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Abstract: Combining microscopy image acquisition and deep 

learning improves image processing and analytics. However, 

deep learning requires knowledge of information technology and 

expensive hardware. Also, proper training of the network is 

essential for the successful prediction of unseen images, and 

understanding the limits of network training is important. The aim 

of this Master’s thesis is to make free deep learning tools 

accessible for users to use, learn and share these methods in the 

field of microscopy image analysis. We created user-friendly 

Google Colaboratory notebooks for microscopy image 

segmentation (StarDist), restoration (CARE), and denoising 

(N2V). These notebooks are an easy and free introduction to 

deep learning but the limited Graphical Processing Unit (GPU) 

provided inhibits large-scale use. This Master’s thesis is a part of 

a collaboration project called ZeroCostDL4Mic. 

 

KEYWORDS: Deep Learning, Convolutional Neural Networks, 

Content-aware image Restoration, Noise2VOID, StarDist  



 

LIST OF ABBREVIATIONS  

  

AI    =  Artificial Intelligence 

CARE  =  Content-aware Image restoration 

CNN  =  Convolution neural networks 

CPU  = Central Processing Unit 

DL   =  Deep Learning 

GPU =                   Graphical Processing Unit 

MIP =                   Maximum Intensity Projection 

ML  = Machine Learning 

N2V  =  Noise2VOID 

NN  = Neural networks 

NRMSE = Normalized Root-Mean-Square 

   Error 

PSNR = Peak signal-to-noise ratio 

QC  =  Quality Control 

SIM   = Structured illumination  

   microscopy 

SSIM =                  Structural Similarity Index  

   Measure 

SNR = Signal-to-noise ratio 

TPU  = Tensor Processing Unit 
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1. Introduction  
 

1.1 Deep learning  
 

Artificial intelligence (AI) is common nowadays (Figure 1). It can 

be used to predict stock markets or translate speech on Youtube 

in real-time. The common thing for all tasks is that they contain a 

lot of data and it is analyzed by mimicking human intelligence.  

 

 

Figure 1. Artificial intelligence is utilized in many areas.  

 

Artificial intelligence contains sub-categories: Machine learning 

(ML) and deep learning (DL) (Figure 2). Most applications of 

machine learning contained four steps: data cleaning and 

preprocessing, feature extraction, model fitting, and evaluation 

(Angermueller et al., 2016). Preprocessing and data cleaning are 

time-consuming but the real bottleneck of ML is feature 

extraction.  

 



 

2 
 

 

Figure 2: Even though though deep learning (DL) is more 

complex than machine learning (ML) they both are effective tools 

for analyzing various data which would otherwise consume time 

for humans. Together they are subsets of artificial intelligence 

(AI), which solves given problems by mimicking human logic.  

 

The fundamental difference between humans and computers is 

the ability to recognize shapes and differences. Humans can 

easily tell if there is a cat or dog in the painting but the computer 

has serious difficulties. Therefore, features that contain the 

information about shapes must be taught to the computer. 

Unfortunately, an efficient ML model requires countless features 

and for high-dimensional images, feature extraction is more 

laborious (Angermueller et al., 2016).   

After the invention of convolutional neural networks (CNNs), a 

new category of AI was formed (Figure 3). The key ability of deep 

learning (DL) is the ability to extract abstract features without 

teaching (Angermueller et al., 2016). For example, in ML humans 

teach that the concept of a car includes a motor, tires, and 

steering wheel. For DL the different images of cars are just 

shown and DL learns the concept of the car. Deep learning thus 

mimics human visual recognition. 
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Figure 3: The general architecture of the neural network. The low 

SNR image x is restored to the high-quality y image. The network 

contain layers hx and calculation weights wx. The architecture 

may differ depending on the deep learning method. In this thesis 

all networks are UNET based architecture. 

  

1.2 Deep learning and fluorescence microscopy 
 

Fluorescence microscopy has developed and has become a 

common tool in modern laboratories. This means a massive 

number of images and datasets and a common trend is to have 

increased the number of public datasets. All this benefits deep 

learning and CNN has successfully been used for analyses of 

microscopy images. Denoising microscopy images have been 

done by CARE (Weigert et al., 2018), Noise2Void (Krull et al., 

2019), and Noise2Self (Batson et al,. 2019). Predicted labeling 

of immunofluorescence (IF) images and electron micrograph 

(EM) images by fnet (one type of NN) (Ounkomol et al., 2018). 

The resolution of images was improved by SISR (Yang et al. 

2018) and iSIM (Fang et al., 2019). Segmentation on cell nuclei 

has been done by StarDist (Schmidt et al., 2018) and U-net 

(Ronneberger et al., 2015). The classification has been done in 

U2OS cell line images by DeadNet (Richmond, 2017) and yeast 

cell images by DeepLoc (Kraus et al., 2017). 
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1.2.1 Image restoration  

 

As fluorescence microscopies have become a general tool, 

several obstacles have been resolved. Despite the technological 

improvement of fluorescence microscopies, there are still 

fundamental issues which remain: signal-to-noise ratio (SNR) 

and resolution.   

Imaging for an extended period causes photobleaching and the 

location of fluorophores is challenging to detect. Also, cells suffer 

during extended imaging sessions due to the high laser intensity 

used which will affect their behavior and may trigger their death 

(phototoxicity). One way to limit both issues is to decrease the 

laser intensity during the imaging, but this often leads to the 

acquisition of sub-optimal images (low signal-to-noise ratio). In 

fluorescence microscopy, image noise can be reduced by setting 

exposure time and intensity by careful sample preparation. 

Unfortunately, it might lead to sample degradation by 

phototoxicity and thus causing more problems (Belthangady and 

Royer, 2019). 

This means that obtained microscopy images have always lost 

some irrecoverable information because of the physical 

restrictions. Compared to the ideal image they are degraded, 

incompleted, and convoluted. The common example of this is 

image noise, pixel-value quantization, and low-pass filtering. 

(Belthangady and Royer, 2019)  

Reconstruction of the obtained microscopy images is one 

approach to overcome this loss of information. Traditionally 

microscopy images have been processed manually in image 

processing programs like ImageJ or BioimageXD. The common 

processes are noise removal by using algorithms like blur, 

median or Gaussian Blur, object detection, segmentation, and 

adjusting brightness, contrast, and colors. The user chooses the 

algorithm, input parameters and the software do the rest.  

The problem with the traditional algorithms is the complexity of 

real-life images. These algorithms are designed based on the 
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previous information of image acquisition and statistical 

information on how for example image noise forms. In a certain 

context, they are efficient and fast but they struggle because they 

are not able to capture the whole statistical complexity of the 

microscopy images (Belthangady and Royer, 2019). Commonly 

the researcher faces this problem while processing microscopy 

images. For example, the traditional algorithm like median filter 

processes previously known information (Poisson statistics). It 

removes the image noise efficiently from the image but it also 

blurs the details which are important for the researcher.  

Traditional algorithms process unseen images according to 

previous knowledge given by the user. (for example, the blur 

algorithm blurs the image given value). Deep learning studies the 

training images given by the user and processes the unseen 

mages based on that study.  This ability makes deep learning 

more flexible than traditional algorithms. CNN processes 

datasets and thus utilizes the whole statistical complexity of 

images. (Belthangady and Royer, 2019). Also, deep learning can 

drastically improve the quality of low-signal-to-noise images and 

enable extended live microscopy using low laser power. 

Combining CNN with microscopy, biological samples can be 

treated and imaged more gently and still achieve low-noise 

images.  

Content-aware image restoration (CARE) is a supervised deep 

learning method that uses convolutional neural networks to 

restore low SNR images. The network contains several layers 

called convolutional and pooling layers. First the network extracts 

the image features by convolutional layers followed by a pooling 

layer which simplifies all collected features and forms a simplified 

input image (like barcode). This simplified input is compared to 

the corresponding high-quality image. (Chamier et al., 2019) The 

trained network contains the information from all these simplified 

inputs and uses this information to restore new (but similar) 

unseen images. The training data contains pair images for 

training networks: high signal-to-noise ratio (SNR) images as 
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training images and low SNR images as target images. (Weigert 

et al. 2018)  

Noise2VOID (N2V) is a denoising method for image restoration 

and it was created by A. Krull in 2018. The method utilizes blind 

spot networks but does not require pair images for the training 

phase. This is a self-supervised deep learning method where the 

user can use noisy images as input and target images. N2V uses 

a blind-spot network where the receptive field excludes the 

central pixel value (the convolutional receptive field includes all 

pixels). Excluding the central pixel value inhibits the network to 

learn pixel identity but still removes pixel-wise independent 

noise. (A. Krull et al., 2019) 

 

1.2.2 Segmentation 

 
Image segmentation splits the image in the background and 

foreground. Foreground contains all features (like cells or cell 

nuclei) which are above the threshold and the background is the 

rest of the image. There are two segmentation tasks: semantic 

segmentation and instance segmentation (Moen et al., 2019). 

