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Abstract

In this thesis, a phased long short-term memory model is implemented to predict the blood
glucose level in patients with type-1 diabetes with a 30-minute forecast. We will continue
previous work by extending the standard long short-term memory deep neural network
model with a phased LSTM cell. The model is trained on the OhioT1DM dataset from
the BGLP challenge. This study will try to solve a standard LSTM model’s bottlenecks by
using a phased LSTM model. Furthermore, an attention-based phased LSTM model will
be implemented to achieve explainability to this research topic’s models. An attention-
based phased LSTM model performs best if trained on a larger dataset. The performance
is on par with previously implemented methods for predicting blood glucose levels from
the BGLP dataset.

Keywords: Blood glucose level prediction (BGLP) challenge, Long short-term mem-
ory (LSTM), Phased long short-term memory, Explainable AI (XAI)
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Chapter 1

Introduction

With a growing demand for solving complex problems with deep neural networks, the
University of Ohio created a Blood Glucose Level Prediction (BGLP) challenge. The
BGLP challenge was initially released in 2018 to facilitate research on blood glucose level
prediction. This challenge aims to create a powerful machine learning model to forecast
blood glucose levels. Alongside this challenge, Ohio University released the OhioT1DM
dataset, a dataset with real-time data from 6 different patients with type 1 diabetes. The
dataset contains data from eight weeks of continuous blood glucose level, insulin level,
physiological sensor, and self-reported life-events monitoring [1]. In 2020 the university
added data from six more patients to the OhioT1DM dataset. These six new patients have
more features recorded, which the University of Ohio hoped would spark interest in the
research topic.

This master’s thesis will address a long short-term memory model’s issues when train-
ing and predicting on sparse data. We hypothesize that a phased long short-term mem-
ory model will achieve the same or better level of accuracy on a dataset that has not
been preprocessed. Previous research has shown that a phased long short-term memory
model converges faster than a standard long short-term memory model and works better
on sparse data. With the help of an attention layer in our model, we hope to introduce
explainable artificial intelligence (XAI) to this research topic. XAI could enhance feature
extraction and model tuning, which would speed up research on this topic. There are few
published research papers as of early 2021 that would explain which features are the most
important in the OhioT1DM for training a Recurrent neural network.

This study will implement three different model architectures and train models from these
architectures on the six original patients from the OhioT1DM dataset. The first model ar-
chitecture is a copy from earlier research. This model will become our benchmark model
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to verify that our preprocessing has been done correctly and verify our data extraction
method. The second model will have the same number of layers as the first model ex-
cept that the long short-term memory layer will be swapped for a phased long short-term
memory layer. The second model should have a better result than the benchmark model
and converge faster while training. The third and final model architecture will extend the
second architecture by adding an attention layer as the first layer to the models. The at-
tention layer produces an attention vector from which observations can be made to what
feature correlates best to the predicted output. With the help of the attention vector, we
hope to provide this research topic with explainability and speed up future research in this
area.

1.1 Previous work

There is a wide variety of previous work on this dataset, where new methods are tried
out to creating the most powerful model for predicting BGL. From classical time-series
approaches to more sophisticated techniques like the long short-term memory (LSTM)
model.

In a research paper written by Jinyu Xie and Qian Wang, two types of methods were
tested to benchmark machine learning approaches with time-series approaches on the
BGLP challenge. Their results suggest no significant difference between the machine
learning models and the classic ARX model. Their methods included comparing the
classical autoregression with exogenous inputs (ARX) model, Huber Regression, Ridge
Regression, Elastic Net Regression, Lasso Regression, Support Vector Regression with
Linear Kernel, Support Vector with Radial Basis Kernel, Random Forest, Gradient Boost-
ing Tree. Furthermore, they used two deep learning methods: a standard LSTM model
and a Temporal Convolution (TCN) model [2].

In another research paper proposed by El. Idriss et al., an LSTM neural network is
proposed with two fully connected layers and a single LSTM layer for this same chal-
lenge. This model was compared with another existing LSTM and an autoregression
(AR) model. The results show that their LSTM outperforms the contending LSTM model
for all the patients and 9 of 10 patients for the AR model [3]. In the research paper, El
Idriss et al. aimed to identify the best configuration of parameters for the LSTM model
by doing a grid search. In grin search, multiple parameter values are chosen, and a model
is created from each of the possible combinations. The resulting models are then trained
and compared with each other to find the best set of parameters; read more about the pa-
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rameters selected in Chapter 3. The performance of this model is the best we have found
in a research paper. Therefore, this will be the first model architecture and our benchmark
for this thesis study.

A research paper by Robert Bevan and Frans Coenen investigated the need to train in-
dividual models (i.e. per patient) to predict blood glucose levels with the help of the
OhioT1DM dataset. This research paper compared various model classes such as lin-
ear models, feed-forward models and LSTM models. Furthermore, they incorporated an
LSTM model with an attention mechanism to predict blood glucose levels. To find the best
possible model, they tuned the model with multiple hyperparameters and experimented
with the history length passed to the model while training. The best result was achieved
with a history of 30 minutes (six samples). Furthermore, the attention mechanism pro-
vided better results than the other models and models trained on all of the data outper-
formed models trained individually. [4] The same data processing techniques will be used
in this study as Bevan and Coenen used in their experiments. (https://github.com/robert-

bevan/bglp)

1.2 Problem statement

Previous work shows an extensive job of preprocessing the data. The LSTM model re-
quires the data to be processed, and if possible, without missing values. With our ap-
proach, we do not need to process the data as much. Therefore, making the model much
more valuable to real-life scenarios and speeding up the implementation of the models.
The benchmark model achieved a root mean square error (RMSE) value of the predicted
blood glucose level down to as low as 12.38mg/dl [3]. In this study, we aim to achieve
the same level of accuracy with less to no preprocessing.

Previous research used an attention mechanism to perform better when predicting blood
glucose levels for the BGLP challenge. Another benefit of the attention mechanism is
the attention vector provided by the attention layer. The attention vector describes which
features are considered when the prediction is made. Previously explainable AI (XAI) has
been a black box for this kind of research. By implementing an attention-based PLSTM
model, we hope to understand better which features affect the prediction the most. With
explainability, future research can be weighted towards a more narrow viewpoint, achiev-
ing even better results.
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Chapter 2

Deep learning

2.1 Machine learning

Deep learning has evolved into the new norm for machine learning and artificial intel-
ligence thanks to decreased computational power. Deep learning is a form of machine
learning where a deep neural network, a model, is trained on a dataset to predict or esti-
mate values or classifications for new unexplored data that resembles data from the dataset
trained on. These models can be used in audio recognition, computer vision, natural lan-
guage processing, and much more. In this paper, we are using a deep learning model in
a regression problem. The model will predict the blood glucose levels with the help of a
dataset on patients with type-1 diabetes.

2.1.1 Regression

Regression is a statistical method used to estimate a dependent variable’s relationship to
one or more independent variables. The most common type of regression method is linear
regression. In linear regression, the prediction is computed by the weighted sum of the
input features, plus a bias. The linear regression can be written in many ways. However,
the most common is the vector form, as shown in equation 2.1, where ŷ is the predicted
value, θ the angle and x the feature variable.

