =MX,α(1− |z|2)α , where
MX,α is a normalisation constant dependent on both the type of space X, but also the
parameter α.

Henceforth, for proper subspaces of HOLO(D), the notation (B1) or (D) will be
dropped completely.

A necessary tool to achieve some of the results obtained in the articles is the small
growth spaces. They, together with the small Bloch-type spaces are defined as

H0
v =

{
f ∈H∞v : lim

|z|→1
v(z)|f (z)| = 0

}
and B0,v =

{
f ∈ Bv : lim

|z|→1
v(z)|Df (z)| = 0

}
,

and equipped with the norms from H∞v and Bv respectively. The spaces H0
v and B0,v are

closed subspaces of H∞v and Bv respectively. Another useful subspace of (H∞v )∗ is

∗H∞v =
{
F ∈ (H∞v )∗ : F|BH∞v

is τ0-continuous
}
.

If BH0
v

is dense in BH∞v with respect to τ0, it has been proved in [2, Theorem 1.1] that
∗H∞v is isometrically isomorphic to (H0

v )∗ with the isomorphism given by the restriction
of the restriction map R : (H∞v )∗ → (H0

v )∗. This is, hereafter, assumed to hold for the
considered growth spaces. In the same article, it is mentioned that as a consequence of
a result by Ng, [22, Theorem 1], the map ιH : f 7→ δf , f ∈ H∞v , δf (F) = F(f ), F ∈ ∗H∞v is
an isometric isomorphism fromH∞v onto (∗H∞v )∗. For this, it is necessary that (BH∞v , τ0) is
compact, which is proved by elementary means below (see Lemma 2.2.1). As mentioned
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in Lemma 3.1.13 and [2, Corollary 1.2], one can conclude that (H0
v )∗∗ � H∞v . Similarly,

for α > 0, the space (B0,α)∗ is isomorphic to A1 and (A1)∗ is isomorphic to Bα (see [26,
p. 1150]).

This thesis will also include some results on the space BMOA (the space of analytic
functions of bounded mean oscillation), defined as

BMOA =
{
f ∈HOLO(D) : ∥f ∥BMOA := |f (0)|+ sup

a∈D
∥f ◦ σa − f (a)∥H2 <∞

}
,

where σa, a ∈ D is the automorphism of the disc, D → D : z 7→ a−z
1−az . The evaluation

functionals are bounded and the following estimate holds for f ∈ BMOA (see [9, p. 95]):

|f (z)| ≤ |f (0)|+
1
2
∥f ∥BMOA log

1 + |z|
1− |z|

.

The counterpart to the small spaces for BMOA is the space VMOA (the space of
analytic functions of vanishing mean oscillation), defined as

VMOA =
{
f ∈HOLO(D) : lim

|a|→1
∥f ◦ σa − f (a)∥H2 = 0

}
,

equipped with ∥·∥BMOA. It also holds, for the closed subspace VMOA, that its dual is
isomorphic to H1, and (H1)∗ is isomorphic to BMOA (see [9, Theorem 7.3 and Theorem
7.1]). In particular, VMOA∗∗ ≃ BMOA.

As a consequence of John-Nirenberg’s lemma, f 7→ |f (0)| + ∥f ◦ σa − f (a)∥Hp is for
p ∈ [1,∞[ an equivalent norm to ∥·∥BMOA on BMOA.

Next, some well-known results, which are useful considering Banach spaces of ana-
lytic functions, are presented:

Lemma 2.2.1. The topological space (BH∞v , τ0) is compact.

Proof. By Montel’s theorem, the bounded set BH∞v is relatively compact in HOLO(D)
with respect to τ0. Let fn ∈ BH∞v , n ∈ Z≥1 and f ∈ HOLO(D) be such that fn → f with
respect to τ0. For every 0 < R < 1, it holds that

sup
z∈RD

v(z)|f (z)| ≤ sup
z∈RD

v(z)|f (z)− fn(z)|+ 1, n ∈Z≥1.

Let n → ∞ to conclude that supz∈RD v(z)|f (z)| ≤ 1 for all 0 < R < 1, which yields the
statement.

Lemma 2.2.2. Let X ⊂ HOLO(D) be a Banach space. The following statements are equiva-
lent:

(1) ∥·∥X is finer than the compact open topology, τ0.

(2) ∥·∥X is finer than the topology of point-wise convergence, τπ.

(3) δz ∈ X∗, z ∈D (the point evaluations are bounded).
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(4) For every compact set K ⊂D the evaluation maps {δz : z ∈ K} are uniformly bounded.

Proof. First, a topology τ1 is finer than a topology τ2 on X if and only if Id : (X,τ1)→
(X,τ2) is continuous.

(1)⇒ (2) is true, because the open sets in τπ are included in τ0.
(2)⇒ (3): Recall that δz is bounded if and only if its kernel is closed. Take fn ∈ Kerδz

with fn → f ∈ X, with respect to the norm, as n→∞. It follows from the assumption
that δz(f ) = f (z) = limn fn(z) = 0, hence, Kerδz is closed.

(3)⇒ (4): For a compact set K ⊂D, it holds that supz∈K |δz(f )| = supz∈K |f (z)| <∞ for
all f ∈ X. Since δz ∈ X∗, z ∈ K , it follows from the Banach-Steinhaus theorem (uniform
boundedness principle) that supz∈K∥δz∥X∗ <∞.

(4) ⇒ (1): Take an arbitrary compact set K ⊂ D and a sequence fn ∈ X such that
∥fn∥X → 0. It follows from (4) that

sup
z∈K
|fn(z)| = sup

z∈K
|δz(fn)| ≤ sup

z∈K
∥δz∥X∗ ∥fn∥X .

Therefore, limn→∞ supz∈K |fn(z)| = 0, proving the statement, since τ0 is metrizable.

Lemma 2.2.3. Let X ⊂HOLO(D) be a Banach space with δz ∈ X∗, z ∈D. Then the topolo-
gies τπ(BX ) and τ0(BX ) coincide and are metrizable. IfX is also reflexive, thenw(BX ) coincide
with τ0(BX ) and is metrizable. Furthermore, the space X is separable.

Proof. According to Lemma 2.2.2, it holds that supf ∈BX supz∈K |f (z)| <∞ for every com-

pact set K ⊂ D, so by Montel’s theorem B := BX
τ0 ⊂ HOLO(D) is compact. Since

τπ(B) ⊂ τ0(B), it follows from Lemma 2.1.3 that τπ(B) = τ0(B) and hence

τπ(BX ) = {U ∩BX :U ∈ τπ(B)} = {U ∩BX :U ∈ τ0(B)} = τ0(BX ).

Since τ0(BX ) is metrizable, so is τπ(BX ).
If X is reflexive, (BX ,w(BX ) is compact and Lemma 2.1.3 yields that w(BX ) = τπ(BX )

and most of the statements follow from the first part. Since (BX ,w(BX )) is metrizable, so
is (ιBX ,w∗(ι(BX ))) = (BX∗∗ ,w∗(BX∗∗ )). By [19, Theorem 2.6.23] X∗ is separable and hence
X is separable.

2.3 Weighted composition operators

Weighted composition operators appear in some form in all articles included in this
thesis. Given two Banach spaces of analytic functions X,Y ⊂ HOLO(Bn), n ∈ Z≥1 con-
taining the constant functions (written C ⊂ X,Y ), a weighted composition operator W
is an operator that transforms f ∈ X into an analytic function ψf ◦ϕ ∈ Y . Some natural
demands are that ϕ is an analytic selfmap of Bn and since 1 ∈ X, it follows that ψ ∈ Y
for W to be well-defined. It is also sensible to write Wψ,ϕ instead of W .

If ϕ is the identity, the mapWψ,ϕ : f 7→ ψf is a multiplication operator, also denoted
Mψ , and hence, one can also write Wψ,ϕ = MψCϕ as a composition of a multiplica-
tion operator Mψ : f 7→ ψf and a composition operator Cϕ : f 7→ f ◦ϕ. In general, for



12 CHAPTER 2

Wψ,ϕ : X → Y to be bounded, it is sufficient but not necessary that both Mψ : X → Y

and Cψ : X → X are bounded. Indeed,
∥∥∥Wψ,ϕ

∥∥∥L(X,Y )
≤

∥∥∥Mψ

∥∥∥L(X,Y )

∥∥∥Cϕ∥∥∥L(X)
proves suf-

ficiency and if X = Y = L2(D,dA) ∩HOLO(D), the standard non-weighted Bergman
Hilbert space, the operator Wψ,ϕ is bounded for the choice ψ : z 7→ (1− z)−

2
3 and ϕ : z 7→

1
2z, although Mψf < Y for all f ∈ X.



Chapter 3

Summary of the results

3.1 The essential norm of some integral operators acting in a
bounded manner on weighted Bergman spaces and growth
spaces

Integral operators on weighted Bergman spaces

Let f ∈HOLO(D) : z 7→
∑∞
k=0 akz

k . The Hilbert matrix operatorH is defined on a subset
of HOLO(D) as follows:

H(f )(z) =
∞∑
n=0

∞∑
k=0

ak
k +n+ 1

zn, z ∈D.

For example, the function z 7→
∑∞
n=0 z

n, z ∈ D does not have a Hilbert matrix opera-
tor transform. Following the proof of Diamantopoulos [5], the Hilbert matrix operator
transform can be written as H(f )(z) =

∫ 1
0
f (x)
1−xz dx on a Banach space on which the poly-

nomials are dense and
∫ 1

0 ∥δt∥dt <∞. Given such a space, this representation can indeed
be used on any function belonging to the space and it is, hence, valid on all linear sub-
spaces.

The Hilbert matrix operator is a prime example of an integral operator of the form
IK : f 7→

∫ 1
0 K(·,x)f (x)dx, where

• K : D×D→C is analytic in both arguments;

• limz→1K(z, t) ∈ [0,∞[ for all t ∈]0,1[ and

• supw∈D supz∈D\B(1,ϵ)|K(z,w)| <∞ for all ϵ > 0.

These will be referred to as the three kernel conditions.
The following result is a special case of [17, Cor 5.3].

13
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Theorem 3.1.1. If IK ∈ L(Apα), p−2 > α ≥ 0 has a kernel that satisfies the conditions above,
and the two technical conditions (3.1.1) and (3.1.2), then

∥IK∥e,Apα→Apα =
∫ 1

0
lim
z→1

x′z(t)K(z,xz(t))
t

2+α
p

(1− t)
2+α
p

dt, p − 2 > α ≥ 0,

where xz(t) = t
1−(1−t)z .

A crucial part of the proof of the result is that IK can be represented as

IK (f )(z) =
∫ 1

0
x′z(t)K(z,xz(t))f (φt(z))dt,

where φt(z) = xz(t), t ∈]0,1[, z ∈D.
The operator IK can in other words be seen as a mean of weighted composition op-

erators, namely f 7→
∫ 1

0 TtCφt (f )dt, where Tt : z 7→ x′z(t)K(z,xz(t)) is analytic in D for
all t ∈]0,1[. This representation for the Hilbert matrix operator was introduced by Dia-
mantopoulos and Siskakis in [6], in which case Tt(z) = φt(z)

t . This yields the following
corollary to Theorem 3.1.1:

Corollary 3.1.2. For p − 2 > α ≥ 0 the essential norm of the Hilbert matrix operator acting
on Apα is given by

∥H∥e,Apα→Apα =
∫ 1

0

t
2+α
p −1

(1− t)
2+α
p

dt =
π

sin
(

2+α
p π

) .
For Theorem 3.1.1 to hold true, the possible pole for K(·, ·) at (1,1) cannot be of a

high order. On the weighted Bergman spaces, a sufficient demand, in addition to the
three kernel conditions, are the following technical assumptions: there exists 0 < ϵ < 1

p
such that ∫ 1

0
sup

c∈] 2
p−ϵ,

2
p [

sup
z∈B(1,ϵ)∩D

∣∣∣∣∣∣( 1
1− t

− z
)c+ α

p
Tt(z)

∣∣∣∣∣∣ <∞ (3.1.1)

and for 0 < r < 1,
sup

θ∈]0,2π[

∣∣∣Tt(reiθ)
∣∣∣ ≲ |Tt(r)|. (3.1.2)

Recall condition (CUBA) from [17]:∫ 1

0
sup

z∈φ−1
t (D>R0 ,t)

|Tt(z)|v(z)
1
p

v(φt(z))
1
p

t
2
p dt

(1− t)
2
p

<∞. (CUBA)

The following lemma could be generalised to other weights than vα and the state-
ment is a better version of the nonoptimal one in [17, Remark 5.5]:

Lemma 3.1.3. An integral operator IK : Apα → A
p
α , p − 2 > α ≥ 0, which satisfies the three

kernel conditions, (3.1.1) and (3.1.2) also satisfies condition (CUBA).
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Proof. First, although for a fixed 0 < R0 < 1, it holds that⋃
t∈]δ,1[

φ−1
t (D>R0,t) = D for all δ ∈]0,1[,

it is also true that for every ϵ > 0, using Uϵ := D \B(1,ϵ), it holds that

sup
z∈Uϵ

|Tt(z)|vα(z)
1
p

vα(φt(z))
1
p

≤ sup
z∈Uϵ

∣∣∣K(z,φt(z))
∣∣∣ 1
(1− (1− t)(1− ϵ))2

2
α
p (1− |z|)

α
p

(1−φt(|z|))
α
p

≤ 2
α
p

supw∈D supz∈Uϵ |K(z,w)|
ϵ2

∣∣∣∣∣2− t1− t

∣∣∣∣∣ αp ,
where (1− |z|)α ≤ vα(z) ≤ 2α(1− |z|)α and φt(z) ≤ φt(|z|), z ∈D, t ∈]0,1[ have been used.

