

Zero-Cost Deep Learning to Enhance

Microscopy

Johanna Maria Jukkala

1800207 jjukkala@abo.fi

Master’s Thesis

Åbo Akademi University

Department of Biosciences

Faculty of Science and Engineering

19.05.2022

Master´s degree in Biomedical Imaging

Specialization Theme: Light Microscopy Imaging

Supervisors:

1: Guillaume Jacquemet, Ph.D.

Responsible professor:

Diana Toivola, Associate Professor

mailto:jjukkala@abo.fi

ÅBO AKADEMI UNIVERSITY

Department of Biosciences

Faculty of Science and Engineering

JOHANNA JUKKALA

ZERO-COST DEEP-LEARNING APPROACHES TO

ENHANCE MICROSCOPY

Master´s thesis Plan, 65 pp. Appendix 6 pp.

Biomedical Imaging

May 2022

Abstract: Combining microscopy image acquisition and deep

learning improves image processing and analytics. However,

deep learning requires knowledge of information technology and

expensive hardware. Also, proper training of the network is

essential for the successful prediction of unseen images, and

understanding the limits of network training is important. The aim

of this Master’s thesis is to make free deep learning tools

accessible for users to use, learn and share these methods in the

field of microscopy image analysis. We created user-friendly

Google Colaboratory notebooks for microscopy image

segmentation (StarDist), restoration (CARE), and denoising

(N2V). These notebooks are an easy and free introduction to

deep learning but the limited Graphical Processing Unit (GPU)

provided inhibits large-scale use. This Master’s thesis is a part of

a collaboration project called ZeroCostDL4Mic.

KEYWORDS: Deep Learning, Convolutional Neural Networks,

Content-aware image Restoration, Noise2VOID, StarDist

LIST OF ABBREVIATIONS

AI = Artificial Intelligence

CARE = Content-aware Image restoration

CNN = Convolution neural networks

CPU = Central Processing Unit

DL = Deep Learning

GPU = Graphical Processing Unit

MIP = Maximum Intensity Projection

ML = Machine Learning

N2V = Noise2VOID

NN = Neural networks

NRMSE = Normalized Root-Mean-Square

 Error

PSNR = Peak signal-to-noise ratio

QC = Quality Control

SIM = Structured illumination

 microscopy

SSIM = Structural Similarity Index

 Measure

SNR = Signal-to-noise ratio

TPU = Tensor Processing Unit

Table of Contents

1. Introduction ... 1

1.1 Deep learning ... 1

1.2 Deep learning and fluorescence microscopy ... 3

1.2.1 Image restoration .. 4

1.2.2 Segmentation .. 6

1.2.3 Object detection and image classification .. 7

1.3 Steps of Deep Learning ... 8

1.3.1 Groundwork .. 9

1.4 Training data, training the network and prediction ... 10

1.4.1 Training data .. 10

1.4.2 Training the network ... 12

1.4.3 Evaluation of trained model .. 17

1.4.4 Prediction .. 20

2. Aims .. 22

2.1 Objective 1- The user-friendly workflow .. 22

2.3 Objective 2 - Object detection by StarDist ... 24

2.2 Objective 3 - CARE versus N2V ... 25

3. Materials and Methods .. 26

3.1 Object detection ... 26

3.2 Noise2Void ... 27

3.3 CARE ... 28

3.4. Notebooks ... 29

4. Results .. 31

4.1. Objection 1 - The interface of the notebook ... 31

4.2. Objection 2 - Object segmentation: the effect of the training data 39

4.3 Objection 3 - CARE versus N2V ... 45

5. Discussion ... 58

6. Conclusion .. 60

7. Acknowledgments .. 61

8. References .. 62

APPENDIX 1: Creating a training dataset for StarDist in ImageJ 66

1

1. Introduction

1.1 Deep learning

Artificial intelligence (AI) is common nowadays (Figure 1). It can

be used to predict stock markets or translate speech on Youtube

in real-time. The common thing for all tasks is that they contain a

lot of data and it is analyzed by mimicking human intelligence.

Figure 1. Artificial intelligence is utilized in many areas.

Artificial intelligence contains sub-categories: Machine learning

(ML) and deep learning (DL) (Figure 2). Most applications of

machine learning contained four steps: data cleaning and

preprocessing, feature extraction, model fitting, and evaluation

(Angermueller et al., 2016). Preprocessing and data cleaning are

time-consuming but the real bottleneck of ML is feature

extraction.

2

Figure 2: Even though though deep learning (DL) is more

complex than machine learning (ML) they both are effective tools

for analyzing various data which would otherwise consume time

for humans. Together they are subsets of artificial intelligence

(AI), which solves given problems by mimicking human logic.

The fundamental difference between humans and computers is

the ability to recognize shapes and differences. Humans can

easily tell if there is a cat or dog in the painting but the computer

has serious difficulties. Therefore, features that contain the

information about shapes must be taught to the computer.

Unfortunately, an efficient ML model requires countless features

and for high-dimensional images, feature extraction is more

laborious (Angermueller et al., 2016).

After the invention of convolutional neural networks (CNNs), a

new category of AI was formed (Figure 3). The key ability of deep

learning (DL) is the ability to extract abstract features without

teaching (Angermueller et al., 2016). For example, in ML humans

teach that the concept of a car includes a motor, tires, and

steering wheel. For DL the different images of cars are just

shown and DL learns the concept of the car. Deep learning thus

mimics human visual recognition.

3

Figure 3: The general architecture of the neural network. The low

SNR image x is restored to the high-quality y image. The network

contain layers hx and calculation weights wx. The architecture

may differ depending on the deep learning method. In this thesis

all networks are UNET based architecture.

1.2 Deep learning and fluorescence microscopy

Fluorescence microscopy has developed and has become a

common tool in modern laboratories. This means a massive

number of images and datasets and a common trend is to have

increased the number of public datasets. All this benefits deep

learning and CNN has successfully been used for analyses of

microscopy images. Denoising microscopy images have been

done by CARE (Weigert et al., 2018), Noise2Void (Krull et al.,

2019), and Noise2Self (Batson et al,. 2019). Predicted labeling

of immunofluorescence (IF) images and electron micrograph

(EM) images by fnet (one type of NN) (Ounkomol et al., 2018).

The resolution of images was improved by SISR (Yang et al.

2018) and iSIM (Fang et al., 2019). Segmentation on cell nuclei

has been done by StarDist (Schmidt et al., 2018) and U-net

(Ronneberger et al., 2015). The classification has been done in

U2OS cell line images by DeadNet (Richmond, 2017) and yeast

cell images by DeepLoc (Kraus et al., 2017).

4

1.2.1 Image restoration

As fluorescence microscopies have become a general tool,

several obstacles have been resolved. Despite the technological

improvement of fluorescence microscopies, there are still

fundamental issues which remain: signal-to-noise ratio (SNR)

and resolution.

Imaging for an extended period causes photobleaching and the

location of fluorophores is challenging to detect. Also, cells suffer

during extended imaging sessions due to the high laser intensity

used which will affect their behavior and may trigger their death

(phototoxicity). One way to limit both issues is to decrease the

laser intensity during the imaging, but this often leads to the

acquisition of sub-optimal images (low signal-to-noise ratio). In

fluorescence microscopy, image noise can be reduced by setting

exposure time and intensity by careful sample preparation.

Unfortunately, it might lead to sample degradation by

phototoxicity and thus causing more problems (Belthangady and

Royer, 2019).

This means that obtained microscopy images have always lost

some irrecoverable information because of the physical

restrictions. Compared to the ideal image they are degraded,

incompleted, and convoluted. The common example of this is

image noise, pixel-value quantization, and low-pass filtering.

(Belthangady and Royer, 2019)

Reconstruction of the obtained microscopy images is one

approach to overcome this loss of information. Traditionally

microscopy images have been processed manually in image

processing programs like ImageJ or BioimageXD. The common

processes are noise removal by using algorithms like blur,

median or Gaussian Blur, object detection, segmentation, and

adjusting brightness, contrast, and colors. The user chooses the

algorithm, input parameters and the software do the rest.

The problem with the traditional algorithms is the complexity of

real-life images. These algorithms are designed based on the

5

previous information of image acquisition and statistical

information on how for example image noise forms. In a certain

context, they are efficient and fast but they struggle because they

are not able to capture the whole statistical complexity of the

microscopy images (Belthangady and Royer, 2019). Commonly

the researcher faces this problem while processing microscopy

images. For example, the traditional algorithm like median filter

processes previously known information (Poisson statistics). It

removes the image noise efficiently from the image but it also

blurs the details which are important for the researcher.

Traditional algorithms process unseen images according to

previous knowledge given by the user. (for example, the blur

algorithm blurs the image given value). Deep learning studies the

training images given by the user and processes the unseen

mages based on that study. This ability makes deep learning

more flexible than traditional algorithms. CNN processes

datasets and thus utilizes the whole statistical complexity of

images. (Belthangady and Royer, 2019). Also, deep learning can

drastically improve the quality of low-signal-to-noise images and

enable extended live microscopy using low laser power.

Combining CNN with microscopy, biological samples can be

treated and imaged more gently and still achieve low-noise

images.

Content-aware image restoration (CARE) is a supervised deep

learning method that uses convolutional neural networks to

restore low SNR images. The network contains several layers

called convolutional and pooling layers. First the network extracts

the image features by convolutional layers followed by a pooling

layer which simplifies all collected features and forms a simplified

input image (like barcode). This simplified input is compared to

the corresponding high-quality image. (Chamier et al., 2019) The

trained network contains the information from all these simplified

inputs and uses this information to restore new (but similar)

unseen images. The training data contains pair images for

training networks: high signal-to-noise ratio (SNR) images as

6

training images and low SNR images as target images. (Weigert

et al. 2018)

Noise2VOID (N2V) is a denoising method for image restoration

and it was created by A. Krull in 2018. The method utilizes blind

spot networks but does not require pair images for the training

phase. This is a self-supervised deep learning method where the

user can use noisy images as input and target images. N2V uses

a blind-spot network where the receptive field excludes the

central pixel value (the convolutional receptive field includes all

pixels). Excluding the central pixel value inhibits the network to

learn pixel identity but still removes pixel-wise independent

noise. (A. Krull et al., 2019)

1.2.2 Segmentation

Image segmentation splits the image in the background and

foreground. Foreground contains all features (like cells or cell

nuclei) which are above the threshold and the background is the

rest of the image. There are two segmentation tasks: semantic

segmentation and instance segmentation (Moen et al., 2019).