ŷ = hΘ(x) = Θ∗ x (2.1)

The angle of θ is referred to as the weight. When training a model, the weight is tweaked
to fit as close as possible to the actual value; Figure 2.1 is a visual example of linear re-
gression.
Computers are accurate at producing the correct weights in regression, given the input
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features and output value, even with polynomial regression and multi-dimensional re-
gression. Therefore, regression is used as the building block for many machine learning
approaches.
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Figure 2.1: Linear regression example

2.1.2 Deep learning

A subsection of machine learning is deep learning. In deep learning, a neural network is
created with multiple layers and thousands of neurons. Each layer consists of one or more
neuron, and each neuron is assigned a weight. The weight and the input value is passed
through an activation function, which determines if the neuron is active or not. An active
neuron passes its value to the next neuron as the input value, and a deactivated neuron
will block the value to be passed forward. The neuron value is calculated with the help of
the input value, the neuron weight, plus a bias.
As stated earlier, computers are very efficient at tuning these weights to produce the de-
sired output. The desired output is the output of the last layer. An error is calculated
with the help of a loss function; the error is the average difference between the last layer
outputs and the actual values of a batch of samples. By tracking the loss function over
time, we can determine the rate at which the model is approaching the optimum value.
If a graph is drawn from the loss function, the angle of the slope would be the gradi-
ent. The gradient determines the amount each weight is adjusted when going through the
model backwards, backpropagation. The steeper the gradient is, the more each weight is
adjusted. Adjusting these weights based on the known output value given the input values
is called training the network.

When training, the network is sent samples and given the correct output value, known
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as the training data. These samples are passed through the network multiple times, each
time calculating the new error value with the help of a loss function. The gradient of the
loss function is then backpropagated through the model, which tunes the weights in each
layer. This sequence is called an epoch. Once the training data have been used to tune
these weights, the network can predict an unknown value given new, never seen before
input values. This is the core function of a neural network. The more a network is trained,
the better it will become at predicting the output.
If the number of samples is too low, the network will learn the training data too well, also
known as overfitting the data. If the number of samples is too high, and the network is
not trained for enough epochs, the model has not learned enough to predict a reasonable
output; this is called underfitting the data. A balance is found through trial and error.

2.2 Recurrent neural network

Recurrent neural networks introduce an extension to feedforward networks, where the
previous step is fed as an input to the current step. This allows information to persist and
the network to consider earlier data. With the help of this addition, neural networks can
build connections between data in time—for example, a network with relations between
words in language modelling and translation. Recurrent neural networks, or RNNs, allow
the information to be passed inside the node from one step of the network to the next, as
shown in Figure2.2.

Figure 2.2: Recurrent neural network node

The drawback of a recurrent neural network is that it suffers from short-term memory.
When a sequence is too long, connections between input values from the beginning are
lost due to vanishing gradients. Each time the gradient is passed through a layer, it be-
comes smaller, and when it is passed through enough layers, it vanishes. The earlier
layers’ weights are not updated because of the vanishing gradients, thus forgetting the
first values passed to the model.
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2.2.1 LSTM — Long Short-Term Memory

A long short-term memory cell, or an LSTM cell, is a recurrent neural network cell. This
cell was created to solve vanishing gradients’ problem and allow long-term connections
to persist throughout the model. These cells have internal gates that regulate the flow of
data from cell to cell. Figure 2.3 shows a graphical overview of how an LSTM cell is
built.

Figure 2.3: LSTM Cell

Where Xt is the input value and ht the hidden state of the cell, the cell state is named Ct . ht

and Ct are passed to the next neighbouring cell. ht−1 is concatenated with the input value
Xt to form a vector pair used throughout the cell; let us call this the input vector.
The input vector is first passed through the forget gate, as shown in Figure 2.4. The
information is passed through a sigmoid function that outputs a value between 0 and 1;
0 means to forget, and 1 means to keep the value. This gate allows information to be
forgotten, which helps with long-term connections between data.

Figure 2.4: LSTM - Forget gate
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The next gate in the LSTM cell is the input gate. The input gate is used to update the state
of the cell, shown in Figure 2.5.

Figure 2.5: LSTM - Input gate

The input gate consists of two functions. The first function is the same as the forget gate,
and it works the same way, dictating if the value should be kept or forgotten. The second
function is a tanh function which transforms the vector into a value between -1 and 1.
This function is used to help regularize the network. The output of these functions is then
multiplied by each other. Figure 2.6 is a representation of the tanh function.
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0
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x

ta
nh

(x
)

Figure 2.6: Tanh function

The cell state is updated with the help of the forget gate and the new input value. The
old cell state, Ct−1, is first multiplied by the forget gate; values closer to 0 will drop the
current state. Then a pointwise addition is done with the input vector and the current state.
The output of this is the new cell state Ct .
The last gate in the LSTM cell is the output gate, shown in Figure 2.7. The next hidden
state is calculated through the output gate. The input vector is passed through a sigmoid
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function (same as the forget gate), the current state is passed through a tanh function. The
output of the two functions is then multiplied to form the new hidden state ht . The output
gate is also used for predictions.

Figure 2.7: LSTM - Output gate

2.2.2 Phased LSTM

The phased LSTM cell extends the LSTM cell by adding a new time gate kt , sometimes
called the Kronos gate. A rhythmic oscillation controls this gate, much like a sinus wave,
and the oscillation determines if the cell states Ct and ht can be updated. The oscillation is
determined with three different parameters; The first parameter, τ , controls the real-time
period of the oscillation (how fast it oscillated). The second, ron, controls the on/off ratio
of the gate. The third, s, controls the phase shift of the oscillation to each phased LSTM
cell. All these parameters can be trained during the training of the model. [5]. Figure 2.9
contains a schematic overview of the phased LSTM along with a graph describing how
the state is updated only when kt is active. The internals of a phased LSTM cell resembles
the standard LSTM cell, with the addition of a gate at the end of the cell, the Kronos gate.
Figure 2.8 represents the phased LSTM cell, where the Kronos gate is added to the end of
the cell compared to the standard LSTM cell.

The advantage of a phased LSTM cell is that it converges faster on long input sequences,
and it learns faster than regular LSTM or other RNNs. The normal LSTM cell struggles
with sparse computation, while the phased LSTM cell allows for sparse computation [5].
Furthermore, the sleep period acts like a dropout function, regularizing for robustness. A
normal dropout function will randomly ignore a percentage of the input values. Thanks to
the sleep period, backpropagated gradients are preserved across many time steps, resulting
in fast learning on long sequences. With the correct loss function, the phased LSTM layer
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Figure 2.8: Phased LSTM Cell

Figure 2.9: Diagram of Phased LSTM behaviour. (a) Top: The rhythmic oscillations to
the time gates of three different neurons; the period /tau and the phase shift s are shown
for the lowest neuron. The parameter ron is the ratio of the open period to the total period
τ . Bottom: Note that in a multilayer scenario,the timestamp is distributed to all layers
which are updated at the same time point. (b) Illustration of Phased LSTM operation. A
simple linearly increasing function is used as an input. The time gate kt of each neuron
has a different /tau, identical phase shifts, and an open ratio ron of 0.05. Note that the
input (top panel) flows through the time gate kt (middle panel) to be held as the new cell
state ct (bottom panel) only when kt is open.
Figure and caption copied from [5].

solves the issues with vanishing or exploding gradients with the standard LSTM layer.

