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Abstract

Network medicine has recently emerged as a field of research focusing on the
analysis of networks modelling complex biological systems, for a better under-
standing of diseases and corresponding treatment. Building on results from
graph theory, it provides a network-oriented approach for the identification
of potential points of interest in these systems. Within this context, diseases
can be regarded as systemic dysregulations in a patient’s specific interaction
network, while drug therapeutics represent the external interventions aiming
to offset the effects of the disease. The disease data, which can include
disease-drivers, typical genetic and functional dysregulations, or prospective
drug and drug-target details, can be integrated into comprehensive networks
that can help with the identification of targeted drugs and combinations
thereof. There are multiple approaches to the study of these networks,
such as through topological analysis or time-based dynamics. The recent
availability of high-quality biological data and improvements in algorithmics
and computational techniques reinforce the strong potential of the methods
and their immediate applicability in the biomedical domain.

The first part of the thesis focuses on network controllability, which
pertains to the ability to guide a network to a desired state through minimal
external interventions through the identification of nodes of interest within.
We provide a brief theoretical background for the structural controllability
problem and several of its approaches, such as target- or input-constrained
structural controllability, together with an overview of the existing algo-
rithms and tools and followed by a short a discussion on the necessity of
developing approachable software implementations for both existing and
novel efficient algorithms. We prove that the target variant of the problem is
hard to approximate and fixed-parameter tractable, and we introduce several
algorithms aimed at solving it: an exhaustive search algorithm bounded
by naturally constrained limits, and an approximation genetic algorithm
which uses an algebraic approach. Moreover, we extend these algorithms to
efficiently solve the input-constrained variant of the problem.

The second part of the thesis focuses on the applicability of the structural
controllability approaches in biomedicine. We talk about the generation of
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personalized protein-protein interaction network around disease-, patient-,
or drug-specific proteins of interest, and their subsequent analysis, together
with possible interpretations for the results. We apply this framework for
the identification of potential repurposable drug suggestions for COVID-19
and breast, ovarian, and pancreatic cancer, as well as for the suggestion of
personalized treatment for three multiple myeloma patients. Following these
case studies and motivated by the lack of dedicated tools and the multitude
of available biological databases, we introduce a novel, free, and open-source
web-based platform allowing for the generation and structural controllability
analysis of customized protein-protein interaction networks. This novel and,
to the best of our knowledge, unique software integrates the controllability
algorithms and multiple biological data sources and aims to enable direct,
easy, and widespread usage of the presented methods.

This thesis focuses on developing a framework for the application of
structural controllability in biomedicine. The work encompasses theory,
data, algorithms, and their implementation for the identification of potential
novel drugs and drug combination suggestions, drug-repurposing candidates,
and treatment lines, moving forward towards personalized approaches to
therapeutics.
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Sammanfattning

Nätverks medicin är ett nytt forskningsomr̊ade vars fokus är analys av nätverk
som motsvaras av komplexa biologiska system, vars syfte är att utvidga
först̊aelsen av sjukdomar samt sjukdomarnas behandling. Grafteori ger ett
nätverksorienterat tillvägag̊angssätt för identifiering av potentiellt viktiga
intressepunkter i dessa system. I detta sammanhang kan sjukdomar anses
vara systematiska dysregleringar i en patients specifika interaktions nätverk,
medan läkemedelsterapier utgör externa åtgärder var m̊alet är att motverka
effekterna av sjukdomen. Sjukdomsdata, som kan omfatta sjukdoms drivande
faktorer, typiska genetiska och funktionella dysregleringar eller detaljer om
läkemedel och läkemedelsm̊al, kan integreras i omfattande nätverk som kan
bidra till att identifiera riktade läkemedel och kombinationer av dessa. Det
finns flera tillvägag̊angssätt för att studera dessa nätverk, t.ex. genom
topologisk analys eller tidsbaserad dynamik. Tillgängligheten av biologisk
data av hög kvalitet och förbättringar av algoritmer och beräkningstekniker
förstärker metodernas potential och deras omedelbara tillämpbarhet inom
det biomedicinska omr̊adet.

Den första delen av avhandlingen handlar om kontrollerbarhet i nätverk,
vilket avser förmågan att styra ett nätverk till ett önskat tillst̊and med
minimala externa ingrepp genom att definiera viktiga noder. Vi g̊ar kort
igenom den teoretiska bakgrunden för strukturell kontrollerbarhet samt flera
tillvägag̊angssätt för detta, t.ex. mål- eller ing̊angs begränsad strukturell
kontrollerbarhet, tillsammans med en översikt av de befintliga algoritmerna
och verktygen, följt av en kort diskussion om nödvändigheten av att utveckla
lättförst̊aeliga programvaru implementationer för b̊ade befintliga och nya
effektiva algoritmer. Vi bevisar att mål varianten av problemet är sv̊ar att
approximera och att den är möjlig att hantera med fasta parametrar, och vi
introducerar flera algoritmer som kan lösa det: en sökalgoritm som begränsas
av naturligt begränsande gränser, och en genetisk algoritm som använder en
algebraisk metod för approximation. Dessutom utökar vi dessa algoritmer
för att effektivt lösa den inmatnings begränsade varianten av problemet.

Den andra delen av avhandlingen fokuserar p̊a tillämpning av strukturell
kontrollerbarhet inom biomedicin. Vi g̊ar igenom genereringen av personalis-
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erade protein-till-protein interaktionsnätverk kring sjukdoms- , patient- eller
läkemedelsspecifika proteiner av intresse, och deras efterföljande analys, till-
sammans med möjliga tolkningar av resultaten. Vi använder detta ramverk
för identifiering av kandidater för läkemedels omvandling för COVID-19 och
bröst-, äggstocks-, och bukspottkörtelcancer, samt för förslag till personlig
behandling för tre patienter med multipelt myelom. Efter dessa fallstudier,
motiverade av bristen p̊a verktyg och den stora mängden av tillgängliga biol-
ogiska databaser, introducerar vi en ny, gratis plattform med öppen källkod,
som möjliggör generering och analys av den strukturella kontrollerbarheten
hos skräddarsydda protein-till-protein interaktionsnätverk. Denna nya och,
s̊avitt vi vet, unika programvara integrerar algoritmer för kontrollerbarhet
och flera biologiska datakällor och syftar till att möjliggöra en direkt, enkel
och utbredd användning av de presenterade metoderna.

Avhandlingen fokuserar p̊a att utveckla ett ramverk för applicering av
strukturell kontrollerbarhet i biomedicin. Arbetet omfattar teori, data,
algoritmer, och deras implementering för identifiering av potentiellt nya
läkemedel och förslag av läkemedelskombinationer, kandidater för läkemedels
omvandling och behandlingar, för att g̊a vidare mot en personaliserad strategi
för terapi.
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Chapter 1

Introduction

Many biological systems can be represented using a network-based approach,
from the signaling protein-protein interaction networks and metabolic net-
works at cell-level, up to neuronal networks or food-web networks. Applied
network science within computational systems biology aims to help with the
modelling and analysis of any such complex system with highly intricate
relations involving multiple actors that are also linked and acting together as
a whole. Network medicine has recently emerged as a field of research with a
focus on the analysis of biological networks towards a better understanding
in identifying and treating diseases [1]. This field aims to apply network
modelling methods to metabolic pathway networks or protein-protein interac-
tion networks towards diagnosing diseases and discovering novel treatments
[2, 3]. Many of these network-based methods have seen recent successful
applications and experimental validations, such as for the identification of
mechanisms [4], effects [5], or potential of treatment [6] for specific medicine
and diseases.

Network science consists of the study of network representations of
physical, biological, and social phenomena leading to predictive models of
these phenomena [7]. Thus, the understanding of network theory, the study
of such representations from a mathematical point of view as part of graph
theory, is central to the effective applications of these approaches to real-life
cases. Within this context, a complex network corresponds to a graph that
has one or more non-trivial topological features, that is, features that do
not usually occur in regular or random graphs, but consistently do in the
graph representations of real-life systems [8]. There are many ways in which
the models of such complex networks can be analyzed, from a topological
point of view (e.g., the structure of the network and the statistical analysis
of its nodes and edges) to a more dynamical approach (e.g., taking into
account possible changes in the network over time). Each modelling method
can be employed in a wide variety of fields, with the field-specific details
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and the research aims highly influencing the application of the method
and the interpretation of the results. For example, the centrality measures
of the nodes in a network can be used to identify congestion points in a
road network [9], as well as for drug-discovery purposes in a drug network
[10]. These more traditional network modelling methods have also been
integrated with artificial intelligence and machine learning techniques to
form the emerging area of graph representation learning. The applications
can include node classification, relation prediction, or cluster detection, such
as for recommending content to users in a social network [11], or identifying
fraudulent activity in financial transaction networks [12]. A main focus of this
field of research is further represented by its applicability in bioinformatics
and biomedicine, for example, for the identification of protein functions [13],
or the prediction of drug side-effects [14].