Semantic segmentation labels each pixel semantically, meaning 

parts like this pixel belong to a cell, that pixel belongs to 

cytoplasm etc. However, Semantic segmentation may fail to 

separate the overlapping cells. Instance segmentation identifies 

the group of pixels instance of a class in the image (like do these 

pixels form a cell or not). (Moen et al., 2019) Top-down and 

bottom-up approaches are two different strategies to detect 

nuclei. Bottom-up strategy labels the pixels semantic classes 

(cell nuclei or to the background) and after that decides the 

instance of class. Top-down approach begins to segment the 

crude shape of each cell nuclei and after that refines the 

boundaries according to the possibility of shapes. (Schmidt et al., 

2018)  
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1.2.3 Object detection and image classification 

 
Well-known example of classification is the task whether the 

object in the image is cat or dog. In the biomedical field, 

classification is useful to identify different cell organs or cells in 

different cell cycles. Classification has great potential in 

healthcare and drug testing where the malignant cells or cancer 

cells are detected from tissues and may even detect cancer cells 

without need of chemical staining (Chen et al., 2016). 

Unsupervised method was used for cellular morphological 

phenotyping (Yao et al., 2016).  

Searching the cells from the sample is the most basic task in 

microscopy. For the human eye, it is remotely easy to notice cells 

with different shapes and sizes. Unfortunately screening the 

multiple cell images manually consumes time and it is frustrating 

in the long run. There are applications for detecting cell-like 

segmentation by threshold (ImageJ) but the success of the 

detection is depending on the quality of the image. A challenging 

background of image, bleaching, uneven illumination, overlaying 

cells and non-common cell shapes increase the challenge of this 

task.  

Object detection is a useful method for the detection of cells and 

cell nuclei from microscopy images. StarDist is a supervised 

segmentation method for cell nuclei detection created by 

Schmidt et al. in 2018. The method uses convolutional neural 

networks with U-net architecture created by Olaf Ronneberger, 

Philipp Fischer, and Thomas Brox in 2015 (Figure 4). The U-net 

architecture contains the ordinary convolutional layers but the 

pooling layers are replaced by the upsampling operators. This 

results in the larger resolution which is needed to detect cell 

nuclei boundaries. (Ronneberger et al., 2015). StarDist creates 

object candidates in two phases. First StarDist measures the 

distance r from the pixel to the assumed boundary and forms a 

star-convex polygon (the shape of possible nuclei) for each pixel. 

After that StarDist calculates the probability of the polygon. All 

object candidates are evaluated by non-maximum suppression 
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(NMS) to avoid duplicates and the final set of polygons are 

generated. (Schmidt et al., 2018)  

 

 

Figure. 4. General overflow of StarDist. The cell nucleus are 

segmented from the input image (a) by measuring the distance r 

of each cell nucleus (b) and probability of the nucleus d (c). The 

U-net architecture results in better resolution to detect 

boundaries (d). The probability of each object (r and d combined) 

is measured by NMS. The figure is inspired by the original paper 

(Schmidt et al., 2018).   

 

1.3 Steps of Deep Learning 
 

To use deep learning efficiently the four steps are needed to be 

considered: groundwork, training data, training the network and 

prediction.  The groundwork is more like pre-step and others are 

actual process. 

The first step is groundwork which includes the skills 

(programming, mathematics, software engineering) and 

hardware (invests, assembling, maintenance and upgrades). For 

researchers who have no previous knowledge or extra funding 

this step is the most difficult part. Moen raises this challenge in 

his article (Moen et al., 2019) and describes it as cultural barriers 

that inhibit the spreading of deep learning in biology labs. 

Training data is the foundation of a deep learning process. There 

is no training method which could overcome the failures of 

training data.  Generating the training data is often time-
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consuming (if supervised method is used) as it requires paired 

images (training images and ground truth image) and ground 

truth images often must be labeled manually or they are achieved 

by expensive microscopy. Premade training data are available 

but they might not be suitable for the experiment and may contain 

labeling errors. Training the network is a crucial part of how the 

trained network can be used. The challenge is to avoid overfitted 

models where the network learns too well and thus fails to predict 

the unseen data. Thus, the evaluation has a strong part of the 

training process. Another major challenge is the memory 

capacity as training requires a lot of computing power. Prediction 

is often quickly done and stuff. Training data, training the network 

and prediction are discussed in detail in section 1.4. 

 

1.3.1 Groundwork 

 
Both mathematics and biology are natural sciences but they 

operate sometimes quite far from each other. Deep learning is a 

collection of mathematical methods and algorithms but it is still 

considered as “a black box” C. (Belthangady and Royer., 2019). 

Deep learning is based on gradient descent but how deep 

learning decides certain outputs is still a mystery at a deep level 

even for mathematicians. Therefore, deep learning and 

algorithms may show opaque to biologists (Moen et al., 2019). 

As for good science, the researcher must provide methods and 

tools to prove his results (Nature Research. Editorial policies. 

2020). If the researcher does not understand how deep learning 

works it is tempting to use the old methods. 

Above the theoretical challenge is the technical issues: the need 

for specific hardware and power consumption of the hardware. 

Deep learning requires millions of parameters (Moen et al., 2019) 

and a high level of accuracy (Carneiro et al., 2018) to execute 

properly. Not only it stresses a regular computer a simple 

execution would take a long time. For example, in the medical 

field time is an important factor when the patient is diagnosed; 

delays may cost lives (Carneiro et al., 2018). For researchers, 
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time is also a crucial resource. Then regular computers contain 

a central processing unit (CPU) which fits poorly to the execution 

of deep learning. Graphics processing units (GPU) or Tensor 

processing units (TPU) perform much faster than regular CPUs 

but they are costly and often not a default option in regular 

computers.  The solution is to either buy and assemble it yourself 

or perform cloud computing where the user uploads the training 

data to the cloud and GPU is provided by a company.    

Assembling deep learning needs specific software and 

programming skills. Building the CNNs requires programming 

and Python is a common programming language but also R and 

C++ are used (Angermueller et al., 2016). Fortunately, the need 

for customization of deep learning for biological science has been 

recognized in computer vision communities (Belthangady and 

Royer, 2019). The pipeline of deep learning has been modified 

and the development aims now to more interactive graphical 

tools which help to explain how deep learning works, how the 

researcher can control the process, and how results are achieved 

(Belthangady and Royer, 2019). These tools are discussed in 

section 1.5.  

 

1.4 Training data, training the network and 

prediction 

 

1.4.1 Training data 

 
From all components of deep learning the training, data is the 

most critical part of all processes (Belthangady and Royer, 2019) 

(Moen et al., 2019). Inappropriate training data affects negatively 

to the training process and trained networks produce 

hallucinations and other mistakes (discussed later in the next 

section). The proper training data for supervised deep learning 

methods should be well-annotated, error-free, large enough, 

normalized, publicly available, and specific for certain biological 

problems (Moen et al., 2019).  
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In supervised deep learning training, the training data contains 

usually paired images: training image and ground truth image 

(Figure 5). The network compares these paired images together 

and finds the parameters by which the network results in the 

output image as similar as possible to the ground truth image.  

The generating the training data is time consuming and laborious 

especially when supervised deep learning methods are used. 

Sometimes achieving images might be challenging. 

Microscopies are not available, or the biological samples are 

scarce and there is not enough for the large-scale imaging. 

Researchers may seek images from his colleges or public 

databases to increase the diversity of the training data. If the 

researcher includes images from different sources he must 

normalize all images to decrease the variation (Moen et al., 

2019). Another way is data augmentation operations like adding 

flipped images, images with different zooming, or rotation to the 

training data (Moen et al., 2019). 

Considering the workload to generate proper training data, it is 

tempting to use pre-trained networks. Unfortunately, pre-trained 

networks have several risks and they are likely to do more 

damage than good (problem of pre-trained networks are 

discussed later).  

Overall, the researcher is encouraged to generate his own 

training data for his experiments. Fortunately, there are multiple 

software for image processing and generating training data like 

for example, ImageJ is a free open-source software for image 

processing and parts of the generating can be automated via 

macros. (Schindelin et al., 2015). 
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Figure 5. The training data contains paired images. CARE 

includes the low-quality image (training source) and 

corresponding high-quality ground truth image (training target). 

Images above are patches and they are enhanced to 

demonstrate the difference in images.  

 

1.4.2 Training the network 

 
After the training data is either generated or chosen, the next step 

is the training of CNN (in this section referred to as “network”). 

The training for the network consumes time but allows a new 

unseen input data processed without training. This means that 

multiple sets of unseen images can be processed if their quality 

remains the same. This feature is useful because image 

processing and analyzing are faster with a pretrained network 

compared to manual image processing. To train networks the 

three things are required: Access to powerful GPU, specific 

softwares and programming skills. 