2.3 Explainable AI

Explainable AI or XAI is a subsection of machine learning where the goal is to explain a
model’s decisions. XAI is essential to not only the end user but also the model developer.
With the power of explaining the model’s behaviour, design decisions can enhance the
model’s ability to predict the correct output. The end user should also know the underlying
reason why a model predicts a given output to utilize the model in a better way [6]. One
way of achieving explainability with deep learning is to implement an attention layer.
Explainability is the ability to explain a prediction or an action of a model from a more
technical perspective to a human.
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2.3.1 Attention Layer

There are two major types of attention; the first type was introduced by Dzmitry Bahdanau
and is usually referred to as the Bahdanau type, sometimes called additive attention [7].
The second type, referred to as the Luong type, was introduced by Thang Luong, some-
times called multiplicative attention, and was built on top of the first attention mechanism
type proposed by Bahdanau [8].
The attention mechanisms were initially built as a method to improve the accuracy of
machine translation. Research done by Bahdanau and Loung shows that the attention
mechanism improves performance on machine translation tasks while also interpreting
the model. The first benefit was achieved from the attention layer building global atten-
tion over the whole sequence. Global attention is something LSTM and Phased LSTM
layers do very well already. The second benefit, interpretation of the model, where the
attention mechanism provides explainability of the dataset when training and predicting.
The attention layer produces an attention vector ak, where the input features xk are multi-
plied by the attention weights Wk across time steps:

ak = so f tmax(Wkxk)

where every xk represents a single feature over the entire dataset. Furthermore, the input
features xk passed through the attention layer are weighted down with the attention vector
ak before it is available to the next layer:

yk = ak ∗ xk

Explainability can be achieved by interpreting the extracted output vector ak. The atten-
tion vector describes how much each of the input features provides to the predicted values
of our model. The Bahdanau type derive the attention at t −1 and concatenated that with
attention at t, while the Luong type only considers the attention at t.
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Figure 2.10 describes the process where five input features are sent to a machine learning
model, and the attention layer calculated the attention vector from the input features.
In this example, the first and last features have the highest attention value, 0.42 and 0.31.
This example shows that these two features are most important when predicting the output
value.

Figure 2.10: An attention vector example. Five feature values are passed to a machine
learning model where the model’s attention layer sets the weights on which features are
important when predicting the output value. A higher value indicated more attention is
used on these features when predicting.
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Chapter 3

Method

Previous research has proven the phased long short-term memory (PLSTM) model to be
more effective in converging than the standard long short-term memory (LSTM) model.
By implementing a phased gate to the LSTM cell, the PLSTM model will converge faster
on sparse data; this was discussed in Section 2.2.2. This section will describe the imple-
mentation and the design decisions and their impact on the final results.

In this study, a PLSTM model is used, which differs from the standard LSTM model
in that it should not require perfectly sequential data, thanks to the forget gate discussed
in Section 2.2.2. Multiple previous research papers state the importance of data process-
ing for the standard LSTM model before the dataset is ready to be used if the dataset
contains missing values [3] [5]. When using a PLSTM model, the amount of data pro-
cessing required is reduced. Choosing a PLSTM model thus simplifies the preprocessing
of the data. For the standard LSTM model to perform well, the dataset should not be
sparse or contain missing data in-between samples. For many of the patients’ data in
the OhioT1DM dataset, the blood glucose level is sparse and requires processing for the
LSTM model to perform well. The dataset also contains many features which do not have
data at all for many of the patients. The second model architecture uses a PLSTM model
that does not depend on the data to be perfectly sequential, without any missing samples
in between.

Furthermore, an attention layer will be added to the PLSTM model. With the help of
an attention layer, we can extract the importance of the single features used from the
dataset. The attention layer will output a layer vector with values that correspond to the
significance of every feature. The attention layer will add explainability to both phased
long short-term memory models for this dataset.
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For this study, three different model architectures will be trained. The first model ar-
chitecture is a benchmark model with the same architecture as previous research. The
latter two models architectures extend the benchmark model with a different LSTM layer,
and the last model architecture adds explainability to the models.
Previous research has shown excellent accuracy on the OhioT1DM dataset with extensive
data mining and hyperparameter tuning [3]. Our suggestion for reducing the need of pre-
processing is to replace the long-short term memory layer with a phased long short-term
memory layer, discussed in Section 2.2.2. Hyperparameters are the parameters used to
control the learning process of a machine learning model. The same parameters will be
used as the ones selected for our benchmark model.

3.1 OhioT1DM Dataset

The University of Ohio released the OhioT1DM dataset in 2018. As of 2020, this dataset
contains eight weeks (about two months) of continuous data from 12 patients with type 1
diabetes. Diabetes is a chronic illness caused by a disorder in glucose metabolism. There
are mainly two types of diabetes. Type 1 Diabetes Mellitus (T1DM), when the pancreas
does not produce enough insulin, and Type 2 Diabetes Mellitus (T2DM), which results
from ineffective use of insulin [3].
For anonymity, each patient is assigned a random id; the id is referenced in the thesis
for replicability. Each patient has self-reported events such as sleep quality, stress levels,
and meals, with estimated carbohydrate intake and sensory data. There are 19 features
recorded. Features with low levels of data and completing missing data is excluded, leav-
ing us with five features. For many of the patients, some of these features contain no data,
and other features have sparse data on which our neural network model will be trained.
The five features selected for this study is the following; The blood glucose level (BGL),
the self-monitored value of BGL through finger stick samples, background insulin infu-
sion rate (basal), insulin delivered to the patient (bolus), and the meals the patient has
eaten with the estimated carbohydrates, which affects the blood glucose level. Figure 3.1
visualizes the features in the dataset for patient 544. This figure shows the recorded BGL,
finger-stick level, basal, and bolus values over eight weeks for patient 540.
Each patient used either a Medtronic 530G or 630G insulin pump for monitoring the in-
sulin values. These insulin pumps allow the bolus to be either injected in one dose, a
regular injection—alternatively, dual wave, where insulin is first injected in one dosage
and then injected over time [9]. These different modes are stated as a type in the dataset
and accounted for during the preprocessing of the dataset.
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Figure 3.1: Patient 544, Dataset visualized

Later a sixth feature was created, a time-of-day feature. This feature was used in earlier
research with good results . This feature is created by looking at the recorded time of the
BGL level. Table 3.1 describes how the feature was encoded to the dataset. Timestamps
between 06:00 and 11:59 are considered in the morning, 12:00 to 16:59, the afternoon,
17:00 to 21:59 in the evening and 22:00 to 05:59 at night.