Another promising approach to the analysis of complex networks, which
has seen renewed interest within the past years, is represented by the
structural network controllability. Its goal is to identify suitable external
interventions that would influence the state of a network in a desired way (that
is, on an intuitive level, to “control” it). While the concept and the theoretical
framework for the structural control of dynamical systems have been known
for several decades [15, 16], they have recently re-emerged as a field of
interest thanks to several developments in the approach and algorithmics of
controlling complex networks [17]. Network controllability has seen recent
applications in a number of different research areas [18], with a focus on
biological networks [19], including protein-protein interaction networks [20],
gene regulatory networks [21], and brain networks [22]. Moreover, these
results have been confirmed by experimental validation in several studies,
such as for the identification of neuron contribution in the locomotion of
C.elegans [23], or for drug-repurposing in leukemia [24], breast cancer, and
COVID-19 [25].

The complex systems that are encoded by such complex networks are
often difficult to model because of the non-linear manner in which their
components interact, and the behavior of the entire system cannot be directly
inferred from the separate analysis of its individual interactions [26]. For
example, protein-protein interactions represent contacts between two or
more protein molecules as part of a biochemical event [27]. As a protein’s
function tends to be heavily regulated and influenced by the function of other
components within a cell, the system could be modelled by a network where
the nodes represent proteins and the edges the interactions between them for
the particular cell. In biology, the development and use of algorithms that
are modelling such systems are central to the field of computational systems
biology [28]. Recent advances in biology, in the form of both experimental
and computational methods, currently allow for the availability of high-
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quality data, key to the modelling of complex systems. For example, the
multitude of methods employed for the identification of all protein-protein
interactions in the human interactome [29] lead to the recent availability of
several corresponding databases [30].

The interactome represents the complete set of interactions within the
cell [31], together with their underlying specialized subnetworks, such as
the functional signaling pathways [32]. These signaling pathways through
the protein-protein interactions in a cell trigger molecular events which can
control the cell’s growth or proliferation. Consequently, some perturbations
can be linked with a number of diseases, such as cancer [33] or Alzheimer [34].
Thus, due to their essential role within the cellular processes, protein-protein
interactions have recently been of high research interest, with a large number
of methods aiming to identify and analyze them from various perspectives
towards different goals [29]. Although a complete set is difficult to obtain
and the thoroughness of the current methods can be debated [35, 36], the
multitude of approaches led to a large availability of data, aggregated into
several databases containing both experimentally obtained data [37], as
well as computationally predicted data [38]. The size of the interactome
is thought to correlate with the biological complexity of the corresponding
organism, with estimates placing the human interactome at around 650,000
interactions [39]. This highlights the need for efficient and reliable algorithms
for the modelling and analysis of such large data.

While the study of the protein-protein interactions is a prerequisite,
further comprehension of the detailed role and effects of each protein and its
encoding gene is required for a better understanding of the cell and its be-
havior, towards the application of the corresponding methods in biomedicine.
This approach would allow for the model integration of data on specific
genes of interest in a cell, such as disease- or patient-specific related data.
Indeed, this area of research has seen great interest over the last years, with
multiple studies dedicated to the identification of essential genes (that is,
genes whose loss of function can lead to a compromise in the viability of the
cell or organism) [40] or disease-specific essential genes (that is, genes whose
loss of function can cause apoptosis in diseased cells, but not in healthy cells)
[41], as well as mutated genes on a disease-specific level [42] and patient-
specific level [43]. Additionally, the availability of detailed data on drugs and
corresponding drug-target genes [44], together with data on the more recent
treatment through targeted therapy [45], highlights a prospective different
area of focus and has the potential to lead towards a personalized approach
to biomedicine.

The research presented in this thesis focuses on developing a comprehen-
sive framework for the application of network-based modelling in biomedicine,
through the development of theoretically sound and efficient algorithms, their
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implementation for easy and widespread usage, as well as illustrating exam-
ples of their real-life employment towards personalized medicine. Starting
from the results on the control of linear dynamical systems in [15] and the
more recent advances on network controllability [17] and target network
controllability [46, 47], we extended the theoretic framework towards real-life
application in biomedicine with two fixed-parameter tractable algorithms,
performing an exhaustive search and constrained by natural bounds. Further-
more, we improved the greedy algorithm presented in [47] and we developed
a novel genetic algorithm that can outperform the previously existing target
network controllability algorithms. We also proved the feasibility of these
algorithms by implementing corresponding command line-, desktop-, and
web-based solutions that allow for the controllability analysis of any network.
In addition, we aggregated and merged existing biological data from multiple
databases on proteins, protein-protein interactions, disease-specific essential
and mutated genes, and drugs with their drug-targets. We then used the
software implementations and the data to illustrate the generation and anal-
ysis of customized protein-protein interaction networks for several multiple
myeloma patients, and, separately, for COVID-19, towards the identification
of interaction paths of interest and a personalized approach to treatment.
Moreover, to facilitate the immediate applicability in biomedicine, we in-
troduced a novel, free to use, and open-source web-based platform which
encompasses the complete framework. Its novelty stems from the capability
to both easily integrate readily available biological data for the generation
of personalized protein-protein interaction networks, and to directly ana-
lyze any such networks using structural controllability. At the same time,
the platform also provides integration with external databases and tools,
allowing for easy importing and exporting of biological data and immediate
evaluation of the results.

The thesis is structured as follows: in the second chapter we discuss
the background of the network controllability framework, together with
corresponding algorithms and implementation; in the third chapter, we shift
towards the application of network controllability methods in biomedicine,
together with the biological data required for, and the output of, such com-
putational analyses; in the fourth chapter, we briefly present the summaries
of the included research papers; and lastly, in the fifth chapter, we provide a
short discussion on the methods described in the paper, including potential
benefits and limitations, and we draw on future research directions.
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Chapter 2

Structural network
controllability

In this chapter, we discuss the structural controllability framework as a
tool for the analysis of complex networks. We introduce the background,
formal definition, and algorithms for the full structural network controllability,
together with its extended versions of target structural network controllability
and input-constrained target structural network controllability. Lastly, we
compare briefly structural controllability to other methods for the modelling
and control of networks, and we provide an overview of our contribution to
the field.

2.1 Network modelling and
controllability

Real-life systems are often complex, with many components that are closely
interacting with each other and with the environment. Modelling the behav-
ior of such a complex system is considerably difficult due to the non-trivial
way in which its components are connected, such as non-linear connec-
tions or the presence of feedback loops [26]. In many cases, the system
can be represented in a more simplified way as a network with the nodes
representing its components, and the edges the interactions between them.
These simplifications, however, are only approximations and can’t always
incorporate all details of inherently complex real-life phenomena. In turn,
the modelled networks can be analyzed from a mathematical point of view
using network and graph theory. Network modelling and analysis has seen
applications in a wide variety of domains, including electrical engineering
[48] and telecommunications [49], sociology [50], or biology [51].

An interesting approach to the analysis of complex networks refers to
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the ability to control them, i.e., to drive them from any initial state to a
specific final state of choosing through suitable external interventions and
within finite time. This matches well the intuitive idea of control. Known
as network controllability, this approach has been successfully employed in
various applications within different research areas, such as power system
networks [52], interbank networks [53], neural networks [23], or protein-
protein interaction networks [25].

The network controllability problem aims to find the minimum external
interventions required to control a network, i.e., drive each of its nodes to a
desired state. The structural controllability approach concerns itself only
with finding the nodes in the network on which external interventions need to
be exerted in order to control it, and not on what or how these interventions
should be [17]. This represents a shift towards a qualitative approach, where
only the structure of the network matters (e.g., if a specific edge between
two nodes exists or not), as opposed to a quantitative one (e.g., the actual
weight of the edge is not important, as long as it is non-zero, thus it exists).

In many real-life scenarios, however, it is not necessary to control the
entire network. Additionally, in [17] it is shown that, in order to achieve
full control over a network, a high percentage of its nodes might have to
be directly controlled through external interventions, which renders the
approach unfeasible. Instead, it might be sufficient to achieve control over
only specific nodes of interest in the network, called targets. Thus, target
network controllability aims to find the minimum external interventions
required to control a specific subset of target nodes in a network, i.e., drive
each of them to a desired state [46]. Similarly, there exists a structural
counterpart to this approach, which again focuses only on the structure of
the network, i.e., on identifying the nodes in the network on which external
interventions need to be exerted.

