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ABSTRACT 
In order to eliminate harmful pathogens, while allowing beneficial 
microbes to persist, inflammatory signalling in the intestine needs to be 
carefully regulated. Overactive immune signalling can lead to chronic 
inflammation and an inflammatory environment is known to promote 
cancer development. The NF-κB family of transcription factors is a master 
regulator of inflammatory signalling and aberrant NF-κB signalling is 
characteristic for chronic inflammatory diseases, such as Crohn’s disease 
and ulcerative colitis. As the inflammatory response constitutes a complex 
network in mammalian cells, we take advantage of using Drosophila 
melanogaster, with a far simpler immune system, as a model organism 
when studying inflammatory signalling. The aim of this thesis is to 
elucidate the regulation of intestinal inflammation during basal 
conditions and to advance the use of Drosophila as a platform for studying 
host-microbe interactions. 

In order to investigate inflammatory regulation in the intestine, the fly 
microbiome needs to be manipulated.  We, hence, started out by 
optimising a detailed protocol for rearing flies germ-free, or axenic. By 
carefully optimising the dechorionation of Drosophila embryos, sterile fly 
husbandry and validation of germ-free flies, we were able to successfully 
rear flies axenic in standard equipped laboratories. To further explore 
different avenues of modifying the microbiome, we, in a cross-disciplinary 
effort, designed antimicrobial mesoporous silica nanoparticles and 
characterised their antimicrobial properties. By using Drosophila, we 
were able to demonstrate in vivo antimicrobial activity of the designed 
particle against Escherichia coli, thereby, strengthening the use of 
Drosophila as a model in nanomedicine and drug development. Finally, to 
elucidate the regulation of inflammatory signalling in the intestine, we 
investigated the cellular regulation of Drosophila inhibitor of apoptosis 2 
(Diap2), a potent inducer of NF-κB. We found a new role of the Drosophila 
caspase interleukin 1β-converting enzyme (Drice) as a regulator of 
inflammatory signalling in the fly gut. Drice acts by inducing the 
degradation of Diap2, thereby halting downstream NF-κB signalling. By 
studying the inflammatory phenotypes of the major immunological 
organs of the fly, we found that Drice acts specifically in the intestine, 
restraining inflammatory responses induced by commensal bacteria. In 
summary, the work in this thesis presents a new mode of inflammatory 
regulation in the Drosophila gut, and highlights the versatility of the fruit 
fly as a model organism. Due to well-conserved signalling pathways 
between mammals and Drosophila, research performed in the fly aids in 
understanding human inflammatory disease development and the 
interplay between human health, the microbiome and inflammatory 
signalling.
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SAMMANFATTNING (ABSTRACT IN SWEDISH) 
För att främja utvecklingen av symbiotiska förhållanden mellan 
mikrobiomet och värdorganismen men samtidigt skydda organismen mot 
sjukdomsframkallande bakterier, måste tarmens immunsignalering 
regleras noga. En överaktiv inflammationssignalering kan leda till kronisk 
inflammation och inflammationshärdar har visats gynna utvecklingen av 
cancerceller. NF-κB-transkriptionsfaktorer är nyckelkomponenter vid 
aktiveringen av inflammation och en rubbad NF-κB-signalering är 
kännetecknande för kroniska inflammationssjukdomar så som Crohns 
sjukdom och ulcerös kolit. Eftersom den inflammatoriska responsen utgör 
ett komplext nätverk i däggdjursceller, använder vi Drosophila 
melanogaster, eller bananflugan, med ett mycket enklare immunförsvar, 
som modellorganism vid inflammationsstudier. Målet med denna 
avhandling är att belysa de mekanismer som reglerar 
inflammationssignaleringen i tarmen under basala förhållanden och att 
främja användningen av Drosophila som en modell för att studera 
samverkan mellan värdorganismen och mikrobiomet. 

För att studera hur inflammation regleras i tarmen måste flugans 
mikrobiom manipuleras. Vi började därmed med att optimera ett 
detaljerat protokoll som beskriver hur bananflugan kan odlas i sterila 
förhållanden, eller axeniskt. Genom att optimera dechorioneringen av 
flugembryon, upprätthållandet av flugor i sterila förhållanden, samt 
valideringen av axeniska flugor, lyckades vi erhålla sterila flugor i 
standardutrustade laboratorium. För att utforska andra sätt att 
manipulera flugans mikrobiom utvecklade vi i ett tvärvetenskapligt 
samarbete antimikrobiella mesoporösa kiseldioxid nanopartiklar och 
studerade deras antimikrobiella egenskaper. Med hjälp av Drosophila 
som modell kunde vi demonstrera antimikrobiell in vivo aktivitet hos 
nanopartiklarna mot Escherichia coli och därmed stärka rollen av 
Drosophila som modell vid utvecklingen av nanomedicin.  Slutligen, för att 
utreda den cellulära regleringen av inflammation i flugans tarm på 
proteinnivå studerade vi hur proteinet Drosophila inhiberare av apoptos 
2 (Diap2), en stark inducerare av NF-κB, regleras under basala 
förhållanden. Vi fann en ny roll för kaspaset Drosophila interleukin-1β-
konverterande enzym (Drice) i moduleringen av inflammation och Diap2 
i flugans tarm. Genom att inducera nedbrytningen av Diap2 hindrar Drice 
fortskridningen av den inflammatoriska signaleringen aktiverad av 
kommensaler. Vi har dessutom kunnat påvisa att Drice fungerar specifikt 
i tarmen och att avsaknad av Drice leder till kronisk tarminflammation, 
hyperproliferation och dysbios av tarmens mikroflora. 

Sammanfattningsvis presenterar denna avhandling en ny 
kaspasmedierad mekanism vid regleringen av inflammation i 
bananflugans tarm och demonstrerar mångsidigheten hos Drosophila 
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som modellorganism vid studier beträffande mikrobiomet. Tack vare 
evolutionärt bevarade signaleringsräckor hos Drosophila och däggdjur 
bidrar forskning som erhållits i flugan till att förstå utvecklingen av 
inflammatoriska sjukdomar i människan samt samverkan mellan 
inflammation, mikrobiomet och människans välmående.  
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INTRODUCTION  
Vertebrate and invertebrate animals interact continuously with a diverse 
array of microbial communities hosted on their skin and mucosal surfaces 
(Qin et al., 2010). The interplay between host and microbiome affects 
several aspects of host physiology, ranging from proper immune system 
development and protection against pathogens, to efficient extraction of 
dietary energy and brain neurochemistry (Mohajeri et al., 2018). In 
humans, the intestinal epithelium is one of the largest interfaces for host-
microbe interactions and the organ is being increasingly recognised for its 
role in human health and disease (Shreiner et al., 2015). To maintain 
intestinal homeostasis, harmful pathogens need to be eliminated, while 
simultaneously allowing for beneficial host-microbe interactions to be 
established. Furthermore, inflammation, apoptosis and regeneration need 
to be tightly controlled. Dysregulation of any of these cellular processes 
can lead to gastrointestinal infections, metabolic disorders, inflammatory 
bowel diseases (IBD) and to cancer (Garrett et al., 2010). A key player in 
the maintenance of intestinal immune homeostasis is the Nuclear factor 
κ-light-chain enhancer of activated B cells (NF-κB) family of transcription 
factors that regulates the expression of numerous inflammatory genes. 
Aberrant NF-κB signalling is characteristic for chronic inflammatory 
diseases, such as ulcerative colitis and Crohn’s disease, which are both risk 
factors contributing to colon cancer (Kim and Chang, 2014). The activity 
of NF-κB is regulated at several steps, however, one of the most versatile 
modifiers of inflammatory NF-κB signalling is the highly conserved, 
posttranscriptional modification named ubiquitination (Wu et al., 2018). 
Ubiquitination entails the decoration of target proteins with single 
ubiquitin moieties or ubiquitin chains via a three-step enzymatic cascade 
(Komander and Rape, 2012). As ubiquitination is a highly versatile 
modification that can be rapidly induced or removed, ubiquitin and its 
regulators serve as interesting targets when tuning inflammatory 
signalling. 

The fruit fly, Drosophila melanogaster, has been used as a model 
organism for over 100 years and has contributed greatly to advancements 
in the major fields of biology. As pathways regulating the inflammatory 
response in flies, such as the NF-κB signalling pathways, share a number 
of characteristics with those of mammals, and several anatomical features 
are conserved between vertebrate and invertebrate intestines, Drosophila 
serves as an attractive model when studying intestinal inflammation and 
its regulation. Furthermore, Drosophila harbours an easily manipulated 
microbiome with a far simpler composition than that of mammals, 
enabling detailed host-microbe studies to be carried out with relative ease 
in the fly. 
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This thesis aims to advance the knowledge of inflammatory regulation 
during host-microbe interactions and proposes a new immune-regulatory 
mechanism mediated by the caspase Drosophila interleukin 1β-
converting enzyme (Drice). Drice maintains intestinal immune 
homeostasis by inducing the degradation of the NF-κB activating ubiquitin 
ligase Drosophila inhibitor of apoptosis 2 (Diap2), thereby halting harmful 
inflammatory signalling induced by commensal bacteria. This thesis aims, 
moreover, to further the use of Drosophila as a model for studying host-
microbe interactions and as a platform for in vivo characterisation of 
antimicrobial nanoparticles. 
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REVIEW OF THE LITERATURE 
1 Drosophila melanogaster as a model for studying 
intestinal host-microbe interactions 
Progress in experimental biological sciences is driven by work in simpler 
systems, ranging from in vitro processes, studying purified biological 
material outside its natural context, to in vivo studies in model organisms 
(Matthews and Vossall, 2020). Concordantly, biological and medical 
research in the field of human pathology has relied heavily on the use of 
model organisms. In the case of intestinal biology and disease, mouse 
models have served as popular in vivo models due to their similarity to 
humans regarding anatomy and intestinal pathologies. However, as 
research involving mammals can be time-consuming and maintenance 
fees high, alternative invertebrate models are needed. The 
gastrointestinal tract of Drosophila melanogaster is reminiscent of the 
mammalian one, regarding both anatomical structures and epithelial cell 
composition. Furthermore, the fly and mammalian intestine display 
similar biological function, including food passage, digestion and nutrient 
absorption (Miguel-Aliaga et al., 2018, Lemaitre and Miguel-Aliaga, 2013). 
In combination with evolutionarily conserved signalling pathways, 
regulating intestinal development, regeneration and immunity, as well as 
an easily manipulated genome, Drosophila has emerged as an attractive 
model when studying gut physiology and host-microbe interactions 
(Apidianakis and Rahme, 2011).  

1.1 Drosophila as a model organism 
The first studies using Drosophila as a model organism dates back to the 
beginning of the 20th century, when the fly was used to study cross-
breeding, sterility and genetics (Castle, 1906, Morgan, 1911, Sturtevant, 
1959). Subsequent research performed in Drosophila, including the 
discovery of chromosomes and the function of genes, mutagenesis, and 
inheritance, enlightened our understanding of classical genetics, and laid 
down the foundations of genetics as a discipline and a tool for biological 
research (Kaufman, 2017). Later, with the advancement of molecular 
manipulations, studies using Drosophila have contributed greatly in 
elucidating the regulatory details of development, immunity and 
behavioural patterns. In 2000, the consortium of Berkeley Drosophila 
genome project and Celera Genomic Drosophila melanogaster, sequenced 
and assembled the Drosophila melanogaster genome (Adams et al., 2000, 
Myers et al., 2000). The genome encodes for approximately 14 000 genes 
on four chromosomes, of which three carry the majority of all genes 
(Adams et al., 2000, Myers et al., 2000). After the human genome project 
was finished a few years later, sequence analyses revealed the high 
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homologies between Drosophila and human genomes, thereby, 
strengthening the role of Drosophila as a model for understanding human 
biology and disease processes. Nearly 75% of human disease-related 
genes have been estimated to have functional orthologues in Drosophila 
(Reiter et al., 2001, Pandy and Nichols, 2011, Yamamoto et al., 2014), and 
several of these orthologues are expressed in the Drosophila tissues 
performing the same function as the mammalian equivalent (Chintapalli 
et al., 2007). 

The Drosophila life cycle consists of four developmental stages: 
embryo, larva, pupa and adult, and lasts approximately nine days at 25°C 
(Figure 1). The embryo can be used in studies regarding pattern formation 
or cell fate determination, whereas the larva is commonly used for 
studying developmental and physiological processes, or behavioural 
patterns such as foraging (Yamaguchi and Yoshida, 2018). During the 
pupal stage, Drosophila undergoes metamorphosis. During this time the 
cells of the imaginal discs proliferate, differentiate and go through 
organogenesis to produce various adult tissues. Accordingly, the imaginal 
discs have been a valuable model when studying the genetics of tissue 
regeneration (Bergantiños et al., 2010). The adult Drosophila is a complex 
organism that is similar to mammals in many aspects. The adult fly brain 
consists of more than 100 000 neurons that mediate behavioural patterns 
such as circadian rhythm, learning, memory, feeding, aggression, 
courtship and grooming (Yamaguchi and Yoshida, 2018). Due to the 
advanced nervous system of Drosophila, the fly is used to study 
Alzheimer’s and Parkinson’s disease, and has emerged as a potent drug 
screening system for human neuropathologies (Pandy and Nichols, 2011). 
Furthermore, several of the adult fly’s organs are functionally reminiscent 
to the mammalian ones, and the fly has served as a model in the study of 
the distinct pathologies of the heart, lung and kidney (Piazza and Wessells, 
2011, Roeder et al., 2012, Helmstädter and Simons, 2017). Drosophila is 
additionally recognised as a powerful model for complex diseases such as 
diabetes and cancer (Graham and Pick, 2017, Mirzoyan et al., 2019). 
Finally, the high degree of conservation between the mammalian and 
Drosophila intestine, regarding biological function, such as food passage 
and digestion, cellular architecture and immune signalling, has made 
Drosophila a popular model for studying both intestinal health and disease 
progression (Miguel-Aliaga et al., 2018, Apidianakis and Rahme, 2011). 
Concordantly, research using Drosophila has contributed greatly to the 
characterisation of pathways regulating intestinal immunity, 
regeneration and homeostasis (Capo et al., 2019).  
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1.2 The Drosophila digestive tract 
The Drosophila digestive tract is a highly complex organ with its main 
functions in digestion, absorption and immunity. The fly gut impacts the 
activity of other organs by regulating numerous neuronal and endocrine 
signals modulating for instance, food uptake and nutrient storage. The 
intestinal epithelium serves, furthermore, as a key interface for host-
microbe interactions that allows for symbiotic relationships to be 
established, while simultaneously acts as the first line of defence towards 
pathogens and protects the organism against external dangers (Miguel-
Aliaga et al., 2018). In the following two sections, the anatomical structure 
of the Drosophila intestine and its cell types will be presented. 
Furthermore, key similarities and disparities between the mammalian 
and Drosophila intestine will be discussed.  

1.2.1 Anatomical architecture of the Drosophila digestive tract 
The Drosophila gut consists of a simple epithelium, surrounded by 
muscles, nerves and trachea, and is divided into foregut, midgut and 
hindgut (Figure 2) (Demerec, 1950, Shanbhag and Tripathi, 2009, 
Lemaitre and Miguel-Aliaga, 2013). The ectodermally derived foregut is 
further subdivided into oral cavity, oesophagus, crop and cardia and is 

Figure 1. Life cycle and developmental stages of Drosophila melanogaster. 
Drosophila has four developmental stages: embryo, larva, pupa and adult. The 
larval stage is further subdivided into 1st, 2nd and 3rd instar larva. One life cycle, 
from fertilization to emergence of an adult fly, takes approximately nine days at 
25°C. The gastrointestinal tract of the adult fly is visualised in grey. 
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functionally reminiscent of the mammalian upper gastrointestinal tract. 
The Drosophila foregut mediates physical and chemical processing of 
digested food, including degradation by enzymes released by the saliva 
(Miguel-Aliaga et al., 2018). The crop is a pouch-like structure connected 
to the foregut. A clear role of the Drosophila crop remains elusive, but 
studies conducted in other insects suggest a function in early digestion, 
microbial control and food storage (Stoffolano and Haselton, 2013). The 
cardia, also known as proventriculus, is a bulb-like structure shown to 
produce the protective intestinal peritrophic matrix and antimicrobial 
peptides (AMPs). The cardia may also act as a valve, regulating food-entry 
to the midgut (King, 1988, Tzou et al., 2000). 
 

 

  The endodermally derived midgut is located posterior to the cardia and 
is the principal site of enzymatic digestion and assimilation, with 349 
putative digestive enzymes identified (Lemaitre and Miguel-Aliaga, 2013). 
The midgut occupies a large part of the Drosophila abdomen (Figure 1) 
and is subdivided into regions R1-R5, with specific digestive and 
metabolic functions (Figure 2) (Buchon et al., 2013, Marianes and 
Spradling, 2013). These five regions are separated by narrow epithelial 
boundaries and some of them are surrounded by a distinct set of muscles, 
suggesting a sphincter-like role in regulating the movement of food 
(Buchon et al., 2013). The posterior midgut is the most metabolically 
active and immune responsive region, and is analogous to the human 
small intestine. Whereas mammalian digestion occurs under acidic 
conditions, digestion in flies takes place mainly under neutral or basic 
conditions. Accordingly, the Drosophila gut is mainly neutral or mildly 

Figure 2. The Drosophila digestive tract. The Drosophila digestive tract is 
divided into foregut, midgut and hindgut. The foregut is subdivided into 
oesophagus, crop and cardia, and the midgut is subdivided into the five regions 
R1-R5, displaying distinct physiological properties. The hindgut is divided into 
ileum and rectum. On the border between midgut and hindgut the excretory 
Malpighian tubules discharge (figure adapted from Lemaitre and Miguel-Aliaga, 
2013).   
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alkaline, but some regions, for example the copper cell region (R3) and the 
hindgut are strongly acidic (Shanbhag and Tripathi, 2009). Genetic 
ablation of the copper cells or of the Drosophila V-ATPase, which mediates 
acidification of this region by H+-pumping, leads to a higher abundance of 
gut microbiota, indicating an antibacterial role of the region (Overend et 
al., 2016, Li et al., 2016). In addition to the copper cell region, AMPs 
regulated by the Immune deficiency (Imd) signalling pathway and the 
Drosophila dual oxidase (Duox), generating reactive oxygen species (ROS), 
contribute greatly to intestinal immunity by shaping the abundance and 
composition of the microbiome (Broderick, 2016, Ha et al., 2005). 

