
Overview of Behaviour-Driven
Development tools for web

applications

Viktor Österholm

MSc in Computer Science

Åbo Akademi University

Faculty of Science and Engineering

Department of Information Technologies

May 2021

Supervisor: Dragos Truscan

1



Abstract
Testing is an important part of software engineering. To avoid failure, software needs
to be tested to ensure that it fulfils the requirements and that it is as defect-free as
possible. Additionally, software needs to help the customer reach their goals, such as
gaining a competitive advantage, launching a new product or feature, etc. The goal
of Behaviour-Driven Development (BDD) is to help software development teams
deliver highly valuable, high-quality software faster. BDD focuses on close customer
interaction and writing tests based on scenarios before the code is written.

The goal of the thesis was to help software development teams choose the correct
BDD tool for developing and testing web applications, as choosing the wrong testing
tool can be time-consuming and costly. The thesis compared three testing tools that
can be used for BDD: Robot Framework, Behave (the Python port of Cucumber),
and Concordion. The tools were compared based on 10 questions within five
categories that were found to be important to testers when choosing a testing tool. To
help evaluate the tools, a test case was implemented on a web application. The
assessment found that both Robot Framework and Cucumber are good choices for
BDD for web applications, as they are popular, well-supported, and relatively easy to
use. Concordion was less popular and harder to use due to a lack of learning
resources. Nevertheless, Concordion was found to be suitable if flexible
specifications are needed and the testers have good coding knowledge.

Keywords: Behaviour-Driven Development, Automated acceptance testing,
Software testing, Web applications



Table of Contents

1. Introduction 1

2. Software development methodologies 3
2.1 The waterfall model 3
2.2 The V-model 4
2.3 Agile 6

2.3.1 Scrum 7
2.3.2 Extreme programming 7
2.3.3 User stories 8

3. Web Applications 9
3.1 The client-side of web applications 9

4. Software testing 11
4.1 Unit and integration testing 12
4.2 System testing 12
4.3 Acceptance testing 12
4.4 Test automation 13

5. Behaviour-Driven Development 14
5.1 Benefits and drawbacks of BDD 15
5.2 The BDD development process 16

6. Overview of acceptance testing tools 17
6.1 Motivation for the choice of acceptance testing tools to be compared 18
6.2 Selenium WebDriver 18
6.2 Cucumber (Behave) 19

6.2.1 Gherkin layer 19
6.2.2 Glue-layer 20
6.2.3 Helper functions layer 21

6.3 Robot Framework 21
6.3.1 Test case file 22
6.3.2 Resource file 23

6.3.2.1 How the keywords map to SeleniumLibrary 24
6.4 Concordion 25

6.4.1 Specification file 25
6.4.2 Fixture file 27



6.4.3 Page Object file 28

7. Evaluation of the selected testing tools via a reference application 30
7.1 Methods used to evaluate the testing tools 30

7.1.1 Evaluating usability 31
7.1.2 Evaluating test reporting 33
7.1.3 Evaluating popularity, training resources and community support 33
7.1.4 Evaluating ease of adoption and configuration 34
7.1.5 Evaluating efficiency 34

7.2 Web application to be tested 34
7.3 Implementing and running the tests with Cucumber 34
7.4 Implementing and running the test with Robot Framework 38
7.5 Implementing and running the tests with Concordion 40

8. Analysis 45
8.1 Ease of use 46

8.1.2 Cucumber (Behave) 46
8.1.1 Robot Framework 46
8.1.3 Concordion 47

8.2 Test reporting 48
8.2.1 Cucumber (Behave) 48
8.2.2 Robot Framework 48
8.2.3 Concordion 49

8.3 Available documentation, support, and popularity 50
8.3.1 Cucumber 50
8.3.2 Robot Framework 51
8.3.3 Concordion 51

8.4 Ease of adoption and configuration 51
8.5 Efficiency 52

9. Conclusion and future research 53

Swedish summary 54
Överblick över Behaviour-Driven Development-verktyg för webbapplikationer
54

Bibliography 58



1. Introduction
Nowadays, software and web applications play a significant role in many businesses
and people’s lives. Web applications are used to, e.g. store and organise information,
collaborate within teams, buy and sell items and stocks, watch movies, videos and
tv-shows, and much more.

Creating successful applications is no easy task. Around half of all software projects
fail to deliver in some way. [1, p. 4] A common reason for software projects being
impaired and ultimately cancelled is that the requirements are incomplete. Many
software projects are also challenged due to unrealistic expectations and unclear
objectives. [2, p. 9] It is therefore clear that improving the requirements gathering
and the communication between the stakeholders in the software project will
increase the likelihood of the software project succeeding.