Furthermore, another often encountered real-life constraint concerns the
ability to efficiently control through external interventions the nodes of
the network. In many cases, only specific nodes are known to be directly
controllable, which can render many obtained solutions difficult to be effi-
ciently applied from a practical perspective. To increase the applicability
of the approach in real-life, we can focus our search on these specific nodes
in the network, called preferred inputs, leading to a double optimization
strategy. Thus, input-constrained target network controllability aims to find
the minimum external interventions required to control a specific subset of
target nodes, while maximizing the use of preferred inputs, i.e., drive each
of the targets to a desired state through paths that would ideally start in
preferred inputs. The structural counterpart to this approach can be defined
just as before.

On the other hand, a purely structural approach to the identification of
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efficient control of complex networks might prove to be insufficient when ad-
ditionally considering the network dynamics [54]. While structural methods
consider all connections in a network as always equally and fully capable of
contributing to control, in a dynamical system the state of these connections
may change, and their redundancy becomes important. Therefore, effective
control of such dynamical networks may require further domain knowledge
or alternative techniques [55]. In turn, many real-life dynamical networks
exhibit self-regulating capabilities that allows them to adapt when faced
with internal or external perturbations [56]. This allows for a shift of focus
back to the structure, as dynamics of the system would tend to return it to
the default state. Indeed, when applied on complex networks in dynamical
environments, structural controllability methods have been shown to both
underestimate and overestimate the number of required interventions for
control [54]. Thus, they should altogether provide a good approximation,
especially for networks whose precise dynamics are too complex or largely
unknown.

In this thesis and in the related original publications, we focus mainly
on the study of target structural controllability (and its input-constrained
variant) analysis of directed networks.

2.2 Structural controllability framework

A linear, time-invariant dynamical system of size n, where A ∈ Rn×n

represents the time-invariant state transition matrix describing how each
state affects the system and x(t) = (x1(t), . . . , xn(t))

T represents the state
vector of the system at time t, can be defined by

dx(t)

dt
= Ax(t). (2.1)

If the system is influenced by an external source of size m, where B ∈
Rn×m is the time-invariant input matrix describing how the m inputs are
affecting the n variables and u(t) = (u1(t), . . . , um(t))T represents the input
vector at time t, then it becomes

dx(t)

dt
= Ax(t) +Bu(t). (2.2)

Additionally, if the system exports an output of size l, where C ∈ Rl×n

is the output matrix describing how the n variables are affecting the l
outputs and y(t) = (y1(t), . . . , yl(t))

T represents the output vector at time t
depending on x(t), then it would be additionally described by

y(t) = Cx(t). (2.3)
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For ease of future reference notation, we will denote by X, I, and T the
set of system variables, inputs, and outputs (or targets) respectively. Fur-
thermore, such a system with |X| = n, |I| = m, and |T | = l, corresponding
to A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n will be denoted as (A,B,C), or, in
the particular case where l = n and X = T , thus with the outputs the same
as the system variables, the system will be denoted simply as (A,B).

A system (A,B,C) is said to be output controllable if there exists a
suitable combination of inputs in I that can drive the system from any initial
state to any particular desired state within finite time, for any numerical
setup. We define the output controllability matrix of the system as

OC(A,B,C) = [CB,CAB,CA2B, . . . , CAn−1B]. (2.4)

As shown in [46], the system is output controllable if and only if

rank(OC(A,B,C)) = |T |. (2.5)

As OC(A,B,C) ∈ Rl×mn and l ≤ n, the equation 2.5 requires the
OC(A,B,C) matrix to be of full rank in order for the system to be output
controllable.

In the particular case where l = n and X = T , this corresponds to the
Kalman’s condition for full controllability [15]. In other words, the system
(A,B) is controllable if and only if

rank([B,AB,A2B, . . . , An−1B]) = n. (2.6)

As can be seen, this definition of control depends on the numerical values
of the system variables. For a more efficient approach, we can decouple
the numerical setup and focus instead on the internal structure of the
system. Two equal-sized matrices A ∈ Rm×n and A′ ∈ Rm×n are said to be
structurally equivalent, which we denote by A ∼ A′, if they have their zero
values in the same positions, i.e., A′

i,j = 0 if and only if Ai,j = 0, for any
1 ≤ i ≤ m and 1 ≤ j ≤ n. Similarly, two systems (A,B,C) and (A′, B′, C ′)
are structurally equivalent if A ∼ A′, B ∼ B′, and C ∼ C ′.

Thus, a system (A,B,C) is said to be structurally output controllable
if there exists a suitable combination of time-dependent inputs in I and a
suitable numerical setup of the non-zero values in A, B, and C that can
drive the system from any initial state to any particular desired state within
finite time. Following up, the system is structurally output controllable if
and only if there exists a combination of non-zero values for the non-zero
entries in the system matrices such that the equation 2.5 holds. Furthermore,
if a system is structurally controllable, then it is controllable in almost all
numerical setups for its non-zero entries [57, 58].
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A linear system can be represented as a directed weighted graph, by con-
sidering as nodes in the graph the n variables of the system, and as directed
edges in the graph the non-zero entries in the system’s state transition matrix,
i.e., there exists a directed edge from the node representing the variable xi
to the node representing the variable xj if and only if A(xj , xi) ̸= 0. On
the other hand, the m inputs of the system correspond to external input
nodes, with the non-zero entries in the system’s input matrix defining the
directed edges between the input nodes and the nodes of the graph, i.e., there
exists a directed edge from the node representing the input ui to the node
representing the variable xj if and only if B(xj , ui) ̸= 0. The nodes xj for
which there exists ui, such that B(xj , ui) ̸= 0, are directly controllable from
the outside and can drive the system to the desired state. Similarly, the l
outputs of the system correspond to external output nodes, with the non-zero
entries in the system’s output matrix defining the directed edges between
the nodes of the graph and the output nodes, i.e., there exists a directed
edge from the node representing the variable xi to the node representing the
output yj if and only if C(yj , xi) ̸= 0.

The system controllability problem has an equivalent network control-
lability problem formulation, where the variables, inputs, and outputs are
nodes in a corresponding directed graph. Additionally, the structural network
controllability problem has a counterpart formulation in terms of graphs
[57]. With the same notations and constraints as before, the system (A,B)
with n variables and m inputs is structurally controllable if and only if there
exists a set of n directed paths from the input nodes to each of the nodes in
the graph, such that no two paths intersect at the same distance from their
ending nodes. In a similar way, for the system (A,B,C) with n variables,
m inputs, and l outputs, the aim becomes finding a set of l directed paths
from the input nodes to the output nodes, such that no two paths intersect
at the same distance from their ending nodes. In this case, however, unlike
for full structural controllability, the graph condition is necessary, but not
sufficient [59].

An additional constraint can be further introduced by considering that
the effect of the external control inputs is reduced in each time step. This
corresponds to defining a maximum time step k beyond which the effect
of an input within the system can be regarded as negligible. Thus, the
output controllability matrix of the system OC(A,B,C) will be reduced
to its k-corresponding submatrix [CB,CAB,CA2B, . . . , CAkB]. For the
network controllability approach, this additional restriction corresponds to
limiting to k the maximum length of any path between the input nodes and
the nodes of the network, or the output nodes. All of the other previous
considerations remain valid.

The set of external inputs describes the complexity and ability of an
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(a) (b)

(c) (d)

Figure 2.1: The different setups of the structural controllability problem for an
example network with 15 nodes and 22 edges. a: full controllability, where the
state of external outputs connected to all nodes in the network is influenced from
external inputs; each external element can be connected to one or more nodes
in the network. b: output controllability, where the state of external outputs
connected to specific output nodes in the network is influenced from external inputs;
each external element can be connected to one or more nodes in the network. c:
simplified output controllability, where the state of external outputs connected
to specific output nodes in the network is influenced from external inputs; each
external element can be connected to exactly one node in the network. d: target
controllability, where the state of specific target/output nodes in the network is
influenced from control/input nodes in the network; the external elements are not
considered in this approach and each input node can be directly influenced. in red:
inputs and input nodes; in blue: outputs and output nodes; in gray: other notes.
as diamonds: elements external to the network; as circles: elements internal to
the network. with dashed lines: connections external to the network; with solid
lines: connections internal to the network.
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outside entity to influence several specific nodes in a graph. Thus, one
such external input can be directly connected to multiple nodes in the
graph, while each node in the graph might be directly connected to multiple
external inputs (Figures 2.1a and 2.1b). Within our approach to structural
controllability, we are considering only the directly controllable internal
nodes in the graph, as opposed to the external inputs directly controlling
them. In other words, our external inputs are connected to exactly one
node in the graph and vice-versa (Figure 2.1c), such that each row and
each column of the system’s input matrix has exactly one non-zero value.
Furthermore, if we assign the same unit value for all the edges between an
input node and a node in the graph, then the input matrix B becomes a
submatrix of the identity matrix In. This allows our approach to use only
the internal elements of the graph (Figure 2.1d). The same considerations
are also valid for the outputs and the output matrix C.