Since t 7→ (1− t)−
2+α
p is integrable on ]0,1[, there exists, for every ϵ > 0, a constant Cϵ > 0

such that∫ 1

0
sup

z∈φ−1
t (D>R0 ,t)

|Tt(z)|vα(z)
1
p

vα(φt(z))
1
p

t
2
p dt

(1− t)
2
p

≤ Cϵ +
∫ 1

0
sup

z∈B(1,ϵ)∩D

|Tt(z)|vα(z)
1
p

vα(φt(z))
1
p

t
2
p dt

(1− t)
2
p

.

By applying vα(z) ≍ (1− |z|)α and (3.1.2), it follows that∫ 1

0
sup

z∈B(1,ϵ)∩D

|Tt(z)|vα(z)
1
p

vα(φt(z))
1
p

t
2
p dt

(1− t)
2
p

≲

∫ 1

0
sup

z∈B(1,ϵ)∩D

|Tt(|z|)|(1− |z|)
α
p

(1−φt(|z|))
α
p

∣∣∣∣∣ 1
1− t

− |z|
∣∣∣∣∣ 2
p
dt

≤
∫ 1

0
sup

z∈B(1,ϵ)∩D
|Tt(z)|

∣∣∣∣∣ 1
1− t

− z
∣∣∣∣∣ 2+α
p
dt,

which proves the statement.

The upper bound

The upper bound is obtained from the estimate

∥IK∥e,Apα→Apα ≤ sup
f ∈B

A
p
α

sup
|z|≤R
|(I −L)(f )(z)|

∫ 1

0

∥∥∥∥Ttχφ−1
t (D≤R,t)

∥∥∥∥
L
p
α

dt

+R−
4
p ∥I −L∥Apα→Apα

∫ 1

0

t
2
p

(1− t)
2
p

sup
z∈φ−1

t (D>R,t)

|Tt(z)|vα(z)
1
p

vα(φt(z))
1
p

dt,

where L ∈ L(Apα) is a compact operator, 0 < R < 1, D≤R,t = RD ∩ φt(D), and D>R,t =
D \D≤R,t . Notice that for t ∈]0,1[ the function φt : D→ D is a bounded Möbius map,
and hence, it is univalent and maps circles to circles. It follows that φ−1

t (D>R,t) = D \
φ−1
t (D≤R,t) and φ−1

t (D≤R,t) = φ−1
t (RD)∩D (see Figure 3.1 for a visualisation). For a fixed

t, it holds that
lim
R→1

⋃
t′∈]0,t[

φ−1
t′ (D>R,t′ ) = {1},
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which has a clear connection with the expression for the essential norm given in The-
orem 3.1.1. However, it is also worth pointing out that for a fixed 0 < R < 1, it holds
that

lim
t→1

⋃
t′∈]0,t[

φ−1
t′ (D>R,t′ ) = D.

t = 0.5

φ−1
t (D≤,R)

R = 0.6
R = 0.7
R = 0.8
R = 0.9

t = 0.7

R = 0.6
R = 0.7

R = 0.8

R = 0.9

Figure 3.1: Two pictures of the region φ−1
t (D≤,R).

To continue, for a complex (or real) Banach space X, the concept of M-ideals, the
metric compact approximation property, property (mp) and the notion of aX containing
a copy of another space Z are introduced.

A projection P : X → X is called an L-projection if ∥x∥X = ∥P x∥X + ∥x − P x∥X , for all
x ∈ X.

A closed subspace Y ⊂ X is called an M-ideal if Y⊥ is the range of an L-projection.
The Banach space X is said to contain a copy of a space Z if there is a subspace Y ⊂ X

such that Y is isomorphic to Z.
The Banach space X has the metric compact approximation property if for every com-

pact set K ⊂ X and every ϵ > 0, there is a compact operator L ∈ L(X) with ∥L∥L(X) ≤ 1
such that ∥(I −L)x∥X ≤ ϵ for all x ∈ K .

A separable Banach space X satisfies property (mp) if for every weakly null sequence
(xn)n ⊂ X and x ∈ X it holds that

limsup
n→∞

∥xn + x∥X = limsup
n→∞

(∥xn∥
p
X + ∥x∥pX )

1
p .

The following lemma is inspired by [3].

Lemma 3.1.4. Let p ≥ 1. For every ϵ > 0 there is a Cϵ > 0 such that∣∣∣|a+ b|p − |a|p
∣∣∣ ≤ ϵ|a|p +Cϵ |b|p for all a,b ∈C. (3.1.3)

Proof. Observe that if b = 0 the statement is always true. From the case a = 0 it follows
that Cϵ ≥ 1. Excluding the case a = 0 or b = 0, and dividing (3.1.3) by |a|p, the lemma
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can be restated as

∀ϵ > 0 ∃Cϵ > 0 :
∣∣∣|1 + z|p − 1

∣∣∣ ≤ ϵ+Cϵ |z|p ∀z ∈C \ {0}. (3.1.4)

Let ϵ > 0. A sufficient lower bound on Cϵ is given by 2p + 1 when |z| ≥ 1, because∣∣∣|1 + z|p − 1
∣∣∣ ≤ (1 + |z|)p + 1 ≤ |z|p

((
1
|z|

+ 1
)p

+
∣∣∣∣∣1z

∣∣∣∣∣p) ≤ (2p + 1)|z|p.

Henceforth, assume that Cϵ ≥ (2p + 1). If |z| ≤ 1, it follows that∣∣∣|1 + z|p − 1
∣∣∣ = max{|1 + z|p − 1,1− |1 + z|p} ≤max{(1 + |z|)p − 1,1− (1− |z|)p}

≤
∞∑
k=1

(
p
k

)
|z|k = |z|

∞∑
k=1

(
p
k

)
|z|k−1 ≤ |z|

∞∑
k=0

(
p
k

)
= 2p |z|.

If 2p |z| ≤ ϵ, the inequality (3.1.4) holds for any Cϵ. Else, both 2p |z| ≤ 2p and

Cϵ |z|p ≥ Cϵ
( ϵ

2p

)p
,

are true, and hence, (3.1.4) holds if Cϵ
(
ϵ

2p
)p
≥ 2p, equivalently,

Cϵ ≥
2p(p+1)
ϵp

.

This proves (3.1.3) with Cϵ = max{2p + 1, 2p(p+1)
ϵp }.

To give more details to Lemma 3.2 in [17], in which case a more general weight v is
used, the following results will be stated using a radial, continuous weight function v,
which belongs to L1(D,dA) and satisfies v(r2) ≤ v(r1), 0 < r1 < r2 < 1 and limr→1 v(r) = 0.
Moreover, the proof of [17, Lemma 3.2] is not complete, since it is not evident that {I −
Ln : n ∈ Z≥1} is τ0-τ0 equicontinuous. A complete proof will be presented culminating
in Lemma 3.1.11, which can be compared to [17, Lemma 3.2] considering the weighted
Bergman spaces. To verify the statement, the convex combination Ln used consists of
dilation operators, which are defined as

Dr : HOLO(D)→HOLO(D) : f 7→ fr , r ∈ [0,1[, where fr (z) = f (rz), z ∈D.

In this thesis the dilation operator is considered as an operator Apv → A
p
v .

The following lemma follows from Lemma 2.2.3 and the fact that Apv , p > 1 is reflex-
ive.

Lemma 3.1.5. Let p > 1. The space Apv is separable and the topologies τ := w(BApv ) =
τ0(BApv ) = τπ(BApv ) renders (BApv , τ) a compact metrizable topological space.

The following result is well known.

Lemma 3.1.6. For f ∈ Apv
lim
r→1
∥(I −Dr )f ∥Apv = 0.
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Proof. Let f ∈ Apv . First, by the maximum modulus principle∫ 2π

0

∣∣∣Dr (f )(ρeit)
∣∣∣p dt =

∫ 2π

0

∣∣∣f (rρeit)
∣∣∣pdt ≤ ∫ 2π

0

∣∣∣f (ρeit)
∣∣∣p dt

holds for all R, r, ρ ∈]0,1[, so that∫ 1

R

∫ 2π

0

∣∣∣Dr (f )(ρeit)
∣∣∣p dt v(ρ)dρ ≤

∫ 1

R

∫ 2π

0

∣∣∣f (ρeit)
∣∣∣p dt v(ρ)dρ.

Take ϵ > 0 and choose R close enough to 1 in order to ensure that

∥(I −Dr )f ∥
p

L
p
v (D\RD)

< ϵ for all r ∈]0,1[.

Considering the Taylor expansion of f , it follows that supz∈RD|f (z)− f (rz)| tends to
zero as r→ 1, and hence,

lim
r→1
∥(I −Dr )f ∥Apv = 0.

A large part of the proof of property (mp) is based on the proof of [3, Theorem 2].

Lemma 3.1.7. Let p > 1. The weighted Bergman space Apv has the metric compact approxi-
mation property, satisfies (mp) and does not contain a copy of ℓ1.

Proof of the metric compact approximation property:
The dilation operators Dr : Apv → A

p
v are compact and by subharmonicity their norm

is less than or equal to 1. In the weighted Bergman spaces they tend strongly to the
identity as r → 1, and by the Banach-Steinhaus theorem the convergence is uniform in
any compact set K ⊂ Apv . Some details of the statements are given in Lemma 3.1.6.

Proof of (mp):
Fix ϵ > 0 and let f , fn ∈ A

p
v , n ∈Z≥1 with fn→ 0 weakly as n→∞. Define

Wϵ,n(z) := max{
∣∣∣|f (z) + fn(z)|p − |fn(z)|p − |f (z)|p

∣∣∣− ϵ|fn(z)|p,0}, z ∈D.

Since δz ∈ (Apv)∗, it follows that limn→∞Wϵ,n(z) = 0 for all z ∈D. Furthermore, by Lemma
3.1.4 ∣∣∣|f + fn|p − |fn|p − |f |p

∣∣∣ ≤ ∣∣∣|f + fn|p − |fn|p
∣∣∣+ |f |p ≤ ϵ|fn|p +Cϵ |f |p + |f |p

on D. Therefore, Wϵ,n ≤ Cϵ |f |p + |f |p and by the dominated convergence theorem,

lim
n→∞

∫
D

Wϵ,n dAv = 0.

Moreover,
∣∣∣|f + fn|p − |fn|p − |f |p

∣∣∣ ≤Wϵ,n + ϵ|fn|p, and since fn
n→∞→ 0 weakly, supn∥fn∥Apv is

a finite constant, according to Lemma 2.1.4, denoted by C. This yields∫
D

∣∣∣|f + fn|p − |fn|p − |f |p
∣∣∣dAv ≤ ∫

D

Wϵ,n dAv + ϵ∥fn∥
p

A
p
v
≤

∫
D

Wϵ,n dAv + ϵC,
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so that

limsup
n→∞

∫
D

∣∣∣|f + fn|p − |fn|p − |f |p
∣∣∣dAv ≤ Cϵ.

Let ϵ→ 0 to obtain

lim
n→∞

∫
D

∣∣∣|f + fn|p − |fn|p − |f |p
∣∣∣dAv = 0.

It follows that

limsup
n→∞

∫
D

|f + fn|p dAv = limsup
n→∞

∫
D

|fn|p + |f |p dAv .