Access to powerful GPU: Deep learning requires millions of 

parameters (Moen et al., 2019) and a high level of accuracy 

(Carneiro et al,. 2018) to execute properly. Not only it stresses a 

regular computer a simple execution would take a long time. For 

example, in the medical field time is an important factor when the 

patient is diagnosed; delays may cost lives (Carneiro et al., 

2018). For researchers, time is also a crucial resource. Then 

regular computers contain a central processing unit (CPU) which 

fits poorly to the execution of deep learning. Graphics processing 

units (GPU) or Tensor processing units (TPU) perform much 

faster than regular CPUs but they are costly and often not a 
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default option in regular computers.  The solution is to either buy 

and assemble it yourself or perform cloud computing where the 

user uploads the training data to the cloud and GPU is provided 

by a company.    

Softwares and programming: Assembling deep learning needs 

specific software and programming skills. Building the CNNs 

requires programming and Python is a common programming 

language but also R and C++ are used (Angermueller et al., 

2016).  

Fortunately, the need for customization of deep learning for 

biological science has been recognized in computer vision 

communities (Belthangady and Royer, 2019). The pipeline of 

deep learning has been modified and the development aims now 

to more interactive graphical tools which help to explain how 

deep learning works, how the researcher can control the process, 

and how results are achieved (Belthangady and Royer, 2019). 

There are several commercial products to perform deep learning 

today. Some products have a plugin to software like DeepImageJ 

for Image or Fiji to perform deep learning with pretrained 

networks and CPU. The plugin is easy to assemble and use in 

the software but it does not allow the user to train his own 

network. Moreover, assembled deep learning softwares like 

TensorFlow and PyTorch require the use of GPU to be efficient 

and ordinary computers contain only CPU which makes these 

softwares impractical and slow. Some products provide cloud-

based platforms for serious deep learning research like Amazon 

SageMaker but they are costly. 

All these tools have their strengths and weaknesses and are 

suitable for certain situations (possibility to invest time or money, 

or large amounts of GPU power or disk space are needed). For 

the researcher who is new to deep learning and wishes to use it 

with minimum costs and is not familiar with programming the 

software should have following properties: First, it demonstrates 

how deep learning works and expresses clearly the actions 

needed to properly perform. The user without mathematical or 
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technical background should be able to use the platform without 

enormous prestudies. Also, the platform should allow the 

modification of deep learning methods via simple programming. 

Second, it provides the free GPU power and disk memory to 

perform the training of the network and procession of the unseen 

images. For the large-scale deep learning usage this may not be 

possible but for the free introduction to deep learning as the 

researcher does not have to invest in hardware and assembling. 

Thirdly, the platform should allow us to save and share results 

and trained networks to colleagues or the public without extra 

work. Based on this the deep learning platform Google 

Colaboratory (Colab) was chosen. 

Google Colab is a free web-based platform provided by Google 

LCC. It contains the computing power for deep learning and 

utilizes Google Drive cloud systems.  In this environment, 

notebooks are easily performed, edited, and shared. It utilizes 

Jupyter notebooks and they are easily distributed in GitHub. The 

downside of being free has limited resources that affect the 

training parameters mentioned early. The most troubling 

components are the use of deep learning framework Tensorflow, 

the time limit, and the memory limit.  

Tensorflow is an open-source library developed by Google Brain 

Team (Abadi et al., 2015) and it was released in 2017. It provides 

a collection of tools to perform deep-learning and deep-learning 

methods. The supported programming languages are Python, 

JavaScript, and Swift. All DL methods used in the thesis 

(StarDist, N2V, and CARE) were supported by Tensorflow 1.0. 

Tensorflow 2.0 was released in 2019 (TensorFlow Team. 2019). 

Unfortunately, Tensorflow 2.0 does not support StarDist and 

might be unsupportable for N2V and CARE. The problem is well 

acknowledged and Tensorflow 1 is still available in Google 

Colab. Unfortunately, this is a temporary solution because 

Tensorflow 1 is no longer updated and it will be unusable in the 

future. 
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Google Colab provides a free environment for users with small-

scale resources and research. Because of this, the notebooks 

used in the Google Colab environment can be continuously 

executed up to 12 hours (Colaboratory - Frequently Asked 

Questions, 2020). The time limit prevents the user from 

monopolizing all resources available in the cloud. The time limit 

enables the maximum number of users at the same time.   

Three relevant factors affect the time limit. The first factor is the 

decision between processing units GPU developed by Nvidia 

and TPU developed by Google Cloud. Free version of Google 

Colab often utilizes four different GPU sources: Nvidia K80s, T4s, 

P4s and P100s and the user can use one of them at the time. 

The user cannot choose which GPU source to connect his Colab 

and this means that the user cannot utilize the fastest GPU 

source (Colaboratory - Frequently Asked Questions, 2020). 

Google Colab has not revealed the exact RAM limits and amount 

of RAM memory varies time to time. Generally, the 12 Gbit RAM 

limit is reported (Caneiro et al,. 2018). Google Colab Pro was 

released in 2020 which allows the user to utilize the faster GPU  

but it is charged.  

Google Colab utilizes either the GPU (Graphics Processing Unit) 

developed by Nvidia or TPU developed by Google Cloud. Using 

either of these processing units allows the execution of the 

notebook without consuming the user’s CPU (central processing 

unit) resources.  

The second factor is the training time of the network. The number 

of epochs defines how many times the network is trained to 

improve its denoising ability. The number of steps is quite 

irrelevant concerning the training time but it might affect the 

validation error. The third factor is the regular runout of the RAM 

which occurs after a few minutes when the operating browser tab 

is not active. This means that the user is required to keep the 

browser tab activated to keep executing the notebook. 

Fortunately, the runout creates the checkpoints, and re-activating 
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the browser tab allows the restart of performing from the previous 

checkpoint. 

Two memory limits affect the usability of Google Colab. Google 

Colab provides approximately free 12 GB RAM for performing 

notebooks. However, this resource is not guaranteed. Google 

actively monitors the usage of the users’ RAM resource and 

prioritizes RAM for users who have used resources less recently. 

Thus, it is advisable to close all unnecessary notebooks. 

(Colaboratory - Frequently Asked Questions, 2020). 

When datasets are large (especially the 3D microscopy images), 

the memory limit is exceeded quickly. Fortunately, the training 

data can be split into patches. Patches contain three parameters: 

size (length x width), height in pixels, and the number of patches 

per image (Figure 6). The size and height values must be equal 

or smaller than image values. For example, for the image size 

1024 x 1024 (containing 33 slices), the maximum batch height 

must be less than 32 (divisible to 8) and the batch size must be 

less than 1024 (divisible to 8).  Patches should not be confused 

with batches. Batches are the number of patches which are seen 

in each step during the training. Sometimes batches are defined 

as several images loaded to RAM runtime. 

The second limit is associated with the disk space. Google Colab 

provides a few sample datasets for the user. In this folder (60 

GB), the user can load his datasets. Unfortunately, this folder 

offers temporary space for datasets, and all files are deleted after 

closing the notebook or the regular runout. The temporary folder 

is another way to regulate the usage of common memory 

resources.  

To increase the space needed for the training dataset, the user 

can mount his Google Drive Account to Google Colab. Google 

Drive provides free 15 GT storage and thus the user can use 

larger datasets. Moreover, the mounting allows the saving of the 

results directly into Google Drive, and datasets are not deleted 

after the notebook is closed. Unfortunately, high-quality 

microscopy images (especially 3D movies) are large files.  This 
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may be an issue during the training of the network and storing 

the results. Fortunately, users can purchase extra storage space 

and prices are quite fair. 

 

 

 

Figure 6: Parameters of patches: size, height, and the number of 

patches. The patches below were used for CARE (3D) 

optimization. The first row contains the low SNR images and the 

second row contains the corresponding ground truth images. 

 

1.4.3 Evaluation of trained model 
 

Network training must be properly done. Failing to do so, the 

network predicts images poorly and generates artifacts and 

hallucinations. These three components to remember about 

training the network. The first thing is to understand that the 

trained network performs well only if they are used on data that 

are similar to the data used to train the networks. If the pretrained 

network is not used correctly, it will lead to mistakes and the 

generation of artifacts.  
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Second, two main components result in inappropriate training: 

the quality of the training dataset (discussed in the previous 

paragraph) and training parameters. If they are not chosen or 

adjusted properly the trained network results in overfitting or 

underfitting. Overfitted network refers to the situation when the 

variance between the training and samples are high (Figure 7). 

Ovefitted networks have not learned the general way to handle 

images and this causes problems when the unseen images are 

introduced to the overfitted network. Overfitted model results 

often from too simple training data or too many epochs. 

Underfitted network is the opposite of overfitting and it often 

refers to the situation where the training data is so complex that 

the network does not find the general way to handle them. (Moen 

et al., 2019). 

 

 

Figure 7. Learning curve must be not be underfit nor overfit. Blue 

line describes the network learning and green triangles real-life 

samples. Underfitting (left) results when the network performs too 

simple results compared to real-life samples. Overfitting (right) 

results when the network learns samples too well and does not 

find the trend in real samples. A trained network with the correct 

fit (middle) finds good balance and can predict unseen samples.  