Semantic segmentation labels each pixel semantically, meaning

parts like this pixel belong to a cell, that pixel belongs to

cytoplasm etc. However, Semantic segmentation may fail to

separate the overlapping cells. Instance segmentation identifies

the group of pixels instance of a class in the image (like do these

pixels form a cell or not). (Moen et al., 2019) Top-down and

bottom-up approaches are two different strategies to detect

nuclei. Bottom-up strategy labels the pixels semantic classes

(cell nuclei or to the background) and after that decides the

instance of class. Top-down approach begins to segment the

crude shape of each cell nuclei and after that refines the

boundaries according to the possibility of shapes. (Schmidt et al.,

2018)

7

1.2.3 Object detection and image classification

Well-known example of classification is the task whether the

object in the image is cat or dog. In the biomedical field,

classification is useful to identify different cell organs or cells in

different cell cycles. Classification has great potential in

healthcare and drug testing where the malignant cells or cancer

cells are detected from tissues and may even detect cancer cells

without need of chemical staining (Chen et al., 2016).

Unsupervised method was used for cellular morphological

phenotyping (Yao et al., 2016).

Searching the cells from the sample is the most basic task in

microscopy. For the human eye, it is remotely easy to notice cells

with different shapes and sizes. Unfortunately screening the

multiple cell images manually consumes time and it is frustrating

in the long run. There are applications for detecting cell-like

segmentation by threshold (ImageJ) but the success of the

detection is depending on the quality of the image. A challenging

background of image, bleaching, uneven illumination, overlaying

cells and non-common cell shapes increase the challenge of this

task.

Object detection is a useful method for the detection of cells and

cell nuclei from microscopy images. StarDist is a supervised

segmentation method for cell nuclei detection created by

Schmidt et al. in 2018. The method uses convolutional neural

networks with U-net architecture created by Olaf Ronneberger,

Philipp Fischer, and Thomas Brox in 2015 (Figure 4). The U-net

architecture contains the ordinary convolutional layers but the

pooling layers are replaced by the upsampling operators. This

results in the larger resolution which is needed to detect cell

nuclei boundaries. (Ronneberger et al., 2015). StarDist creates

object candidates in two phases. First StarDist measures the

distance r from the pixel to the assumed boundary and forms a

star-convex polygon (the shape of possible nuclei) for each pixel.

After that StarDist calculates the probability of the polygon. All

object candidates are evaluated by non-maximum suppression

8

(NMS) to avoid duplicates and the final set of polygons are

generated. (Schmidt et al., 2018)

Figure. 4. General overflow of StarDist. The cell nucleus are

segmented from the input image (a) by measuring the distance r

of each cell nucleus (b) and probability of the nucleus d (c). The

U-net architecture results in better resolution to detect

boundaries (d). The probability of each object (r and d combined)

is measured by NMS. The figure is inspired by the original paper

(Schmidt et al., 2018).

1.3 Steps of Deep Learning

To use deep learning efficiently the four steps are needed to be

considered: groundwork, training data, training the network and

prediction. The groundwork is more like pre-step and others are

actual process.

The first step is groundwork which includes the skills

(programming, mathematics, software engineering) and

hardware (invests, assembling, maintenance and upgrades). For

researchers who have no previous knowledge or extra funding

this step is the most difficult part. Moen raises this challenge in

his article (Moen et al., 2019) and describes it as cultural barriers

that inhibit the spreading of deep learning in biology labs.

Training data is the foundation of a deep learning process. There

is no training method which could overcome the failures of

training data. Generating the training data is often time-

9

consuming (if supervised method is used) as it requires paired

images (training images and ground truth image) and ground

truth images often must be labeled manually or they are achieved

by expensive microscopy. Premade training data are available

but they might not be suitable for the experiment and may contain

labeling errors. Training the network is a crucial part of how the

trained network can be used. The challenge is to avoid overfitted

models where the network learns too well and thus fails to predict

the unseen data. Thus, the evaluation has a strong part of the

training process. Another major challenge is the memory

capacity as training requires a lot of computing power. Prediction

is often quickly done and stuff. Training data, training the network

and prediction are discussed in detail in section 1.4.

1.3.1 Groundwork

Both mathematics and biology are natural sciences but they

operate sometimes quite far from each other. Deep learning is a

collection of mathematical methods and algorithms but it is still

considered as “a black box” C. (Belthangady and Royer., 2019).

Deep learning is based on gradient descent but how deep

learning decides certain outputs is still a mystery at a deep level

even for mathematicians. Therefore, deep learning and

algorithms may show opaque to biologists (Moen et al., 2019).

As for good science, the researcher must provide methods and

tools to prove his results (Nature Research. Editorial policies.

2020). If the researcher does not understand how deep learning

works it is tempting to use the old methods.

Above the theoretical challenge is the technical issues: the need

for specific hardware and power consumption of the hardware.

Deep learning requires millions of parameters (Moen et al., 2019)

and a high level of accuracy (Carneiro et al., 2018) to execute

properly. Not only it stresses a regular computer a simple

execution would take a long time. For example, in the medical

field time is an important factor when the patient is diagnosed;

delays may cost lives (Carneiro et al., 2018). For researchers,

10

time is also a crucial resource. Then regular computers contain

a central processing unit (CPU) which fits poorly to the execution

of deep learning. Graphics processing units (GPU) or Tensor

processing units (TPU) perform much faster than regular CPUs

but they are costly and often not a default option in regular

computers. The solution is to either buy and assemble it yourself

or perform cloud computing where the user uploads the training

data to the cloud and GPU is provided by a company.

Assembling deep learning needs specific software and

programming skills. Building the CNNs requires programming

and Python is a common programming language but also R and

C++ are used (Angermueller et al., 2016). Fortunately, the need

for customization of deep learning for biological science has been

recognized in computer vision communities (Belthangady and

Royer, 2019). The pipeline of deep learning has been modified

and the development aims now to more interactive graphical

tools which help to explain how deep learning works, how the

researcher can control the process, and how results are achieved

(Belthangady and Royer, 2019). These tools are discussed in

section 1.5.

1.4 Training data, training the network and

prediction

1.4.1 Training data

From all components of deep learning the training, data is the

most critical part of all processes (Belthangady and Royer, 2019)

(Moen et al., 2019). Inappropriate training data affects negatively

to the training process and trained networks produce

hallucinations and other mistakes (discussed later in the next

section). The proper training data for supervised deep learning

methods should be well-annotated, error-free, large enough,

normalized, publicly available, and specific for certain biological

problems (Moen et al., 2019).

11

In supervised deep learning training, the training data contains

usually paired images: training image and ground truth image

(Figure 5). The network compares these paired images together

and finds the parameters by which the network results in the

output image as similar as possible to the ground truth image.

The generating the training data is time consuming and laborious

especially when supervised deep learning methods are used.

Sometimes achieving images might be challenging.

Microscopies are not available, or the biological samples are

scarce and there is not enough for the large-scale imaging.

Researchers may seek images from his colleges or public

databases to increase the diversity of the training data. If the

researcher includes images from different sources he must

normalize all images to decrease the variation (Moen et al.,

2019). Another way is data augmentation operations like adding

flipped images, images with different zooming, or rotation to the

training data (Moen et al., 2019).

Considering the workload to generate proper training data, it is

tempting to use pre-trained networks. Unfortunately, pre-trained

networks have several risks and they are likely to do more

damage than good (problem of pre-trained networks are

discussed later).

Overall, the researcher is encouraged to generate his own

training data for his experiments. Fortunately, there are multiple

software for image processing and generating training data like

for example, ImageJ is a free open-source software for image

processing and parts of the generating can be automated via

macros. (Schindelin et al., 2015).

12

Figure 5. The training data contains paired images. CARE

includes the low-quality image (training source) and

corresponding high-quality ground truth image (training target).

Images above are patches and they are enhanced to

demonstrate the difference in images.

1.4.2 Training the network

After the training data is either generated or chosen, the next step

is the training of CNN (in this section referred to as “network”).

The training for the network consumes time but allows a new

unseen input data processed without training. This means that

multiple sets of unseen images can be processed if their quality

remains the same. This feature is useful because image

processing and analyzing are faster with a pretrained network

compared to manual image processing. To train networks the

three things are required: Access to powerful GPU, specific

softwares and programming skills.

Access to powerful GPU: Deep learning requires millions of

parameters (Moen et al., 2019) and a high level of accuracy

(Carneiro et al,. 2018) to execute properly. Not only it stresses a

regular computer a simple execution would take a long time. For

example, in the medical field time is an important factor when the

patient is diagnosed; delays may cost lives (Carneiro et al.,

2018). For researchers, time is also a crucial resource. Then

regular computers contain a central processing unit (CPU) which

fits poorly to the execution of deep learning. Graphics processing

units (GPU) or Tensor processing units (TPU) perform much

faster than regular CPUs but they are costly and often not a

13

default option in regular computers. The solution is to either buy

and assemble it yourself or perform cloud computing where the

user uploads the training data to the cloud and GPU is provided

by a company.

Softwares and programming: Assembling deep learning needs

specific software and programming skills. Building the CNNs

requires programming and Python is a common programming

language but also R and C++ are used (Angermueller et al.,

2016).

Fortunately, the need for customization of deep learning for

biological science has been recognized in computer vision

communities (Belthangady and Royer, 2019). The pipeline of

deep learning has been modified and the development aims now

to more interactive graphical tools which help to explain how

deep learning works, how the researcher can control the process,

and how results are achieved (Belthangady and Royer, 2019).

