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Abstract

Autonomy is being developed further and further in the maritime navigation area. The
wish to create such autonomous vessels has several logistic, economic and environmental
origins. Safety can be improved by applying automatic adequate responses to risk-prone
situations. Efficiency in the ship’s route, which implies both fewer costs and a smaller
carbon footprint, can be optimized with computer-level precision. The issue is to develop
sufficiently reliable solutions for this critical area.

This master’s thesis aims at giving an answer to this problem by using Imitation Learn-
ing. The goal is to build an autonomous agent that performs well in surface maritime
navigation. The algorithmic approach is based on three main steps. The first one consists
of isolating the best human behaviours from a provided dataset. The second one is to
identify, in this reduced "expert" dataset, which navigation principles and rules are fol-
lowed. Finally, the agent learns to imitate these expert actions. This agent is implemented
in Python and assessed in a simulated maritime environment.

Keywords: Autonomy, Surface Maritime Navigation, Imitation Learning, Inverse Re-
inforcement Learning, Safety and Efficiency.
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Glossary

Aboa Mare Is a maritime academy and training centre for professional navigators.

Automatic Identification System Is a worldwide used system that collects tracking data
about maritime vessels.

COLREGs For Collision Regulations, is a set of rules adopted during the 1972 Con-
vention on the International Regulations for preventing Collisions at Sea. Their
purpose is to prevent collisions or risk-prone situations at sea.

Course Over Ground Is the direction of a vessel’s motion, with respect to the ground
and immobile items. It is influenced by natural forces, such as the tide, the wind
and ocean currents.

MAST! Institute Is a research partnership between Aboa Mare and Åbo Akademi Uni-
versity, working on the modernization of maritime transports and especially au-
tonomous navigation.

One Sea Is a consortium of companies and universities that works on autonomous mar-
itime navigation.

RAAS For Rethinking Autonomy And Safety, is an alliance of Finnish universities that
works on autonomous transports.

Simple Ship Sim Is a simulated environment created by the MAST! Institute team, whose
goal is to train and test Reinforcement Learning agents in a maritime environment.

Speed Over Ground Is the speed of a vessel, with respect to the ground and immobile
items. It is influenced by natural forces, such as the tide, the wind and ocean cur-
rents.

Speed Through Water Is the speed of a vessel, with respect to the water and floating
items.
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1. Introduction

Automation techniques are used in numerous fields as a way to improve the efficiency of
systems and processes. One of these fields is transportation, where autonomy allows to
enhance safety, logistics, and reduce both costs and environmental impacts [1, 2]. The
development of autonomous vehicles is a current challenge, since it has recently been
enabled by the apparition of new technologies, such as efficient Artificial Intelligence
(AI) algorithms, complex sensing systems or solid wireless communication networks [1,
2]. The leading area in this domain is the automotive industry, as worldwide studies allow
the first autonomous cars to appear on the roads. In parallel, research partnerships, such as
the RAAS alliance between several Finnish universities [3] or the One Sea consortium [4],
focus on the maritime navigation industry and try to build autonomous vessels. However,
due to the differences in the physical behaviours of boats and cars, it is impossible to
apply the advanced results of the automotive area on ships [2]. Therefore, it is necessary
to build new solutions for the specific domain of maritime navigation.

For decades, maritime safety has been improved through the creation of maritime
organisations, such as the International Maritime Organisation [5], and the adoption of
many navigation rules. The Convention on the International Regulations for Prevent-

ing Collisions at Sea introduced the COLREGs rules in 1972 [6]. This set of navigation
guidelines defines how to behave in collision-prone situations, in order to prevent acci-
dents. However, these conventions are not sufficient to ensure a secured navigation, since
maritime transport still suffers numerous casualties every year, mostly caused by human
errors [7]. This justify the will to remove humans from the cockpit, by developing Un-
manned Surface Vehicles (USVs), also called Autonomous Surface Crafts (ASCs). In this
context, Machine Learning (ML) is widely used, due to the high performances it shows on
such unpredictable environments [2]. The goal is, therefore, to increase the ships’ level of
autonomy. Many techniques are based on dividing the vessels’ data and control flow into
a series of steps that can be automated separately, such as the data acquisition, the analy-
sis, the decision and the action [2]. While the last decades saw many prototypes emerge
[8], more recent studies produced advanced vessels, such as the Mayflower Autonomous
Ship, which is expected to cross the Atlantic Ocean in June 2021 [9].

Among all existing studies on autonomous vessels, the focus is turned on the work of
Penttinen [10] because of the similarities it shows to this master’s thesis. In his own mas-
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ter’s thesis, Penttinen implemented an autonomous agent for surface maritime navigation,
using a Deep Q-Network (DQN) as the main framework [11]. The objective was to handle
different collision-prone situations, by following the COLREGs rules. This agent, trained
by Reinforcement Learning (RL) and using a manually designed reward function, shows
promising results. However, the following limitations can be highlighted. Firstly, the
autonomous vessel is controlled by the Artificial Intelligence (AI) only during risk-prone
situations, while an autopilot function guides it towards the destination over the remain-
ing time. Consequently, the agent is just partially piloted by the AI. Secondly, the agent
faces a bottleneck of RL, which is the difficulty to model a well-suited reward function.
By manually designing it, Penttinen introduced variances between its agent’s behaviours
and the goal he wanted to achieve. Thirdly, the task of navigating a ship at sea is highly
complex and cannot be summed up to following the COLREGs rules. Thus, Penttinen
missed a whole part of good navigation principles that are not described in conventions.

This master’s thesis aims at continuing Penttinen’s work, by answering the previous
limitations. The objective is to develop, as a proof of concept, a safe and autonomous
agent which is trained through Inverse Reinforcement Learning (IRL). This technique,
which is part of the more global method of Imitation Learning (IL), is closely related to
RL and uses supervised learning. To summarize, the learning process consists of show-
ing the agent a set of good behaviour examples. Then, the agent tries to imitate these
demonstrations by reproducing the good actions it has seen. As explained in the follow-
ing chapters, this method, associated with a wise modelling, has shown good results both
for autonomously reaching the destination and for collision avoidance. For the purpose
of this master’s thesis, the dataset collected from the Aboa Mare navigation simulator. In
addition, the agent is modelled, trained and simulated in the same environment as used by
Penttinen, which is integrated in the simulator developed by K. Hupponen [12].

The master’s thesis is planned as follows. A first chapter will explain what is IL
and under which form this method is used to solve the problem of maritime navigation.
The history and generalities about IL and RL will be described. The different possible
algorithmic approaches will be listed and the one that has been chosen, i.e. Inverse Rein-
forcement Learning (IRL), will be explained in detail. Moreover, the possible deadlocks
and the solutions to avoid them will be presented. The second part of the master’s the-
sis will detail the design phase. It includes explanations of the dataset processing, the
simulator and the problem modelling. The third chapter deals with the implementation,
which includes the used libraries and the description of the program’s structure. Finally,
the last part will present how the agent performs on several scenarios. These results will
then be evaluated and discussed to highlight possible improvements and to explain how
the produced agent can be generalised in a real-world environment.
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2. Imitation Learning

Imitation Learning (IL), also known as apprenticeship learning, is a set of methods aimed
at solving problems standing in the more general domain of Reinforcement Learning
(RL), which is itself included in Machine Learning (ML). On the one hand, RL is de-
scribed by Sutton and Barto as the most natural way to learn and answer problems, be-
cause it is based on the interaction with the environment [13]. On the other hand, IL con-
sists of observing and imitating an expert showing demonstrations of the specific tasks
that must be accomplished [14].

This chapter will explain the theoretical knowledge behind RL and IL. In addition
to the mathematical basis, it will describe the main elements of RL problems and the
different algorithms standing under the term of IL. Finally, recurrent deadlocks appearing
in RL problems will be presented.

2.1 Background

Although RL and IL are today naturally linked, they both have different origins and
emerged at different times. This section aims at providing historical knowledge about
the emergence of both techniques and an explanation of the main ideas expressed behind
these terms.

2.1.1 Reinforcement learning

The domain of RL as it is known today finds its origin in the late 1980s, with the reunion
of three fields elaborated several decades before. These threads, described in Sutton’s
book [13], are called trial-and-error, optimal control and temporal-difference.

The oldest parent of modern RL is the concept of trial-and-error learning. According
to Sutton, it has its origin in the second half of the 1800s, before the term is reused in
1911 by Thorndike to explain animals’ behaviours and how they can learn from reward
and punishment. Thorndike formalized this idea under his "Law of Effect". A more
recent definition of trial-and-error learning is proposed in Bei’s work, as a methodology
consisting of "posing a sequence of candidate solutions" to a problem, and "observing
their validity" [15]. The algorithm then decides, for each solution whether it is valid. If
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not, an error is raised to inform the learned that this solution is not suited for answering
the current task.

The second ancestor of RL is, according to Sutton, issued from the notion of optimal

control. This term, which appeared in the late 1950s, is used to refer to "the problem
of designing a controller to minimize or maximize a measure of a dynamical system’s
behaviour over time" [13]. In other words, this problem consists of modelling an entity
that is able to control and optimize a dynamic system’s metric. A solution to this question
was proposed by Bellmann in the 1950s. He elaborated a formula known today as the
Bellmann equation, which relies on the system’s state and a value function, both discussed
later in this chapter. Answering a problem of optimal control with the Bellmann equation
is today classified under the term dynamic programming.

Finally, the last but less obvious parent of RL is called temporal-difference. Temporal-
difference learning also emerged in the 1950s and relies on the comparison of successive
values of the same metrics. Sutton gives the example of the probability to win a game
of Tic-Tac-Toe. The successive values of this probability can be used to learn whether
performed actions are efficient enough to lead to victory.

From what was previously explained, modern RL can be seen as a method which
tries to optimize one or several metrics of a dynamic system’s state. The main technique
used to achieve good behaviours consists of trying an action and evaluating the benefit
resulting from it thanks to the reinforcer returned by the environment. This reinforcer
can be positive if the action is good in the current state of the system, or negative if it is
inadequate. Generally, the reinforcer, or reward, is delivered through a reward function,
presented later in this chapter.

To illustrate how an entity can learn specific behaviours through RL, Penttinen pre-
sented in his master’s thesis [10] the following concrete example imagined by Harmon in
1997 [16]. Here, the learning entity is a bicycle which can either turn the handlebars to
the left or to the right and can have an inclination from 0° to 45°. Over the inclination of
45°, the bike crashes as in real life and it results in giving the learner a negative reward.
If now the bicycle trains by itself through trial-and-error, it reaches one day or another an
inclination of 45° to the right. In this state, the learner chooses one of the two possible
actions. If it decides to turn to the left, the bicycle crashes and receives a negative reward.
The learner now associates the action of turning to the left in the state of 45° tilt to the
right with a bad reward. The second time it reaches this state, it naturally takes the ac-
tion of turning to the right. However, this also results in a crash and provides a negative
reinforcement. Now the learner can associate the whole inclination of 45° to the right to
a negative reward. Therefore, because this state is now linked with a negative reinforce-
ment, the learner can understand that the action of turning to the left when being inclined
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at 40° to the right is bad, because it will lead the bicycle to reach an inclination of 45°. As
a result, with a sufficiently long training, the learner will associate every state-action pair
with a profitability value and, consequently, will adopt a behaviour that allows it to never
crash.