2.3 Full structural controllability

The full structural controllability problem, i.e., determining the minimum
number of input nodes required to control an entire network, has been
shown in [17] to be equivalent to identifying a maximum matching within a
bipartite graph corresponding to the network. Specifically, we need to find
a maximum set of edges that do not share starting or ending nodes, and a
node is considered unmatched if there doesn’t exist any edge ending in it
[60]. Thus, the network can be fully controlled if and only if we can directly
control each unmatched node and there exists a path to each matched node
from an input node (Figures 2.2a and 2.2b). The maximum matching in a
directed network can be found in at most O(N1/2E) steps, where N and E
represent the number of nodes, respectively edges in the network [61], so the
algorithm represents an efficient solution to the problem.

2.4 Target structural controllability

Unlike full structural controllability, the more general case of output struc-
tural controllability (also called target structural controllability) has been
shown to be NP-hard [47]. Thus, we are interested in finding efficient ap-
proximation algorithms that could reach a solution as close to optimal as
possible within a reasonable time.

Extending on the full structural controllability algorithm in [17], a first
approach for solving the target structural controllability problem was de-
scribed in [46]. The proposed approach follows the results of [59], aiming to
solve the problem using a linking graph structure. The key concept is that
a single node can control a set of target nodes in a network if there exists
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a path of unique length to each of them, and we can thoroughly identify
the sets of controlled target nodes for any given node in networks with no
loops. This concept forms the basis for a greedy algorithm that approximates
the minimum set of input nodes sufficient for target control by performing
successive maximum matchings within a bipartite graph corresponding to
the network. All nodes left unmatched during each of the matchings will
need to be directly controlled (Figures 2.2a and 2.2c).

Following on this algorithm, it has been shown in [47] that the proposed
method fails to provide a valid solution in specific special cases, and that
an additional validation step is required, by checking if the controllability
matrix OC(A,B,C) is indeed of full rank, a shift back from graph theory.
Furthermore, several heuristics have been proposed, significantly improving
the algorithm run time and the size of its returned solutions. The improve-
ments focus on optimizing the choice of maximum matchings, taking into
account the structure of the control paths obtained up to that stage.

The target structural controllability problem has been the central part of
the studies (Table 2.1). In Publication 2, we proved that the problem is fixed-
parameter tractable by the number of target nodes and hard to approximate
at a factor better than O(log n). We also provided an additional fixed-
parameter algorithm for solving the problem through an exhaustive search
bounded by real-life-derived limitations, such as restricting the maximum
length of a control path. In Publication 3, we developed and implemented
a new approximation genetic algorithm, focusing on an algebraic approach
rather than graph theory, and managing to outperform the previous algo-
rithms in a majority of cases. In Publication 4, we introduced a web-based
application which allows for the structural target controllability analysis of
any network. Additionally, in all of the original publications, we also demon-
strated the applicability of the proposed methods and software on multiple
real-life directed complex networks, with a focus on directed protein-protein
interaction networks. This will be further discussed in Chapter 3.

2.5 Input-constrained target structural
controllability

An extension to the target structural controllability and motivated by the
real-life applicability of the method, the input-constrained version considers
an additional input, as a supplementary set of input nodes that are already
known to be controllable through external interventions. Several variants of
the problem exist, such as identifying if a given subset of controllable input
nodes can control the entire set of target nodes [67], or trying to maximize the
number of known controllable inputs nodes among the identified controlling
nodes for the set of target nodes [47].
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(a)

(b)

(c)

Figure 2.2: The maximum matchings required for the controllability analysis
of an example network with 8 nodes, out of which 4 are target nodes, and 11
edges. a: the corresponding network and possible resulting control paths for the
full controllability problem (left) and the target controllability problem (right). b:
the maximum matching corresponding to the full controllability problem. c: the
successive maximum matchings corresponding to the target controllability problem.
in red: unmatched/control nodes; in dark blue: intermediary nodes; in light
blue: target nodes; in gray: other nodes. with dashed lines: matched edges;
with solid lines: other edges.
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Type Name N E AD T P
Erdös-Rényi Erdös-Rényi 100 [*] 62 47 0.76 5 -
(Synthetic) Erdös-Rényi 500 [*] 497 1,270 2.56 25 -

Erdös-Rényi 1000 [*] 1,000 4,952 4.95 50 -
Erdös-Rényi 1500 [*] 1,500 11,258 7.51 75 -
Erdös-Rényi 2000 [*] 2,000 19,869 9.93 100 -
Erdös-Rényi 2500 [*] 2,500 30,976 12.39 125 -
Erdös-Rényi 3000 [*] 3,000 44,713 14.90 150 -

Scale-Free Scale-Free 100 [**] 100 202 2.02 5 -
(Synthetic) Scale-Free 500 [**] 500 1,037 2.07 25 -

Scale-Free 1000 [**] 1,000 2,112 2.11 50 -
Scale-Free 1500 [**] 1,500 3,202 2.13 75 -
Scale-Free 2000 [**] 2,000 4,353 2.18 100 -
Scale-Free 2500 [**] 2,500 5,406 2.16 125 -
Scale-Free 3000 [**] 3,000 6,491 2.16 150 -

Small World Small World 100 [***] 100 400 4.00 5 -
(Synthetic) Small World 500 [***] 500 2,000 4.00 25 -

Small World 1000 [***] 1,000 4,000 4.00 50 -
Small World 1500 [***] 1,500 6,000 4.00 75 -
Small World 2000 [***] 2,000 8,000 4.00 100 -
Small World 2500 [***] 2,500 10,000 4.00 125 -
Small World 3000 [***] 3,000 12,000 4.00 150 -

Trust Prison Inmates [62] 67 182 2.72 14 -
(Real) College Students [62] 32 96 3.00 7 -
Electronic Electronic Circuit 208 [63] 122 189 1.55 25 -
Circuit Electronic Circuit 420 [63] 208 189 0.91 42 -
(Real) Electronic Circuit 838 [63] 512 819 1.60 103 -
Protein- Breast DEF [64] 1,415 2,435 1.72 112 123
Protein Breast HCC1428 [65] 1,495 2,650 1.77 126 135
Interaction Breast MDA-MB-361 [65] 1,478 2,590 1.75 124 136
(Real) Ovarian DEF [64] 1,047 1,579 1.51 140 100

Ovarian O1946 [65] 1,155 1,823 1.58 159 104
Ovarian OVCA8 [65] 1,157 1,781 1.54 161 105
Pancreatic AspC-1 [65] 1,022 1,534 1.50 125 90
Pancreatic DEF [64] 991 1,484 1.50 168 86
Pancreatic KP-3 [65] 1,134 1,757 1.55 167 94
SIGNOR BrOvPa DEF [64] 2,913 6,729 2.31 145 201

Table 2.1: An overview of networks analyzed throughout the studies and the
corresponding publications. N: number of nodes in the network. E: number of
edges in the network. AD: average degree of the network. T: number of target
nodes in the network. P: number of preferred input nodes in the network. *,
**, ***: generated using networkx [66]; *: fast gnp random with p = 0.005; **:
scale free graph with default parameters; ***: watts strogatz graph with k = 4 and
p = 0.2.
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Some of the heuristics proposed in the target structural controllability
algorithm of [47] are designed towards reaching the latter goal, i.e., maxi-
mizing the number of returned controllable input nodes, by selecting them
with a higher priority during the maximum matching stages of the algorithm.
Overall, however, the algorithms offer no guarantee that any of these con-
trollable input nodes will be indeed present in the solution, or that using
them would lead to a better solution, i.e., with a lower number of controlling
input nodes.

In each of the original publications mentioned in Section 2.4, in addition
to the general target structural controllability, we also investigated the
input-constrained variant (Table 2.1). The two algorithms proposed in
Publication 2 can perform an exhaustive search to identify the minimum
set of controllable input nodes that can control a maximum number of
target nodes. The genetic algorithm proposed in Publication 3 also contains
additional crossover and mutation functions that can maximize the number
of controllable input nodes in a solution. Lastly, the application described
in Publication 4 integrates the input-constrained variant of each of the
implemented target structural controllability algorithms.

2.6 Alternative approaches to structural
controllability

In addition to structural controllability, there are multiple other approaches
to network modelling for identifying nodes of interest in a network. The
identification process depends on the corresponding method, while the
designated labelling of interest varies with the application field and the goal
of the modelling.

A first simple approach to measuring the importance of a node in a
network is to compute its centrality measures, where the aim is to find nodes
that are of significance in the context of the network’s topology. Multiple
centrality measures have been defined, most of them taking into account
the structural properties of the network, such as node connectivity. These
measures can be grouped in several categories, such as:

• degree centralities, measuring the number of incident edges for a node
in the network;

• proximity centralities, measuring how close a node is to other nodes in
the network;

• path centralities, measuring the impact of a node in the paths that
traverse the network;
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• spectral centralities, measuring the algebraic properties of the adjacency
matrix of the network.