Time timeslot Number seen in the dataset
Between 06:00 and 11:59 Morning 1
Between 12:00 and 16:59 Afternoon 2
Between 17:00 and 21:59 Evening 3
Between 22:00 and 05:59 Night 4

Table 3.1: Description of how the virtual time-of-day feature was encoded

3.2 Data preprocessing

For a deep neural network to work with significant results, some preprocessing of the
dataset is conducted. The dataset is provided as a zip file with a single file for each pa-
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tient. The first step to preprocessing is to extract the XML files into NumPy arrays for
the Python program to interpret them easily. Each event contained a timestamp as a refer-
ence to when the measurement was taken. The output of our model will be blood glucose
levels in the future based on the values from the different features in the dataset. The first
feature that is extracted is the blood glucose level. The timestamps from this feature will
be the reference that is used to match the other features. We know that the blood glucose
level is measured at a 5-minute interval.
Figure 3.2 represents samples with only the blood glucose level as a feature.

Figure 3.2: Preprocessed sample

3.3 Long Short-Term Memory

El Idriss et al. have done extensive research on data mining for diabetes self-management
[10]. With the help of their research El Idriss, Ali Idri, and Ibtissam Adnane researched
the OhioT1DM dataset with a long short-term memory (LSTM) model. They performed
a grid search with different parameters to identify the best configuration for this neural
network. Grid search is usually done to find the best performing model.
In grid search, multiple parameters are chosen, and a model is created with every combi-
nation possible to be compared with each other to find the best possible match. Parameters
used in the grid search were the LSTM units, Dense units, and the sequence length [3].
In the reference implementation of this thesis, we followed the same implementation ar-
chitecture as El Idriss et al. did to construct a benchmark that will be used later as a
reference. The reference model has one input layer, one LSTM layer and two Dense lay-

ers. Based on results from the grid search, ten units were chosen for the LSTM layer.
Thirty units were used for the first Dense layer. The last Dense layer has one unit, which
is used to obtain the desired output format. The output of this model is a single blood
glucose value. Figure 3.3 visualizes the benchmark model architecture.
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Figure 3.3: Benchmark model architecture

3.4 Phased Long Short-Term Memory

The next step was to swap out the LSTM layer with a phased LSTM layer, referred to as
the phased model with the benchmark model created and trained. Research has shown
that phased LSTM layers will accelerate the training of RNN models [5]. Furthermore,
the phased LSTM layer will work well with asynchronous data, meaning that the input
data does not have to be processed. A more advanced model will be used when a base has
been implemented to counter the sparse data found in our dataset, see figure 2.8.
The phased LSTM model was used, following the same architecture as the base LSTM
model: one phased LSTM layer and two dense layers, as described in figure 3.4. The
model should converge at the same rate or faster than the benchmark model with the help
of the phased LSTM cell. Another advantage the phased LSTM layer will provide is less
preprocessing. With the help of the phased cell, the model handles missing data better.
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Figure 3.4: Phased LSTM model architecture
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3.5 Attention-based Phased LSTM

The attention layer will provide us with beneficial information that can be used for ex-
plainable AI. Our phased LSTM model with one phased long short-term memory layer
and two fully connected layers is extended with an attention layer.
For this paper, the Bahdanau-based attention layer is chosen. This layer created a vector
of values, where a value corresponds to one feature. A value is the input value times the
layer weight plus a bias, and this value is scaled with the hyperbolic tangent function. The
attention is then calculated with the help of softmax on the vector.
The attention layer is placed before the phased LSTM layer, and the attention output is
passed to the phased LSTM layer. The model is written with the help of the functional
API from Keras, so the output of the middle layer can be extracted and used later. Figure
3.5 visualizes the model architecture.

Figure 3.5: Attention based phased LSTM architecture

3.5.1 Attention layer output

The model required us to remodel our implementation to use the functional API instead
of the sequential API used previously. The functional API provides us with the ability
to specify the output of each layer. In this case, we are interested in the output vector
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of our attention layer. The attention layer outputs the input times an attention vector and
the attention vector itself. We are interested in the attention vector. Therefore, this is
also outputted. We can then specify that the model should output this attention vector to
process the information later. This information is interpreted into multiple graphs to watch
the attention shift from a random initialization towards a generalized attention vector
describing which feature our model is interested in when predicting the blood glucose
level for a patient.

3.6 Training the model and updating weights

The dataset was provided with training and testing data. The model is trained on the
training data and evaluated with the help of the testing data. During the training phased,
the training data is split into 80% training data and 20% validation data. The test data is
only used after the training phased, during the evaluation phase. The evaluation is done
by calculating a loss value. The model is updated with the help of the loss function. The
predicted value is backpropagated through the model, and the layer weights are updated
based on the loss function. The loss function used for the benchmark model is the root
mean squared error, equation 3.1.

RMSE =

√
1
N

N

∑
i=1

(xi)2 (3.1)

For the other models, the Huber loss function, equation 3.2, is selected.

Huber = δ
2(
√

1+(a/δ )2 −1). (3.2)

The Huber loss function is less sensitive to outliers in our dataset than the RMSE function.
The RMSE loss function will result in exploding/vanishing gradients when the phased
LSTM model is learning, observed while training the model. The Huber loss function
will ignore more of the outliers, resulting in fewer exploding/vanishing gradients.
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Chapter 4

Results

This section will present the results from gathered information during our models’ train-
ing and evaluation phase. Three different model architectures were created: one standard
LSTM model as a benchmark, one phased LSTM model and one phased LSTM model
with an attention layer. All these models were created to forecast blood glucose lev-
els. The models were trained on the OhioT1DM dataset provided by the University of
Ohio. Each of the models was trained for a maximum of 100 epochs. The models were
equipped with a callback method for early stopping. Early stopping monitors the loss
function value, and the callback method will halt the training when the gradient of the
loss function approaches zero. By stopping the training early overfitting the data can be
prevented.

4.1 Benchmark model

The performance of the benchmark model is as close as we think it can be to the previous
research results of 12.38 mg/dl [3] and 18.23 mg/dl [4]. The model performance almost
matches the official results recorded for the BGLP challenge [11], which is enough to pro-
ceed with the following model architecture. Multiple LSTM models were trained on data
from each patient, and Table 4.1 displays the RMSE value of the predicted values from
the training data, validation data, and testing data of the models. The best performance
was recorded for the patient with id 552, with an RMSE value of 17.04 on the testing
data. The combined model referred to in Table 4.1 is a model trained on a dataset of all
the combined patients’ data. The combined model performed similarly to the individual
models with an RMSE value of 20.63 on the testing data.
Figure 4.1 is a visual overview of how the root mean square error value decays towards
the optimum, a zero value, on each elapsed epoch during the training phase. As discussed
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Table 4.1: Benchmark model performance

Patient id RMSE on training data RMSE on validation data RMSE on testing data
540 19.07 20.70 23.03
544 25.35 24.41 23.15
552 20.24 30.10 17.04
567 22.12 27.28 26.06
584 32.04 40.35 30.47
596 19.91 18.51 21.14

combined 22.16 20.84 20.63

earlier, the LSTM is a fast-converging RNN model, which can also be interpreted from the
steep gradient in Figure 4.1, where the X-axis corresponds to the epochs and the Y-axis
the RMSE value from the validation data. In Figure 4.1 a table of reference is found to the
right. Every model has an identifying name, the validation root mean square error value
(Value), how many epochs the model was trained for (Step), when it was trained (Time),
and the duration of the training (Relative). When comparing the individual trained models
with the model trained on a combined dataset in the list (lstm-all-20210514-102825), a
similar RMSE value can be observed. The only thing that this model stands out with is
the training time. At the same time, the other models were trained for two to six minutes.
The combined model was trained for nine and a half minute. This is due to the size of the
dataset used while training.