2.1.2 Imitation learning

IL, which has more recent origins, is issued from neuroscience. In his survey on Imita-
tion Learning methods, Hussein defines IL as the "acquisition of skills or behaviours by
observing a teacher demonstrating a given task" [17]. This definition can be reformulated
and summarized as learning from demonstrations. The idea of using the knowledge of ex-
perts as a starting point introduces new techniques to answer optimization problems and
brings solutions for the issues faced with classic RL. Hussein and others before him claim
that copying expert demonstrations is faster and more efficient compared to establishing
a solution from scratch. Furthermore, it prevents both finding sub-optimal solutions and
reaching unnatural behaviours. In addition, Hussein states that the process of trial-and-
error requires to manually design how rewards are delivered for every specific task that
needs to be performed. However, designing a suitable reward function can be very diffi-
cult and time-consuming. Therefore, deducing it from expert demonstrations allows at the
same time to speed up the development of an intelligent system and increase its efficiency
and robustness. [17]

According to Hussein, the typical work flow of an IL process begins with the acquisi-
tion of expert demonstrations through various sensing systems. Those examples are then
processed to extract the useful features, which depend on the tasks that must be performed.
For instance, in the context of autonomous navigation, a feature could be the distance be-
tween the vessel and its destination. After this treatment, expert demonstrations are stored
in trajectories consisting of series of state-action pairs (st ,a), i.e., a mapping between the
action a taken by the expert in the state st . Those trajectories are then used to learn an ini-
tial behaviour that imitates the expert demonstrations. This behaviour, also called policy,
can later be refined by the learner through other processes, such as RL. This refining is
sometimes necessary to overcome the differences between the expert’s environment and
the learner’s one. As a result, an IL process may contain a RL part, depending on the
chosen algorithm. This is especially the case when dealing with Inverse Reinforcement
Learning (IRL), discussed later in this chapter. The overall process of IL presented above
is illustrated by the flowchart in Figure 2.1. [17]
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Figure 2.1: Hussein’s illustration of the Imitation Learning flowchart. [17]

2.2 Elements of reinforcement learning

According to the previous explanations, IL and RL both aim at answering optimization
problems. As a result, they share the same root elements. These elements are named the
agent, the environment, the reward function, the value functions, the policy and the model.
Their descriptions, presented in this section, are inspired by the works of Sutton [13] and
Hussein [17].

2.2.1 Agent

The agent is one of the two basic elements of RL or IL. It is the autonomous entity con-
trolled by the AI and aims at optimizing or achieving an objective. It is able to interact
with its environment, i.e., to acquire information of its surroundings from sensors, and to
perform, through actuators, actions which have repercussions on the environment. An im-
portant characteristic of an agent is its ability to learn, by itself from previous experiences
or from demonstrations. This training alters the future agent’s behaviours and allows it to
take the decisions it judges the best in the states it encounters. As a result of the training
process, the agent is able to identify the state-action pairs from which it can benefit the
most.
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When modelling an agent, defining its state and action spaces is required. The state

space S of an agent consists of all the possible states it can reach. Similarly, the action

space A is the set of all possible actions it can perform. Defining those spaces is a critical
part when modelling a problem for the two following reasons. Firstly, too poor state and
action spaces with a reduced number of variables can lead to missing substantial data
and, therefore, making the agent unable to answer the task it is designed for. Secondly,
if those spaces are oversized, the agent will struggle to identify the relevant features and
the training time will be severely increased. Generally, the modeller will try to use non-
redundant variables providing useful data for the specific problem he wants to answer.

In the context of this master’s thesis, an agent can be illustrated as an autonomous
vessel, which is able, on one hand, to sense its environment and, on the other hand, to
perform actions such as rotating the rudder or accelerating and decelerating the speed of
the propeller. This vessel will be controlled by a RL policy, discussed below, and its goal
will be to reach its destination and avoid collisions with land or other boats on the sea.

2.2.2 Environment

The environment is the second basic element of RL and IL. It includes all the entities and
elements the agent interacts with. As illustrated in Figure 2.2, it responds to the agent’s
action At by providing a new situation and a feedback. The new state St+1 results from
the last action and the intrinsic behaviour of the environment. The feedback Rt+1 is the
reward evaluating the previous agent’s action and consists of a numerical value. Both St+1

and Rt+1 allows the agent to learn and to decide its next action At+1.

Figure 2.2: Sutton’s illustration of the agent–environment interaction in a MDP. [13]

For the problem of autonomous navigation, the environment can be represented by the
sea with the traffic evolving around the agent, the coast and reefs, the navigation channels,
the sea signs, as well as meteorological and natural forces such as wind or ocean currents.
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2.2.3 Policy

The policy is a function that guides the agent behaviour in its environment. It maps the
current state of the agent to the action to be taken. It may be simple (e.g. basic function or
lookup table) or more complex (e.g. search process through a neural network). Generally,
the policy is stochastic and deals with probabilities, i.e., the probability to take any action
a in any state s, as shown in Equation (2.1) [18]. Because the policy is learned through
RL, these probabilities are continuously altered by the feedback given during the trial-and-
error process. The goal of the training is to reach an optimal policy which best answers
the problem.

π(a|s) = P[At = a|St = s] (2.1)

Moreover, the policy can be stationary or non-stationary. A stationary policy does not
include the temporal parameter t when determining the next action. Conversely, a non-
stationary policy considers the current stage of the task. Therefore, stationary policies are
suited for long or infinite scenarios, while non-stationary ones are adapted for temporary
tasks. However, the last category suffers difficulties when facing unseen scenarios.

To give an example of policies, the situation illustrated in Figure 2.3 is considered.
There, the destination is to the right of the agent named S1. Furthermore, the agent’s
action space includes three different actions : turning to the right, turning to the left, or
going straight. In this configuration, if the goal of the agent is to reach its destination, the
optimal policy would choose to turn to the right (policy number one). Conversely, bad
policies would choose to either go straightforward or turn to the left (policies number two
and three).

Figure 2.3: Example of three different policies, in a state without traffic, where the desti-
nation is to the right of the agent S1.
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2.2.4 Reward function

The reward function maps every state or state-action pair with a reward. As explained
above when presenting the environment, the reward function sends this numerical feed-
back after every agent’s action. A high reward is synonym to good behaviours, while a
low reward is sent in unprofitable states or after poor actions. In other words, the reward
defines how desirable an action is in the short term and allows the agent to distinguish
the immediate preferred action in each state. The reward of taking action a in state s is
defined in Equation (2.2) [18].

Ra
s = E[Rt+1|St = s,At = a] (2.2)

Often, the reward is calculated with a mathematical or logical operation over the state
variables. It can be either manually designed when using classic RL or computed with
IL methods. The reward function is only used during the training process and serves to
converge on the most optimized policy. After, the reward function has no more influence
on the agent’s actions, since the agent’s behaviour is guided by the learned policy.

A simple example of a reward function is given in the following Equation (2.3). The
reward Rt is equal to the negative distance between the agent and its destination. Thus,
because the main goal of the agent is to maximize the total reward it receives over the
whole scenario, it would try to come closer to its destination.

Rt =− distance to the destination (2.3)

During this master’s thesis, the term reward matrix will be used to refer to the matrix
which associates a quantity of reward to every possible state. This matrix will be the result
of the IRL algorithm, discussed later in this chapter.

2.2.5 Value functions

The state-value function and action-value function are similar to the reward function,
with the exception that they calculate the desirability of state or an action in the long run.
They return, for every state or every action, a quantity called a value. The value of a
state vπ(s) is the maximum amount of reward that can be collected in the future starting
from that state, when following the policy π . In the same way, the value of an action
qπ(s,a), also called its Q-value, is the cumulative amount of reward that can be obtained
after taking this action. Thus, it enables the agent to distinguish which immediate action
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allows to accumulate the maximum total reward in the future. The agent’s decisions are
often based on the value rather than the reward, because most solutions to optimization
problems aim for long-term efficiency.

To illustrate the difference between reward and value, Sutton provides a human anal-
ogy in his book. On the one hand, the reward is similar to the direct pleasure or pain that
can be felt immediately. On the other hand, the value is like the deeper and more complex
feeling of satisfaction. For instance, an athlete running a marathon who suffers during the
race can still be satisfied with his performance or motivation.

2.2.6 Model

The model, used in some RL systems, is a simulation of the environment that is used to
predict the possible future states before they are experienced. Therefore, by inferring the
behaviour of the environment, it allows the agent to know what is likely to happened in
the different available paths. When the model is used to decide the next agent’s action, the
decision process is called planning. This method is opposed to the classic trial-and-error
learning.

2.3 Mathematical basis of reinforcement learning

This section aims at explaining the mathematical basis of RL and all formulas within
the theory. The following explanations are inspired from Silver’s work [18] and Sutton’s
book [13]. The first step when formulating a RL problem is to design a Markov Decision

Process (MDP). This last, introduced by Bellman in 1957, can be seen as the discrete
and stochastic representation of the optimal control problem. It models the agent’s envi-
ronment and can be formulated with the tuple in Equation (2.4) [18]. While S and A are
respectively finite sets of states and actions, P is the state transition matrix of the environ-
ment, R the reward function and γ the discount factor. These elements are described in
more detail below. In IL, MDPs are widely used because they ease the representation of
expert demonstrations.

< S,A,P,R,γ > (2.4)

As indicated by its name, a MDP respects the Markov property, that asserts the past
trajectory of the agent, except its current state, has no influence on its future positions.
In other words, the current state holds all the necessary information the agent needs, to
choose an action and progress on its task. This statement is described in Equation (2.5)
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[18], where the probability to go from state St to St+1 is not influenced by the states pre-
ceding St . This implies that all policies, in a MDP, are independent of the time parameter
t and, therefore, stationary.

P[St+1|St ] = P[St+1|S1, ...,St ] (2.5)

The environment of a MDP is, in addition, governed by a three-dimensional state

transition probability matrix P, which holds the probability to go from state s to state s′

under action a, for every state and every action. The mathematical representation of this
matrix is given in Equation (2.6) [18].

Pa
ss′ = P[St+1 = s′|St = s,At = a] (2.6)

Now the MDP is defined, the objective is to find the path that will return the maxi-
mum amount of reward. In order to make the agent focus on a long term efficiency, the
discounted rewards are introduced. Discounting is the agent’s ability to evaluate the im-
portance of immediate rewards against the more distant ones in the future. The discount

rate γ is a value between 0 and 1 which is used to calculate the total discounted reward

Gt , as shown in Equation (2.7) [13], with Rt+k being the reward obtained in the kth state
in the future. Therefore, a smaller γ means a low consideration of distant rewards, while
a higher γ means a high consideration.