Proof of Apv not containing a copy of ℓ1:
Since reflexivity is passed on to subspaces and images of isomorphisms (Lemma 2.1.6),
the weighted Bergman spaces (p ∈]1,∞[) cannot contain a copy of the non-reflexive
space ℓ1.

Since Apv , p ∈]1,∞[ is separable according to Lemma 3.1.5, an application of [11,
Corollary 3.6] together with Lemma 3.1.7 yields that the subspace K(Apv) is an M-ideal
in L(Apv).

The following two results are stated in, for example, [7, Theorem 4.10.1] and [25,
Theorem III.2.4] respectively:

Proposition 3.1.8 (Riesz representation theorem). Let T be a compact topological space
and L ∈ C(T ,C)∗ be linear. Then there exists a uniquely determined complex Radon measure
µ on T such that

L(x) =
∫
T
x(t)dµ(t), x ∈ C(T ,C).

Proposition 3.1.9 (Hahn-Banach separation theorem). If X is a normed space and V1,V2
are disjoint convex sets of which V1 is open. Then there is a linear functional φ ∈ X∗ such
that

ℜφ(v1) <ℜφ(v2) for all v1 ∈ V1, v2 ∈ V2.

In the spirit of Kalton ([10, p. 151-152]), the following two lemmas are proved:

Lemma 3.1.10. When p > 1, every operator κ ∈ K(Apv)∗ can be extended to ν∗ ∈ L(Apv)∗ in a
norm-preserving way such that ν∗(S) = limr→1ν∗(SDr ), S ∈ L(Apv).

Proof. The topological spaces (B(Apv )∗ ,w
∗) and (BApv ,w) are compact according to Alaoglu’s

theorem and reflexivity, and (by Tychonoff’s theorem) the product spaceQ := B(Apv )∗×BApv
equipped with the product topology is also compact. Let κ ∈ K(Apv)∗ and V : K(Apv)→
C(Q,C), where V (S) : (u∗, g) 7→ u∗(Sy), S ∈ K(Apv). By Proposition 2.1.2,

∥V (S)∥C(Q,C) = sup
(u∗,g)∈Q

|V (S)(u∗, g)| = sup
(u∗,g)∈Q

|u∗(Sg)| = ∥S∥Apv→Apv ,
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that is, V is a linear isometry onto V (K(Apv)) ⊂ C(Q,C), which is therefore closed. This
yields that V (K(Apv)) is a Banach space. As a consequence, the bounded inverse theorem
ensures that V has a bounded inverse. It follows that κ̂ := κ ◦ V −1 ∈ V (K(Apv))∗. Since
Q is compact, the Riesz representation theorem (Proposition 3.1.8) can be applied to
obtain

κ̂(Ŝ) =
∫
Q
Ŝ(u∗, g)dµ(u∗, g), Ŝ ∈ V (K(Apv)) ⊂ C(Q,C),

where µ is a uniquely determined complex Radon measure on Q. This means that

κ(S) =
∫
Q
V (S)(u∗, g)dµ(u∗, g) =

∫
Q
u∗(Sg)dµ(u∗, g), S ∈ K(Apv).

Let us define ν∗ : L(Apv)→C by

ν∗(S) =
∫
Q
u∗(Sg)dµ(u∗, g).

It follows from Proposition 2.1.2 that∫
Q
|u∗(Sg)|

∣∣∣dµ(u∗, g)
∣∣∣ ≤ ∥S∥L(Apv )

∣∣∣µ∣∣∣(Q) <∞, S ∈ L(Apv),

which yields ν∗ ∈ L(Apv)∗. Since limr→1∥(I −Dr )f ∥Apv = 0 for all f ∈ Apv (Lemma 3.1.6), it

follows that for all S ∈ L(Apv),

|ν∗(S)− ν∗(SDr )| =
∣∣∣∣∣∣
∫
Q
u∗(Sg)dµ(u∗, g)−

∫
Q
u∗(SDrg)dµ(u∗, g)

∣∣∣∣∣∣
≤

∫
Q
|u∗(S(I −Dr )g)|

∣∣∣dµ(u∗, g)
∣∣∣

≤ ∥S∥
∫
Q
∥(I −Dr )g∥Apv

∣∣∣dµ(u∗, g)
∣∣∣.

By the dominated convergence theorem, the right-hand side tends to zero as r→ 1. The
norm is preserved, because for all S ∈ L(Apv) and r ∈]0,1[

∥κ∥K(Apv )∗ ≥
|κ(SDr )|
∥SDr∥Apv→Apv

≥ |ν∗(SDr )|
∥S∥Apv→Apv ∥Dr∥Apv→Apv

≥ |ν∗(SDr )|
∥S∥Apv→Apv

.

Let r→ 1 to conclude the statement.

The convex hull of a set A is defined as

coA :=
⋃
n∈Z≥1


n∑
j=1

ajtj : aj ∈ A; tj ≥ 0; j = 1,2, . . . ;
n∑
j=1

tj = 1

,
and it is the smallest convex set containing A.
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Lemma 3.1.11. There are increasing sequences (rn)n ⊂]0,1[ and (N (n))n with N (n) ∈ Z≥n
for each positive integer n such that limn→∞ rn = 1 (and limn→∞N (n) =∞) for which

lim
n→∞

sup
f ∈B

A
p
v

sup
|z|≤R

v(z)|(I −Ln)f (z)| = 0 (3.1.5)

for all R ∈]0,1[ and
lim
n→∞
∥I −Ln∥Apv→Apv = 1, (3.1.6)

where Ln =
∑N (n)
k=n ck,nDrk for some constants ck,n ≥ 0 with

∑N (n)
k=n ck,n = 1 for all n ∈Z≥1.

Proof. First, it will be proved that for all f ∈ Apv ,

lim
n→∞
∥(I −Ln)f ∥Apv = 0. (3.1.7)

Let ϵ > 0, and consider any two increasing sequences (rn)n ⊂]0,1[ and (N (n))n with

N (n) ∈Z≥n for each integer n ∈Z≥1 such that limn→∞ rn = 1. Furthermore, let (ck,n)N (n)
k=n ,

n ∈Z≥1 be any convex combination. By the Minkowski inequality and Lemma 3.1.6

∥(I −Ln)f ∥Apv ≤
N (n)∑
k=n

ck,n
∥∥∥(I −Drk )f

∥∥∥
A
p
v
<
N (n)∑
k=n

ck,nϵ = ϵ

whenever n is large enough, which proves (3.1.7).
Turning to (3.1.5), let rn, N (n), ck,n be as above and take R ∈]0,1[. Since the norm

topology is finer than the compact open topology τ0(Apv), equation (3.1.7) implies

lim
n→∞

sup
|z|≤R
|(I −Ln)(f )(z)| = 0 for every f ∈ Apv .

Next, it is proved that

lim
δ→0

sup
n∈Z≥1

sup
f ∈Bτ0 (0,δ)∩Apv

sup
|z|≤R
|Lnf (z)| = 0

from which it follows that

lim
δ→0

sup
n∈Z≥1

sup
f ∈Bτ0 (0,δ)∩Apv

sup
|z|≤R
|(I −Ln)f (z)| = 0, (3.1.8)

where
Bτ0

(f ,δ) = {g ∈HOLO(D) : sup
|z|≤R
|f (z)− g(z)| < δ} ∈ τ0.

Take ϵ > 0 and observe that the maximum modulus principle yields

sup
|z|≤R
|Lnf (z)| ≤

N (n)∑
k=n

ck,n sup
|z|≤R

∣∣∣Drk f (z)
∣∣∣ ≤ sup
|z|≤R
|f (z)|.



22 CHAPTER 3

It follows that for 0 < δ < ϵ

sup
n∈Z≥1

sup
f ∈Bτ0 (0,δ)∩Apv

sup
|z|≤R
|Lnf (z)| < ϵ.

Next, notice that (BApv , τ0) is compact according to Lemma 3.1.5, therefore, there is a

finite subcover
{
Bτ0

(fj ,δ)
}J
j=1
⊂

{
Bτ0

(f ,δ)
}
f ∈B

A
p
v

of BApv . It follows that for f ∈ BApv

sup|z|≤R v(z)|(I −Ln)(f )(z)|
sup|z|≤R v(z)

≤ min
j∈[1,J]

sup
|z|≤R

∣∣∣(I −Ln)(f − fj )(z)
∣∣∣+ max

j∈[1,J]
sup
|z|≤R

∣∣∣(I −Ln)(fj )(z)
∣∣∣

≤ sup
f ∈Bτ0 (0,δ)∩2B

A
p
v

sup
|z|≤R
|(I −Ln)(f )(z)|+ max

j∈[1,J]
sup
|z|≤R
∥δz∥

∥∥∥(I −Ln)(fj )
∥∥∥
A
p
v
.

In accordance with (3.1.8), the first term is arbitrarily small by the choice of δ > 0 and
by (3.1.7), the right-hand side tends to zero as n→∞. This proves (3.1.5).

Finally, it will be proved that for each n ∈Z≥1 there is an Ln ∈ co{Drn ,Drn+1
, . . .} such

that

∥I −Ln∥L(Apv ) < 1 +
1
n
.

Assume that this is not true, that is, there exists a n0 ∈ Z≥1 such that for all L ∈ C :=
co{Drn0

,Drn0+1
, . . .}, it holds that ∥I −L∥L(Apv ) ≥ 1+ 1

n0
. The open convex set B(I,1+ 1

n0
) and

the convex set C are therefore disjoint. Let φ be the separating functional, obtained by
Proposition 3.1.9, for which ℜφ(T ) <ℜφ(L) for all T ∈ B(I, 1

n0
) and L ∈ C. It can be

assumed that
∥∥∥φ∥∥∥L(Apv )∗

= 1. Notice that for any S ∈ L(Apv),∣∣∣φ(S)
∣∣∣ = min

t∈T

∣∣∣tφ(S)
∣∣∣ = min

t∈T

∣∣∣ℜ(tφ(S)) + iℑ(tφ(S))
∣∣∣ ≤ ∣∣∣ℜφ(t0S)

∣∣∣ ≤ ∣∣∣φ(t0S)
∣∣∣,

where t0 is chosen so that ℑ(t0φ(S)) = 0. It follows that
∥∥∥ℜφ

∥∥∥
A
p
v→C

=
∥∥∥φ∥∥∥L(Apv )∗

= 1.

Moreover, using T = I + rS ∈ B(I,1 + 1
n0

), where ∥S∥Apv→Apv = 1 and 0 ≤ r < 1 + 1
n0

, one can
conclude that

ℜφ(T − I) =ℜφ(rS) = rℜφ(S).

Hence, for every 0 ≤ r < 1+ 1
n0

there exists a T ∈ B(I,1+ 1
n0

) withℜφ(T −I) = r, which
yields

0 <ℜφ(L− I)−ℜφ(T − I) =ℜφ(L− I)− r,

that is, r < −ℜφ(I −L) for all L ∈ C. Since 0 ≤ r < 1 + 1
n0

is arbitrary, it holds that

1 +
1
n0
≤ −ℜφ(I −L) (3.1.9)

for all L ∈ C. As a small remark, Proposition 2.1.2, yields that, for each L ∈ C, there
exists φL such that

1 +
1
n0
≤ inf
L′∈C

∥∥∥I −L′∥∥∥L(Apv )
≤ ∥I −L∥L(Apv ) = −ℜφL(I −L),
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The convexity of C allowed a functional that satisfies (3.1.9), independent of L.
Since K(Apv) is an M-ideal, it follows from the definition that L(Apv)∗ = K(Apv)∗ ⊕1

K(Apv)⊥ and φ = (I ∗ − PL)φ + PLφ = ν∗ + ν⊥, where ν∗ is given in Lemma 3.1.10 and PL
is the L-projection with PL(L(Apv)∗) = K(Apv)⊥. The definition of ν∗ does indeed grant
PLν∗ ≡ 0. Together with infL∈C |ν∗(I −L)| = 0 (Lemma 3.1.10), this yields

1 +
1
n0
≤ inf
L∈C

(−ℜφ(I −L)) = inf
L∈C

(−ℜν∗(I −L))−ℜν⊥(I) = −ℜν⊥(I) ≤ ∥ℜν⊥∥L(Apv )→C

= ∥ν⊥∥L(Apv )∗ ≤
∥∥∥φ∥∥∥L(Apv )∗

= 1,

where the last inequality holds true due to
∥∥∥φ∥∥∥L(Apv )∗

= ∥ν∗∥L(Apv )∗ + ∥ν⊥∥L(Apv )∗ . This is a

contradiction with the conclusion that for all n ∈ Z≥1 there is an Ln ∈ co{Drn ,Drn+1
, . . .}

such that ∥I −Ln∥L(Apv ) < 1 + 1
n .