At the junction between midgut and the ectodermally derived hindgut, 
the Malpighian tubules, excretory organs equivalent of the vertebrate 
kidney, discharge (Figure 2) (Cohen et al., 2020). The hindgut corresponds 
functionally to the human colon (Micchelli and Perimon, 2006) and is 
subdivided into pylorus, a contractile sphincter connecting the midgut 
and hindgut, ileum and rectum (Figure 2) (Cohen et al., 2020, Miguel-
Aliaga et al., 2018). The ileum and rectum, containing intricate epithelial 
infoldings called rectal papillae, mediate selective assimilation of water, 
ions and nutrients before excretion (Cohen et al., 2020).  

The foregut and hindgut are lined with an impermeable cuticle, 
whereas the midgut is covered by a chitinous layer called the peritrophic 
membrane (Lehane, 1997, Hegedus et al., 2009). Underneath the 
peritrophic membrane, the intestinal epithelium is, furthermore, lined 
with an additional mucus layer (Figure 3) (Syed et al., 2008). The 
peritrophic membrane and the mucus layer serve a similar function as the 
human mucus layer, i.e., protecting the epithelial cells from harmful 
agents in the lumen (Hegedus et al., 2009). The epithelial cells are, 
furthermore, connected by septate junctions, a functional equivalent to 
tight junctions in the mammalian gut epithelium, separating the gut lumen 
from the body cavity and contributing to intestinal barrier function (Izumi 
et al., 2016, Izumi et al., 2019). 

1.2.2 Cells of the Drosophila midgut 
The adult Drosophila midgut epithelium contains three cell types: 
enterocytes (EC), which are large polyploid cells that secrete digestive 
enzymes and absorb nutrients, secretory enteroendocrine cells (EEC) and 
progenitor cells (Figure 3A, B). The progenitor cells can be further 
subdivided into intestinal stem cells (ISC) and undifferentiated ISC 
daughter cells, called enteroblasts (EB) (Miguel-Aliaga et al., 2018). EBs 
serve a similar function as the mammalian transit amplifying (TA) cells, 
giving rise to differentiated EECs and ECs (Figure 3A, B) (Miguel-Aliaga et 
al., 2018, Gehart and Clevers, 2019). The mammalian intestine contains, 
in addition to progenitor cells, absorptive ECs and secretory EECs, 
specialised absorptive M-cells and secretory Paneth, goblet and tuft cells, 
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however, no such specialised cells have been identified in the Drosophila 
gut (Van der Flier and Clevers, 2009, Ohno, 2016, Schneider et al., 2019). 
The Drosophila progenitor cells, scattered across the basal surface of the 
gut epithelium, are constantly replacing the cells of the midgut, renewing 
the midgut within one to two weeks under steady state conditions 
(Takashima et al., 2011, Micchelli and Perrimon, 2006, Ohlstein and 
Spradling, 2006). The activity of ISCs is influenced by the metabolic state 
of the fly, and by different external factors such as pathogenic bacteria or 
damage induced by corrosive agents (Amcheslavsky et al., 2009, Buchon 
et al., 2009a, O’Brien et al., 2011). 

 

In contrast to the mammalian crypts of Lieberkühn, increasing the 
surface area of the intestine, extensive folding does not occur in the 
Drosophila gut (Allaire et al., 2018, Shanbhag and Tripathi, 2009). 
However, Drosophila ECs and ISCs do have cytoplasmic extensions, called 
microvilli, similar to the villi found in the human small intestine 
(Shanbhag and Tripathi, 2009). The epithelial layer, in both flies and 
humans, is aligned on the basal side on an extracellular collagenous matrix 
called the basement membrane (Figure 3A) (Sengupta and MacDonald, 
2007). Underneath the basement membrane, circular muscles are present 
throughout the gut and an additional layer of longitudinal muscles 
surrounds the midgut (Figure 3A) (Hartenstein, 2005, Miguel-Aliaga et al., 

Figure 3. Cell types of the Drosophila gut. A) The intestinal epithelium consists 
of enterocytes (EC), progenitor cells (EB and ISC) and enteroendocrine cells 
(EEC) lined on the basement membrane. The epithelial cells are protected by a 
mucus layer and the peritrophic membrane. B) The different cell types of the 
Drosophila midgut can be visually distinguished using the cell markers escargot 
for ISCs and EBs (blue), prospero for EECs (red), and myo1A for ECs. (The fly line 
myo1A-GAL4 UAS-GFP/esg-lacZ was stained with anti-β-galactosidase and anti-
prospero, Apidianakis and Rahme, 2011, figure adapted from Lemaitre and 
Miguel-Aliaga, 2013). 
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2018). These muscles are, contrary to the smooth muscles in the 
mammalian intestine, striated (Sandborn et al., 1967). A branched 
tracheal network overlies the musculature, supplying the gut with oxygen. 
The projections from the tracheal cells extrude through the visceral 
muscles allowing for close contact with the epithelial cells, and gas 
exchange (Li et al., 2013). Finally, the cells of the adult Drosophila gut are 
innervated by neurons known to regulate peristalsis, feeding behaviour 
and defecation (Cognigni et al., 2011, Olds and Xu, 2014, Zhang et al., 2014, 
Kuraishi et al., 2015). Little is, however, known regarding the effect of 
enteric neurons on absorption and digestion, and a possible neuronal 
modulation of the gut immune defence remains elusive.  

1.3 The intestinal microbiome of Drosophila 
In contrast to the human intestinal tract, estimated to host up to 100 
trillion microbes from more than 1000 different taxa (Ley et al., 2006, Qin 
et al., 2010), a given laboratory fly population is usually associated with 
only four to eight aerobe or aerotolerant bacterial species. Probably due 
to the highly homogeneous laboratory fly food, containing antimicrobial 
preservatives, the regular transfer of flies to fresh food, and the limited 
influx of new bacterial species, flies sampled in the wild display a higher 
bacterial diversity than laboratory reared flies (Staubach et al., 2013). A 
robust feature of the gut microbiome of Drosophila is its variability and 
the bacterial composition of a single fly strain seems to vary over time. 
The growing consensus is that much of this variability is stochastic and is 
explained by the fact that the Drosophila gut is an open system where 
some microorganisms are lysed, passed through, or able to persist 
(Inamine et al., 2018, Obadia et al., 2017). During the different stages of 
the Drosophila life cycle, feeding behaviour and nutritional needs vary. 
This is reflected in the fluctuation of commensal bacterial load and 
changes in the dominant bacterial species during the life cycle (Bakula, 
1969, Wong et al., 2011). As flies age, the overall load of resident bacteria 
increases. This is thought to be due to the age-related decrease in the 
efficiency of immune responses leading to the disturbance of gut 
homeostasis (Buchon et al., 2009b, Ren et al., 2007).  

1.3.1 Composition of the Drosophila microbiome 
Numerous studies have been conducted to identify the composition of the 
commensal bacteriome of the Drosophila gut (Erkosar et al., 2013, 
Brummel et al., 2004, Ren et al., 2007, Ridley et al., 2012, Ryu et al., 2008, 
Sharon et al., 2010, Storelli et al., 2011, Chandler et al., 2011, Wong et al., 
2011). These studies have revealed that Drosophila is associated 
predominantly with bacterial species form the families Lactobacillaceae 
and Enterococcaceae, belonging to the phylum Firmicutes, and with 
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Acetobacteraceae and Enterobacteriaceae from the phylum 
Proteobacteria. On species level Lactobacillus plantarum, Acetobacter 
pomorum, Lactobacillus brevis and Enterococcus faecalis seem to associate 
frequently with flies (Erkosar et al., 2013). Largely due to intestinal 
barrier dysfunction and systemic immune responses, the bacterial 
composition changes as flies age, resulting in higher proportions of 
Proteobacteria (Clark et al., 2015). Interestingly, an increase in 
Proteobacteria has also been connected to inflammation in a genetic 
mouse model for colitis (Carvalho et al., 2012) and increased proportions 
of Proteobacteria versus Firmicutes is a signature of both IBD and aging in 
humans (Cheng et al., 2013, Clemente et al., 2012). The bacterial species 
Wolbachia (phylum: Proteobacteria) is an intracellular microbe 
harboured by a wide variety of arthropod, including Drosophila, hosts. 
Wolbachia is found in 40% of all insect species and a study done in 2005 
revealed that approximately 30% of the Drosophila stocks housed at the 
Bloomington Stock Centre are infected with Wolbachia (Zug and 
Hammerstein, 2012, Clark et al., 2005). Wolbachia is found throughout 
somatic tissues and exists in the majority of hosts, including Drosophila, 
as an endosymbiont (Pietri et al., 2016).  

Research on the composition of the Drosophila microbiome has 
focused predominantly on bacteria, however, yeasts, primarily from the 
phylum Ascomycota, are also commonly associated with the fly in nature 
(Chandler et al., 2012, Hamby et al., 2012). The relationship between yeast 
and Drosophila is considered to be mutualistic. Yeast can survive passage 
through the fly digestive tract, making Drosophila a vector for yeast 
dispersal (Coluccio et al., 2008) and can, besides serving as nutrition, 
affect both Drosophila physiology and behaviour (Anagnostou et al., 
2010). A specific part of the fly immune system is devoted to recognition 
of fungal infection, indicating that flies are able to modulate and control 
yeast communities (Gottar et al., 2006, Lemaitre et al., 1996). In most 
studies investigating the role of yeast on Drosophila biology, baker’s yeast, 
Saccharomyces cerevisiae, have been used. S. cerevisiae is, however, rarely 
found in wild populations of Drosophila species, and is, therefore, 
questioned as the best representative species when studying fly-yeast 
interactions (Hoang et al., 2015). 

1.3.2 Role of specific bacteria on Drosophila physiology 
By rearing flies germ-free, or axenic, the role of the fly microbiome has 
begun to be dissected. To investigate the role of a particular bacterial 
species on fly physiology researchers are using gnotobiotic flies, i.e., 
axenic flies re-introduced to specific bacteria. Studies have shown that 
lack of, or an altered microbiota impact larval development and energy 
homeostasis, as well as mating behaviour, locomotor behaviour, immune 
responses and lifespan of adult flies (Ridley et al., 2012, Shin et al., 2011, 
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Storelli et al., 2011, Sharon et al., 2010, Brummel et al., 2004, Schretter et 
al., 2018). Despite the inconsistency of the microbial composition in 
laboratory-reared Drosophila, the fly, similarly as higher organisms, 
display evolved symbiotic relationships with specific bacteria. For 
instance, Storelli and colleagues showed that Lactobacillus plantarum 
sufficiently on its own can promote larval development upon nutrient 
scarcity (Storelli et al., 2011) and Pais et al. revealed that stable 
colonisation of Acetobacter thailandicus in the Drosophila gut renders 
both host and bacteria with growth enhancing advantages (Pais et al., 
2018).  

The consequence of Wolbachia infections on Drosophila physiology 
remains largely uncharacterised, however, both beneficial and 
deleterious effects have been reported. The most well-studied effect of 
Wolbachia infections is a sperm-egg incompatibility during reproduction, 
referred to as cytoplasmic incompatibility (CI), which results in infected 
females maintaining a selective advantage over uninfected ones (Yen and 
Barr, 1973, Louis and Nigro, 1989). Apart from reproductive 
manipulation, Wolbachia has been shown to alter insulin signalling and, 
to some extent, be able to modify the commensal microbiome of 
Drosophila. Wolbachia infections have, furthermore, been shown to 
protect against RNA virus infections in the fruit fly (Teixeira et al., 2008, 
Ikeya et al., 2009, Simhadri et al., 2017). 

The impact of the microbiome may result from direct effects of one 
bacterial species on its host or from indirect interactions between 
bacteria. Fast and colleagues have published a study, in which the 
interbacterial relationship between the pathogen Vibrio cholerae and the 
Drosophila symbiont Acetobacter pasteurianus was investigated. The 
study revealed that presence of A. pasteurianus intensifies the disease 
symptoms caused by V. cholerae and accelerates host death, whereas lack 
of A. pasteurianus relieves pathogenesis (Fast et al., 2018a). In another 
study, performed by Gould and colleagues, gnotobiotic flies were used in 
combinatorial experiments, where the effects of interactions between up 
to five bacterial species were studied. Interestingly, development and 
fecundity converged with higher bacterial diversity, whereas Drosophila 
lifespan and the composition of the microbiome seemed to be dependent 
on interactions between bacterial species (Gould et al., 2018). 

To summarize, the generation of gnotobiotic flies has enabled 
researchers to dissect the effect of one, or a set of bacterial species on 
whole-organism physiology. As the Drosophila microbiome consists of 
aerobe and aerotolerant bacterial species (Cox and Gilmore, 2007), using 
the fly to study the effect of obligate anaerobes, which dominate the 
human intestine (Qin et al., 2010), is not suitable. The role of human 
aerobe, aerotolerant and facultative anaerobe bacteria and their 
metabolites on intestinal development, immunity and function can, on the 
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other hand, be explored (Liu et al., 2017). Furthermore, the Drosophila gut 
is well-suited for studying the effect of drugs on specific bacterial species, 
as well as elucidating the microbiota-induced interference of therapeutic 
drugs (Douglas, 2018). 
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2 Caspases and IAP proteins in cell signalling 
Cell death and inflammation are fundamental cellular processes required 
for maintaining tissue homeostasis (Yang et al., 2015). Apoptotic activity 
often coincides with the inflammatory response, as apoptotic cells can 
stimulate inflammatory signalling and proinflammatory cytokines, such 
as Tumour necrosis factor α (TNFα), can activate cell death (Chen and 
Goeddel, 2002). Two families of proteins, namely caspases (cysteine-
aspartic proteases) and Inhibitor of apoptosis proteins (IAPs), are central 
regulators of both inflammation and apoptosis (Van Opdenbosch and 
Lamkanfi, 2019, Budhidarmo and Day, 2015). In addition, these proteins 
regulate the activity of each other. Caspases are the key executors of 
apoptosis, although some have their main role in inflammatory signalling 
(Van Opdenbosch and Lamkanfi, 2019). IAPs are, on the other hand, and 
as their name dictates, potent inhibitors of apoptosis and act by 
modulating the activity of proapoptotic proteins, such as caspases. IAPs 
are, however, also important transduction intermediates in cellular 
signalling cascades, specifically during innate immune responses and NF-
κB activation (Gyrd-Hansen and Meier, 2010, Kocab and Duckett, 2016). 
Due to the role of caspases and IAPs at the frontline of immunity and cell 
death, these proteins and their regulation have served as interesting 
targets when studying inflammatory disease and tissue homeostasis. 

2.1 IAP proteins and their structure 
IAP proteins were originally identified in the genomes of baculoviruses as 
proteins able to inhibit apoptosis in virus-infected insect cells (Clem et al., 
1991). Since then, IAPs, characterised by the presence of one to three, 
approximately 70-amino acid long Baculoviral IAP repeat (BIR) domains 
(Crook et al., 1993, Birnbaum et al., 1994), have been identified in a wide 
range of organisms including yeast, worms, insects, fish and humans 
(Verhagen et al., 2001). The mammalian family of IAPs has eight members, 
of which X-linked IAP (XIAP), cellular IAP1 (cIAP1) and cellular IAP2 
(cIAP2) are the most highly characterised ones. All three proteins harbour 
three BIR domains, a Ubiquitin-associated domain (UBA) and a C-terminal 
Really interesting new gene (RING) domain (Figure 4) (Budhidarmo and 
Day, 2015). Most BIR domains contain a surface groove that binds the N-
terminus of specific sequences called IAP binding motifs (IBMs). IBMs are 
found in proapoptotic proteins such as in mammalian caspase-3, -7 and -
9, in Second mitochondrial-derived activator of caspases (SMAC), also 
known as Direct IAP-binding protein with low pI (DIABLO) (Scott et al., 
2005, Srinivasula et al., 2001), in the Drosophila caspases Drice and 
Drosophila effector caspase-1 (Dcp-1), as well as in the proapoptotic 
Drosophila proteins Head involution defective (Hid), Grim and Reaper 
(Zachariou et al., 2003, Tenev et al., 2005). By binding to the IBM domain 
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of these proteins, IAPs are able to modulate apoptotic signalling. The BIR-
IBM interaction has, however, also been shown to play a role in immune 
signalling by functioning as a docking site promoting stability of signalling 
complexes (Paquette et al., 2010). Some BIR domains do not possess the 
IBM binding groove and convey other functions, such as dimerisation in 
the case of BIR1 of XIAP, and protein binding in the case of BIR1 of cIAP1 
(Lu et al., 2007, Samuel et al., 2006). 
 

 
 

The RING domain confers IAP proteins with E3 ubiquitin ligase activity 
(Deshaies and Joazeiro, 2009). E3 ligases constitute the final step, after E1 
and E2, in the enzymatic cascade that is ubiquitination. The ubiquitin 
system is described in detail in section 2.2. IAP proteins can mediate their 
own, as well as the ubiquitination of their binding partners. Ubiquitination 
induced by IAPs has been shown to target substrates for proteasomal 
degradation, but also to activate, stabilise, and facilitate the recruitment 
of numerous proteins and protein complexes (Dumétier et al., 2020). The 
UBA domain is a member of the Ubiquitin binding domains (UBD) that 
recognise ubiquitin chains of different varieties in the cell, allowing 
binding to ubiquitinated proteins and, thereby, modulation of cell 
signalling (Gyrd-Hansen et al., 2008, Husnjak and Dikic, 2012). 
Interestingly, the UBA can also bind specific ubiquitin-charged E2s, 
implying a ubiquitination-promoting role of the domain (Budhidarmo and 
Day, 2014). In addition to their BIR, RING and UBA domains, cIAP1 and 
cIAP2 contain a Caspase recruitment domain (CARD) each (Figure 4) 
(Kocab and Duckett, 2016). The CARD domain regulates dimerisation 
needed for the E3 ligase activity of the cIAPs (Dueber et al., 2011, Lopez et 
al., 2011) and might allow for interaction with other CARD containing 
proteins, however, no such interaction partners have been found. 