Gt = Rt+1 + γ.Rt+2 + γ
2.Rt+3 + . . .=

+∞

∑
k=0

γ
k.Rt+k+1 (2.7)

From the total discounted reward, it is possible to mathematically define the value
functions of the MDP in Equations (2.8) and (2.9) [18]. The state-value function vπ(s)

returns the cumulative discounted rewards the agent is expected to obtain in the future,
when starting from state s and following the policy π . The action-value function qπ(s,a)

returns the expected total discounted reward when taking action a in state s. Both these
values depends on the chosen policy and the discount factor.

vπ(s) = Eπ [Gt |St = s] (2.8)

qπ(s,a) = Eπ [Gt |St = s,At = a] (2.9)
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Another representation of these formulas is know as the Bellman equation. Its first
form, shown in Equation (2.10) [18], links the value of a state to the values all possible
actions that can be perform in this state. The state-value vπ(s) is then equal to the sum,
over all possible actions, of the probability to take action a under policy π , multiplied by
the value of this action. The second form of the Bellman equation, shown in Equation
(2.11) [18], draws the relationship between the value of an action and the value of future
possible states. The action-value qπ(s,a) can now be computed by adding the immediate
reward to the discounted values of potential future states, weighted by the probability of
ending up in these states. By developing these equations, Bellman obtained the formulas
appearing in Equations (2.12) and (2.13) [18]. On one hand, the value of a state is now
associated to the values of possible subsequent states and, on the other hand, the value of
an action is connected to the values of possible future actions.

vπ(s) = ∑
a∈A

π(a|s)qπ(s,a) (2.10)

qπ(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′vπ(s′) (2.11)

vπ(s) = ∑
a∈A

π(a|s)[Ra
s + γ ∑

s′∈S
Pa

ss′vπ(s′)] (2.12)

qπ(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′ ∑
a′∈A

π(a′|s′)qπ(s′,a′) (2.13)

The Bellman equation is widely used in RL since it allows to divide the whole problem
into smaller ones, where the goal is to compute the optimal value for every state or every
action. This is done by iteratively adjusting these functions during the trial-and-error
process, so they better represent the real reward structure of the environment. Solving a
MDP means therefore finding the optimal state-value or action-value functions, presented
in Equations (2.14) and (2.15) [18]. The latter return, for every state or every state-action
pair, the value given by the best existing policy in this state.

v∗(s) = max
π

vπ(s) (2.14)

q∗(s,a) = max
π

qπ(s,a) (2.15)

Once the MDP is solved, the optimal policy can be computed. This policy respects
the condition stated in Equation (2.16) [18], when compared with all other policies. In
short, it is the policy that returns the highest value in all states. An simple method to find
the optimal policy is, in every state, to set at one the probability of taking the action that
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returns the maximum optimal value. This procedure is described in Equation (2.17) [18].
Once the optimal policy is determined, the whole RL process is finished.

π ≥ π
′ i f vπ(s)≥ vπ ′(s), ∀ s (2.16)

π∗(a,s) =

⎧⎨⎩ 1 i f a = argmax
a∈A

q∗(s,a)

0 otherwise
(2.17)

2.4 Imitation learning algorithms

IL differentiates from classic RL in the sense that the agent is learned from previously
collected data. The goal is to achieve an efficient policy given by one or several hu-
man experts. To reach this objective, three main approaches exist and are summarized
in Lőrincz’s work [19]. These techniques, named Behavioural Cloning, Direct Policy

Learning and Inverse Reinforcement Learning, are presented below.

2.4.1 Behavioural cloning

Behavioural Cloning is the simplest method and consists of learning the expert policy
through supervised learning on the expert dataset. Expert trajectories are first stored into
state-action pairs. These pairs are then directly used to learn the agent’s policy. For
example, if the action a is recurrently performed by the expert in the state s, the agent will
map this action with this state, i.e., learn that this action is good and should be taken in
state s.

Despite its apparent simplicity and the positive results it shows in small applications,
this technique suffers strong issues when it comes to resolve large and highly complex
problems. The origin of these issues is the assumption made in supervised learning pre-
suming that the state-action pairs are independent and uniformly distributed over the state
and action spaces. However, this is not true since every action from the expert trajectories
has an influence on the next state. As a result, many possible states, and especially critical
ones, will never be visited by the expert. Therefore, the agent lacks examples of how to
recover from problematic states if it comes to deviate from expert trajectories. A second
issue, which is correlated to the previous one, is the difficulty to obtain a sufficient amount
of data for applications owning a large state space. The larger the state space is, the bigger
the number of examples needs to be. Thus, an efficient training with behavioural cloning
would be highly data- and time-consuming.

In addition, Hussein states in his survey that an efficient training with IL requires the
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agent to re-optimize, by itself, the learned expert policy through a classic RL process.
However, this is not the case with behavioural cloning. Hussein explains that insufficient
or erroneous expert demonstrations and light variations between the agent’s and expert’s
environments can lead the optimal expert policy to not work for answering the agent’s
task. Therefore, by re-optimizing the policy, the agent learns to perform the task, which
is more robust than strictly copying the expert. [17]

To conclude, due to the complexity of the maritime navigation area and the differences
between the provided expert and the agent’s reduced model, both presented in Chapter 3,
the method of behavioural cloning has not been retained to solve the problem expressed
in this master’s thesis.

2.4.2 Direct policy learning

Direct Policy Learning is an approach starting in the same way as behavioural cloning.
First, some expert demonstrations are collected to learn an initial policy. Then, the al-
gorithm aims at converging this policy towards an expert-equivalent one, through an it-
erative loop executed in three steps. Firstly, new trajectories are collected by letting the
agent evolve in its environment while following the previously learned policy. Secondly,
for every encountered state, an expert gives to the agent the action it should have taken.
Finally, based on these new data, a new policy is learned through supervised learning.
Two techniques exist to learn the new policy: data aggregation and policy aggregation.
Data aggregation learns the new policy on all the previously collected demonstrations. In
this way, it remembers past iterations. Policy aggregation learns a new policy only on
the trajectories obtained in the current loop iteration. This policy is then merged with
previously learned policies through geometric blending.

Direct policy learning shows good results both on small and large-scale problems.
Nevertheless, it requires an available expert during the whole training. This requirement
is not compatible with the resources and data provided for this master’s thesis. As a
consequence, it is impossible to use this method in that context.

2.4.3 Inverse reinforcement learning

Inverse Reinforcement Learning is the last approach of IL and consists of learning the
reward function that corresponds to the expert behaviours. The goal is to extract the
underlying motivations guiding the expert’s decisions. These motivations can be com-
putationally illustrated as a reward function. After obtaining this function, learning the
optimal policy through RL becomes possible. The general process of IRL can be sum-
marized as follows. It is first initialized by collecting expert trajectories and learning an
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original reward function based on these demonstrations. Then follows an iterative loop
which is made of three steps. Firstly, a policy is learned on the previously calculated
reward function. Secondly, this policy is compared to the expert’s one, to be evaluated.
Thirdly, if the policy is satisfactory, the process is terminated. On the contrary, if it is not,
the reward function is updated to better represent the expert’s motivations.

IRL is divided into two main methods : model-given and model-free. The first one is
suited for simple problems with small state spaces and linear reward functions. It defers
from the other one by solving the full RL problem when learning a new policy. To use
it, knowing the state transition probability matrix P, i.e. the probability to go from every
state sx to every state sy under every action az, is necessary. The second approach is made
for more complex problems running on simulators and does not need to know the state
transition probabilities in advance. Because of the large state space, only one step of the
RL problem is solved at each iteration of the loop.

As explained in the two previous subsections, the approaches of behavioural cloning
and direct policy learning are not suited to answer the problem expressed in this master’s
thesis. However, the method of IRL is both adapted to the problem’s high complexity
and to the available resources. This justifies the choice of using IRL. Therefore, a deeper
presentation of the state-of-the-art techniques is required and presented below.

2.4.3.1 Non-linear inverse reinforcement learning

Among all studies on IRL, the focus is put on four of them. The first one, proposed
by Ziebart et al., is a framework able to approximate linear reward functions [20]. This
framework relies on the maximum entropy paradigm. This principle states that the proba-
bility distribution, which best represents a stochastic system, is the one with the maximum
entropy, or in other words, the one which makes the fewer assumptions. Ziebart uses this
paradigm over the distribution of possible paths to not end up with a sub-optimal reward
function, where the distribution prefers one path to others. However, a strong weakness of
Ziebart’s work, and others before him, is that the reward function is represented as a linear
combination of state features. According to Wulfmeier, linear functions present inherent
limitations because they can only solve linear MDP [21]. Consequently, Ziebart’s algo-
rithm is strongly inadequate to resolve complex real-world problems, such as autonomous
navigation. Choi also raises another issue of linear models, which is their strong depen-
dency on the manually defined features [22]. As a result of these issues, many later studies
focused on introducing non-linearities in their approximated reward functions.

Levine et al. introduced in their algorithm Gaussian Process Inverse Reinforcement

Learning (GPIRL) the use of non-parametric functions, such as Gaussian Processes [23].
This technique enables to represent the reward as a non-linear combination of features.
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The principle of this framework relies on a method which computes the hyper-parameters
of the Gaussian process’s kernel function. As a consequence, the structure of the un-
known reward function is determined. However, a limitation of this algorithm, raised
by Wulfmeier, is its high computational complexity. Another method, called Bayesian

Nonparametric Feature Construction for Inverse Reinforcement Learning (NPB-FIRL),
is presented by Choi and Kim, and relies on associating atomic state features through
logical conjunctions to create composite features [22]. Consequently, non-linearities in
the logical conjunctions are transferred to the reward function. However, according to
Wulfmeier, non-linearities are limited in this case to the set of composite features manu-
ally designed [21].

2.4.3.2 Deep inverse reinforcement learning

To enhance results shown by previous works in the field of IRL, Wulfmeier et al. present
and evaluate a new framework in their article "Maximum Entropy Deep Inverse Rein-
forcement Learning" [21]. This framework introduces the use of deep neural networks,
and more precisely Fully Convolutional Neural Networks (FCNNs), to approximate com-
plex non-linear reward functions. According to Wulfmeier, deep structures are suited
for IRL for the two following reasons. First, assuming the network is large and deep
enough, it can represent any possible binary or piecewise-linear function. Second, it nat-
urally relies on and generalises the maximum entropy paradigm explained in Ziebart’s
work [20]. The reward function is, therefore, approximated through an iterative process.
Every step first resolves the MDP with the reward function calculated during the previ-
ous iteration, then computes the maximum entropy loss and gradients and, finally, applies
back-propagation on the network’s gradients.

Wulfmeier argues that his new technique answers the defects of the previous meth-
ods. Using a deep structure allows to handle non-linearities well and to show a good
computational complexity. In addition, the neural network architecture allows to auto-
matically model the environment and to generalise complex state spaces by extracting
atomic features. Thus, it answers another issue of prior studies, which was the need to
manually model the relevant features. To assess the accuracy and efficiency of their new
framework, Wulfmeier et al. perform tests on two benchmarks against the previously
cited techniques. The evaluation metric is the expected value difference, i.e., the differ-
ence between the optimal value functions obtained on both the true and the approximated
reward functions. On the first benchmark, where the true reward structure remains sim-
ple, Ziebart’s Maximum Entropy framework is not able to extract non-linearities while
all three Deep IRL, GPIRL and NPB-FIRL show accurate predictions. However, Deep
IRL is less robust to noise and requires more expert data to reach equivalent results. On
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the second benchmark, which has a more complex true reward structure, all techniques
except Deep IRL fail to approximate an accurate reward function. Moreover, a last test is
performed to evaluate the ability of the FCNNs to extract features from raw input. This
shows that, with enough training data, the results match the ones obtained with optimal
manually designed features.