 

Estimation of overfitting or underfitting can be studied by training 

error (loss error) and validation error (loss error). In optimal 

training, the validation error should be slightly higher than the 

training error. This represents the situation where training data 
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are complex enough to reach the same values as the validation 

error. Moreover, validation is challenging enough to inhibit 

overfitting (Figure 8).  

 

 

Figure 8. Estimation of the trained network. Loss function (blue) 

describes the error during the training from training images and 

the loss function of validation images (orange) describes the 

error from the validation images. The a-figure represents well-

balanced training data and training parameters. The b-figure 

represents the overfitting problem when the training data are too 

simple and the c-figure reveals the overfitting problem when 

training data are too complicated.  

 

Inappropriate training not only results in poor images but it also 

may cause the network to recognize patterns that are not there 

(hallucination problem, see Figure 9). For example, when a 

human is looking at the clouds and sees the shapes of animals 

(Belthangady and Royer, 2019).  Another reason for 

hallucinations is the challenging background of the training 

images.   
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Figure 9.   Inappropriate training data or training the network 

results in unreliable segmentation. In this case the challenging 

background in the input image caused the extra objects on the 

edges and in the frontline of the cells. The problem may be 

resolved by increasing the training data (upper row) or 

preprocessing the input image (lower row). The input image in 

the upper row is from DCIS.COM (ZeroCostDL4Mic) training 

data. The lower was not included in further study. Ideally the 

preprocessing is not needed.  

  

Third, training the network (and preparing the training data for 

training) consumes RAM memory and disk memory resources 

(see cultural barriers above). This set limits the training 

parameters (discussed below) and the researcher must often 

adjust the training parameters of deep models to the resources 

available.  

 

 

1.4.4 Prediction 
 

When the network is trained properly it is time to introduce to the 

unseen data. Unlike the preparation of the training data or 

training itself, the prediction phase is easy and fast. The same 
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pretrained network can be used in multiple sets of the unseen 

data if their quality remains the same.  

Prediction should be designed that images are easy for further 

processing. For example cell ROIs provided by StarDist should 

be easy to use in ImageJ for further processing. Results should 

also contain the trained model (and all parameters), quality 

control results and predictions as in one package (folder). One 

crucial principle is that predictions are new images (for example 

when images are denoised) and original images remain 

unmodified.  
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2. Aims  
 

This Master’s thesis is part of project ZeroCostDL4Mic. The 

purpose of the project is to provide free tools for training and 

implementation of deep learning (Unet, fnet, StarDist, N2V, and 

CARE) to microscopy images in Google Colab platform for 

researchers with no previous experience of deep learning 

(Chamier et al., 2020). The project is a collaboration between two 

research groups: Docent Guillaume Jacquemet from Cell 

Migration Lab (Åbo Akademi University, Turku, Finland) and 

Prof. Ricardo Henriques from HenriquesLab (UCL, London, 

England).  

In this thesis, I will generate user-friendly Google Colaboratory 

notebooks that can be used by non-experts to train their networks 

online and for free (Scientific question 1). The notebook that I will 

create can be used to denoise microscopy images (Scientific 

question 2) and for the segmentation of cell nuclei images 

(Scientific question 3). I will use these notebooks to restore and 

analyze my videos, but the final version of notebooks will be 

tested by users to estimate their usability.  

In this master’s thesis, we concentrate on three methods: 

Content-aware Image restoration (CARE) and Noise2VOID 

(N2V) for noise removal and StarDist for segmentation of cell 

nucleus (object detection) from microscopy images.   

The ultimate goal of the thesis is to make deep-learning tools 

more accessible for users with no technical background to use, 

learn, and share these methods in the field of microscopy image 

analysis. The goal is split into three parts and they are explained 

in the following chapters.  

  

2.1 Objective 1- The user-friendly workflow 
  

Implementing deep learning from scratch requires a technical 

understanding of computer hardware, software, and coding. 
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Deep learning requires heavy calculation power and thus high-

cost processors, powerful RAM (virtual memory), and graphic 

cards are essential. Users with no technical background might 

find this to be an unnecessary burden compared to traditional 

ways of analyzing images. Deep-learning approaches also begin 

to be available through commercially available software, but the 

license price can rarely be met by individual laboratories.  

Google Colab is a free website provided by Google LCC. The site 

contains a cloud-computing system and computing power 

needed to perform deep learning.  Google Colab has some 

limitations concerning RAM and timeout, but it is a useful option 

for a user who is interested in deep learning but has no 

experience of programming or deep learning.  

Implementing Google Colab includes several challenges. 

Uploading the data to Colab might be slow and impractical and 

storage space of Google Drive is limited to 15 GB. This is an 

issue when microscopy images – and datasets – are large files. 

Computing power is needed especially for training networks and, 

thus, the RAM memory limit is an issue when restoring 3D 

images. Runtime limit is 12h in Google Colab and this limits the 

number of epochs (rounds) in training networks.   

Objective: To create user-friendly deep learning notebooks 

(object detection and image denoise) performed in the Google 

Colab platform. Notebooks are created according to the literature 

(N2V: Krull et al., 2018, CARE: Schmidt et al., 2018 and StarDist: 

Schmidt et al., 2018). To achieve this, the main focuses are:  

User-friendly interface: Generate an interface through which a 

user can learn how deep learning works. The interface explains 

various processes and images to illustrate the process. The data 

are automatically downloaded and provided. 

The control of the process: Users can train their network (patches 

and network) and use the network on one of their images 

(validation).  A process folder is also created including 

highlighted options (for example, process images in 

ImageJ/Fiji).   
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Sharing the framework: Users can share their Google Colab 

notebooks to showcase their research and framework for future 

developers. For that, the structure of the notebook is coded as 

stable as possible.  

 

 2.3 Objective 2 - Object detection by StarDist  

 

 
Cell migration is studied in multiple ways and research would 

benefit from the creation of automated tracking strategies. Object 

detection is a useful method for the detection of cells and cell 

nuclei from microscopy images. The StarDist method utilizes the 

star-convex polygon to detect nuclei boundaries via CNNs. 

(Schmidt et al., 2018)  

Segmentation is a crucial step in image processing because the 

analysis is based on what segmentation extracts from the 

background. Another challenge is how segmented clusters of cell 

nuclei are separated by the StarDist network.  Expected results 

include proper segmentation cells from the background. After 

separation, all possible cell nuclei lumps are separated properly 

to achieve a reliable result.  

Objective: The aim is to generate a pipeline to train StarDist to 

automatically track and analyze video of migrating cells.  The 

pipeline is created by combining original notebooks via coding 

and emphasizing the interface. Once the analysis pipeline is 

established, the research group uses it to analyze their cell 

migration movies.  
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2.2 Objective 3 - CARE versus N2V 

  

The research group has an interest in studying the role of cellular 

protrusions during cancer cell invasions and, especially, the role 

of filopodia at cell-cell junctions. The dynamics of filopodia 

between cells are imaged using structured illumination 

microscopy (SIM). Unfortunately, imaging is delicate due to 

bleaching and phototoxicity. Combining long-term live imaging 

acquisition with deep learning would enable longer imaging.  

Objective: To find optimal parameters to run CARE using Google 

Colab within the limitations (see section 1.4). After that, CARE 

abilities are compared to Noise2VOID to restore live imaging 

data in Google Colab. Once the optimal parameters are found, 

these networks are used to train and restore the research group’s 

images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

26 
 

3. Materials and Methods  
  

3.1 Object detection  
 

The training data for StarDist contains paired images: the original 

microscopy image and corresponding mask image (see the 

example in Figure 10). Two different StarDist training data were 

used (Table 1). Original training data (DSB2018, Schmidt et al. 

,2018) and prepared (ZeroCostDL4Mic (StarDist), Jukkala and 

Jacquemet. 2020).  

 

 

Figure 10: Supervised training data contains paired images from 

which algorithm studies and learns. Paired training images 

(original and mask image respectively) from the DCIS.DOM 

training dataset (Jukkala and Jacquemet, 2020).  

 

ZeroCostDL4Mic (StarDist) training data (Jukkala and 

Jacquemet, 2020) was generated for this Master thesis. Paired 

images were generated in Fiji (Schindelin et al., 2012, procedure 

in Appendix 1). The image was duplicated and the segmentation 

to the background and the foreground was done by adjusting the 

threshold of the image. After segmentation, the particles were 

calculated from duplicated images. All artifacts and partial cells 

were removed. The ROI was drawn for every remaining 

unmarked cell and finally, all cells in the image had ROI. Finally, 
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ROIs were labeled and the duplicated image was renamed the 

same as the original image. The dataset is freely available. 

DSB2018 training data (Schmidt et al., 2018) is the subset of the 

stage1_train images from the Kaggle 2018 Data Science Bowl 

(Ljosa et al., 2012). The dataset is freely available. 