Figure 4. Protein domains of the most well-studied mammalian IAP-
proteins. XIAP, cIAP1 and cIAP2 harbour three Baculoviral IAP repeat (BIR) 
domains, a Ubiquitin-associated (UBA) domain, and a C-terminal Really 
interesting new gene (RING) domain each. cIAP1 and cIAP2 carry in addition, a 
Caspase recruitment domain (CARD). The length of the proteins in amino acids 
is indicated to the right of the proteins (figure adapted from Budhidarmo and 
Day, 2015, Srinivasula and Ashwell, 2008).    
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2.1.1 Drosophila IAP proteins 
Drosophila encodes for four IAP proteins: Drosophila iap1 (Diap1), 
Drosophila iap2 (Diap2), Deterin and Drosophila BIR repeat containing 
ubiquitin-conjugating enzyme (dBruce) (Duckett et al., 1996, Jones et al., 
2000, Vernooy et al., 2002). Diap1 carries two BIR domains and a C-
terminal RING domain (Figure 5), and is the key inhibitor of apoptosis in 
Drosophila. Loss of Diap1 induces spontaneous caspase-mediated cell 
death, whereas gain-of-function mutants display abnormal growth 
phenotypes due to an excessive number of cells (Goyal et al., 2000, Lisi et 
al., 2000, Wang et al., 1999). Diap2 harbours three BIR domains, one UBA 
domain and a C-terminal RING domain (Figure 5) and is, thereby, on the 
basis of domain architecture, the closest homologue to mammalian IAPs. 
Although Diap2 is able to increase the apoptotic threshold of the cell, it 
has its main function in inflammatory NF-κB signalling (Ribeiro et al., 
2007, Leulier et al., 2006a). Diap2 mutant flies succumb rapidly upon 
Gram-negative bacterial infection and are unable to induce expression of 
anti-inflammatory NF-κB target genes (Huh et al., 2007, Leulier 2006b, 
Gesellchen et al., 2005, Kleino et al., 2005). Deterin and dBruce harbour 
one BIR domain each, and have both been shown to suppress apoptosis 
when overexpressed (Jones et al., 2000, Vernooy et al., 2002). dBruce is 
vital during spermatid individualisation and absence of the IAP protein 
causes male sterility (Arama et al., 2003). Deterin and dBruce are, 
however, not as well characterised as Diap1 and Diap2, and their 
additional function as modulators of apoptosis or cell signalling remains 
obscure.  

  

2.2 The ubiquitin system 
Ubiquitination is a posttranslational modification catalysed by a three-
step enzymatic process, in which proteins are decorated with single 
ubiquitin moieties or with polymeric chains made of several ubiquitin 
subunits (Komander and Rape, 2012). The ubiquitin moiety itself is a 76-

Figure 5. Protein domains of the most well-studied Drosophila IAPs. Diap2 
harbours three Baculoviral IAP repeat (BIR) domains, a Ubiquitin-associated 
(UBA) domain, and a C-terminal Really interesting new gene (RING) domain. 
Diap1 harbours only two BIR domains and a RING domain. The length of the 
proteins in amino acids is indicated to the right of the proteins (figure adapted 
from Budhidarmo and Day, 2015, Srinivasula and Ashwell, 2008).    
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amino acid long protein, highly conserved throughout evolution. 
Ubiquitination is known to regulate a variety of cellular processes 
including protein degradation, endocytosis, autophagy, DNA repair, 
immunity and inflammation (Swatek and Komander, 2016). During 
ubiquitination, ubiquitin-activating enzymes, E1s, use ATP to generate a 
bond between their active site and the C-terminus of ubiquitin (Schulman 
and Harper, 2009), after which ubiquitin is transferred to the active site 
of a ubiquitin-conjugating enzyme, E2. The E2 enzyme, together with E3 
ligases, add the ubiquitin moiety to the substrate, hence, generating a 
monoubiquitinated substrate (Figure 6A) (Ye and Rape, 2009, Deshaies 
and Joazeiro, 2009). Substrates monoubiquitinated on several sites are 
referred to as multi-monoubiquitinated. Additional ubiquitin moieties can 
be attached to the N-terminus (M1), or to one of seven lysine residues (K6, 
K11, K27, K29, K33, K48 and K63) on the first, substrate-attached 
ubiquitin, thereby, generating polyubiquitin chains. These chains can be 
of diverse length, and display different topology depending on the type of 
linkage between ubiquitin moieties (Figure 6B) (Komander and Rape, 
2012). Adding to the complexity of ubiquitin modifications, ubiquitin 
chains can be homotypic or heterotypic. Ubiquitin moieties in homotypic 
chains are linked through the same residue, forming a chain of uniform 
topology, whereas heterotypic chains contain multiple linkage types, and 
are further subclassified as mixed or branched (Figure 6B) (French et al., 
2021). The substrate specificity and site of ubiquitin modification are 
thought to be mediated by the E3 ligases, whereas the E2s play a role in 
determining the linkage type (Ye and Rape, 2009, Deshaies and Joazeiro, 
2009). Differently ubiquitinated substrates are recognised by a variety of 
UBDs, binding specific types of ubiquitin chains, thereby, translating the 
ubiquitin modification into specific cellular outcomes (Figure 6A) 
(Husnjak and Dikic, 2012). Finally, ubiquitin chains and single moieties 
are continuously edited and removed by deubiquitinating enzymes, or 
DUBs (Komander et al., 2009a), making ubiquitination a highly dynamic 
cellular modification (Figure 6A). 
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2.2.1 Translation of the ubiquitin code 
Protein degradation was the first cellular function associated with 
ubiquitination (Chau et al., 1989, Hershko and Ciechanover, 1998). In 
eukaryotes, protein degradation is primarily mediated by the 26S 
proteasome, which recognises substrates ubiquitinated with K48-linked 
chains (Grice and Nathan, 2016). Interestingly, K48-linked ubiquitin is 
also the most abundant linkage type in the cell (Xu et al., 2009). The 26S 
proteasome is a barrel-like protein complex, consisting of the 20S core, 
executing proteolysis, and the 19S regulatory particle, capping one or both 

Figure 6. The ubiquitin system. A) Ubiquitin-activating enzymes, E1s, interact 
with ubiquitin in an ATP-dependent manner, whereafter the ubiquitin moiety is 
transferred to a ubiquitin-conjugating enzyme, E2. E2s together with E3 ligases 
add ubiquitin to the target substrate. Polyubiquitin chains are generated by 
repetition of the enzymatic cascade. The ubiquitin code is translated into cellular 
outcomes by proteins recognising ubiquitinated substrates via their Ubiquitin 
binding domains (UBDs). Deubiquitinating enzymes (DUBs) antagonise 
ubiquitination by cleaving off ubiquitin moieties attached to substrates. B) 
Substrates modified by a single ubiquitin moiety are referred to as 
monoubiquitinated, whereas multi-monoubiquitination entails the 
monoubiquitination on several sites of the substrate. Homotypic chains consist of 
ubiquitin moieties attached via the same linkage types, whereas heterotypic 
chains contain several different linkages. Heterotypic chains can be mixed or 
branched (figure modified from French et al., 2021, Swatek and Komander, 2016, 
Komander and Rape, 2012) 
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ends of the core (Bard et al., 2018). The 19S particle, also known as the lid 
of the proteasome, harbours specific UBDs recognising ubiquitinated 
proteins and translocates appropriate substrates into the degradation 
core (Lander et al., 2012, Thrower et al., 2000, Bard et al., 2018). K48-
linked ubiquitin chains, packed tightly against each other (Eddins et al., 
2007), are thought to be the main cellular signal for proteasomal 
degradation (Thrower et al., 2000). However, the optimal length and 
number of K48-linked chains are under debate. Based on the study of 
Thrower and colleagues, chains of four or more ubiquitin moieties have 
been thought to be the signal for efficient degradation. This notion is, 
however, beginning to be challenged, as two diubiquitin K48-linked 
chains have been shown to be a more efficient degradation signal 
compared to a single tetraubiquitin chain (Lu et al., 2015).  Furthermore, 
heterotypic K11/K48-linked chains have been shown to promote 
degradation of cell cycle substrates more efficiently than homotypic K48-
linked chains (Meyer and Rape, 2014). These studies point towards an 
additional, unexplored, level of degradation kinetics modulating protein 
homeostasis. 

K63-linked chains displaying an open topology are, in contrast to K48-
linked chains, non-degradative and have been associated with several 
cellular processes, such as DNA damage responses, kinase activation and 
protein localisation (Chen and Sun, 2009, Komander et al., 2009b, 
Komander and Rape, 2012). However, one of the most well-studied roles 
of K63-linked chains lies within inflammatory signalling and NF-κB 
activation (Wu et al., 2018). K63-linked chains stimulate immune 
signalling by stabilising receptor complexes, recruiting downstream 
protein complexes and by activating kinases. Another NF-κB regulating 
chain type, adopting the similar extended conformation as K63-linked 
chains, are the M1-linked chains, catalysed by the Linear ubiquitin 
assembly complex (LUBAC) (Kirisako et al., 2006, Komander et al., 
2009b), consisting of two regulatory subunits, Haem-oxidized IRP2 
ubiquitin ligase-1 (HOIL-1) and Shank-associated RH domain-interacting 
protein (SHARPIN), and of the catalytic subunit HOIL-1-interacting 
protein (HOIP) (Tokunaga et al., 2011, Kirisako et al., 2006). The 
important immune-modifying role of M1-linked chains are reflected by 
severe, systemic, inflammatory phenotypes displayed by mice carrying 
mutations in components of the M1-linked ubiquitination machinery 
(Hrdinka and Gyrd-Hansen, 2017). Upon immune receptor activation, 
multiprotein complexes formed at the receptors are decorated with both 
K63- and M1-linked chains. Research indicates that K63-linked chains are 
induced first and act as recruiters of LUBAC. LUBAC subsequently 
catalyses the M1-ubiquitination of own substrates, or on pre-existing K63-
linked chains, forming, hence, heterotypic K63/M1-linked chains 
(Emmerich et al., 2013). The homotypic and heterotypic chains recruit 
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ubiquitin-dependent kinase complexes such as the Transformed growth 
factor β-activated kinase 1 (TAK1) complex and the Inhibitor of κB (IκB) 
kinase (IKK) complex, which are both crucial for downstream signalling 
and subsequent NF-κB activation (Kanayama et al., 2004, Wu et al., 2006). 

Monoubiquitination and homotypic chains of “atypical” ubiquitin 
linkages (K6, K11, K27, K29, K33) have not received as much attention as 
K48-, K63- and M1-linked ubiquitination and the regulation of these chain 
types and their biological function remain relatively unexplored. Some 
cellular functions have, however, already been associated with atypical 
ubiquitin chains, such as removal of damaged mitochondria with K6-
linked chains (Cunningham et al., 2015), cell cycle regulation with K11-
linked chains (Wickliffe et al., 2011), DNA damage and autoimmunity with 
K27-linked chains (Gatti et al., 2015, Liu et al., 2014), proteasomal 
degradation with K29-linked chains (Johnson et al., 1995), trafficking with 
K33-linked chains (Yuan et al., 2014), and, finally, endocytosis with 
monoubiquitination (Haglund et al., 2003). Furthermore, the regulation 
and function of heterotypic mixed and branched chains are only beginning 
to be elucidated (French et al., 2021).  

2.3 Caspases and their activation 
Caspases are a family of cysteine proteases, cleaving their substrates on 
the C-terminal side of aspartate residues. Caspases have been identified in 
all metazoans, ranging from Caenorhabditis elegans and Drosophila, to 
mouse and human (Lamkanfi et al., 2002). Caspases consist of an amino-
terminal prodomain of variable size, followed by one large, ~20 kDa, and 
one small, ~10 kDa, subunit that together form the catalytically active 
protease domain. The murine and human caspases are, based on their 
described function and domain architecture, typically divided into 
inflammatory caspases (caspase-1, -4, -5, -11) and apoptotic caspases 
(caspase-3, -6, -7 -8, -9, -10) (Figure 7) (Van Opdenbosh and Lamkanfi, 
2019). The functions of caspase-2, -12 and -14 are not completely 
understood, but they seem to work beyond cell death and inflammation, 
and are, hence, not classified as inflammatory nor apoptotic (Fava et al., 
2012, Vande Walle et al., 2016, Denecker et al., 2008). The apoptotic 
caspases can be further subdivided into initiator, or apical caspases 
(caspase-8, -9, -10), and effector caspases (caspase-3, -6, -7) depending on 
their position in the apoptotic signalling cascade. The apoptotic initiator 
caspases and inflammatory caspases contain specific recruitment 
domains, i.e., Death effector domains (DEDs) or CARD domains, in the N-
terminus, enabling protein-protein interactions. The effector caspases, on 
the other hand, have short prodomains lacking specific domains (Figure 
7) (Van Opdenbosh and Lamkanfi, 2019). 
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Caspases are synthesised as zymogens, requiring dimerisation and 
excision of the prodomain to be activated. Activation of initiator caspases 
are described by the “induced proximity” model, wherein inactive 
monomers of the caspases are recruited to oligomeric signalling platforms 
to dimerise, undergo proteolytic cleavage and gain activity (Muzio et al., 
1998, Boatright et al., 2003). Two classical examples of caspase activation 
by induced proximity are found in the intrinsic and extrinsic apoptosis 
signalling pathways. Upon activation of the mammalian intrinsic 
apoptotic pathway, the adaptor protein Apoptotic protease activating 
factor-1 (APAF-1), together with cytochrome c released from the 
mitochondria, form a protein complex called apoptosome. The 
apoptosome recruits caspase-9 via its CARD domains, and activates the 
caspase through proximity-induced dimerisation (Acehan et al., 2002, 
Boatright et al., 2003). In the extrinsic pathway, activation of the Fas 
receptor promotes clustering of the adaptor protein Fas-associated death 
domain (FADD), leading to the recruitment of caspase-8 or -10 via their 
DED domains (Medema et al., 1997, Scott et al., 2009, Wachmann et al., 
2010). These protein clusters are called Death-induced signalling 
complexes (DISCs) and promote caspase activation through dimerisation 
(Boatright et al., 2003). In the case of the inflammatory caspase-1 and its 

Figure 7. Protein domains of human and murine caspases. Caspases contain 
a small (S) (~10 kDa) subunit and a large (L) (~20 kDa) subunit that together 
form the protease domain. In addition to the L and S subunits, inflammatory 
caspases (caspase-1, -4, -5, -11) and apoptotic initiator caspases (caspase-8, -9, -
10) contain long N-terminal prodomains harbouring DED or CARD domains. 
Effector caspases (caspase-3, -6, -7) have short prodomains lacking specific 
protein domains. The unclassified caspases caspase-2 and -12 contain a long 
prodomain with a CARD domain, whereas unclassified caspase-14 has a structure 
resembling that of an effector caspase. The length of the caspases in amino acids 
is indicated to the right of the proteins, m stands for murine, h for human (figure 
adapted from Van Opdenbosh and Lamkanfi, 2019, Lamkanfi et al., 2002).   
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activation, the inflammasome has been described (Martinon et al., 2002). 
Inflammasomes consist of Nucleotide oligomerisation domain (NOD)-like 
receptors (NLRs), Apoptosis-associated speck-like protein contain a 
caspase recruitment domain (ASC) and caspase-1. Upon activation of 
NLRs, ASC is recruited to the receptor and the inflammasome is assembled 
(Masumoto et al., 2001). After assembly, caspase-1 binds to the complex 
via a CARD-CARD interaction, leading to the proximity-induced activation 
of the caspase (Srinivasula et al., 2002, Stehlik et al., 2003). Whereas 
zymogens of initiator and inflammatory caspases are monomeric, the 
inactive precursors of effector caspases exist in the cytosol as dimers, 
typically activated by initiator caspase-mediated cleavage (Ramirez and 
Salvesen, 2018). The dimers of caspase-3 and caspase-7 are activated by 
proteolysis of a linker region located between the large and small subunit 
(Li et al., 1997, Riedl, 2001), whereas, caspase-6, interestingly, is often 
activated by caspase-3 instead of initiator caspases, and seems to be able 
to undergo autoactivation both in vitro and in vivo (Hirata et al., 1998, 
Wang et al., 2010). 

2.3.1 Drosophila caspases 
Seven caspases have been identified in Drosophila, three of which have 
similar structure as mammalian initiator caspases, namely Death related 
ced-3/Nedd2-like caspase (Dredd), Death regulator Nedd2-like caspase 
(Dronc) and Ser/Thr-rich caspase (Strica) (Chen et al., 1998, Dorstyn et 
al., 1999a, Vernooy et al., 2000), and four with structural similarities to 
effector caspases, called Drice, Death-associated molecule related to Mch2 
(Damm), Death executioner caspase related to apopain/yama (Decay) and 
Dcp-1 (Figure 8) (Fraser et al., 1997, Vernooy et al., 2000, Dorstyn et al., 
1999b, Song et al., 1997). The caspase-9 homologue Dronc, which is one 
of the three Drosophila initiator caspases, is considered to be the main 
apoptosis-inducer in the fly (Hay and Guo, 2006). Dronc is activated by 
binding via CARD-CARD interactions to the Drosophila apoptosome, 
formed by the adaptor protein Death-associated Apaf1-related killer 
(Dark) (Yu et al., 2006, Yuan et al., 2011). Upon activation, Dronc cleaves 
and activates effector caspases Drice and Dcp-1, which in turn cleave 
downstream substrates, thereby, executing apoptosis (Hawkins et al., 
2000, Meier et al., 2000). Drice and Dcp-1 are homologous to mammalian 
effector caspase-3 and seem to have partially overlapping functions 
during apoptosis. Dcp-1 mutants display milder defects in apoptotic 
signalling compared to Drice mutants, however, the phenotype of double 
Drice/Dcp-1 mutant is stronger than that of either mutant alone (Kondo 
et al., 2006, Xu et al., 2006, Muro et al., 2006, Lee et al., 2011). The initiator 
caspase Dredd was initially thought to function in apoptotic signalling 
(Chen et al., 1998), but has since then been established as key inducer of 
the inflammatory response triggered by Gram-negative bacteria (Leulier 
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et al., 2000). Dredd contains two DEDs in its prodomain, which are 
important for interaction with the adaptor protein Drosophila Fadd 
(dFadd), recruiting Dredd to the bacteria-activated receptor complex (Hu 
and Yang, 2000). The caspases Decay, Strica and Damm have not received 
as much attention as the other Drosophila caspases, however, Decay was 
found recently to regulate wing size, independently of Dronc-induced 
apoptosis (Shinoda et al., 2019). Strica is known to contain a unique serine 
and threonine rich prodomain, however the function of Strica, or Damm, 
remains largely unknown (Doumanis et al., 2001). 