Lower bound

For the lower bound a suitable approximate identity will be used. To reduce ambiguity
of the term approximate identity, it is in this thesis defined to be a sequence or net
(fc)c in a Banach space X ⊂ HOLO(D), which tends to zero everywhere except at one
point, ξ ∈ D, as c → ∞. The norm of fc is, however, 1 for all c. In many spaces X ⊂
HOLO(D) the sequence approximates an evaluation map, ∥fcg∥X → g(ξ) = δξ (g) as c→
∞ for suitable functions, g. It is often sufficient if g ∈ X can be continuously extended
to D ∪ (B(ξ,ϵ) ∩D) for some ϵ > 0. A final observation is that, as a consequence of
the maximum modulus principle, it is impossible to create an approximate identity of
analytic functions gathering mass to ξ ∈D. The mass must be moved to the boundary!
Chapter 4 contains a small survey on the approximate identities used in [16] and [17].

The approximate identity is created by multiplying the body of the approximate
identity on Ap, z 7→ (1 − z)−cn , cn ∈]0, 2

p [, where cn increases to 2
p as n → ∞, with a

function that neutralises the weight v in a radial fashion as z → 1. If v = vα , α > 0
the function is given by g : z 7→ (2(1 − z))−

α
p . Notice that the body of the approximate

identity is directing the mass towards 1. Finally, normalisation of the function yields
an approximate identity, for which it is easy to see point-wise convergence to zero on D

as n→∞. Lemma 3.1.5 grants that point-wise convergence implies weak convergence,
and hence, the effect of the compact operators in the definition of the essential norm
will be nullified. Indeed, for a Banach space X, every L ∈ K(X) is completely continuous
by Lemma 2.1.5. If L ∈ K(X), T ∈ L(X) and (fn)n ∈ BX is a weak null sequence, then

∥T (fn)∥X ≤ ∥(T −L)(fn)∥X + ∥L(fn)∥X ,

which yields limn→∞∥T (fn)∥X ≤ ∥T −L∥X→X and

lim
n→∞
∥T (fn)∥X ≤ ∥T ∥e,X→X .
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There are other interesting relations between the integral operator IK and the inte-
grand in the form of a weighted composition operator. In fact, in [17] it is proved that
for p − 2 > α ≥ 0, ∥∥∥TtCφt∥∥∥e,Apα→Apα = lim

z→1
Tt(z)

ts

(1− t)s
, s =

2 +α
p

,

which together with Theorem 3.1.1 yields the interesting identity ([17, Section 9]):∥∥∥∥∥∥
∫ 1

0
TtCφt dt

∥∥∥∥∥∥
e,A

p
α→A

p
α

=
∫ 1

0

∥∥∥TtCφt∥∥∥e,Apα→Apα dt. (3.1.10)

Again, it is the weighted composition operator representation, which apparently allows
the essential norm to pass by the mean value operator in this case.

Growth spaces

A similar identity to (3.1.10) is obtained, in [17], for integral operators on the standard
growth spaces:∥∥∥∥∥∥

∫ 1

0
TtCφt dt

∥∥∥∥∥∥
e,H∞α →H∞α

=
∫ 1

0

∥∥∥TtCφt∥∥∥e,H∞α →H∞α dt, α ∈]0,1[.

Concerning the essential norm of the Hilbert matrix operator the following result can
be found in [17, Example 7.5]:

Theorem 3.1.12. For 0 < α < 1 the essential norm of the Hilbert matrix operator acting on
H∞α is given by

∥H∥e,H∞α →H∞α =
π

sin(απ)
.

The upper bound of the essential norm of such an integral operator can be obtained
similarly to the corresponding result on weighted Bergman spaces. The result obtained
in Lemma 3.1.11 is in [20, Proposition 2.1] proved to hold, without invoking the theory
ofM-ideals, using the standard sliding hump technique. The compact operators Ln, n ∈
Z≥1 are again convex combinations of the dilation operators induced by an increasing
sequence (rn)n tending to 1 as n→∞. The uniform weights (ck,n)n = (n−1)n are sufficient.
The following lemma is necessary to obtain the lower bound of the essential norm in
the way it is done in [17].

Lemma 3.1.13. It holds that (H0
v )∗∗ � (∗H∞v )∗ � H∞v , where the Banach spaces are equipped

with their natural norms. Furthermore, the relative topology w∗((∗H∞v )∗) to B(∗H∞v )∗ is metriz-
able and (ι−1

H ◦R
∗)|B(H0

v )∗∗
: (B(H0

v )∗∗ ,w
∗((H0

v )∗∗))→ (BH∞v , τπ) is a homeomorphism.

Proof. It was mentioned in Chapter 2 that the restriction R : ∗H∞v → (H0
v )∗ is an iso-

metric isomorphism. Thus, the adjoint operator R∗ : (H0
v )∗∗ → (∗H∞v )∗ is an isometric

isomorphism. Together with the preliminaries this proves the first statement.
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To prove thatw∗(B(∗H∞v )∗ ) is metrizable, recall that it is sufficient for ∗H∞v to be separa-
ble (see for example [19, Theorem 2.6.23]). The separability follows from the following:
Claim: For a sequence (zn)n ⊂D with an accumulation point in D, it holds that

∗H∞v = span{δz, z ∈D}
(H∞v )∗

= span{δzn , n ∈Z≥1}
(H∞v )∗

.

Proof of Claim: Since (BH∞v , τ0) is metrizable, consider a sequence (fn)n ⊂ BH∞v with fn→
f ∈ BH∞v on compact subsets of D as n→∞. Then clearly δz(fn) = fn(z)→ f (z) = δz(f ) for
all z ∈D as n→∞, which yields that δz ∈ ∗H∞v for all z ∈D. Let (zn)n ⊂D be a sequence

with an accumulation point in D. The space span{δz, z ∈D}
(H∞v )∗

is the smallest closed
subspace of (H∞v )∗ containing {δz, z ∈D}, hence,

span{δzn , n ∈Z≥1}
(H∞v )∗

⊂ span{δz, z ∈D}
(H∞v )∗

⊂ ∗H∞v .

Assume that at least one of the inclusions above is proper. Let

F ∈ ∗H∞v \ span{δzn , n ∈Z≥1}
(H∞v )∗

.

By Proposition 2.1.2, there is a functional F∗ ∈ (∗H∞v )∗ with F∗(F) > 0 and F∗(G) = 0 for

all G ∈ span{δzn , n ∈Z≥1}
(H∞v )∗

. Let ιH : H∞v → (∗H∞v )∗ be the isometric isomorphism,
f 7→ δf . It follows that there is an f ∈ H∞v , not identically zero, which is mapped to F∗,
and hence, f (zn) = δzn(f ) = F∗(δzn ) = 0 for all n ∈ Z≥1. From the identity theorem for
analytic functions, it follows that f ≡ 0, which is a contradiction. Therefore,

span{δzn , n ∈Z≥1}
(H∞v )∗

= span{δz, z ∈D}
(H∞v )∗

= ∗H∞v .

Continuing the proof of Lemma 3.1.13, it is now clear that if a sequence (F∗,n)n ⊂
B(∗H∞v )∗ = ιH (BH∞v ) converges in w∗(B(∗H∞v )∗ ) to some F∗ ∈ B(∗H∞v )∗ , then the sequence con-
sisting of F∗,n(δz) = δz(ι

−1
H (F∗,n)) = ι−1

H (F∗,n)(z), n ∈Z≥1 converges to ι−1
H (F∗)(z) for all z ∈D

as n → ∞. This means that (fn)n := (ι−1
H (F∗,n))n ⊂ BH∞v converges in τπ. According to

Alaoglu’s theorem (B(∗H∞v )∗ ,w
∗((∗H∞v )∗)) is compact, which yields

ι−1
H |ιH (BH∞v ) : (B(∗H∞v )∗ ,w

∗((∗H∞v )∗))→ (BH∞v , τπ)

is a homeomorphism.
To conclude the proof it follows from R being an isometric isomorphism from (∗H∞v )

to (H0
v )∗ that R∗|B(H0

v )∗∗
: (B(H0

v )∗∗ ,w
∗(B(H0

v )∗∗ ))→ (B(∗H∞v )∗ ,w
∗(B(∗H∞v )∗ )) is a homeomorphism.

Indeed, it is clearly a bijection since R∗ is an isometric isomorphism (H0
v )∗∗ → (∗H∞v )∗.

Let (y∗∗α )α ⊂ B(H0
v )∗∗ be a net converging to y∗∗ with respect to w∗((H0

v )∗∗). Take x∗ ∈ ∗H∞v .
Now Rx∗ ∈ (H0

v )∗ and

R∗y∗∗α (x∗) = y∗∗α (Rx∗)→ y∗∗(Rx∗) = (R∗y∗∗)(x∗),
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proving that the net (R∗y∗∗α ) ∈ (∗H∞v )∗ converges to R∗y∗∗ ∈ (∗H∞v )∗, again by Alaoglu’s
theorem (B(H0

v )∗∗ ,w
∗((H0

v )∗∗)) is compact, and therefore, R∗ is a homeomorphism.
Finally, the homeomorphism (B(H0

v )∗∗ ,w
∗(B(H0

v )∗∗ )→ (BH∞v , τπ(BH∞v )) is given by

(ι−1
H |B(∗H∞v )∗

◦R∗|B(H0
v )∗∗

) = (ι−1
H ◦R

∗)|B(H0
v )∗∗
.

When dealing with growth spaces, H∞v , in comparison to the weighted Bergman
spaces, it is not as easy to find a sufficient condition for point-wise convergence to im-
ply weak convergence, because the lack of reflexivity. However, Lemma 3.1.13 is a
stable bridge, leading past the obstacle. Weak convergence on H0

v can be compared
to weak∗ convergence of the image of H∞v under the injection, ιH |H0

v
, into the bidual,

(H0
v )∗∗, which in turn has a nice relationship with H∞v . From the different structure

of the space the map z 7→ (1 − z)−cn will be replace by z 7→ zn and if v = vα , then the
weight-neutraliser is given by g : z 7→ (2(1 − z))−α , α > 0, which will guide the mass to
1. To ensure that our test-functions belong to the smaller space, H0

v , the candidate test-
function are multiplied with z 7→Hn(z), Hn(z) = (1−z)cn , where cn > 0 and limn→∞ cn = 0
suitably fast. As in the Apv-case the approximate identity is obtained by normalisation.
The fact that (BH∞v , τπ) is homeomorphic to (B(H0

v )∗∗ ,w
∗(B(H0

v )∗∗ )) (see Lemma 3.1.13) is
crucial. It follows that if fn→ 0 in τπ as n→∞, where (fn)n ∈ BH0

v
⊂ BH∞v , it also holds

that ((R∗)−1 ◦ ιH )(fn)→ 0 with respect to w∗((H0
v )∗∗). For y∗ ∈ (H0

v )∗ it holds that

((R∗)−1 ◦ ιH )(fn)(y∗) = (ιH (fn) ◦R−1)(y∗) = ιH (fn)(R−1y∗) = (R−1y∗)fn = y∗(fn),

from which it can be concluded that fn→ 0 in w(H0
v ).

To be able to conclude that fn→ 0 in w(H∞v ), one only has to realise that ι̂ : H0
v →H∞v

is continuous, so for every functional l ∈ (H∞v )∗ the map l ◦ ι̂ ∈ (H0
v )∗, and hence, fn→ 0

inw(H0
v ) implies fn→ 0 inw(H∞v ). Notice that the adjoint operator of the inclusion map

is a restriction map (compare to [20, p. 878]).
A final remark of interest is the different subsets of D that are used to obtain the

lower bound. The crucial region is the intersection of D and a small disc centered at 1
in the case of Apv , and for H∞v the crucial region is a small part of the real line inside D

touching 1. These regions are reasonable, because integration of an area, which is done
in the Apv-norm needs a set with positive area and due to the approximate identity, it
is clear that the set must touch 1. The H∞v -norm is constructed with a supremum, and
hence, a line is sufficient.

A special case of an operator X→ X defined as

f 7→
∫ 1

0
TtCφt (f )dt,
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where TtCφt (f )(z) = Tt(z)f (φt(z)), z ∈ D, Tt ∈ X and φ : D→ D analytic, is obtained if
the symbols Tt and φt are constant with respect to t. Such an operator is, in fact, a
weighted composition operator.