 

Table 1. Training datasets for the 2D StarDist method. 

 
DCIS.COM 
(ZeroCostDL4Mic) 

DSB2018 

Data type 72 paired microscopy 
images (fluorescence) 
and corresponding 
masks 

447 paired 
microscopy images 
(fluorescence) and 
corresponding masks 

Microscopy 
data type 

Fluorescence 
microscopy (SiR-DNA) 
and mask (manual 
segmentation) 

Fluorescence 
microscopy images 
and masks 

Microscope Spinning disk confocal 
microscope with a 20x 
0.8 NA objective 

Diverse modalities 

Cell type DCIS.COM LifeAct-
RFP cells 

Several cell types 
and stains  

File format .tif (16-bit for 
fluorescence and 8 
and 16-bit for the 
mask images) 

 .tif (8-bit for training 
images and 16-bit for 
the mask images) 

Image size 1024x1024 (Pixel size: 
634 nm) 

multiple 

Author(s) J. Jukkala, G. 
Jacquemet. 2020 

Schmidt et al. 2018  
Original data: V. 
Ljosa, K. L. 
Sokolnicki & A. E 
Carpenter (2012). 

 
 

3.2 Noise2Void  
 

The training dataset for denoising images by N2V includes one 

low SNR image. The self-supervised neural network studies the 

low SNR image and denoise images. 

Two different training datasets (Table 2) were used for 2D N2V. 

U-251 dataset (A. Stubb et al., 2020) contains 2D microscopy 

images of U-251 glioma cells (paxillin-GFP tagged). A2780 
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dataset (Jacquemet, 2017) contains 3D microscopy images 

of A2780 ovarian carcinoma cells, transiently expressing Lifeact-

RFP.  As ideally, one needs only a single noisy image for self-

supervised N2V, there are no GT images. Both datasets are 

freely available. 

 

Table 2: Training datasets for N2V (2D and 3D) 

 
U-251 
(ZeroCostDL4Mic) 

A2780 
(ZeroCostDL4Mic) 

Data type Microscopy images 
(fluorescence) 

3D microscopy 
images (fluorescence) 

Microscopy 
data type 

Fluorescence 
microscopy (paxillin-
GFP) 

Fluorescence 
microscopy (Lifeact-
RFP) 

Microscope Spinning disk confocal 
microscope with a 63x 
1.4 NA objective 

Spinning disk confocal 
microscope with a 63x 
1.4 NA objective 

Cell type U-251 glioma cells, 
endogenously 
expressing paxillin-
GFP 

A2780 ovarian 
carcinoma cells, 
transiently expressing 
Lifeact-RFP 

File format .tif (16-bit) .tif (16-bit) 

Image size 512x512 (Pixel size: 
248 nm) 

512x512x13 (Pixel 
size: x,y: 195 nm , z: 
500 nm) 

Author(s) A. Stubb et al. 2020 G. Jacquemet (2017) 

 

 

3.3 CARE 
 

The training dataset for denoising images by CARE includes 

several paired images: original image (low SNR images and 

corresponding ground truth images (GT) of the original. A neuron 

network studies the low SNR image and compares it to the GT 

image and denoise images. 

Images used for prediction were either stacked 2D or 3D images 

containing variable background (Table 3). All images contained 

challenging conditions such as uneven illumination, image noise, 

and saturation.  
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Table 3: Training datasets for CARE (2D and 3D) 

 
SIM.DCIS.2D 
(ZeroCostDL4Mic) 

SIM.DCIS.3D 
(ZeroCostDL4Mic) 

Data type 21 paired 
microscopy images 
(fluorescence, 2D) of 
low and high signal-
to-noise ratio 

20 paired microscopy 
images (fluorescence, 
3D) of low and high 
signal-to-noise ratio 

Microscopy 
data type 

Fluorescence 
microscopy (Lifeact-
RFP) 

Fluorescence 
microscopy (Lifeact-
RFP) 

Microscope Structured 
Illumination 
Microscopy (SIM) 
with a 60x 1.42 NA 
objective 

Structured Illumination 
Microscopy (SIM) with 
a 60x 1.42 NA 
objective    

Cell type DCIS.COM Lifeact-
RFP 

DCIS.COM Lifeact-RFP 

File format .tif (32-bit) .tif (32-bit) 

Image size 1024x1024 (Pixel 
size: 40 nm) 

1024x1024x33 (Pixel 
size: x,y: 40 nm, z: 125 
nm) 

Author(s) G. Jacquemet 
(2020) 

G. Jacquemet (2020) 

 

 

3.4. Notebooks 
  

All DL methods are performed in Jupyter Notebooks (Jupyter, 

2020). Jupyter is open-source software for interactive computing 

containing executing, developing and executing code and 

sharing results (Jupyter, 2015). All notebooks were programmed 

by Python 3.7. Python is a programming language created by 

The Python Software Foundation.  

Google Colab is a free web-based platform provided by Google 

LCC. It contains limited computing power (GPU, TPU) for deep 

learning and utilizes Google Drive cloud systems.  In this 

environment, Jupyter notebooks are easily performed, edited, 

and shared. (Colaboratory, 2020) 

Our ZeroCostDL4Mic Colab notebooks were made possible 

thanks to the instructions provided by the authors on how to 

implement their DL networks (CARE: Weigert et al., 2018, 
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Noise2VOID: Krull et al., 2019, and StarDist: Schmidt et al., 

2018). We rewrote the code and generated a new user-friendly 

workflow optimized for Google Colab. For all methods, there 

were three original notebooks for data preparation, network 

training, and prediction of unseen images.  
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4. Results  
 

This Master’s thesis resulted six new notebooks: StarDist (2D 

and 3D), CARE (2D and 3D), and N2V (2D and 3D). These 

notebooks contain a new workflow to achieve user friendly 

interface (Objection 1). StarDist notebooks perform image 

segmentation for 2D and 3D microscopy images (Objection 2). 

CARE notebook performs image restoration and N2V performs 

denoising image and these two methods were compared to 

(Objection 3). 

 

4.1. Objective 1 - The interface of the notebook  
 

The goal of the thesis is to introduce deep learning for new users 

and thus the interface of the notebook must be simple to use but 

informative. The crucial point was to find a balance between 

simplicity and demonstration. The user with no previous 

experience of deep learning must learn the basics to operate the 

notebook. Still learning and operating the notebook must be easy 

and all obstacles which may worsen the user experience must 

be removed. These obstacles may be unnecessary technical 

information, visible code (the code is still easily accessible if the 

user wishes to see and learn how it works) odd error messages 

(which does not affect the execution), or just unsuitable workflow 

which causes the crashing of the notebook.  

The interface was improved by the user feedback and workflow 

was improved by the creators of each method. The default 

workflow for StarDist, N2V, and CARE was done by Johanna 

Jukkala, Lucas von Chamier, Christoph Spahn, Guillaume 

Jacquemet and Romain Laine. The development of the 

notebooks continues beyond this thesis. 

Based on the feedback the following guidelines for the interface 

were chosen: The notebook must be simple to use. All 

unnecessary information (technical and visual code) is hidden 
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behind the interface and revealed if needed. All operations which 

do not require any inputs for the user are combined into one cell 

(for example patch formation and generation of the default 

model). The number of actions is minimized. 

The notebook must demonstrate how deep learning is executed. 

The notebook was divided into clear sections and info for all parts 

was provided. The outputs of the executions (images, values, 

figures) were shown. If the notebook is shared the new users 

must be able to read and understand the results easily. These 

sections are:  

Introduction: This section (Figure 11) describes the purpose of 

this notebook, references (the original article and authors), and 

the original code from authors. The chapter also includes the 

creators of this notebook but highlights that the notebook is the 

combination of the original notebooks and inspired by the original 

code. The user is recommended to create an experiment folder 

on Google Drive. This allows the easy file upload from Google 

Drive to an external hard drive or other location. The premade 

experiment tree helps the user to understand the input options in 

the following chapters. Finally, as traditional bioscience training 

does not contain information technology studies, this chapter 

describes what is the notebook text cell, code cell, and how to 

execute and modify the notebook.  

 

Figure 11. The general view of the StarDist notebook. On the 

right is table of contents. The latest version can be found in 

GitHub (Chamier et al., ZeroCostDL4Mic. 2020). 
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Preparations: Before the actual use of the method the notebook 

must be prepared (Figure 12). First, the user selects the 

processing unit (most often GPU) as it does not always default in 

Colab.  After that, the user mounts his Google Drive to the 

notebook. Because the mounting allows access to all folders in 

the user’s account, the user should mount only the trusted 

notebooks. Finally, the notebook requires certain libraries and 

modules to perform the notebook. The chapter does not require 

any input for the user, but it is advisable to specify each library in 

the code. This chapter may also contain the cell which enables 

Tensorflow 1. If TensorFlow 1 is upgraded in the future, it may 

need an extra library and objects. 

 

Figure 12. Mounting Google Drive and installing dependencies. 

