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Abstract

The importance of software correctness has been accentuated as a growing number
of safety-critical systems have been developed relying on software operating these
systems. One of the more prominent methods targeting the construction of a correct
program is formal verification. Formal verification identifies a correct program as a
program that satisfies its specification and is free of defects. While in theory formal ver-
ification guarantees a correct implementation with respect to the specification, applying
formal verification techniques in practice has shown to be difficult and expensive. In
response to these challenges, various support methods and tools have been suggested
for all phases from program specification to proving the derived verification conditions.
This thesis concerns practical verification methods applied to diagrammatic modeling
languages.

While diagrammatic languages are widely used in communicating system design
(e.g., UML) and behavior (e.g., state charts), most formal verification platforms require
the specification to be written in a textual specification language or in the mathematical
language of an underlying logical framework. One exception is invariant-based pro-
gramming, in which programs together with their specifications are drawn as invariant
diagrams, a type of state transition diagram annotated with intermediate assertions
(preconditions, postconditions, invariants). Even though the allowed program states—
called situations—are described diagrammatically, the intermediate assertions defining
a situation’s meaning in the domain of the program are still written in conventional
textual form. To explore the use of diagrams in expressing the intermediate asser-
tions of invariant diagrams, we designed a pictorial language for expressing array
properties. We further developed this notation into a diagrammatic domain-specific
language (DSL) and implemented it as an extension to the Why3 platform. The DSL
supports expression of array properties. The language is based on Reynolds’s interval
and partition diagrams and includes a construct for mapping array intervals to logic
predicates.

Automated verification of a program is attained by generating the verification
conditions and proving that they are true. In practice, full proof automation is not
possible except for trivial programs and verifying even simple properties can require
significant effort both in specification and proof stages. An animation tool which
supports run-time evaluation of the program statements and intermediate assertions
given any user-defined input can support this process. In particular, an execution trace
leading up to a failed assertion constitutes a refutation of a verification condition that
requires immediate attention. As an extension to Socos, a verificion tool for invariant
diagrams built on top of the PVS proof system, we have developed an execution model
where program statements and assertions can be evaluated in a given program state. A
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program is represented by an abstract datatype encoding the program state, together
with a small-step state transition function encoding the evaluation of a single statement.
This allows the program’s runtime behavior to be formally inspected during verification.
We also implement animation and interactive debugging support for Socos.

The thesis also explores visualization of system development in the context of
model decomposition in Event-B. Decomposing a software system becomes increas-
ingly critical as the system grows larger, since the workload on the theorem provers
must be distributed effectively. Decomposition techniques have been suggested in
several verification platforms to split the models into smaller units, each having fewer
verification conditions and therefore imposing a lighter load on automatic theorem
provers. In this work, we have investigated a refinement-based decomposition tech-
nique that makes the development process more resilient to change in specification
and allows parallel development of sub-models by a team. As part of the research, we
evaluated the technique on a small case study, a simplified version of a landing gear
system verification presented by Boniol and Wiels, within the Event-B specification
language.
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Sammanfattning

Vikten av programvaras korrekthet har accentuerats då ett växande antal säkerhetskri-
tiska system, vilka är beroende av programvaran som styr dessa, har utvecklas. En av
de mer framträdande metoderna som riktar in sig på utveckling av korrekt program-
vara är formell verifiering. Inom formell verifiering avses med ett korrekt program
ett program som uppfyller sina specifikationer och som är fritt från defekter. Medan
formell verifiering teoretiskt sett kan garantera ett korrekt program med avseende på
specifikationerna, har tillämpligheten av formella verifieringsmetod visat sig i praktiken
vara svår och dyr. Till svar på dessa utmaningar har ett stort antal olika stödmetoder
och automatiseringsverktyg föreslagits för samtliga faser från specifikationen till be-
visningen av de härledda korrekthetsvillkoren. Denna avhandling behandlar praktiska
verifieringsmetoder applicerade på diagrambaserade modelleringsspråk.

Medan diagrambaserade språk ofta används för kommunikation av programvarude-
sign (t.ex. UML) samt beteende (t.ex. tillståndsdiagram), kräver de flesta verifier-
ingsplattformar att specifikationen kodas medelst ett textuellt specifikationsspåk eller
i språket hos det underliggande logiska ramverket. Ett undantag är invariantbaserad
programmering, inom vilken ett program tillsammans med dess specifikation ritas
upp som sk. invariantdiagram, en typ av tillståndstransitionsdiagram annoterade med
mellanliggande logiska villkor (förvillkor, eftervillkor, invarianter). Även om de tillåtna
programtillstånden—sk. situationer—beskrivs diagrammatiskt är de logiska predikaten
som beskriver en situations betydelse i programmets domän fortfarande skriven på
konventionell textuell form. För att vidare undersöka användningen av diagram vid
beskrivningen av mellanliggande villkor inom invariantbaserad programming, har vi
konstruerat ett bildbaserat språk för villkor över arrayer. Vi har därefter vidareutvecklat
detta språk till ett diagrambaserat domän-specifikt språk (domain-specific language,
DSL) och implementerat stöd för det i verifieringsplattformen Why3. Språket låter
användaren uttrycka egenskaper hos arrayer, och är baserat på Reynolds intevall- och
partitionsdiagram samt inbegriper en konstruktion för mappning av array-intervall till
logiska predikat.

Automatisk verifiering av ett program uppnås genom generering av korrekthets-
villkor och åtföljande bevisning av dessa. I praktiken kan full automatisering av bevis
inte uppnås utom för trivial program, och även bevisning av enkla egenskaper kan
kräva betydande ansträngningar både vid specifikations- och bevisfaserna. Ett animer-
ingsverktyg som stöder exekvering av såväl programmets satser som mellanliggande
villkor för godtycklig användarinput kan vara till hjälp i denna process. Särskilt ett
exekveringspår som leder upp till ett falskt mellanliggande villkor utgör ett direkt veder-
läggande (refutation) av ett bevisvillkor, vilket kräver omedelbar uppmärksamhet från
programmeraren. Som ett tillägg till Socos, ett verifieringsverktyg för invariantdiagram
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baserat på bevissystemet PVS, har vi utvecklat en exekveringsmodell där programmets
satser och villkor kan evalueras i ett givet programtillstånd. Ett program represen-
teras av en abstrakt datatyp för programmets tillstånd tillsammans med en small-step
transitionsfunktion för evalueringen av en enskild programsats. Detta möjliggör att
ett programs exekvering formellt kan analyseras under verifieringen. Vi har också
implementerat animation och interaktiv felsökning i Socos.

Avhandlingen undersöker också visualisering av systemutveckling i samband med
modelluppdelning inom Event-B. Uppdelning av en systemmodell blir allt mer kritisk
då ett systemet växer sig större, emedan belastningen på underliggande teorembe-
visare måste fördelas effektivt. Uppdelningstekniker har föreslagits inom många
olika verifieringsplattformar för att dela in modellerna i mindre enheter, så att varje
enhet har färre verifieringsvillkor och därmed innebär en mindre belastning på de
automatiska teorembevisarna. I detta arbete har vi undersökt en refinement-baserad
uppdelningsteknik som gör utvecklingsprocessen mer kapabel att hantera förändringar
hos specifikationen och som tillåter parallell utveckling av delmodellerna inom ett
team. Som en del av forskningen har vi utvärderat tekniken på en liten fallstudie: en
förenklad modell av automationen hos ett landningsställ av Boniol and Wiels, uttryckt
i Event-B-specifikationspråket.
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Chapter 1

Introduction

While the idea of formally reasoning about computer programs originated in the
fifties and software verification and the challenges it bears have been studied since
the seventies [62], yet as a practice it has not reached widespread support in industry
[110]. Whether a program satisfies its specification and is bug-free is undecidable in
the general [103]. Hence, software verification cannot be fully automated. However,
development of domain-specific techniques in this area has greatly contributed to its
advancement, e.g., hardware verification [63, 45] and cryptographic protocols [6].

Formal methods aim at constructing a correct program and may be compared with
software testing approaches with respect to the conditions they establish to ensure the
correctness. However, the level of assurance each can provide about the correctness
level of a program after applying the technique draws the distinction. The pledge of
formal methods is to enable the construction of bug-free software [109]. Software
testing, however, cannot guarantee the absence of bugs, but only promise to unravel
a fraction of those through a systematic exercise of a program execution [21]. In the
following, we discuss formal methods and its branches in brief.

Software verification means formally proving the correctness of an algorithm or a
system with respect to its specification [49, 105, 53, 42]. For that, a program and its
specification are described as a precise mathematical model followed by a proof in some
proof system ensuring the correctness by discharging correctness conditions between
the program and its formal specification. The specification is typically expressed as
either a finite state machine such as timed automata [5], or as pre- and postcondition
annotations added to the program code following the design-by-contract principle [72].
These two distinct approaches to specification define the major categories of model
checking and deductive software verification, respectively.

Model checking [23] relies on systematic exhaustive exploration of the state space.
Hence, the program is expressed as a finite state model. One representation of such
state model is a state transition system. To verify the correctness of a system with
model checking, the correctness properties are stated in temporal logic languages—
e.g., LTL [90], CTL [22]. A model is verified if the properties hold in all execution
paths of that model. If a property does not hold in an execution path, the path is
returned as a counterexample. Model checking approaches have been developed to
support verification of a limited set of systems and henceforth achieve a high degree
of automation. They have been applied successfully to, e.g., hardware designs and
embedded control software. As model checking deals with finite-state models, data
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structures may require abstraction or bounding to a restricted finite scope.
Deductive software verification establishes the correctness of a system by deriving

mathematical verification conditions from a program and its specification, which if
true ensure the conformance of the program to the specification. In deductive ver-
ification, we can model the semantics of the target programing language without
abstracting unbounded data structures—integers, lists, trees—or unbounded program-
ming constructs—loops, recursion. This type of verification can be further categorized
into the two groups of encoding and embedding [19].

Encoding verification is based on mathematical proof assistants in which both
models and programs are encoded as theories. Isabelle/HOL [80] and HOL4 [100]
theorem provers are supporting the inclusion of program semantics in addition to the
programming constructs. Encoding verification requires a deep embedding, i.e., the
program is represented by a term in the verification platform’s logic and hence the
program semantics are fully formalized within that logic.

Embedding verification builds up on the logical rules derived from the programming
constructs. Embedding verification typically use a shallow embedding, meaning that
the program is translated into verification conditions in the target logic by a process
outside that logic. The specification is typically expressed as state assertions within
a programming language. Shallow embeddings are generally more tractable and the
typical choice for practical verification tools. However, a deep embedding can be
considered more “pure”. Examples of verification tools in this category are JML [67]
in Java and Dafny [68] in C#.

This thesis focuses on methods derived from Hoare logic [52], which was later
on translated into first-order logic in the form of the weakest precondition suggested
by Dijkstra [35, 34]. In particular, it addresses diagrammatic techniques applied to
Dijkstra-style correct-by-construction program development. Correct by construction
means that the specification and the program are developed hand in hand, with the latter
being verified against the former continuously throughout the process (in contrast to
being verified after being written). Diagrams are widely used in software engineering,
for instance to describe software design (e.g., UML [18] diagrams), or to describe its
dynamic behavior (e.g., state charts [46]). However, diagrams have seen less use in
formal verification, where the emphasis traditionally has been on specifications written
in mathematical notation with diagrams having a documentative role rather than that of
the primary object of reasoning. The diagrammatic notations addressed in this thesis
are invariant-based programming [8, 9], a formal method where a program is structured
around its invariants rather than around its statements, and partition diagrams [92], a
diagrammatic notation for specifying properties over integer intervals. In both cases,
the diagrams have precise semantics, meaning that properties can be proved about
them, and they can processed by tools to extract verification conditions. Finally, the
thesis also explores visualization of systems development in Event-B [1].

As the complexity and scale of programs increase, the cost of generating verifi-
cation conditions and discharging them grows super-linearly [20]. Even though this
complexity is inherent, automation can serve to make deductive verification practically
feasible. Automation can be applied both in the generation of verification conditions
from the formal specification, and in proving their correctness. The introduction
of domain-specific languages [44] into verification simplifies expression of domain
properties and in combination with domain-specific theories can make verification
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more efficient [59]. A dynamic evaluation environment within a verification platform
supports the interactive proving process [65]. Decomposition techniques decrease
the verification complexity of each decomposed unit while proving the correctness
of the final composition facilitates the automated verifications [3]. This thesis aims
at improving verification support for the diagrammatic techniques mentioned in the
previous paragraph based on these premises.

1.1 The Research Problems and Contributions
Next, we concretize the software verification research problems that are of relevance
to this thesis. We outline the research questions we have focused on and describe the
methods with which we have addressed them.

Visualization of system decomposition in Event-B. It is generally accepted that
software development benefits from iterative approaches where each iteration is quite
short—on the magnitude of days or weeks—in order to support a feedback-driven
self-correcting workflow that tolerates changes to the specification during the course
of the project [104]. Here a challenge faced by practitioners of formal methods is
how to avoid imposing a waterfall-like process due to the strict sequentiality of the
specification, implementation and verification phases. One approach addressing this
challenge is decomposition, i.e., the breaking down of a formal model into sub-models,
allowing for multiple specification, implementation and verification sequences to occur
in parallel, the results to be eventually recomposed into a complete verified software.
The research question we pose is how to identify separable aspects of the model that
can serve as the basis for such a decomposition, allow parallel development, while
also ensuring that the final composition is seamless. To address the question, we
have suggested a decomposition technique that allows agile and iterative development
of multiple abstractions of an Event-B system. The technique centers around first
identifying abstractions in the software that can be refined in parallel, modeling each
abstraction as a state machine in the Rodin [2] platform, refining each abstraction
into an executable machine through a chain of refinements, and finally merging the
final refinements of each abstraction into a complete system. We demonstrate this
technique in a case study in Paper I. The literature review in Paper II on diagrammatic
approaches to verification positions this technique in the broader context of visual
tool-based formal development methods.