  

2.3.2 Regulation and inhibition of caspases 
As proteolysis of caspases is irreversible, the activity of caspases needs to 
be carefully regulated. Some of the first caspase inhibitors were found in 
viruses, used to block the host defence upon viral infection. The two best 
characterised viral caspase inhibitors are the Cowpox virus protein 
cytokine response modifier A (CrmA) and the baculovirus protein p35 
(Bump et al., 1995, Zhou et al., 1997). Both proteins bind to caspases in a 
relatively non-selective manner, and function as so called “suicide 
substrates” that bind to the active site of the caspase and stay bound after 
being cleaved, thereby, physically blocking the catalytic pocket (Swanson 
et al., 2007, Lu et al., 2006). Ectopic expression of CrmA or p35 in 
mammalian and Drosophila cells have been extensively used in order to 
study the role of caspases in cell signalling.  

In addition to synthesising caspases as inactive zymogens requiring 
specific modes of activation, the cell employs several strategies, such as 
decoy proteins, posttranscriptional modifications and caspase inhibitors, 
to regulate caspase activity (Parrish et al., 2013, Pop and Salvesen, 2009). 
The main group of caspase regulators found in metazoans is the IAP family 

Figure 8. Protein domains of Drosophila caspases. In addition to the long (L) 
and short (S) subunits of the protease domain, the initiator caspases Dronc and 
Dredd contain long N-terminal prodomains harbouring two DED or a CARD 
domain, respectively. The atypical Drosophila initiator caspase Strica does not 
contain DED or CARD domains, but harbours instead a Ser/Thr rich prodomain.  
Effector caspases (Drice, Dcp-1, Decay and Damm) have short prodomains 
lacking specific protein domains. The length of the caspases in amino acids is 
indicated to the right of the proteins (figure adapted from Lamkanfi et al., 2002).   
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of proteins, whose members interact via their BIR domain with the IBM 
domain of caspases. In mammals, XIAP is the only known IAP able to 
inhibit the enzymatic activity of caspases directly by binding. XIAP has 
been shown to inhibit caspase-3 and caspase-7 via its BIR2 domain, 
whereas caspase-9 is inhibited via the BIR3 domain (Scott et al., 2005, 
Shiozaki et al., 2003).  

In Drosophila, Diap1 inhibits the initiator caspase Dronc and the 
effector caspases Drice and Dcp-1 by binding to, and ubiquitinating the 
caspases (Wilson et al., 2002, Zachariou et al., 2003, Ditzel et al., 2008). In 
the case of Drice, Diap1 inhibits the caspase by binding via its BIR1 domain 
to the active form of Drice. This binding is antagonized by the 
proapoptotic protein Reaper, increasing the pool of free, active Drice 
during apoptosis (Zachariou et al., 2003). Diap2 has also been shown to 
lower the apoptotic threshold of the cell by inhibiting Drice (Ribeiro et al., 
2007). The Diap2-mediated inhibition of Drice is mechanism-based and 
resembles caspase inhibition mediated by p35. Diap2 binds to active Drice 
in a dual manner via a covalent adduct formed between the catalytic 
cysteine 211 of Drice and aspartic acid 100 of Diap2, and through a 
binding between the IBM domain of Drice and the BIR3 domain of Diap2 
(Figure 9) (Ribeiro et al., 2007). As a consequence of the Drice-Diap2 
interaction, Diap2 is cleaved and Drice ubiquitinated. The details of this 
event, such as ubiquitination site or chain type, and how complex 
formation affects Diap2-activity remains, however, elusive (Ribeiro et al., 
2007). 

 

 
 

Figure 9. The Diap2-Drice complex. Diap2 and Drice interacts via alanine 29 
(A29), part of the IBM domain of Drice, and the BIR3 domain, and, additionally, 
through a covalent binding formed between the catalytic cysteine 211 (C211) of 
Drice and aspartic acid 100 (D100) of Diap2. Cleavage of the BIR1 domain and 
ubiquitination of Drice are known consequences of the interaction. The proteins 
are depicted as monomeric for clarity, however, both proteins dimerise prior to 
activation (figure modified from Ribeiro et al., 2007).  
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Activated caspases are short-lived species with a more dynamic 
turnover compared to the one of inactive zymogens (Tawa et al., 2004), 
suggesting an involvement of the proteasomal pathway in caspase 
regulation. As IAPs possess E3 ligase activity, the proteins might be able 
to target caspases for proteasomal degradation. Indeed, both cIAP1 and 
XIAP, have been shown to ubiquitinate a processed form of caspase-3 in 
different settings, leading to its subsequent proteasomal degradation 
(Choi et al., 2009, Suzuki et al., 2001). XIAP has, furthermore, been shown 
to polyubiquitinate active caspase-9 in vitro, and inhibition of the 
proteasome together with overexpression of XIAP promotes 
accumulation of polyubiquitinated caspase-9 (Morizane et al., 2005). 
Similarly in Drosophila S2 cells, Diap1 appears to target the apoptosome-
bound Dronc for degradation (Muro et al., 2002). However, an in vivo 
occurrence or the details of Diap1 or Diap2-mediated proteasomal 
degradation of caspases, remain elusive. 

Decoy proteins are structurally related to caspase prodomains and 
compete for caspase binding sites in activation platforms, thus, preventing 
activation of initiator and inflammatory caspases. Cellular FLICE-like 
inhibitory protein (c-FLIP) is a catalytically inactive pseudo-caspase-8 
that binds to the DISC, inhibiting any subsequent recruitment of caspase-
8 to the site (Irmler et al., 1997). However, interestingly, a long isoform of 
c-FLIP has in contrast been shown to facilitate caspase activation, thereby 
exemplifying the complexity of caspase regulation (Micheau et al., 2002, 
Chang et al., 2002). Finally, in the case of inflammasome-mediated 
activation of caspase-1, decoy proteins harbouring CARD domains, such 
as CARD-only protein-1 (COP-1), ICEBERG and Inhibitory CARD (INCA), 
inhibit caspase-1 recruitment to the inflammasome, attenuating, thereby, 
the inflammatory signal (Lee et al., 2001, Druilhe et al., 2001, Lamkanfi et 
al., 2004).   
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3 The host defence system 
The host defence system includes all mechanisms, both constitutive and 
inducible, used by an organism to defend itself against harmful organic or 
inorganic substances.  In humans, the defence system consists of three 
layers: anatomical and physiological barriers, the adaptive immune 
system and the innate immune system. Anatomical and physiological 
barriers, such as the skin, low stomach pH and bacteriolytic lysozyme in 
tears and saliva, provide an important first line of defence against 
pathogens (Turvey and Broide, 2010). The adaptive immune system 
consists of T cells and B cells, which are lymphocytes displaying a wide 
repertoire of unique receptors, recognising specific antigens. After the 
initial antigen encounter, the clonal expansion of lymphocytes required to 
clear a pathogen takes three to five days, giving pathogens ample time to 
cause damage (Chaplin, 2010). The innate immune system augments the 
anatomical and physiological barriers and can generate an inflammatory 
response within minutes, closing the gap between pathogen exposure and 
proper immune response. The innate immune system is activated by 
pattern-recognition receptors (PRRs) recognising pathogen-associated 
molecular patterns (PAMPs) or host-derived danger-associated molecular 
patterns (DAMPs) (Takeuchi and Akira, 2010). Activation of PRRs induces 
downstream innate immune responses, which can be mediated by cell-
dependent mechanisms, such as phagocytosis, or by secreted factors, such 
as antimicrobial proteins and proinflammatory cytokines (Gasteiger et al., 
2017). The cytokines trigger, furthermore, the maturation of the adaptive 
immune response (Iwasaki and Medzhitov, 2015). In addition to being 
indispensable for the immune defence, the innate immune system has 
emerged as a crucial regulator of human inflammatory diseases. 
Dysregulated innate immune responses have been connected to the 
pathogenesis of asthma, and to development of autoimmune diseases 
such as type 1 diabetes and IBD (Pivniouk et al., 2020, Cabrera et al., 2016, 
Segal, 2019).   

In contrast to mammals, Drosophila does not carry an adaptive immune 
system, but relies solely on an innate immune response when combating 
infections. The innate immune system is aided, similarly as in humans, by 
physical barriers, such as the epithelial lining beneath the cuticle in the 
digestive tract and trachea (Lemaitre and Hoffmann, 2007). The 
Drosophila innate immune system can be divided into a cellular and a 
humoral response. The cell-mediated response entails phagocytosis and 
the encapsulation of parasites, and is carried out by differentiated 
haemocytes located in the Drosophila haemolymph (Vlisidou and Wood, 
2015). Phagocytosis is mediated by the macrophage-like plasmatocytes, 
leading to the disposal of both apoptotic bodies and invading pathogens 
(Melcarne et al., 2019), whereas encapsulation is an elaborate defence 
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mechanism of Drosophila larvae, mediated by lamellocytes, protecting the 
host from larger intruders, such as parasitoid eggs (Kim-Jo et al., 2019). 
The humoral arm of the innate immune system is the most well-studied 
part of the Drosophila immune response and is characterised by the 
infection-induced activation of NF-κB signalling, culminating in 
production and secretion of antimicrobial peptides. As several features of 
the Drosophila humoral immune response, such as microbial sensing by 
PRRs, as well as the components and regulatory mechanisms of NF-κB-
mediated inflammatory signalling, are conserved in higher organisms, 
research done in Drosophila has aided greatly in elucidating the details of 
the mammalian innate immune system (Lemaitre and Hoffman, 2007). 
The following sections will present both mammalian and Drosophila NF-
κB signalling and discuss their regulation during immune responses, with 
emphasis on intestinal immunity.  

3.1 The mammalian NF-κB signalling pathway 
The NF-κB family of transcription factors is a master regulator of host 
defence and controls the expression of numerous proinflammatory genes. 
In addition to being essential for both innate and adaptive immune 
responses, NF-κB also regulates genes involved in differentiation, 
proliferation and survival. The NF-κB transcription factors are activated 
by a variety of receptors, ranging from PRRs recognising PAMPs and 
DAMPs (Carmody and Chen, 2007, Feldman et al., 2015), to cytokine, 
antigen and growth factor receptors (Hayden and Ghosh, 2014, Schulze-
Luehrmann and Ghosh, 2006, Shostak and Chariot, 2015). NF-κB can also 
be activated by environmental stresses, such as reactive oxygen species, 
ultraviolet light and irradiation (Lingappan, 2018, László and Wu, 2008, 
Singh et al., 2015). Given its influence on the vast array of different 
biological processes, dysregulation of NF-κB can have severe 
consequences, leading to the development of chronic inflammatory 
diseases, autoimmune diseases, neurodegenerative disorders, 
cardiovascular disorders, and cancer (Zhang et al., 2017).  

The first NF-κB transcription factor was discovered in 1986 as a 
sequence-specific DNA binding protein in activated B lymphocytes (Sen 
and Baltimore, 1986). To date, five mammalian NF-κB transcription 
factors, p65 or RelA, RelB, c-Rel and, p105 and p100, precursors of p50 
and p52, respectively, have been described. All of the transcription factors 
share a conserved Rel homology domain (RHD), mediating sequence-
specific DNA binding, dimerisation, and binding of inhibitory proteins 
(Smale, 2012). The transcription factors hetero- or homodimerise to form 
15 possible cytosolic dimers with specific transcriptional properties 
(Smale, 2012). In their resting state, the NF-κB dimers are sequestered in 
the cytoplasm by proteins from the IκB family. The IκB proteins contain 
an ankyrin-repeat domain, which blocks the dimer’s nuclear localisation 



Review of the literature 

27 
 

signal (Mitchell et al., 2016). The precursor proteins p105 and p100 
contain a C-terminal ankyrin-repeat domain, functioning, thereby, as 
inhibitory proteins themselves. Partial degradation of p105 and p100 
interrupts their inhibitory function, yielding free p50 and p52 NF-κB 
proteins (Smale, 2012). 

NF-κB activation is mediated through two major signalling pathways: 
the canonical and the non-canonical pathway (Figure 10) (Shih et al., 
2011). The canonical pathway induces rapid activation of NF-κB 
downstream of PRRs, T cell and B cell receptors, and proinflammatory 
cytokine receptors, such as members of the TNF-receptor (TNFR) 
superfamily. Proteins, i.e., adaptor molecules, kinases and ubiquitin 
ligases, recruited to the different types of receptors vary, however, they 
all aim at recruiting TAK1 to the complex. TAK1 in turn, activates the IKK 
complex, consisting of the kinases IKKα and IKKβ, as well as the regulatory 
subunit NF-κB essential modifier (NEMO), by phosphorylation. The 
activated IKK complex phosphorylates IκB, thereby, targeting IκB for 
proteasomal degradation, resulting in the release of the NF-κB dimer and 
subsequent nuclear translocation (Figure 10) (Wertz and Dixit, 2010). 
The liberated dimers in the canonical pathway are largely composed of 
the p65, p50 and c-Rel subunits (Hoffmann and Baltimore, 2006).  

The activity of the noncanonical pathway is mediated foremost by 
members of the TNFR superfamily, but can also be stimulated by RNA 
viruses and by pathogenic bacteria (Sun, 2017, Struzik and Szulc-
Dąbrowska, 2019). Activation of the non-canonical NF-κB pathway relies 
on de novo protein synthesis, and is, in contrast to the canonical pathway, 
slow and persistent. Receptor activation leads to the stabilisation of NF-
κB inducing kinase (NIK), which is subjected to continuous proteasomal 
degradation in unstimulated cells (Liao et al., 2004). Stabilisation of NIK 
allows for the kinase to activate IKKα by phosphorylation (Xiao et al., 
2001). IKKα phosphorylates in turn p100, targeting the NF-κB precursor 
for partial proteasomal degradation, generating, thus, the p52 protein and 
freeing, predominantly, RelB/p52 dimers to enter the nucleus (Figure 10) 
(Senftleben et al., 2001, Sun, 2017).  
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Figure 10. The NF-κB signalling pathway. The canonical NF-κB pathway occurs 
downstream of Pattern-recognition receptors (PRRs), cytokine receptors and 
antigen receptors. Each receptor activates a distinct set of signalling mediators 
that aim at activating TAK1. TAK1 activates the IKK complex consisting of NEMO, 
IKKβ and IKKα, by phosphorylation. The activated complex targets IκBα for 
proteasomal degradation by phosphorylation. The released NF-κB transcription 
factor dimer translocates to the nucleus and activates target gene expression. The 
non-canonical NF-κB pathway is activated mainly by receptors that are members 
of the Tumour necrosis factor receptor (TNFR) superfamily. Receptor activation 
disrupts the continuous degradation of NIK. Stabilised NIK activates IKKα by 
phosphorylation, which in turn phosphorylates p100, the precursor for p52. 
Through partial degradation of p100 the p52/RelB dimer is free to translocate to 
the nucleus and induce gene expression (figure adapted from Sun, 2017).  
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3.2 NF-κB-mediated immune signalling in Drosophila 
melanogaster  
A hallmark of the Drosophila innate immune response is the PRR-
mediated activation of NF-κB signalling that culminates in the production 
and secretion of AMPs. In Drosophila, PGN-recognition proteins (PGRPs) 
are the main PRRs and sensors of microbial non-self. Drosophila encodes 
for 13 PGRPs that all share a common 160-amino acid long PGRP domain 
that mediates recognition of PGN (Kurata, 2014). In addition to the PGRP 
domain, some PGRPs harbour amidase activity and are able to modulate 
immune signalling directly by inducing degradation of PGN (Zaidman-
Rémy et al., 2006, Bischoff et al., 2006, Zaidman-Rémy et al., 2011). The 
non-catalytic PGRPs function as bacterial receptors inducing immune 
signalling. Some of these receptors are extracellular and function as 
circulating bacterial sensors (Michel et al., 2001, Bischoff et al., 2004), 
whereas others are located in the cell membrane or intracellularly (Choe 
et al., 2002, Gottar et al., 2002, Rämet et al., 2002, Takehana et al., 2002).  