To conclude, this framework provides improvements for complex problems with large
state spaces. Furthermore, it allows to get rid of preprocessing by automatically extracting
optimal features. Finally, it is well suited for continuous learning scenarios, because its
algorithmic complexity is independent of the size of the dataset. In the context of this
master’s thesis, training an agent with this framework is a wise choice due to the high
dimensionality of the involved state space and the complex task of driving USVs. In
addition, introducing non-linearities in the reward function is essential, since navigating
cannot be reduced to maximizing or minimizing individual variables.

2.5 Deadlocks

When dealing with IRL, and therefore with RL, it is likely to face numerous deadlocks
while modelling or implementing an agent. This section aims at describing possible dead-
locks and explaining how they can be answered. The following descriptions come from
Sutton and Barto’s book [13].

2.5.1 Exploration vs Exploitation

The trade-off between exploration and exploitation is known to be a strong issue when
it comes to RL. The agent, whose goal is to obtain the maximum possible reward, must
make a compromise, during the training process, between exploiting what it has previ-
ously learned and exploring new states. In other words, it can either reproduce actions
it has previously tried and categorized as good ones or explore new state-action pairs to
discover more reward-productive decisions and exploit them in the future. Consequently,
an agent focusing on reproducing the best actions it has learned could end up being stuck
in a sub-optimal policy, while it will never reach the absolute-optimal one.

A common method to answer this deadlock consists of introducing randomness when
choosing the action. This can be performed by using different exploration strategies. One
of the best-known is called the ε-greedy policy, with ε being a parameter between 0 and
1. With this strategy, the agent tries a random action with the probability ε . The rest of
the time, it chooses the action with the highest Q-value in its current state. Thus, with
sufficiently long training, all possible states would be tested and evaluated. However,
a weakness of the ε-greedy approach is that all actions have the same probability to be
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chosen randomly. As a result, the agent does not distinguish good actions from bad ones,
except for the best one. A solution of this issue is given by the Boltzmann (or softmax)
exploration strategy. This approach introduces the Boltzmann softmax Equation (2.18)
[24], which computes for every action, in a given state, the probability to take this action.
This probability relies on the Q-value of the targeted action a in the current state st , as
well as the Q-value of the m other actions ai. Thus, the best actions are more likely to
be chosen. In addition, the positive parameter T allows to gradually transit during the
training from a fully random mode (T →+ inf) to a mode where the best action is always
chosen (T = 0). [24]

π(st ,a) =
eQt(st ,a)/T

∑
m
i=0 eQt(st ,ai)/T

(2.18)

2.5.2 Discount factor

As presented in Section 2.3, the discount factor allows to distinguish immediate rewards
against more distant ones in the future. The issue here is to decide which γ value is best
suited for the problem, since it has a huge impact on the agent behaviours. A simple
method to answer it is to train the agent with different γ values and evaluate which one
shows the best performances.

In the case of this master’s thesis, two different discount factors must be chosen. The
first one concerns the discount value used in the IRL algorithm to compute the reward
function from the expert trajectories. It is possible to estimate this value to be high, since
driving a vessel is a task that requires anticipation. The second discount value concerns
the RL agent learning by itself in its environment. Since the task is similar to the one of
the expert, anticipation and therefore a high discount value is needed.

2.5.3 On-policy vs Off-policy

A distinction must first be made between behaviour policy and estimation policy. The
behaviour policy is the one used to decide which actions are taken by the agent. The
estimation policy is the one that is improved through the learning process.

When improving a policy, two approaches can be used. The on-policy approach con-
sists of using the same policy as behaviour and estimation policies. The off-policy ap-
proach consists of having two different behaviour and estimation policies. This allows,
on the one hand, to use a very versatile behaviour policy to explore all possible states and,
on the other hand, to improve another policy. The "exploration vs exploitation" deadlock
can then be avoided. For this master’s thesis, the on-policy approach will be used with the
Boltzmann softmax exploration strategy.
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3. Resources and design

Designing a solution to a problem is a process comprising a series of steps. From clearly
defining the problem to improving the results, it requires both collecting the data on which
the solution will be based and modelling the system that will solve the problem. [25]

This chapter will present how the author designed a solution to the problem expressed
in this master’s thesis. It will first describe the form of the raw dataset and will provide
details on how these data have been processed. In addition, the simulator and the envi-
ronment where the agent is developed will be presented. This agent will be named the
IRL agent, since it is trained with IRL. Finally, an explanation of how the autonomous
navigation problem has been modelled will be provided.

3.1 Dataset

The first step when resolving most ML problems is to process the learning data. This is
especially the case in this master’s thesis, because IRL relies on showing expert demon-
strations to the agent. Processing the raw data means transforming and adapting them to
be used in a specific algorithm. In this master’s thesis, the dataset will first be reduced to
answer the requirements of IL, before being duplicated through data augmentation.

3.1.1 Aboa Mare Dataset

Aboa Mare is a maritime academy that trains seafarers in a professional context. It of-
fers both theoretical and practical courses and provides the possibility to learn safely in
realistic simulators. In addition, Aboa Mare is involved in numerous research partner-
ships on maritime navigation, due to the large possibility of developments and tests in its
simulated environments. Among these partnerships is the MAST! Institute, which is an
alliance with the Software Technology Research Lab of Åbo Akademi University. [26]

Based on this joint project, Aboa Mare provides the dataset that is used in this master’s
thesis. It consists of 135 simulated navigation scenarios performed by students during
their training. These simulations take place in an environment representing the south part
of the North Sea, off Rotterdam. For equality between students, depicted in red in Figure
3.1, they all start approximatively in the same configurations. Their goal is to navigate
from west to east in the navigation channel. In addition, they need to avoid collisions. The
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two main situations they encounter are overtaking vessels and crossing a flow of ships that
crosses the maritime channel from south to north. The results of these simulations have
been discretised with steps of one second and stored in CSV files.

Figure 3.1: Visualisation of one sample of the dataset. [27]

Variables are divided into three types of files, called ShipDynamics, Traffic and Log.
The focus is put on the two first types, which store information about the student’s vessel
and the traffic, i.e., other ships on the water. This allows to quickly eliminate redundant
and unnecessary parameters in Log files, and retain the four following types of data for
every scenario. First, information about the vessel driven by the student, such as its po-
sition in latitude and longitude, Course Over Ground (COG), Speed Over Ground (SOG)
and Automatic Identification System (AIS) data. Second, the actions taken by the oper-
ator, namely turning the rudder, accelerating or decelerating. Third, information about
the traffic, including the position and direction of other vessels on the water. Finally, two
grades given by teachers evaluating the quality of the navigation over the whole scenario,
on a scale from zero to ten.

3.1.2 Reduced Expert Dataset

The first characteristic that can be observed on the dataset is the heterogeneous grades
given to all scenarios. While some of them have perfect grades of ten, others have medium
or poor grades. As explained in Chapter 2, the algorithmic approach of IL needs to train
the agent only with the best possible demonstrations. Consequently, the dataset must
be sorted in order to eliminate all scenarios that have a grade under a lower bound limit.
However, since the dataset is quite small, it is important to consider the size of the learning
data, which has an impact on the agent accuracy and robustness. Thus, it is impossible to
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eliminate too many scenarios.

This analysis is performed as follows. The average of the two grades given to each
scenario is considered as its final grade and the lower bound limit is fixed at seven. This
allows to keep only relatively good grades and retain 68 scenarios out of the 135 original
ones, i.e., 50% of the dataset.

3.1.3 Environment Data

In addition to information about the student’s vessel, environment data need to be col-
lected in order to perform an effective training of the agent. Environment data include
all information not directly related to the agent, such as the state of other vessels on the
water, the position of the coast and reefs, the navigation channels or the sea signs.

Some of this information is provided in the Aboa Mare dataset, such as the data con-
cerning the traffic. In addition, the coast and reefs are handled by the simulator that will
be used to model and test the agent. However, some elements, such as the navigation
channels and sea signs, which are important for safe navigation, are not yet implemented
into the simulator. It is, therefore, necessary to search for resources about the sea infras-
tructures of Rotterdam’s waters and to extract from them the suitable data. To accomplish
this task, the tool OpenSeaMap is used [28]. This web application shows existing mar-
itime signage all over the world. Thus, it is possible to collect Rotterdam’s maritime
infrastructures from it.

3.1.4 Data Augmentation

Data augmentation is a set of techniques whose purpose is to increase the amount of
available data to train an agent or a neural network. This is used when the amount of
original data is too low compared to the complexity of the problem to be solved. Instead
of performing a repetitive training on the exact same examples and, therefore, be subject
to overfitting, it is possible to apply small transformations on the original data to create
similar ones which are different. A majority of existing works on data augmentation deal
with image data, due to the facility to modify an image without removing the main infor-
mation it contains. For instance, the size or the orientation of an image can be modified
by cropping, flipping or rotating it. Its colours can also be changed with convolutions or
filters. [29]

Due to the reduced size of the dataset involved in this master’s thesis, in contrast with
the complexity of autonomous navigation, data augmentation techniques are considered.
However, since the dataset consists of CSV files containing various variables, it is im-
possible to apply directly the usual transformations used on image data. Therefore, two
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concepts are investigated here. On the one hand, it could be possible to multiply the data
by rotating or flipping both the environment and the student’s vessel trajectory. On the
other hand, scenarios can re-sampled by increasing or decreasing the time step between
samples.

As explained later in Section 3.3, the agent’s state space is modelled with relative
variables, such as the current rudder angle or the angle between the vessel’s heading
and the straight line between the agent and its destination. Therefore, by rotating the
environment, these variables remain the same. It is, therefore, impossible to multiply
the data with rotational transformations. However, flipping the environment allows to
reverse the value of every variable. For instance, in a state where the rudder angle is
15° and the angle towards the destination is -10°, the reversed situation would show a
rudder angle of -15° and an angle towards the destination of 10°. This transformation
allows to multiply the data by a factor of 2. Nevertheless, using this transformation can
lead to adding new expert behaviours, since international navigation rules differentiate
these two situations. According to COLREGs rules [6], different actions are theoretically
required when crossing the path of a boat by its right or by its left. However, when
observing expert demonstrations [27], it is apparent that students are not strictly following
COLREGs rules and find sometimes paths that are more beneficial. As a result, using
flipping transformations makes sense, since the developed agent will try to find the safest
paths and not rigorously follow navigation rules.

The second way to perform data augmentation is to re-sample the data, such as sup-
pressing one sample of data every n samples. Despite the possibility to obtain numerous
additional trajectories, this may lead to losing the uniformity of the timestamps among
the dataset or may break the physic of vessels, if the same time step is conserved for the
whole re-sampled data. Therefore, this approach has not been retained.

3.2 Simulated environment

The agent designed in this master’s thesis is trained and evaluated in a simulated envi-
ronment provided by the MAST! Institute. This simulator, named Simple Ship Sim, has
been partially developed by Penttinen and Hupponen in their respective master’s theses
[10, 12].

3.2.1 Simple Ship Sim

Simple Ship Sim is a simulated environment whose goal is to train and simulate RL agents
in a maritime environment. This simulator, implemented in Python, allows to easily in-
tegrate new RL agents, to train them in various situations and to display the simulation
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through a GUI. Despite its ability to represent complex scenarios, this simulator is a sim-
plified version of the real world. For instance, it does not include natural forces, such as
the wind or ocean currents. Therefore, a ship is unable to drift, which means a vessel’s
heading is similar to its COG, and its STW is equal to its SOG. However, Simple Ship Sim

is a very helpful tool when it comes to designing and testing proofs of concept, which is
the case in this master’s thesis. [10, 12]

The full structure of the Simple Ship Sim program is presented in Appendix A. It
contains five main parts: the scenario configuration, the ship object, the RL agent, the
core that handles the simulation and the GUI.