Combining static and runtime verification. From a software engineering per-
spective, developing formally correct programs is more challenging than conventional
test-driven development. It demands significant rigor during the development phases,
and involves the use of specialized tools such as automatic theorem provers. Firstly,
verification requires formally specifying the software using a mathematical modeling
language; secondly, specification and implementation are combined into verification
conditions; thirdly, discharging the verification conditions requires both interactive
and fully automated theorem provers to discover the proofs and maintain them. As in
test-based development, these phases do not complete in sequence but rather previous
phases are iteratively re-visited. For instance, an inadvertent underspecification may
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not become evident until we try to build the proof of a verification condition derived
from it and note a missing critical assumption that requires amending the specification
and re-checking all proofs derived from it. Hence, practicable verification tools need to
accommodate non-linear workflows. Experience reports from the application of formal
methods in industry case studies, such as [4], underscore the importance of integrating
existing semi-formal diagrammatic methods (UML) into the verification workflow,
as well as debuggable specifications, both when building the specification and when
ensuring its consistency. The question we are addressing is how a combination of static
and runtime verification can help in identifying errors early in the verification phase,
thereby saving time wasted on attempting to prove invalid verification conditions. Our
extension to the verification tool Socos [38] described in Paper III, allows the developer
to exercise the runtime behavior of a program while verifying it. Programs are executed
within the theorem prover framework, meaning that a failed test case is a logically
sound refutation of the corresponding verification condition. Such refutations safeguard
the developer from futile attempts at proving a false verification condition.

Diagrams as formal specification languages. While diagrams are extensively used
by software developers and have proven to be an effective means of communicating
system properties and intent, they are typically considered informal. Even standardized
diagrammatic languages, such as UML, tend to lack the expressiveness, precise seman-
tics and good tool support that makes them useful throughout the software development
process. Lack of expressiveness and semantic precision limits their usefulness to
planning, documentation and presentation. Inadequate tool support—e.g., offering only
syntactic analysis—and insufficient semantics to express precise formal specifications
prevents using the diagram as a primary code artifact as the result derived from it must
be semantically enriched using some other (usually textual) language. Due to these
limiting factors, the diagram essentially becomes a throw-away as it goes out of sync
with the program code. The stance taken in this work is instead to consider diagrams
as primary software artifacts, and the question asked is how to design diagrammatic
languages that are semantically precise enough for formal specification and verification,
while at the same time retaining the clarity and legibility that a diagram provides. We
explore this question by combining two formal diagrammatic languages, invariant
diagrams and partition diagrams, into a single diagrammatic language suitable for
formal specification and verification of programs over arrays. Invariant diagrams is
the language used in the invariant-based programming approach, where invariants are
defined before the program statements, while partition diagrams is an in-line notation
allowing many common array properties to be stated pictorially. The combined dia-
grammatic language and its semantics is introduced in Paper IV, and we also evaluate
the language by a number of case studies.

Diagrams as domain-specific languages (DSLs). Formal verification requires build-
ing a model of the intended behavior of a system under verification. A successful
verification guarantees only that the runtime behavior of the program is consistent with
the model. Therefore, the model must on one hand be abstract enough to be admissible
as an axiomatic description of the system, while on the other hand must contain enough
detail to make possible a formal machine-checkable proof between the model and
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the program. Constructing and validating the model is a major challenge of formal
methods, as general-purpose modeling languages require significant expertise from the
user. In contrast, domain-specific languages (DSLs) allow succinct, comprehensible
and precise specification, but within a narrowly-scoped domain. The questions we are
interested in here are whether the integration of a diagrammatic DSL into an existing
(text-based) software verification platform is feasible, and whether such a DSL can
facilitate writing specifications in its domain. As part of our work to address these
questions, we have implemented support for the language introduced in Paper IV in
the Why3 verification platform [16]. The implementation extends the Why3 language
lexically by modifying its parser, and semantically by a number of Why3 theories
embodying the DSL. Paper V describes the theoretical and technical aspects of the
work, and gives a number of verified examples illustrating the use of the DSL.

1.2 Overview of the Thesis
The remainder of the thesis is structured as follows. In Chapter 2, we overview the
major verification concepts relevant to the thesis, including deductive verification
principles, automatic theorem proving, as well as some related techniques. Chapter
3 provides an introduction to the verification platform Socos and invariant-based
programming. Further, we present a detailed view of Socos architecture, verification
condition generation, the underlying theorem prover PVS [82] and the PVS ground
evaluator [27] utilized in building the evaluation mechanism. We demonstrate the
Rodin verification platform and model decomposition techniques in Chapter 4. Chapter
5 describes the Why3 platform, including its specification language, theory extension
and proof transformations. Chapter 6 summarizes each of the papers included in this
thesis. Chapter 7 concludes the thesis with a discussion and outlines current limitations
to be addressed in future work.
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Chapter 2

Verification Approaches

In this chapter, we overview verification approaches relevant to the thesis. The emphasis
is on deductive verification and automatic theorem proving, with a brief coverage of
other significant techniques.

2.1 Deductive Software Verification

Turing [105] was aware of the need for proofs of program correctness and provided
early stage solutions already in the forties. He raised the question in the paper that

“How can one check a routine in the sense of making sure that it is
right? In order that the man who checks may not have too difficult a task
the programmer should make a number of definite assertions which can
be checked individually, and from which the correctness of the whole
programme easily follows.”

Floyd [43] initiated an important step towards deductive verification by suggesting
the inclusion of assertions in programs. The program is abstracted into a control flow
graph with inductive assertions. To prove the correctness, each path through the flow
graph should be proven to maintain the inductive assertions over the program variables.

Following this, Hoare [52] presented a triple rule for partial correctness assuming
the precondition P, program S and the postcondition Q:

` {P} S {Q}

The Hoare triple is valid if for any given state satisfying the precondition P, executing
the program S—assuming that it terminates—results in a state that satisfies Q. Consider
next the following language of simple sequential programs:

S ::= SKIP | x := E |S1;S2 |IFBTHENS1ELSES2 |WHILEBDOS

The Hoare inference rules, defined below, allow deriving the verification conditions for
any statement expressed in this language:
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{P} SKIP {P} (2.1)

{Q[E/x]} x := E {Q} (2.2)

{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

(2.3)

{P∧B} S1 {Q} {P∧¬B} S2 {Q}
{P} IFBTHENS1ELSES2 {Q}

(2.4)

{P∧B} S {P}
{P} WHILEBDOS {P∧¬B} (2.5)

{P} S {Q′} Q′→ Q
{P} S {Q} (2.6)

P→ P′ {P′} S {Q}
{P} S {Q} (2.7)

In the inference rule 2.2, Q[E/x] stands for the syntactic substitution of all free oc-
currences of the variable x with the expression E throughout the formula Q. Rule 2.3
allows dividing a sequential composition proof into separate lemmas for each statement
through the introduction of a mid-condition Q, while rule 2.4 captures the two mutually
exclusive branches of the IF-ELSE statement. Rule 2.5 states that proving the correct-
ness of a loop with condition B and repeating statement S reduces to proving that the
statement S maintains the loop invariant P while B is true. After termination of the loop,
condition B is false while invariant P remains true. Rule 2.6 states that a postcondition
can be weakened, while rule 2.7 states that a precondition can be strengthened. The
rules define a verification method for programs: if a complete derivation tree can be
constructed for a Hoare triple, the triple is valid.

When constructing a derivation tree to prove the triple, there may be several choices
in the forward reasoning which is not desirable in automated proving. To address
this, Dijkstra [34, 35] proposed a backward search by computing a precondition for
a program S and desired postcondition Q. In the weakest precondition calculus, a
program can be semantically represented by a predicate transformer. A predicate
transformer is a function from predicates to predicates, or equivalently, from subsets of
the state-space to subsets of the state-space. The weakest liberal precondition function
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wlp(S,Q) is a predicate transformer that returns the weakest predicate from which
a statement S when executed either terminates in a state satisfying Q or does not
terminate. To establish the validity of a triple ` {P} S {Q} using the weakest liberal
precondition the following implication should be proven:

P→ wlp(S,Q)

The first four Hoare rules presented earlier corresponds to the following rules of weakest
liberal precondition defined recursively over the language structure:

wlp(SKIP,Q) = Q (2.8)

wlp(x := E,Q) = Q[E/x] (2.9)

wlp(S1;S2,Q) = wlp(S1,wlp(S2,Q)) (2.10)

wlp(IFBTHENS1ELSES2,Q) = (B→ wlp(S1,Q))

∧ (¬B→ wlp(S2,Q)) (2.11)

Since the verification of the WHILE statement requires the discovery of a loop
invariant—typically by the programmer—we first modify the language by adding an
invariant annotation to the WHILE statement:

S ::= . . . |WHILEBINV IDOS

The weakest liberal precondition for the WHILE statement can then be computed as
follows:

wlp(WHILEBINV I DOS, Q) = I
∧ ∀y.(B∧ I→ wlp(S, I))[y/x]
∧ ∀y.(¬B∧ I→ Q)[y/x]

(2.12)

Rule 2.12 captures that the iterated statement S of the loop must preserve the invariant
I while the postcondition Q must be established upon termination. Here x stands for
the variable(s) modified by S and y is a fresh logical variable that does not occur in S, I
or B.

Hoare triples and the wlp transformer capture partial correctness: the program
when executed in a state satisfying P either terminates satisfying Q or loops forever.
Total correctness, a stronger condition, means that the program additionally always
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terminates satisfying Q. The weakest precondition transformer wp can be defined as
wlp restricted to the preconditions from which the program terminates:

wp(S,Q) = wl p(S,Q)∧ terminates(S)

The rules for the wp transformer differ from the rules of the wlp transformer only for
the WHILE statement. Proving termination of this statement requires establishing an
upper bound for the number of iterations by introducing a well-founded relation < on
the state space. A variant is a function from the program state, selected so that its value
decreases by each iteration with respect to <. By proving that < holds between the
variant at the start and the variant at the end of the loop body, the number of iterations
must be finite, since a well-founded relation contains no infinite descending sequences.
After extending the WHILE statement with a variant annotation

S ::= . . . |WHILEBINV IVARV DOS

the weakest precondition for the WHILE statement can then be computed as follows:

wp(WHILEBINV I VARV DOS, Q) = I
∧ ∀y,z.(B∧ I∧ z =V → wp(S, I∧V < z))[y/x]
∧ ∀y.(¬B∧ I→ Q)[y/x]

(2.13)

The additional proof obligation in the second conjunct ensures that the variant is
decreased by S with respect to the well-founded relation < ensures termination and
consequently the total correctness of the WHILE statement (here y and z are fresh
logical variables).

Applying software verification in practice requires automating both the generation
and discharging of proof obligations. The latter task is typically delegated to specialized
automatic theorem provers.

2.2 Theorem Proving
Formal proofs as opposed to proofs written in a natural language require rigid symbolic
logical reasoning. A traditional proof is written in natural language, validated by peer
reviews, and is meant to convey a message by providing an intuition of which steps the
proof consists of. In contrast, a purely formal proof is written in a symbolic language
and the proof steps applied follow deductive proof reasoning to ground each sentence
into an axiom or a previously proven sentence [47]. Most conventional proof methods
can be reduced to a small set of axioms and rules.

Proving the validity of verification conditions in deductive software verification
can be automated by assistance of theorem provers. Most theorem provers incorporate
algorithmic search mechanisms to apply the proof rules and deduce conclusions.

The early work in computer-assisted proving centered around fully automated
approaches to enable machines to prove assertions automatically and without human
interaction [29, 30, 108, 77]. However, the limitations of fully automated provers in
proving non-trivial theorems initiated the movement towards interactive provers which
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support human-guided proofs. To name but a few of the major interactive provers, we
can refer to Isabelle [80], PVS [82], ACL2 [64], HOL4 [100] and Coq [15].

One approach to assisting the automated provers is by constructing proofs using
tactics [73]. A tactic or a proof strategy is a set of pre-defined instructions that are
applied on a goal to construct a proof tree. In general, no proof strategy may be
guaranteed to prove or disprove an arbitrary formula in a given formal system (as the
underlying logic, usually some type of first- or higher-order logic, is not decidable).
However, some classes of formulas are decidable and user-defined strategies can reduce
the search effort that is otherwise required by the automated provers.