Most of these centrality measures can be computed in linear or low-
polynomial time in terms of the number of nodes and/or edges in the
network [68, 69, 70].

Unlike the centrality methods, the controllability approaches represent
an optimization problem, where the aim is to find a minimal set of nodes of
significance in the network. Similar to structural controllability, where the
solution to the problem represents a minimal set of nodes that can control all
the nodes in the network, a solution of the minimum dominating set (MDS)
approach is represented by a minimal set of nodes that can dominate all
the nodes in the network, such that any node in the network is either in the
dominating set, or adjacent to a node in it. A generalization of the problem,
called minimum k-dominating set (MkDS), has the more general objective
of finding a minimal set of nodes that can dominate all the nodes in the
network at most k steps, such that any node in the network is either in the
dominating set, or connected to a node in it through a path of length at
most k. Another generalization, akin to the target structural controllability,
is the red-blue (k-)dominating set problem, with the objective of finding a
minimum subset of blue-labelled nodes in the network that can (k-)dominate
all the red-labelled nodes in the network. It is easy to see that, within this
context, the blue- and red-labelled nodes would correspond to the preferred
control inputs, and respectively targets within the input-constrained target
structural controllability approach. All of the variants of the minimum
dominating set problem are NP-hard [71], but efficient algorithms are known
to exist [72].

A slightly different, but well-established, controllability method considers
the modelling of complex networks as Boolean networks and analyzing them
as such. This model maps the nodes of the network to binary values (i.e., 0
and 1, or false and true), and assigns to the edges of the network Boolean
functions that directly influence these values. Consequently, at each step
of discrete time, the value of the nodes change based on the edge functions
and the node values at the previous step [73]. There are many approaches
to Boolean network modelling, such as considering the network topology
(e.g., random, scale-free), or the paradigm of transitions between the states
of the network (e.g., synchronous, asynchronous) and, despite their apparent
simplicity, Boolean networks have been successfully used in a wide variety of
biological areas, from cell aging [74] to identifying regulators within cancer
networks [75]. Within this context and similar to structural controllability,
controllability refers to the ability and steps required to bring a Boolean
network from a starting state to a defined desired state with a known value, if
possible. However, unlike structural controllability and minimum dominating

16



sets, where the focus was on the structure of the network and the actual
states of the nodes were not taken into consideration, at any moment of time
the nodes of the Boolean network have a defined state, which altogether
give the state of the entire network and allow for only a finite number of
potential states. Thus, over time, without external perturbation, a network
will always reach a periodic sequence of states, called attractor. This makes
it is possible that some states can never be reached when starting from a
specific state. The controllability of Boolean networks has also been shown
to be NP-hard and algorithms with an exponential complexity are commonly
used to solve it [76], which usually limits their applicability to much smaller
networks when compared to the other approaches [77].

Another interesting method, closely related to (node) structural control-
lability, is represented by the edge structural controllability. Within this
setup, denoted as switchboard dynamics, an edge can be directly influenced
by its source node, while a node is considered as simply mapping its incoming
edges to its outgoing edges, according to an internal switching logic. The
goal becomes twofold, in gaining control over the edges of the network using
a set of minimal control edges, which can then be subsequently influenced
through a set of minimal control input nodes. This type of control can be
investigated using the node structural controllability algorithms applied on
a slightly modified network, whose nodes represent the edges in the initial
network, and whose edges represent the paths of length two in the initial
network [78]. Thus, all considerations regarding the complexity and efficiency
of the previous algorithms apply for edge structural controllability as well,
as the network transformation can be performed in linear time. This method
could be better suited for the modelling of natural systems where dynamical
processes take place on edges, such as data communication networks or
power line networks [79]. At the same time, a target-oriented approach
has also been proposed with the similar aim of gaining control over only
specific edges in the network, as opposed to all of the edges [80], and efficient
algorithms have been suggested [81].

A common criticism of the more traditional controllability methods refers
to their assumption of linear dynamics, while many real-life systems are
thought to be mainly non-linear [82]. Consequently, several approaches have
been proposed for the modelling and controllability analysis of non-linear
complex networks, through establishing the accessibility of their desired
states [83]. These methods would generally require additional knowledge
regarding the network dynamics or the state space. For example, using the
network structure for the identification and measurement of specific feedback
vertex sets allows for the discovery of any recurrent dynamical behavior in
such a network [84]. Another similar approach considers both the structural
and the functional network information to determine select components
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whose activity can be influenced in attempting to drive it towards a desired
state or away from an undesired state [85]. Alternatively, individual nodes
and valid corresponding compensatory perturbations can be identified in
order to bring the entire network to a different desired state [56].

Several of these network modelling methods have been more thoroughly
presented and compared in Publication 1. We surveyed multiple centrality
methods, i.e., degree centrality, closeness centrality, eccentricity centrality,
betweenness centrality, and eigenvector-based prestige, and provided an
overview of the theoretical background for each analyzed modelling method
and for two controllability methods, i.e., minimum dominating sets, and
structural controllability.
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Chapter 3

Applications in biomedicine

In this chapter, we discuss the potential applicability of the network con-
trollability methods described in Chapter 2 on protein-protein interaction
networks. We consider the background, structure, and significance of protein-
protein interaction network, and briefly mention several available related
databases and data repositories. We then shift towards a more personalized
approach to the generation and analysis of these networks, by considering ad-
ditional disease- or patient-specific proteins of interest. Lastly, we discuss the
significance and applicability of the results for the structural controllability
analysis of these networks, and we provide an overview of our contribution
to the field.

3.1 Protein-protein interaction networks

Protein-protein interactions represent physical contacts between two or
more protein molecules as a result of biochemical events and serve specific
biological functions. The study of these interactions usually occurs in the
context of a pathway or a cell, rather than individually [86]. Additionally,
the interactome represents the entire set of interactions in a specific cell
[31], and it can be modelled by a protein-protein interaction network, as a
mathematical representation of the physical contacts between the proteins
of the cell. The analysis of these networks helps with the understanding of
the biological mechanisms behind, including the potential causes of specific
diseases. This knowledge can lead to prospective efficient diagnostics and
therapeutics [87].

Many methods, both experimental and computational, exist for the iden-
tification and analysis of protein-protein interactions, to different degrees of
accuracy [29]. Furthermore, the interactome might also vary, for example
with specific diseases or with different stages of development, which impacts
the thoroughness and completeness of the obtained data [88]. It is estimated
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that its actual size correlates with the biological complexity of the corre-
sponding organism, with the human interactome being placed at around
650,000 interactions [39].

The study of protein-protein interaction networks is closely linked to
the understanding of diseases. For example, network properties can be
used to separate specific disease and non-disease proteins [89], or to infer
the function of proteins within pathways [90]. Such differences between
healthy and diseased cells can be brought forth by the reconstruction of the
networks around the proteins corresponding to the mutated genes involved
in the disease [91], taking into account the perturbation of the network (e.g.,
removal of proteins or interactions) [86] possibly caused by mutations of the
proteins and their encoding genes [92].

In this thesis and in the related original publications, we only considered
directed interactions between exactly two proteins (e.g., inhibition or stim-
ulation). Additionally, for a more thorough analysis, it is also possible to
include several typically undirected interactions by trying to map a direction
[93], or by taking into account both directions. As mentioned before, the
structural target controllability approach can circumvent these limitations,
as the missing or incomplete data does not affect the validity of results, but
merely their optimality.

3.2 Proteins encoded by disease-specific
essential genes

Survivability-essential genes are genes indispensable for a cell to grow and
reproduce. Knocking out an essential gene can lead to the death of the
cell or a block in its division. However, many genes can be considered as
essential only under specific circumstances [94]. Consequently, this leads
to the identification of several disease-specific genes that have been found
to be survivability-essential for diseased cells, but not for healthy cells,
for a particular disease. Such disease-specific essential genes have been of
great interest in the study and identification of novel therapeutic targets.
For example, the suppression of a protein encoded by a cancer-specific
survivability-essential gene could lead to the death of only the cancer cells
[41]. The proteins encoded by the essential genes are well connected within
the protein-protein interaction networks [95], so they can be integrated in
their study (Figure 3.1).

In addition, many diseases are caused by gene mutations, or irregularities
in the functionality of the healthy cells [92]. The genes suffering mutations
can cause the disease onset but can also be altered by the disease itself. For
example, besides the gene mutations that are considered as high risk for
breast cancer, studies have shown that a wide number of other genes are
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Figure 3.1: The influence of the breast-cancer cell-line HCC1187 in a protein-
protein interaction network with 1,179 proteins and 2,098 interactions. The network
contains 1 connected component, has a diameter of 17 and an average degree of 3.45.
There are 298 disease- and drug-specific proteins of interest highlighted, consisting
of 75 proteins encoded by disease-specific survivability-essential genes, 13 proteins
encoded by commonly mutated genes within the disease, and 210 drug-targetable
proteins. in red: proteins encoded by disease-specific survivability-essential genes;
in dark blue: proteins encoded by commonly mutated genes within the disease;
in light blue: drug-targetable proteins; in gray: other proteins.

also often mutated in the general population [96]. Thus, the inclusion of
the proteins encoded by such mutated genes can also help shift the focus
towards a more personalized and patient-oriented approach, in addition to
the more generic disease-specific one (Figure 3.2).