The configuration module allows to set different scenarios by using YAML configu-
ration files. This standard allows to easily serialize data in a user-friendly format [30].
These configuration files select the scenario’s map and set the initial characteristics of all
vessels, such as their sizes, their original positions and the coordinates of their target des-
tinations. This configuration is then loaded into the simulator at the start of every training
or simulation.

The ship element is the Python object that represents a vessel in the simulator. It
contains attributes that are defined in the configuration files. Attributes can be constant,
such as the vessel’s size, mass or propeller diameter. They can also be variable, namely
the vessel’s position, speed or heading. Finally, some attributes are used to save the state
of the vessel, i.e., if it has collided or if it has reached its destination. The ship object also
handles the vessel’s physic.

The RL agent is the entity that controls a ship. It takes actions based on the current
vessel’s state and the prediction return by the associated neural network. The author’s
practical part of the master’s thesis consists of modelling and implementing a new agent
which learns first through IRL and then with RL.

The core of the program contains two main modules. The environment module holds
the Open AI Gym environment, discussed later in Section 4.1.1. The simulation mod-
ule handles all vessels and lands during the simulation. The combination of those two
modules returns environment information, such as the vessel’s state, to the RL agent. An
important characteristic of the environment is its ability to know every attribute of any
ships at a given time. Therefore, the implemented RL agents have an omniscient view of
their surroundings, without the need to use sensing systems. As in the dataset, simulations
are run with discrete time steps of one second.

Finally, the GUI provides a graphic interface to the user in order to visualise ships’
paths during the simulations. It also allows to modify the ships’ trajectories with a set of
buttons, but this functionality will not be used in the context of this master’s thesis.
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3.2.2 Rotterdam map

The simulation environment consists of a two-dimensional plan, where objects are lo-
cated with their (x,y) coordinates. Additionally, it allows to display custom maps in the
background. The IRL agent is trained on the same map as used in the dataset, i.e., in
the waters off Rotterdam. To draw the outline of the map, the author chose to use the
maximum and minimum latitude and longitude positions of experts in the dataset as the
outline values. In addition, the author added a five-kilometre margin on all sides of the
map. The resulting map, downloaded from the OpenSeaMap website [28], is shown in
Figure 3.2. In addition to restricted areas in purple and sea signs, it contains one of the
main navigation channel of the North Sea. This channel is represented in Figure 3.2 with
purple arrows. Like the experts, the agent mission will be to navigate in the channel from
west to east, while avoiding other vessels.

Figure 3.2: Map of the sea off Rotterdam, with navigation channels, restricted areas and
sea marks. [28]

3.3 Modelling

To implement and compute this ML problem, it must be modelled. The goal here is to
define how the agent perceives its environment and which actions it is able to perform.
In other words, this section defines the agent’s state and action spaces. However, as
stated in Section 2.2.1, the difficulty lies in selecting the suited variables and ignoring
unnecessary parameters, in order to obtain small state and action spaces without losing
important information. This will enable a less data- and time-consuming training.
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The initial step of the modelling process is to list all available variables that can be
used to describe the agent’s state. These variables can be issued or calculated from the
following elements: the agent, its destination, the traffic, the infrastructures and the shore.
Firstly, absolute variables, such as (x,y) coordinates or vessels’ heading and speed, are
available in the simulator without processing needs. Secondly, it is possible to compute
new parameters from the raw variables in the simulator. For instance, relative distances
and angles can be calculated as shown in Figure 3.3. It includes the distance d to the
destination, the angle θ between the agent’s heading and the straight line connecting it to
its destination, the distances d2 to other vessels or angles θ2 towards them.

Figure 3.3: Example of state space variables.

For the rest of this section, only relative parameters will be considered to answer
the problem expressed in this master’s thesis. As shown in Figure 3.4, using absolute
variables, such as the (x,y) coordinates, can not lead to the creation of a robust agent
able to navigate in scenarios it has never seen. In the illustration, agents S1 and S2 are
expected to perform similar behaviours, even though they do not have the same absolute
coordinates, heading and destination.

Figure 3.4: Comparison of vessels S1 and S2, facing the same situation with different ab-
solute coordinates, headings and destinations. Blue pentagons represent foreign vessels.
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The last statement introduced the second step of the modelling process, which is to
select the best action and state variables for the specific tasks the agent must perform. In
this master’s thesis, the focus is on the three following tasks. First, the agent should be
able to navigate in its environment. Second, it has to reach its destination. Third, it also
needs to avoid collisions.

3.3.1 Navigation

To drive a vessel, two main attributes can be controlled : the SOG and the COG. The
speed is managed by the engine, which can accelerate or decelerate the vessel by varying
the rotation speed of the propellers. The heading is directed by the rudder, which can
either turn the ship to port or to starboard.

In order to minimize the number of possible actions, the agent’s speed is fixed at the
average value used by experts in the dataset, i.e., 9.26 metres per second. Thus, the agent’s
action space considers only the rudder. In his master’s thesis, Penttinen suggested using
fifteen actions, each one setting the rudder at −35+ i∗5 degrees, i being the index of the
action between zero and fourteen [10]. A benefit of this design was to have a direct link
between the taken action and the targeted rudder angle. However, it shows an important
drawback, which is the huge number of actions. Minimizing the action space can succeed
in strongly reducing the corresponding problem’s complexity. Undoubtedly, using two
different actions to set the rudder at 30° and 35° is redundant, because both these actions
aim, in most states, at turning the rudder to the right. Therefore, they both show similar
results.

The author proposes an amelioration of Penttinen’s design by reducing the action
space to three alternatives. The latter are turning the rudder to the immediate angle on the
right, turning the rudder to the immediate angle on the left, and keeping the same rudder
value. The actions are now relative and their resulting behaviours do not depend on the
current rudder angle. In addition, the rudder angle range between -35° and 35° has been
discretised. While it is possible to handle a continuous state space during the RL process,
limiting the number states is required to have reasonable computation time with IRL. As
a result, the rudder can now take seven possible values, namely -27°, -15°, -6°, 0°, 6°,
15°, and 27°. The various intervals between the chosen values aim at refining the agent’s
trajectory. To make this design work, the author increased the rotation rate of the rudder,
so each transition between two angles is instant. For example, turning the rudder to the
left when the current value is 15° will lead the next rudder angle to be 6°. The agent is
now able to fully control its heading by using its rudder.

However, the rudder values in the dataset covers the continuous range from -35° to
35°. Therefore, to map every data sample to a state, the full angle range is divided into
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seven windows, as illustrated in Figure 3.5. Every rudder angle in the dataset can then be
adjusted to the actual value of the window it belongs to.

Figure 3.5: Discrete rudder angle state space.

3.3.2 Reach the destination

The second but not the least task given to the agent is to reach its destination. In his work,
Penttinen suggested using the distance separating the agent to its destination as the main
variable to perform this task [10]. The agent would then try to minimize this distance, i.e.,
to converge towards the destination, in order to maximize its reward. However, this pa-
rameter is not sufficient to distinguish different situations requiring different behaviours.
On the one hand, as illustrated in Figure 3.6 (a), two vessels having the same distance to
their respective destination could have this last on the opposite side of the boat. In the
example, the agents S1 and S2 need to turn respectively to starboard and to port. On the
other hand, as illustrated in Figure 3.6 (b), two vessels facing approximatively the same
situation with different distances to their destination should perform similar actions. As a
result, it seems impossible to use the distance to the destination alone to guide an agent to
its destination.

Furthermore, it is often easier during the learning process to have a small and constant
time between the actions and the rewards the agent receives. This helps the agent to link
a state-action pair to its corresponding benefit. Thus, variables are divided in two classes:
the ones depending on the agent’s heading and the others relying on the agent’s position.
When turning the rudder, the agent’s direction is quickly modified, while it takes more
time to have significant variations of the agent position. For instance, when using the
distance to the destination, which depends on the agent’s position, a significant amount
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of time can separate the action of turning the rudder and the fact of getting closer to the
destination.

(a)

(b)

Figure 3.6: Comparison of vessels S1 and S2, facing different situations with the same
distance to the destination (a), and facing the same situation with different distances to
the destination (b). Blue pentagons represent foreign vessels.

Based on the previous arguments, the author decides to use the angle between the
agent’s heading and the strait line between it and its destination as the main variable for
reaching the destination. This parameter, illustrated as the angle θ in Figure 3.3, will be
called the destination angle from now on. Like the rudder angle, the destination angle

is discretised, as illustrated in Figure 3.7. It can take seven possible values, namely -67°,
-32°, -12°, 0°, 12°, 32°, and 67°, each of them belonging to one window. The agent has
now enough information to navigate towards its destination. By minimizing the absolute
value of the destination angle, the agent can align its trajectory towards the destination.

3.3.3 Avoid collisions

The last task considered in this master’s thesis is avoiding collisions. The nature of a
collision can be of two types: with the shore or with another vessel. Since the location
of the scenarios in the dataset is deep into the North Sea, no demonstration exists on how
to avoid reefs or land. Therefore, collisions with land are not considered in this model.
The focus is then turned to collisions with other vessels. Among all metrics describing the
state of a vessel compared to other ones, the author chooses the Closest Point of Approach
(CPA) parameter.
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Figure 3.7: Discrete destination angle state space.

The CPA is a commonly used metric in maritime navigation. It corresponds to the
closest vessel the agent will approach in the future. Two sub-metrics exist to describe the
danger of a potential collision. The Distance to Closest Point of Approach (DCPA) is the
minimum distance between the agent and another vessel in the future. The acronym CPA
is often used as a shortcut to refer to this metric. A DCPA of zero means a collision will
occur if nothing is performed to avoid it. The Time to Closest Point of Approach (TCPA)
is the second sub-metric and corresponds to the time until the agent reaches the moment
of the CPA. Both DCPA and TCPA can be controlled by the agent if it changes its trajectory
to avoid the potential collision. Furthermore, it is possible with these metrics to identify
a future risk-prone situation before it occurs. [31]

The current DCPA is included as the third variable of the agent’s state space. This
variable describes the need to modify the trajectory against an imminent collision. Lower
is the DCPA, bigger is the need to alter the agent’s path. This metric presents several
advantages, because it considers the speed and heading of the agent, as well as the ones
of the other vessel. This is not the case of simpler metrics, such as the relative angle
θ2 towards foreign vessels as illustrated in Figure 3.3. The major benefit of DCPA is its
ability to see into the future. Therefore, it can detect possible collisions before ending
up in dangerous situations. Like previous state parameters, this variable is discretised
in seven possible values between 0 and 4200 metres, namely 150, 500, 950, 1500, 2150,
2900 and 3750 metres. However, the DCPA is not sufficient since it only indicates the need
to modify the trajectory. No information is given about the preferable path, i.e., turning
to port or to starboard.