Figure 4.1: Benchmark model training callback data.
Left: a graph over the elapsed training, where the X-axis is the epoch and Y-axis the
validation root mean square error value.
Right: A table with the individualizing name of the model, the final RMSE value, number
of epochs before the early stopping callback was called, when the model was trained and
the elapsed training time for the individual model.

To further evaluate the model and ensure that it is making sensible predictions, a graph
was produced where the predicted values are compared to the actual values of the dataset
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with the models trained on the individual patient’s data. Figure 4.2 represents a compar-
ison of the two values, where the red line is the predicted values and the blue line the
actual blood glucose level from the dataset.

Figure 4.2: Benchmark (LSTM) - Comparison of the predicted value and the actual BGL
level for the individual trained models.
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4.2 Phased LSTM model

Likewise, multiple phased LSTM models were created, one for each patient and one for
the combined dataset. The phased LSTM models produced a better RMSE value for
each of the models, as seen in Table 4.2, with a 41% increased performance. Like with
the benchmark model, the combined model performed similarly to the individual trained
model.

Table 4.2: Phased LSTM model performance comparison.

Patient id RMSE on training data RMSE on validation data RMSE on testing data
540 19.17 18.04 20.89
544 15.30 17.79 14.67
552 16.17 18.65 10.12
567 18.21 19.83 18.69
584 22.00 30.60 20.23
596 14.61 11.33 15.30

combined 18.81 16.79 16.63

Furthermore, the phased LSTM model converges faster compared to the benchmark model.
This can be observed in Figure 4.3, where each model has a very steep decreasing gradient
during the first five epochs and drastically diminished after epoch 5. The phased LSTM
model required less training time to achieve similar performance as an LSTM model. The
phased LSTM model also converges better on sparse data, as discussed in section 2.2.2.
An observation can be made on the duration of training for the combined model, where
the model was trained for 1 hour and 14 minutes before the early stopping callback func-
tion stopped it. This averages out to a training time of 60 seconds per epoch, which is
almost six times longer than when the benchmark model was trained on the combined
dataset.

A graph was produced for the phased LSTM model where the actual value is compared to
the predicted value to ensure that the phased LSTM model produces sensible predictions,
Figure 4.4. An observation is that the phased LSTM models produce fewer spikes in the
predicted values and the predictions are closer to the actual value than the benchmark
models predictions seen in Figure 4.2.
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Figure 4.3: Phased LSTM model training callback data.
Left: a graph over the elapsed training, where the X-axis is the epoch and Y-axis the
validation root mean square error value.
Right: A table with the individualizing name of the model, the final RMSE value, number
of epochs before the early stopping callback was called, when the model was trained and
the elapsed training time for the individual model.

4.3 Attention Phased LSTM model

The third and final model architecture is a phased LSTM model with an attention mech-
anism. Like previously, multiple models were trained, one from each patient’s data plus
a model from the combined data from all the patients. The attention vector was extracted
from the attention layer, which is the first layer of our model, to achieve the explainabil-
ity of our models’ behaviour. The performance of these models is comparable with the
phased LSTM models, with a slightly better RMSE value overall. The models outper-
formed the benchmark models and the phased LSTM models. Table 4.3 is a summary of
the model’s RMSE values from the different parts of the dataset, with an average of 16%
increased performance compared to the phased LSTM model.

Table 4.3: Attention PLSTM model performance comparison

Patient id RMSE on training data RMSE on validation data RMSE on testing data
540 15.99 15.03 17.94
544 13.10 14.71 12.94
552 14.99 19.23 9.57
567 15.26 16.59 16.31
584 18.96 25.00 17.77
596 11.85 9.38 12.38

combined 14.88 13.37 13.38

While the attention layer adds complexity to the model by introducing an extra layer, it
does not increase the training time compared to the previously mentioned phased LSTM
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Figure 4.4: Phased LSTM - Comparison of the predicted value and the actual BGL level
for the individual trained models.

model architecture. A similar steep gradient can be observed when visualizing the RMSE
value over time from the training phase in Figure 4.5. Compared to the phased LSTM
model without an attention mechanism, this model performed slightly better with an av-
erage RMSE value of 14.98.
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Figure 4.5: Attention phased LSTM model training callback data.
Left: a graph over the elapsed training, where the X-axis is the epoch and Y-axis the
validation root mean square error value.
Right: a table with the individualizing name of the model, the final RMSE value, number
of epochs before the early stopping callback was called, when the model was trained and
the elapsed training time for the individual model.

A similar result can be observer in Figure 4.6 as in Figure 4.4 where the predicted value
is compared against the actual blood glucose level from the dataset. When comparing
the spikes produces by this model, they are more noticeable than the other phased LSTM
model, without an attention mechanism. It is hard to explain why the spikes appear with
the attention layer included, even when analysing the attention vector.
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Figure 4.6: Attention PLSTM - Comparison of the predicted value and the actual BGL
level for the individual trained models.
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The attention vector is extracted from the attention layer and is visualized in Figure 4.7,
where each bar corresponds to the feature in the dataset. A higher value means that the
feature has more weight when predicting the next value. The weight is how much the
model considers the feature when making a prediction. The blood glucose level has the
highest value, with a weight of 0.35. The lowest weight is from the bolus feature, with a
value of 0.12. This attention vector shows the average attention values for the individually
trained models. Analysing the model trained on a combined dataset, phased-attention-all-

Figure 4.7: Attention vector for a model trained on a single patient’s data, average from
the first day, the first week and over the whole dataset (8 weeks).

20210514-125355, which had a similar training time (average 67 seconds per epoch) as
the combined model without the attention mechanism. When further inspecting the atten-
tion vector, it did not resemble the attention vector from the models trained individually.
The feature which had the highest attention value from the other models had the lowest,
and the other feature values were almost twice as high as the other models. Figure 4.8
shows the average attention value from the combined dataset.
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Figure 4.8: Attention vector average from the first day, the first week and over the whole
dataset (8 weeks).
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4.4 Interpretation

A comparison is made on the different models on each patient’s test data to understand
the model’s performance better. Training a model on one patient’s data should not affect
the model’s ability to predict blood glucose levels from any other source. The general in-
terpretation of a machine learning model is, the more training data there is, the better the
model will perform. Table 4.4 shows all the different models performance on the patients
testing data with the benchmark model architecture.
With the results from Table 4.4 a general assumption can be made that training a model
for a specific case is not necessary. This result matches what R. Bevan and F. Coenen
stated in their study [4]. The combined model (the model made from a dataset combined
from all of the different patients in OhioT1DM) performed, in general, better than the
other models. A model trained for a specific model did not perform better than the com-
bined model. Training the combined model took about six times longer (an average of 60
seconds per epoch) than a model trained on only one patient (an average of 10 seconds per
epoch). There was no added benefit from training on a combined dataset with this model
architecture. The best performing model on a specific patient’s test data is highlighted in
Table 4.4.