Within our structural network controllability framework, we use the pro-
teins encoded by the disease-specific survivability-essential genes as control
targets within the network. In this context, control over a protein indicates
the ability to influence it in a desired way. Thus, by considering the proteins
in the network that control a high number of target proteins, we can pave
the way towards the identification of potential therapeutic suggestions. In
addition, proteins encoded by disease-specific mutated genes can also be
included in the target set, as well as by the patient-specific ones, for a more
personalized approach.

3.3 Proteins targetable by drugs

Almost all pharmaceutical drugs available on the market are targeting pro-
teins in the body, as they can have lower toxicity and higher specificity than
drugs targeting other macromolecules [97]. Proteins that can be suitable
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Figure 3.2: The impact of the patient-oriented approach in the generation and
analysis of the breast-cancer cell-line HCC1187 protein-protein interaction network
with 1,179 proteins and 2,098 interactions. a: the complete network, with the
patient-specific proteins corresponding to the first patient highlighted. b: the
patient-specific subnetwork corresponding to the first patient, with 110 proteins
and 160 interactions; the network contains 16 proteins encoded by patient-specific
mutated genes, 42 proteins that can directly affect them, and 52 proteins that can be
directly affected by them. c: the complete network, with the patient-specific proteins
corresponding to the second patient highlighted. d: The patient-specific subnetwork
corresponding to the second patient, with 103 proteins and 161 interactions; the
network contains 17 proteins encoded by patient-specific mutated genes, 41 proteins
that can directly affect them, and 45 proteins that can be directly affected by them.
in red: proteins encoded by patient-specific mutated genes; in dark blue: proteins
that can directly affect the proteins encoded by patient-specific mutated genes;
in light blue: proteins that can be directly affected by the proteins encoded by
patient-specific mutated genes; in gray: other proteins.
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drug-targets would ideally have a critical role in the disease proliferation,
while being less involved in other processes of the cell, to limit the po-
tential side-effects [98]. However, relatively few drug candidates complete
successfully the required clinical trials, mainly because of lack of efficiency or
increased toxicity [99]. Consequently, the network pharmacology approach
has been developed to help with the identification of potentially more suit-
able drug-targets, through the understanding of their precise activity within
the diseased interactome [100].

Within our structural network controllability framework, we use the
proteins encoded by the drug-targetable genes as preferred control inputs
within the network. Such proteins can be considered as prime candidates
for controlling the target proteins, thus for providing suggestions for more
focused potential therapeutics, as they can already be influenced through
external interventions by already existing drugs. This can include, also
depending on the used target data, drug repurposing, in the case of drugs
unrelated to the studied disease, or personalized therapeutics, in the case of
multiple available lines of treatment. It is worth mentioning that, due to
the nature of the framework, we can only take into consideration targeted
drugs with known drug-targets.

3.4 Available data and databases

Multiple database resources exist including data on proteins, protein-protein
interactions, survivability-essential genes, mutated genes, or drugs and drug-
targets. Several such databases will be briefly presented next. The list
does not aim to be exhaustive, and only mentions the databases which
have been used throughout the original publications. Excluding the one
indicated exception, all of the other databases are freely and publicly available.
However, generally speaking, each database is considered to be a separate
entity with specific fields and unique identifiers, and parsing the data is
required in order to match their content.

We have used the protein public data from the HGNC [101], Ensembl
[102], UniProt [103], NCBI [104], and InnateDB [37] databases, together
with the proprietary data from the KEGG [105] database. Each of these
databases contains a primary unique identifier and one or more foreign
identifiers of other databases, which we have used to match their data. We
have compiled a final set of 42,152 proteins to which we have assigned an
own additional unique identifier.

We have used the interaction public data from the OmniPath [106],
InnateDB [37], and SIGNOR [107] databases, together with the proprietary
data from the KEGG [105] database. Each of these databases contains
specific protein identifiers that we have matched with the previously obtained
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set of proteins. Furthermore, we have additionally filtered the data to keep
only the interactions that appear as directed and experimentally validated
in at least one database. We have compiled a final set of 48,189 interactions
to which we have assigned an own additional unique identifier.

We used cancer cell-line-specific survivability-essential gene data from
the COLT [65] database, together with cancer cell-line-specific mutated gene
data from the DepMap database [108]. Each of these databases contains
lists of specific protein identifiers that we matched with the previously
obtained set of proteins. We have compiled 52 sets of proteins encoded by
survivability-essential genes and 1,526 sets of proteins encoded by mutated
genes for multiple cancer cell-lines.

We used drug and drug-target data from the DrugBank [44] database.
The database contains lists of protein identifiers that we matched with the
previously obtained set of proteins. We have compiled 9 sets of drugs and
their corresponding drug-targetable proteins.

All of the compiled data is integrated and readily available in the applica-
tion described in Publication 4. The data can be easily accessed, inspected,
and downloaded, or it can be directly used for custom protein-protein network
generation and structural controllability analysis.

3.5 Generation of personalized
interaction networks

The human interactome is estimated to contain around 650,000 interactions
[39]. Many diseases, however, such as Alzheimer or Parkinson, are considered
to be caused by the aberrant behavior of only specific genes [109]. Switching
the focus on only their encoded proteins and their immediate surrounding
area, and thus on a smaller part of the complete interactome, allows for a
more efficient applicability of available methods and algorithms, and to more
targeted and specific results.

Therefore, the generation of a personalized protein-protein interaction
network around a set of proteins of interest presents an interesting challenge,
consisting of identifying a corresponding subnetwork within the complete
interaction network. Consequently, access to complete and accurate in-
teraction data represents a prerequisite for the network generation, which
represents one of the intended uses of the compiled data that was presented
in Section 3.4. It is again worth noting that while the availability of more
thorough data would theoretically improve the fidelity of the generated net-
works and the accuracy of their analysis, the structural target controllability
approach provides valid (although potentially less optimal) results even when
presented with incomplete data.

The networks can be generated around any set of proteins of interests,
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(c) (d)

Figure 3.3: The influence of the generation algorithms on the networks generated
starting from the same breast-cancer cell-line HCC1187 protein-protein interaction
network with 1,179 proteins and 2,098 interactions and the same set of 259 seed
proteins. a: the network with 121 proteins and 165 interactions generated using
the gap algorithm with no intermediary proteins. b: the network with 392 pro-
teins and 780 interactions generated using the gap algorithm with 2 intermediary
proteins. c: the network with 356 proteins and 732 interactions generated using
the upstream/downstream algorithm with 2 intermediary proteins. d: the network
with 651 proteins and 968 interactions generated using the neighbors algorithm.
in red: survivability-essential seed proteins; in dark blue: survivability-essential
drug-targetable seed proteins; in light blue: drug-targetable seed proteins; in
gray: other proteins.

25



depending on the disease, patient, or the goal of the analysis. Typically,
this can include any combination of proteins encoded by disease-specific
survivability-essential genes, proteins encoded by disease- or patient-specific
mutated genes, drug-targetable proteins, or any other protein deemed im-
portant to the current study. We denote such proteins as seed proteins for
the network generation.

These seed proteins can be then looked up in one or more interaction
databases, which can be further filtered or combined depending on the
problem at hand. The subset of actual interactions which will appear in the
new network vary with the generation algorithm (Figure 3.3). Throughout
the original publications mentioned in Section 2.4, we have implemented
and used several generation algorithms:

• neighbors, which considers all of the interactions containing at least
one seed protein;

• gap, which considers all of the interactions between seed proteins with
a specific number of intermediary proteins;

• upstream/downstream, which uses two different sets of seed proteins,
one denoted “upstream” and one “downstream” and considers all of the
interactions from the upstream proteins to the downstream proteins,
with a specific number of intermediary proteins.

The generation of custom protein-protein interaction networks has been
a central part of the studies (Table 3.1). In Publication 1, we used the gap
algorithm for the generation of three patient-personalized multiple myeloma
interaction networks, and, in Publication 5, we used the upstream/down-
stream algorithm for the generation of several COVID-19-related interaction
networks. Furthermore, the application described in Publication 4 allows
for the generation of personalized protein-protein interaction networks using
the neighbors and the gap algorithms; the generated networks can then be
downloaded and imported in external software.