The fourth and last parameter of the state space is called the maximum DCPA an-
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gle. This variable represents the relative angle of the safest path compared to the current
agent’s heading. It is computed by calculating the DCPA for every path between -20° and
20°, 0° being the agent’s heading. The trace obtained from this calculation is illustrated
in the example given in Figure 3.8. After finding local maximums, depicted with green
dots in the figure, the safest path can be deducted by comparing their DCPA values and
selecting the highest one. By taking this path, the agent will stay the furthest away from
the other vessels. Finally, to compute the IRL process, this state feature is also discretised.
Thus, the maximum DCPA angle is adjusted to one of the following values: -15°, -6°, 0°,
6° and 15°. The example below shows the salmon-coloured agent facing a flow of vessels
going from its starboard to its port. A gap in this flow can be seen as the safest path for
the agent. As exposed on the DCPA trace, the agent will cross the flow through the middle
of the gap if it turns 14° to starboard.

3.3.4 Synthesis

To conclude this chapter, a synthesis of the agent’s state and action spaces is given in
Tables 3.1 and 3.2. The state space involved in the IRL process contains 1715 possible
states. Thanks to a wise discretisation, this reduced state space allows to strongly facilitate
and speed up the computation of the reward matrix through IRL. Nevertheless, the RL
part of the training still runs on the continuous state space. This justifies the destination

angle range between -180° and 180°, the DCPA value between 0 and 4200 metres and the
maximum DCPA angle between -20° and 20°.

Table 3.1: State space variables.
Task Variable Unit Minimum Maximum

Navigation Rudder angle Degree (°) -27 27
Reaching destination Destination angle Degree (°) -180 180

Avoiding collisions
DCPA Metre (m) 0 4200
Max DCPA angle Degree (°) -20 20

Table 3.2: Action space variables.
Task Action Unit Minimum Maximum

Navigation
Turn the rudder to port

Degree (°) -27 27Do not turn the rudder
Turn the rudder to starboard
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(a)

(b)

Figure 3.8: An example of a crossing situation, where the salmon-coloured vessel repre-
sents the agent and the yellow vessels the traffic (a), with the corresponding DCPA trace
(b). The DCPA trace range is represented in grey in the simulation.
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4. Implementation

Implementation is the usual word in the software development field for the process of
producing a system or an application. It involves to develop, in any computer language,
the solution previously designed to solve the problem. In the context of this master’s
thesis, it mainly refers to writing the Python code of the developed agent and finding
solutions to optimise it.

This chapter will first present the different Python libraries, modules and computing
resources used when implementing the proof of concept agent. In addition, it will explain
the major functions of the IRL agent, before giving details on the computation of the
reward matrix and the necessary inputs.

4.1 Libraries, modules and computing resources

Libraries and modules are a way for developers to easily create new applications, by using
already optimized and efficient tools or algorithms. Python is known to be a programming
language which provides many useful libraries, such as Numpy [32] for the computation
of large matrices or Tensorflow [33] and Keras [34] when dealing with AI and ML. This
section describes the Python libraries and modules used during the implementation of the
autonomous agent. Furthermore, an explanation of how the author speed up the execution
of the training process will be given.

4.1.1 Simulator’s libraries

PySide 2. The Simple Ship Sim simulator requires a set of libraries to run simulations
and display results on a GUI. PySide 2 is the Python library holding the Qt5 framework,
which is a commonly used tool when developing GUIs in Python applications. This API,
developed in C++, provides graphical components and widgets. It was used to implement
the simulator’s interface, which is discussed in more detail in Penttinen and Hupponen
master’s theses. [10, 12, 35]

Open Ai Gym. To implement its maritime environment, the Simple Ship Sim program
uses the Open Ai Gym package. This library was created to evaluate and compare state-
of-the-art RL algorithms. To achieve this goal, it provides a set of benchmarks and envi-
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ronments, such as Atari and board games, that show a common interface. In addition, it
allows the implementation of new environments, that can be added to its growing collec-
tion. Open Ai Gym was chosen to build the Simple Ship Sim simulator, due to the industry
standard it provides and the ease of implementing a new environment. [10, 12, 36]

4.1.2 Agent’s libraries

Tensorflow. To ease the implementation of the agent, many libraries related to ML are
used. Among them stands Tensorflow. This library, developed by Google, provides an
interface for modelling ML solutions on large-scale problems. Today, Tensorflow is a
standard in the industry, due to its good performances, flexibility and ability to run com-
putations on a wide panel of platforms. Firstly used exclusively by Google for research
and development purposes, the library was made open-source in 2015. [33]

Theano. This open-source software performs strong optimisations on mathematical ex-
pressions at compilation time. These expressions are memorised as graphs of variables
and operations, which can be modified to eliminate unnecessary computations. The opti-
misations performed by Theano depend on the target platform and aim at saving compu-
tational and memory resources. The goal of this software is to overcome a limitation of
Python, namely its inefficient interpreter for mathematical computations. [37]

Keras. This open-source Python framework provides APIs that ease the development
of deep neural-networks and ML solutions. It is widely used among scientific organiza-
tions and universities, because of its powerful tools and its flexibility. It can be run with
other libraries, such as Theano and Tensorflow, this last being well integrated with Keras.
This framework was chosen by Penttinen to build the first agents in the Simple Ship Sim

simulator, due to the fast prototyping it allows and the large existing documentation. [10,
34, 38]

Keras-rl. This open-source library provides support on deep RL for the Keras frame-
work. Furthermore, it integrates well with Open Ai Gym environments. Keras-rl imple-
ments many methods, such as the DQN algorithm used by Penttinen. This algorithm, that
has shown good results in many applications, combines RL with deep neural networks.
Since it resulted in Penttinen’s promising agent, it has been reused to solve the RL part of
this master’s thesis. [10, 39]

NumPy. This widely used library is a standard when dealing with large arrays in Python.
NumPy provides array structures that can store large and multi-dimensional matrices.
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These arrays, also called tensors, can be accessed efficiently and saved in specific NumPy

files. Furthermore, the library implements a large number of methods to manipulate and
perform optimised operations on the matrices. It is used during the implementation of
this master’s thesis, due to the use of large vectors and arrays, both in the RL and IRL
algorithms. [32, 40]

IRL. As explained in Section 2.4.3, the method chosen to extract expert intentions,
namely IRL, requires to compute the reward function of the environment. To achieve this,
the library developed by Alger [41] is used to ease the implementation. This library con-
tains different IRL algorithm implementations, including Wulfmeier’s Deep IRL [21]. As
discussed in Section 2.4.3.2, this last is the one used in this master’s thesis. An advantage
of this library is the fact it is not linked to any environment. Instead of having a direct
connection between the IRL algorithm and the environment, it indexes states and actions,
and refers to them with numbers. As a result, using this library with a new environment,
such as the Simple Ship Sim simulator, requires less development costs. Concerning its
implementation, the library works on a Theano backend and provides an interface func-
tion for every algorithm. This function requires various inputs, such as the trajectories

matrix, the state features matrix and the transition probability matrix P of the state space.
These NumPy matrices contains respectively the expert demonstrations, the state feature
values associated to every state and the probability to go from every state to every other
state under each action. The function returns another NumPy matrix, which associates a
reward value to every state.

Matplotlib. This Python package is a tool used to generate figures, including histograms,
maps or diagrams. It was created to provide a cross-platform and high-quality support for
graphic generation in the Python language. In the context of this master’s thesis, Mat-

plotlib is used to display and visualise the intermediate results of the IRL process, which
are stored under the form of NumPy matrices. [42]

4.1.3 Computation time

Multiprocessing. This Python module is used to run in parallel the execution of a pro-
gram on the different CPU cores of the target machine. It provides an API able to create
processes by instantiating its Process class. Those processes can then be launched and
synchronized at the end of the execution. The multiprocessing package also implements
shared memory objects to communicate data between processes. The author used this
module to reduce the computation time of the transition probability matrix, because it is
the most resource-consuming part of the training process. [43]
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CSC services To minimise the computation time of the reward matrix and all the inputs
of the IRL library, the execution is run on distant resources provided by CSC. This com-
pany provides cloud computing services, such as cPouta, which is the one used during
this master’s thesis. This specific service is an IaaS, which allows the user to manage
all the stages of the infrastructure from the application down to the middleware and the
operating system. A virtual machine is created on the server and an SSH connection is
used to communicate. The whole Simple Ship Sim simulator and the IRL agent can then
be transferred on the virtual machine, for training purposes. [44]

4.2 Program structure

Since libraries and computing resources have now been presented, it is possible to explain
how the agent developed in this master’s thesis has been implemented. Based on the
agents previously developed by Penttinen and their corresponding Python classes, the
author created an interface named Agent. This interface declares all the methods required
by an agent to run in the Simple Ship Sim environment. The author later implemented
the class IRL, which inherits from the previous interface and implements all the required
methods. Furthermore, the IRL class defines new methods to compute the reward matrix.
A UML diagram of this class is illustrated in Figure 4.1.

The methods declared in the Agent interface allow to initialise (init_model) or load
(load_from_file) the agent’s neural network, to perform one step in the environment (step),
to learn a new policy (train), to define the state (get_observation_space) and action
(get_action_space) spaces, to compute the current state (get_state), to obtain its corre-
sponding reward (get_reward) and to perform actions on the actuators based on the pre-
diction of the neural network (take_action). The only attribute of the interface is the path
of the agent’s neural network file.

The inheriting class IRL owns a larger list of private attributes. These attributes aim
at defining the discrete state space (sta_dest, sta_rudder, sta_cpa, sta_maxcpa_angle),
giving the number of states, actions and state dimensions (n_sta_dest, n_sta_rudder,
n_sta_cpa, n_sta_maxcpa_angle, n_states, n_actions, n_dimensions), and holding the
computed reward matrix (reward_matrix). In addition to the required methods, it imple-
ments new ones to compute the reward matrix through IRL (get_transition_probability,
get_trajectories, get_reward_function), to identify actions or states by their numbers
(get_num_from_state, get_state_from_num, get_action_num), and to duplicate the learn-
ing data (get_reversed_action_num, get_reversed_state_num). In addition, a short method
shows a use example of the IRL library (irl_test). The most important methods of both
classes are further discussed below and some are illustrated by flowcharts in Appendix B.
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Figure 4.1: UML diagram of the Agent interface and the IRL class, without any informa-
tion about methods’ parameters and return values, for readability purposes.

4.2.1 get_state() method

The get_state() method is required because it computes and returns the current state of
the agent. Therefore, it gives the input of subsequent functions, including the reward
computation and the neural network prediction. The state is returned as a tuple, which
holds the current value of all state features. For the IRL agent, these features are the
destination angle, the rudder angle, the DCPA and the maximum DCPA angle.

While the rudder angle is simply copied from the Ship object’s attributes, the desti-

nation angle θ is calculated with the formula in Equation (4.1). First, the absolute angle
between the environment’s horizontal axis and the vector connecting the agent to its des-
tination is calculated. Then, the agent’s absolute heading is subtracted from the result.
Finally, this angle is converted in degrees and adjusted between -180° and +180°.

θ = atan2(ydestination − yagent , xdestination − xagent)−headingagent (4.1)

The computation of the two last state features, i.e., the DCPA and the maximum DCPA

angle, is more complex. First, the minimum distance in the future between the agent and

36



every foreign ship is calculated. The future (x,y) coordinates of all vessels are therefore
computed, to determine where and when two ships will be the closest to each other. The
estimated coordinates of a vessel depend on its current position, heading and speed at
time t, as shown in Equations (4.2) and (4.3). The parameter α is gradually increased
to compute the successive positions of both vessels and, therefore, the successive dis-
tances between them. The shortest distance is the last value before the distance begins
to increase. After determining the future minimum distance between the agent and every
other vessel, the smallest one is taken as the DCPA value.