The production of AMPs is controlled by two Drosophila NF-κB 
pathways, namely the Imd and Toll signalling pathways (Hetru and 
Hoffmann, 2009, Lemaitre and Hoffmann, 2007, De Gregorio et al., 2002). 
The Toll pathway is a well-conserved signalling cascade first identified for 
its role in determining the dorso-ventral axis of Drosophila embryos 
(Anderson et al., 1985). In the search of Toll homologues, TLRs were 
identified in higher organisms, and now Toll and TLRs are best known for 
their role in innate immunity (Anthoney et al., 2018, Valanne et al., 2011). 
Toll signalling in Drosophila is initiated by extracellular circulating PRRs 
that recognise cell wall components from fungi or Gram-positive bacteria. 
Fungal β-glucan is identified by Gram-negative binding protein 3 (GNBP3) 
(Gottar et al., 2006), whereas Lys-type PGN from the cell wall of Gram-
positive bacteria is reportedly identified by PGRP-SD, or by a complex 
consisting of PGRP-SA and GNBP1 (Figure 11) (Steiner, 2004, Bischoff et 
al., 2004, Wang et al., 2006). These PPRs induce a serine-cascade leading 
to the cleavage of the extracellular cytokine Spätzle (Jang et al., 2006). 
Cleaved Spätzle binds to the Toll receptor, activating an intracellular 
signalling cascade, culminating in the degradation of the inhibitory factor 
Cactus, inhibiting the NF-κB transcription factors Dorsal-related 
immunity factor (Dif) and Dorsal in resting cells (Figure 11) (Weber et al., 
2003, Wu and Anderson, 1998). Upon dissociation from Cactus, Dif and 
Dorsal translocate to the nucleus and activate the transcription of AMP 
genes (Meng et al., 1999, Reichhart et al., 1993).  
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Figure 11. The Drosophila Toll and Imd pathway. Circulating pattern-
recognition proteins GNBP3 and PGRP-SD or PGRP-SA and GNBP1, recognise β-
glucan from fungi and Lys-type peptidoglycan (PGN) from Gram-positive 
bacteria, respectively, thereby initiating an extracellular protein cascade, 
culminating in the cleavage of pro-Spätzle. Cleaved Spätzle activates the Toll 
receptor, leading to the phosphorylation-dependent degradation of the 
inhibitory protein Cactus and nuclear translocation of transcription factors Dif 
and/or Dorsal. Diaminopimelic acid (DAP)-type PGN, originating from Gram-
negative bacteria, activate the transmembrane receptor PGRP-LC or the 
intracellular receptor PGRP-LE. The extracellular PGRP-SD has also been 
reported to induce Imd signalling by bringing PGN to the proximity of PGRP-LC. 
Receptor activation leads to the cleavage of transcription factor Relish and its 
subsequent translocation to the nucleus. The Toll and Imd pathways activate a 
distinct set of AMPs depending on the type of microbial stimuli (figure modified 
from Kurata, 2014, Lemaitre and Hoffmann, 2007, Iatsenko et al., 2016). 
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Whereas the Toll pathway is activated by circulating proteins 
recognising microbial structures, the Imd pathway is initiated by direct 
interaction between receptor and pathogen. Diaminopimelic acid (DAP)-
type PGN, present in the cell wall of Gram-negative bacteria, is recognised 
by the transmembrane receptor PGRP-LC, or the intracellular receptor, 
PGRP-LE (Choe et al., 2002, Gottar et al., 2002, Rämet et al., 2002, 
Takehana et al., 2002). Interestingly, in contrast to its assumed role as an 
inducer of Toll signalling, PGRP-SD has also been reported to function as 
an Imd specific PRR (Iatsenko et al., 2016). PGRP-SD was shown to 
enhance the activation of PGRP-LC by promoting relocalisation of 
extracellular PGN to the cell surface (Iatsenko et al., 2016). Receptor 
activation leads to the cleavage-dependent activation and nuclear 
translocation of the NF-κB transcription factor Relish, and, finally, to 
production and secretion of AMPs (Figure 11) (Stöven et al., 2003, 
Hedengren et al., 1999). The Imd pathway mediates a rapid response to 
pathogens and Relish has been shown to translocate to the nucleus within 
minutes, with AMP levels peaking a few hours post infection. Activation of 
the Toll transcription factors is on the other hand slower, and the AMP 
production can be sustained for days (Lemaitre et al., 1997).   

AMPs can be produced by the epithelial cells of the digestive, 
respiratory and reproductive tracts, thereby modulating local immune 
responses, or by the fat body, an organ homologous to the mammalian 
liver.  The fat body produces AMPs in response to pathogens entering the 
body cavity, also known as the haemocoel, and are secreted systemically 
into the haemolymph (Tzou et al., 2000, Lemaitre and Hoffmann, 2007). 
AMPs are small, <10 kDa, with the exception of the 25 kDa attacin, cationic 
peptides displaying distinct antibacterial and, or, antifungal activities 
(Imler and Bulet, 2005). The characterised AMPs of Drosophila are 
currently divided into seven gene families: Drosocin, Attacins (four genes), 
Diptericins (two genes), Drosomycin, Metchnikowin, Cecropins (four genes) 
and Defensin (Bulet et al., 1996, Wicker et al., 1990, Levashina et al., 1995, 
Ekengren and Hultmark 1999, Cociancich et al., 1993, Tzou et al., 2002, 
Hedengren et al., 2000). However, as many additional genes encoding 
small peptides are known to be upregulated during infection, the number 
of AMP families might increase in the future (De Gregorio et al., 2002).  

Upon a septic bacterial infection, the production and release of AMPs 
in the fat body are regulated by both the Imd and Toll signalling pathways 
(Hetru and Hoffmann, 2009, Lemaitre and Hoffmann, 2007, De Gregorio 
et al., 2002). However, interestingly, local immune responses mediated by 
epithelial cells are believed to be solely controlled by the Imd pathway, as 
no role for Toll signalling has been identified in the host defence of the gut 
(Buchon et al., 2009a, Broderick, 2016), and several of the key members 
of the Toll pathway do not seem to be expressed in the epithelial cells of 
the trachea (Wagner et al., 2008, Akhouayri et al., 2011). Furthermore, 
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AMP expression in the Malpighian tubules and salivary glands have been 
shown to be regulated by Imd signalling (Tzou et al., 2000, Verma and 
Tapadia, 2012, Abdelsadik and Roeder, 2010). As the Toll signalling 
pathway is the only known mediator of a fungal or Gram-positive bacterial 
infection, the regulation of these microbes during local immune-
responses or in the maintenance of beneficial host-microbe interactions, 
remain elusive. 

3.2.1 The Drosophila Imd pathway 
The Imd pathway is activated upon bacterial stimulation when PGN from 
the cell wall of Gram-negative bacteria is recognised by the 
transmembrane receptor PGRP-LC or by the intracellular receptor PGRP-
LE (Choe et al., 2002, Gottar et al., 2002, Rämet et al., 2002, Takehana et 
al., 2002). Whereas the systemic activation of Imd is dependent on PGRP-
LC, the intestinal immune response towards commensal and pathogenic 
bacteria is regulated by both PGRP-LC and PGRP-LE, expressed at varying 
levels in different regions of the gut (Bosco-Drayon et al., 2012, Neyen et 
al., 2012). The receptors are thought to homodimerise or -oligomerise 
upon ligand binding, whereafter the adaptor protein Imd is recruited to 
the complex (Figure 12) (Mellroth et al., 2005, Georgel et al., 2001, Choe 
et al., 2005). The details of the formation of the signalling complex formed 
immediately downstream of PGRP receptors remains largely elusive, 
however, the receptors and Imd have been shown to form functional 
amyloids, required for Imd signalling to proceed (Kleino et al., 2017). The 
Imd protein has no homologue in mammals, but contains a death domain 
(DD) sharing sequence homology with the DD of mammalian Receptor 
interacting protein kinase 1 (RIPK1) (Georgel et al., 2001), involved in NF-
κB signalling in mammals. Imd binds via its DD domain to dFadd, which in 
turn recruits the caspase-8 homologue Dredd through its DED domain 
(Figure 12) (Naitza et al., 2002, Hu and Yang, 2000). Upon recruitment to 
the signalling complex, activated Dredd cleaves Imd, exposing an IBM 
domain of Imd, to which the E3 ligase Diap2 binds via its BIR domains 
(Kim et al., 2014, Paquette et al., 2010). Cytoplasmic Relish is in an 
autoinhibitory state, wherein C-terminal ankyrin repeats mask its 
nuclearisation signal (Stöven et al., 2000). Upon activation, Dredd cleaves 
off the inhibitory C-terminal part, freeing the N-terminal fragment of 
Relish to enter the nucleus (Figure 12) (Stöven et al., 2003).  

Diap2 K63-ubiquitinates both Dredd and Imd (Paquette et al., 2010, 
Meinander et al., 2012). Ubiquitination of Dredd is required for activation 
of the caspase and flies carrying a point mutation in the ubiquitination site 
of Dredd, do not cleave Imd nor Relish, and succumb to Gram-negative 
bacterial infections (Meinander et al., 2012). The ubiquitin chains on Imd 
are thought to recruit Drosophila Tak1 (dTak1), via Drosophila Tak1-
binding protein (dTab2), as the mammalian Tab2 homologue has been 
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shown to interact specifically with K63-linked ubiquitin chains (Figure 
12) (Kulathu et al., 2009, Kleino and Silverman, 2014). In addition to 
driving Imd signalling, dTak1 activates the c-Jun terminal kinase (JNK) 
pathway, a conserved stress sensing pathway in eukaryotic cells. 
Drosophila JNK signalling is needed for normal AMP release and required 
for Imd-induced epithelial shedding (Kallio et al., 2005, Zhai et al., 2018, 
Tafesh-Edwards and Eleftherianos, 2020). Interestingly, activation of 
Relish has been shown to attenuate JNK activity, indicating a dual role of 
the Imd pathway in shaping JNK-induced immune activation (Park et al., 
2004).  

Recruited dTak1 and dTab2 activate the IKK complex, consisting of a 
regulatory subunit, Kenny, homologous to mammalian NEMO or IKKγ, and 
of a catalytic subunit called Immune response deficient 5 (Ird5), 
homologous to mammalian IKKβ (Figure 12) (Rutschmann et al., 2000, 
Silverman et al., 2000). Similarly, as mammalian NEMO, Kenny has been 
shown to be M1-ubiquitinated by the LUBAC orthologue Lubel, in flies 
(Aalto et al., 2019), leading to the stabilisation of the IKK complex. An 
activated IKK complex is required for subsequent activation of Relish, 
however, the details of this interaction remain largely elusive 
(Rutschmann et al., 2000, Silverman et al., 2000). Ird5 has been shown to 
phosphorylate residues in the N-terminal part of Relish, facilitating 
transcription and recruitment of RNA polymerase II. This event is, 
however, not needed for Relish cleavage nor for nuclear translocation 
(Ertürk-Hasdemir, et al., 2009). Although the Toll and Imd pathway have 
been considered to serve independent functions of the Drosophila 
immune system, crosstalk at the level of the NF-κB transcription factors 
have been demonstrated. All forms of homo- and heterodimers of Relish, 
Dorsal and Dif have been identified in overexpression systems, and the 
Relish-Dif dimer is known to regulate the expression of certain AMPs 
(Tanji et al., 2010). Although no such interaction has been described to 
date, upstream Toll pathway signalling molecules might also affect the 
activity of Imd pathway members. 

Traditionally, the Drosophila Imd pathway has been compared to the 
mammalian canonical NF-κB pathway activated by the cytokine receptor 
TNFR1. The Imd and TNFR1 pathways both activate inflammatory NF-κB 
and share a number of homologous protein components, regulated in a 
conserved manner (Falschlehner and Boutros, 2012, Myllymäki et al., 
2014). However, in contrast to the PGRP receptors of Imd signalling, 
TNFR1 does not function as a sensor of infection, but as an amplifier of the 
immune response. In the case of intestinal immunity, the NOD2 pathway 
might serve as a better mammalian analogue for the Imd pathway. 
Similarly, as the TNFR and Imd pathway, the NOD2 and Imd pathway 
contain several conserved signalling proteins and rely on the same modes 
of regulation when activating NF-κB. Additionally, both the NOD2 and Imd 
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pathway are stimulated directly by bacteria, are key regulators of NF-κB 
activity in barrier epithelia, and crucial for maintaining intestinal 
homeostasis (Buchon et al., 2014, Al Nabhani et al., 2017). Next, the details 
of both inflammatory TNFR1 and NOD2 signalling are discussed. 

 

Figure 12. Components of the Imd pathway. The Imd pathway is activated 
when peptidoglycan (PGN), derived from Gram-negative bacteria, binds to the 
membrane receptor PGRP-LC. Upon activation, the adaptor proteins Imd and 
dFadd, as well as the caspase Dredd, are recruited to the receptor complex. Dredd 
cleaves Imd, whereafter Diap2 ubiquitinates both Dredd and Imd. Both Lubel and 
Diap2 are known to ubiquitinate Kenny. The dTak1-dTab2 complex and the IKK 
complex are thought to be recruited to the receptor complex via the ubiquitin 
chains attached to Imd and Dredd. dTak1 activates also the JNK pathway in 
response to bacterial infection. To activate Relish, Ird5 of the IKK complex 
phosphorylates Relish, whereas Dredd cleaves off the inhibitory ankyrin repeats. 
After activation, Relish translocates to the nucleus and induces gene 
transcription. By forming Relish-Dif dimers, the transcriptional properties of 
Relish can be modified (figure modified from Myllymäki et al., 2014, Falschlehner 
and Boutros, 2012). 
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3.3 The TNFR1 signalling pathway 
TNFα is a master cytokine, belonging to the TNF superfamily of cytokines 
that affects a variety of cellular responses, ranging from inflammatory 
gene expression and proliferation, to apoptosis and necroptosis. TNFα is 
secreted primarily by macrophages in response to PRR activation and 
amplifies the inflammatory response by binding to TNFR1 and TNFR2 
(Grivennikov et al., 2005, Wajant and Siegmun, 2019). Activation of 
TNFR1 drives the immune responses and cell survival through NF-κB, but 
can also, depending on the physiological circumstances, induce 
programmed cell death by apoptosis or necroptosis (Holbrook et al., 
2019). TNFR1-induced activation of NF-κB is mediated by a protein 
complex referred to as Complex I, whereas the protein complexes 
inducing cell death are known as Complex IIa, IIb and IIc (Gough and 
Myles, 2020). Here, the assembly of Complex 1 and its subsequent 
activation of NF-κB is discussed (Figure 13). 

TNFR1 belongs to the death receptor subgroup of the TNFR super 
family and is expressed in most cell types (Park et al., 2007). TNFR1, 
harbouring a DD in its cytoplasmic part, undergoes a conformational shift 
upon ligand binding, enabling the recruitment of TNFR1-associated death 
domain (TRADD) and RIPK1 (Figure 13) (Hsu et al., 1995, Hsu et al., 
1996a). TRADD further recruits the adaptor protein TNF receptor-
associated factor 2 (TRAF2) via its N-terminal TRAF-binding domain (Hsu 
et al., 1996b). TRAF5 has also been shown to modulate TNFR1-induced 
NF-κB activity. The details of the TRAF2 versus TRAF5-mediated 
regulation remains, however, obscure (Tada et al., 2001). TRAF2 recruits 
the E3 ligases cIAP1 and cIAP2, which modify RIPK1 and themselves with 
K63-linked ubiquitin chains (Bertrand et al., 2008, Mahoney et al., 2008, 
Varfolomeev et al., 2008). The K63-linked chains allow for recruitment of 
LUBAC, which in turn modifies RIPK1 and NEMO with M1-linked ubiquitin 
chains (Haas et al., 2009, Ikeda et al., 2011, Tokunaga et al., 2009). The 
ubiquitin chains function as scaffolds for efficient recruitment and 
activation of the TAK1-TAB2/TAB3 and the IKK complex. Activated IKK 
induces the degradation of IκB, thereby freeing the NF-κB dimer to enter 
the nucleus (Figure 13).  

In Drosophila, the sole homologue of TNF identified is Eiger (Igaki et 
al., 2002, Moreno et al., 2002). Eiger regulates cell death, host defence, 
tissue growth and regeneration via its receptors Wengen and Grindelwald 
(Igaki and Miura, 2014, Kanda et al., 2002, Andersen et al., 2015). 
However, in contrast to mammalian TNFR1 signalling, Eiger exerts its 
function mainly through JNK, and not NF-κB. 
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3.4 The NOD2 signalling pathway 
The mammalian NOD2 is a member of the NLR family of PRRs and is 
considered to be a key regulator of intestinal health and host-microbe 
interactions (Al Nabhani et al., 2017). NOD2 modulates both innate and 
adaptive immune responses by regulating NF-κB and the Mitogen-
activated protein (MAP) kinase pathways. NOD2 mutations have been 
associated with several inflammatory diseases, including Crohn’s disease, 

Figure 13. The TNFR1 signalling pathway. The signalling pathway is induced 
upon activation of TNFR1 by the cytokine TNFα. Receptor activation leads to the 
recruitment of TRADD, RIPK1 and TRAF2 or 5. TRAF2/5 recruits cellular cIAP1 
and 2, which ubiquitinate RIPK1 and themselves with K63-linked chains. The 
complex consisting of TAK1, TAB1 and TAB2 or TAB3, and LUBAC are recruited 
to the receptor complex via the K63-linked ubiquitin chains. LUBAC synthesises 
M1-linked ubiquitin chains on RIPK1 and on NEMO, part of the IKK complex. 
Upon TAK1-mediated activation of the IKK complex, the complex phosphorylates 
IκB, thereby, targeting the protein for degradation. Degradation of IκB releases 
the NF-κB dimer for nuclear translocation and subsequent target gene activation. 
Conserved components between the Imd and TNFR1 signalling pathways are 
indicated by similar colours, see Figure 12 (figure adapted from Wajant and 
Siegmun, 2019, Falschlehner and Boutros, 2012). 
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Graft-versus-host disease and Blau syndrome (Sidiq et al., 2016, Landfried 
et al., 2010, Miceli-Richard et al., 2001).  