3.2 A characterisation for (weak) compactness and complete
continuity of a weighted composition operator on BMOA

The compactness of weighted composition operators Wψ,ϕ = ψCϕ : BMOA → BMOA
was characterised in [13] by Laitila using three conditions. As a part of [18] it is
showed that one of the conditions is redundant. Before proceeding, for z,a ∈ D, ψ ∈
BMOA and ϕ an analytic selfmap of D, the following notations will be used: L(a) :=
log 2

1−|a|2
, σa(z) := a−z

1−az , ϕa(z) := σϕ(a) ◦ϕ ◦ σa, α(ψ,ϕ,a) :=
∣∣∣ψ(a)

∣∣∣∥ϕa∥H2 and β(ψ,ϕ,a) :=

L(ϕ(a))
∥∥∥ψ ◦ σa −ψ(a)

∥∥∥
H2 .

In [18] the following is proved:

Theorem 3.2.1. If Wψ,ϕ ∈ L(BMOA), then the following statements are equivalent:

(i) lim|ϕ(a)|→1

∣∣∣ψ(a)
∣∣∣∥ϕa∥H2 = 0 and lim|ϕ(a)|→1 log 2

1−|ϕ(a)|2
∥∥∥ψ ◦ σa −ψ(a)

∥∥∥
H2 = 0;

(ii) Wψ,ϕ : BMOA→ BMOA is compact;

(iii) Wψ,ϕ : BMOA→ BMOA is weakly compact;

(iv) Wψ,ϕ : BMOA→ BMOA is completely continuous.

Concerning (i)⇒(ii), what is proven is in fact that the two conditions given in (i),
which are two of the three conditions Laitila used in [13], are in fact sufficient to prove
Laitila’s third condition, hence, the result follows from Laitila’s result in [13]. The re-
dundant condition is

lim
t→1

sup
|ϕ(b)|≤R

∫
Ẽ(ϕ,b,t)

∣∣∣ψ ◦ σb(ξ)
∣∣∣2 dm(ξ) = 0 for all R ∈ (0,1), (3.2.1)

where Ẽ(ϕ,b, t) := {ξ ∈ T : |(ϕb)(ξ)| > t}, t ∈ [0,1[.
Notice that the limit in (3.2.1) exists if the expression is bounded, and in [13] Laitila

proved that the expression is bounded if Wψ,ϕ ∈ L(BMOA).
The proof in [18] is done by contradiction, and the first part is to show that: if the

limit in (3.2.1) is finite and strictly greater than zero, then a similar integral, which is
associated with a larger real value, is also bounded from above and away from zero
([18, Claim 4.1]). Using this estimate it is in [18, Claim 4.2] proved, with the aid of [18,
Lemma 3.4], that for every n large enough, there is an η ∈ En such that

inf
r∈]0,1[

1
I(rη)

∫
En∩I(rη)

∣∣∣ψ ◦ σbn ∣∣∣2 dm
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is bounded away from zero, where I(reiθ) := {eit : |θ − t| ≤ pi(1− r)}, r ∈ [0,1[, θ ∈ [0,2π[,

En :=
{
ξ ∈ T :

∣∣∣(ϕ ◦ σbn )(ξ)
∣∣∣ >√

1− 1 +R0

1−R0
(1− t2n)

}
,

and (tn)n ⊂]0,1[ and (bn)n ⊂D with |ϕ(bn)| ≤ R yield a sequential version of the redun-
dant condition (3.2.1).

Claim 4.3 in [18] provides an upper bound, which can be made arbitrarily small in
accordance with (i) and [18, Lemma 3.3]) resulting in a contradiction. Concerning [18,
Lemma 3.4], which has the longest proof in [18], the first part is similar to [14], but the
weight ψ creates some asymmetry, which causes problems concerning the approxima-
tion of arbitrary intervals with dyadic intervals with respect to a specific asymmetric
measure given in Claim 4.2. The second part of the proof takes care of the problems re-
lated to the measure being asymmetric. On the one hand, the approximation is far from
exact, but on the other hand, the result it yields, Lemma 3.4, is quite versatile since the
demand of symmetry is dropped. The reverse, (i)⇐(ii) follows directly from [13].

Any compact operator T : X → Y between Banach spaces is clearly weakly compact
and also completely continuous by Lemma 2.1.5. A sufficient condition to grant that an
operator T ∈ L(X,Y ) between Banach spaces is neither weakly compact nor completely
continuous is given by the following lemma, which demands some more concepts.

A series
∑∞
n=1 xn ⊂ X, denoted

∑
n xn, in a Banach space is said to be unconditionally

convergent (UC) if
∑
n xσ (n) converges (in norm) for every permutation σ of Z≥1, that is,

a bijective map on Z≥1.
A weaker property that a series can enjoy is being weakly unconditionally Cauchy

(wuC). This means that the partial sums of x∗(xσ (n)) form a Cauchy sequence in C for
every permutation σ and x∗ ∈ X∗, and hence,

∑
n x
∗(xn) is unconditionally convergent,

which in C is equivalent to
∑
n|x∗(xn)| <∞.

A sequence (xn)n in a Banach space X is a basic sequence if it constitutes a basis for

its closed linear span, span{xn, n ∈Z≥1}
X

, which is a closed subspace of X. A standard
result (see for example [19, Corollary 4.1.25]) is that (xn)n, where xn , 0 for all n ∈Z≥1,
is a basic sequence in X if and only if there exists a constant C such that∥∥∥∥∥∥∥

k1∑
n=1

anxn

∥∥∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥∥
k2∑
n=1

anxn

∥∥∥∥∥∥∥
X

(3.2.2)

for all (an)n ⊂C
Z≥1 and k2 > k1 ≥ 1.

To be able to prove Theorem 3.2.9, which states that if Wψ,ϕ ∈ L(BMOA) is not com-
pact, then it can be neither completely continuous nor weakly compact, a handful of
lemmas are necessary. The common factor in proving the two statements lies in the
inability of a non-compact weighted composition operator on BMOA to fix a copy of c0.
As with the essential norm and the power ofM-ideal theory, a geometric touch connects
compactness with both weak compactness and complete continuity concerning an oper-
atorWψ,ϕ ∈ L(BMOA). Therefore, some results concerning the space c0 are appropriate.
The following results (Lemmas 3.2.2–3.2.7) are classical.
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Lemma 3.2.2. Let (xn)n be a bounded sequence in a Banach space X. The series
∑
n tnxn

converges for every (tn)n ∈ c0 if and only if
∑
n xn is a wuC-series if and only if there exists a

constant C such that for every integers k2 ≥ k1 ≥ 1 and (tn)n ∈ c0 it holds that∥∥∥∥∥∥∥∥
k2∑
n=k1

tnxn

∥∥∥∥∥∥∥∥
X

≤ C sup
n∈Z[k1 ,k2]

|tn|.

Proof. On the one hand, assume that
∑
n tnxn converges for every (tn)n ∈ c0. For k ∈Z≥1

define Tk : c0 → X such that Tk((tn)n) =
∑k
n=1 tnxn, k ∈ Z≥1. Clearly, Tk is a bounded

operator and for a given (tn)n ∈ c0 the quantity supk∥Tk((tn)n)∥X is finite, because the
series

∑
n tnxn converges. The uniform boundedness principle yields that

C := sup
k∈Z≥1

sup
(tn)n∈Bc0

∥∥∥∥∥∥∥
k∑
n=1

tnxn

∥∥∥∥∥∥∥ <∞,
and hence, for every x∗ ∈ X∗

sup
(tn)n∈Bc0

sup
k∈Z≥1

∣∣∣∣∣∣∣
k∑
n=1

tnx
∗(xn)

∣∣∣∣∣∣∣ = sup
(tn)n∈Bc0

sup
k∈Z≥1

∣∣∣∣∣∣∣x∗
 k∑
n=1

tnxn


∣∣∣∣∣∣∣ ≤ C

as a consequence of Proposition 2.1.2. By a suitable choice of (tn)n, it is clear that

sup
(tn)n∈Bc0

∞∑
n=1

|tn||x∗(xn)| ≤ C.

Since Bc0 is elementwise dense in Bℓ∞ , it follows by dominated convergence that

∞∑
n=1

|x∗(xn)| ≤ C.

On the other hand, for a wuC-series
∑
n xn, define Sk,(tn)n : X∗ 7→C as

x∗ 7→ x∗
 k∑
n=1

tnxn

, (k, (tn)n) ∈Z≥1 ×Bℓ∞ .

Clearly, Sk,(tn)n ∈ X
∗∗ for all k and (tn)n, and from to the assumption of

∑
n xn being wuC,

it follows that

sup
k∈Z≥1

sup
(tn)n∈Bℓ∞

∣∣∣Sk,(tn)n(x∗)
∣∣∣ ≤ ∞∑

n=1

|x∗(xn)| <∞

for all x∗ ∈ X∗. The uniform boundedness principle yields that

sup
k∈Z≥1

sup
(tn)n∈Bℓ∞

∥∥∥∥∥∥∥
k∑
n=1

tnxn

∥∥∥∥∥∥∥
X

= sup
k∈Z≥1

sup
(tn)n∈Bℓ∞

sup
x∗∈BX∗

∣∣∣∣∣∣∣x∗
k∑
n=1

tnxn

∣∣∣∣∣∣∣
= sup

(k,(tn)n)∈Z≥1×Bℓ∞

∥∥∥Sk,(tn)n

∥∥∥
X∗∗
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is a finite constant, C′ > 0. Furthermore, for a sequence (tn)n ∈ c0 and k1 ≤ k2, it holds
that ∥∥∥∥∥∥∥∥∥∥

k2∑
n=k1

χtn,0(n)
tn

sup
n∈Z[k1 ,k2]

|tn|
xn

∥∥∥∥∥∥∥∥∥∥
X

≤ C′ ⇐⇒

∥∥∥∥∥∥∥∥
k2∑
n=k1

tnxn

∥∥∥∥∥∥∥∥
X

≤ C′ sup
n∈Z[k1 ,k2]

|tn|,

where the leftmost sum is assumed to be 0 if tn = 0 for all integers n ∈ [k1, k2]. It follows
that

∑k2
n=k1

tnxn is a Cauchy sequence in X, and by completeness,
∑
n tnxn converges in

X.

Lemma 3.2.3. A convex set M in a normed space X is weakly closed if and only if it is closed
with respect to the norm topology.

Proof. Since the weak topology is coarser than the norm topology, it is sufficient to prove
that a closed convex set M is also weakly closed. Assume this is not the case and let M
be a convex set, closed with respect to the norm, such that there is an x0 ∈M

w \M. As a
consequence, there exists an open ball, B(x0, r) for some r > 0, that is disjoint fromM. In
a similar manner to Lemma 3.1.11, an application of Hahn-Banach separation theorem
(Proposition 3.1.9) yields that there is a φ ∈ X∗ withℜφx0 ≤ c ≤ d ≤ℜφx for all x ∈M,
where |d − c| = r > 0. Since x0 is a weak cluster point toM, every setU that is open in the
weak topology and contains x0 should have a nonempty intersection with M. However,
{x ∈ X :

∣∣∣φ(x − x0)
∣∣∣ < r} is an open set in the weak topology with no common elements

with M. Therefore, there are no x0 ∈M
w \M, so the sets are equal.

The following assumption can be worded as: Assume that T ∈ L(X,Y ) fixes a copy
of c0.

Lemma 3.2.4. Assume X0 ⊂ X is isomorphic to c0 and that T ∈ L(X,Y ) such that T |X0
is

an isomorphism onto some subspace Y0. Then T is neither completely continuous nor weakly
compact.

Proof. First, the operator T0 := T |X0
: X0→ Y0 inherits the property of being completely

continuous or weakly compact. Using indirect proof, one can therefore neglect the op-
erator T and only consider its restriction.

Let I0 be an isomorphism c0 → X0 and assume that T0 is completely continuous.
Since every norm-norm continuous operator is weak-weak continuous, it follows from
the assumption that T0 ◦ I0 : c0→ Y0 is completely continuous, in which case, the iden-
tity operator on c0, I = I−1

0 T −1
0 ◦T0 ◦ I0 : c0→ c0, is completely continuous. From Lemma

3.2.2, it follows that
∑
n en is a wuC-series in c0, and hence, (en)n is a weakly null

sequence. This could also be seen from the explicit representation of an element in
(c0)∗ � ℓ1. Since the identity is completely continuous, it should converge in norm to
zero, which is impossible, because ∥en∥c0 = 1 for all n ∈Z≥1.