There are several commercial products to perform deep learning

today. Some products have a plugin to software like DeepImageJ

for Image or Fiji to perform deep learning with pretrained

networks and CPU. The plugin is easy to assemble and use in

the software but it does not allow the user to train his own

network. Moreover, assembled deep learning softwares like

TensorFlow and PyTorch require the use of GPU to be efficient

and ordinary computers contain only CPU which makes these

softwares impractical and slow. Some products provide cloud-

based platforms for serious deep learning research like Amazon

SageMaker but they are costly.

All these tools have their strengths and weaknesses and are

suitable for certain situations (possibility to invest time or money,

or large amounts of GPU power or disk space are needed). For

the researcher who is new to deep learning and wishes to use it

with minimum costs and is not familiar with programming the

software should have following properties: First, it demonstrates

how deep learning works and expresses clearly the actions

needed to properly perform. The user without mathematical or

14

technical background should be able to use the platform without

enormous prestudies. Also, the platform should allow the

modification of deep learning methods via simple programming.

Second, it provides the free GPU power and disk memory to

perform the training of the network and procession of the unseen

images. For the large-scale deep learning usage this may not be

possible but for the free introduction to deep learning as the

researcher does not have to invest in hardware and assembling.

Thirdly, the platform should allow us to save and share results

and trained networks to colleagues or the public without extra

work. Based on this the deep learning platform Google

Colaboratory (Colab) was chosen.

Google Colab is a free web-based platform provided by Google

LCC. It contains the computing power for deep learning and

utilizes Google Drive cloud systems. In this environment,

notebooks are easily performed, edited, and shared. It utilizes

Jupyter notebooks and they are easily distributed in GitHub. The

downside of being free has limited resources that affect the

training parameters mentioned early. The most troubling

components are the use of deep learning framework Tensorflow,

the time limit, and the memory limit.

Tensorflow is an open-source library developed by Google Brain

Team (Abadi et al., 2015) and it was released in 2017. It provides

a collection of tools to perform deep-learning and deep-learning

methods. The supported programming languages are Python,

JavaScript, and Swift. All DL methods used in the thesis

(StarDist, N2V, and CARE) were supported by Tensorflow 1.0.

Tensorflow 2.0 was released in 2019 (TensorFlow Team. 2019).

Unfortunately, Tensorflow 2.0 does not support StarDist and

might be unsupportable for N2V and CARE. The problem is well

acknowledged and Tensorflow 1 is still available in Google

Colab. Unfortunately, this is a temporary solution because

Tensorflow 1 is no longer updated and it will be unusable in the

future.

15

Google Colab provides a free environment for users with small-

scale resources and research. Because of this, the notebooks

used in the Google Colab environment can be continuously

executed up to 12 hours (Colaboratory - Frequently Asked

Questions, 2020). The time limit prevents the user from

monopolizing all resources available in the cloud. The time limit

enables the maximum number of users at the same time.

Three relevant factors affect the time limit. The first factor is the

decision between processing units GPU developed by Nvidia

and TPU developed by Google Cloud. Free version of Google

Colab often utilizes four different GPU sources: Nvidia K80s, T4s,

P4s and P100s and the user can use one of them at the time.

The user cannot choose which GPU source to connect his Colab

and this means that the user cannot utilize the fastest GPU

source (Colaboratory - Frequently Asked Questions, 2020).

Google Colab has not revealed the exact RAM limits and amount

of RAM memory varies time to time. Generally, the 12 Gbit RAM

limit is reported (Caneiro et al,. 2018). Google Colab Pro was

released in 2020 which allows the user to utilize the faster GPU

but it is charged.

Google Colab utilizes either the GPU (Graphics Processing Unit)

developed by Nvidia or TPU developed by Google Cloud. Using

either of these processing units allows the execution of the

notebook without consuming the user’s CPU (central processing

unit) resources.

The second factor is the training time of the network. The number

of epochs defines how many times the network is trained to

improve its denoising ability. The number of steps is quite

irrelevant concerning the training time but it might affect the

validation error. The third factor is the regular runout of the RAM

which occurs after a few minutes when the operating browser tab

is not active. This means that the user is required to keep the

browser tab activated to keep executing the notebook.

Fortunately, the runout creates the checkpoints, and re-activating

16

the browser tab allows the restart of performing from the previous

checkpoint.

Two memory limits affect the usability of Google Colab. Google

Colab provides approximately free 12 GB RAM for performing

notebooks. However, this resource is not guaranteed. Google

actively monitors the usage of the users’ RAM resource and

prioritizes RAM for users who have used resources less recently.

Thus, it is advisable to close all unnecessary notebooks.

(Colaboratory - Frequently Asked Questions, 2020).

When datasets are large (especially the 3D microscopy images),

the memory limit is exceeded quickly. Fortunately, the training

data can be split into patches. Patches contain three parameters:

size (length x width), height in pixels, and the number of patches

per image (Figure 6). The size and height values must be equal

or smaller than image values. For example, for the image size

1024 x 1024 (containing 33 slices), the maximum batch height

must be less than 32 (divisible to 8) and the batch size must be

less than 1024 (divisible to 8). Patches should not be confused

with batches. Batches are the number of patches which are seen

in each step during the training. Sometimes batches are defined

as several images loaded to RAM runtime.

The second limit is associated with the disk space. Google Colab

provides a few sample datasets for the user. In this folder (60

GB), the user can load his datasets. Unfortunately, this folder

offers temporary space for datasets, and all files are deleted after

closing the notebook or the regular runout. The temporary folder

is another way to regulate the usage of common memory

resources.

To increase the space needed for the training dataset, the user

can mount his Google Drive Account to Google Colab. Google

Drive provides free 15 GT storage and thus the user can use

larger datasets. Moreover, the mounting allows the saving of the

results directly into Google Drive, and datasets are not deleted

after the notebook is closed. Unfortunately, high-quality

microscopy images (especially 3D movies) are large files. This

17

may be an issue during the training of the network and storing

the results. Fortunately, users can purchase extra storage space

and prices are quite fair.

Figure 6: Parameters of patches: size, height, and the number of

patches. The patches below were used for CARE (3D)

optimization. The first row contains the low SNR images and the

second row contains the corresponding ground truth images.

1.4.3 Evaluation of trained model

Network training must be properly done. Failing to do so, the

network predicts images poorly and generates artifacts and

hallucinations. These three components to remember about

training the network. The first thing is to understand that the

trained network performs well only if they are used on data that

are similar to the data used to train the networks. If the pretrained

network is not used correctly, it will lead to mistakes and the

generation of artifacts.

18

Second, two main components result in inappropriate training:

the quality of the training dataset (discussed in the previous

paragraph) and training parameters. If they are not chosen or

adjusted properly the trained network results in overfitting or

underfitting. Overfitted network refers to the situation when the

variance between the training and samples are high (Figure 7).

Ovefitted networks have not learned the general way to handle

images and this causes problems when the unseen images are

introduced to the overfitted network. Overfitted model results

often from too simple training data or too many epochs.

Underfitted network is the opposite of overfitting and it often

refers to the situation where the training data is so complex that

the network does not find the general way to handle them. (Moen

et al., 2019).

Figure 7. Learning curve must be not be underfit nor overfit. Blue

line describes the network learning and green triangles real-life

samples. Underfitting (left) results when the network performs too

simple results compared to real-life samples. Overfitting (right)

results when the network learns samples too well and does not

find the trend in real samples. A trained network with the correct

fit (middle) finds good balance and can predict unseen samples.

Estimation of overfitting or underfitting can be studied by training

error (loss error) and validation error (loss error). In optimal

training, the validation error should be slightly higher than the

training error. This represents the situation where training data

19

are complex enough to reach the same values as the validation

error. Moreover, validation is challenging enough to inhibit

overfitting (Figure 8).

Figure 8. Estimation of the trained network. Loss function (blue)

describes the error during the training from training images and

the loss function of validation images (orange) describes the

error from the validation images. The a-figure represents well-

balanced training data and training parameters. The b-figure

represents the overfitting problem when the training data are too

simple and the c-figure reveals the overfitting problem when

training data are too complicated.

Inappropriate training not only results in poor images but it also

may cause the network to recognize patterns that are not there

(hallucination problem, see Figure 9). For example, when a

human is looking at the clouds and sees the shapes of animals

(Belthangady and Royer, 2019). Another reason for

hallucinations is the challenging background of the training

images.

20

Figure 9. Inappropriate training data or training the network

results in unreliable segmentation. In this case the challenging

background in the input image caused the extra objects on the

edges and in the frontline of the cells. The problem may be

resolved by increasing the training data (upper row) or

preprocessing the input image (lower row). The input image in

the upper row is from DCIS.COM (ZeroCostDL4Mic) training

data. The lower was not included in further study. Ideally the

preprocessing is not needed.

Third, training the network (and preparing the training data for

training) consumes RAM memory and disk memory resources

(see cultural barriers above). This set limits the training

parameters (discussed below) and the researcher must often

adjust the training parameters of deep models to the resources

available.

1.4.4 Prediction

When the network is trained properly it is time to introduce to the

unseen data. Unlike the preparation of the training data or

training itself, the prediction phase is easy and fast. The same

21

pretrained network can be used in multiple sets of the unseen

data if their quality remains the same.

Prediction should be designed that images are easy for further

processing. For example cell ROIs provided by StarDist should

be easy to use in ImageJ for further processing. Results should

also contain the trained model (and all parameters), quality

control results and predictions as in one package (folder). One

crucial principle is that predictions are new images (for example

when images are denoised) and original images remain

unmodified.

22

2. Aims

This Master’s thesis is part of project ZeroCostDL4Mic. The

purpose of the project is to provide free tools for training and

implementation of deep learning (Unet, fnet, StarDist, N2V, and

CARE) to microscopy images in Google Colab platform for

researchers with no previous experience of deep learning

(Chamier et al., 2020). The project is a collaboration between two

research groups: Docent Guillaume Jacquemet from Cell

Migration Lab (Åbo Akademi University, Turku, Finland) and

Prof. Ricardo Henriques from HenriquesLab (UCL, London,

England).