Theorem provers construct a proof tree in order to prove a goal with the goal being
the root node of the tree. Each node in the tree constitute a proof goal that is a sequent
consisting of a sequence of formulas called antecedents and a sequence of formulas
named consequents. Each proof command either evaluates the current sequent to
true and terminates the branch, or it introduces new child sequents to the branch and
continues by proving each of these. Inference rules are applied backwards; that is,
applying an inference rule R where

Γ1 ` ∆1 ...Γn ` ∆n

Γ ` ∆
R

on a proof node Γ ` ∆ creates n new leaves each containing a sequent Γi ` ∆i. An
example of a basic inference rule is the cut rule, which introduces a case-split into a
proof where A is introduced as an antecedent along one branch and as a consequent
along the other:

Γ,A ` ∆ Γ ` A,∆
Γ ` ∆

cut

Another fundamental set of inference rules captures the natural deduction rules on
logical connectives and quantifiers, such as introduction and elimination. These rules
constitute the base mechanism for applying logical inferences when proving a sequent.
In addition to codifying the basic inference rules and ensuring that each proof step
is a valid inference, an automatic theorem prover also automates, among others, the
following tasks:

resolution to introduce a new clause implied by two clauses containing complementary
literals.

unification to match two terms by providing all substitution of variables under which
the two terms are equal.

substitution to automatically find instantiations for quantified variables.

rewriting by using a result proved in another sequent as a lemma.

induction to automatically apply the induction lemma to a quantified proposition,
branching on hypothesis and base cases.

Finally, decision procedures for decidable fragments of first-order logic, are incor-
porated to increase the automation further. These decision procedures are typically
implemented by specialized, highly optimized solvers called SMT solvers.
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2.2.1 SMT Solvers
The Boolean satisfiability problem (SAT) is defined as finding the values for the
variables in a propositional formula for which the formula evaluates to true. If there
is at least one such assignment of values for the variables to evaluate all clauses of
the formula to true, the formula is stated as satisfiable. SAT problem is known to
be NP-complete [25], however practically efficient algorithms have been developed
known as SAT solvers.

SMT solvers extend SAT solvers with additional theories. The additional theories
extend the decision procedures for the formula to include arrays, real and integer
arithmetic, and uninterpreted functions. Some of the core algorithms underlying
SAT solvers are Davis-Putnam-Logemann-Loveland (DPLL) [29] and Nelson-Oppen
algorithm for combining decision procedures [78]. Examples of widely used SMT
solvers are Z3 [31], CVC4 [12] and Yices [36]

By verifying that the negation of a proposition is unsatisfiable, a theorem prover
can incorporate SMT solvers as automatic endgame provers. For an SMT solver to
reason about such propositions, a sound translation of the theorem prover logic to the
logic of the SMT solver is required. To facilitate such translation, the SMT solving
community has introduced a standard interchange language known as SMT-LIB [13].

2.3 Other Techniques
Except the verification techniques described in previous sections, other approaches
have been developed in order to analyze the correctness of programs. Some of the
techniques are presented in this section.

2.3.1 Extended Reasoning on Hoare Rules
The main challenge of the Hoare approach is capturing the semantics of modern
programming languages, e.g., Java. This is due to the complex programming languages
constructs such as building a new object, writing to a field of an object, and shared
mutable data structures. For proving the correctness using Hoare rules, one approach
is to define meta-level transformations describing the behavior of an object rather
than state transformations [96]. Other techniques such as separation logic have been
developed in order to address the verification of shared mutable data structures [95].

Concurrency is integral to many applications but verifying the correctness of
concurrent programs is difficult. The basic rules of Hoare do not support reasoning
about parallel programs as it is not sufficient to add assertions only to the initial and
final states to prove the correctness of the program due to interleaving of concurrent
processes [81]. Depending on the semantics of the concurrency, various approaches
have been suggested. Process calculi, e.g., CSP [54], provide an algebraic language
for describing interactions and communications between a collection of independent
agents and processes. The other category of logical expressions on concurrent programs
is to rationalize on shared variables. Rely-guarantee method is one such approach.
The rely-guarantee method models the atomic actions describing the interference of
programs which allows other threads to modify the state of a thread, provided that they
respect the rely constraints [111].
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2.3.2 Model Checking

Model checking [23] refers to a family of verification techniques that exhaustively
explore the state space of a finite-state model in order to assert properties of the model.
Example of such properties are correctness and liveness. Linear temporal logic [90]
and/or branching temporal logic [22] are used to describe the properties of a model.
Linear temporal logic defines behavior along a single execution path, while branching
temporal logic allows quantifying over all paths from a state. A well-known issue in
model checking is the state-space explosion problem. Various solutions have been
applied to reduce the states of the model in computation such as symbolic model
checking with efficient data structures such as binary decision diagrams (BDDs).
Infinite data structures require abstraction or bounding to a restricted finite scope before
they can be reasoned about. Depending on the specification to be proven and the source
of infinity, the finiteness can be introduced, for example, by defining explicit bounds
on the input parameters or the maximum number of times to unroll a loop.

2.3.3 Static Analysis

Static analysis techniques allow reasoning about the behavior of programs without
executing them [79]. An abstraction of the program code, for instance in a form of a
directed graph, is built and analyzed to check if desired properties hold. The violation
of a property in the abstract model may indicate the violation of the property in the
original program. Analyzed properties range from adherence to coding standards
(linting) to ensuring that assertions are true (extended static checking). Control flow
analysis can detect poorly structured code, e.g., dead code, and multiple exits from a
loop statement. Data flow analysis can inspect the flow of the data to ensure a sound
programming practice, e.g., that variables are read before declaration. Program slicing
is a technique to reduce the complexity by scoping down the analysis to only those
program statements that are of concern for the analysis, e.g., those which modify a
subset of variables. Frama-C [28] and F-Soft [56] are two examples of extended static
checkers for the C programming language. These tools can detect many common
violations, such as dereferencing a null pointer or indexing outside the bounds of an
array. However, extended static checkers are often incomplete and may produce both
false positives and negatives: either a violation is reported which cannot occur in the
actual program, or a violation stays undetected.

2.3.4 Symbolic Execution

Symbolic execution is a form of forward reasoning by symbolizing the variables of a
program as constants and the values of program variables as expressions [55]. The
program paths construct the assumption on the states (path conditions) by accumulating
constraints on the symbolic constants that are to be satisfied when executing that path.
This approach is challenging because of an exponential number of symbolic paths.
The symbolic execution may fork a new state at each branch of a program. Having all
the branches to explore increases both the memory requirement and execution time.
Though, this technique may be used less ambitiously in practice by trading soundness
for performance (e.g., bounding the number of iterations). Other verification techniques
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have employed symbolic execution such as model checking. Abstract interpretation
[26] statically asserts properties of a program by abstracting its concrete semantics so
that the program can be feasibly evaluated with respect to the properties.

2.3.5 Contract-Based Verification
Contract-based verification approaches the decomposition of proof obligations in a
software system through the use of provided or synthesized contracts. A contract is
software specification unit that stipulates an assumption that the component adhering
to the contract may rely on, and a guarantee that it must uphold [48]. For example,
a pre- and postcondition specification of a procedure constitutes a contract between
the caller of the procedure and the procedure implementation: the caller guarantees
the precondition while assuming the postcondition, and the procedure implementation
assumes the precondition while guaranteeing the postcondition. Generally, contracts
and contract-based reasoning can be applied to many types of software units, e.g.,
classes and modules, in order to decompose proof obligations when verifying a larger
system.
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Chapter 3

The Socos Environment

Modern practical software verification methods build on the constructive approach by
Dijkstra [35, 33], where a program is developed jointly with its specification and proof.
By constructing program and proof together, correctness concerns can be addressed in
the design, for instance in the separation of a program unit into procedures with pre-
and postcondition contracts. In contrast a posteriori verification—verifying a program
after it has been written—quickly becomes intractable as programs grow larger. In
the original constructive approach, the smallest unit of verification is the procedure: a
procedure with parameters and return values is specified with pre- and postconditions,
then implemented, and finally the code is proved to satisfy the contract. Except for
trivial programs, the last step requires annotating the code with intermediate assertions
and loop invariants, in order to divide the proof into lemmas of manageable complexity.

Invariant-based programming (IBP) is an approach for verifying programs where
the specification and invariants are written before the actual program statements [94,
106, 91, 8]. IBP makes correctness constraints the primary program building blocks by
requiring assertions and loop invariants to be written before the statements. This means
that assertions are no longer annotations added to existing code, but instead determine
the structure of the program. IBP introduces a new type of diagram called an invariant
diagram, consisting of situations partitioning the total state space of the program. A
transition graph through the situations replaces the traditional control flow constructs
of imperative programming (if- and while-statements). Situations can be likened to
the nodes of a flowchart or state chart, but in addition to a label they also introduce a
state predicate that should hold when the program flow reaches a situation, and they
have a set-theoretic nesting semantics similar to that of Venn diagrams. Only after the
situation structure has been determined, are the statements—in the form of guarded
transitions between the situations—added and verified one by one. A benefit of this
approach is that the program and its proof can be developed as a single entity, and the
lemma for each statement is typically small enough to be discharged by an automatic
theorem prover.

The theoretical foundation for IBP is quite well developed [7], but as a practical
formal method IBP has only been studied in small case studies [8] and as a teaching
tool [9]. The Socos [38] tool is an editor and prover front-end built from the ground up
to support IBP. It consists of a graphical editor for invariant diagrams, a verification
condition extractor and translator targeting the PVS specification and verification
system [82]. This allows using PVS and its associated provers to automatically or
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interactively discharge conditions. Part of this thesis centers around the integration of
dynamic (runtime) evaluation into the Socos tool. Our extension to Socos implements
the following:

Operational semantics: the extension produces a PVS theory containing a datatype
state representation, where each labeled constructor corresponds to a location in the
diagram, and a function that evaluates one step in the diagram.

Efficient execution: the extension employs the PVS ground evaluator [27], allow-
ing efficient compiled evaluation of expressions in statements.

Animation: the extension supports graphical debugging by allowing the developer
to step through the execution of a program statement by statement, visualizing the
program state in each step.

The execution mechanism has been designed from the ground up to support the
IBP workflow. Practical IBP is iterative, meaning that the programmer typically goes
through several unsuccessful verification attempts of intermediate incomplete versions
of the program, before reaching the final verified program. While correctness cannot
be achieved by testing alone, tests and proofs are complementary during this process.
A failed execution serves as a counterexample to, or in other words, a refutation of,
the correctness of the program under development. In the early stages of developing
a program, testing combined with runtime assertion evaluation effectively identifies
trivially incorrect invariants and statements, whereas invoking an automatic theorem
prover to discover the same error would be less efficient. At later stages, an unsuccessful
proof attempt may indicate underspecification or more subtle bugs that would have beed
missed by testing. This means that the primary use mode of the execution mechanism
is to support verification of programs in their early stages. The PVS ground evaluator
allowed us to have both the verification and runtime mechanisms tightly integrated
within the same verification framework. In the remainder of this chapter, we give a
brief overview of the IBP notation and verification methodology, as well as the PVS
verification system and its application in Socos.

3.1 Invariant Diagrams

Invariant diagrams consist of rounded rectangles called situations, which are connected
by transition arrows. Situations represent the subsets of the program state space
satisfying the predicates written inside the situation. Transitions represent guarded
statements: the guard is the conditions under which the transition becomes enabled,
triggering the rest of its statement to update the state of the program. Socos invariant
diagrams are structured into procedures, where the body of each procedure is comprised
of a situation and transition graph. A schematic example of a Socos diagram is given
in Figure 3.1.

The outer rectangle declares the procedure: its name, parameters and local variables.
The precondition is the situation without incoming transitions and the postconditions
are the situations without outgoing transitions. A situation may be labeled, written
in the upper left corner of the rectangle. The procedure body in this case contains
four situations: the precondition PRE, the intermediate situation LOOP, and the two
postconditions POST1 and POST2. A procedure always declares a single precondition,
but may declare one or more postconditions. There may be any number of intermediate
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variables

PRE

predPRE
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variablesLOOP

predLOOP
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predPOST1

POST2
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[grd1]

stmt1

[grd2]

stmt2

[grd3]

stmt3

[grd4]

stmt4

Figure 3.1: Invariant diagram

situations, and there are no restrictions on transitions between them.
A situation may contain a predicate stating what should be true when the program

flow enters the situation. The predicate of the precondition should be established by
the caller of the procedure. An intermediate situation may include transitions back
to itself, in which case the predicate serves as the loop invariant, i.e., the predicate
should be established before entering the situation and should be maintained by the
loop transition back to the situation. The variant in the upper right corner serves as
the termination condition of a loop situation. The variant should be chosen from a
well-ordered set and be decreased by every transition that re-enters the situation. The
predicate of a postcondition should be established by the procedure upon termination.
In the general invariant diagram, intermediate situations may be nested, meaning that
the inner situations inherit the invariants of the outer situations. In other words, the
predicate of an inner situation is the conjunction of the predicates in the situation itself
and the predicates of all enclosing situations.

3.2 Verification Conditions of Invariant Diagrams

A diagram is totally correct if it is consistent, live, and terminating. The consistency
of a transition from situation A to situation B with guard grd and statement stmt is
established by proving the implication

predA∧grd→ wp(stmt,predB)

Consistency of the invariant diagram means that this condition is true for each tran-
sition. The complete consistency condition for the diagram in Figure 3.1 is then the
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conjunction:

(predPRE∧grd1→ wp(stmt1,predLOOP))

∧ (predLOOP∧grd2→ wp(stmt2,predLOOP))

∧ (predLOOP∧grd3→ wp(stmt3,predPOST1
))

∧ (predLOOP∧grd4→ wp(stmt4,predPOST2
))

The termination of a diagram is ensured by proving that no infinite loop exists. Termi-
nation can be established by proving that each cycle of transitions through a situation
decreases a given variant function, which remains bounded from below. Socos sup-
ports variants that are functions from the program state to the natural numbers. The
termination condition for the diagram in Figure 3.1 then becomes:

predLOOP∧grd2∧ v0 = variantLOOP→ wp(stmt2,0≤ variantLOOP < v0)

In this formula, v0 records the value of the variant before entering the transition, and
the postcondition states that the updated variant remains greater than zero while being
strictly smaller than its original value v0.