Intestinal NF-κB signalling is induced when NOD2, expressed by both 
haematopoietic and non-haematopoietic cells in the intestinal epithelium, 
recognises muramyl dipeptide (MDP) derived from PGN of Gram-negative 
and Gram-positive bacteria (Figure 14) (Girardin et al., 2003, Al Nabhani 
et al., 2017, Ferrand et al., 2019). The NOD2 protein contains two N-
terminal CARD-domains, a C-terminal leucine-rich repeat (LRR) and a 
central NACHT domain. NACHT is an acronym standing for NAIP 
(Neuronal apoptosis inhibitor protein), C2TA (Class II major 
histocompatibility complex transactivator), HET-E (Heterokaryon 
incompatibility gene E) and TP1 (Telomerase-associated protein-1). The 
CARD domains interact with downstream adaptor proteins (Ogura et al., 
2001), the NACHT domain mediates oligomerisation (Proell et al., 2008) 
and the LRR domain is involved in the recognition of MDP (Laroui et al., 
2011). During steady-state conditions, NOD2 exists most probably, in an 
autoinhibitory state in the cytosol (Lechtenberg et al., 2014). Upon ligand 
recognition, NOD2 oligomerises via the NACHT domain and undergoes a 
conformational change, whereafter NOD2 recruits the serine-threonine 
kinase RIPK2 via a CARD-CARD interaction (Park et al., 2007). After 
binding to the receptor, RIPK2 undergoes autophosphorylation 
(Pellegrini et al., 2017) and ubiquitination (Hasegawa et al., 2008). RIPK2 
has been associated with a number of ubiquitin E3 ligases, including XIAP 
(Krieg et al., 2009), cIAP1 and cIAP2 (Bertrand et al., 2009), the TRAF 
ligases -2, -5, and -6 (McCarthy et al., 1998, Yang et al., 2007), and Pellino3 
(Yang et al., 2013). Whereas the role of TRAF- and cIAP1/2-mediated 
ubiquitination of RIPK2 in NOD2 signalling is not completely clear, XIAP, 
adding K63-linked chains on RIPK2, is an indispensable component of the 
pathway (Bertrand et al., 2009, Damgaard et al., 2012, Stafford et al., 
2018). XIAP-mediated ubiquitination of RIPK2 is essential for the 
recruitment of LUBAC, which conjugates M1-linked linear ubiquitin 
chains on RIPK2 (Damgaard et al., 2012). It is thought that the ubiquitin 
chains on RIPK2 function as a scaffold, or binding platform, recruiting 
TAK1, via TAB1, TAB2 or TAB3, and the IKK complex to the receptor 
complex. The activated IKK complex targets IκB for degradation, thereby, 
activating NF-κB and subsequent gene transcription (Figure 14) 
(Kanayama et al., 2004, Wang et al., 2001, Chen et al., 2006, Yang et al., 
2007, Hasegawa et al., 2008).  
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3.5 Ubiquitin-mediated regulation of NF-κB signalling  
Due to its strong proinflammatory function, increased activity of NF-κB 
contributes to the development of both acute and chronic inflammatory 
diseases (Zhang et al., 2017). Concordantly, inhibition of NF-κB has been 
shown to have anti-inflammatory effects in vivo (Greten et al., 2004, 
Acharyya et al., 2007, Arkan et al., 2005). However, mouse models 

Figure 14. The mammalian NOD2 pathway. The intracellular NOD2 receptor 
is activated by muramyl dipeptide (MDP) derived from Gram-positive and Gram-
negative bacteria. Activated NOD2 binds to RIPK2 that is thereafter K63-
ubiquitinated by XIAP. Other E3 ligases omitted from the figure have also been 
shown to ubiquitinate RIPK2. LUBAC is recruited to the complex in an XIAP-
dependent manner, and adds M1-linked chains on RIPK2. It is believed that the 
TAK1-TAB1-TAB2/3 complex and the IKK complex are recruited to the receptor 
complex via the ubiquitin chains attached to RIPK2. The catalytic subunit of the 
IKK complex, IKKβ, phosphorylates the inhibitory IκB protein, hence, targeting it 
for K48-linked ubiquitination and proteasomal degradation, thereby, freeing the 
NF-κB dimer to enter the nucleus and activate target gene transcription. 
Conserved components between the Imd and NOD2 signalling pathways are 
indicated by similar colours, see Figure 12 (figure based on Al Nabhani et al., 
2017, Martínez-Torres and Chamaillard, 2019, and Falschlehner and Boutros, 
2012). 
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wherein NF-κB was inhibited in non-immune intestinal epithelial cells, 
developed severe chronic inflammatory conditions (Nenci et al., 2007, 
Zaph et al., 2007), indicating, hence, a dual immune regulatory role of NF-
κB in certain tissues (Pasparakis, 2009, Wullaert et al., 2011). Maintaining 
immune homeostasis in the intestinal epithelia is particularly challenging, 
as the vast array of microbes call for a highly specialised immune response 
that is effective in eliminating pathogens, while allowing for beneficial 
host-microbe interactions to be established. Due to the properties of 
ubiquitination, functioning as a potent inducer of NF-κB, while 
simultaneously being highly dynamic and editable, the cell takes 
advantage of modifying inflammatory signalling by regulating 
ubiquitination and its inducers. 

3.5.1 Regulation of intestinal NOD2 signalling by DUBs 
As discussed earlier, E3 ligases are key induces of NF-κB signalling. In the 
case of mammalian NOD2 signalling, XIAP is one of the main E3 ligases 
driving NF-κB activity, and cells lacking XIAP are unable to induce NF-κB 
upon receptor stimulation (Krieg et al., 2009). Concordantly, XIAP-/- mice 
cannot clear intracellular bacterial infections and the absence or defective 
function of XIAP is connected to the development of IBD in humans 
(Bauler et al., 2008, Worthey et al., 2011, Zeissig et al., 2015, Parackova et 
al., 2020). Recently developed selective XIAP antagonists interfering with 
the XIAP-RIPK2 binding, was showed to block NOD2-induced 
ubiquitination of RIPK2, activation of NF-κB, and to decrease cytokine and 
chemokine production (Goncharov et al., 2018). The antagonists hold thus 
promise, unlike pan-IAP antagonists, activating cell death, NF-κB 
signalling, or cIAP1/2 autoubiquitination and proteasomal degradation 
(Varfolomeev et al., 2007, Vince et al., 2007), as possible therapeutic 
agents for NOD2-mediated inflammatory disease (Goncharov et al., 2018). 
Similarly to XIAP, the LUBAC complex seems to be indispensable in NOD2 
signalling, and the transcription of NOD2 target genes is severely 
decreased in the absence of the LUBAC component SHARPIN (Damgaard 
et al., 2012).  

The cell counteracts the activity of XIAP and LUBAC by expressing 
specialised DUBs, such as Cylindromatosis (CYLD), Ovarian tumour DUB 
with linear linkage specificity (OUTLIN) and A20 (Lork et al., 2017). CYLD 
mediates the cleavage of various polyubiquitin linkages, with a preference 
for K63- and M1-linked chains (Sato et al., 2015, Ritorto et al., 2014), 
whereas OTULIN exclusively hydrolyses M1-linked ubiquitin chains 
(Keusekotten et al., 2013). A20 exhibits activity towards K63-linked 
chains in vivo, however, interestingly, A20 also holds E3 ligase activity, 
enabling a dual ubiquitin-editing role (Wertz et al., 2004). CYLD has been 
shown to regulate NF-κB signalling downstream from a number of 
receptors, among them the NOD2 receptor (Sun, 2010). The DUB acts by 
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limiting K63- and M1-linked chains on RIPK2, thereby, decreasing 
cytokine production (Lork et al., 2017, Wex et al., 2016, Hrdinka et al., 
2016). CYLD knockout mice, accordingly, display intestinal inflammation 
and are more susceptible to dextran sulphate sodium (DSS)-induced colon 
inflammation and tumour development (Zhang et al., 2006, Reiley et al., 
2007). Furthermore, a genome-wide association study revealed CYLD 
polymorphisms to be strongly associated with Crohn’s disease in humans 
(Cleynen et al., 2014). OTULIN controls NOD2 signalling by limiting the 
accumulation of M1-chains associated with RIPK2 (Fiil et al., 2013). Loss 
of OTULIN results in severe inflammatory phenotypes (Damgaard et al., 
2016), however, how intestinal immune homeostasis is affected in 
OTULIN mutants, remains elusive. Finally, genome-wide association 
studies have identified, similarly as CYLD, A20 as a susceptibility gene for 
inflammatory diseases, such as psoriasis and Crohn’s disease (Vereecke et 
al., 2011, Hammer et al., 2011, Barmada et al., 2004). A20 deficient mice 
die prematurely due to severe multiorgan inflammation, hence, reflecting 
the important role of A20 in inflammatory regulation (Lee et al., 2000). 
Mice with an enterocyte-specific A20 deletion are hypersensitive to DSS-
induced colitis (Vereecke et al., 2010) and when A20 is deleted in both 
enterocytes and myeloid cells, mice develop spontaneous intestinal 
inflammation (Vereecke et al., 2014). Mechanistically, A20 is required for 
the termination of MDP-induced NF-κB signalling and counteracts NOD2 
signalling by removing ubiquitin chains attached on RIPK2 (Hitotsumatsu 
et al., 2008).  

3.5.2 Ubiquitin-mediated regulation of intestinal Imd signalling 
Several regulators of intestinal Imd signalling have been identified in 
Drosophila. Among these are secreted amidase PGRPs that degrade PGN 
in the gut, preventing excessive immune activation (Paredes et al., 2011, 
Zaidman-Rémy et al., 2006), Poor Imd response upon knock-in (Pirk) that 
regulates intestinal immune tolerance by interacting with Imd (Kleino et 
al., 2008, Lhocine et al., 2008), and the transcription factor Caudal, 
regulating AMP expression in specific compartments of the gut (Ryu et al., 
2008). The last section of this thesis will, however, only focus on the E3 
ligases known to drive intestinal Imd signalling and the proteins shown to 
directly counteract their activity. 

Similarly, as the E3 ligase activity of XIAP is needed for NOD2 signalling 
to proceed (Krieg et al., 2009, Damgaard et al., 2012), the IAP protein 
Diap2 is essential for the Relish-mediated antibacterial immune response 
(Kleino et al., 2005, Leulier et al., 2006b, Valanne et al., 2007). Diap2 
mutants cannot mount septic nor local immune responses against Gram-
negative bacteria and succumb rapidly upon pathogen exposure (Huh et 
al., 2007, Leulier 2006b, Gesellchen et al., 2005, Kleino et al., 2005). Diap2 
acts by mediating the K63-linked ubiquitination of pathway members 
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Imd, Dredd and Kenny, hence, stimulating downstream signalling 
(Paquette et al., 2010, Meinander et al., 2012, Aalto et al., 2019). 

The Drosophila LUBAC orthologue, Lubel, is shown to catalyse the 
formation of M1-linked linear chains on Kenny upon bacterial infection 
(Aalto et al., 2019). The E3 ligase seems to function specifically in the 
intestinal epithelia, as Lubel mutants are unable to mount an immune-
response upon oral infection with Gram-negative bacteria, but do survive 
a septic infection. Furthermore, overexpression of the catalytic domain of 
Lubel induces intestinal inflammation in the absence of infection (Aalto et 
al., 2019).  

Similarly as the mammalian counterpart, the Drosophila Cyld 
counteracts Diap2 and Lubel by removing both K63- and M1-linked 
ubiquitin chains of target proteins (Tsichritzis et al., 2007, Aalto et al., 
2019). Cyld mutants display an increased expression of Imd target genes, 
but are, interestingly, more sensitive to septic infections compared to wild 
type flies. As Cyld is also involved in regulating metabolic signalling and 
fat storage, the impaired immune response might be explained by a 
dysfunction of the fat body (Tsichritzis et al., 2007). Finally, another DUB 
known as Drosophila ubiquitin-specific protease 36 (dUsp36), or Scrawny, 
has been shown to prevent the accumulation of K63-polyubiquitinated 
Imd, while promoting its degradation. Silencing of dUsp36 stimulates 
activity of the Imd pathway, which is lost when flies are reared axenic, 
indicating a role of dUsp36 in regulating immune responses induced by 
commensal bacteria (Thevenon et al., 2009).  
 

3.6 Drosophila as a model for studying intestinal host defence 
The well-characterised immune system of Drosophila, displaying similar 
stimulatory and regulatory mechanisms with those of mammals, 
strengthens the role of the fruit fly as a model when studying intestinal 
immunity and host defence. However, due to physiological disparities 
between the Drosophila and the mammalian intestine, all manifestations 
of human intestinal host defence cannot be studied in the fly. For instance, 
the fly gut does not have a lamina propria, i.e., a layer of connective tissue 
containing resident immune cell population that regulate intestinal 
immunity and bacterial populations (Mowat and Agace, 2014), nor does 
the fly gut contain highly specialised immune active epithelial cells, such 
as the AMP producing Paneth cells or absorptive M cells (Bevins and 
Salzman, 2011, Ohno, 2016). Furthermore, as Drosophila lacks an adaptive 
immune system, the role of immune cells in intestinal diseases, such as the 
role of T cells in IBD, cannot be investigated in the fly.  

When elucidating the regulatory mechanisms of host defence, 
Drosophila is best suited for research regarding well-conserved pathways 
and specific effects. Among these are the Janus kinase protein and signal 
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transducer and activator of transcription (JAK-STAT) signalling pathway 
inducing immune responses and tissue growth (Panayidou and 
Apidianakis, 2013), the JNK pathway activating intestinal stress responses 
(Tafesh-Edwards and Eleftherianos, 2020), ROS signalling maintaining 
immue homeostasis (Ha et al., 2005, Jones et al., 2013), and finally, as 
outlined in the sections above, the NF-κB signalling pathways regulating 
immune responses, tissue homeostasis and host-microbe interactions 
(Lemaitre and Hoffmann, 2007). The devoted characterisation of the 
molecules involved in sensing and signalling in these immune-regulatory 
pathways, are gradually enabling more complex studies regarding host-
microbe interations and immune signalling, to be carried out the fly. 
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OUTLINE AND KEY AIMS OF THESIS 
Intestinal immune homeostasis is crucial for human health and aberrant 
regulation of host-microbe interactions is connected to chronic 
inflammation, metabolic diseases and cancer development. The 
evolutionarily conserved NF-κB signalling pathways are master 
mediators of immune responses in the intestinal epithelia and their 
regulation is, thereby, of specific interest when tuning inflammatory 
signalling. The key aims of this thesis are to advance the use of Drosophila 
melanogaster as a model for studying host-microbe interactions and to 
elucidate the molecular mechanisms regulating ubiquitin-induced 
inflammatory NF-κB signalling in the intestine of Drosophila.  

 

 

Key aims of this thesis: 

- To study host-microbe interactions in the Drosophila gut by 
rearing flies under axenic conditions. 

- To externally manipulate the fly microbiome with developed 
combinatory antimicrobial nanoparticles.  

- To investigate the specific regulation of inflammatory NF-κB 
signalling occurring in microbiotic environments. 

- To elucidate caspase-mediated regulation of ubiquitin E3 ligases 
during inflammatory signalling. 

- To determine the role of the Drosophila caspase Drice as a 
regulator of NF-κB signalling and intestinal homeostasis. 
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EXPERIMENTAL PROCEDURES 

In this section, the experimental procedures (Table 1) used during the 
thesis work are briefly presented. More detailed information on material 
and methods can be found in the original articles.  

Table 1. Experimental procedures used in this thesis. 

 
 

1 Fly husbandry 
The flies used were maintained at 20°C or 25°C with a 12-h light-dark 
cycle on Nutri-fly BF (Dutscher Scientific, Essex, UK) food. Adult flies were 
used for all experiments, except for those regarding nanoparticles, where 
3rd instar larvae were used. The CantonS or yellow white (yw) strains were 
used as wild type flies and, when studying the activity of the Imd pathway, 
the Diap27c mutant was used as negative control. In experiments 
regarding flies expressing genes under the UAS-Gal4 system, the Gal4 
driver line was additionally used as internal control. All fly lines and their 
applications are listed in Table 2. The Wolbachia positive or negative state 
of all fly lines was assessed by PCR with Wolbachia specific primers (Table 
2). To rear flies under axenic conditions, embryos were dechorionated 

Experimental procedures Study 
16S sequencing III 
Axenic fly culture (AFC) I, III 
Caspase activity assay (CA) III 
Cell culture III 
Cell viability assay III 
Drosophila dissections III 
Drosophila crossings  III 
Image analysis I, III 
Immunofluorescence (IF) III 
Fluorescence microscopy III 
Light microscopy II, III 
Pathogen clearance assay (PA) II, III 
Polymerase chain reaction (PCR) I, III 
Quantitative reverse transcription PCR (qPCR) I, III 
SDS-PAGE and Western blotting (WB) III 
Statistical analysis I, II, III 
Survival assay (SA) III 
Transfection III 
Ubiquitination assay (UA) III 
X-gal staining III 
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with bleach whereafter they were transferred onto sterile food in a sterile 
environment. After hatching, flies were confirmed to be germ-free by PCR 
of the 16S ribosomal RNA (rRNA) gene and by growing fly homogenates 
on Luria Bertani (LB, Sigma, Saint Louis, Missouri, US) agar plates and 
counting colonies. 

 
Table 2. Drosophila lines used during thesis work, their applications and their 
Wolbachia positive or negative state. 

* Fly lines used as positive controls 
# Fly line used as negative control 

Fly lines Application Wolbachia 

CantonS* WB, qPCR, IF, 16S 
seq., SA, UA + 

CantonS larvae 
Nanoparticle and 
capsaicin 
treatment 

+ 

Yellow white* (yw) AFC, FA + 
DaughterlessGal4* (DaGal4) qPCR, PA + 

UbiquitousGal4* (UbiGal4) WB, qPCR, FA, 
AFC, 16S seq., PA - 

NP1Gal4* qPCR - 
Diptericin-LacZ* (Dipt-LacZ) X-Gal staining - 

Diap27c # WB, qPCR, SA, PA, 
UA + 

UAS-p35 qPCR - 
Drice17 WB, qPCR, IF, SA - 

UbiGal4; UAS-Diap2WT WB, qPCR, IF, AFC, 
16S seq. + 

UbiGal4; UAS-Diap2WT/Dipt-LacZ X-Gal staining + 

UbiGal4; Drice-RNAi WB, qPCR, IF, AFC, 
16S seq., PA, UA  - 

UbiGal4; UAS-Drice-RNAi/Dipt-LacZ X-Gal staining - 
UAS-DriceWT; DaGal4 qPCR, SA, PA, UA - 
UAS-DriceWT/UbiGal4; UAS-Drice-
RNAi WB, qPCR - 

UAS-DriceC211A/UbiGal4; UAS-Drice-
RNAi WB, qPCR - 

Diap27c; UAS-Diap2WT/DaGal4 qPCR, SA, PA + 
Diap27c; UAS-Diap2Δ100/DaGal4 qPCR, SA, PA + 
NP1Gal4; UAS-p35 qPCR, FA - 
NP1Gal4; UAS-p35/Dipt-LacZ X-Gal staining - 
PGRP-LCΔ5 FA - 
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2 16S rRNA sequencing 
To identify the bacterial species residing in the Drosophila gut, we 
performed 16S rRNA sequencing on DNA extracted from adult flies. 
Amplification and Illumina MiSeq sequencing of the V1-V3 region of the 
bacterial 16S rRNA gene, as well as selection of operational taxonomic 
units (OTUs) and taxonomy assignment of OTUs were done using Eurofins 
Genomics InView Microbiome Profiling 3.0 service.  
 