Assume instead that T is weakly compact. In a similar fashion to the procedure
used to disprove complete continuity, it follows that Bc0 is weakly relatively compact
and in fact weakly compact since it is closed according to Lemma 3.2.3. According to
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the Eberlein-Šmulian theorem Bc0 is weakly sequentially compact. The partial sums,
yk :=

∑k
n=1 en, k ∈ Z≥1, belong to Bc0 so there must exists a convergent subsequence of

(yk)k . The candidates to limits are taken in c0, but every subsequence (ykm )m converges
pointwise to (1,1, . . .) < c0 and a contradiction is achieved.

Lemma 3.2.5. Given a basic sequence (xn)n ⊂ X such that
∑
n xn is wuC and ∥xn∥X ≥ c for

all n ∈Z≥1 and some c > 0, it holds that (xn)n is equivalent to a basis of c0. On the contrary,
if T : c0→ T (c0) ⊂ X is an isomorphism, then (T (en))n is a basic sequence such that

∑
nT (en)

is wuC and ∥T (en)∥X ≥ c for all n ∈Z≥1 and some c > 0.

Proof. Consider the map (tn)n 7→
∑
n tnxn. It is clearly a linear bijection if it is well

defined and surjective, since (xn)n is a basic sequence. The following diagram illustrates
how the assumptions come into play to prove that the map is well defined and surjective

c0→ span{xn : n ∈Z≥1}
X

:

(tn) ∈ c0

(xn) wuC
=⇒
⇐=

infn∥xn∥X>0

∑
n

tnxn converge.

Lemma 3.2.2 proves that the map is well defined and the surjectivity follows from∑
n tnxn being Cauchy and infn∥xn∥X > 0:∥∥∥∥∥∥∥

n∑
k=1

tkxk −
n−1∑
k=1

tkxk

∥∥∥∥∥∥∥
X

= |tn| ∥xn∥X .

Lemma 3.2.2 also provides that (tn)n 7→
∑
n tnxn is bounded from above. By the bounded

inverse theorem, (tn)n 7→
∑
n tnxn is an isomorphism c0→ span{xn : n ∈Z≥1}

X
for which

en 7→ xn.
On the contrary, T being an isomorphism yields immediately that infn∥T (en)∥X = c

for some c > 0, and for φ ∈ X∗, the functional φT ∈ (c0)∗, which yields that
∑
nT (en) is

wuC in X, because
∑
n en is wuC in c0 according to Lemma 3.2.2. To see that T (en) is

a basic sequence, one applies the characterisation (3.2.2), and because (en)n is a basic
sequence, the statement follows from the linear operators T and T −1 being bounded.

Lemma 3.2.6. Let X be a Banach space and (xn)n ∈ X a sequence, equivalent to the standard
basis of c0. Then for any (tn)n ∈ ℓ∞ such that infn|tn| > 0 the sequence (tnxn)n is equivalent
to the standard basis of c0.

Proof. Due to Lemma 3.2.5 and the assumption, the sequence (xn)n is a basic sequence
with infn∥xn∥X > 0 and

∑
n xn is wuC. None of these properties are affected by elemen-

twise multiplication by (tn)n, where 0 < infn|tn| < supn|tn| <∞. Another application of
Lemma 3.2.5 gives the result.
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Lemma 3.2.7. If T ∈ L(X,Y ), (xn)n ⊂ X is equivalent to the standard basis of c0 and
∥T (xn)∥Y is bounded away from zero. Then there is a subsequence (nk)k ⊂ Z≥1 such that
both (T (xnk ))k and (xnk )k are equivalent to the standard basis of c0. In other words, the
assumption yields that T pfixes a copy of c0.

Proof. Under the given assumptions,
∑
nT (xn) is wuC, and so is the series of an arbi-

trary subsequence. It follows that (T (xn))n is a weakly null sequence, bounded from
above and away from zero, and by Bessaga-Pełczyński selection principle there is a sub-
sequence (nk)k ⊂ Z≥1 rendering (T (xnk ))k a basic sequence. By Lemma 3.2.5, it follows
that (T (xnk ))k is equivalent to the standard basis of c0 and so is also (xnk )k . In fact, as a
consequence of Lemma 3.2.5, a subsequence to a sequence equivalent to the standard
basis of c0, is also equivalent to the standard basis of c0.

The following lemma is found in [14, Proposition 6] and the proof uses the sliding
hump technique.

Lemma 3.2.8. Let (fn)n be a sequence in VMOA with unit norm such that limn→∞∥fn∥H2 =
0. Then there exists a subsequence (fnk )k of (fn)n such that the map c0→ span{fnk : k ∈Z≥1}
that maps (tn)n 7→

∑
k tkfnk is an isomorphism.

Many of the BMOA (or VMOA) specific ideas and calculations in the following the-
orem can be found in some form in [13] (see also [15]).

Theorem 3.2.9. If Wψ,ϕ ∈ L(BMOA) is not compact, then it can be neither completely con-
tinuous nor weakly compact.

Proof. If Wψ,ϕ ∈ L(BMOA) is not compact, then there is a number λ > 0 and a sequence
(an)n ∈D with limn→∞|ϕ(an)| = 1 such that at least one of the following holds:

1. α(ψ,ϕ,an) ≥ λ for all n,

2. β(ψ,ϕ,an) ≥ λ for all n.

Laitila proved in [13] that Wψ,ϕ : BMOA→ BMOA is bounded if and only if

sup
a∈D

α(ψ,ϕ,a) <∞ and sup
a∈D

β(ψ,ϕ,a) <∞.

Lemma 3.2.4 yields that it suffices to prove that Wψ,ϕ ∈ L(BMOA) fixes a copy of
c0. According to Lemma 3.2.7 and Lemma 3.2.8, it suffices to find a sequence (xn)n ∈
VMOAwith unit norm such that ∥xn∥H2 → 0 as n→∞ and

∥∥∥Wψ,ϕ(xn)
∥∥∥
BMOA

is bounded
away from zero. According to Lemma 3.2.6, the demand of unit norm can be relaxed to
0 < infn∥xn∥BMOA ≤ supn∥xn∥BMOA <∞.

Assume (1) holds and let fn := σϕ(an) −ϕ(an), n ∈Z≥1. It follows that for b ∈D

fn ◦ σb − fn(b) = σϕ(an) ◦ σb − σϕ(an) ◦ σb(0)
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and with ω =ω(an,b) = −σb(ϕ(an)) = ϕ(an)−b
1−bϕ(an)

σϕ(an) ◦ σb(z) =
1− bϕ(an)

1−ϕ(an)b

ω − (−z)
1− (−z)ω

so that

fn ◦ σb(z)− fn(b) =
1− bϕ(an)

1−ϕ(an)b

(
ω − (−z)

1− (−z)ω
−ω

)
and

|fn ◦ σb(z)− fn(b)|2 =
|z|2(1− |−ω|2)2∣∣∣1− (−ω)z

∣∣∣2 .

This yields that

∥fn ◦ σb − fn(b)∥2H2 = (1− |−ω|2)
∫
T

(1− |−ω|2)∣∣∣1− (−ω)z
∣∣∣2 dm(z) = (1− |ω|2). (3.2.3)

The last equality is due to the integrand resembling the Poisson Kernel in an exact way.
Since lim|b|→1|ω(ϕ(an),b)| → 1, it follows that fn ∈ VMOA. From the symmetry of ω, it
can be concluded that limn→∞|ω(ϕ(an),b)| = lim|ϕ(an)|→1|σb(ϕ(an))| → 1 proving that

lim
n→∞
∥fn ◦ σb − fn(b)∥2H2 = 0 (3.2.4)

for every fixed b ∈D. However, since ω(an, ·) is an automorphism of the disc, equation
(3.2.3) yields

sup
b∈D
∥fn ◦ σb − fn(b)∥H2 = sup

b∈D

√
(1− |ω(an,b)|2) = 1

and since fn(0) = 0 it follows that ∥fn∥BMOA = 1 for all n. To prove that
∥∥∥Wψ,ϕ(fn)

∥∥∥ is
bounded away from zero, one can with some simple calculations obtain∥∥∥Wψ,ϕ(fn)

∥∥∥
BMOA

≥
∥∥∥ψ(an)ϕan + (ψ ◦ σan −ψ(an))(ϕan −ϕ(an))

∥∥∥
H2

≥ α(ψ,ϕ,an)− 2
∥∥∥ψ ◦ σan −ψ(an)

∥∥∥
H2 = α(ψ,ϕ,an)− 2

β(ψ,ϕ,an)
L(ϕ(an))

.

Since supa∈Dβ(ψ,ϕ,a) <∞ and |ϕ(an)| → 1 as n→∞, it follows that

liminf
n→∞

∥∥∥Wψ,ϕ(fn)
∥∥∥
BMOA

≥ liminf
n→∞

α(ψ,ϕ,an) ≥ λ > 0.

Since fn . 0 for every n ∈ Z≥1, it can be concluded that
∥∥∥Wψ,ϕ(fn)

∥∥∥
BMOA

is bounded
away from zero, and hence, Wψ,ϕ ∈ L(BMOA) is neither completely continuous nor
weakly compact in the case (1) holds.

The other possibility is that (2) holds, in which case it can be assumed that (2) does
not hold. In these settings, the function

z 7→ gn(z) :=

log
2

1−ϕ(an)z

2(
log

2

1− |ϕ(an)|2

)−1

(z ∈D)
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turned out to be useful. It is shown in [13] that gn ∈ VMOAwith a uniform upper bound
of the norm with respect to n. This was achieved by an application of the Littlewood-
Paley identity and an estimation of the Nevanlinna function. The uniform lower bound
is achieved by the standard estimate of the norm of the evaluation map (see [9, p. 95])

∥gn∥BMOA ≳
gn(z)
L(z)

=

(
log 2

1−ϕ(an)z

)2

(
log 2

1−|z|2

)(
log 2

1−|ϕ(an)|2

) , z ∈D.

Using z = ϕ(an), it follows that ∥gn∥BMOA ≥ 1. It remains to prove that limn→∞∥gn∥H2 =
0, which is a bit cumbersome. The following sketch shows that limn→∞∥gn∥Hp = 0 for

all p ≥ 1. It suffices to prove that
∫
T

∣∣∣∣∣log 1
1−ϕ(an)z

∣∣∣∣∣pdm(z) <∞, p ≥ 2 and from rotational

symmetry of the norm, it can be assumed that rn = ϕ(an) is real and positive. The
convergence holds true if and only if there exists ϵ > 0 such that∫ ϵ

0

∣∣∣log(1− rneit)
∣∣∣p dt <∞.

The argument of (1− rneit) is bounded, so the above holds true if and only if∫ ϵ

0

∣∣∣log
∣∣∣1− rneit ∣∣∣∣∣∣pdt =

∫ ϵ

0

∣∣∣∣∣12 log(1− 2rn cos t + r2
n )

∣∣∣∣∣p dt <∞.
For 0 < ϵ < 2, it holds that cos t ≤ 1− t23 , t ∈ [0,ϵ], which gives a new sufficient condition
to prove

∫ ϵ

0

∣∣∣∣∣log
(
(1− rn)2 +

2rn
3
t2

)∣∣∣∣∣p dt =
∫ √

2rn
3 ϵ

0

∣∣∣log((1− rn)2 + t2)
∣∣∣p√3dt
√

2rn
<∞.

For rn ≥ 1
2 and ϵ < 1

2 , it can be concluded that∫ ϵ

0

∣∣∣log((1− rn)2 + t2)
∣∣∣p dt ≤ ∫ ϵ

0

∣∣∣log(t2)
∣∣∣p dt = 2p

∫ ϵ

0
|log t|p dt = 2p

∫ ∞
− lnϵ

tpe−t dt <∞

is true, and hence, the statement limn→∞∥gn∥H2 = 0 follows from the fact that the other

part of gn, namely,
(
log 2

1−|ϕ(an)|2

)−1
is independent of z and tends to zero as n→∞. The

existence of a positive lower bound of
∥∥∥Wψ,ϕ(gn)

∥∥∥
BMOA

is similarly granted by some
estimates from [13].

Remark 3.2.10. An alternative way of proving that∫ ϵ

0

∣∣∣log(1− rneit)
∣∣∣p dt <∞.
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holds for some ϵ > 0 is to use the formula∫ ϵ

0

∣∣∣f (eit)
∣∣∣p dt

2π
= p

∫ ∞
0
m({t ∈ [0,ϵ] :

∣∣∣f (eit)
∣∣∣ ≥ λ})dλp,

which is obtained by integrating with respect to values instead of arguments in the
definition of the norm. The approximations of

∣∣∣log(1− rneit)
∣∣∣ would still be the same

as above, and the result would be that the measure of the set in the integrand has an
upper bound, independent of n, which decays exponentially in accordance with the
John-Nirenberg lemma.