Table 4.4: Benchmark model performance comparison, where the value is the calculated
RMSE value from the model, given the patient’s test data. e.g. Model 540 was trained on
patient 540’s training data, and the RMSE value of 23.52 was achieved from calculating
the error when predicting patient 540’s test data.

Test data Model
540

Model
544

Model
552

Model
567

Model
584

Model
596

Model
com-
bined

Patient
540

23.52 32.71 30.93 26.52 42.77 28.71 23.97

Patient
544

21.37 23.15 20.53 17.67 24.47 23.04 18.50

Patient
552

13.18 19.52 17.04 13.28 23.50 16.27 15.51

Patient
567

29.46 30.18 30.30 25.56 35.42 31.04 24.04

Patient
584

30.31 27.06 27.04 26.73 27.83 29.28 25.22

Patient
596

17.28 26.43 23.70 19.76 34.22 16.48 18.28
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A similar table is produced from the phased LSTM models, where the models are tested
on all the individual patient’s test data, see Table 4.5. Like with the benchmark model, the
phased LSTM performance was neutral across all the patients testing data, independent
of what training data was used. The training time of the combined model with the phased
LSTM layer is more than ten times slower than the models trained on the individual level,
which was discussed in the previous section.

Table 4.5: Phased LSTM model performance comparison, where the models produced
RMSE value of the given patient’s training data. e.g. Model 540 was trained on patient
540’s training data, and the RMSE value of 20.89 was achieved from calculating the error
when predicting patient 540’s test data.

Test data Model
540

Model
544

Model
552

Model
567

Model
584

Model
596

Model
com-
bined

Patient
540

20.89 23.39 21.08 22.17 22.19 22.88 20.72

Patient
544

15.78 14.67 14.56 14.76 15.08 15.54 15.25

Patient
552

10.75 12.49 10.12 10.34 11.62 11.28 10.94

Patient
567

19.92 21.67 20.07 18.69 20.33 20.28 19.17

Patient
584

20.84 20.78 20.50 20.80 20.23 20.05 20.44

Patient
596

16.32 16.69 14.96 15.26 15.68 15.30 15.00
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A table was produced to compare the models produced from the phased LSTM model
architecture with an attention mechanism, see Table 4.6. The best performing model for
a given patient is highlighted. An interesting observation can be made that the model
trained on the combined data from all the patients performs better than any other model.
This result is only seen with the attention layer model architecture, and this result might
indicate that the attention layer will improve the model when there is enough training data
to train the models on.

Table 4.6: Attention Phased LSTM model performance comparison, where the value is
the models produced RMSE value of the given patient’s training data.

Test data Model
540

Model
544

Model
552

Model
567

Model
584

Model
596

Model
com-
bined

Patient
540

17.95 18.93 20.14 18.71 22.63 18.77 16.98

Patient
544

12.84 12.94 13.53 12.59 15.43 12.77 12.49

Patient
552

9.28 10.27 10.40 9.19 12.56 9.37 8.89

Patient
567

17.77 17.35 19.81 16.31 19.29 17.42 15.34

Patient
584

16.73 15.95 17.77 16.71 17.77 16.25 15.84

Patient
596

12.20 13.32 13.92 13.14 15.28 12.38 12.15

What makes the attention model perform best when trained on a combined dataset? One
answer to this question is the number of training samples, which gives the attention layer
enough samples to adjust the weight, resulting in a lower RMSE value from the predic-
tions without an attention mechanism.
Another answer can be found when interpreting Figure 4.8, where the average atten-
tion value is calculated from the vector during the first day, the first week and the whole
dataset. This figure shows that the model pays more attention to the other features com-
pared to when it is only trained on a single patient’s data, seen in Figure 4.7. Thanks to
the attention layer, a more balanced weight distribution is achieved over all the features in
our dataset. Furthermore, the blood glucose level is not as important as the other features
when using an attention layer and training with enough data samples.
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Chapter 5

Discussion

Many models were created from three different model architectures: from each archi-
tecture, one model for each patient and one from a combined dataset was created. The
phased LSTM model converges faster than a standard LSTM model, and fewer samples
are required for the phased LSTM model to converge. The attention layer adds explain-
ability to the research topic. While the attention layer adds complexity to the model, the
training time stays the same. A virtual feature, "time-of-day", was created. Blood glucose
level had the highest attention value when the model was trained on a small dataset. When
the model was trained on a larger dataset, the BGL feature had the lowest attention value.

As previous research has stated, a model trained on combined data from multiple patients
performs better than a trained model for individual patients. A model trained on one pa-
tient performs equally good for data from another patient; this can be seen in the previous
section. Strengthening previous research results where individually trained models, spe-
cific for a patient, were compared to one model where all patients data were used. The
previous research stated that training individual models is unnecessary and that a general
model will perform equally well; this is true [4]. While the model trained on a combined
dataset performs equally well, the average training time for an individual model is far less
than when trained on a combined dataset. A preprocessed dataset is superior when pre-
dicting blood glucose levels with a standard LSTM model. While our benchmark model
achieved an average RMSE value of 24.57 it did not achieve the same level as previous
studies [3].

While the benchmark model did not achieve the same level of accuracy as the same model
with a more preprocessed dataset, as seen in previous research [3], the phased LSTM
model did achieve similar results. The phased LSTM model achieved an RMSE value of
17.37, which is an 41% improvement compared to the benchmark model trained in this
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study. The training time for the phased LSTM model is twice as long as the benchmark
model, averaging at around 6 minutes per model. The model’s training time should not
be used as a parameter but should guide when considering architecture and the number
of samples. Furthermore, an early stopping callback function was used when trained in
these models, directly affecting how long the model training takes. To make the model’s
training time comparable with each other, an average time per epoch has been calculated.
When calculating an average training time per epoch, the benchmark model had an aver-
age training time of 5.4 seconds per epoch, and the phased LSTM model 9 seconds per
epoch. The attention phased LSTM model had an average training time similar to the
phased LSTM. The combined model was not taken into consideration when calculating
the average training time. For the combined model, the training time is over six times
slower than when trained on an individual level. The combined dataset contained data
from six individual patients’. The training time correlates with the number of samples
used in the dataset.

The combined model (trained on a combined dataset) did not achieve better performance
for the benchmark model or the phased LSTM model. The combined model outperformed
the other models when trained with the attention mechanism. The attention phased LSTM
model achieved the best performance, with an average RMSE of 14.98, a 16% improve-
ment from the phased LSTM model without an attention mechanism. The conclusion is
that the attention mechanism needs more training data than the other layers in the model;
therefore, it outperformed the other models. Furthermore, the attention layer had a bal-
anced value across all the used features when trained on enough data, which results in
the model considering all the features when making a prediction. The attention phased
LSTM model trained on an individual level had a higher value for the blood glucose level
feature than the rest. When trained on a larger dataset, the attention mechanism pays less
attention to the blood glucose level and more to the other features in the dataset; this can
be seen in Figure 4.8.