In this thesis, I will generate user-friendly Google Colaboratory

notebooks that can be used by non-experts to train their networks

online and for free (Scientific question 1). The notebook that I will

create can be used to denoise microscopy images (Scientific

question 2) and for the segmentation of cell nuclei images

(Scientific question 3). I will use these notebooks to restore and

analyze my videos, but the final version of notebooks will be

tested by users to estimate their usability.

In this master’s thesis, we concentrate on three methods:

Content-aware Image restoration (CARE) and Noise2VOID

(N2V) for noise removal and StarDist for segmentation of cell

nucleus (object detection) from microscopy images.

The ultimate goal of the thesis is to make deep-learning tools

more accessible for users with no technical background to use,

learn, and share these methods in the field of microscopy image

analysis. The goal is split into three parts and they are explained

in the following chapters.

2.1 Objective 1- The user-friendly workflow

Implementing deep learning from scratch requires a technical

understanding of computer hardware, software, and coding.

23

Deep learning requires heavy calculation power and thus high-

cost processors, powerful RAM (virtual memory), and graphic

cards are essential. Users with no technical background might

find this to be an unnecessary burden compared to traditional

ways of analyzing images. Deep-learning approaches also begin

to be available through commercially available software, but the

license price can rarely be met by individual laboratories.

Google Colab is a free website provided by Google LCC. The site

contains a cloud-computing system and computing power

needed to perform deep learning. Google Colab has some

limitations concerning RAM and timeout, but it is a useful option

for a user who is interested in deep learning but has no

experience of programming or deep learning.

Implementing Google Colab includes several challenges.

Uploading the data to Colab might be slow and impractical and

storage space of Google Drive is limited to 15 GB. This is an

issue when microscopy images – and datasets – are large files.

Computing power is needed especially for training networks and,

thus, the RAM memory limit is an issue when restoring 3D

images. Runtime limit is 12h in Google Colab and this limits the

number of epochs (rounds) in training networks.

Objective: To create user-friendly deep learning notebooks

(object detection and image denoise) performed in the Google

Colab platform. Notebooks are created according to the literature

(N2V: Krull et al., 2018, CARE: Schmidt et al., 2018 and StarDist:

Schmidt et al., 2018). To achieve this, the main focuses are:

User-friendly interface: Generate an interface through which a

user can learn how deep learning works. The interface explains

various processes and images to illustrate the process. The data

are automatically downloaded and provided.

The control of the process: Users can train their network (patches

and network) and use the network on one of their images

(validation). A process folder is also created including

highlighted options (for example, process images in

ImageJ/Fiji).

24

Sharing the framework: Users can share their Google Colab

notebooks to showcase their research and framework for future

developers. For that, the structure of the notebook is coded as

stable as possible.

 2.3 Objective 2 - Object detection by StarDist

Cell migration is studied in multiple ways and research would

benefit from the creation of automated tracking strategies. Object

detection is a useful method for the detection of cells and cell

nuclei from microscopy images. The StarDist method utilizes the

star-convex polygon to detect nuclei boundaries via CNNs.

(Schmidt et al., 2018)

Segmentation is a crucial step in image processing because the

analysis is based on what segmentation extracts from the

background. Another challenge is how segmented clusters of cell

nuclei are separated by the StarDist network. Expected results

include proper segmentation cells from the background. After

separation, all possible cell nuclei lumps are separated properly

to achieve a reliable result.

Objective: The aim is to generate a pipeline to train StarDist to

automatically track and analyze video of migrating cells. The

pipeline is created by combining original notebooks via coding

and emphasizing the interface. Once the analysis pipeline is

established, the research group uses it to analyze their cell

migration movies.

25

2.2 Objective 3 - CARE versus N2V

The research group has an interest in studying the role of cellular

protrusions during cancer cell invasions and, especially, the role

of filopodia at cell-cell junctions. The dynamics of filopodia

between cells are imaged using structured illumination

microscopy (SIM). Unfortunately, imaging is delicate due to

bleaching and phototoxicity. Combining long-term live imaging

acquisition with deep learning would enable longer imaging.

Objective: To find optimal parameters to run CARE using Google

Colab within the limitations (see section 1.4). After that, CARE

abilities are compared to Noise2VOID to restore live imaging

data in Google Colab. Once the optimal parameters are found,

these networks are used to train and restore the research group’s

images.

26

3. Materials and Methods

3.1 Object detection

The training data for StarDist contains paired images: the original

microscopy image and corresponding mask image (see the

example in Figure 10). Two different StarDist training data were

used (Table 1). Original training data (DSB2018, Schmidt et al.

,2018) and prepared (ZeroCostDL4Mic (StarDist), Jukkala and

Jacquemet. 2020).

Figure 10: Supervised training data contains paired images from

which algorithm studies and learns. Paired training images

(original and mask image respectively) from the DCIS.DOM

training dataset (Jukkala and Jacquemet, 2020).

ZeroCostDL4Mic (StarDist) training data (Jukkala and

Jacquemet, 2020) was generated for this Master thesis. Paired

images were generated in Fiji (Schindelin et al., 2012, procedure

in Appendix 1). The image was duplicated and the segmentation

to the background and the foreground was done by adjusting the

threshold of the image. After segmentation, the particles were

calculated from duplicated images. All artifacts and partial cells

were removed. The ROI was drawn for every remaining

unmarked cell and finally, all cells in the image had ROI. Finally,

27

ROIs were labeled and the duplicated image was renamed the

same as the original image. The dataset is freely available.

DSB2018 training data (Schmidt et al., 2018) is the subset of the

stage1_train images from the Kaggle 2018 Data Science Bowl

(Ljosa et al., 2012). The dataset is freely available.

Table 1. Training datasets for the 2D StarDist method.

DCIS.COM
(ZeroCostDL4Mic)

DSB2018

Data type 72 paired microscopy
images (fluorescence)
and corresponding
masks

447 paired
microscopy images
(fluorescence) and
corresponding masks

Microscopy
data type

Fluorescence
microscopy (SiR-DNA)
and mask (manual
segmentation)

Fluorescence
microscopy images
and masks

Microscope Spinning disk confocal
microscope with a 20x
0.8 NA objective

Diverse modalities

Cell type DCIS.COM LifeAct-
RFP cells

Several cell types
and stains

File format .tif (16-bit for
fluorescence and 8
and 16-bit for the
mask images)

 .tif (8-bit for training
images and 16-bit for
the mask images)

Image size 1024x1024 (Pixel size:
634 nm)

multiple

Author(s) J. Jukkala, G.
Jacquemet. 2020

Schmidt et al. 2018
Original data: V.
Ljosa, K. L.
Sokolnicki & A. E
Carpenter (2012).

3.2 Noise2Void

The training dataset for denoising images by N2V includes one

low SNR image. The self-supervised neural network studies the

low SNR image and denoise images.

Two different training datasets (Table 2) were used for 2D N2V.

U-251 dataset (A. Stubb et al., 2020) contains 2D microscopy

images of U-251 glioma cells (paxillin-GFP tagged). A2780

28

dataset (Jacquemet, 2017) contains 3D microscopy images

of A2780 ovarian carcinoma cells, transiently expressing Lifeact-

RFP. As ideally, one needs only a single noisy image for self-

supervised N2V, there are no GT images. Both datasets are

freely available.

Table 2: Training datasets for N2V (2D and 3D)

U-251
(ZeroCostDL4Mic)

A2780
(ZeroCostDL4Mic)

Data type Microscopy images
(fluorescence)

3D microscopy
images (fluorescence)

Microscopy
data type

Fluorescence
microscopy (paxillin-
GFP)

Fluorescence
microscopy (Lifeact-
RFP)

Microscope Spinning disk confocal
microscope with a 63x
1.4 NA objective

Spinning disk confocal
microscope with a 63x
1.4 NA objective

Cell type U-251 glioma cells,
endogenously
expressing paxillin-
GFP

A2780 ovarian
carcinoma cells,
transiently expressing
Lifeact-RFP

File format .tif (16-bit) .tif (16-bit)

Image size 512x512 (Pixel size:
248 nm)

512x512x13 (Pixel
size: x,y: 195 nm , z:
500 nm)

Author(s) A. Stubb et al. 2020 G. Jacquemet (2017)

3.3 CARE

The training dataset for denoising images by CARE includes

several paired images: original image (low SNR images and

corresponding ground truth images (GT) of the original. A neuron

network studies the low SNR image and compares it to the GT

image and denoise images.

Images used for prediction were either stacked 2D or 3D images

containing variable background (Table 3). All images contained

challenging conditions such as uneven illumination, image noise,

and saturation.

29

Table 3: Training datasets for CARE (2D and 3D)

SIM.DCIS.2D
(ZeroCostDL4Mic)

SIM.DCIS.3D
(ZeroCostDL4Mic)

Data type 21 paired
microscopy images
(fluorescence, 2D) of
low and high signal-
to-noise ratio

20 paired microscopy
images (fluorescence,
3D) of low and high
signal-to-noise ratio

Microscopy
data type

Fluorescence
microscopy (Lifeact-
RFP)

Fluorescence
microscopy (Lifeact-
RFP)

Microscope Structured
Illumination
Microscopy (SIM)
with a 60x 1.42 NA
objective

Structured Illumination
Microscopy (SIM) with
a 60x 1.42 NA
objective

Cell type DCIS.COM Lifeact-
RFP

DCIS.COM Lifeact-RFP

File format .tif (32-bit) .tif (32-bit)

Image size 1024x1024 (Pixel
size: 40 nm)

1024x1024x33 (Pixel
size: x,y: 40 nm, z: 125
nm)

Author(s) G. Jacquemet
(2020)

G. Jacquemet (2020)

3.4. Notebooks

All DL methods are performed in Jupyter Notebooks (Jupyter,

2020). Jupyter is open-source software for interactive computing

containing executing, developing and executing code and

sharing results (Jupyter, 2015). All notebooks were programmed

by Python 3.7. Python is a programming language created by

The Python Software Foundation.