Screenshot from the StarDist 2D notebook. The latest version 

can be found in GitHub (Chamier et al., ZeroCostDL4Mic. 2020). 

 

Selecting parameters and path to the folders: When the notebook 

is ready the user can input training parameters and file paths to 

the training dataset (Figure 13). Depending on the method there 

are several inputs and if the user is unsure how to input, the 

default parameters are provided. The execution of the cell prints 

the size and resolution of images and output a few sample 

images from the training images. 
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Figure 13. The sample images from the training images. Preview 

images not only visualize them but also informs that training data 

is succefully loaded. Screenshot from the StarDist 2D notebook. 

The latest version can be found in GitHub (Chamier et al., 

ZeroCostDL4Mic. 2020). 

 

Data preparations and model setup: 

In this section, training images are generated to the training 

dataset. Images are divided into patches and later splitted to 

training patches and validation patches according to the 

parameters input in above. The general rule is to use 10% 

patches for validation. The original training images remain 

unmodified and the training dataset is the separative object. Also, 

the default model is generated. The output contains a training 

dataset and a default model (Figure 14). Few examples of 

patches are printed to ensure proper data preparation. This 

section requires no special actions from the user. 
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Figure 14. The training dataset and default model is generated in 

one cell as they do not require any inputs. Screenshot from the 

StarDist 2D notebook. The latest version can be found in GitHub  

(Chamier et al., ZeroCostDL4Mic. 2020). 

 

Training the network: Training the network is usually the most 

time-consuming part of the method and takes from minutes to 

hours. The training process is shown and the intermediate results 

per epoch are printed (Figure 15). During the training, the results 

are saved to the model. This section requires no special actions 

from the user. The training dataset remains unmodified and the 

trained model is saved into the results folder. 

 

Figure 15. The training results are printed and saved to the 

results folder. Screenshot from the StarDist 2D notebook. The 

latest version can be found in GitHub (Chamier et al., 

ZeroCostDL4Mic. 2020). 
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Evaluation of the training: The quality of the trained network is 

estimated by comparing the training error and validation error 

during the training (Figure 16). The learning curves are presented 

in the figure for the estimation. If the user is not content with the 

results, the network can be retrained by modifying the training 

parameters. The user can use a pretrained model if there is any. 

 

 

Figure 16. The comparison of loss error and validation error. 

Screenshot from the StarDist 2D notebook. The latest version 

can be found in Github (Chamier et al., ZeroCostDL4Mic. 2020). 

 

The quality control (QC) tests the trained model on the few 

unseen images. For the evaluation of StarDist the intersection 

over union (IOU) is used for CARE and N2V the Structural 

Similarity Index (SSIM), Root Squared Error (RSE) were used 

and added to N2V, Peak signal-to-noise ratio (PSNR) was used 

(Figure 17 and 18). The guidelines that these values mean and 

what is desirable were explained for the users who are not 

familiar with these metrics. The results were visualized as they 

demonstrate the difference between the resulting image and 

ground truth image. This helps the user spot challenging parts of 

the image and may help improve the image quality in the future. 

The implementation of QC was not done by Johanna Jukkala. 
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Figure 17. The quality control for StarDist method. All images 

(input, ground truth, prediction) are easily copied for 

presentation. Screenshot from the StarDist 2D notebook. The 

implementation of QC was not done by Johanna Jukkala. The 

latest version can be found in GitHub (Chamier et al., 

ZeroCostDL4Mic. 2020). 

 

 

Figure 18. The quality control for CARE method is visualized to 

help user to understand the metrics and presenting results user-

friendly. Upper row contains raw images of target, source and 

prediction image. Second row demonstrate visually the 

difference between target ja prediction images via SSIM and on 
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the lowest row same thing but via NMRSE. Screenshot from the 

CARE 3D notebook. The implementation of QC was not done by 

Johanna Jukkala. The latest version can be found in Github 

(Chamier et al., ZeroCostDL4Mic. 2020). 

 

Unseen data and saving the results: In the final chapter, the 

trained network is used to predict unseen images (Figure 19). 

The sample results are printed to ensure proper execution. 

Finally, all results (images, ROIs) are saved into Google Drive. 

The original unseen images remain unmodified.  

 

Figure 19. The trained network is executed and the unseen 

images are used. Screenshot from the StarDist 2D notebook. 

The latest version can be found in GitHub (Chamier et al., 

ZeroCostDL4Mic. 2020). 

 

The original code is modified to ensure fluent execution of the 

notebook and then it is notated as the inspiration of the original 

code. Because some users might find the code visually 

intimidating the actual code was hidden behind the interface. If 

the user is interested in modifying the notebook, the code can be 

revealed by double-clicking the cell.  

Sometimes the notebook crashes unexpectedly. To ease the 

troubleshooting the code cells are programmed to print results of 

each code cell. For example, the proper creation of batches is 

ensured by printing a few batch images. Failing to do so, the cell 
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prints error messages and possible repair advice are printed. 

Overall, the development of all workflows was continued beyond 

this thesis.  

 

4.2. Objective 2 - Object segmentation: the effect 

of the training data  

 

Object 2 resulted in two StarDist notebooks for image 

segmentation (2D and 3D microscopy images). The optimal 

parameters for two training data were studied. Overall, the quality 

of the training data affects greatly the training results.  

Google Colab provides limited memory resources and it has a 

time limit. This may be challenging if the user does not 

understand how to optimize the training process. Thus, the effect 

of the processing unit (GPU and TPU), patch size, and the 

number of steps and epochs were studied. 

To prevent the overfitted model the user can improve training 

results by increasing the patch size. Unfortunately, it consumes 

Colab resources. Thus, the effect of patch size was studied for 

both GPU and TPU. As expected, larger patch size improves the 

trained model (until it starts to overfit) and results in better 

detection (Figure 20).  

Overall, GPU performs better than TPU as the TPU reaches the 

time limit much sooner than GPU. As mentioned earlier, TPU is 

recommended for long-term training and our studies seem to 

agree with this. TPU consumes less memory capacity than GPU 

but the time limit in Google Colab becomes the problem. Though 

one must remember that training data is quite small (only 72 

images) and TPU may perform better with larger training data 

and if there is no time limit. Moreover, the memory resource is 

not quarantined and thus the actual runout may happen earlier. 

This means that the memory usage should be below 10 Gbit to 

prevent the runout. 
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Figure 20. TPU process larger data better than GPU but due to 

time limit and memory limit in Colab, GPU is more effective than 

TPU. Time limit (the upper image) is exceeded when TPU 

(green) was used and it is not suitable to use in these restrictions. 

GPU (blue) consumes more memory capacity than TPU but 

stays below the 10 Gbit (the lower image). The training 

parameters were the same in all studies: 72 training images (10% 

for the validation) and 50 steps/200 epochs. The trained model 

was overfitted when the patch size was 32. The training time was 

calculated based on ms/steps as the time limit was exceeded for 

TPU (patch size 512 and 1024) and memory consumption was 

not recorded.  
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Overall increasing the patch size improved IoU value (1.0 is 

perfect). The IoU was slightly better for GPU than TPU (Figure 

21). The reason for this remains unknown, but again TPU is 

meant to train large training datasets. Nevertheless, it is safe to 

say that GPU is the best option for Google Colab.  

 

 

Figure 21. Increasing the patch size and using GPU (blue) results 

in the best IoU values but only slightly improvement over TPU 

(green). P values for each patch sizes (32, 64, 128 and 256) were 

0.0038, 0.7721, 0.8965, and 0.3341 respectively. The training 

parameters were the same in all studies: 72 training images (10% 

for the validation) and 50 steps/200 epochs. The trained model 

was overfitted when the patch size was 32. 

 

The effect of steps and epochs were studied. The patch size of 

256 pixels was chosen as it has shown good IoU in Figure 22. 

The number of epochs increases the training time but improves 

IoU values. For this training dataset 50 steps and 200 epochs 

were optimal parameters to train the model.  
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Figure 22. IoU varies little above 50 steps and 200 epochs. The 

training parameters were the same in all studies: 72 training 

images (10% for the validation) and patch size 256 pixels. GPU 

was also used in all studies. 

 

Finally, the parameters were tested on the original StarDist 

training data (DBS2018, see Table 1). The trained model 

detected cells poorly when the DBS2018 dataset was used for 

the training (Figure 23 and Figure 24). There may be several 

reasons for this. DBS2018 contains 447 images that have 

different resolutions, sizes, and magnification. This may make 

training data too complicated for our images and the trained 

model makes mistakes. Our DCIS.COM contains 72 images with 

the same resolution, size, and magnification and are similar to 

the unseen images. This makes it suitable and this is shown as 

better IoU values. However, it is important to understand that this 

study does not label DSB2018 as poor training data. It is just not 

suitable for this study.  
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Figure 23. The training data affects the training quality. 

DCIS.COM (dark blue) training data results in a better model. 