Liveness means that in all situations except those where the program is intended
to terminate—i.e., the postconditions—at least one outgoing transition is enabled.
For a single situation, liveness is established by proving that the situation predicate
implies the disjunction of the outgoing transitions’ guards. The liveness condition of
the diagram in Figure 3.1 then becomes:

(predPRE→ grd1)

∧ (predLOOP→ grd2∨grd3∨grd4)

We note that the consistency condition for each transition depends only on the source
situation, the guard, the statement, and the target situation. This means that once
the situation structure is completed, transitions can be added and verified one by one.
Liveness and termination, on the other hand, generally require a complete transition
structure and are therefore preferably verified at the end. Finally, we note that transitions
in invariant diagrams may contain intermediate branching nodes (that are not situations)
from which multiple guarded transitions further extend to form a tree, where the edges
are labeled with transition-statement pairs and the leaves are situations (an example
of such a diagram is given later in this chapter). Each path through a transition tree
can be verified independently for consistency and termination, while liveness must be
established at each branching node.

3.3 Verifying Invariant Diagrams in Socos
The Socos tool was developed to support invariant-based programming by providing
a frontend editor for drawing the invariant diagram, attaching background theories
and interacting with the PVS prover and a backend to generate and discharge the
verification condition generated from the diagram. The frontend is distributed as a
plug-in to the Eclipse IDE. A user interacts with the Socos environment through the
diagram editor, which is available as an additional file editor in the Eclipse workbench
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Figure 3.2: Socos Environment with diagram editor and unproved verification condi-
tions

once the user has installed the Socos plug-in. Figure 3.2 shows a screen capture of the
diagram editor with an invariant diagram of a program (max) for finding the maximal
element in a (non-empty) array of integers being verified.

The Socos frontend is implemented in Java, while the backend is implemented in
Python and invokes the PVS [82, 86] theorem prover and Yices [36] SMT solver as an
endgame prover. The specification language of Socos is higher order logic [69] and it
shares the expression syntax with PVS.

By the click of a button, Socos generates verification conditions from an invariant
diagram and invokes the PVS theorem prover to automatically discharge them. Only the
conditions that were not proved automatically are shown to the user. Figure 3.2 shows
two verification conditions that were not proved automatically. Upon closer inspection,
we can see that these are actually false due to an error in the program; the statements
assigning new values to the program variables m and k in the selected transition appear
in the wrong order. After these statements are swapped, and verification is invoked
again, all verification conditions of the program are proved automatically.
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Figure 3.3: Architecture of the Socos environment

3.4 Software Architecture of Socos

Implementation-wise, Socos consists of an IDE integration component that communi-
cates with a backend verification condition extractor and theorem prover driver [38].
The high-level architecture is shown in Figure 3.3. The diagram editor is distributed
as an Eclipse plug-in, implemented in Java and utilizes the GEF (Graphical Editing
Framework), part of the Eclipse Modeling Framework [37], as well as other core
libraries of the Eclipse platform to realize the graphical user interface.

The diagram editor integrates with the correctness checker, which handles the
generation of verification conditions and the communication with the PVS verification
backend. The correctness checker can either be deployed locally, in which case it
communicates with the diagram editor over a Unix pipe, or remotely over HTTP. When
the verify button is clicked in the diagram editor, the correctness checker syntactically
and semantically analyzes the diagram, and generates a PVS theory whose validity
ensures the correctness of the diagram. This generated theory contains all declarations
given in the diagram (context), as well as a lemma for each verification condition
(consistency, termination and liveness). Moreover, a PVS proof script is generated
for every condition to branch its proof tree so that there is one leaf for each of the
predicates in the target situation. On each leaf, an endgame strategy based on the Yices
SMT solver is applied. After the theory generation step, Socos launches PVS to run
the proof scripts, and parse the result. If the proof fails for a leaf, the unproved sequent
is sent back to the frontend and shown to the user. The user can choose to open the
lemma in PVS and use its interactive prover to inspect or attempt to prove the lemma
using other strategies.

To support the verification of more complex programs, the user can extend Socos
with domain-specific PVS background theories. The PVS prelude [85] and Nasa
Langley libs [76], available as part of the PVS distribution, provide a base for writing
custom background theories. These theories can be imported into the diagram, and all
definitions and lemmas become available in the diagram as well as to the correctness
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checker during verification.

3.5 PVS
PVS (Prototype Verification System) [82] is an open-source1 verification system con-
sisting of a specification language based on higher order logic and an interactive
theorem prover. The semantics of PVS follow set theory where types are interpreted as
sets. Higher order logic [69] imposes typing on the language in contrast to set theory.
Typing in PVS is based on the simply typed lambda calculus and each expression has
an associated type [84].

PVS is implemented in Common Lisp and can be invoked both standalone and
as a backend to other verification frameworks. To utilize the PVS theorem prover as
a backend, PVS can be invoked via the command line. As a frontend, PVS has an
interactive Lisp process with an Emacs editor [88]. The PVS interactive prover can be
operated in the Emacs editor.

Specifications are built from theories in PVS. Each theory consists of a sequence
of declarations which may introduce types, constants, variables, axioms and formulas.
PVS theories are either predefined or user-defined. A library of predefined theories,
referred to as the prelude [85], including Boolean operators, equality, real, integer
and natural number types, is available immediately for use in user-defined theories.
User-defined theories should be imported explicitly in the context of use.

A simplified description of the theory syntax of PVS is given below (for a complete
definition, see the PVS Language Reference [87]):

theory_id [ 〈 param_id : TYPE | TYPE+ | type 〉, . . . ] : THEORY
BEGIN
〈 IMPORTING theory_id [ expression, . . . ] 〉, . . .

〈 type_id: TYPE | TYPE+ 〉, . . .

〈 var_id: VAR type 〉, . . .

〈 const_id ( 〈 param_id : type 〉, . . . ): type = expression 〉, . . .

〈 const_id ( 〈 param_id : type 〉, . . . ): RECURSIVE type =
expression MEASURE BY expression 〉, . . .

〈 formula_id: AXIOM | THEOREM | LEMMA formula 〉, . . .

END theory_id

A theory is named and can be parametrized with constants and types for instantiation
when imported into another theory via the IMPORTING declaration. Type expressions
in PVS declare a set of values that can possibly be infinite and type constructors
include function, record, predicate subtype expressions and datatypes. As subtype
predicates can be general higher-order formulas, type-correctness conditions (TCCs)
generated by PVS may require interactive proving to be discharged. A named type

1https://github.com/SRI-CSL/PVS
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can be uninterpreted—if declared with TYPE+ the type is required to be non-empty.
The function type in PVS is expressed with explicit domain and range type. Functions
in PVS are higher order and therefore the domain and range can also be any type
expression. Variable declarations associate identifiers with types within a theory, while
constant declarations introduce constants and functions visible to importing theories.
The RECURSIVE keyword allows defining a recursive constants with a MEASURE ex-
pression to ensure well-definedness (PVS generates a termination TCC based on this
expression). Formula declarations introduce formulas to be proved or invoked (as lem-
mas) in the prover. They are boolean expressions declared as either axioms (AXIOM) or
theorems (THEOREM or LEMMA). They differ in that PVS expects proofs for the latter.

Parametric abstract datatypes can be declared in PVS with the DATATYPE keyword
[83]. For example, a data type representing a binary tree containing elements of the
type T can be declared as follows:

Tree [T: TYPE+] : DATATYPE
BEGIN

Empty: Empty?
Node (val: T, left: Tree, right: Tree): Node?

END Tree

The datatype has two constructors, Empty and Node for empty and non-empty subtrees,
respectively; Empty? and Node? are the corresponding recognizer predicates. PVS
generates TCCs on the abstract datatypes to ensure that the constructors and the
recognizers of a datatype are pairwise distinct and at least one constructor is non-
recursive. PVS also provides a CASES expression for matching datatype constructors
by name.

3.6 Translating Socos Programs to PVS
Next we describe by example how a Socos diagram is translated into a PVS theory
containing verification conditions. Figure 3.4 shows an invariant diagram describing a
binary search tree operation of determining the presence of the value x in tree. The
diagram makes use of the Tree datatype introduced in the previous section, as well as
the functions bst, has and depth defined in the PVS background theories shown in
Listing 3.1. We note that the LOOP situation is nested inside PRE, making the effective
loop invariant:

bst(tree)∧bst(cur)∧has(cur,x)=has(tree,x)

The PVS theory containing the verification conditions generated from Figure 3.4 is
shown in Listing 3.2. The verification conditions are generated according to the rules
given in Section 3.2. We note that six lemmas are generated:

• trs_Pre_to_Loop for consistency of the transition from PRE to LOOP,

• trs_Loop_live for liveness of the intermediate situation LOOP,

• trs_Loop_to_Loop_1 for consistency and termination of the lower loop tran-
sition (case [val(cur)< x]) via LOOP,
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• trs_Loop_to_Loop_2 for consistency and termination of the upper loop tran-
sition (case [val(cur)> x]) via LOOP,

• trs_Loop_to_Found for consistency of the transition from LOOP to FOUND,
and

• trs_Loop_to_NotFound for consistency of the transition from LOOP to NOT-
FOUND.

BSTSearch [tree : Tree[int]; x : int]

PRE

bst(tree)

LOOP depth(cur)

cur : pvar Tree[int]

bst(cur)
has(cur,x) = has(tree,x)

FOUND

has(tree,x)

NOTFOUND

not has(tree,x)

cur := tree

[Node?(cur)]

[val(cur) = x]

[val(cur)< x];

cur := right(cur)

[val(cur)> x];

cur := left(cur)

[Empty?(cur)]

Figure 3.4: Invariant diagram determining the presence of a value in a binary search
tree

To achieve a correct diagram, all lemmas should have valid PVS proofs. In addition to
generating the verification conditions, Socos creates a default proof script invoking the
Yices [36] SMT solver, which is integrated into PVS, on each generated lemma. Yices
implements the DPLL algorithm for its SAT core and can handle complex propositional
formulas. While the degree of automation depends largely on the specification and
background theory, in practice, most lemmas are proved automatically by this proof
script without requiring the user to enter the PVS interactive proof assistant at all. For
the remaining lemmas, the user must start an interactive proof session in PVS-Emacs
and carry out the required proof steps there.

25



Listing 3.1: Background theory for binary search trees
TreeHelpers[T: TYPE+]: THEORY
BEGIN

IMPORTING Tree;
t: VAR Tree[T];
x: VAR T;

has(t,x): RECURSIVE bool =
CASES t OF

Node(y,l,r): y = x ∨ has(l,x) ∨ has(r,x),
Empty: false

ENDCASES
MEASURE t BY <<;

depth(t): RECURSIVE nat =
CASES t OF

Node(y,l,r): max(depth(l), depth(r)),
Empty: 0

ENDCASES
MEASURE t BY <<;

END TreeHelpers

BinarySearchTree: THEORY
BEGIN

IMPORTING Tree;

t: VAR Tree[int];
x: VAR int;

sup(t,x): RECURSIVE bool =
CASES t OF

Node(y,l,r): y ≤ x ∧ sup(l, x) ∧ sup(r, x),
Empty: true

ENDCASES
MEASURE t BY <<;

inf(t,x): RECURSIVE bool =
CASES t OF

Node(y,l,r): x ≤ y ∧ inf(l, x) ∧ inf(r, x),
Empty: true

ENDCASES
MEASURE t BY <<;

bst(t): RECURSIVE bool =
CASES t OF

Node(y,l,r): sup(l,y) ∧ bst(l) ∧ inf(r,y) ∧ bst(r),
Empty: true

ENDCASES
MEASURE t BY <<;

END BinarySearchTree
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Listing 3.2: PVS theory containing verification conditions for Figure 3.4
BSTSearch: THEORY
BEGIN

IMPORTING TreeHelpers;
IMPORTING BinarySearchTree;

x: int;
tree: Tree[int];
cur: VAR Tree[int];

trs_Pre_to_Loop: LEMMA
bst(tree)
⇒ LET cur=tree IN

bst(tree) ∧ bst(cur) ∧
has(cur,x) = has(tree,x)

trs_Loop_live: LEMMA
bst(tree) ∧ bst(tree) ∧ has(cur,x) = has(tree,x) ⇒

Empty?(cur) ∨
(Node?(cur) ∧ val(cur) < x) ∨
(Node?(cur) ∧ val(cur) > x) ∨
(Node?(cur) ∧ val(cur) = x)

trs_Loop_to_Loop_1: LEMMA
bst(tree) ∧ bst(tree) ∧ has(cur,x) = has(tree,x) ∧
Node?(cur) ∧ val(cur) < x
⇒ LET v0=depth(cur), cur=right(cur) IN

bst(tree) ∧
has(cur,x) = has(tree,x) ∧
0 ≤ depth(cur) ∧ depth(cur) < v0

trs_Loop_to_Loop_2: LEMMA
bst(tree) ∧ bst(tree) ∧ has(cur,x) = has(tree,x) ∧
Node?(cur) ∧ val(cur) > x
⇒ LET v0=depth(cur), cur=right(cur) IN

bst(tree) ∧
has(cur,x) = has(tree,x) ∧
0 ≤ depth(cur) ∧ depth(cur) < v0

trs_Loop_to_Found: LEMMA
bst(tree) ∧ bst(tree) ∧ has(cur,x) = has(tree,x) ∧
Node?(cur) ∧ val(cur) = x
⇒ has(tree,x)

trs_Loop_to_NotFound: LEMMA
bst(tree) ∧ bst(tree) ∧ has(cur,x) = has(tree,x) ∧
Empty?(cur)
⇒ not has(tree,x)

END BSTSearch
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3.7 PVS Ground Evaluator
Specification languages are generally not designed to be executable. However, the
PVS ground evaluator provides an execution mechanism to evaluate PVS specifications
while preserving the soundness [27]. The PVS ground evaluator provides a translator
from an executable subset of PVS into Common Lisp. A proof goal is generated
to evaluate a ground PVS expression with respect to the theory definition to ensure
soundness. PVS also provides an interactive environment to accept a PVS expression
from the user and print the result of the evaluation by read-eval-print loop.