3 Survival assays (SA) and pathogen clearance assays 
(PA) 
The ability of flies to fend off septic pathogenic infections was assessed by 
infecting flies with the Gram-negative bacteria Erwinia carotovora 
carotovora 15 (Ecc15) and monitoring the survival of flies for four days. 
The septic infection was induced by pricking adult flies in the lateral 
thorax with a needle previously dipped in concentrated Ecc15 solution. To 
study the ability of Drosophila to clear ingested pathogens, the number of 
colonies was assessed in flies infected orally with Escherichia coli (E. coli). 
To distinguish between commensal and pathogenic bacteria we used 
ampicillin resistant E. coli, and plated the fly lysates on LB plates 
containing ampicillin. The same assay was employed to investigate the 
effect of capsaicin and capsaicin-loaded nanoparticles on ingested E. coli 
in 3rd instar larvae.  
 

4 Cell culture 
To study protein expression, protein-protein interactions and the 
ubiquitination patterns of specific proteins in the Imd pathway, 
Drosophila Schneider S2 cells (Invitrogen, Waltham, Massachusetts, US) 
were used. The S2 cells were grown at 25°C using Schneider’s cell medium 
supplemented with 10% fetal bovine serum (Biowest, Nuaillé, France), L-
glutamine (Sigma) and penicillin/streptomycin (Sigma). The cells were 
transfected using the Effectene transfection reagent (QIAGEN, Hilden, 
Germany). 
 

5 Protein expression and protein-protein interaction 
studies 
To study cell proliferation, the number of phospho-histone H3 (PHH3) 
(Ser10, #9701, Cell Signaling Technology, Danvers, Massachusetts, US) 
expressing cells in dissected fly guts was counted by immunofluorescence 
staining (IF). Protein-protein interactions were assessed in transfected S2 
cells by immunoprecipitation (IP) using HA-tagged beads (Sigma). 



Experimental procedures 

47 
 

Ubiquitin assays (UA), investigating the ubiquitin patterns in adult flies or 
in transfected S2 cells were done by performing pulldowns with the 
recombinant GST-Tandem ubiquitin binding entity (TUBE) protein during 
denaturing conditions. The protein expression in samples from IP 
experiments, UAs, transfected S2 cells, whole flies and fly organs were 
investigated by SDS-PAGE and Western blotting (WB) using the 
antibodies listed in Table 3.  

Table 3. Primary antibodies used, their source and their application. 

 

6 Measurement of NF-κB target gene activity 
Quantitative reverse transcription PCR (qPCR) was employed to study the 
expression of NF-κB target genes Drosocin and Diptericin during basal 
conditions and after septic infection in adult flies, in conventionally reared 
flies, in axenic flies, and in transfected Drosophila S2 cells. The expression 
of the housekeeping gene Ribosomal protein 49 (rp49) was used for 
normalization. To study local NF-κB activity, dissected guts and fat bodies 
of Diptericin-LacZ reporter fly lines, combined with mutants of interest, 
were stained with X-gal.  
 

7 Measurement of caspase activity (CA) and cell 
viability 
Caspase activity was assessed by adding the profluorescent substrate Z-
DEVD-R110 (Apo-ONE ® Homogeneous Caspase-3/7 Assay, Promega, 
Madison, Wisconsin, US), recognised specifically by caspase-3 and -7, onto 
lysed fly guts or transfected S2 cells, and thereafter measuring emitted 
fluorescence. Cell viability of transfected cells was investigated by 
spectrophotometry after addition of the WST-1 reagent (Roche, Basel, 
Switzerland). 

Antibody Company or reference Application 
Diap2 Tenev et al., 2005 WB, UA, IP 
Drice Leulier et al., 2006a WB, UA, IP 

Actin (C-11) Santa Cruz 
Biotechnology WB, UA, IP 

V5 (clone SV5-Pk1) Bio-Rad UA, IP 
HA (clone 3F10) Roche UA, IP 
K63 (clone Apu3) Millipore WB, UA 
K48 (clone Apu2) Millipore WB 
Phospho-histone H3 Cell Signalling IF 
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RESULTS AND DISCUSSION 
1 Manipulation of the Drosophila microbiome (I, II) 
Largely due to the complexity of the human intestinal microbiome, with a 
composition that varies greatly between individuals (Ley et al., 2006), 
studying specific bacterial species and their effect on host physiology is 
challenging. Adding to the complexity of host-microbe interactions, 
external factors, such as nutrition, invading pathogens and drug exposure, 
continuously modify the bacterial composition and challenge intestinal 
homeostasis. To unravel the network of host-microbe interactions, animal 
models in which the microbiome and its composition can be easily 
manipulated need to be established. Drosophila serves as an excellent 
candidate for this purpose, as the fly, while carrying a microbiome with a 
relatively simple bacterial composition, maintains advanced host-
microbe interactions affecting organism health. Furthermore, the fly 
shares several similarities with the mammalian intestine regarding both 
anatomical and cellular architecture as well as biological function 
(Apidianakis and Rahme, 2011, Liu et al., 2017, Capo et al., 2019). Finally, 
the Drosophila gut provides a far more complex platform to study 
microbe-drug interactions than methods based on biochemical assays or 
cell cultures. To further the use of Drosophila as a model for studying host-
microbe interactions, we optimised a protocol for rearing flies under 
axenic conditions and took advantage of the foraging behaviour of 
Drosophila larvae to externally target intestinal pathogens with 
antimicrobial nanoparticles in vivo. 

1.1 Rearing Drosophila under axenic conditions 
To ease the use of Drosophila in host-microbe studies, we developed a 
step-by-step protocol of how to rear flies under axenic conditions in 
standard equipped laboratories. We optimised the two most commonly 
used methods of rearing axenic flies, i.e., supplementing dietary media 
with antibiotics or dechorionation of Drosophila eggs. The method of 
dechorionating eggs was first described by Marion Bakula (Bakula, 1969), 
and entails the removal of the outermost layer of the egg, the chorion, 
using bleach (I, Fig 1). Normally, the chorion is coated with bacteria 
originating from the mother and is the main bacterial transmission route 
between adult females and progeny. Emerging larvae ingest the chorion, 
forming, hence, the basis of their own microbiota (Bakula, 1967). Removal 
of the chorion leads to a sterile egg, and when transferred onto sterile food 
in a sterile environment, adult axenic flies can be reared. This method has 
been implemented by several groups, although with varying protocols 
regarding concentration of bleach, time points and washing steps 
(Brummel et al., 2004, Ryu et al., 2008, Shin et al., 2011, Storelli et al., 2011, 
Ridley et al., 2012, Blum et al., 2013, Schretter et al., 2018, Sharon et al., 
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2012). The studies performed by these groups showed that removal of all 
bacteria affects immune regulation (Ryu et al., 2008), development (Shin 
et al., 2011, Storelli et al., 2011), energy homeostasis (Ridley et al., 2012), 
interferes with mating preference (Sharon et al., 2010), leads to 
hyperactive locomotor behaviour (Schretter et al., 2018) and shortens 
lifespan (Brummel et al., 2004). We reported a significant decrease in the 
basal AMP expression of axenic flies compared to conventionally reared 
flies (I, Fig 5).  

Supplementing dietary media with antibiotics is considered a far 
simpler method than dechorionation when rearing flies axenic. Both 
broad-spectrum antibiotics such as streptomycin or tetracycline, or 
different combinations of antibiotics have been used for this purpose 
(Ridley et al., 2013, Sharon et al., 2010, Brummel et al., 2004, Fast et al., 
2018b, Heys et al., 2018). We described how by allowing adult flies to lay 
eggs onto food supplemented with tetracycline, removing the adults, and 
letting the eggs develop in the antibiotic-supplemented food, adult germ-
free flies can be obtained.  

Regardless of the sterilisation process, the axenic flies need to be 
confirmed to be germ-free. A simple way to confirm axenity is to plate fly 
homogenates on agar plates and check for colony formation. We describe 
how to use LB plates for this purpose (I, Fig 2). However, as all bacterial 
species do not grow on LB, other growth media, such as nutrient agar or 
De Man, Rogosa and Sharpe (MRS) agar should be used in addition to 
confirm the absence of a broader variety of bacterial species. The small 
subunit of the prokaryotic ribosome is called 16S and is conserved 
between bacterial species (Weisburg et al., 1991). The 16S gene can, 
hence, be used to identify bacteria in a sample. We optimised a protocol 
for performing PCR on 16S ribosomal RNA from fly lysates to identify, in 
a highly sensitive manner, any bacterial contaminations in our axenic flies 
(I, Fig 3).  

1.1.1 Considerations when rearing flies axenic 
Disturbing the resident microbiota by supplementing diet with antibiotics 
or by dechorionation may lead to unspecific effects. Antibiotics treatment 
seems to, however, be the harsher option as it can, besides acting on 
bacteria, also act on host proteins (Brodersen et al., 2000). Diets 
supplemented with tetracycline has, furthermore, been shown to have a 
transgenerational effect on mitochondria, affecting insect embryo 
development and sperm viability (Ballard and Melvin, 2007, Zeh et al., 
2012, O’Neill et al., 1997). We, furthermore, found that the developmental 
time of flies fed antibiotic-supplemented food was markedly prolonged 
compared to that of control flies.  

The effect of dechorionation on fly physiology remains unclear. Ridley 
and colleagues reported no effect of chorion removal on survivorship 
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form egg to adult, whereas a study conducted by Heys and colleagues 
showed an increased mortality rate during the development of flies 
hatched from dechorionated eggs compared to conventionally reared flies 
(Ridley et al., 2013, Heys et al., 2018). As the chorion acts as an outer 
barrier, protecting dipterans from external changes, dechorionation 
might lead to an egg more sensitive to environmental shifts, which in turn 
could explain the higher mortality rate reported by Heys et al (Chapman 
et al., 2013).    

1.2 Capsaicin-loaded silica nanoparticles (NAB) target 
Escherichia coli in the Drosophila intestine 
Traditionally, antibiotics, probiotics and microbial transplants have been 
used to manipulate the microbiota, acting by eliminating pathogens or 
restoring a dysbiotic microflora (Konstantinidis et al., 2020, Hemarajata 
and Versalovic, 2013, Young, 2016). However, especially in the case of 
antibiotics, the adverse effects, including decreased microbial diversity, 
increased disease susceptibility, development of allergic conditions, and, 
the most concerning, the emergence of multidrug resistant bacterial 
strains, call for alternative methods when targeting bacteria 
(Konstantinidis et al., 2020). Tuneable nanoparticles, acting as carriers of 
therapeutic agents, are used to manipulate the microbiome in a more 
controlled manner and serve as attractive alternatives to antibiotics. 
Furthermore, combinatory nanoparticle designs, exhibiting multiple 
antibacterial properties, hold promise when eliminating antibiotic-
resistant bacteria (Wang et al., 2017).  

Nanoparticles are submicron (10-1000 nm) colloidal particles, used as 
drug carrier systems, where the drug can be dissolved, entrapped, 
encapsulated or attached to a nanoparticle matrix (Mohanraj and Chen, 
2006). By encapsulating proteins in a nanocarrier, unwanted properties 
of the protein, such as poor solubility and stability, difficulty in crossing 
cell membranes or lack of specificity, can be modified (Xu et al., 2019). 
Clinically available nanoparticles are usually constructed of organic 
materials, such as lipids and polymers, however, the intrinsic instability 
and limited drug-loading capacity of these materials are restricting their 
use as drug delivery systems (Elsabahy and Wooley, 2012, Puri et al., 
2009). In order to improve the features of nanoparticles, particles made 
of inorganic materials, such as tuneable mesoporous silica nanoparticles 
(MSNs), with a high chemical stability, have been developed (Xu et al., 
2019). We designed a combinatorial nanoparticle (NAB), employing MSN 
as a mesoporous shell, cerium oxide as core, capsaicin as loaded drug and 
chitosan as final coat (II, Scheme 1). Upon synthesis, the cytocompatibility 
of the designed particle and its constructs, as well as the antibacterial 
properties of the particle, were evaluated in vitro. The in vivo 
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characterisation was performed by orally administering nanoparticles to 
E. coli infected Drosophila larvae. 

When studying the effect of nanoparticles in Drosophila, the particles 
have generally been administered through ingestion, however, injection 
and inhalation are also possible routes of delivery (Chifiriuc et al., 2016, 
Posgai et al., 2009). Depending on the chosen route of administration and 
monitored Drosophila life stage, the effect of nanoparticles on behaviour, 
development, mutagenesis, or even on modulating the activity of specific 
signalling pathways, can be assessed. To study the antimicrobial activity 
of NAB, we orally infected Drosophila CantonS larvae with E. coli, 
whereafter the nanoparticles were administered through ingestion. When 
we, after treatment, plated larval homogenates and counted the number 
of colony forming units (CFU), we found a significant decrease in number 
of CFU in larvae treated with nanoparticles, hence, indicating that the 
constructed nanoparticle is, indeed, suitable for targeting bacteria 
residing in the Drosophila gut (II, Fig 6B). Capsaicin is a component of 
Capsicum plants (chili peppers), shown to exhibit antimicrobial activity 
against a variety of pathogens, among these Staphylococcus aureus and E. 
coli (Wang et al., 2019, Füchtbauer et al., 2021). When we assessed the 
antimicrobial activity of capsaicin alone, we found that the concentration 
of free capsaicin needed to eliminate E. coli was significantly higher than 
that needed when loaded to the particle (II, Fig 6C). These results can be 
explained by the intrinsic antimicrobial activity of the unloaded 
nanoparticle, but might also point towards a more efficient, nanoparticle-
mediated drug delivery.  

Although future characterisation, especially regarding toxicity of the 
developed nanoparticles is needed, the results from our in vivo 
experiments are encouraging in regard of using nanoparticles for 
manipulating commensal microbes or targeting pathogenic bacteria 
residing in the gut. Our study further strengthens the use of Drosophila as 
a platform for drug testing and nanomedicine studies.   

 

2 Caspase-mediated regulation of inflammatory 
signalling and host-microbe interactions (III) 
In order for symbiotic host-microbe relationships to be established, while 
simultaneously eliminating harmful pathogens, intestinal immune 
responses need to be tightly regulated (Miguel-Aliaga et al., 2018, 
Mohajeri et al., 2018). Dysregulation of these responses can lead to 
chronic inflammation, connected to the development of several diseases 
such as IBDs and gastrointestinal cancer (Garrett et al., 2010). IAP 
proteins are key regulators of inflammation and able to induce NF-κB 
signalling by ubiquitination (Gyrd-Hansen and Meier, 2010). The proteins, 
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furthermore, modify the activity of caspases and, thereby, regulate 
apoptosis (Budhidarmo and Day, 2015). As inflammation and apoptosis 
both impact intestinal homeostasis, the interplay between IAPs and 
caspases are particularly interesting when studying the regulation of 
intestinal inflammation. Hence, to elucidate inflammatory regulation in 
Drosophila, we set out to investigate how the Drosophila iap2 protein is 
regulated in the intestine. 

2.1 The Diap2-Drice complex regulates Imd signalling in the 
intestine  
The fat body is the major immune responsive organ in the fly, activated 
upon septic infections. When a pathogen enters the haemocoel and the 
haemolymph, inflammatory NF-κB signalling is induced in order to 
eliminate the intruder (Lemaitre and Hoffmann, 2007). An equally 
important part of the immune system are the local immune responses 
taking place in the epithelial layers of gut and trachea, shaping the 
abundance and composition of luminal microorganisms. Activation of 
inflammatory signalling at the epithelial interfaces needs to be tightly 
regulated in order to avoid excess immune responses, harming 
commensal bacteria and disrupting gut homeostasis. As Diap2 is the key 
pathway inducing ligase, shown to be required for Imd signalling to 
proceed, we set out to investigate whether Diap2 is differently regulated 
in the Drosophila gut versus in the fat body. In order to detect 
inflammation, we used qPCR to measure expression of Relish-dependent 
AMP genes in whole fly lysates. By further staining the gut and fat body of 
Diptericin-LacZ reporter flies combined with our mutants of interest, we 
were able to identify the organ responsible for a possible AMP expression. 
When studying NF-κB signalling in transgenic flies ectopically expressing 
Diap2, we found inflammatory genes to be upregulated in the fly gut but 
not in the fat body (III, Fig 1A-D). Furthermore, we detected full length 
Diap2 in lysates from the fat body of wild type flies, but found Diap2 to be 
absent in gut lysates (III, Fig 1G). In the transgenic Diap2 flies, however, 
Diap2 was stabilised in both fat body and gut, indicating that increased 
expression of Diap2 induces inflammation only in the intestine (III, Fig 
1H).  

As Drice and Diap2 are known to interact by forming a stable complex 
(Ribeiro et al., 2007), we hypothesised that Drice is regulating Diap2 in 
the intestine. When we investigated the inflammatory phenotype of Drice 
mutant flies, it indeed correlated with that of flies ectopically expressing 
Diap2, displaying upregulated inflammatory signalling in the gut, but not 
in the fat body (III, Fig 2A, B, D, E). Accordingly, expressing DriceWT 
ubiquitously in the fly attenuated pre-existing basal expression of AMPs 
(III, Fig 2C). In addition to being essential during host defence, 
inflammation is important for regeneration and tissue repair. 
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Concordantly, an aberrant or a prolonged inflammatory response is 
connected to hyperplasia and cancer development (Medzhitov, 2008, 
Greten and Grivennikov, 2019). When we stained the guts of Diap2 
transgenic or Drice mutant flies for dividing cells, we, indeed, found both 
fly lines to have an increased number of proliferating cells (III, Fig 1E, 2G).  