For the models trained on an individual level, independent of the architecture, patient
552 had the best result. When analysing the data, an observation can be made that over
30 per cent of the blood glucose level is missing. This can be observed as a straight line
in Figure 4.2, Figure 4.4 or Figure 4.6 in Chapter 4.

To summarise, the model with an attention mechanism performed the best, and with
enough training data, the attention layer is utilised the most. The preprocessing of the
dataset affects the RMSE when using a standard LSTM layer. This result can be seen
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from the benchmark model used compared to previous research, where the preprocessing
was more comprehensive than used in this study.
The phased LSTM model and the phased LSTM model with an attention mechanism con-
verged faster than the benchmark model. While the attention mechanism introduced more
complexity to the model, it did not increase the training time. More features could be in-
troduced to decrease the RMSE value further, and the dataset could be augmented to fill
in the missing values.
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Chapter 6

Conclusion

In this thesis, previous research was reviewed on how long short-term memory (LSTM)
models were implemented for the blood glucose level prediction (BGLP) challenge. The
University of Ohio published the BGLP challenge in 2018, along with the OhioT1DM
dataset. A few other model architectures were reviewed to compare the already existing
LSTM models result. Three different model architectures were selected; One benchmark
model with the same architecture as one of the previous research, one phased LSTM
model architecture, and one phased LSTM model architecture with an attention layer.
The models were trained individually on multiple patients from the OhioT1DM dataset.
A model was trained on a combined dataset from all the patients’ training data for each
model architecture model.
The OhioT1DM dataset was initially published in 2018 with eight weeks of continuously
recorded data from six patients with type 1 diabetes. In 2020 the dataset was extended
with six more patients. These patients were released to aid the research in predicting the
blood glucose level. In this study, the data from the six original patients were used for
training the models.

We briefly discussed the state of machine learning and deep learning. How deep learning
has become the new standard for machine learning. We discussed what regression is and
how regression is used in deep learning and long short term memory cells, and why it is
essential for this study.

The architecture of the LSTM cell was reviewed and compared to the phased LSTM
model. We went through each of the components of the LSTM cell. We compared the
internal difference between the phased LSTM model and the normal LSTM cell. We dis-
cussed the Kronos gate introduced by the phased LSTM cell and how it aids in training
on sparse data. The Kronos gate implements a phase to the LSTM cell, which dictates if
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the LSTM cell can be updated or not.
The final model architecture, a phased LSTM model with an attention mechanism, in-
troduces explainable AI (XAI) to the research topic. This thesis reviewed the two main
attention mechanism types; The Bahdanau type and the Luong type, which builds on the
Bahdanau type.
The attention mechanism introduces a neural network layer that produces an attention
vector; the attention vector contains values corresponding to the input features in the
data samples. A high attention value equals great attention towards that feature, and a
low attention value equals low attention towards that feature. The Luong type scores the
attention vector differently than the Bahdanau, but the mechanism stays the same. The
attention mechanism helps us understand which feature is essential when predicting blood
glucose level with the help of the features in the OhioT1DM dataset.

The benchmark model was implemented first for the study, then the phased LSTM model
and last, the phased LSTM model with an attention mechanism. The benchmark model
was implemented to verify the data processing. The benchmark performance almost
matches the reference studied performance, so the data processing was a success.
The phased LSTM model achieved a better result than the benchmark model, which was
expected due to the missing values in the dataset. The performance increased by X%
compared to the benchmark model. Furthermore, the phased LSTM model converged
faster thanks to the Kronos gate — The phased LSTM model is faster at learning than the
standard LSTM model. The RMSE loss function produced exploding/vanishing gradient,
so the Huber loss function was selected for the phased LSTM models. The Huber loss
function is less sensitive to outlying values in a dataset, which results in fewer problems
with exploding/vanishing gradients.
By extending the phased LSTM model with an attention mechanism, XAI introduces the
research topic. A superficial Bahdanau type attention layer was implemented to extract
the model’s attention with the last architecture in our study. The attention layer does not
affect the training time for a phased LSTM model.

The attention vector extracted from the attention layer did not affect the prediction of
BGL on an individual level. The model trained on a combined dataset had an increased
performance compared to the individually trained models. This result was achieved by
calculating the RMSE value from predicting BGL from each patient’s test data. For an
individually trained model, the BGL feature was the essential feature when predicting
BGL. When trained on enough samples, the BGL was the least important feature in our
dataset. The other features had an equally high value from the extracted attention vector.
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For further research, more features should be selected, and more parameter testing should
be done. The attention vector from the combined dataset showed promising results and
could be used to increase the performance of the models further.
A single model trained on a single patient’s data is enough to predict the blood glucose
level of an unknown patient. A combined model takes longer to train but might be more
robust.
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Chapter 7

Svensk sammanfattning

7.1 Inleding

Till följd av ökat intresse för maskininlärning skapade Ohio universitet år 2018 utmanin-
gen Blood Glucose Level Prediction (BGLP). BGLP kan översättas med estimering av
blodsockernivå. Med hjälp av utmaningen hoppades universitetet på att skapa ett ökat
intresse för forskning kring blodsocker och diabetes.

För att användas till utmaningen lanserades OhioT1DM, som är en datamängd som in-
nehåller åtta veckor kontinuering data från patienter med typ-1 diabetes. Datat är insam-
lade med fem minuters intervaller och innehåller bland annat blodsockernivån, insulin-
nivån, fysiska mätningar samt självrapporterade händelser, såsom matvanor, sömn och
stress, med mera. År 2020 lades ytterligare sex patienter till i datamängen, med mera data
per patient. Universitetet hoppades detta skulle öka intresset för forskningsämnet.

Tidigare forskning inom ämnet har med hjälp av datamängen OhioT1DM lyckats ut-
märkt med att estimera blocksockernivån. I en studie av Junyu Xie och Qian Wang
jämfördes flera maskininlärnings metoder med en autoregressions metod med hjälp av
BGLP. Forskarna fann ingen betydande skillnad på prediktion av blodsockernivå mellan
maskininlärningsmetoderna och autoregressionsmetoden.

I en annan studie av El Idriss m.fl. skapades en LSTM-modell, som hör till djup mask-
ininlärning, och som har två fullt ihopkopplade neuronnätslager samt ett LSTM-lager
[3]. LSTM kommer från egelska Long Short-Term Memory och kan översättas med långt
korttidsminne. Denna modell jämfördes med en existerande LSTM-modell samt en au-
toregressionsmetod. Resultaten visade att deras LSTM-modell överträffade en tidigare
LSTM-modellen gjord av för alla patienter från OhioT1DM, samt 9 av 10 patienter för
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autoregressionsmetoden.