For defining semantic attachments, one needs to specify the corresponding constant
or function in the Lisp programming language. A semantic attachment is a user-defined
executable term evaluation function that enhances the functionality of the ground
evaluator. The semantic attachment, defined for a constant or function in PVS language,
should be registered for the PVS expression that the attachment is defined for.

Here, we have an uninterpreted PVS function abs for the familiar function returning
an absolute value of a given integer. To be able to execute this function, we define a
Lisp function as the semantic attachment to this theory.
abs : THEORY

BEGIN
x: int
abs(i:int): {j:int| (i<0-> j=-i) ∧ (i>=0 -> j=i)}

END abs

The Lisp code is then defined by the macro defattach in Common Lisp as following.
(defattach abs.abs(x) (abs x))

The defattach associate the abs function imported from the abs theory—
abs.abs(x)—to the built-in abs function—(abs x)—in Lisp.

3.8 Summary
In this chapter, we have given an overview of the theoretical foundations of IBP and
described the software architecture of Socos, a verification platform built from the
ground up to support the IBP workflow.

Particular to IBP is that programs are constructed as diagrams which are proved
correct incrementally transition by transition. Good tool support is essential to enable
the user to apply IBP efficiently in practice. State-of-the-art automatic theorem provers
are important end-game components of this toolchain, as they provide the final stamp
of approval that a program is correct. However, equally important for the outcome of
the verification is the tool support for defining, validating, and modifying the invariant
structure and background theory of a program. It is during these stages that the tasks
of the automatic theorem provers are decided, and these provers’ ability to perform
well—with regards to time and memory usage—depends on both complete and efficient
input. By efficient we mean taking advantage of background theories available to the
prover, both built-in and application-specific background theories, to reduce the proof
search problem to manageable size.

Exploration and validation of the invariant structure of a program is also crucial at
the pre-proving stages to reduce the risk that the programmer is verifying a program
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which is over- or underspecified. We believe that a verification tool should formalize the
runtime semantics in the verification framework, and provide access to the formalization
at the user interface level. This allows the programmer to inspect the state and invariants
visually while constructing a diagram, while staying in the formal framework of the
theorem prover.

The work presented in papers III and IV assumes IBP as the base verification
methodology and extends upon it, and Paper III is also an implementation contribution
to the Socos environment. Both papers address the research problems outlined in this
chapter. The architecture of Socos allows extension of its frontend diagram editor, by
adding components to the Eclipse plugin. It also allows extension to the backend by
modifying its Python verification driver and prover (PVS) with semantic attachments.
The PVS ground evaluator has been utilized in Socos debugger to support validation of
invariant-based programs defined in Socos by allowing the constructed specification to
be evaluated by running them on concrete (ground) data. Both extension mechanisms
were utilized in the work described in Paper III.

29



30



Chapter 4

Event-B and Rodin Tool

Event-B [1] is a formal verification method based on the set theory [89] and the theory
of refinement [75, 97]. Event-B defines a modeling language expressing a system as a
state machine in which transitions between states are represented by a set of guarded
events. Each event should preserve the properties—invariants stated as predicates—
given for the machine. The types in this modeling language are inferred from the
properties, expressed as set membership constraints, on variables of the model. To
prove the correctness of Event-B model with respect to the specified properties—e.g.,
each event preserves the invariants of the machine—proof obligations are derived in
the form of sequents. A proof obligation is discharged by applying inference rules to
the sequent.

Managing the complexity of proof obligations is of crucial importance when verify-
ing systems such as safety-critical control systems.1 These are practically always large
systems whose verification requires effective decomposition, so that the complexity
of individual proof obligation is kept low and the components can be verified in a
modular way. Event-B is extended with refinement to make automatic verification
more feasible by reducing the complexity of models. Each refinement concretizes the
model further towards the implementation. Refinement corresponds to vertical scaling
while decomposition [3] can be seen as horizontal scaling. In decomposition, a model
is divided into sub-models which can be refined separately.

This chapter gives the background for our Event-B modeling approach presented in
papers I and II. The approach focuses on the following modeling stages:

Decomposition: The suggested approach provides a method of model decomposi-
tion based on the aspects that are present in the domain.

Simultaneous development: Each sub-model is refined further independently in
order to support parallel work within a team, as well as to reduce the complexity of the
verification conditions.

Composition: The composition preserves the correctness of the refinement with
respect to the initial abstraction.

1http://www.macs.hw.ac.uk/~air/sta/pdflec/lec-4-safety-a5.pdf
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4.1 Event-B Models
Context and machine are the basic constructs of Event-B models describing the static
and dynamic parts of a specification respectively. The static parts of the model, i.e.,
constants, carrier sets (user-defined types) and axioms, are defined in the context.
Machine is analogous to a state transition system where the state is represented by a set
of variables, and transitions by a set of guarded events modifying the variables.

Machines include invariants to ensure the consistency of the model as the state
changes. Theorems defined in a machine should be derivable from the axioms. Events
are transitions over the states of a model. Each event is composed of guards and actions.
A guard is a condition that when evaluated to true, triggers the corresponding action
which updates the state. An event e in Event-B in a general form is represented by the
term

e =̂ ANY x WHERE G(x,v) THEN A(x,v) END (4.1)

where x is the event’s parameter, v denote the machine variables, G(x,v) the guard
and A(x,v) the action [50]. A guard that is true (>) in all states of the model does
not require an evaluation, in which case the event is effective if it includes at least
one action changing the state. The actions associated with events are modeled as
generalized substitutions. Generalized substitution expresses the transformations of the
values of the state variables by relating the postcondition to its weakest precondition
(the largest set of initial states from which the transition is guaranteed to establish the
postcondition at the end of the execution). The simplest action is the deterministic
assignment

a := E(x,v) (4.2)

where a is one of the variables in v and E(x,v) is an expression over parameters x and
the machine variables v. An action can also be a non-deterministic choice from a set of
values

a :∈ S(x,v) (4.3)

where a is a state variable and S(x,v) is a set expression. In the most general form, an
action consists of a predicate that relates the pre-action and post-action values of the
assigned variables:

a :| P(x,v,a′) (4.4)

The variable a in 4.4, can after execution of the action hold any value satisfying the
predicate P(x,v,a′) relating the values v before the action to the values a′ afterwards.

Machines can contain variants for proving the convergence of events. A proof
obligation that each convergent event decreases the variant ensures that the set of events
cannot take control forever.

Contexts can be extended with other contexts. The extending context inherits
all the definitions of the context being extended. Machines may be refined by other
machines based on the action system formalism [10]. By refinement, a system can be
formalized in different abstraction levels, each abstraction extending the previous model
by applying the refinement rules; data refinement [74] and superposition refinement
[11]. In data refinement, concrete variables are introduced to replace the abstract
variables. The consistency between the models after data refinement is preserved by
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CONTEXT C1
CONSTANTS
SETS
AXIOMS
THEOREMS

END

CONTEXT C2
EXTENDS C1
...

END

MACHINE M1
SEES C1
VARIABLES
INVARIANTS
THEOREMS
VARIANT
EVENTS
evnabs =
ANY localvar

WHERE grd

THEN act

END

MACHINE M2
REFINES M1
SEES C2
VARIABLES
INVARIANTS

EVENTS
evn =
REFINES evnabs

ANY localvar

WHERE grd

THEN act

END

v
extends

sees

sees

Figure 4.1: Context and Machine in Event-B

the invariants—known as gluing invariants—defining the relation between the refined
variables and the abstract ones. In superposition refinement, either new events are
introduced to concretize the system or the previously defined events are extended with
additional guards, parameters or actions.

The connection between the contexts and machines is established by the SEES
relation, stated in the machine, to express which context is visible in that machine. The
constants and carrier sets of the context are then accessible to the machine and the
axioms and theorems are assumed in the machine in the proving stage. An example
of two contexts C1 and C2 and two machines M1 and M2 is given in Figure 4.1. The
refinement relation between the two machines is stated as M1vM2.

The proof obligations for an Event-B model include but are not limited to invariant
preservation, feasibility, guard strengthening and merging, finite set and decreasing
variant, simulation and well-definedness [1]. The invariant preservation ensures that the
invariants are still valid for the updated variables after each assignment. The feasibility
condition of an action guarantees that there exists at least one value satisfying the
before-after-predicate of the action—e.g., that the set of values attainable for the left-
hand side of a non-deterministic assignment is not empty. Guard strengthening ensures
that a concrete event can occur only when the abstract event can occur—assuming the
invariants—while guard merging establishes a correctness condition upon merging
abstract events into a concrete event by conjoining their guards. Simulation verifies
that the abstract event’s behavior corresponds to the concrete event’s behavior. Proving
the termination condition in Event-B also follows a variant declaration as a finite set
that is decreased by each convergent event—named finite set and decreasing variant
proof obligations. Well-definedness is stated as a predicate describing a condition in
which an expression or predicate can be safely evaluated. Well-definedness of axioms,
invariants and guards can be stated as theorems and the validity of them should follow
from the model.
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Figure 4.2: Rodin proof tree [60]

4.2 Rodin Tool

Rodin [2] is a Java-based platform supporting the specification and refinement of
models written in the Event-B language. The proof obligations for both the consistency
of refinement steps and the correctness of each abstraction level is generated and sent
to the auxiliary theorem provers such as Atelier-B [71] and SMT solvers, e.g., Z3
[31], CVC4 [12] and Alt-Ergo [24]. The correctness of the refinement between the
abstractions is also guaranteed by generated proof obligations.

Proving in Rodin also follows a construction of a proof tree and a list of sequent
rules to be applied to deduce the proofs to true. An example of a proof tree is shown in
Figure 4.2.

Since the effort in both constructing a model and discharging the proof obligations
can easily become overwhelming in larger models, methods have been proposed to
componentize a model in such a way that each sub-model could be developed and
refined further with respect to the whole model. This is the basis of the third paper of
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the thesis. We will discuss decomposition approaches in the next section.
UML-B [101]—an extension to Event-B specification editor in Rodin—provides

UML-like diagrams such as class diagram for representing the entities of a system
and state machines with transitions indicating the change of state in a system. The
state machine in this case can reveal shortcomings in the model while supporting the
agile principles [14]. A core principle of the agile manifesto is prioritizing response
to change over following a plan. As it is more feasible to address changes to a
subset of the system’s components [39], alignment with this principle requires an
effective decomposition method. The decomposition, in addition, provides a base for
independent simultaneous development of each sub-model in the later stage, supporting
both vertical and horizontal scaling. The final product is the composition of each of the
sub-models.

4.3 Event-B Decomposition

Decomposition is introduced to divide a model into sub-models such that each sub-
model can be further refined. Two types of decomposition have been proposed, shared-
variable decomposition [51, 3] and shared-event decomposition [99].

In shared variable decomposition, the events get distributed between several ma-
chines. Each event may reference a number of variables in guards and statements. The
variables that appear in events belonging to only one of the sub-models considered
private variables for that model. The variables which appear in events of several models
are annotated as shared variables. To not loosen the abstraction, external events are
introduced in each of the sub-models including the shared variables which are not to be
data-refined further, but to serve as invariant preservation conditions. This is shown in
Figure 4.3 for model M including variables v1,v2,v3 and events e1,e2,e3. Machine M
is decomposed into two sub-models D1 and D2. Distribution of events between the two
machines, leading to placement of events e1, e2 in machine D1 and e3 in machine D2.

Machine M is a trivial refinement of each machine, D1 and D2. Proving that M is
a refinement of D1 is attained by the fact that the events e1 and e2 remain unchanged
in the refined model. Refinement of the additional event e3 with a new variable v3 is
proven by proving that event e3 is the refinement of e3ext . Similar refinement rules are
applicable when proving that M is the refinement of D2. Event e3 is the refinement of
itself while event e1 is refining skip. Event e2ext is refined by event e2 by introducing a
new variable v2.

After refining each of the sub-model, next is to recompose the refined models.
Machine R in Figure 4.4 presents a recomposition of the refined models. Model R is
the refinement of each of the refined machines D1re f and D2re f . Since the variables and
events of both machines—no shared event—are merged in machine R, this machine is
trivially the refinement of the machines D1 and D2.

Finally, it should be proven that the machine R is the refinement of the original
machine M. This proves the monotonicity of the recomposed model with respect to the
applied decomposition.