If the composition-symbol ϕ ∈HOLO(D) is the identity, that is, ϕ(z) = z, z ∈D, then
Wψ,ϕ =Mψ is a multiplication operator.

3.3 Spectrum and essential spectrum of multiplication operators

In [16] the spectrum and essential spectrum of a multiplication operator Mu ∈ L(X),
induced by a suitable analytic function u, is determined for quite general Banach spaces
X ⊂HOLO(D). These functions, u, form an algebra,

M(X) := {u ∈HOLO(D) : uf ∈ X for all f ∈ X},

which is a subset of X given that the constant functions belong to X. Another algebra,
which eases the use of approximate identities, is the disc algebra, defined as

A(D) = {f ∈ (D) : f has a continuous extension to D}.

Since continuity is preserved under uniform convergence, the disc algebra is a closed
subspace of H∞. As a consequence of Mergelyan’s theorem (see [24, p. 386]), the disc
algebra is the uniform closure of analytic polynomials on the open unit disc D.

Concerning the results, the methods used are largely based on [4], and for the spec-
trum the following holds ([16, Theorem 3.2]):

Theorem 3.3.1. Assume that C ⊂ X ⊂HOLO(Bn) is a Banach space and that the evaluation
functionals are bounded. Furthermore, assume that there is another Banach space Y such that
∥f ∥X ≍

∥∥∥RN f ∥∥∥
Y

for some N ∈ Z≥1 and all f ∈ HOLO(Bn), Y satisfies the given properties
for X and whose multiplier algebra M(Y ) ⊃H∞(Bn). If Mu ∈ L(X), then

σ (Mu) = u(Bn).

The next useful result can be found in, for example, [21]:

Lemma 3.3.2 (Hartogs’ extension theorem). Let f be analytic in r <
∑n
j=1

∣∣∣zj ∣∣∣2 < R, where

0 < r < R. Then f can be continued analytically to
∑n
j=1

∣∣∣zj ∣∣∣2 < R.
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For the essential spectrum, similarly to [4], an application of Hartogs’ theorem yields
that:

Theorem 3.3.3. Under the additional assumption that Pj : Bn → C, Pj (z) = zj , j = 1, . . . ,n
are multipliers to a Banach space X, that is, and Pj ∈M(X(Bn)) for every j, the assumptions
given in Theorem 3.3.1 are sufficient to ensure that

σe(Mu) =
⋂

0<r<1

u(Bn \ rBn) = u(Bn) = σ (Mu).

Notice that in [16, Theorem 4.1], the assumptions are insufficient for the proof given,
because the proof makes use of [16, Lemma 3.1], whose proof heavily depend on the
existence of a space Y with the given properties.

The method to obtain the essential spectrum when n = 1 is, however, quite space
specific and the results are given in the theorem below, which is part of [16, Theorem
4.13]:

Theorem 3.3.4. If X is one of the following spaces:

(a) Bα(D), 0 < α < 1, with u ∈M(Bα(D)) = Bα(D) ⊂ A(D);

(b) B(D) with u ∈M(B(D))∩A(D);

(c) Apα,β(D) with u ∈M(Apα,β(D)) = Apα,β(D) ⊂ A(D), where p > 1, α > −1 and β > 2+α
p ;

then
σe(Mu) =

⋂
0<r<1

u(D \ rD).

As a disclaimer, the Apα,β-case when p = 2, follows immediately from [4], but other
values of p > 1 demanded new precise estimations in the creation of [16]. For example,
in [16, Lemma 4.11], it is proved that, for a given p ≥ 1, α > −1 and β ≥ 0, if k ∈ Z≥1 is
large, ∥∥∥fξ,k∥∥∥pApα,β ≍ (k + 1)−α+βp− 3

2 ,

where fξ,k is given by

fξ,k : z 7→
(

1 + ξz
2

)k
, ξ ∈ T , k ∈Z≥1.

The upper estimate
σe(Mu) ⊂

⋂
0<r<1

u(D \ rD),

can be achieved by adding one more general condition to the space X, in addition to the
assumptions made in Theorem 3.3.1. The result is the following:
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Theorem 3.3.5. Assume that

(i) C ⊂ X,Y ⊂ HOLO(D) is a Banach space and that the evaluation functionals are
bounded,

(ii) M(Y ) ⊃H∞,

(iii) there is an integer N ∈Z≥1 such that ∥f ∥X ≍
∥∥∥RN f ∥∥∥

Y
for all f ∈HOLO(D), and

(iv) if f (z0) = 0 for a function f ∈ X and z0 ∈D, then z 7→ f (z)
z−z0
∈ X.

If Mu ∈ L(X), then
σe(Mu) ⊂

⋂
0<r<1

u(D \ rD).

For spaces X properly contained in H∞, approximate identities are used to obtain⋂
0<r<1

u(D \ rD) ⊂ σe(Mu), (3.3.1)

to be more specific, normalised versions of the functions fξ,k , ξ ∈ T , k ∈ Z≥1 are used.
These calculations are, however, very space specific, and the calculations demand that
u can be continuously extended to the closed disc D, in which case

⋂
0<r<1u(D \ rD) is

the image of the complex unit circle T under the extension of u.
If X is such that all u ∈ H∞ induce a bounded operator Mu ∈ L(X), in which case

every condition involving Y can be neglected, one can also conclude (3.3.1) given that
Mu ∈ L(X), and X satisfies conditions (i) and (iv), given in Theorem 3.3.5. The proof
scratches the theory of interpolation sequences, and it is proved that: ifMu ∈HOLO(D)
and λ ∈

⋂
0<r<1u(D \ rD), a certain sequence of perturbations of Mu − Iλ are not Fred-

holm, and that this sequence tends strongly to Mu − Iλ. Since the set of non-Fredholm
operators is closed, (3.3.1) follows.

The final section contains some information about the two approximate identities
used in [16] and [17] respectively. The result concerning the approximate identity used
in [16] is an improvement of the main part of [16, Lemma 4.11].
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Approximate identities

The definition of an approximate identity, in the sense the term is used in this thesis,
can be found in subsection 3.1 where the lower bound of the essential norm is discussed.

One can observe that the achievement of a lower bound for the essential spectrum of
a multiplication operator on a Bergman-Sobolev space Apα,β(D), β > 2+α

p , p > 1, α > −1
used the peak function:

(gξ,k)k :=

 fξ,k∥∥∥fξ,k∥∥∥Apα,β

k

, where fξ,k(z) :=
(

1 + ξz
2

)k
, ξ ∈ T , z ∈D

as the approximate identity. However, the lower bound of the essential norm of the
Hilbert matrix operator H : Apα → A

p
α , p > 1, α ≥ 0 was obtained using another approxi-

mate identity, namely,

(hξ,c)0≤c< 2
p

=

 Fξ,c∥∥∥Fξ,c∥∥∥Apα


0≤c< 2
p

, where Fξ,c(z) =
1

2
α
p (1− ξz)c+

α
p
, ξ ∈ T , z ∈D.

The parameter ξ is the point on the boundary T where the mass is concentrated as
k → ∞ or c → 2

p . One can ask, what is the difference between these two approximate
identities? The obvious part of the answer is that each of them consists of different
mathematical functions and depending on context, one of them yields easier calcula-
tions. The function fξ,k can be used on many Banach spaces in its current form in con-
trast to Fξ,c, where at least the value of c must be adapted to the space the approximate
identity is used on. The image of one of the functions from each approximate identity
gives a hint about some other properties:

39
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f1,5

ℜz

ℑz

h1, 13

ℜz

ℑz

Each line is either an increase or a decrease in value by a fixed amount. Denser
lines means, therefore, a steeper slope. Normalisation will not change the structure
of the image and a different k or c will change the denseness of the contour lines and
placement, but not the characteristics of the shape. It is also evident from construction
that a contour line for f1,k is a circle with center −1, where the mass is larger the further
away from −1 one observes. In comparison, the contour lines of the function h1,c are
circles with center at it’s mass concentration point 1. Normalising the functions, and
considering the set

M>x(f ) = {z ∈D : |f (z)| ≥ x},

it is evident that the shape of M>x(h1,c) is a circle, gathering mass equally from all
directions. However, for k large enough (so that the following set is not empty), the
set M>x(g1,k) is a narrow lune. It turns out that in the limit case, as k → ∞ all mass
is pushed tangentially to 1 from inside D, which renders this approximate identity
useless when considering inscribed polygons with a corner at the mass concentration
point, or equivalently, suitable Stolz angles. To finish this section, some results of how
well the approximate identities gathers mass from a smaller disc B(1 − R,R), R ∈]0,1]
inscribed in D, touching 1, are presented. This will prove the uselessness of (g1,k)k as
an approximate identity on inscribed polygons. It will be proved that for α > −1 and
R ∈]0,1],∫

B(1−R,R)
|1 + z|q(1− |z|2)α dA(z)

q→∞∼ 2q+ 5
2 +2α

π

Γ (α + 3
2 )

qα+ 3
2

∫ 1

2−2R
2−R

rα dr
√

1− r
(4.0.1)

and

∫
B(1−R,R)

|1− z|−c(1− |z|2)αdA(z) c→2+α∼ 2α

2 +α − c
1
π
β
(α

2
+

1
2
,
1
2

)
=

(
Γ (α+1)
Γ ( α2 +1)2

)
2 +α − c

,

whereA(q)
q→q0∼ B(q) means limq→q0

A(q)
B(q) exists and lies in ]0,∞[. As R is smaller, some of

the mass gathered tangentially in D to 1, will not make a contribution to the total mass
gathered by the approximate identities on B(1 − R,R) as the limit is taken. The mass
gathered non-tangentially is invariant. What can also be seen is, by putting R = 1 in
(4.0.1), an improvement of the constant in the main part of [16, Lemma 4.11] is obtained
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in the case p is not an integer, where the pair (q,α) here, can be compared to ((k−j)p,γ) in
the article. Only considering R = 1 would simplify the proof the asymptotic behaviour
of the peak function f1,k (equation (4.0.1)), however, to obtain the above formula (4.0.1)
for general R ∈]0,1], the following lemma is crucial:

Lemma 4.0.1. If η > ξ > −1 and f ,g : [0,1[→ [0,∞[ are continuous an integrable with
f (0) ∈]0,∞[ and g not indentically zero on ]0,b[ for every 0 < b < 1, then∫ 1

0

∫ 1

0
(1− tr)qtηrξf (r)g(t)dt dr

q→∞∼ f (0)
∫ 1

0
rη−ξ−1g(r)dr

Γ (ξ + 1)
qξ+1

.

Proof. Take ρ ∈]0, f (0)
2 [ and choose ϵ ∈]0,1[ such that 0 < f (0)− ρ < f (x) < f (0) + ρ when

0 < x < ϵ. Let q > 0.
On the one hand, there exists M =M(ϵ) ∈]0,∞[ such that

∫ 1

ϵ

∫ 1

0
(1− rt)qtηrξf (r)dt dr ≤

∫ 1

ϵ

∫ 1

0
(1− ϵt)qtη max{1,ϵξ }f (r)dt dr

≤max{1,ϵξ }
(∫ 1

0
f (r)dt

)∫ 1

0
(1− ϵt)qtη dt

≤ max{1,ϵξ }
ϵη+1

(∫ 1

0
f (r)dt

)∫ 1

0
(1− t)qtη dt

=M(ϵ)
(∫ 1

0
f (r)dt

)
β(q+ 1,η + 1).

Notice that∫ 1
ϵ

∫ 1
1
2

(1− rt)qtηrξf (r)g(t)dt dr∫ 1
ϵ

∫ 1
0 (1− rt)qtηrξf (r)g(t)dt dr

≤
(1− ϵ

2 )q
∫ 1
ϵ

∫ 1
1
2
tηrξf (r)g(t)dt dr

(1− ϵ
4 )q

∫ 1
ϵ

∫ ϵ
4

0 tηrξf (r)g(t)dt dr

≤
(

1− ϵ
2

1− ϵ
4

)q ∫ 1
ϵ

∫ 1
1
2
tηrξf (r)g(t)dt dr∫ 1

ϵ

∫ ϵ
4

0 tηrξf (r)g(t)dt dr
q→∞
→ 0.