This is the primary goal of Behaviour Driven-Development (BDD), a relatively new
software development methodology. BDD facilitates communication within teams to
ensure that only the features that align with the stakeholders’ business goals are
developed. In BDD, the features are written as user stories that can be used to run
acceptance tests using a testing tool that supports BDD. With BDD, the user story
functions as documentation of the feature, as well as automated acceptance tests
(AAT) that are used to validate that the feature fulfils the user’s needs.

Many testing tools have been developed that can be used for BDD and automatic
acceptance testing of web applications. Choosing which tool to adopt is important
because switching tools can be costly, as it often requires training and big changes in
the codebase. When adopting a testing tool, software development teams should
consider many things, such as the price and features of the tool, the documentation
and support of the tool, and how easy it is to use. This thesis will attempt to make
this process easier by examining and comparing three testing tools that can be used
for BDD: Cucumber, Robot Framework, and Concordion.

The thesis is structured as follows: In Chapter 2, different software development
methodologies will be explained that provide background for the development of

1

https://paperpile.com/c/QhE7ac/HmXI
https://paperpile.com/c/QhE7ac/qQiP


agile, the software development methodology that is used with BDD. Chapter 3
provides a short overview of web applications. In Chapter 4, software testing will be
explained. Chapter 5 explains BDD, the benefits and drawbacks of BDD, and the
BDD development process. Chapter 6 provides an overview of the three testing
tools. Chapter 7 lists ten questions within five categories that will be used to
compare the tools. In the later sections of the chapter, a test case is also implemented
for each tool that tests a popular web application. In Chapter 8, the testing tools are
compared based on the ten questions. Chapter 9 summarises the results and provides
suggestions for future research.

2



2. Software development methodologies
To understand testing and software development concepts that are discussed in this
thesis, it is useful to understand how software development has evolved over the
years. Of particular interest to this thesis are agile methods, as BDD is more
commonly used in teams that use agile methods [1, p. 30], [3, p. 4]. It is therefore
important to understand what agile is and how it came to be. Two of the most
common software development models prior to agile were the waterfall model and
the V-Model. Agile was developed because these software development models were
seen as inadequate in many cases.

2.1 The waterfall model
One of the first software engineering methodologies was the waterfall model, which
was introduced in the 1970s [4, p. 9]. The waterfall model dictates that software
should be developed linearly, starting with a lengthy planning process, leading to
implementation and ending with testing and verifying that the system works as
intended. This is done in phases, starting with the requirements analysis phase and
ending with the system maintenance phase.

During the requirements analysis phase, the requirements of the system are gathered
from the client and documented in a requirements specification document. In the
next phase, the system design is prepared. Hardware and software requirements such
as programming languages to be used are specified in the system design. Using
inputs from the system design, the system is then developed in small programs called
units in the implementation phase. The units are tested for their functionality before
being integrated in the next phase. In the testing and integration phase, the units are
integrated into a system, after which the complete system is tested. In the
deployment stage, the system is released to the market or deployed in the customer
environment. During the maintenance phase, patches are released that fix errors in
the system. Improved versions of the software might also be released to the
customers. [5], [6] See Figure 1 below for an illustration of the phases in the
waterfall model.

3

https://paperpile.com/c/QhE7ac/QQWM
https://paperpile.com/c/QhE7ac/5BLO
https://paperpile.com/c/QhE7ac/IvHk+eeRx


Figure 1: The waterfall software development model (adapted from [5], [6]).

Over time, it has become clear that this linear way of developing software rarely
works well in practice. One of the biggest problems of the waterfall model is that it
does not allow for changes to the plans in the middle of development. During a
software project, there are often unforeseeable difficulties and changes to the
requirements. The waterfall model is too lengthy and linear to allow significant
changes within the project. Because testing is done last, it also leads to defects being
discovered late in the process, which makes them expensive and difficult to fix.
Increased competition has also led to the need to develop new features and fix bugs
quickly, something that is not possible using the waterfall model.

2.2 The V-model
The V-model of software development is an extension of the waterfall model. In the
V-model, each phase in the software design phase is mirrored by a testing phase. The
phases of the left side of the “V” in the V-model are phases that are used for
verification. The phases on the right side of the V-model are used for validating the

4

https://paperpile.com/c/QhE7ac/IvHk+eeRx


system using tests. The V-model is sequential, as it requires that the phases are
completed in order. Figure 2 below shows the different phases in the V-model. [7]

Figure 2: The phases of the V-model (adapted from [7]).