In shared event decomposition, the variables are distributed between machines
and based on the variables of each machine, the events are dedicated to the machines
containing the variables used in the event. The events containing variables of several
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MACHINE M
VARIABLES v1 v2 v3

EVENTS
e1(v1)

e2(v1,v2)

e3(v2,v3)

MACHINE D1
VARIABLES v1 v2

EVENTS
e1(v1)

e2(v1,v2)

e3ext(v2)

MACHINE D1re f

VARIABLES r1 v2

INVARIANTS Inv1(v1,v2,r1)

EVENTS
e1re f (r1)

e2re f (r1,v2)

e3ext(v2)

MACHINE D2
VARIABLES v2 v3

EVENTS
e3(v2,v3)

e2ext(v2)

MACHINE D2re f

VARIABLES v2 r3

INVARIANTS Inv2(v3,v2,r3)

EVENTS
e3re f (v2,r3)

e2ext(v2)

w

w

v

v

Figure 4.3: Event-B shared-variable decomposition

decomposed machines are split so that the decomposed event contains only the variables
of a machine that it will be placed into. After this stage, the sub-models could be refined
further without constraints. This approach is inspired by communicating sequential
processes (CSP) [54] designed to describe patterns of interaction in concurrent systems.

4.4 Summary
An overview of Event-B formal verification and decomposition methodologies has
been discussed in this chapter. Verification of systems becomes a heavy task for the
provers as soon as the system grows larger in size. To deal with the complexity of proof
obligations, two techniques have been followed.

Refinement, by specifying an abstract model first and refining it step by step.
Decomposition, breaking the model into independent sub-models, refining each

separately, and subsequently re-composing them into a model that is a refinement of
the initial model

Refinement is reducing the complexity of the proofs but does not conform well
with parallel and agile development due to its sequential nature. Decomposition
provides ground for including the agile approaches of simultaneous development of
the component models. Paper I of this thesis explores identifying and formalizing
abstractions that can be modeled, refined, and recomposed in the context of a critical
system case study. Paper II surveys existing tools for visual and parallel development
of system using this approach.

The decomposition is also a motivated approach when the verification is done by
a single individual. After preparing the sub-models, each is ready for independent
developments while still preserving the ties for later merge. The main complexity
stems from ensuring that the refined sub-models can be recomposed. This is addressed
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MACHINE M
VARIABLES v1 v2 v3

EVENTS
e1(v1)

e2(v1,v2)

e3(v2,v3)

MACHINE R
VARIABLES r1 v2 r3

INVARIANTS
Inv(v1,v2,r1)∧

Inv(v3,v2,r3)

Events
e1re f (r1)

e2re f (r1,v2)

e3re f (v2,r3)

MACHINE D1re f

VARIABLES r1 v2

INVARIANTS Inv(v1,v2,r1)

EVENTS
e1re f (r1)

e2re f (r1,v2)

e3ext(v2)

MACHINE D2re f

VARIABLES v2 r3

INVARIANTS Inv(v3,v2,r3)

EVENTS
e3re f (v2,r3)

e2ext(v2)

w

w
v

Figure 4.4: Event-B recomposition

when applying the decomposition. The composition will then be proved as a correct
refinement of the abstract model.
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Chapter 5

The Why3 Platform

Why31 [16] is a deductive software verification platform and a frontend to a number of
theorem provers. We have chosen this platform for extension for the following reasons:

A well-designed API makes Why3 a good option for extension. The API includes
but is not limited to handling parse trees, typing, drivers for external provers and
proof tasks. We have utilized these APIs in our extension to the language and the
proof mechanism.

The verification languages it provides, both as a pure logical specification platform
and a programming language with logical declarations [41]—called WhyML.

Rich range of supported provers such as PVS, Isabelle [80], Coq [15] and SMT
solvers [32], e.g., CVC4, Z3 [31] and Alt-Ergo [24].

The formal system of Why3 is comprised of first order logic with polymorphic types,
pattern matching, inductive predicates and algebraic datatypes. The WhyML language
is quite similar to ML style languages but includes additional constructs for verification
purposes. The verification features of the language consists of pre- and postconditions,
loop invariants and possibility of writing ghost code or data—code/data which exists
strictly for verification purposes. Verification conditions for consistency proofs are then
extracted based on the weakest precondition calculus. The termination condition is
built based on the variant declaration for iterative constructs including loop, recursive
functions and datatypes.

5.1 Why3 Specification Language
This section gives a brief introduction to some core elements of the Why3 language:
types, program specification constructs and theories/modules. We refer to the Why3
documentation2 for a complete description of the language.

Why3 built-in types are Booleans, integers, real numbers, tuples and mappings
(functions). For user-defined types, algebraic data type constructors are supported—
record and tuple are special case of algebraic types. Type declarations may contain

1http://why3.lri.fr
2http://why3.lri.fr/doc
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uninterpreted type variables. WhyML extends the typing of Why3 by mutable records
and type invariants for user defined data types.

Listing 5.1 shows an example of a WhyML binary search function implemented
with imperative statements and annotated with preconditions, postconditions and in-
variant (the example originates from the Why3 gallery of formally verified programs3).
WhyML supports imperative statements such as while—looping through the elements
of the array in BinarySearch example—and for loops. To enable termination and
consistency proofs of loops, variant and invariant annotations are supported.

Preconditions in WhyML are expressed with requires blocks—e.g., in the exam-
ple stating that the the array is sorted—and postconditions with ensures blocks—e.g.,
that the function return value is an index into the array holding the sought element.
The precondition is assumed upon entry, and the postcondition should be established
by the program upon termination. WhyML differentiates normal and exceptional exit
points of functions. To terminate the program at an exceptional exit, a raise statement
is available—e.g., if the element is not found in the BinarySearch, the exception
Not_found is raised. To be able to reason about their correctness, exceptions are
to be stated in the procedure’s contract with raises annotations—which implies the
sought value does not exist in the array in the BinarySearch. The raise statement
and raises annotation should be followed by a predeclared exception type (here
Not_found).

Why3 provides a modularization construct for encapsulating definitions into their
own namespace so that they can be combined and reused. There are two types of
constructs, theories which contain purely logical definitions, and modules which may
additionally contain WhyML programs. For instance, the BinarySearch module
contains the declaration use int.Int, which imports the type int and associated
operators from the basic theory of integers. This and the other theories imported in
Listing 5.1 are part of the Why3 standard library.4

Why3 also features a graphical user interface, consisting of a theory editor and an
interactive proof editor. A WhyML program can also be compiled into a correct-by-
construction OCaml program.

5.2 Proof Transformation
In Why3, a task is a context derived from the declarations in the theory, a set of axioms,
and a formula to be proven. A formula in a proof task, can for instance be a proof
obligation that the statement inside the while loop preserves the loop invariant in the
BinarySearch example. Transformations, defined in the drivers of each prover,
are applied on tasks to transform the task into a readable format for each supported
theorem prover [40].

Before sending the proof obligations to theorem provers, it is possible to apply a
series of transformation rules to reduce the goal to be discharged into a form more
suitable for automatic theorem proving. For transformation to be sound, the validity of
the transformed task should imply the validity of the original task. Logical transforma-
tions can be grouped into computational transformations, eliminating transformations,

3http://toccata.lri.fr/gallery/why3.en.html
4http://why3.lri.fr/stdlib/
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Listing 5.1: Binary search in WhyML
module BinarySearch

use int.Int
use int.ComputerDivision
use ref.Ref
use array.Array

(* the code and its specification *)

exception Not_found (* raised to signal a search failure *)

let binary_search (a: array int) (v: int) : int
requires {

forall i1 i2. 0 ≤ i1 ≤ i2 < length a → a[i1] ≤ a[i2]
}
ensures {

0 ≤ result < length a ∧ a[result] = v
}
raises {

Not_found → forall i. 0 ≤ i < length a → a[i] 6= v
}
=
let ref l = 0 in
let ref u = length a - 1 in
while l ≤ u do

invariant { 0 ≤ l ∧ u < length a }
invariant {

forall i. 0 ≤ i < length a → a[i] = v → l ≤ i ≤ u
}
variant { u - l }
let m = l + div (u - l) 2 in
assert { l ≤ m ≤ u }
if a[m] < v then

l := m + 1
else if a[m] > v then

u := m - 1
else

return m
done;

raise Not_found
end
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encoding transformations and splitting transformations. In the following, we exemplify
some of the transformation rules in Why3.

Computational transformation is applied to replace the functions and predicate sym-
bols by their definitions in the current goal. This transformation eagerly applies
all known computation and simplification rules, while there are specific transfor-
mations that only apply user-provided rules.

Eliminating transformations replaces one construct by another—e.g., transfers an-
tecedents of implications and universal quantifications of the goal into the
premises of the task.

Encoding transformations are employed to eliminate unsupported constructs for the
target provers—e.g., an if-then-else expression is rewritten as a conjunc-
tion of two implications.

Splitting transformation strategies break up a large propositional formulae into
smaller ones that are easier to prove—e.g., having a conjunction, splitting would
construct a goal for each of the term in the conjunctive term.

Custom transformations can also be defined as OCaml functions in development and
registered to be available in the GUI.

5.3 User-Defined Theories
Why3 has a standard library of theories, which may be extended with user-defined
theories. For example, a theory may introduce a polymorphic list type as the following
algebraic data type:

theory List
type list α = Nil | Cons α (list α)

end

Here α is the type of the elements, and Nil and Cons the two constructors. To
define additional data structure properties, predicates, functions and lemmas may be
introduced in theories. For instance, in the theory Length below, the length of a list
is defined as a function returning 0 for an empty list and 1 plus the length of the tail
of the list otherwise. Additional lemmas state that the length function returns zero if
and only if the list is empty and otherwise the length returned by the function is greater
than zero for a non-empty list.

theory Length

use import int.Int
use import List

function length (l: list α) : int =
match l with
| Nil → 0
| Cons _ r → 1 + length r
end
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lemma Length_nonnegative: forall l: list α. length l ≥ 0

lemma Length_nil: forall l: list α. length l = 0 ↔ l = Nil

end

The other application of modular definition in Why3 is in importing theories. Theories
can be either used or cloned in other theories; the difference lies in the mechanism of
import. Cloning copies all the definitions into the current namespace of the theory and
provides the possibility of type, function and predicate instantiations that were defined
as abstract in the original theory.

5.4 Extending the Why3 Parser

Why3 is an open source project and provides an API that is accessible through OCaml
code. For creating Why3 terms, creating tasks for the proofs and calling external
provers on the tasks, the Why3 API5 can be exploited; however, to extend the language,
new grammar rules have to be defined as an extension to the Why3 parser and new
tokens as an extension to the lexer.

Each grammar rule is then attached to an action producing an OCaml value repre-
senting a Why3 term. This will later on be type-checked and subsequently translated
into verification goals for the automatic theorem prover. This involves identifying the
theories, creating task from the theories, applying transformation rules. Some goals
may already get discharged in this stage. The remaining goals are then sent to the
installed provers. The Why3 API supports registering a file extension to customize a
parser and term transformation implementation.

Parsers employ one of the two techniques of top-down or bottom-up in constructing
abstract syntax tree (AST). Bottom-up parsers run efficiently in linear time since they
do not involve any backtracking mechanism. In bottom-up parsers the parse tree
is constructed from bottom left by composing the tokens based on production rules
upwards and to the right. Bottom-up parsers employ the shift-reduce method. The
parser maintains a stack of visited tokens; shifting removes the next token and adds it
to the parse tree, while reducing applies the next matching grammar rule. Menhir6, the
parser generator of Why3, is a bottom-up parser.

Menhir is a parser generator for OCaml programming language is based on Knuth’s
LR(1) parser generation technique [66]. LR(1) parser generation are applied on lan-
guages that can be parsed from left to right and by looking at a defined finite number
of characters ahead without backtracking to consider the previous decision. This is due
to the way LR parsers utilize pre-built parse tables in order to build the parse tree.

Why3 does not support mini-language definition—i.e., there is no mechanism
for modularly extending the language without modifying the grammar of the Why3
language itself. Hence, the embedded grammar needs to be merged with the overall
Why3 grammar which introduces some lexical constraints on it, e.g., having to use the

5http://why3.lri.fr/api/
6http://gallium.inria.fr/~fpottier/menhir
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same token set, and ensuring rules of the embedded language do not conflict with the
Why3 language.

5.5 Summary
We have given a brief overview of Why3 specification language, its structure and
verification mechanism in this chapter. Many verification platforms do not handle well
the transition from verified programs, defined in a context of logical framework, to
the executable code. Why3 features the correctness proof together with completeness
within the implementation language WhyML. WhyML is an ML style programming
language supporting verification by code annotations. The verification conditions for
consistency and termination are generated by Why3 and proved by automated provers.

Why3 came as a natural choice in extension of a deductive verification tool. Well-
supported theorem provers, transformation mechanism for proofs and modular theory
extensions were the main features that prompted us to select this platform as the base
of our work.

A diagrammatic notation for array invariants in the context of invariant-based
programming is presented in Paper IV. In this paper, we presented a meta theorem
for generation of verification conditions for array programs. We hand translated the
programs into Why3 theories together with the verification conditions as goal. We
established the correctness proof by proving the goals in the context of the theory.

In Paper V, we further developed the language into a domain-specific language
without dependency to invariant-based programming. The presented language is an
independent language that can be inserted into any logical verification platform. As a
reference, we implemented the language as an extension to the Why3 platform.
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Chapter 6

Summary of Papers

In this chapter, we summarize the key results in each of the papers that are part of this
thesis.