(4.0.2)

Since β(q+ 1,η + 1) ∼ Γ (η+1)
qη+1 , it holds that

qξ+1
∫ 1

ϵ

∫ 1

0
(1− tr)qtηrξf (r)g(t)dt dr

q→∞∼
(4.0.2)

qξ+1
∫ 1

ϵ

∫ 1
2

0
(1− tr)qtηrξf (r)g(t)dt dr

≤
∥∥∥∥∥gχ]0. 12 [

∥∥∥∥∥∞M(ϵ)
(∫ 1

0
f (r)dt

)
qξ+1β(q+ 1,η + 1)

q→∞∼
∥∥∥∥∥gχ]0. 12 [

∥∥∥∥∥∞M(ϵ)
(∫ 1

0
f (r)dt

)
Γ (η + 1)qξ−η

q→∞
→ 0.

(4.0.3)
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On the other hand,

∫ ϵ

0

∫ 1

0
(1− tr)qtηrξf (r)g(t)dt dr ∈ B

R
(f (0),ρ)

∫ ϵ

0

∫ 1

0
(1− tr)qtηrξg(t)dt dr

and ∫ ϵ

0

∫ 1

0
(1− tr)qtηrξg(t)dt dr =

∫ ϵ

0

∫ r

0
(1− t)qtηrξ−η−1g(

t
r

)dt dr

=
∫ ϵ

0
(1− t)qtη

(∫ ϵ

t
rξ−η−1g(

t
r

)dr
)
dt

=
∫ ϵ

0
(1− t)qtξ

∫ 1

t
ϵ

rη−ξ−1g(r)dr

dt.
Now choose δ = δ(ϵ,ρ) ∈]0,ϵ[ small enough so that

∫ t
ϵ

0
rη−ξ−1g(r)dr < ρ (recall that η − ξ − 1 > −1 and g bounded),

and ∫ 1

t
ϵ

rη−ξ−1g(r)dr > 0 (recall that g . 0 and continuous),

whenever 0 < t < δ and define G :=
∫ 1

0 r
η−ξ−1g(r)dr. Now

∫ δ

0
(1− t)qtξ

∫ 1

t
ϵ

rη−ξ−1g(r)dr

dt ∈ BR(G,ρ)
∫ δ

0
(1− t)qtξ dt,

which yields

∫ ϵ
0 (1− t)qtξ

(∫ 1
t
ϵ
rη−ξ−1g(r)dr

)
dt∫ δ

0 (1− t)qtξ dt

=

∫ ϵ
0 (1− t)qtξ

(∫ 1
t
ϵ
rη−ξ−1g(r)dr

)
dt∫ δ

0 (1− t)qtξ
(∫ 1

t
ϵ
rη−ξ−1g(r)dr

)
dt

∫ δ
0 (1− t)qtξ

(∫ 1
t
ϵ
rη−ξ−1g(r)dr

)
dt∫ δ

0 (1− t)qtξ dt

∈ B
R

(G,ρ)

∫ ϵ
0 (1− t)qtξ

(∫ 1
t
ϵ
rη−ξ−1g(r)dr

)
dt∫ δ

0 (1− t)qtξ
(∫ 1

t
ϵ
rη−ξ−1g(r)dr

)
dt
,
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and hence, it follows that∫ ϵ
0

∫ 1
0 (1− tr)qtηrξf (r)g(t)dt dr∫ δ

0 (1− t)qtξ dt

=

∫ ϵ
0

∫ 1
0 (1− tr)qtηrξf (r)g(t)dt dr∫ ϵ

0

∫ 1
0 (1− tr)qtηrξg(t)dt dr

∫ ϵ
0

∫ 1
0 (1− tr)qtηrξg(t)dt dr∫ δ

0 (1− t)qtξ dt

∈ B
R

(f (0),ρ)B
R

(G,ρ)

∫ ϵ
0 (1− t)qtξ

(∫ 1
t
ϵ
rη−ξ−1g(r)dr

)
dt∫ δ

0 (1− t)qtξ
(∫ 1

t
ϵ
rη−ξ−1g(r)dr

)
dt
.

(4.0.4)

The last quotient tends to 1 as q → ∞ in accordance with the following formula,
obtained similarly to (4.0.2):∫ ϵ

δ
(1− t)qtξ

(∫ 1
t
ϵ
rη−ξ−1g(r)dr

)
dt∫ ϵ

0 (1− t)qtξ
(∫ 1

t
ϵ
rη−ξ−1g(r)dr

)
dt
≤

∫ ϵ
δ

(1− δ)qtξ
(∫ 1

t
ϵ
rη−ξ−1g(r)dr

)
dt∫ δ

2
0 (1− δ

2 )qtξ
(∫ 1

δ
2ϵ
rη−ξ−1g(r)dr

)
dt

≤
 1− δ

1− δ
2

q G
∫ ϵ
δ
tξ dt∫ δ

2
0 tξ

(∫ 1
δ

2ϵ
rη−ξ−1g(r)dr

)
dt

q→∞
→ 0.

Summarising, (notice that all parameters chosen are independent of q)

lim
q→∞

∫ ϵ
0

∫ 1
0 (1− tr)qtηrξf (r)g(t)dt dr∫ δ

0 (1− t)qtξ dt
∈ B

R
(f (0),ρ)B

R
(G,ρ).

Finally, a simple version of (4.0.2) ensures that∫ δ

0
(1− t)qtξ dt ∼

∫ 1

0
(1− t)qtξ dt = β(q+ 1,ξ + 1) ∼ Γ (ξ + 1)

qξ+1

as q→∞, which yields

lim
q→∞

qξ+1

Γ (ξ + 1)

∫ 1

0

∫ 1

0
(1− tr)qtηrξf (r)g(t)dt dr

(4.0.3)
= lim

q→∞
qξ+1

Γ (ξ + 1)

∫ ϵ

0

∫ 1

0
(1− tr)qtηrξf (r)g(t)dt dr ∈ B

R
(f (0),ρ)B

R
(G,ρ).

Let ρ→ 0 to finish the proof.

Theorem 4.0.2. Let α > −1. Then∫
B(1−R,R)

|1 + z|q(1− |z|2)α dA(z)
q→∞∼ 2q+ 5

2 +2α

π

Γ (α + 3
2 )

qα+ 3
2

∫ 1

2−2R
2−R

rα dr
√

1− r
.
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Proof. At the first equality below, the domain of integration is reflected through z = 1
2 ,

and the second inequality is the substitution to polar coordinates z 7→ reit (see Figure
4.1 for information about the transformed path of integration):

ℜz

ℑz

r
b

cR
t

r2 = (R+ c)2 + b2

R2 = c2 + b2

R+c
r = cos t
⇓

r = 2Rcos t

Figure 4.1: Change of variables

∫
B(1−R,R)

|1 + z|q(1− |z|2)α dA(z) =
∫
B(R,R)

|2− z|q(1− |z − 1|2)α dA(z)

= 2
∫ π

2

0

∫ 2Rcos t

0

(
4− 4r cos t + r2

) q
2 (2r cos t − r2)αr dr

dt
π

= 2
∫ π

2

0

∫ R

0

(
4− 8r cos2 t + 4r2 cos2 t

) q
2 (4r cos2 t − 4r2 cos2 t)α4cos2 t r dr

dt
π

= 2q+3+2α
∫ π

2

0

∫ R

0

(
1− 2r cos2 t + r2 cos2 t

) q
2 (cos t)2α+2r1+α(1− r)α dr dt

π

= 2q+3+2α
∫ π

2

0

∫ R

0

(
1− cos2 t + (1− r)2 cos2 t

) q
2 (cos t)2α+2r1+α(1− r)α dr dt

π

= 2q+3+2α
∫ π

2

0

∫ 1

1−R

(
1− cos2 t + r2 cos2 t

) q
2 (cos t)2α+2(1− r)1+αrα dr

dt
π

= 2q+2+2α
∫ 1

0

∫ 1

0
χ]0,1−(1−R)2[(r)(1− rt)

q
2 tα+1r1+α

(
1−
√

1− r
r

)1+α

(
√

1− r)α−1 dr dt

2π
√

1− t
√
t

=
2q+1+2α

π

∫ 1

0

∫ 1

0
(1− rt)

q
2 tα+ 1

2 r1+α

χ]0,1−(1−R)2[(r)
(

1−
√

1− r
r

)1+α

(
√

1− r)α−1

 dr dt√
1− t

.

By Lemma 4.0.1, it holds that∫
B(1−R,R)

|1 + z|q(1− |z|2)α dA(z)

q→∞∼ 2q+1+2α

π

∫ 1

0
r−

1
2χ]0,1−(1−R)2[(r)

(
1−
√

1− r
r

)1+α

(
√

1− r)α−1 dr
Γ (α + 3

2 )(
q
2

)α+ 3
2
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=
2q+ 5

2 +3α

π

Γ (α + 3
2 )

qα+ 3
2

∫ 1−(1−R)2

0

(
1−
√

1− r
)1+α (

√
1− r)α−1

rα+ 3
2

dr

=
2q+ 9

2 +3α

π

Γ (α + 3
2 )

qα+ 3
2

∫ 1
2(1−R)

1
2

dr
√

2r − 1(1 + 2r)α+ 3
2

=
2q+ 5

2 +2α

π

Γ (α + 3
2 )

qα+ 3
2

∫ 1
2(1−R)

1
2

dr√
r − 1

2 ( 1
2 + r)α+ 3

2

=
2q+ 5

2 +2α

π

Γ (α + 3
2 )

qα+ 3
2

∫ 1

2−2R
2−R

rα dr
√

1− r
.

Theorem 4.0.3. Let α > −1 and 0 < R ≤ 1. Then

∫
B(1−R,R)

|1− z|−c(1− |z|2)α dA(z) c→2+α∼ 2α

2 +α − c
1
π
β
(α

2
+

1
2
,
1
2

) =

(
Γ (α+1)
Γ ( α2 +1)2

)
2 +α − c

.
Proof. First, for every 0 < λ < 1 and c < 2 +α,

∫ 1
λ
r1+α−c(1− r)α dr∫ 1

0 r
1+α−c(1− r)α dr

≤

∫ 1
λ

max{1,λ1+α−c}(1− r)α dr∫ 1
0 r

1+α−c(1− r)α dr

≤
max{1, 1

λ }(1−λ)α+1

(α + 1)β(2 +α − c,α + 1)
c→2+α→ 0.

(4.0.5)

Take 0 < ρ < 1 and choose 0 < δ < 1 such that (1 − r)α ∈ B
R

(1,ρ) whenever 0 < r < δ.
Similarly to the previous section, it holds that

∫
B(1−R,R)

|1− z|−c(1− |z|2)α dA(z) =
∫
B(R,R)

|z|−c(1− |z − 1|2)α dA(z)

= 2
∫ π

2

0

∫ 2Rcos t

0
r−c(2r cos t − r2)αrdr

dt
π

= 2
∫ π

2

0

∫ R

0
(2cos t)−cr−c(4r cos2 t − 4r2 cos2 t)α4cos2 t r dr

dt
π

=
23+2α−c

π

∫ π
2

0
(cos t)2α+2−c dt

(∫ R

0
r1+α−c(1− r)α dr

)
=

23+2α−c

π

(∫ 1

0
tα+1− c2

dt

2
√

1− t
√
t

)(∫ R

0
r1+α−c(1− r)α dr

)
=

22+2α−c

π
β
(
α +

3
2
− c

2
,
1
2

)(∫ R

0
r1+α−c(1− r)α dr

)
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c→2+α∼
(4.0.5)

2α

π
β
(α

2
+

1
2
,
1
2

)(∫ δ

0
r1+α−c(1− r)α dr

)
∈ B

R
(1,ρ)

2α

π
β
(α

2
+

1
2
,
1
2

)∫ δ

0
r1+α−c dr

= B
R

(1,ρ)
2α

π
β
(α

2
+

1
2
,
1
2

) δ2+α−c

2 +α − c
.

The conclusion is that

lim
c→2+α

∗

∫
B(1−R,R)|1− z|

−c(1− |z|2)α dA(z)

2α
π β(α2 + 1

2 ,
1
2 ) 1

2+α−c
= lim
c→2+α

∗

∫
B(1−R,R)

(1−|z|2)α

|1−z|c dA(z)

2α
π β(α2 + 1

2 ,
1
2 ) δ

2+α−c
2+α−c

∈ B
R

(1,ρ),

where lim∗ can be either liminf or limsup. Let ρ→ 0 to obtain the statement.
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