To reduce the computation time, positions are calculated every increment seconds.
This variable is decreased during the process, until the minimum distance is found. This
allows to both have a precise minimum distance and avoid computing unnecessary posi-
tions. Furthermore, the parameter α in Equations (4.2) and (4.3) is limited to 900 seconds,
in order to exclude risk-prone situations that are too far in the future.

xt+α = xt + cos(headingt)∗ speedt ∗α (4.2)

yt+α = yt + sin(headingt)∗ speedt ∗α (4.3)

The same computation is performed for every agent’s relative heading between -20°
and +20°, 0° being the original heading. This enables to obtain the DCPA trace, as illus-
trated in Figure 3.8. The local maximums, depicted with green dots in the figure, are then
determined. A last function chooses the safest relative heading angle from the DCPA trace.
All local maximums lower than 0.8 times the highest one are eliminated and, among the
remaining ones, the closest to the current heading, i.e., 0°, is designated as the maximum

DCPA angle. This allows to avoid unnecessary turns.

4.2.2 get_reward() method

The get_reward() method maps a state to its corresponding reward in the reward_matrix

attribute. However, a requirement of the IRL library is to identify all possible states and
actions with a unique number. These numbers are used as indexes in the reward_matrix ar-
ray. Consequently, the author implemented three methods, namely get_num_from_state(),
get_state_from_num() and get_action_num(). The first one converts a state tuple into an
integer index. The second one performs the reversed operation. The last method converts
an action, i.e., turning the rudder, into an integer index. The get_reward() method is now
able to determine the index of a state tuple and to return the corresponding reward value.

In addition, a conditional statement was added to check if the agent is in the Rotter-
dam’s maritime channel, illustrated in Figure 3.2. If not, the agent receives an additional
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negative reward and a collision happens. This may lead the agent to learn primitive be-
haviours on how to stay in the sea channel, on the specific map of Rotterdam waters.

4.2.3 train() method

The train() method aims at learning an efficient policy that will control the agent’s deci-
sions. When training classic RL agents, only the policy needs to be calculated. Neverthe-
less, the algorithm used in this master’s thesis requires to compute more elements, such
as the reward matrix. As explained in Section 4.1.2, the IRL library requires three matri-
ces as input. The feature matrix can be computed easily, because it is simply a mapping
between the state index and the corresponding feature values. However, the two others,
namely the transition probability matrix and the trajectories matrix, need time-consuming
calculations. Therefore, it is preferable to implement separated methods, which compute
and save the matrices before returning them to the main train() method. The computation
of the reward matrix through IRL suffers the same issue and has also a dedicated method.
These methods are explained in detail in the following sections.

As a consequence, the computations of all intermediate results are divided into their
respective methods. This separation allows to run only some parts of the training process,
with the intention of using the results later. Thus, a parameter, specified when launching
the process in command line, was added to the train() method. It consists of a string, that
can contain the five following characters: t, p, a, i and r. Each letter, acting like a flag,
enables the computation of an intermediate result or the display of debug information.

4.2.4 get_transition_probability() method

The transition probability matrix P is the first input matrix needed by the IRL library. As
deduced from Equation (2.6), the size of this three-dimensional matrix is (ns,na,ns), with
ns and na being respectively the number of states and actions.

To compute such probabilities from the simulator, the author implemented the method
get_transition_probability(), which is called by the method train(). This method is based
on an iterative process where randomness is used to obtain unbiased probabilities. Each
iteration consists of letting the agent performing a random action in a random state, before
noting in which state it ends up. By repeating this iteration a sufficient number of times,
it is possible to draw all transition probabilities.

However, three difficulties raise when implementing this method. First, the random
situations need to resemble to the ones in the dataset. Second, the computation time
of each iteration needs to be as short as possible, since tens of millions of repetitions are
required to ensure accurate probabilities. Third, the distribution of states must be uniform,
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since the most inaccurate probabilities would be the ones describing the state that appears
the less during the process.

To ensure situations are similar to the ones in the dataset, the agent is first placed in
the centre of a ten-kilometre square. While its speed is fixed at the value chosen in Section
3.3.1, i.e., 9.26 metres per second, its destination coordinates, heading angle and rudder
angle are set randomly. In addition, three other vessels are randomly placed in the square.
Because foreign vessels are on average slower than the experts in the dataset, these ships
have a lower speed, i.e., 6.0 metres per second. Furthermore, to make the distribution of
states uniform, all ships are converging towards the agent’s destination. This enables to
increase the probability of collisions with the agent and, therefore, reduces the number
of required ships. Thus, the computation time is decreased, because the simulation runs
faster. After placing all vessels, the current state number i and action number a are com-
puted with the methods get_state(), get_num_from_state() and get_action_num(). One
simulation step is then performed in the simulator, before computing the new state num-
ber k. As a result, the value in P[i][a][k] is incremented. When all iterations are completed,
the matrix is normalized to obtain probability values between zero and one. The matrix is
finally saved in a NumPy format.

To speed up even more the computation, the author decided to divide iterations be-
tween all CPU cores of the computer. The package multiprocessing, discussed in Section
4.1.3, is used to launch one process per core. When started, processes call the method
get_transition_probability_slice(), where all the previous computation has been moved.
The result matrix, shared among processes, allows each process to increment it. The ma-
trix is normalized after all processes are completed and synchronized. As a consequence,
the computation time is nearly divided by the number of CPU cores.

4.2.5 get_trajectories() method

The trajectories matrix, which contains the expert demonstrations, is the second input
needed by the IRL library. The goal of the method get_trajectories() is to compute
and save the state-action pairs from the raw dataset. The size of the resulting three-
dimensional matrix is (nt , lt ,2) , with nt and lt being respectively the number of trajecto-
ries and their length in time steps. The last dimension holds both the index of the state
and the one of the action in the current sample. The approach used to compute this ma-
trix consists of, first, incorporating every expert situation in the simulator and, second,
retrieving the state and action indexes with the IRL class methods.

Among the variables present in the dataset and selected in Section 3.1.1, the author
focussed on the latitude and longitude values. From these variables, it is possible to re-
place every vessel in the (x,y) coordinate system of the simulator. Furthermore, by using
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the very next position coordinates, it is possible to deduce the vessels’ absolute SOG and
COG, this last being equivalent to the absolute heading in the Simple Ship Sim simulator.
The author justifies his choice to recompute these variables, available in the raw dataset,
by answering the problem of map projection. While latitude and longitude are spherical
coordinates, the simulator works with Cartesian coordinates in a two-dimensional envi-
ronment. Therefore, distortions occur during the conversion. Even if they may be small
when working on small-scale areas, they can still appear, especially between the south
and the north of the map. For instance, when considering the map chosen in Section
3.2.2, the distance between the upper right and left corners is actually shorter than the
distance between the lower right and left corners. In addition to the position, the author
uses the successive rudder angles to set the vessels in the environment and to determine
the actions taken by the operators. Finally, the last position of every scenario is used as
the destination, for all the samples in this scenario.

Based on the size of the matrix, another requirement of the IRL library can be de-
ducted: all expert trajectories must be the same length. However, scenarios show variable
lengths between 3,300 and 5,400 time steps. Therefore, they are divided into reduced tra-
jectories of one hundred samples, to lose only a few samples at the end of every scenario.

Finally, to implement the data augmentation technique defined in Section 3.1.4, the
methods get_reversed_action_num() and get_reversed_state_num() were added. The lat-
ter take respectively as input the index of an action or a state and return the index of the
reversed action or state. For instance, the state index is first converted into a state tuple
with the method get_state_from_num(). The opposite values of the rudder angle, desti-

nation angle and max CPA angle are then calculated. Finally, the index of the new state
is calculated with the method get_num_from_state().

4.2.6 get_reward_function() method

When all required matrices are computed or loaded, it is possible to calculate the reward

matrix with the IRL library. The method get_reward_function() starts by creating the
feature matrix, which associates to each state the corresponding feature values. Because
the computation time of the reward matrix severely increases with large state spaces, the
author tried to run in parallel this function by launching different processes that call the
method get_reward_function_slice(). Every execution of this method computes a reward

matrix. These matrices are then merged into one unique matrix, which is the one returned
by the method get_reward_function(). However, due to the lack of consistency in merged
matrices, the author finally decided to compute a single matrix in one unique process .
Nevertheless, the code structure for parallel computation is preserved for further work.
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5. Results and evaluation

Now both the IRL agent’s design and implementation have been explained, it is possible
to present and evaluate the resulting behaviours against various situations.

This chapter will present the main intermediate and final results of the IRL process.
Firstly, several visualisations of the trajectories matrix will be shown. Secondly, the
shape of the reward matrix will be discussed. Thirdly, the final autonomous agent will be
evaluated through simulations on different types of situation. Finally, improvements over
the previous state-of-the-art agent in the simulator will be presented.

5.1 Expert trajectories

The first interesting result is the trajectories matrix. This matrix stores the expert demon-
strations under the format designed by the state and action spaces. In this section, two-
dimensional histograms are used to visualise this matrix under different point of view.
The goal is to uncover some patterns, in order to validate the state space features designed
in Section 3.3.

Figure 5.1: Expert trajectories’ states, with the rudder angle in function of the destination
angle, in number of occurrences in the dataset.

The first visualisation, appearing in Figure 5.1, draws the experts’ rudder angle in
function of their destination angle. The metric is the number of occurrences in the dataset,
of each combination of these angles. As it can be seen in the figure, the experts are more
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likely to have a positive rudder angle when having a positive destination angle. In other
words, they prefer turning to the right when their destination is also on the right. Con-
versely, they turn more often to the left when their destination is on their left. As a result,
the experts converge towards a destination angle of zero degree, i.e., they navigate to-
wards their destination. This is confirmed by the high occurrence of the central state,
where both angles are null. The pattern observed in this histogram proves that the combi-
nation of both features, namely the rudder angle and the destination angle, can be suited
to navigate the agent to its destination.

Figure 5.2: Expert trajectories’ states, with the rudder angle in function of the maximum
DCPA angle, in number of occurrences in the dataset.

The second visualisation, illustrated in Figure 5.2, plots the rudder angle in function
of the maximum DCPA angle. Like in the last figure, a pattern can be identified in this
histogram. When the maximum DCPA angle is positive, i.e., when the estimated safest
path is on the right, the experts prefer turning to the right. On the contrary, they turn more
often to the left when the safest path is also on the left. Moreover, no preference is shown
when the maximum DCPA angle is null. This pattern confirms that this pair of features
can be used to answer the task of collision avoidance. These results also demonstrate that
the implementation of the maximum DCPA angle allows to find the safest path most of the
time.

The third and last visualisation, shown in Figure 5.3, plots the rudder angle in function
of the current DCPA value. As it was designed for, this feature informs the agent when
altering the trajectory is required. On the one hand, the experts rarely modify their heading
when being in safe situations, i.e., when the DCPA value is high. On the other hand, they
deviate more often from their trajectory when this value is low. Therefore, this metric can
be considered as a valuable threshold for collision avoidance.