DSB2018 (light blue) training data may be too complicated for 

the study as it contains a large variety of cell images. For all sets 

(numbert of epochs: 100, 200 and 400) P value was less than 

0.05. The training parameters were the same in all studies: 72 

training images (10% for the validation), patch size 256 pixels 

and 50 steps, and 200 epochs. N= 13, data is shown as average 

plus minus SD. 

 

 

 

Figure 24. Unsuitable training data may result poor trained 

model. The model trained on DBS2018 (far right) makes several 

mistakes compared to DCIS.COM (middle right) when input 

image (far left) was used. IoU was for DCIS.COM and DBS2018 

training datasets were 0.850 and 0.690 respectively. The training 

parameters were the same in all studies: 72 training images (10% 
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for the validation), patch size 256 pixels and 50 steps, and 200 

epochs. 

 

Overall, the selection of training data is a crucial step. Even if 

DSB2018 is the original training data for cell detection, it failed to 

train the proper model for our images. Therefore, the user is 

strongly encouraged to generate their own training data. Failing 

to do so the trained model makes mistakes. Not because the 

training data is poor but not suitable for the user’s images. But if 

the user wishes to use premade training data the user should pay 

attention to the contained training data and decide is it suitable 

for his images.  

The same awareness is necessary when pretrained models 

(other than own) are used. Training may take several hours and 

optimize may cause the runout of Google Colab resources, which 

consumes more time. As for using premade training data, the 

pretrained models are not unequivocally poor. Still, they are a 

riskier choice. They have not only unknown training abilities, but 

they have also been trained with unknown training data. This 

makes them even more risky choices than premade training 

data.  

As for the conclusion, before the user starts training the model, 

the training data must be chosen by properties of the unseen 

images which the user plans to use in his research. The trained 

network performs well if the unseen images and training images 

are similar. To avoid poorly trained models, the user is 

encouraged to generate his own training data and train his own 

model instead of using the premade training data or pretrained 

models. Generating the training data consumes time but it must 

be done once. Also training the model takes time but after 

training the model consumes time but a well-trained model 

processes the unseen images quickly. 

Moreover, in the Google Colab environment, the optimal use of 

StarDist for cell detection is to use GPU instead of TPU and using 

the largest patch size possible (within the GPU RAM). When 
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optimizing the training parameters the user may start with the 

small patch sizes and the low number of epochs to save memory 

resources and after that increase them to maximum to reach the 

optimal parameters for his training data.  

 

4.3 Objective 3 - CARE versus N2V 
 

Objection 3 resulted two CARE notebooks for image restoration 

and two N2V notebooks for denoising images (2D and 3D 

microscopy images). The optimal parameters for two training 

data were studied. Overall, the quality of the training data affects 

greatly to the training results. Patch size limits the use of 

notebooks as memory usage is increasing along the patch size. 

CARE performs slightly better than N2V when the training data 

contains complex images. Both methods are useful and suits for 

different situations. 

 

CARE 3D 

Patch size affects greatly to the training results generally the 

larger patch size improves the results. The effect of the patch 

size was studied for both training time and peak memory as they 

are the main restrictions in Colab. The training time is not a 

relevant issue if the number of epochs remains low (Figure 25). 

Memory usage is increased significantly as the patch size and 

number of patches are increased. To improve the training results 

the patch size should be increased but memory capacity is easily 

exceeded. As the memory capacity is not stable in Colab, this 

causes the main challenge for the training. 
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Figure 25. Training time increases little when patch size is higher. 

The real issue is memory usage and peak memory increases 

rapidly as patch size increases.  The batch size (how many 

patches are introduced at the same time to the training) were 100 

(blue), 200 (green) and 400 (yellow). The training parameters in 

all experiments were: batch size 16, 50 steps and 100 epochs. 

 

The quality control shows little difference between the 

experiments even if it improves moderately the results (Figure 

26). As all the models became easily overfitted it implies that the 

size of the training dataset is too small. At this point it was not 

possible to gain extra images and thus results remained the 

same. CARE improved the image quality (Figure 27) by removing 

noise but left the fine parts smudged (Figure 28). 

 

 

Figure 26. Variation between the quality control results is low and 

maybe caused by the small size of the used training data. P value 
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was not calculated due to lack of images. The training 

parameters in all experiments were: batch size 16, 50 steps and 

100 epochs. 

 

 

Figure 27. Detailed quality control of the one experiment (the blue 

bar in the Figure 26). Overall, the quality of the input image is 

improved in SSIM map (image becomes lighter in “Target vs 

Prediction” part) but not much in RSE map (image should be 

darker in “Target vs Prediction” part). The training parameters: 

patch size: 128 x 128 pixels, path height 8 pixels, number of 

patches per image: 200, number of patches total 4000, batch size 

16, 50 steps and 100 epochs. 
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Figure 28. CARE (middle) improves the image quality from the 

input image (left) but smudges the fine parts of the image 

compared to the GT image (right). Reason for this may be small 

training data size. See the training parameters in Figure 26. 

 

CARE 2D 

The size of the training data can be increased by splitting the 

training data to patches. As previously is shown this may cause 

the exceed of the memory capacity of Colab. Another way to 

improve results is to create augmented training data where 

images are created by rotating and mirroring the images.  In the 

Figure 29 show that again larger patch size affects little to the 

training time but greatly to the peak memory. Augmented training 

data consumed less the memory capacity and larger patch sizes 

were able to use. 
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Figure 29. Training time increases little when patch size is higher. 

The real issue is memory usage and peak memory increases 

rapidly as patch size increases. Augmented data (20 images 

augmented to 630 images, the green bar) consumes less 

memory than patches (20 images - > 4200 patches, the blue bar). 

Memory limit exceeded when patch size was 512 x 512 pixels 

and patches were used. The training parameters in all 

experiments were: batch size 16, 50 steps and 100 epochs. 

 

Augmentation improves image quality only moderately even the 

patch size was able to be increased (Figure 30). The use of 

patches from augmented data was not possible as it exceeded 

the memory limit all the time. As in the case of 3D images CARE 

improved the image quality (Figure 31) by removing noise but left 

the fine parts smudged (Figure 32). 
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Figure 30. Variation between the quality control results (mSSIM, 

NRMSE and PSNR) is low and maybe caused by the small size 

of the used training data. Augmented training data allows to use 

of larger patch size but it does not improve the results. 

Augmented data (yellow) contained 20 images augmented to 

630 images (n = 630) and 200 patches per image (blue) 

contained 20 images converted to 4200 patches (n=4200). Due 

to lack of images p values was not calculated. The training 

parameters in all experiments were: batch size 16, 50 steps and 

100 epochs. 
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Figure 31. Detailed quality control of the one experiment (the blue 

bar in the Figure 30). The quality of the input image is improved 

but not much for both SSM or RSE maps. The training 

parameters: patch size: 256 x 256 pixels, path height 8 pixels, 

number of patches per image: 200, number of patches total 

4200, batch size 16, 50 steps and 100 epochs. 
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Figure 32. CARE (middle) improves the image quality from the 

input image (left) but smudges the fine parts of the image 

compared to the GT image (right). Reason for this may be small 

training data size. See the training parameters in Figure 30. 

 

N2V 3D 

The training data of N2V contains one microscopy image. Thus, 

the effect of the patch size was studied. In all studies, the training 

time and the peak memory were below the limits (Figure 33). Still 

there the studies had to be done a few times as the Google Colab 

may allocate resources differently and thus the training could 

take longer time or memory was runout. Unfortunately, the 

trained model became easily overfitted (Figure 34).  

A. Krull mentions that N2V struggles to denoise high-frequency 

details like isolated bright pixels. The training data did not contain 

these kinds of areas but N2V performed well on the bright areas. 

These areas are surrounded by lower frequency pixels and thus 

the gap between the bright area and the environment was not 

large.  
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Figure 33. The training time (green) and the peak memory (blue) 

were below the time and memory limits but the model (A, C, and 

F) became overfitted quite easily. 

 

Figure 34. Images from the study E (Figure 33) N2V removes 

noise from the image but seems to smudge thicker noise areas. 

The bright areas are shown as normal. The training parameters: 

25 steps, 100 epochs, patch size 64 x 64 pixels (total 1536 

patches) number of batches 64. 
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N2V 2D 

The effect of patch size and batch size (number of patches that 

are processed at the same time) were studied. The time limit and 

memory limit were not an issue but the learning curve showed 

that this model becomes overfitted quite easily (Figure 35). Still, 

the model denoise images nicely (Figure 36). Quality control was 

not done due to a lack of ground truth images.  

Figure 35. The training time (green) and the peak memory (blue) 

were below the limits but the model (D-F) became overfitted quite 

easily.  
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Figure 36. Unseen images from the B- study and N2V. The 

brightness/contrast values in denoised images were equalized to 

the input images to demonstrate the difference. The training 

parameters: 50 steps, 200 epochs, patch size 64 x 64 pixels 

(total 512 patches) number of batches 64. 