Paper I. Parallel Development of Event-B Systems with
Agile Methods
To formally verify a system, the requirements of the system need to be specified in
advance; then the model can be built to satisfy the defined requirements. In Event-B,
consecutive refinement steps are introduced to transform the first abstract model into
an executable system. This type of verification has been criticized because of its
inflexibility to reflect changes on the model upon modification of requirements. The
second concern is that it has limited scalability.

In this paper, we applied model decomposition methods to facilitate the agile
principle of responding quickly to changes. Introducing modularity and isolation
of each sub-module allows for better management of changes to the specification.
Isolation of Event-B models is provided by distributing the system variables and their
invariants between the sub-models. Having decomposed the system model, changes in
the requirement are likely to impact only a few sub-models.

The scalability concern has been addressed with refinement. The complexity of
proof obligations is reduced by gradually introducing variables and statements to
concretize the abstract models. Even though refinement provides vertical scaling, it
does not serve well in horizontal scaling. Decomposition of models into sub-models
that can be further refined, on the other hand, enables horizontal scaling of Event-B
verification.

Traditional decomposition methods relies on an abstract model in the start of the
decomposition stage to establish and retain the relation between the initial abstract
model and the decomposed model. However, it still suffers from the requirement
changes in which affect the initial abstract model. The proposed approach in this paper
suggests the separation of concerns, or aspects, of the system, and the development of
individual independent abstractions for each of those. The abstractions are subsequently
refined in isolation, and the refined models are merged into a single final model. Figure
6.1 introduces two abstraction for each aspect of a model, named Aspect 1 and 2, their
refinement and the composition of the two abstractions.
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The presented approach in the paper has been studied in the context of the Landing
Gear case study of Boniol and Wiels [17], originally proposed in the ABZ’2014
conference as a formal methods case study representative of an industrial needs. We
split the original specification into two independent system abstractions: a moving gear
system controlling the extension and retraction of the landing gear, and an analogical
switch representing the hydraulic control system. The abstractions were modeled in
UML-B and data-refined independently. To merge the models, we copied the most
refined model of the analogical switch system into the most refined model of the
moving gear system to create the final model. Events common to both models were
refined into a single event in the final model. The correctness of the models was proven
in Event-B.

The approach does not address the decomposition of the initial abstract model into
multiple machines. To achieve this, hard assumptions on models are required, e.g., no
shared variables. Syntactically, no shared variables could be attained by scoping the
variables to the machines and keeping the scoped identifiers in the merged model. The
issue with this approach, however, is loosening the concept of refinement by merging
the independent refined models.

The contributions of the author in this paper include co-developing the above
mentioned model decomposition method, investigating its implied limitations, and
implementing the two Landing Gear aspects and their refinements in Event-B.

Paper II. An Overview of Formal Specification Lan-
guages and Tools Supporting Visualization of System
Development
In this paper, we have explored tool support and particularly visualization tools for
various formal specification languages. One aspect investigated in this paper is how
the UML modeling language is supported by verification platforms. The reason for
selecting UML is to investigate how the different UML diagrams could serve to
visualize systems for verification.

Z is a formal specification notation based on set theory and predicate logic [102]. A
construct in Z is called a schema and is divided into two parts: a declaration part and a
predicate part. The declaration part introduces the variables and their associated types
while the relation between variables stated as predicates are included in the predicate
part. Schema contains both static and dynamic parts of a system. With respect to
visualization there has been development in both animated execution of Z models [61]

Aspect 1 Abstraction 1
v v

Aspect 2 Abstraction 2
v v v

Merged

v

v

Figure 6.1: Merging the refined models of two abstractions
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and Z-based specification UML diagrams [98]. There has been efforts in formalization
of UML class structure with Z specification language. The static part of a class is
formalized in the static part and the class instantiations and attributes are represented
by state variables.

Alloy is another specification language that supports visualization in the form of
UML diagrams [57]. Alloy is influenced by Z and the Object Constraint Language
(OCL). Even though Alloy was motivated by the Z language, it does not support
deductive software verification approach to prove the correctness of a model. Alloy,
inspired by model checking techniques [58], is a light weight framework utilizing only
a light SAT-based approach to either find a counterexample on a specified model, or to
find a model to simulate the specification. Alloy analyzer not finding a counterexample
on a model does not guarantee the correctness of the system. Since Alloy supports only
a bounded model, the model should be defined on a finite number of objects. In Alloy
everything is defined as relations and the model is described by adding constraints
as assertions. To handle first order logic, alloy converts a quantified formula to a
propositional correspondence. The model specified in Alloy can be visualized as
entity-relation diagrams and UML class diagrams. The Alloy analyzer provides an
animator for executing the model. The animator supports specifying a starting state (a
pre-defined condition that holds) and a backward execution from a pre-defined state
(by defining a post-state that holds).

Event-B provides a prototype tool called UML-B (as a plug-in to Rodin), supporting
UML-style diagrams [101] which are semantically different from the object model of
UML. Machines are represented by UML class diagrams where events of a machine are
the methods in UML model. Event-B also provides supports to declare state-machines.
State-machines can be animated with the ProB tool, which also provides visualization
of the animation. The effect of UML-B as a graphical language in designing complex
embedded systems, verified with the B language, has been studied with an approach
named PUSSEE [107]. This approach covers all the co-design stages from specification
down to the C implementation supporting visualizations, and the authors of this paper
conclude that

“Successful integration is important to the long term success of formal
methods.”

Event-B tools have been used by industry in several case studies. This has given rise
to this paper for the comparison between the available tools in formal methods, their
strength and weaknesses; and discovering the domains they are better suited for.

The author structured the paper jointly with the co-authors, wrote the overview of
the specification languages and their tool support, and collected most of the related
work.

Paper III. Proofs and Refutations in Invariant-Based
Programming
This paper presents the extension of the Socos program verifier with an execution envi-
ronment. As described in Chapter 3, Socos provides a graphical editor for constructing
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Figure 6.2: Animating a program in Socos

the program as invariant diagrams with the program specification and intermediate
assertions stated in higher-order logic. The Socos backend generates the verification
conditions and invokes automatic theorem provers on them. Unproved verification
conditions are highlighted in the editor. An unproved condition may be due to the
theorem prover not finding a proof for a complex condition, in which case interac-
tive guidance may be required; or it may be due to an actual error in the program,
which should be corrected. To assist the user in exploring the runtime behavior of
their program as a complement to verification, as well as to execute the final program,
we integrated an execution mechanism into Socos. The execution mechanism gives
possibility of inserting initial values to the programs, and standard runtime debugging
features (breakpoints, step into, step over, run, pause) were added to the Socos editor.
In each step, the state of the program is displayed in a variable inspector and the next
statement to be executed is highlighted in the diagram. A Socos debugging session is
shown in Figure 6.2.

To model the execution, we implemented automatic translation of an invariant
diagram into a PVS abstract datatype representing the program state. The datatype is
comprised of constructors Loc1, . . . ,Locn for each location in the diagram—where a
location is an invariant, a transition branch, or a statement on a transition—each of
which take as arguments the variables visible in the location:

state: DATATYPE
BEGIN

Loc1 ( Vars1 ): Loc1?
...
Locn ( Varsn ): Locn?
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END state

Given the state representation, we generate a step function accepting one state as
input and returning the next state. Evaluating this function corresponds to executing
a single statement in the diagram. To match the current state of the execution, the
function pattern-matches on the location, and for a matching location Loci returns the
operational definition JLociK:

step (s:state): state =
CASES s OF

Loc1 ( Vars1 ): JLoc1K
...
Locn ( Varsn ): JLocnK
ENDCASES

The operational definition JLociK follows the standard runtime semantics of the avail-
able statements in Socos (assignment, assertion, assumption, and procedure call). For
example, an assignment statement at location Loci preceding another statement S at
location Loci+1

X := E
Loci

; S
Loci+1

constructs the next state by updating the assigned variable and keeping the other
variables unchanged:

JLociK = (LAMBDA X:Loci+1(Varsi))(E)

To execute a diagram, we have created a runtime in Lisp and the PVS implementation
language as an integration into the Socos backend. The runtime executes the step
function repeatedly until completion, or when called in the debug mode, step by step.
In the latter mode, it receives commands from the debugging UI provided by the Socos
graphical editor, and returns the stack trace. In the case of a failed assertion or no
enabled guard in a situation, the step function repeats the current location. This either
indicates a normal termination (if the program has reached its final situation) or an
abnormal termination (if it occurs elsewhere).

The concrete evaluation of the step function is delegated to the built-in term evalu-
ation mechanism of PVS, the ground evaluator, which evaluates expressions by first
translating them to Common Lisp code and then executing them in the Lisp runtime.
In addition to statements, invariants and assertions are evaluated if they are ground
terms, i.e., if they do not contain uninterpreted functions or quantification over infinite
domains. PVS semantic attachments can be used to enhance the ground evaluator with
executable Lisp implementations for non-ground terms. This allows partial evaluation
of such invariants and assertions, as well as execution of programs that are not in their
final stage of refinement.

As an example, we describe how diagram execution can assist the derivation of a
correct program for constructing a binary tree from a list of leaf depths.

The author contributed in designing the execution environment, carried out most of
the front-end and back-end implementations, and prepared the case studies presented
in the paper.
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Paper IV. A Precise Pictorial Language for Array Invari-
ants
In this paper, we proposed a pictorial language for expressing array invariants. The
language is based on Reynolds’s partition and interval diagrams [93], with some
extensions. As Reynolds noted, assertions over arrays tend to get lengthy compared
to the program itself. Also, the integer range conditions used to describe typical
array properties are error-prone. To address these issues, Reynolds introduced a more
intuitive diagrammatic notation based on disjoint integer intervals: if i and j are
expressions denoting integers, the rectangle ji when interpreted as an interval
diagram stands for the for the interval {k ∈ Z | i < k ≤ j}, while when interpreted as
a partition diagram stands for the predicate i≤ j. Interval diagrams describe integer
intervals, while partition diagrams describe the relationship between intervals. In
addition to this normal form of the diagram, either or both bounds of the diagram may
be written on the right side of the adjacent vertical line to adjust the bound by −1,
while a rectangle containing only one integer is short for a singleton interval:

i j =̂ j−1i
i j =̂ j−1i−1
i j =̂ ji−1

i =̂ ii

Partition diagrams may be written in chained form when the upper bound of a preceding
diagram coincides withe the lower bound of the succeeding diagram. For example, the
partition diagram 0 i n stands for the predicate 0≤ i≤ n.

Colorings. In order to label disjoint intervals of an array, such that they can later be
assigned predicates, we introduced the concept of a coloring: a mapping from intervals
to a color. Syntactically, colorings are similar to Reynolds diagrams but are drawn as
as filled rectangles rather than as outlines. For example, ji states that the interval

ji maps to . This notation allows compact combination with partition diagrams
when the bounds coincide. For example:

0 i n = 0 i n ∧ 0 i

Legends. To assign meaning to colored intervals, we introduced the concept of a
legend. A legend is a coloring-predicate pair, stating the predicate the elements in all
subranges of an array matching the given coloring should satisfy. For example, the
legend

A| i : A(i) 6= x

asserts that all indexes i in the array A having the color should satisfy A[i] 6= x. Here
the pattern describes the predicate over a single element of the specified color. An
example of a legend involving two adjacent elements is the following assertion that
continuous green ranges are sorted:

A| i : A(i)≤ A(i+1)
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Verification. We have developed the pictorial language in the context of invariant-
based programming, and therefore it was natural to combine the pictorial language with
invariant diagrams (however, the language itself is independent from the verification
framework and could be reused in other verification tools). We defined the semantics
of colorings and legends by translation into predicates over the program state. Nesting
allows legends to be shared by multiple situations, as well as to be extended in substitu-
tions with additional coloring predicates. After translation, the verification conditions
of the diagram were extracted using the normal proof rules of invariant diagrams. We
demonstrated the notation by verifying three fundamental array algorithms: insertion
sort, linear search and binary search. After drawing the diagrams, we hand-translated
them into verification conditions for the Why3 verification platform and proved them.
As an example, figure 6.3 shows an invariant diagram representing binary search, where
the invariants are given pictorially utilizing partition diagrams, colorings and legends.
Our conclusions from the verification exercise were that the language supports writing
clear and concise array specifications, while also being quite expressive, allowing many
common array invariants to be stated.

BinarySearch

A: array[N] of int

x: int

k: int

Searching

a, b: int

a := -1;

b := N

[b-a=1]

[b-a>1];

k := (a+b) div 2

[x>A(k)];

a := k

[x<A(k)];

b := k

[x=A(k)]

⇒ A(i) ≤ A(j))

A

1 ≤ b-a

Found

k N0

i j

: A(i) ≠ xi

b N-1 a

NotFound

0 N

: A(i) = xi

(∀i,j . 0 N

Figure 6.3: Binary search

The author contributed in designing the pictorial language, evaluating it on multiple
case studies (including all presented in the paper), and summarizing the results in the
paper.
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Paper V. A DSL for Integer Range Reasoning: Partition,
Interval and Mapping Diagrams
In this paper, we presented an implementation for the Why3 verification platform of the
notation proposed in Paper IV. The implementation extends the Why3 language with
partition diagrams, mapping diagrams (a generalization of colorings) and legends. It
introduces an alternative character-based syntax for the pictorial notations, a translation
into Why3 terms, and Why3 theories encoding the diagram semantics.