LSTM-modellens struktur används som utgångspunkt för detta diplomarbete. Utöver
LSTM-modellen skapas en phase LSTM-modell, phase kommer från egenskan och be-
tyder fas. En fas i detta sammanhang innebär en sinusvåg. Tidigare forskning visar att
med hjälp av en fas i LSTM-modellen kan mycket av förbehandlingen uteslutas, eftersom
att fasen hjälper modellen konvergera på gles data.

Utöver phased-LSTM lagret kommer ett uppmärksamhetslager (eng. attention layer) sät-
tas till i modellen, vilket bidrar med information om vilka variabler som beaktas mer av
modellen vid predicering av ett värde. Förhoppningen är att detta i sin tur skulle bidra med
bidra med förklarbarhet till LSTM-modeller i BGLP. Genom att implementera modellen
med ett uppmärksamhetslager kommer förklarlig maskininlärning, (eng. Explainable AI
(XAI)) att tas in i forskningen.

7.2 Metod

Först implementerades den normala LSTM-modellen som utgångspunkt, som verifier-
ing för att dataprosesseringen gjorts rätt. LSTM-modellen implementerades i enlighet
med tidigare forskning: med ett LSTM-lager och två fullt ihopkopplade lager. I den
tidigare forskningen utfördes rutnätssökning, vilket innebär att man väljer flera parame-
trar för modellen. Av permutationer av parametrarna skapas modeller, vilka tränas med
datamängden, och modellen som har bäst prediktabilitet väljs. Med hjälp av rutnätssöknin-
gen valdes följande parametrar till modellen: 10 LSTM-enheter, 30 enheter i den första
fullt ihopkopplade lagren, och en sekvens läng på 10.

Efter att den normala LSTM-modellen uppvisade liknande prediktabilitet som i tidigare
forskning implementerades den nya modellen, LSTM-modellen med en fas, (eng. phased

LSTM eller kort PLSTM. Tack vare PLSTM-modellen kan förbehandlingen av datamäng-
den förkortas till att endast bestå av att de enskilda samplen sätts ihop till en stor datamängd,
från formatet XML till Numpy data. Det senare dataformatet kan avläsas snabbare i
Python. PLSTM-modellen följer samma uppbyggnad som LSTM-modellen, och består av
ett PLSTM-lager och två fullt ihopkopplade lager. Samma parametrar valdes för PLSTM-
modellen som för LSTM-modellen. PLSTM-modellen visade tidigt prediktabilitet som
påminner om den normala LSTM-modellen. I enlighet med tidigare forskning konverg-
erade PLSTM-modellen därtill snabbare än LSTM-modellen.
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Utöver PLSTM-modellen skapades den sista modellen, en PLSTM-modell med ett upp-
märksamhetslager. Uppmärksamhetslagret placerades som första lager i modellen och
användes främst för att hämta information från modellen, om vilka mätningar modellen
tar mest hänsyn till vid estimering av blodsockernivån.

7.3 Resultat

För alla tre modellstrukturerna tränades flertal modeller, en modell för varje patient i
datasettet samt en modell från ett kombinerat dataset från alla patienter. Liksom tidi-
gare angetts visade den normala LSTM-modellen liknande prediktabilitet som i tidigare
forskning. den normala LSTM-modellen uppvisade ett genomsnittligt RMSE värde på
24,57. Detta värde motsvarade nästan det som tidigare meddelats för samma modell
struktur. På grund av att datat inte var förbehandla på samma sät kommer modellen inte
att uppnå samma värden som tidigare forskning, men detta var ett tillräkligt bra värde för
att implementera följande modellstruktur.

PLSTM-modellen visade ett bättre resultat än den normala LSTM-modellen och hade
en förbättring på 41%. PLSTM-modellens genomsnittliga RMSE värde är 17,37. Detta
innebär att PLSTM-modellen kräver mindre förbehandling av datat innan modellerna trä-
nas på det, vilket tidigare forskning visat.

Den sista modellstrukturen, en PLSTM-modell med en uppmärksamhetsmekanism. Den
sista modellstrukturen presterade i genomsnitt 17% bättre än PLSTM-modellen utan ett
uppmärksamhetslager. Från uppmärksamhetslagret fås en vektor vars värden visar hur
mycket uppmärksamhet modellen visar för ett visst värde vid projicering av nya värden.
För dom individuelt tränade modellerna indikerade uppmärksamhetsvektorn att block-
sockernivån har en stor betydelse och dom övriga egenskaperna en mindre betydelse vid
projicering av blocksockernivån. Figur 2.10 är en graf över uppmärksamhetsvektorn från
den första dagen, första veckan och hela datasettet, figuren visar att blocksockernivån har
störst betydelse vid projicering och dom övriga egenskaperna ett balancerat intresse.

All modeller med uppmärksamhetslagret producerade ett bättre resultat än modellerna
utan upmärksamhetslagret. Modellerna testades på alla patienters testdel av datat och re-
sultat visas i Figur 4.7. Som ses i figuren producerade den kombinerade modellen det
bästa resultaten för alla patienters data. Utöver att den kombinerade modellen producer-
ade det bästa resultatet hade modellen en helt annan distribution av uppmärksamhetsvek-
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torn. Blocksockernivån var den minst betydelsefulla egenskapen, som tidigare var den
mest betydelsefulla egenskapen för modellen vid projicering av blocksockernivån. Dom
övriga egenskaperna hade ett balancerat uppmärksamhetsvärde, Figur 4.8 visar en graf
över distributionen av uppmärksamhetsvektorn. PLSTM-modellen med ett uppmärk-
samhetslager hade ett liknande resultat som den modell från en tidigare studie som an-
vändes som referens för denna studie.

7.4 Diskussion och slutsats

Genom att jämföra tidigare skapade modellstrukturer med dom som skapades i denna
studie har nya synvinklar skapats samt en modell som klarar sig bra jämfört med dom
tidigare modellerna vid projicering av blocksockernivån i BGLP utmaningen. Genom att
skapa en modell med hjälp av den fasande LSTM-lagret (eng. phased LSTM layer) kan
processeringen av data minskas vilket leder till att datat som modellen tränas med påmin-
ner mera om det data som fås direkt av patienten. Detta leder till att den modellstruktur
som skapas i denna studie kan lättare användas till ett praktiskt syfte.

Utöver en bättre presterande modell producerar modellen en uppmärksamhetsvektor som
kan användas för att urskilja vilka egenskaper som modellen tar hänsyn till vid projicering
av nya värden. För en modell som tränas med färre sampel, enskillda patienters data, är
blocksockernivån den mest betydelsefulla egenskap. En model som tränas på flera sam-
pel, ett kombinerat dataset av alla patienter, är blocksockernivån den minst betydelsefulla
egenskapen och dom andra egenskaperna har en balancerad betydelse.

Det är inte nödvändigt att träna en modell på individuell nivå, vilket märktes redan i
tidigare studier. En modell med ett uppmärksamhetslager som är tränat på ett kombinerat
dataset presterar bättre än en model tränad på en individuell nivå. Studien kan fortsättas
genom att utvidga datasettet med flera egenskaper, för att se ifall detta påverkar resul-
tatet vid projicering av blodsockernivån. Genom att justera modellens parametrar kan
ytterligare ett bättre resultat uppnås och träningstiden förkortas.
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