3.6 Structural controllability analysis of
interaction networks

The structural controllability framework presented in Section 2.2 can be used
for the analysis of protein-protein interaction networks towards potential
novel drug information discovery, based on the type of the data provided and
the method of application. The immediate result of such an analysis would
consist of a list of proteins able to control the entire set of target proteins
of interest, as well as the control paths between them (Figure 3.4). The
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Disease # ST N AD T
A SDT E DT

COVID-19 [110] 36 175.00 2,235.88 8.49 56.61
U/D 2 1,529.00 19,642.58 974.83

Breast Cancer [65] 3 527.00 1,462.66 1.75 120.66
Gap 1 1,506.00 2,558.33 131.33

Ovarian Cancer [65] 3 535.33 1,119.66 1.54 153.33
Gap 1 1,506.00 1,727.66 103.00

Pancreatic Cancer [65] 3 545.00 1,049.00 1.51 153.33
Gap 1 1,506.00 1,591.66 90.00

Glioblastoma [111] 137 881.37 2,779.48 23.03 319.56
U/D 1 375.00 64,579.12 429.76

Multiple Myeloma [112] 3 70.00 440.33 3.93 23.00
Gap 2 27.00 1,724.33 43.33

Table 3.1: An overview of disease- and patient-specific networks generated and
analyzed throughout the studies and the corresponding publications. The values
are averaged over all the generated networks for each disease. #: the number
of generated networks; A: the main algorithm used for generating the networks;
ST: the number of seed target proteins used for generating the networks; SDT:
the number of seed drug-targetable proteins used for generating the networks; N:
the number of proteins in the generated networks; E: the number of interactions
in the generated networks; AD: the average degree of the generated networks;
T: the number of target proteins in the generated networks; DT: the number of
drug-targetable proteins in the generated networks.

interpretation of these results can vary depending on the current study, such
as for the discovery of novel drug targets or drug repurposing for a specific
disease, or the identification of personalized lines of treatment tailored to a
specific patient.

As briefly mentioned, the first result returned by the structural controlla-
bility analysis of protein-protein interaction networks consists of one or more
sets of proteins able to control the entire set of target proteins. Each such
controlling protein is associated with one or more target proteins that it can
control, and can be ranked based on this number. Depending on the input
data and on the end goal, these controlling proteins can lead to different
promising potential outputs, such as:

• novel drug-target suggestions for the studied disease, in the case of
the non- and input-constrained approaches, corresponding to the top
controlling proteins that are not known to be drug-targetable;

• drug-repurposing suggestions for the studied disease, in the case of
the input-constrained approach, corresponding to the top controlling
proteins that are known to be drug-targetable;
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(c)

Figure 3.4: The general setup for the structural controllability analysis of the
breast-cancer cell-line HCC1187-based protein-protein interaction network with 392
proteins and 780 interactions generated using the gap algorithm with 2 intermediary
proteins. a: The analyzed network. b: The results of the analysis. c: The returned
control paths of non-zero length. in red: target proteins; in light blue: drug-
targetable proteins; in dark blue: target drug-targetable proteins; in yellow:
controlling proteins; in gray: other proteins.
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• drug combination suggestions for the studied disease, in the case of
the input-constrained approach, corresponding to combinations of two
or more top controlling proteins that together control a large part of
the interaction network;

• personalized therapeutics suggestions for the studied disease and pa-
tient, in the case of the non- and input-constrained approaches, cor-
responding to the top controlling protein that are known to be drug-
targetable by a specific line of treatment.

An interesting aspect of the controllability analysis, however, is that it
can also return the potential interaction pathways from the controlling or
drug-targetable proteins to the target proteins, which allows for a better
understanding of the disease and the potential drug mechanisms. As an
additional step towards a greater applicability and due to the inherent
dissipation of a drug’s input and to limit its side effects, the analysis can
also be restricted to considering only shorter pathways.

The application of the structural controllability framework on protein-
protein interaction networks and the analysis of its results has been a central
part of the studies. We analyzed three multiple myeloma interaction networks
generated in Publication 1 and we compared the treatment lines returned
by the structural controllability analysis with those of the topological and
minimum dominating sets analyses. Additionally, we applied the novel ge-
netic algorithm developed in Publication 3 on several real-world and random
networks and we performed a brief literature validation of the drug sugges-
tion results obtained for breast, ovarian, and pancreatic cancer interaction
networks. Lastly, in Publication 5, we applied the structural controllability
analysis on two COVID-19 interaction networks, suggesting several novel
drug and drug combination treatment approaches and performing a thorough
literature validation of the results. Furthermore, the application described in
Publication 4 allows for the structural controllability analysis of any network,
with a focus on protein-protein interaction networks; the analysis results can
then be downloaded and imported in external software.
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Chapter 4

Summaries of the included
publications

In this chapter, we present the summaries of the publications included in
this thesis.

4.1 Publication 1: Network modeling
methods for precision medicine

Elio Nushi, Victor-Bogdan Popescu, Jose Angel Sanchez-Martin, Sergiu
Ivanov, Eugen Czeizler, and Ion Petre. In Systems Biology Modelling and
Analysis: Formal Bioinformatics Methods and Tools, ed. Elisabetta De
Maria, Wiley (2022).

In this publication, we survey multiple network modelling methods, and
we study their applicability to personalized medicine. We start by assessing
several network centrality measures, such as degree-, closeness-, eccentricity-,
and betweenness-centrality, together with eigenvector-based prestige. For
each measure, we provide an intuitive description, the formal definition and
theoretical background, and a brief presentation of corresponding algorithms
and their time complexities. We also investigate two system controllability
methods, minimum dominating sets and structural controllability. We pro-
vide the formal definitions and an overview of the corresponding algorithms,
and we detail several variants and generalizations for each of them. Further,
we briefly introduce several software tools that can be used for the gener-
ation, visualization, and analysis of networks, and for the reproducibility
of the publication’s results. We then demonstrate the applicability of the
presented methods on the protein-protein interaction networks of three mul-
tiple myeloma patients, built around the genes of interest specific to each

31



patient. For each network, we show how the methods can be used for the
identification of personalized combinatorial drug treatment.

4.2 Publication 2: Fixed parameter
algorithms and hardness of
approximation results for the
structural target controllability
problem

Eugen Czeizler, Alexandru Popa, Victor-Bogdan Popescu. In Algorithms for
Computational Biology, ed. Jesper Jansson, Carlos Martin-Vide Miguel and
A. Vega-Rodriguez, Springer International Publishing (2018): 103-114.

In this publication, we investigate the target structural controllability
problem, and we introduce several constraints that would improve its rele-
vance for the exhaustive analysis of real-life networks. We begin by showing
that the target structural controllability problem is fixed-parameter tractable
by the number of target nodes. Then, motivated by the applicability in the
control of protein interaction networks in cancer, we introduce an even lower-
complexity fixed-parameter algorithm depending on an additional parameter
generally bounded by much lower limits, the maximum allowed length of a
control path. Lastly, we prove that the problem is hard to approximate at a
factor better than O(log n).

4.3 Publication 3: Network
controllability solutions for
computational drug repurposing
using genetic algorithms

Victor-Bogdan Popescu, Krishna Kanhaiya, Iulian Năstac, Eugen Czeizler,
and Ion Petre. Scientific Reports, vol. 12, no. 1437 (2022).

In this publication, we propose a novel method for solving the target
structural controllability problem and its input-constrained variant using a
genetic algorithm. The algorithm is based on the algebraic theory behind the
problem, rather than the graph theory that the currently existing methods
employ. We also introduce multiple approaches for each of the genetic
operators (e.g., crossover or mutation), for better applicability in different
domains. We apply the algorithm on multiple random networks of varying
size generated according to the Erdős-Rényi, the scale-free, and the small
world models, and we compare the results against those of similar algorithms.
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The comparison considers the number of returned solutions, the number of
control nodes in a solution, the average length of the control paths, and the
elapsed time. Additionally, we investigate the use in computational drug
repurposing by applying the algorithms on several cancer protein interaction
networks and performing a literature review of the resulting drug-targets and
drugs. Overall, the proposed genetic algorithm is proven to be consistently
better for the identification of relevant drug-targets.

4.4 Publication 4: NetControl4BioMed:
A web-based platform for
controllability analysis of
protein-protein interaction networks

Victor-Bogdan Popescu, Jose Angel Sanchez-Martinez, Daniela Schacherer,
Sadra Safadoust, Negin Majidi, Andrei Andronescu, Alexandru Nedea, Diana
Ion, Eduard Mititelu, Eugen Czeizler, and Ion Petre. Bioinformatics, vol.
37, no. 21 (2021): 3976-3978.