Google Colab is a free web-based platform provided by Google

LCC. It contains limited computing power (GPU, TPU) for deep

learning and utilizes Google Drive cloud systems. In this

environment, Jupyter notebooks are easily performed, edited,

and shared. (Colaboratory, 2020)

Our ZeroCostDL4Mic Colab notebooks were made possible

thanks to the instructions provided by the authors on how to

implement their DL networks (CARE: Weigert et al., 2018,

30

Noise2VOID: Krull et al., 2019, and StarDist: Schmidt et al.,

2018). We rewrote the code and generated a new user-friendly

workflow optimized for Google Colab. For all methods, there

were three original notebooks for data preparation, network

training, and prediction of unseen images.

31

4. Results

This Master’s thesis resulted six new notebooks: StarDist (2D

and 3D), CARE (2D and 3D), and N2V (2D and 3D). These

notebooks contain a new workflow to achieve user friendly

interface (Objection 1). StarDist notebooks perform image

segmentation for 2D and 3D microscopy images (Objection 2).

CARE notebook performs image restoration and N2V performs

denoising image and these two methods were compared to

(Objection 3).

4.1. Objective 1 - The interface of the notebook

The goal of the thesis is to introduce deep learning for new users

and thus the interface of the notebook must be simple to use but

informative. The crucial point was to find a balance between

simplicity and demonstration. The user with no previous

experience of deep learning must learn the basics to operate the

notebook. Still learning and operating the notebook must be easy

and all obstacles which may worsen the user experience must

be removed. These obstacles may be unnecessary technical

information, visible code (the code is still easily accessible if the

user wishes to see and learn how it works) odd error messages

(which does not affect the execution), or just unsuitable workflow

which causes the crashing of the notebook.

The interface was improved by the user feedback and workflow

was improved by the creators of each method. The default

workflow for StarDist, N2V, and CARE was done by Johanna

Jukkala, Lucas von Chamier, Christoph Spahn, Guillaume

Jacquemet and Romain Laine. The development of the

notebooks continues beyond this thesis.

Based on the feedback the following guidelines for the interface

were chosen: The notebook must be simple to use. All

unnecessary information (technical and visual code) is hidden

32

behind the interface and revealed if needed. All operations which

do not require any inputs for the user are combined into one cell

(for example patch formation and generation of the default

model). The number of actions is minimized.

The notebook must demonstrate how deep learning is executed.

The notebook was divided into clear sections and info for all parts

was provided. The outputs of the executions (images, values,

figures) were shown. If the notebook is shared the new users

must be able to read and understand the results easily. These

sections are:

Introduction: This section (Figure 11) describes the purpose of

this notebook, references (the original article and authors), and

the original code from authors. The chapter also includes the

creators of this notebook but highlights that the notebook is the

combination of the original notebooks and inspired by the original

code. The user is recommended to create an experiment folder

on Google Drive. This allows the easy file upload from Google

Drive to an external hard drive or other location. The premade

experiment tree helps the user to understand the input options in

the following chapters. Finally, as traditional bioscience training

does not contain information technology studies, this chapter

describes what is the notebook text cell, code cell, and how to

execute and modify the notebook.

Figure 11. The general view of the StarDist notebook. On the

right is table of contents. The latest version can be found in

GitHub (Chamier et al., ZeroCostDL4Mic. 2020).

33

Preparations: Before the actual use of the method the notebook

must be prepared (Figure 12). First, the user selects the

processing unit (most often GPU) as it does not always default in

Colab. After that, the user mounts his Google Drive to the

notebook. Because the mounting allows access to all folders in

the user’s account, the user should mount only the trusted

notebooks. Finally, the notebook requires certain libraries and

modules to perform the notebook. The chapter does not require

any input for the user, but it is advisable to specify each library in

the code. This chapter may also contain the cell which enables

Tensorflow 1. If TensorFlow 1 is upgraded in the future, it may

need an extra library and objects.

Figure 12. Mounting Google Drive and installing dependencies.

Screenshot from the StarDist 2D notebook. The latest version

can be found in GitHub (Chamier et al., ZeroCostDL4Mic. 2020).

Selecting parameters and path to the folders: When the notebook

is ready the user can input training parameters and file paths to

the training dataset (Figure 13). Depending on the method there

are several inputs and if the user is unsure how to input, the

default parameters are provided. The execution of the cell prints

the size and resolution of images and output a few sample

images from the training images.

34

Figure 13. The sample images from the training images. Preview

images not only visualize them but also informs that training data

is succefully loaded. Screenshot from the StarDist 2D notebook.

The latest version can be found in GitHub (Chamier et al.,

ZeroCostDL4Mic. 2020).

Data preparations and model setup:

In this section, training images are generated to the training

dataset. Images are divided into patches and later splitted to

training patches and validation patches according to the

parameters input in above. The general rule is to use 10%

patches for validation. The original training images remain

unmodified and the training dataset is the separative object. Also,

the default model is generated. The output contains a training

dataset and a default model (Figure 14). Few examples of

patches are printed to ensure proper data preparation. This

section requires no special actions from the user.

35

Figure 14. The training dataset and default model is generated in

one cell as they do not require any inputs. Screenshot from the

StarDist 2D notebook. The latest version can be found in GitHub

(Chamier et al., ZeroCostDL4Mic. 2020).

Training the network: Training the network is usually the most

time-consuming part of the method and takes from minutes to

hours. The training process is shown and the intermediate results

per epoch are printed (Figure 15). During the training, the results

are saved to the model. This section requires no special actions

from the user. The training dataset remains unmodified and the

trained model is saved into the results folder.

Figure 15. The training results are printed and saved to the

results folder. Screenshot from the StarDist 2D notebook. The

latest version can be found in GitHub (Chamier et al.,

ZeroCostDL4Mic. 2020).

36

Evaluation of the training: The quality of the trained network is

estimated by comparing the training error and validation error

during the training (Figure 16). The learning curves are presented

in the figure for the estimation. If the user is not content with the

results, the network can be retrained by modifying the training

parameters. The user can use a pretrained model if there is any.

Figure 16. The comparison of loss error and validation error.

Screenshot from the StarDist 2D notebook. The latest version

can be found in Github (Chamier et al., ZeroCostDL4Mic. 2020).

The quality control (QC) tests the trained model on the few

unseen images. For the evaluation of StarDist the intersection

over union (IOU) is used for CARE and N2V the Structural

Similarity Index (SSIM), Root Squared Error (RSE) were used

and added to N2V, Peak signal-to-noise ratio (PSNR) was used

(Figure 17 and 18). The guidelines that these values mean and

what is desirable were explained for the users who are not

familiar with these metrics. The results were visualized as they

demonstrate the difference between the resulting image and

ground truth image. This helps the user spot challenging parts of

the image and may help improve the image quality in the future.

The implementation of QC was not done by Johanna Jukkala.

37

Figure 17. The quality control for StarDist method. All images

(input, ground truth, prediction) are easily copied for

presentation. Screenshot from the StarDist 2D notebook. The

implementation of QC was not done by Johanna Jukkala. The

latest version can be found in GitHub (Chamier et al.,

ZeroCostDL4Mic. 2020).

Figure 18. The quality control for CARE method is visualized to

help user to understand the metrics and presenting results user-

friendly. Upper row contains raw images of target, source and

prediction image. Second row demonstrate visually the

difference between target ja prediction images via SSIM and on

38

the lowest row same thing but via NMRSE. Screenshot from the

CARE 3D notebook. The implementation of QC was not done by

Johanna Jukkala. The latest version can be found in Github

(Chamier et al., ZeroCostDL4Mic. 2020).

Unseen data and saving the results: In the final chapter, the

trained network is used to predict unseen images (Figure 19).

The sample results are printed to ensure proper execution.

Finally, all results (images, ROIs) are saved into Google Drive.

The original unseen images remain unmodified.

Figure 19. The trained network is executed and the unseen

images are used. Screenshot from the StarDist 2D notebook.

The latest version can be found in GitHub (Chamier et al.,

ZeroCostDL4Mic. 2020).

The original code is modified to ensure fluent execution of the

notebook and then it is notated as the inspiration of the original

code. Because some users might find the code visually

intimidating the actual code was hidden behind the interface. If

the user is interested in modifying the notebook, the code can be

revealed by double-clicking the cell.

Sometimes the notebook crashes unexpectedly. To ease the

troubleshooting the code cells are programmed to print results of

each code cell. For example, the proper creation of batches is

ensured by printing a few batch images. Failing to do so, the cell

39

prints error messages and possible repair advice are printed.

Overall, the development of all workflows was continued beyond

this thesis.

4.2. Objective 2 - Object segmentation: the effect

of the training data

Object 2 resulted in two StarDist notebooks for image

segmentation (2D and 3D microscopy images). The optimal

parameters for two training data were studied. Overall, the quality

of the training data affects greatly the training results.

Google Colab provides limited memory resources and it has a

time limit. This may be challenging if the user does not

understand how to optimize the training process. Thus, the effect

of the processing unit (GPU and TPU), patch size, and the

number of steps and epochs were studied.

To prevent the overfitted model the user can improve training

results by increasing the patch size. Unfortunately, it consumes

Colab resources. Thus, the effect of patch size was studied for

both GPU and TPU. As expected, larger patch size improves the

trained model (until it starts to overfit) and results in better

detection (Figure 20).

Overall, GPU performs better than TPU as the TPU reaches the

time limit much sooner than GPU. As mentioned earlier, TPU is

recommended for long-term training and our studies seem to

agree with this. TPU consumes less memory capacity than GPU

but the time limit in Google Colab becomes the problem. Though

one must remember that training data is quite small (only 72

images) and TPU may perform better with larger training data

and if there is no time limit. Moreover, the memory resource is

not quarantined and thus the actual runout may happen earlier.

This means that the memory usage should be below 10 Gbit to

prevent the runout.