The inflammatory signalling in the intestine seemed to be driven by 
excessive levels of Diap2, as the protein was stabilised in the guts of Drice 
mutant flies (III, Fig 2I). In mammals, XIAP has been shown to be degraded 
via the proteasome (Yang et al., 2000). The levels of XIAP seem to be 
regulated by its own E3 ligase activity, as removal of the RING domain 
stabilises XIAP in apoptotic thymocytes (Schile et al., 2008). Similarly, we 
found that inhibition of the proteasome lead to a stabilisation of cleaved 
Diap2 in the fly intestine but also of Drice, indicating that formation of the 
Drice-Diap2 complex induces the degradation of both proteins in a 
manner that is preceded by cleavage of Diap2 (III, Fig 2J). As Diap2-Drice 
complex formation requires ubiquitination of Drice (Figure 9) (Ribeiro et 
al., 2007), the E3 ligase activity of Diap2, as in the case of XIAP, seems to 
be needed for degradation. 

2.2 The catalytic activity of Drice is needed to restrain Imd signalling 
As formation of the Diap2-Drice complex is dependent on Drice-mediated 
cleavage of Diap2 (Figure 9) (Ribeiro et al., 2007), we wanted to 
investigate whether the catalytic activity of Drice is needed for Drice-
mediated regulation of Imd signalling. We generated flies expressing a 
catalytic mutant of Drice, and found the flies unable to rescue the Drice 
mutant phenotype (III, Fig 3A). The viral caspase inhibitor p35 is known 
to inhibit Drice by trapping the catalytic machinery of the caspase via a 
covalent thioacyl linkage (Kim et al., 2014). The need of Drice’s catalytic 
activity for regulating Diap2 was further strengthened by the fact that flies 
expressing p35 mimicked the inflammatory phenotype of Drice mutants 
(III, Figure 3C, D). p35 has been shown to also inhibit Dcp-1 (Kim et al., 
2014), however, Drice is the only effector caspase known to interact with 
Diap2 (Leulier et al., 2006a), indicating that Drice alone, inhibits Diap2-
mediated activation of Relish target genes. 

Imd pathway members Imd, Dredd and Kenny are targets of pathogen-
induced Diap2-mediated K63-linked ubiquitination (Paquette et al., 2010, 
Meinander et al., 2012, Aalto et al., 2019). To investigate if loss of Drice 
activity affects Diap2-mediated ubiquitination in vivo, we fed flies with the 
cell-permeable caspase-3 inhibitor Z-DEVD-FMK and pulled down 
ubiquitin chains with GST-TUBE from whole fly lysates. Indeed, inhibition 
of Drice led to an increase in Diap2-mediated K63-linked ubiquitination 
(III, Fig 4B). To further assess if Drice interferes with the ubiquitination of 
the known Diap2 targets Dredd and Kenny, we performed GST-TUBE 
pulldowns in S2 cells transfected with Diap2, Dredd or Kenny. Drice 
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activity was induced by overexpressing Drice, and inhibited by 
overexpressing a catalytic mutant form of Drice, DriceC211A, or by treating 
cells with Z-DEVD-FMK. The presence of Drice decreased the amount of 
Diap2 and ubiquitinated Dredd and Kenny, whereas overexpression of 
DriceC211A or treatment with Z-DEVD-FMK did no longer decrease Diap2 
levels and increased the amount of ubiquitinated proteins (III, Fig 4C, D). 
The ubiquitin assays indicate that Drice, by regulating the levels of Diap2, 
also restrains the ability of Diap2 to ubiquitinate its targets. While our 
overexpression system does not dictate an in vivo occurrence, it seems 
likely that Drice does not interfere with the binding of Diap2 to Dredd and 
Kenny, but merely decreases their interaction by inducing the 
degradation of Diap2. As ubiquitination of Dredd and Kenny are crucial 
steps needed to further the Imd pathway (Meinander et al., 2012, Aalto et 
al., 2019), a decrease in the ubiquitination of these targets would, 
concordantly, restrain inflammatory signalling. 
 

2.3 The microbiome in Diap2 and Drice mutant flies 
Chronic inflammatory conditions, such as IBDs, disrupt the balance of the 
intestinal microbiome and are frequently associated with bacterial 
community dysbiosis (Clemente et al., 2012). To investigate the bacterial 
composition of Diap2 and Drice mutant flies we performed 16S 
sequencing on lysates from adult flies. The 16S gene contains highly 
conserved regions as well as variable regions, specific for different 
bacterial species. By taking advantage of the conserved regions for primer 
binding, the variable region can be amplified and sequenced in order to 
identify the different bacterial species within a sample. The effect of a 
Wolbachia infection on the composition of the commensal microbiome is 
not completely clear, as results seem to vary with the genotypes studied 
(Simhadri et al., 2017). However, as Wolbachia has been shown to impact 
host physiology (Ikeya et al., 2009), we decided to choose controls with a 
similar Wolbachia status for the 16S sequencing. Our CantonS and the 
transgenic Diap2 flies are Wolbachia positive, whereas the driver line 
UbiGal4 and the Drice mutants are Wolbachia negative. These lines were, 
hence, compared in the 16S sequencing. We found both the Diap2 
transgenic and Drice mutant flies to, compared to the control lines, have 
an increased proportion of bacteria from the phylum Proteobacteria 
versus Firmicutes, (III, Fig 1F, 2H), a notion associated with IBD and aging 
in both humans and flies (Cheng et al., 2013, Clemente et al., 2012, Clark 
et al., 2015). 

We found all sequenced fly lines to harbour bacterial species 
predominantly from the families Acetobacteraceae and Lactobacillaceae. 
CantonS, the Diap2 transgenic flies and the Drice mutant flies harboured, 
in addition, bacterial species from the family Enterococcaceae (Figure 15). 
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These three bacterial families are consistently reported to associate with 
Drosophila (Erkosar et al., 2013, Brummel et al., 2004, Ren et al., 2007, 
Ridley et al., 2012, Ryu et al., 2008, Sharon et al., 2010, Storelli et al., 2011, 
Chandler et al., 2011, Wong et al., 2011). To investigate the effect of a 
pathogenic disturbance on the bacterial composition, we infected flies 
orally with the Gram-negative pathogen Ecc15 and performed 16S 
sequencing after a 24-h recovery period (Figure 15). The proportion of 
Lactobacillaceae increased, while the proportion of Acetobacteraceae 
decreased, in UbiGal4 and in the Diap2 and Drice mutant fly lines post 
infection. Interestingly, CantonS displayed, on the contrary, an increase in 
the relative abundance of Acetobacteraceae coupled with a decrease in the 
proportion of Lactobacillaceae (Figure 15). Although a clear pathogen-
induced shift in the bacterial composition can be detected, conclusions 
regarding the role of specific bacterial species during infection cannot be 
drawn. However, species that exhibit clear changes in proportion, such as 
L. pseudomesenteroides in the case of UbiGal4, and L. plantarum in the case 
of CantonS, might serve as interesting candidates when elucidating the 
effect of internal microbial interactions on host health and in the 
protection against pathogens. 

 

 

Figure 15. Drosophila bacterial composition post oral infection.  Bacterial 16S 
rRNA metagenomics analysis of the 1V-3V region in UbiGal4, CantonS, 
UbiGal4;Diap2WT and UbiGal4;Drice-RNAi adult flies before and after oral infection 
with Ecc15. Colours indicate identified operational taxonomic units (OTUs), n = 1. 
The class and order of identified bacterial species are not specified and the 
proportion of Wolbachia species have been omitted from the CantonS and  
UbiGal4;Diap2WT samples for easier comparison of bacterial species residing in the 
gut lumen. 
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2.4 Drice restrains inflammatory signalling induced by the 
resident microbiome 
As Diap2 is required for Imd signalling to proceed, we next studied the 
immune response upon pathogenic Gram-negative infection in flies 
ectopically expressing Drice and in Drice mutants. We found that both fly 
lines were able to fend off both septic and oral pathogenic infections, 
indicating that Drice only has negative regulatory effect during basal 
conditions (III, Fig 5A-F). This notion was further strengthened by the fact 
that ingestion of pathogenic bacteria leads to a rapid accumulation of both 
Diap2 and Drice, suggesting a disruption of the Diap2-Drice complex 
during infection (III, Fig 5H). Complex disruption seems to allow Diap2 to 
be redirected for ubiquitination of other target proteins, thereby, driving 
downstream Imd signalling. A similar IAP-induced shift in target 
ubiquitination upon receptor activation has been shown in non-canonical 
NF-κB signalling, where cIAPs switch from degradation-inducing 
ubiquitination of NIK to ubiquitination of TRAF2/3, releasing NIK to 
activate downstream signalling (Zarnegar et al., 2008).  

The Drice-cleaved form of Diap2, Diap2Δ100, is a functional E3 ligase 
able to interact with both Imd and Dredd (Figure 16A, B) and to 
ubiquitinate Dredd (Figure 16C). However, as Diap2 cleavage is a 
consequence of interaction with Drice, we wanted to examine if cleavage 
reduces the activity of Diap2 in Imd signalling. We, hence, performed oral 
and septic survival assays and measured AMP expression after septic 
infection in flies expressing only Diap2Δ100. As expected, these flies were 
able to fend off pathogens equally well as control flies and flies expressing 
Diap2WT (III, Fig S4C-E), indicating, hence that cleavage of Diap2 is not 
enough to restrain inflammatory signalling. Another consequence of 
Diap2-Drice interaction is the separation of the BIR1 domain from Diap2 
(Ribeiro et al., 2007). Interestingly, a nonsense mutation E99X in XIAP that 
introduces a stop codon after the BIR1 domain was found in an early onset 
Crohn’s disease patient (Zeissig et al., 2015). This mutation led to a defect 
in intestinal NOD2 signalling, without affecting immune signalling in T 
cells or peripheral blood mononuclear cells (Zeissig et al., 2015). The BIR1 
domain has, furthermore, been shown to mediate XIAP-induced NF-κB 
signalling by bringing TAB1 and XIAP together, leading to the activation 
of TAK1 (Lu et al., 2007). As separation of BIR1 in Drosophila seems to 
take place only in the intestine, the role of the yet unidentified Drosophila 
TAB1 homologue, could unravel yet another level of epithelial 
inflammatory regulation. 
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As the bacterial presence is constant in the gut, and the fat body only 
encounters bacteria during systemic infections, we hypothesised that the 
commensal microbiome activates Diap2-mediated inflammatory 
signalling, which in the absence of Drice leads to excessive activation of 
NF-κB. When eliminating all bacteria by rearing flies axenic, we found as 
expected, the inflammatory phenotypes of Drice mutant and Diap2 

Figure 16. Diap2 Δ100 interacts with both Imd and Dredd and is a functional 
E3 ligase. A, B) Drosophila S2 cells were transfected with HA-tagged Imd (A) or 
HA-tagged Dredd (B) together with V5-tagged Diap2WT or Diap2 Δ100, whereafter 
a HA-IP was performed, and the samples were analysed by Western blotting with 
α-V5, α-HA, α-Diap2 and α-Actin antibodies, n = 3. C) Drosophila S2 cells were 
transfected with V5-tagged Dredd and Diap2WT, Diap2 Δ100 or the catalytically 
dead Diap2F496A, whereafter ubiquitin chains were isolated with GST-TUBE at 
denaturing conditions, and the samples were analysed by Western blotting with 
α-V5, α-Diap2 and α-Actin antibodies, n = 3. 



Results and Discussion 

58 
 

transgenic flies to be rescued (III, Fig 6A, C). Interestingly, the levels of 
Diap2 remained low in the intestine of axenic flies, pointing towards a 
continuous degradation of the Drice-Diap2 complex also in the absence of 
bacteria (III, Fig S5). The results from Study III lead us to propose the 
following model of Drice-mediated regulation of Diap2 and inflammatory 
signalling (Figure 17): Commensal bacteria trigger the formation of an 
initial PGRP-LC or PGRP-LE receptor complex consisting of the receptor, 
Imd, dFadd and Dredd. The complex competes for Diap2-recruitment to 
further activate Imd signalling. To avoid unnecessary activation of NF-κB, 
active Drice binds to Diap2, forming the inhibitory Drice-Diap2 complex, 
hence, triggering its subsequent degradation. Drice restrains, thereby, 
Diap2 from interacting with pathway inducers Dredd and Kenny, bringing 
the pathway to a stop. In the absence of Drice, Diap2 is free to interact with 
and ubiquitinate its substrates, stimulating activation of Relish target 
genes. The excessive amounts of AMPs, targeting commensal bacteria, are 
secreted to the gut lumen, leading to a disturbed gut homeostasis. 
Interestingly, Drice induces the degradation of Diap2 also during axenic 
conditions. In contrast to conventionally reared flies, removal of Drice in 
germ-free flies does not induce Relish target gene expression, indicating 
that accumulated levels of Diap2 without receptor triggering is not 
enough to induce NF-κB.  
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Figure 17. Proposed model for Drice-mediated regulation of the Imd 
pathway.  During basal conditions, peptidoglycan (PGN) from the cell wall of 
commensal bacteria activate the PGRP-LC receptor, leading to the recruitment of 
Imd, dFadd and Dredd. The receptor complex competes for Diap2 recruitment to 
activate downstream signalling. Drice halts Imd signalling by forming an 
inhibitory complex with Diap2, targeted for proteasomal degradation.  In the 
absence of Drice, excessive amounts of antimicrobial peptides (AMPs) are 
secreted into the intestinal lumen, disturbing gut homeostasis as unrestrained 
Diap2 is able to ubiquitinate Imd, Dredd and Kenny. Ubiquitin chains on Imd 
recruit the dTak1-dTab2 complex, leading to dTak1-mediated activation of Ird5. 
Ird5 in turn phosphorylates Relish. Ubiquitin-dependent activation of Dredd and 
Dredd-mediated cleavage of Relish precedes translocation of the Relish dimer to 
the nucleus and activation of NF-κB target genes. During axenic conditions Drice 
still targets Diap2 for degradation. The regulation of Diap2 during axenic 
conditions in the absence of Drice remains elusive, however, Diap2 alone is 
unable to drive Relish target genes expression without receptor stimulation. 
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CONCLUDING REMARKS 
The role of the intestinal microbiome on human health is being 
increasingly recognised and unbalanced immune responses towards 
bacteria are connected to dysbiosis, IBDs and cancer development 
(Clemente et al., 2012, Shreiner et al., 2015). However, largely due to the 
complexity of the human microbiota, the details of host-microbe 
interactions remain largely elusive. As Drosophila melanogaster and 
mammals display a high degree of conservation regarding biological 
function, cellular structure and inflammatory signalling of the intestine, 
Drosophila serves as an excellent model when studying intestinal immune 
homeostasis (Apidianakis and Rahme, 2011, Capo et al., 2019). The aim of 
this thesis has been to advance the knowledge of inflammatory regulation 
in the intestine by using the fruit fly as a model, and to further the use of 
Drosophila as a platform for investigating host-microbe interactions.  

The rich bacterial community associated with Drosophila, combined 
with standardised protocols of rearing flies with a defined microbiota, 
provide scientists with a versatile model in which to study host-microbe 
interactions. In deciphering the specific contributions of the microbiome 
on a particular host phenotype, the use of gnotobiotic flies, 
monoassociated with a single bacterial species, has emerged as an 
imperative approach. However, to more accurately model the complexity 
of the microbiome, combinatory studies, using gnotobiotic flies 
polyassociated with several bacterial species, are required. These studies 
focusing on microbe-microbe, as well as host-microbe interactions, reveal 
a fascinating new level of microbial influence that has only begun to be 
elucidated. 

Adding to the complexity of host-microbe interactions, the microbiome 
is continuously modified by external factors such as the environment, 
nutrition and drugs. When it comes to antimicrobial drugs, the adverse 
effects of antibiotics on the commensal microbiome and, importantly, the 
development of antibiotic resistance, call for alternative methods when 
targeting bacteria. Nanoparticles, displaying different, combinatory 
modes of antimicrobial action compared to traditional antibiotics, provide 
a promising strategy when managing infections caused by resistant 
bacteria. In the development of nanoparticles and antimicrobial agents, 
Drosophila provides a platform, not only for initial in vivo drug-screenings, 
but also for assessing microbe-drug interactions affecting host physiology. 
With the increasing evidence indicating that the microbiome greatly 
influences the efficacy of drugs (Wilkinson et al., 2018), investigating 
microbial drug metabolism in gnotobiotic flies might reveal key species 
interfering with drug therapies in patients. 

Finally, by taking advantage of the sophisticated genetic tool-box of 
Drosophila, novel regulators of intestinal homeostasis can be identified. 
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We have shown that the effector caspase Drice acts, in addition to its 
known role as an apoptosis inducer, as a negative regulator of the 
ubiquitin E3 ligase Diap2 and intestinal NF-κB signalling. Interestingly, 
this caspase-mediated regulatory step does not affect pathogen-induced 
inflammatory responses, and might hence, serve as a target for specific 
regulation of epithelial immune responses during chronic inflammatory 
diseases. Taken together, this thesis has described the generation and use 
of axenic Drosophila, Drosophila as an in vivo model to assess the 
antimicrobial effects of nanoparticles, as well as a novel caspase-mediated 
regulatory step of inflammatory signalling in the Drosophila gut. In 
combination, these three studies reveal the versatility and true potential 
of Drosophila as a model for host-microbe interactions.  
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Vertebrate and invertebrate animals interact continuously with a diverse array of microbial 
communities hosted on their skin and mucosal surfaces. In humans, the intestinal epithelium is 
one of the largest interfaces for host-microbe interactions and the organ is being increasingly 
recognised for its role in human health and disease. Due to evolutionarily conserved signalling 
pathways, regulating intestinal development, regeneration and immunity, the fruit fly, 
Drosophila melanogaster, has emerged as an attractive model when studying gut physiology. By 
using Drosophila as a model, this thesis aims to advance the knowledge of inflammatory 
regulation in the intestine and proposes a new immune-regulatory mechanism mediated by the 
caspase Drosophila interleukin 1β-converting enzyme (Drice) in the fly gut. This thesis describes, 
moreover, the use of Drosophila as a model for studying intestinal host-microbe interactions and 
as a platform for in vivo characterisation of antimicrobial nanoparticles.
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