In this publication, we introduce a novel free open-source web-based
application for the generation and structural controllability analysis of
protein-protein interaction networks. Specifically, the application allows
users to upload, import, or generate personalized protein-protein interaction
networks, and then to analyze them using different algorithms and in various
controllability setups. These analyses can also be tailored to focus on exist-
ing available drugs and their drug-targets, providing potential therapeutic
suggestions. The software displays a modern interface and includes the
possibility to store the created networks and analyses under individual user
accounts, enabling data sharing and easier collaboration. Additionally, the
application also provides considerable already-compiled and ready-to-use
biological data on proteins from the HGNC, Ensembl, UniProt, NCBI, and
InnateDB databases, on protein-protein interactions from InnateDB, Omni-
Path, and SIGNOR databases, on cancer cell-lines from COLT and DepMap,
and on drug-targets and drugs from DrugBank.

4.5 Publication 5: Network
controllability analysis for drug
repurposing in COVID-19

Nicoleta Siminea, Victor-Bogdan Popescu, Jose Angel Sanchez-Martin, Ana-
Maria Dobre, Daniela Florea, Georgiana Gavril, Corina It,cus,, Krishna
Kanhaiya, Octavian Pacioglu, Laura Ioana Popa, Romica Trandafir, Maria
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Iris Tus,a, Manuela Sidoroff, Mihaela Păun, Eugen Czeizler, Andrei Păun,
and Ion Petre. Briefings in Bioinformatics, vol. 23, no. 1 (2022).

In this publication, we apply the structural controllability methods for
the identification of possible drugs and combination of drugs for the potential
treatment of COVID-19. We begin by generating extensive protein-protein
interaction networks that include drug targets and host factors for the SARS-
CoV-2 infection at both low and high multiplicity of infection. We then
perform structural controllability analysis of these networks and determine
sets of drug targets that are repeatedly reported as exerting control over
the host factors. Finally, we validate these results against existing literature
and ongoing clinical studies and show that our approach can provide novel
insights into the mechanisms and potential therapeutics for COVID-19.
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Chapter 5

Conclusions and future work

The focus of this thesis is the development and real-life application of a
structural network controllability framework. The framework encompasses
the generation of customized networks and their structural controllability
analysis towards the identification of nodes of interest with the potential to
influence large parts of the networks. The presented research includes the
theory and algorithms, their software implementations, and the available
data required for the immediate applicability in biomedicine, with the aim
of discovering novel drugs or drug-repurposing suggestions, and suitable
personalized therapeutics.

In the first part of the research, we focused on a few theoretical aspects
of structural controllability. We proved that the structural controllability
problem is fixed-parameter tractable and hard to approximate at a factor
better than O(log n), and we identified several parameters constrained by
lower bounds within general real-life usage. Building on these results, we
proposed an exhaustive-search approximation algorithm that has an expo-
nential complexity in terms of the bounded parameters, and polynomial
in all of the rest. Moving on, we designed a novel genetic algorithm for
solving the input-constrained structural target controllability problem, and
we implemented a multi-platform standalone graphical application using
it for an easier adoption. Additionally, we extended the previously exist-
ing greedy algorithm for the same problem, and we performed a thorough
comparison between the two when applied on several random and biolog-
ical networks. With the same goal of facilitating the application of these
structural controllability-based methods in biomedicine, we implemented a
web application that integrates multiple biological data sources and that
allows for the easy generation and analysis of personalized protein-protein
interaction network, providing drug suggestions and interaction pathway
results. In order to provide a context for the developed algorithms, we
also compared them to other network modelling methods in identifying
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targeted patient-specific therapeutic suggestions for three multiple myeloma
patients. Lastly, to demonstrate the applicability and usefulness of our
proposed approaches, we performed structural controllability analysis on
two COVID-19-based networks, identifying drugs and drug-combinations
that can efficiently control the corresponding networks, and we validated the
obtained results against literature and clinical studies.

5.1 Benefits

The structural controllability method is a very powerful tool for the analysis
of complex networks. Its versatility makes it ideal for applications in a large
variety of domains, and it allows for a wide array of setups, where the same
input data can be differently considered in order to lead to multiple valid
outputs and interpretations. An additional advantage consists of its ability
to manage large data sets, and to provide theoretically accurate control
results even when facing missing or incomplete data.

This approach is very well suited for applications in biomedicine, on
protein-protein interaction networks, for the identification of proteins of
interests in these networks. The existence of as yet undiscovered interactions
within the interactome does not affect the validity of its current control
results, as the introduction of additional edges in a network can at most
affect the optimality of the previously obtained solutions. Furthermore, it
allows for the analyzed data to be as general or as detailed as available
or as required, and it can easily integrate with drug-, disease-, or patient-
specific additional data. Moreover, the proposed structural control framework
has been specifically designed with the main goal of identifying potential
therapeutics, be they custom to a disease or a patient, which ensures an
immediate applicability for drug discovery and repurposing. Similarly, the
method can be easily extended to cover more longitudinal studies, where the
development of a patient during the progression of a disease or treatment
can also be integrated for a truly personalized line of treatment.

5.2 Limitations

While potentially very useful, the structural controllability method does
come with several caveats. One of the main limitations concerns its entirely
qualitative and non-quantitative approach, as the control results offer no
indication on how the control can actually be exerted, but merely that
it is theoretically possible. Consequently, the numerical setup may hold
additional information of interest that a purely structural approach will fail
to consider. This brings to light multiple possible issues for real life scenarios.
For example, the method can identify suitable inputs for control, but cannot
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provide an actual combination of suitable input functions that could bring
the system to the desired final state. Secondly, even in the more favorable
cases where both the control inputs and their associated functions would be
known, there is no indication whether control would actually be feasible, for
example due to possible practical limitations such as the cost of the energy
required, or the lack of technology advanced enough for precise control over
the inputs.

Another limitation draws from the linear modelling required by network
controllability. Many complex networks in general, and biological networks
in particular, are often regarded to be non-linear by nature, which may raise
questions about the framework’s ability to capture the innate underlying
characteristics of real-life networks. Furthermore, in addition to these general
constraints, the applicability in biomedicine brings forth supplementary
concerns. Firstly, the method is highly dependent on the provided data.
While the control results are valid even when dealing with incomplete data,
their optimality can be affected and, therefore, the potential returned control
pathways might not accurately reflect the actual effects of the external
drug interventions in the network. In addition, the approach is purely
computational. Even though accurate experimental protein, interaction, and
drug data can be integrated in the analysis, the results would mainly provide
only a starting point towards novel therapeutics and would require thorough
subsequent experimental and clinical validation.

5.3 Future work

Despite its limitations, the structural controllability approach is a very
promising field, with several interesting research directions already taking
shape towards a greater future applicability on real-world complex networks.
A first challenge would aim to see the framework shift towards a more
quantitative approach, such as taking into consideration the numerical setup
and the values of and in-between the internal components when aiming to
bring the system to a desired state. Our own attempts at including the
type of the interactions (e.g., activation or inhibition) into the analysis
for the identification of complementary drugs have shown some promising
early computational results. Indeed, although several recent studies have
been focused on this area, such as on the input time functions required
for control [113], there is a need for efficient and scalable algorithms and
software implementations that would be easily integrated with and applied
on real-life data. Furthermore, another possible direction would concern
overcoming the practical limitations of exerting the control, such as the
required energy [114]. It is worth noting that, while the algorithms behind
can be relatively generic, the challenges of control are strongly coupled with

37



the field of application (e.g., it can be more potentially difficult to influence
as desired a node in a protein-protein interaction network compared to a
node in a circuit network), which highlights the need for more field-specific
perspectives.

On the other hand, when considering the same approach to biomedicine
described in this thesis, there are multiple additional research directions that
could greatly improve its applicability. For example, as the method is greatly
dependent on the available data, the aggregation of higher quality data from
multiple sources, together with its consolidation, can potentially lead to
better and more accurate results. To this end, we are currently working on
integrating additional databases, such as the Human Interactome [115] and
the Guide To Pharmacology [116], into our framework. Moreover, only the
proteins encoded by disease-specific genes have been considered so far, but
the method’s versatility would allow it to be adapted to also take into account
the proteins encoded by survivability-essential genes for healthy cells, as areas
of the network which should not be altered through the control paths. The
corresponding data and the control paths can be further and more thoroughly
analyzed in order to identify and limit the potential side effects that would be
caused by the suggested drugs. The additional integration of patient-specific
data, such as mutated genes or previous response to treatment lines, could
further emphasize the method’s potential for personalized medicine. We
have already taken several steps towards this direction through our current
study of individual data for over a hundred glioma patients, with the aim of
identifying suitable drug combinations tailored to the particularities of each
patient. Last, but not least, a great benefit would be brought about in the
future from close collaboration and integration with laboratory work, for
the experimental validation of the offered predictions and general guidance
towards the interactome area and drugs which to potentially prioritize.

The relatively recent field of network controllability that encompasses
this thesis has been under continuous development and enjoys an increasing
relevance to this day, with promising developments for the future. The
presented work has a high potential of bringing about a significant impact
in multiple areas of science and establishes a basis for the future successful
application of network modelling methods in personalized medicine.
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