40

Figure 20. TPU process larger data better than GPU but due to

time limit and memory limit in Colab, GPU is more effective than

TPU. Time limit (the upper image) is exceeded when TPU

(green) was used and it is not suitable to use in these restrictions.

GPU (blue) consumes more memory capacity than TPU but

stays below the 10 Gbit (the lower image). The training

parameters were the same in all studies: 72 training images (10%

for the validation) and 50 steps/200 epochs. The trained model

was overfitted when the patch size was 32. The training time was

calculated based on ms/steps as the time limit was exceeded for

TPU (patch size 512 and 1024) and memory consumption was

not recorded.

0

2

4

6

8

10

12

32 64 128 256 512 1024

Ti
m

e
(h

)

Patch Size (pixels)

Time

GPU

TPU

0

2

4

6

8

10

12

32 64 128 256 512 1024

P
ea

k
M

em
o

ry
 (

G
b

it
)

Patch Size (pixels)

Peak memory

TPU

GPU

41

Overall increasing the patch size improved IoU value (1.0 is

perfect). The IoU was slightly better for GPU than TPU (Figure

21). The reason for this remains unknown, but again TPU is

meant to train large training datasets. Nevertheless, it is safe to

say that GPU is the best option for Google Colab.

Figure 21. Increasing the patch size and using GPU (blue) results

in the best IoU values but only slightly improvement over TPU

(green). P values for each patch sizes (32, 64, 128 and 256) were

0.0038, 0.7721, 0.8965, and 0.3341 respectively. The training

parameters were the same in all studies: 72 training images (10%

for the validation) and 50 steps/200 epochs. The trained model

was overfitted when the patch size was 32.

The effect of steps and epochs were studied. The patch size of

256 pixels was chosen as it has shown good IoU in Figure 22.

The number of epochs increases the training time but improves

IoU values. For this training dataset 50 steps and 200 epochs

were optimal parameters to train the model.

0

1

32 64 128 256 512 1024

In
te

rs
ec

ti
o

n
 O

ve
r

U
n

io
n

Patch Size (Pixels)

Effect of patch size

GPU

TPU

42

Figure 22. IoU varies little above 50 steps and 200 epochs. The

training parameters were the same in all studies: 72 training

images (10% for the validation) and patch size 256 pixels. GPU

was also used in all studies.

Finally, the parameters were tested on the original StarDist

training data (DBS2018, see Table 1). The trained model

detected cells poorly when the DBS2018 dataset was used for

the training (Figure 23 and Figure 24). There may be several

reasons for this. DBS2018 contains 447 images that have

different resolutions, sizes, and magnification. This may make

training data too complicated for our images and the trained

model makes mistakes. Our DCIS.COM contains 72 images with

the same resolution, size, and magnification and are similar to

the unseen images. This makes it suitable and this is shown as

better IoU values. However, it is important to understand that this

study does not label DSB2018 as poor training data. It is just not

suitable for this study.

0

1

Number of Epochs

In
te

rs
ec

ti
o

n
 o

ve
r

U
n

io
n

Effect of steps and epochs

50s/100e

50s/200e

50s/400e

100s/200e

100s/400e

43

Figure 23. The training data affects the training quality.

DCIS.COM (dark blue) training data results in a better model.

DSB2018 (light blue) training data may be too complicated for

the study as it contains a large variety of cell images. For all sets

(numbert of epochs: 100, 200 and 400) P value was less than

0.05. The training parameters were the same in all studies: 72

training images (10% for the validation), patch size 256 pixels

and 50 steps, and 200 epochs. N= 13, data is shown as average

plus minus SD.

Figure 24. Unsuitable training data may result poor trained

model. The model trained on DBS2018 (far right) makes several

mistakes compared to DCIS.COM (middle right) when input

image (far left) was used. IoU was for DCIS.COM and DBS2018

training datasets were 0.850 and 0.690 respectively. The training

parameters were the same in all studies: 72 training images (10%

0

1

100 200 400

In
te

rs
ec

ti
o

n
 o

ve
r

U
n

io
n

Number of Epochs

Training data

DCIS.COM

DBS2018

44

for the validation), patch size 256 pixels and 50 steps, and 200

epochs.

Overall, the selection of training data is a crucial step. Even if

DSB2018 is the original training data for cell detection, it failed to

train the proper model for our images. Therefore, the user is

strongly encouraged to generate their own training data. Failing

to do so the trained model makes mistakes. Not because the

training data is poor but not suitable for the user’s images. But if

the user wishes to use premade training data the user should pay

attention to the contained training data and decide is it suitable

for his images.

The same awareness is necessary when pretrained models

(other than own) are used. Training may take several hours and

optimize may cause the runout of Google Colab resources, which

consumes more time. As for using premade training data, the

pretrained models are not unequivocally poor. Still, they are a

riskier choice. They have not only unknown training abilities, but

they have also been trained with unknown training data. This

makes them even more risky choices than premade training

data.

As for the conclusion, before the user starts training the model,

the training data must be chosen by properties of the unseen

images which the user plans to use in his research. The trained

network performs well if the unseen images and training images

are similar. To avoid poorly trained models, the user is

encouraged to generate his own training data and train his own

model instead of using the premade training data or pretrained

models. Generating the training data consumes time but it must

be done once. Also training the model takes time but after

training the model consumes time but a well-trained model

processes the unseen images quickly.

Moreover, in the Google Colab environment, the optimal use of

StarDist for cell detection is to use GPU instead of TPU and using

the largest patch size possible (within the GPU RAM). When

45

optimizing the training parameters the user may start with the

small patch sizes and the low number of epochs to save memory

resources and after that increase them to maximum to reach the

optimal parameters for his training data.

4.3 Objective 3 - CARE versus N2V

Objection 3 resulted two CARE notebooks for image restoration

and two N2V notebooks for denoising images (2D and 3D

microscopy images). The optimal parameters for two training

data were studied. Overall, the quality of the training data affects

greatly to the training results. Patch size limits the use of

notebooks as memory usage is increasing along the patch size.

CARE performs slightly better than N2V when the training data

contains complex images. Both methods are useful and suits for

different situations.

CARE 3D

Patch size affects greatly to the training results generally the

larger patch size improves the results. The effect of the patch

size was studied for both training time and peak memory as they

are the main restrictions in Colab. The training time is not a

relevant issue if the number of epochs remains low (Figure 25).

Memory usage is increased significantly as the patch size and

number of patches are increased. To improve the training results

the patch size should be increased but memory capacity is easily

exceeded. As the memory capacity is not stable in Colab, this

causes the main challenge for the training.

46

Figure 25. Training time increases little when patch size is higher.

The real issue is memory usage and peak memory increases

rapidly as patch size increases. The batch size (how many

patches are introduced at the same time to the training) were 100

(blue), 200 (green) and 400 (yellow). The training parameters in

all experiments were: batch size 16, 50 steps and 100 epochs.

The quality control shows little difference between the

experiments even if it improves moderately the results (Figure

26). As all the models became easily overfitted it implies that the

size of the training dataset is too small. At this point it was not

possible to gain extra images and thus results remained the

same. CARE improved the image quality (Figure 27) by removing

noise but left the fine parts smudged (Figure 28).

Figure 26. Variation between the quality control results is low and

maybe caused by the small size of the used training data. P value

47

was not calculated due to lack of images. The training

parameters in all experiments were: batch size 16, 50 steps and

100 epochs.

Figure 27. Detailed quality control of the one experiment (the blue

bar in the Figure 26). Overall, the quality of the input image is

improved in SSIM map (image becomes lighter in “Target vs

Prediction” part) but not much in RSE map (image should be

darker in “Target vs Prediction” part). The training parameters:

patch size: 128 x 128 pixels, path height 8 pixels, number of

patches per image: 200, number of patches total 4000, batch size

16, 50 steps and 100 epochs.

48

Figure 28. CARE (middle) improves the image quality from the

input image (left) but smudges the fine parts of the image

compared to the GT image (right). Reason for this may be small

training data size. See the training parameters in Figure 26.

CARE 2D

The size of the training data can be increased by splitting the

training data to patches. As previously is shown this may cause

the exceed of the memory capacity of Colab. Another way to

improve results is to create augmented training data where

images are created by rotating and mirroring the images. In the

Figure 29 show that again larger patch size affects little to the

training time but greatly to the peak memory. Augmented training

data consumed less the memory capacity and larger patch sizes

were able to use.

49

Figure 29. Training time increases little when patch size is higher.

The real issue is memory usage and peak memory increases

rapidly as patch size increases. Augmented data (20 images

augmented to 630 images, the green bar) consumes less

memory than patches (20 images - > 4200 patches, the blue bar).

Memory limit exceeded when patch size was 512 x 512 pixels

and patches were used. The training parameters in all

experiments were: batch size 16, 50 steps and 100 epochs.

Augmentation improves image quality only moderately even the

patch size was able to be increased (Figure 30). The use of

patches from augmented data was not possible as it exceeded

the memory limit all the time. As in the case of 3D images CARE

improved the image quality (Figure 31) by removing noise but left

the fine parts smudged (Figure 32).

50

Figure 30. Variation between the quality control results (mSSIM,

NRMSE and PSNR) is low and maybe caused by the small size

of the used training data. Augmented training data allows to use

of larger patch size but it does not improve the results.

Augmented data (yellow) contained 20 images augmented to

630 images (n = 630) and 200 patches per image (blue)

contained 20 images converted to 4200 patches (n=4200). Due

to lack of images p values was not calculated. The training

parameters in all experiments were: batch size 16, 50 steps and

100 epochs.

51

Figure 31. Detailed quality control of the one experiment (the blue

bar in the Figure 30). The quality of the input image is improved

but not much for both SSM or RSE maps. The training

parameters: patch size: 256 x 256 pixels, path height 8 pixels,

number of patches per image: 200, number of patches total

4200, batch size 16, 50 steps and 100 epochs.

52

Figure 32. CARE (middle) improves the image quality from the

input image (left) but smudges the fine parts of the image

compared to the GT image (right). Reason for this may be small

training data size. See the training parameters in Figure 30.