42



Figure 5.3: Expert trajectories’ states, with the rudder angle in function of the current
DCPA value, in number of occurrences in the dataset.

5.2 Reward function

The second intermediate result presented in this chapter is the reward matrix. This matrix
is a representation of the expert intentions, when navigating in the demonstration sce-
narios. As explained in Section 2.2.4, this matrix holds a reward for every state and is
later used to train the agent through RL. To visualise this matrix, the same three previous
representations are used and illustrated in Figure 5.4.

In these visualisations, blue states are beneficial while green and yellow ones are
unfavourable. Therefore, when looking at Figure 5.4, some logical patterns can be seen.
For instance, when the destination is on the right of the agent, this last obtains more reward
by turning to the right. Nevertheless, this type of logical pattern does not fulfil the whole
matrix and many incoherent or even senseless values appear. For example, the agent
acquires more reward when turning to the right while its destination is on its left. Another
example is the high reward obtained when the current DCPA value is low, i.e, when there is
a risk of collision. These unexpected results can be seen, with human eyes, as unwanted
behaviours. However, two significant elements are usually not considered when looking
at this matrix. Firstly, when learning through RL, the agent takes into account the discount
factor discussed in Section 2.5.2. This factor has a major influence during the training,
because it forces the agent to focus on a long term efficiency. As a result, it will not
always choose the action which gives the maximum immediate reward. Secondly, the
author integrated in the state space the current agent’s rudder angle, which has a direct
effect on the agent’s trajectory. Therefore, modifying the value of this feature, by turning
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(a)

(b)

(c)

Figure 5.4: Reward matrix representations, with the rudder angle in function of the des-
tination angle (a), of the current DCPA value (b), and of the maximum DCPA angle (c).
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the rudder, has medium- or long-term consequences on the other variables. Thus, tasks,
such as reaching the destination, are caught between pairs of features. The agent is then
able to converge towards the best combination of feature values.

In addition, these results highlight the purpose of IRL. It is commonly stated that the
most critical part when solving a RL problem is to design the reward function. Moreover,
it is sometimes impossible to define it manually, since it is a complex abstract represen-
tation of expert intentions, that does not consider the discount factor. The unexpected
reward function obtained in this master’s thesis perfectly illustrates this difficulty, since
the author would not have designed such a function if he did it manually. [14, 17]

5.3 Navigating agent

From the reward function was learned, through classic RL, a policy that controls the
agent’s behaviours. This section aims at evaluating this policy, which is the final result
of this master’s thesis. However, no evaluation benchmark exists for the specific problem
of navigation in the Simple Ship Sim simulator. In addition, there is no available metric
to evaluate the agent, since the experts, i.e., Aboa Mare students, were evaluated by the
overall appreciations of their teachers over their performances. Due to this lack of evalua-
tion metrics, the author opts for a qualitative evaluation rather than a quantitative one. The
success criterion is the capacity to answer the three tasks the agent was built for, namely
navigating in its environment, reaching the destination and avoiding collisions.

The policy is tested in scenarios the agent never experienced during its training.
Firstly, simple scenarios involving few vessels verify the agent’s ability to answer classic
situations. Secondly, a complete and more complex scenario demonstrates the agent’s
skills to navigate in complex situations involving many vessels.

5.3.1 Simple situations

The four scenarios illustrated in Figure 5.5 are used to evaluate the IRL agent on simple
situations requiring little manoeuvre. In the figure, the agent’s paths are represented by the
grey lines and the arrows indicate the current heading and speed of vessels. Longer is the
arrow, faster is the agent and vice versa. Tests lead to the conclusion that the agent is able
to reach its destination (a), to overtake a slower vessel or to be overtaken (b), to answer a
head-on situation (c), and to cross the trajectory of another vessel without colliding with
it (d). The agent learned both to alter its path to avoid an obstacle and to recover the most
direct trajectory towards its destination. The three navigation tasks are then completed in
simple situations. Furthermore, since some of the test situations were not present in the
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expert demonstrations, such as the head-on confrontation, these simulations demonstrate
the high generalisation performed by the RL algorithm and the designed state space.

(a) (b)

(c) (d)

Figure 5.5: Simulation of the IRL agent in simple situations, i.e., reaching the destination
(a), overtaking and being overtaken (b), head-on situation (c), and crossing (d).

5.3.2 Complete scenario

In addition to the previous scenarios, a more complex one is elaborated to test the agent’s
ability to answer the three tasks when navigating around many vessels. This scenario,
illustrated in Figure 5.6, consists of the agent navigating in the Rotterdam maritime chan-
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nel, from west to east, while finding its way through different flows of vessels. In the
figure, the arrows illustrate again the vessels’ heading and speed. The path of the agent
is indicated by the gray line, while the ones of other vessels have been disabled for read-
ability purposes.

This test highlights the agent’s capability to answer multi-vessel situations and its abil-
ity to find the safest and most efficient path among all available options. When overtaking
a group of vessels (a, b), the agent chooses the path that will leave the other vessels as far
away as possible. Additionally, it anticipates the other vessels’ trajectories when crossing
through the gap in the perpendicular flow (c, d). Finally, it is able to avoid stationary
obstacles without unnecessary detours (e, f).

5.4 Improvements over state-of-the-art agent

To complete the agent’s evaluation, a comparison is made with the previous state-of-the-
art agent in the simulator, that is, the DQN agent implemented by Penttinen [10]. Thus, it
is possible to highlight the improvements brought during this master’s thesis.

Firstly, the IRL agent is totally controlled by the AI, while this is not the case of the
DQN agent. This last was piloted by the neural network only during critical situations,
where another vessel is close to the agent. An autopilot function guides, the rest of the
time, the agent towards its destination. As a consequence, the IRL agent is more au-
tonomous that the one presented by Penttinen. Moreover, the neural network answers the
new task of reaching the destination, which was completed by the autopilot function in
Penttinen’s agent.

Secondly, the IRL agent is able to answer complex situations, unlike the DQN agent.
Since this last focusses on the closest vessel when avoiding collisions, it is blind to every
other vessel. Therefore, it struggles to answer multi-ship situations. On the contrary, the
IRL agent can find the safest path in a flow of vessels, as shown in Figure 5.6 (b, d).

Thirdly, while the DQN agent was built to strictly follow the COLREGs rules, the IRL
agent is able to identify and take more efficient paths, like real navigators would. This
can be seen in Figure 5.5 (d), where the agent coming from the lower left corner prefers
crossing in front of the other vessel, because it knows this manoeuvre will require less
effort. In this situation, COLREGs rules would recommend to cross behind the vessel
coming from the right. The IRL agent also considers, through the DCPA and maximum

DCPA angle features, the COG and SOG of other vessels when choosing its actions. This
was not the case with the previous agent, which only considered the current distance to
the closest vessel and its relative angle of approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Simulation of the IRL agent in a complex scenario, where the salmon-coloured
vessel is the agent and yellow ones are vessels simply navigating towards their respective
destinations. The agent’s goal is to navigate in the Rotterdam sea channel from west
to east while avoiding other vessels. It first needs to overtake a group of ships (a, b),
before crossing a flow a vessels going from south to north (c, d), and finally reaching its
destination while avoiding stationary ships (e, f). Pairs of images represent the beginning
and the end of each situation.
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6. Conclusion

In this master’s thesis, the method of IL was used and tested in the context of autonomous
navigation. Furthermore, it has been shown that the algorithm of IRL can bring many
improvements in this complex domain, where the reward function of the environment is
difficult to manually design. The resulting agent, built as a proof of concept, is able to
answer the three main tasks of maritime navigation, namely moving in its environment,
heading towards its destination and avoiding collisions. The resulting simulations also
demonstrated how the designed state space and the IRL process enable a high generalisa-
tion of the problem.

The proof of concept agent was implemented and evaluated in the Simple Ship Sim

simulator, provided by the MAST! Institute team and Åbo Akademi University. Further-
more, it was trained with student navigator demonstrations, issued from the Aboa Mare
maritime academy. The agent’s performances were assessed by the author appreciation
on the performed simulations. The latter contained both simple and complex situations,
requiring various behaviours. However, due to the absence of evaluation metric or formal
proof, the resulting agent’s performances could be questioned. Nevertheless, the goal of
this master’s thesis has been reached, since the used evaluation technique is sufficient to
demonstrate the agent’s ability to answer situations similar to the ones performed by the
experts in the dataset. Furthermore, it is able to handle unknown scenarios or even ones
it never had demonstrations on.

The simulator used to implement and test the developed agent remains very simple
and does not represent all the aspects of the real-world maritime navigation. Therefore,
this agent would be unable to navigate and control a real vessel, where the forces applied
on the ship are much diverse and complex. However, this proof of concept shows promis-
ing results with limited resources, and introduces the use of IRL in such environments.
Because the Simple Ship Sim simulator has the potential to be upgraded, in order to better
match with the outside world, an improved version of this agent, more robust and effi-
cient, can be expected in the near future. Furthermore, implementing a new IRL agent
in a more powerful simulator, such as AILiveSim [45], could be a continuation of this
master’s thesis.
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6.1 Future work

The promising results shown in this master’s thesis open the door to future improvements.
To answer the given objectives, the author made many compromises and simplifications.
For instance, the agent’s state space was severely reduced and discretised to allow reason-
able computation times. A starting point for ameliorations would be to run trainings on
more powerful computational resources. This would enable to design a much bigger state
space and use continuous state features with wider ranges. In addition, the full DCPA trace

could be given as an input to the neural network without the prior calculation of the max-

imum DCPA angle. The neural network would then analyse the trace and determine, by
itself, where is the safest path. These modifications could help to refine the agent’s trajec-
tory, in order to have faultless behaviours. In addition, more actions, such as accelerating
and decelerating, could be added to the action space.

A second basis for improvements would be to use a better and larger dataset. Due to
the lack of data, it was impossible to select only excellent demonstrations. As a result,
some expert trajectories were suboptimal. However, the principle of IL requires to show
only perfect behaviours to the agent. Therefore, having a more complete dataset would
enable to retain only the best possible examples. In addition, the dataset used in this
master’s thesis shows a poor distribution, with mostly overtaking and crossing situations.
Using a more distributed dataset could help to better answer all types of scenarios.

A third amelioration, linked to the second one, would be to abandon the data augmen-
tation process. Despite the benefits it gives on small datasets, mirroring the data brings
inconsistencies in maritime navigation, since COLREGs rules respect priorities, such as
the priority to the right in crossing situations. This issue is illustrated by the IRL agent,
which does not systematically follow these priorities, even when an available path that
respect them is equivalent in terms of efficiency. Using a larger dataset could, therefore,
allow to get rid of data augmentation.

Finally, because the experimentation takes place deep in the sea off Rotterdam, the
agent is unable to learn how to avoid lands. Therefore, including lands, both in the dataset
and in the state space, could help the agent to navigate near the coast or in ports.
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Appendices
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A. Simple Ship Sim program structure

Figure A.1: Penttinen’s illustration of the Simple Ship Sim program structure. [10]
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B. IRL agent’s main methods’ flowcharts

Figure B.1: train() method’s flowchart.
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Figure B.2: get_transition_probability() method’s flowchart.
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Figure B.3: get_transition_probability_slice() method’s flowchart.
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Figure B.4: get_trajectories() method’s flowchart.
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Figure B.5: get_reward_function() method’s flowchart.
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