 

N2V versus CARE 

Finally, CARE was compared to N2V. The ideal training data 

would have been from CARE studies. Unfortunately, the training 

data from CARE studies was not sufficient as the honeycomb 

pattern in the images (caused by SIM imaging acquisition) 

prevents the use of N2V. The training data from StarDist studies 

contains masked images that can be used for CARE.  

CARE improves images better than N2V (Figure 37). Both SSIM 

and NRMSE are very good compared to the input image. 

Altogether both CARE and N2V improve the images.  
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Figure 37. CARE improves the input image better than N2V for 

both mSSIM and NRMSE. The quality control of E-study (above, 

middle). The training parameters were for CARE: patch size 128, 

number of patches total 6000, 20 steps and 200 epochs and for 

N2V: patch size 128 number of patches total 6000, 50 steps, and 

100 epochs. 

 

In conclusion, CARE results generally better images but the 

training requires large training data. 3D images especially 

become the problem as the memory limit of Google Colab 

exceeds easily. Thus, increasing the training data to avoid the 

overfitted model is challenging and the use of CARE 3D is more 

limited in Colab than N2V. High-quality ground truth images may 

not be available for the researcher. The samples may be too 

fragile for long-time imaging or the number of images may be 

limited. Or the availability of the microscope may be the reason 

for the small number of images. In these cases, N2V is the only 

option and it can result in good results as shown above with 2D 

images. Based on these studies it seems that the N2V model 

becomes more easily overfitted than the CARE model. The 

reason for this may be that CARE is supervised and N2V self-

supervised. 

Still, it is not sensible to decide whether CARE or N2V is the 

method of choice. They both have challenges and advantages, 

and they should think of the tools for the proper situation. Also, if 
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the training data allows the can to be used as the comparative 

methods and this increases the value of the research. All this 

requires that the researcher understands the importance of the 

quality of the training data and how it behaves in certain 

parameters. Failing to do so, training results overfitted models 

and the model makes mistakes. Thus, the use of pretrained 

models and premade training data are risky as they are often 

designed for specific problems that may differ greatly. 

For researchers who wish to use deep learning in his research, 

both CARE and N2V are a good method to work. The greatest 

work is to train the model but when done accordingly, the model 

processes the unseen images fast and intensifies the image 

process and analysis. 
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5. Discussion 
 

Modern research contains complex data and processing is time 

consuming. Deep learning is one attempt to help researcher by 

analyzing tedious and time consuming data. Unfortunately, tools 

of deep learning may be expensive and requires often previous 

knowledge. Free tools for deep learning are a tempting idea 

when funding is limited or researcher wish to learn how deep 

learning works generally in his or her data.   

The key components to create free deep learning tool are free 

access to GPU, availability to train own network, free storage and 

user-friendly program. The balancing of these aspects is 

inevitable and every deep learning tool has found their own. 

ImageJ has the free plugin DeepImageJ but it utilizes the user's 

CPU which is slow. DeepImageJ offers plenty of pretrained 

networks to use but pretrained networks are suitable only if the 

user knows how they are trained and what is used training data. 

Paid services like Amazon SageMaker offer vast resources for 

deep learning but require the user to learn a new program and 

invest in the product.  

ZeroCostDL4Mic succeeds to be a free, open source and easily 

available tool. Free access to GPU is the most important asset 

as it is the costliest part in the deep learning process. Google 

Account and Google Drive are familiar for everyone and it makes 

distribution of results easy. ZeroCostDL4Mic is the open-source 

tool and it allows the user to see how deep learning is performed 

and the user can learn the programming behind the interface if 

the user is interested. The ability to train your own network allows 

the user to understand the process and what elements affect it. 

This is along the free access to GPU, one of the most important 

assets of ZeroCostDL4Mic. Prediction is the fast part of the 

process and proper training must be done only once.  

Obviously ZeroCostDL4Mic has challenges as the other deep 

learning tools. Being the free tool means limited resources (time 

limit, memory peak) compared to the paid services. This 



 

59 
 

limitations inhibits the use of TPU at the moment. However, these 

challenges may be solved by optimizing the training properties to 

decrease the training time and need of GPU. This allows efficient 

small-scale use of deep learning for researchers in the 

biomedical field. Another challenge of ZeroCostDL4Mic is to 

become outdated. StarDist is performed by Tensorflow 1 which 

is to be replaced by Tensorflow 2. But currently StarDist does not 

run with Tensorflow 2 until it is reprogrammed by the original 

creators. But it is likely to happen as StarDist has proven to be 

useful to detect cells.  

The difference between CARE and N2V favors CARE method 

but both are useful. If user can create proper training data CARE 

method is better choice but it amount of high quality images is 

scarce (needed as target images in training data) N2V the 

method of choice. User must also reserve images for statistics 

and in this thesis calculation of p values was not always possible. 

The next steps for ZeroCostDL4Mic could be to introduce new 

image analysis aspects like add cell calculations (number, 

shape) to the StarDist and offer thus increase the options to use 

the results of object detection. In addition to CARE, N2V and 

StarDist the new image processing options could be added to 

ZeroCostDL4Mic. It is important to encourage the users to send 

constant feedback about bugs and possible suggestions for new 

tools to be included to ZeroCostDL4Mic. As the memory limit is 

the challenge in Colab the process should be improved to less 

memory consuming process as possible. 

The thesis project was conducted and thesis written in 2020. The 

project was published in Nature Communications (Chamier et al., 

2021) and the project and affiliated notebooks are found from: 

https://github.com/HenriquesLab/ZeroCostDL4Mic 
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6. Conclusion 
 

Deep learning is a powerful tool for denoising images and detects 

cells from microscopy images. If properly used, deep learning 

allows us to process and analyze large datasets which would be 

normally time-consuming. The main challenges are unfamiliar 

technology for researchers, preparing the suitable training 

dataset and limitations of free resources.  

Google Colab provides an easy and free way to introduce deep 

learning. Google Colab has limitations like memory limit and for 

massive usage of deep learning requires ultimately to invest in 

the computer hardware. Hopefully, the user-friendly platforms 

and notebooks (StarDist, CARE and N2V) encourage the 

researchers in the medical and biological areas to harness the 

power of computing and boost their research. 

The Master’s thesis is the part of project ZeroCostDL4Mic which 

was a collaboration of two research groups: Cell Migration 

research group (Docent Guillaume Jacquemet) at Åbo Akademi 

University and The Henriques lab (Professor Ricardo Henriques) 

at University College London in England.  The project and 

affiliated notebooks are found from:   

https://github.com/HenriquesLab/ZeroCostDL4Mic 
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APPENDIX 1:  Creating training dataset for StarDist in 

ImageJ 
 

Original paper used for dataset training:  

Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene 

Myers.Cell Detection with Star-convex Polygons. International 

Conference on Medical Image Computing and Computer-

Assisted Intervention (MICCAI), Granada, Spain, September 

2018. https://arxiv.org/abs/1806.03535 

 

Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and 

Gene Myers. Star-convex Polyhedra for 3D Object Detection and 

Segmentation in Microscopy. arXiv, 2019. 

https://arxiv.org/abs/1908.03636 

GitHub: https://github.com/mpicbg-csbd/StarDist 

Steps to follow: 

1. Create the following folder tree.  

 

 

 

2. Select 20-40 images for training networks. Choose images that 

represent a general situation and save them into images-folder 

in tiff-format. 

 

https://arxiv.org/abs/1806.03535
https://arxiv.org/abs/1806.03535
https://arxiv.org/abs/1908.03636
https://arxiv.org/abs/1908.03636
https://arxiv.org/abs/1908.03636
https://github.com/mpicbg-csbd/stardist
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image 1.tiff               image 2.tiff 

 

 

3. Create the mask for the image 

 

3.1 Open the first image from images - folder. Adjust the 

threshold (Image → Adjust → Threshold) using Huang method 

(or other suitable). Make sure you catch all cell nuclei. 
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3.3 Create ROIs (Analyze → Analyze Particles) 

 

      

 

3.4 Adjust the brightness (Image → Adjust → 

Contrast/Brightness) lowering the Maximum value to see all cells 

in the image. 

 

  

 

3.5 Remove all artifacts and non-accurate ROIs from the 

image. You may have to remove multiple ROIs to generate 

quality training dataset. 
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3.6 Draw ROIs for unlabeled nuclei with a drawing tool. Finally, 

press the t-letter to identify it. Draw ROI to all nuclei. 
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Also, include the just divided cells. 

 

 

 

3.7 Fill ROIs to create mask (Plugins → LOCI → ROI map). 

 

   

 

3.8 Check the mask. If two nuclei are merged remove the ROI in 

question and draw a new one. Fill ROIs again. 

 

 →      
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3.9 Save the mask with the same name as the corresponding 

image in tiff-format. 

 

 

   

image 1.tiff (in images- folder)    image 1.tiff (in masks- folder) 

 

3.10. Save the ROI set (identify image in naming) 

 

 

 

3.11 Create the mask for every image by repeating 3.1-3.10 

 

 