N2V 3D

The training data of N2V contains one microscopy image. Thus,

the effect of the patch size was studied. In all studies, the training

time and the peak memory were below the limits (Figure 33). Still

there the studies had to be done a few times as the Google Colab

may allocate resources differently and thus the training could

take longer time or memory was runout. Unfortunately, the

trained model became easily overfitted (Figure 34).

A. Krull mentions that N2V struggles to denoise high-frequency

details like isolated bright pixels. The training data did not contain

these kinds of areas but N2V performed well on the bright areas.

These areas are surrounded by lower frequency pixels and thus

the gap between the bright area and the environment was not

large.

53

Figure 33. The training time (green) and the peak memory (blue)

were below the time and memory limits but the model (A, C, and

F) became overfitted quite easily.

Figure 34. Images from the study E (Figure 33) N2V removes

noise from the image but seems to smudge thicker noise areas.

The bright areas are shown as normal. The training parameters:

25 steps, 100 epochs, patch size 64 x 64 pixels (total 1536

patches) number of batches 64.

54

N2V 2D

The effect of patch size and batch size (number of patches that

are processed at the same time) were studied. The time limit and

memory limit were not an issue but the learning curve showed

that this model becomes overfitted quite easily (Figure 35). Still,

the model denoise images nicely (Figure 36). Quality control was

not done due to a lack of ground truth images.

Figure 35. The training time (green) and the peak memory (blue)

were below the limits but the model (D-F) became overfitted quite

easily.

55

Figure 36. Unseen images from the B- study and N2V. The

brightness/contrast values in denoised images were equalized to

the input images to demonstrate the difference. The training

parameters: 50 steps, 200 epochs, patch size 64 x 64 pixels

(total 512 patches) number of batches 64.

N2V versus CARE

Finally, CARE was compared to N2V. The ideal training data

would have been from CARE studies. Unfortunately, the training

data from CARE studies was not sufficient as the honeycomb

pattern in the images (caused by SIM imaging acquisition)

prevents the use of N2V. The training data from StarDist studies

contains masked images that can be used for CARE.

CARE improves images better than N2V (Figure 37). Both SSIM

and NRMSE are very good compared to the input image.

Altogether both CARE and N2V improve the images.

56

Figure 37. CARE improves the input image better than N2V for

both mSSIM and NRMSE. The quality control of E-study (above,

middle). The training parameters were for CARE: patch size 128,

number of patches total 6000, 20 steps and 200 epochs and for

N2V: patch size 128 number of patches total 6000, 50 steps, and

100 epochs.

In conclusion, CARE results generally better images but the

training requires large training data. 3D images especially

become the problem as the memory limit of Google Colab

exceeds easily. Thus, increasing the training data to avoid the

overfitted model is challenging and the use of CARE 3D is more

limited in Colab than N2V. High-quality ground truth images may

not be available for the researcher. The samples may be too

fragile for long-time imaging or the number of images may be

limited. Or the availability of the microscope may be the reason

for the small number of images. In these cases, N2V is the only

option and it can result in good results as shown above with 2D

images. Based on these studies it seems that the N2V model

becomes more easily overfitted than the CARE model. The

reason for this may be that CARE is supervised and N2V self-

supervised.

Still, it is not sensible to decide whether CARE or N2V is the

method of choice. They both have challenges and advantages,

and they should think of the tools for the proper situation. Also, if

57

the training data allows the can to be used as the comparative

methods and this increases the value of the research. All this

requires that the researcher understands the importance of the

quality of the training data and how it behaves in certain

parameters. Failing to do so, training results overfitted models

and the model makes mistakes. Thus, the use of pretrained

models and premade training data are risky as they are often

designed for specific problems that may differ greatly.

For researchers who wish to use deep learning in his research,

both CARE and N2V are a good method to work. The greatest

work is to train the model but when done accordingly, the model

processes the unseen images fast and intensifies the image

process and analysis.

58

5. Discussion

Modern research contains complex data and processing is time

consuming. Deep learning is one attempt to help researcher by

analyzing tedious and time consuming data. Unfortunately, tools

of deep learning may be expensive and requires often previous

knowledge. Free tools for deep learning are a tempting idea

when funding is limited or researcher wish to learn how deep

learning works generally in his or her data.

The key components to create free deep learning tool are free

access to GPU, availability to train own network, free storage and

user-friendly program. The balancing of these aspects is

inevitable and every deep learning tool has found their own.

ImageJ has the free plugin DeepImageJ but it utilizes the user's

CPU which is slow. DeepImageJ offers plenty of pretrained

networks to use but pretrained networks are suitable only if the

user knows how they are trained and what is used training data.

Paid services like Amazon SageMaker offer vast resources for

deep learning but require the user to learn a new program and

invest in the product.

ZeroCostDL4Mic succeeds to be a free, open source and easily

available tool. Free access to GPU is the most important asset

as it is the costliest part in the deep learning process. Google

Account and Google Drive are familiar for everyone and it makes

distribution of results easy. ZeroCostDL4Mic is the open-source

tool and it allows the user to see how deep learning is performed

and the user can learn the programming behind the interface if

the user is interested. The ability to train your own network allows

the user to understand the process and what elements affect it.

This is along the free access to GPU, one of the most important

assets of ZeroCostDL4Mic. Prediction is the fast part of the

process and proper training must be done only once.

Obviously ZeroCostDL4Mic has challenges as the other deep

learning tools. Being the free tool means limited resources (time

limit, memory peak) compared to the paid services. This

59

limitations inhibits the use of TPU at the moment. However, these

challenges may be solved by optimizing the training properties to

decrease the training time and need of GPU. This allows efficient

small-scale use of deep learning for researchers in the

biomedical field. Another challenge of ZeroCostDL4Mic is to

become outdated. StarDist is performed by Tensorflow 1 which

is to be replaced by Tensorflow 2. But currently StarDist does not

run with Tensorflow 2 until it is reprogrammed by the original

creators. But it is likely to happen as StarDist has proven to be

useful to detect cells.

The difference between CARE and N2V favors CARE method

but both are useful. If user can create proper training data CARE

method is better choice but it amount of high quality images is

scarce (needed as target images in training data) N2V the

method of choice. User must also reserve images for statistics

and in this thesis calculation of p values was not always possible.

The next steps for ZeroCostDL4Mic could be to introduce new

image analysis aspects like add cell calculations (number,

shape) to the StarDist and offer thus increase the options to use

the results of object detection. In addition to CARE, N2V and

StarDist the new image processing options could be added to

ZeroCostDL4Mic. It is important to encourage the users to send

constant feedback about bugs and possible suggestions for new

tools to be included to ZeroCostDL4Mic. As the memory limit is

the challenge in Colab the process should be improved to less

memory consuming process as possible.

The thesis project was conducted and thesis written in 2020. The

project was published in Nature Communications (Chamier et al.,

2021) and the project and affiliated notebooks are found from:

https://github.com/HenriquesLab/ZeroCostDL4Mic

60

6. Conclusion

Deep learning is a powerful tool for denoising images and detects

cells from microscopy images. If properly used, deep learning

allows us to process and analyze large datasets which would be

normally time-consuming. The main challenges are unfamiliar

technology for researchers, preparing the suitable training

dataset and limitations of free resources.

Google Colab provides an easy and free way to introduce deep

learning. Google Colab has limitations like memory limit and for

massive usage of deep learning requires ultimately to invest in

the computer hardware. Hopefully, the user-friendly platforms

and notebooks (StarDist, CARE and N2V) encourage the

researchers in the medical and biological areas to harness the

power of computing and boost their research.

The Master’s thesis is the part of project ZeroCostDL4Mic which

was a collaboration of two research groups: Cell Migration

research group (Docent Guillaume Jacquemet) at Åbo Akademi

University and The Henriques lab (Professor Ricardo Henriques)

at University College London in England. The project and

affiliated notebooks are found from:

https://github.com/HenriquesLab/ZeroCostDL4Mic

https://github.com/HenriquesLab/ZeroCostDL4Mic

61

7. Acknowledgments

I would like to thank Docent Guillaume Jacquemet for supervising

this project and the responsible Professor Diana Toivola and

Coordinators Raili Kronström and Joanna Pylvänäinen in Åbo

Akademi University. I would like to thank Professor Ricardo

Henriques, Dr. Romain Laine, and PhD Student Lucas Von

Chamier from HenriguesLab for the collaboration project. I would

like to thank Martina Lerche, Christoph Spahn, and Pieta Mattila

for the testing of notebooks and valuable feedback. I would like

to thank my family, friends and fellow students of the BIMA 2018

program for their support during the challenging time of the

coronavirus epidemic in 2020.

62

8. References

Abadi M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen,, C. Citro, G.S. Corrado,

A. Davis, J. Dean, M. Devin, et al. 2015. Large-Scale Machine Learning on

Heterogeneous Distributed Systems. https://arxiv.org/pdf/1603.04467.pdf

Angermueller, C., T. Pärnamaa, I. Parts, and O. Stegle. 2016. Deep learning

for computational biology. Mol Syst Biol. 29;12(7):878.

Batson, J. and L. Royer. 2019. Noise2Self: Blind Denoising by Self-Supervision.

arXiv:1901.11365 (Checked: 1.11.2019)

Belthangady, C., and L. A. Royer. 2019. Applications, promises, and pitfalls of

deep learning for fluorescence image reconstruction. Nature Methods. 16:1215-

1225.

Carneiro, T., R. V. Medeiros Da NóBrega, T. Nepomuceno, G. Bian, V. H. C.

De Albuquerque, and P. P. R. Filho. 2018. Performance Analysis of Google

Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE

Access. 6:61677-61685.

von Chamier L., R.F. Laine, J. Jukkala, C. Spahn, D. Krentzel, E. Nehme, M.

Lerche, S. Hernández-Pérez, P.K. Mattila, E. Karinou, et al. 2021.

Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat

Commun. Apr 15;12(1):2276.

von Chamier, L., J. Jukkala, C. Spahn, M. Lerche, S. Hernández-Pérez, P. K.