Syntax. Below we show a few examples of character-based partition diagrams (left
column) and the pictorial equivalence (right column). Syntactically, a Why3 term can
occur on either side of the vertical bars delimiting the intervals:

[i| ... j] ji
[i| ... |j] i j
[f i ... | f j | ... f k] f (i) f ( j) f (k)

A mapping diagram represents a partial function whose domain consists of a sequence
of integer intervals. The mapping diagram syntax extends that of partition diagrams
with a argument binder and a value term (preceded by #). For example:

[x → [i| ...#(-x) |j ...#(x) k]]

{
−x if i≤ x < j
x if j ≤ x≤ k

If each interval is mapped to a constant, the binder may be omitted. This corresponds
to a coloring; for example, the following represents a red coloring of the interval (a, b):

[[i| ... #R |j]] i j

A legend is declared with the legend keyword followed by an identifier, a sequence
of parameters and list of coloring-to-predicate mappings. For example:

legend l(a:array int)(x:int) of col =

i,j : [[i#G|j#G]] → a[i]≤a[j] a| i j : a[i]≤ a[ j]

where col is some type containing the value G.

Translation. The Why3 grammar is defined by a collection of production rules, which
the parser generator Menhir compiles into OCaml code. We have extended the Why3
grammar with production rules for the syntax of partition diagrams, mappings, and
legends. Partition diagrams and mappings are term-level productions, while legends are
theory-level productions. After parsing, an instance of the type-parametric algebraic
datatype diag with the two constructors P and L is constructed:

type diag α =
| P int (option α) (diag α)
| L int (option α) int

Each diagram consists of at least one base interval L. The interval includes two terms
expressing the bounds of the interval and and an optional term for mappings. The
above datatype represents the normal form of a diagram; other forms are normalized
during parsing.
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Semantics. Semantics for the different types of diagrams is given by functions over
diag. For partition diagrams, the function is merely a conjunctive predicate of Int.≤
applications. For mapping diagrams, the function produces an if-then-else con-
struct, while for legends it produces a parametric conjunction of universally quantified
implications. Why3 supports marking specific theorems as rewrite rules, with the effect
that they will be automatically applied on the current proof goal before the goal is sent
to external theorem provers. For the specific case of a legend application to a mapping,
we have defined a lemma that rewrites the application into an implication where the
antecedent is a conjunction of integer inequalities. This rule serves to completely
eliminate the meta-layer introduced by the language (namely terms of type diag and
color types) from the problem given to an endgame prover.

Example. Listing 6.1 shows the Why3 rendition of a binary search procedure anal-
ogous to the diagram in Figure 6.3. If x is present in the array a, the procedure exits
normally returning an index containing x, while if not present, it raises Not_Found
ensuring that all elements in the array are different from x. These postconditions
and the main loop invariants are expressed with the legend found. All verification
conditions were proved automatically by a combination of Z3, CVC4, and Alt-Ergo
after preprocessing by our tool and applying the rewrite rules.
The author contributed in the design and evaluation of the proposed DSL, as well as in
the dissemination of the results. The author architected and implemented the Why3
tool support for the DSL, including extending the Why3 specification language and
developing the theories formalizing the language.
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Listing 6.1: Binary search
predicate sorted (a:array int) =

forall i j : int .
[0 ... |i| ... |j| ... |length a] → a[i] ≤ a[j]

type found_col = R | G
legend found (a:array int)(x:int) of found_col =

i: [[i#R]] → a[i] 6= x ;
i: [[i#G]] → a[i] = x

let binary_search (a: array int)(x: int) : int
requires { sorted a }
ensures { [0 ... |result| ... |length a] }
ensures { found a v [[result#G]] }
raises { Not_Found → found a x [[0 ...#R |length a]] }

=
let l = ref 0 in
let u = ref (length a - 1) in
while !l ≤ !u do

invariant { sorted a }
invariant { [0 ...|!l] ∧ [!u| ... |length a] }
invariant {

found a x [[0 ...#R |!l ... !u| ...#R |length a]]
}
variant {!u - !l}

let m = !l + div (!u - !l) 2 in
if a[m] < x then l := m + 1
else if a[m] > x then u := m - 1
else return m

done;
raise Not_Found
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Chapter 7

Conclusions and Future Work

The development of deductive software verification has since the seventies given rise to
a number of challenges for researchers working in the field. A major impediment pre-
venting verification from becoming industry practice is the complexity of constructing
formal machine-checkable proofs of program correctness in practice. When seeking to
reduce that complexity in order to achieve scalability, challenges faced include improv-
ing tool support to automate the verification process to a higher degree, developing and
evaluating new modeling languages that support more effective validation, combining
formal verification with established software engineering techniques such as testing,
and achieving an iterative workflow in the presence of a rigorous sequential verification
method. This thesis has addressed the aforementioned concerns and has explored
approaches in the forms of reducing proof complexity by decomposition techniques,
a runtime environment for invariant evaluation, establishing a DSL for representing
array data structures as an extension to an existing verification platform, and supporting
visual languages in verification platforms by providing semantic translation of the
symbols to the logical language of the framework. In conclusion, we revisit the original
research questions as well as identify some current limitations and future work to
address these.

7.1 The Research Problems Revisited
In this section, we discuss our findings in light of the research questions posed in
Section 1.1.

Aspect-based model decomposition and refinement. The specification in formal
verification is traditionally given after collecting the requirements and is assumed not
to change. This is an impediment to the development of software of scale by agile
principles as the requirements are prone to change over time. Moreover, the task of the
theorem prover in verifying the correctness of a specification demands higher computa-
tional resources as it grows in size. The goal of refinement in deductive verification is
to alleviate the proof effort through the vertical extension of a model by incrementally
extending an abstract verified model with concrete models. Proving the verification
conditions introduced through refinement guarantees the correctness of the concrete
model. The chain of refinement is developed in a sequential manner. However, the ap-
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proach is still limited in horizontal scaling, i.e., the concurrent development of multiple
components of a system. The first research problem we address concerns decomposing
a model to achieve such horizontal scaling. In the proposed approach described in
Paper I and II, we suggest to first analyze the model in order to isolate abstractions that
can be refined as independent chains. The recomposition of the final refinements from
each chain then constitutes the final verified system. In our case study, a simplified
version of a landing gear system, we identified a separation of two abstractions—the
moving gear itself and the hydraulic control system— that led to a simpler verification
and validation of the model (compared to a single chain of refinements). We confirmed
that by dividing a model into multiple abstractions we could effectively decrease the
complexity of the model, while at the same time parallelizing the development process.
The merging of the sub-models was unproblematic due to the nature of the abstractions
in our case study, but this may not be generalizable. Our experience from the case
study gave us reason to believe that the incorporation of agile principles into the formal
development of critical systems is realistic, and that it can be facilitated by aspect-based
decomposition.

Combining static and runtime verification. Deductive verification platforms typi-
cally provide a modeling language for defining the program context and its execution
under the operational semantics supported by the platform. Depending on the platform,
the context and programs are translated to theories including verification conditions to
be sent to theorem provers for discharging. The status of each condition—either proved
or proof attempt failed—constitutes the prover’s output. The output, however, mostly
lacks information on the over- or under-specified invariants and other details that may
give hints to identify the cause of failures. The second research question we posed was
whether a combination of static and runtime verification can assist in identifying errors
early, thereby saving time wasted on invalid verification conditions. At the time this
problem was undertaken, a verification tool for a diagram-based language with runtime
evaluation within the underlying theorem prover’s formal logic, and with full animation
of the results in the diagram, did not exist to the best of our knowledge. Socos supports
specifications as nested diagrams defining nested structure of programs. The runtime
execution extension, introduced in this thesis, supports evaluating the specification
on the users’ provided input as PVS theories and within the PVS theorem prover’s
platform. The editor also features a debugger displaying the result of the evaluation
of each step in the diagram. The case studies we have carried out indicate that static
and runtime verification is a powerful combination that not only makes it easier to
identify the cause of failed verification conditions, but also makes the verification
process more feedback-driven which lessens the gap between verification and testing.
As a result of the decision to use an existing ground evaluation mechanism, in addition
to simplifying the implementation we observed two advantages: a reduced trusted core,
and minimized context-switching between proving and testing for the user.

Diagrams as formal specification languages. The third problem addressed in this
thesis concerns diagrammatic languages in software verification, in particular how to
design a diagrammatic language that is semantically precise to be useful for formal
specification without losing clarity or legibility. We chose to combine two existing
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visual languages, invariant diagrams and partition diagrams, into a fully diagrammatic
language for verifying programs over arrays. This choice was influenced primarily
by our previous experience with invariant diagrams, where we observed that almost
all practical verifications of programs involved the programmer constructing one or
more hand-drawn illustrations of arrays in order to clarify the constraints that should
apply before encoding these in logic notation to be embedded in the invariant diagram.
The main challenge with formalizing hand-drawn graphics turned out to be selecting
the syntactic primitives. We finally arrived at three: partition diagrams expressing
predicates over integer intervals, colorings for attaching labels to subarrays, and legends
defining the properties of subarrays. While experimenting with these notations, we
noticed that they turned out to be rather expressive visual constructs, allowing many
common array invariants to be stated. Encouraged by these initial results, we decided
to implement tool support for them. However, as the Socos tool was at that time no
longer under active development, we decided to implement the notation as a lightweight
extension to an existing verification tool. This led to the next and final research problem
addressed in this thesis.

Domain-specific languages (DSLs) in software verification. The final research
problem in software verification that we have addressed is the incorporation of the
diagrammatic DSL developed in Paper IV in an existing verification platform. DSLs
have been developed in different domains to give a minimal expressive representation of
a system or property, often independent from the host language. The regular expression
syntax for string matching and substitution for instance is one DSL that carries meaning
independently of the embedding programming language. The semantics of a regular
expression is independent of that of the host language and the runtime environment
that evaluates it. Elegance in representation and abstract definition are two advantages
of DSLs as target language extensions. An interpreter or compiler integrating the DSL
to the target language, can accommodate the most efficient implementation of the DSL
as opposed to custom or project-specific implementations. We have added support for a
DSL to the formal verification platform Why3 for expressing predicates over sequential
data structures, typically arrays, in specifications and invariants. The implemented
DSL is a linear textual version of partition diagrams, mappings (a generalization of
colorings) and legends. Our extension parses these diagrams and converts them to
Why3 predicates. We observed that the integration could be completed in a technically
sound manner by modifying the Why3 parser, despite the underlying platform lacking
language embedding support as such. Once the parser was modified and the DSL
lexically integrated, the semantics could be defined exclusively with Why3 user-level
constructs, i.e., requiring no further modifications to the Why3 sources. Hence, we can
confidently state that the integration does not compromise the semantic core of Why3.
In practice, using the DSL for expressing specifications, invariants and interactive
theorem prover sessions felt natural. We also felt that array predicates expressed in
the DSL were more readable compared to the same predicates expressed in the native
Why3 notation. As the DSL is relatively small and syntactically close to the original
box-based diagrams, we believe it could be picked up by new users in a short time.
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7.2 Limitations and Future Work
While developing these methods and tools within the fields of visualization, runtime
execution, decomposition and DSLs to facilitate the formal verification of software, we
also identified some limitations to be addressed in future work.

Runtime invariant evaluation provides a mechanism for animating and executing the
program in the verification platform. The runtime execution may provide hints to the
users of the faulty statement if they provide the verification platform with an input that
reveals the erroneous case. In a simplified example, assuming a linear search algorithm
for finding the maximum in a sequence, and a variable named max storing the value of
the maximum in the portion of the array that has been searched so far, if a statement
assigns a smaller element to the variable max; the user cannot detect the incorrect
statement if the provided input is a monotonically non-decreasing sequence. Therefore,
the users provided input—to exercise their program with—affect the detection—or
missing—the errors by the evaluator. There has been proposals in development of input
generation from the specification that depicts the faulty behavior [70] which we did not
include in our earlier work.

The case study we presented on the decomposition technique in Paper II has not
been implemented in actual code in the domain. Potential issues in the transformation
of the refined machines into executable code has thus not been considered. Event-B
relies on refinement principles in order to extend the models. Each refinement provides
the model with more detailed implementation. Refining each of the decomposed
models loosens the connection between the abstract variables and their invariants by
introducing new variables or replacing the abstract ones in which were guaranteeing
the correctness of the abstract model’s invariants. To introduce less gluing invariants
between the models which increases the complexity of composition, we have mainly
refined one of the decomposed models in the case study while keeping the rest intact
with only minor extensions. To be able to assess the validity of the approach, a larger
case study needs to be carried out with and without the decomposition. To asses the
benefit of the approach, the workload on the underlying automatic provers needs to
be evaluated in addition to the composition effort in comparison with a single model
verification. Furthermore, the proportion of conditions that are automatically proved
vs. require human interaction could be compared between the two approaches.

The DSL we introduced in formal verification in Paper V provides a compact
diagrammatic syntax for expressing predicates over arrays, such as invariants and pre-
and postconditions. However, it is so far only developed for linear data structures
such as arrays. To be able to fully utilize the power of the approach, non-linear data
structures such as trees are yet to be supported by the DSL. Extending the language
requires generalizing it into a new representation which is abstract enough to replace
the existing language and if not more, equally as expressive. Another impediment in
introducing a DSL is resistance by the developer community to adopt a new language.
As any other language, DSLs needs to be learnt independently from the programming
or logical languages of the framework. Improved documentation and integration of the
DSL into other verification frameworks would help to alleviate this issue.
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