Mattila, E. Karinou, S. Holden, A. C. Solak., A. Krull, et al. 2020.

ZeroCostDL4Mic: an open platform to simplify access and use of Deep-

Learning in Microscopy. bioRxiv preprint

doi: https://www.biorxiv.org/content/10.1101/2020.03.20.000133v1

ZeroCostDL4Mic - Exploiting Google Colab to develop a free and open-source

toolbox for Deep-Learning in microscopy. (GitHub)

https://github.com/HenriquesLab/ZeroCostDL4Mic (Checked 01.04.2020)

https://arxiv.org/pdf/1603.04467.pdf
https://www.biorxiv.org/content/10.1101/2020.03.20.000133v1
https://github.com/HenriquesLab/ZeroCostDL4Mic

63

von Chamier, L., R. F. Laine, and R. Henriques. 2019. Artificial intelligence for

microscopy: what you should know. Biochemical Society Transactions.

47:1029–1040.

Chen, C. L, A. Mahjoubfar, L-C. Tai, I. K. Blaby, A. Huang, K. R. Niazi, and B.

Jalali. 2016. Deep Learning in Label-free Cell Classification. Nature - Scientific

Reports. 6:21471.

Colaboratory - Frequently Asked Questions

https://research.google.com/colaboratory/faq.html (checked 04.02.2020)

Editorial policies. 2020. Nature Research. https://www.nature.com/nature-

research/editorial-policies/reporting-standards (Checked 01.04.2020)

DeepImageJ. A user-friendly plugin to run deep learning models in ImageJ.

2020. https://deepimagej.github.io/deepimagej/ (Checked 27.6.2020)

Fang, L., F. Monroe, S. Weiser Novak, L. Kirk, C. R. Schiavon, S. B. Yu, T.

Zhang, M. Wu, Kyle Kastner, et al. 2019. Deep Learning-Based Point-Scanning

Super-Resolution Imaging. doi: https://doi.org/10.1101/740548

Google Cloud. Cloud Tensor Processing Units (TPUs). 2020.

https://cloud.google.com/tpu/docs/tpus (Checked 10.04.2020)

Google Colab. FAQ. 2020. https://research.google.com/colaboratory/faq.html

(Checked 25.6.2020)

Jacquemet, G. 2017. ZeroCostDL4Mic - Noise2Void (3D) example training and

test dataset. https://zenodo.org/record/3713326#.Xsmt02gzbIV (Checked

10.05.2020)

Jupyter. The Jupyter Notebook - Introduction. 2015. https://jupyter-

notebook.readthedocs.io/en/stable/notebook.html (Checked 10.05.2020)

https://research.google.com/colaboratory/faq.html
https://www.nature.com/nature-research/editorial-policies/reporting-standards
https://www.nature.com/nature-research/editorial-policies/reporting-standards
https://deepimagej.github.io/deepimagej/
https://doi.org/10.1101/740548
https://cloud.google.com/tpu/docs/tpus
https://research.google.com/colaboratory/faq.html
https://zenodo.org/record/3713326#.Xsmt02gzbIV
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html

64

Weigert, M., U. Schmidt, T. Boothe, A. Müller, A. Dibrov, A. Jain, B. Wilhelm,

D. Schmidt, C. Broaddus, S. Culle, et al. 2018. Content-aware image

restoration: pushing the limits of fluorescence microscopy. Nature Methods.

volume 15:1090–1097.

Jukkala, J., and G. Jacquemet. 2020. ZeroCostDL4Mic - StarDist example

training and test dataset. https://zenodo.org/record/3715492#.Xq8LZagzbIW

(Checked 10.05.2020)

Krull, A., T-O. Buchholz, and F. Jug. 2019. Noise2Void - Learning Denoising

from Single Noisy Images. arXiv:1811.10980.

https://arxiv.org/pdf/1811.10980.pdf

Kumar, C. 2018 Artificial Intelligence: Definition, Types, Examples,

Technologies. Medium. Aug 31.

https://medium.com/@chethankumargn/artificial-intelligence-definition-types-

examplestechnologies-962ea75c7b9b (Web article, Checked: 31.10.2019)

Kraus, O.Z., B.T. Grys, J. Ba, Y. Chong, B.J. Frey, C. Boone, and B.J. Andrews.

2017. Automated analysis of high content microscopy data with deep learning.

Molecular Systems Biology. 13:924.

Ljosa, V., K. L. Sokolnicki, and A. E. 2012. Carpenter. Annotated high-

throughput microscopy image sets for validation. Nature Methods. 9:637.

.

Moen, E., D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van Valen. 2019.

Deep learning for cellular image analysis. Nature Methods. 16:1233–1246.

Oppermann, A. 2019. What is Deep Learning and How does it work?. Towards

to Datascience. Nov 12. https://towardsdatascience.com/what-is-deep-

learning-and-how-does-it-work-2ce44bb692ac (Web article, Checked

01.04.2020)

Ounkomol, C., S. Seshamani, and M.M. Maleckar. 2018. Label-free prediction

of three-dimensional fluorescence images from transmitted-light microscopy.

Nat Methods. 15:917–920.

https://zenodo.org/record/3715492#.Xq8LZagzbIW
https://arxiv.org/pdf/1811.10980.pdf
https://arxiv.org/pdf/1811.10980.pdf
https://medium.com/@chethankumargn/artificial-intelligence-definition-types-examples-technologies-962ea75c7b9b
https://medium.com/@chethankumargn/artificial-intelligence-definition-types-examples-technologies-962ea75c7b9b
https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac
https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac

65

Richmond, R., A. Payne-Tobin Jost, T. Lambert, J. Waters, and H. Elliott. 2017.

DeadNet: Identifying Phototoxicity from Label-free Microscopy Images of Cells

using Deep ConvNets. arXiv:1701.06109

Ronneberger, O., P. Fischer, and T. Brox. 2015. U-Net: Convolutional Networks

for Biomedical Image Segmentation. Medical Image Computing and Computer-

Assisted Intervention (MICCAI). Springer, LNCS. 9351:234-241.

Salciccioli, J. D., Y. Crutain, M. Komorowski, and D. C. Marshall. 2016.

Sensitivity Analysis and Model Validation. Secondary Analysis of Electronic

Health Records | Sensitivity. Springer, Cham. pp 263-271.

Schindelin, J., C.T. Rueden, M.C. Hiner, and K. W. Eliceir. 2015. The ImageJ

ecosystem: An open platform for biomedical image analysis. Molecular

Reproduction and Development. 82:518–529.

Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,

S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al. 2012. Fiji: an open-

source platform for biological-image analysis. Nat Methods. 9:676–682.

Schmidt, U., M. Weigert, C. Broaddus, and G. Myers. 2018. Cell Detection with

Star-convex Polygons. 2017. Lecture Notes in Computer Science book series

(LNCS, volume 1071).

Stubb, A., G. Jacquemet, and J Ivaska. 2020. ZeroCostDL4Mic - Noise2Void

(2D) example training and test dataset.

https://zenodo.org/record/3713315#.XrjdJKgzbIV (Checked 10.05.2020)

Yang, W., X. Zhang, Y. Tian, W. Wang, and J-H. Xue. 2018. Deep Learning for

Single Image Super-Resolution: A Brief Review. arXiv:1808.03344

Yao, K., Rochman, N. D., and Sun, S. X. 2019. Cell Type Classification and

Unsupervised Morphological Phenotyping From Low-Resolution Images Using

Deep Learning. Scientific Reports. 9:13467.

https://arxiv.org/abs/1701.06109
http://onlinelibrary.wiley.com/doi/10.1002/mrd.22489/full
http://onlinelibrary.wiley.com/doi/10.1002/mrd.22489/full
https://zenodo.org/record/3713315#.XrjdJKgzbIV

66

APPENDIX 1: Creating training dataset for StarDist in

ImageJ

Original paper used for dataset training:

Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene

Myers.Cell Detection with Star-convex Polygons. International

Conference on Medical Image Computing and Computer-

Assisted Intervention (MICCAI), Granada, Spain, September

2018. https://arxiv.org/abs/1806.03535

Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and

Gene Myers. Star-convex Polyhedra for 3D Object Detection and

Segmentation in Microscopy. arXiv, 2019.

https://arxiv.org/abs/1908.03636

GitHub: https://github.com/mpicbg-csbd/StarDist

Steps to follow:

1. Create the following folder tree.

2. Select 20-40 images for training networks. Choose images that

represent a general situation and save them into images-folder

in tiff-format.

https://arxiv.org/abs/1806.03535
https://arxiv.org/abs/1806.03535
https://arxiv.org/abs/1908.03636
https://arxiv.org/abs/1908.03636
https://arxiv.org/abs/1908.03636
https://github.com/mpicbg-csbd/stardist

67

image 1.tiff image 2.tiff

3. Create the mask for the image

3.1 Open the first image from images - folder. Adjust the

threshold (Image → Adjust → Threshold) using Huang method

(or other suitable). Make sure you catch all cell nuclei.

68

3.3 Create ROIs (Analyze → Analyze Particles)

3.4 Adjust the brightness (Image → Adjust →

Contrast/Brightness) lowering the Maximum value to see all cells

in the image.

3.5 Remove all artifacts and non-accurate ROIs from the

image. You may have to remove multiple ROIs to generate

quality training dataset.

69

3.6 Draw ROIs for unlabeled nuclei with a drawing tool. Finally,

press the t-letter to identify it. Draw ROI to all nuclei.

70

Also, include the just divided cells.

3.7 Fill ROIs to create mask (Plugins → LOCI → ROI map).

3.8 Check the mask. If two nuclei are merged remove the ROI in

question and draw a new one. Fill ROIs again.

 →

71

3.9 Save the mask with the same name as the corresponding

image in tiff-format.

image 1.tiff (in images- folder) image 1.tiff (in masks- folder)

3.10. Save the ROI set (identify image in naming)

3.11 Create the mask for every image by repeating 3.1-3.10