The verification side of the V-model also starts with the requirements analysis, and
the system design phase. The system design phase is followed by the architectural
design phase, where the system design is broken down into modules with different
functionalities. The information flow between the modules and external systems is
also defined during this phase. The final phase of the verification process is module
design, where the internal design of the components in the system is specified. [7]

After each verification phase in the V-model, tests that correspond with the phase
should be designed. After the verification phases are completed, the system should
be implemented with code. This is illustrated by the middle part of the V-model. [8]

5

https://paperpile.com/c/QhE7ac/pv6GF
https://paperpile.com/c/QhE7ac/pv6GF
https://paperpile.com/c/QhE7ac/pv6GF
https://paperpile.com/c/QhE7ac/LedI


In the first phase of the validation side of the V-model, the small components of the
system are tested. In the second phase, integration tests are carried out to test the
communication between the parts in the system. During the next phase, the system
as a whole is tested. The last phase is the acceptance testing phase, where the system
is tested to ensure it satisfies the requirements specified by the customer in the
requirements analysis phase. [7]

The V-model has many of the same drawbacks as the waterfall model; it is difficult
to change the requirements or functionality later in the project. This rigidness makes
the V-model less suitable for software development projects with changing
requirements. Development of the software also starts late in the process, as much
planning and design must be completed first. [7]

2.3 Agile
Because of the problems with the waterfall model discussed above, agile
methodologies for software development were developed. Agile is an adaptive
software development method, compared to traditional software development
methods such as the V-model or the waterfall model that are predictive. Agile
focuses on developing features rather than lengthy planning. To minimise the risk of
major failures, the software is tested regularly during development. Close
collaboration within the team and customer interaction is important in agile. [9]
Agile is important to this thesis because many of the testing and software
development methods mentioned in this thesis are only compatible with the agile
model, or at least commonly used in agile teams.

There are many agile software development methodologies, all of which are based
on the four values expressed in the Agile Manifesto and the 12 Principles behind it
[10]. The four values expressed in the Agile Manifesto are [11]:

- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract negotiation
- Responding to change over following a plan

6

https://paperpile.com/c/QhE7ac/pv6GF
https://paperpile.com/c/QhE7ac/pv6GF
https://paperpile.com/c/QhE7ac/QmmTI
https://paperpile.com/c/QhE7ac/QiAc
https://paperpile.com/c/QhE7ac/Ka5z


Scrum and Extreme Programming (XP), both agile frameworks, have influenced
practices used in BDD [1, p. 262], [1, p. 95]. These frameworks will therefore be
explained shortly in the following sections.

2.3.1 Scrum

Using Scrum, an agile process framework, the work is split into 2-4 week iterations
called sprints. The goal of the sprint is to produce a potentially shippable product
increment. Each sprint starts with planning, which occurs in two parts. In the first
part the items to be worked on are chosen from the product backlog, creating the
sprint backlog. In the second part, the team determines the tasks necessary to
successfully deliver the items. Each day, the team has a short discussion to determine
the activities for the next day. The entire team and the stakeholders participate in a
sprint review and the end of the sprint. The results of the sprint are discussed and
demonstrated. The stakeholders may also be given a chance to use and give feedback
on the increment. Each sprint ends with a retrospective where the team reflects upon
how things went and what adjustments could be made for the next iteration. [12]

2.3.2 Extreme programming

Agile Alliance defines Extreme Programming (XP) as “an agile software
development framework that aims to produce higher quality software, and higher
quality of life for the development team”. Important values of XP include close
communication within the team, simplicity, and constant feedback. XP is most
suitable when the software development team is small, the project has dynamically
changing software requirements, there are risks caused by using new technology, and
it is possible to utilize automated unit and functional tests.

Some important practices in XP include involving the whole team in the
development, using stories written from the user’s perspective that describe what the
product should do, splitting development into small iterations, and writing tests
before code is written. [13]

7

https://paperpile.com/c/QhE7ac/HmXI
https://paperpile.com/c/QhE7ac/hfXA
https://paperpile.com/c/QhE7ac/9NDW


2.3.3 User stories

User stories are short sentences that describe who does what and why. A typical user
story is of the format “As a (role) I want (functionality) so that (benefit)”. There are
many reasons for expressing requirements as user stories. User stories do not focus
on implementation details, instead, they convey the needs and wants. This is
important as rarely care about how the software is built, but rather what value it
delivers to them. Short stories are also good at keeping people’s attention compared
to structured documents. If storytelling is not used, there is a higher tendency to
mention technical implementation details, something that should be avoided at this
stage. It is common to write down the user stories on cards during meetings with the
customers, as this makes it possible to e.g. arrange the cards in order of importance.
[14, p. 325-326]

8

https://paperpile.com/c/QhE7ac/jmzXU


3. Web Applications
As the tools in this thesis will be evaluated by testing a web application in Chapter 7,
it is important to understand what a web application is, and the basic structure of
web applications. According to [15, p. 5], a web application is “a client/server
application that uses a Web browser as its client program, and performs an
interactive service by connecting with servers over the Internet (or Intranet).”. Web
applications are more dynamic than web sites, which mostly only serve static content
[15, p. 5]. There are many similarities between native applications and web
applications. For instance, web applications are focused on one task or topic and
they provide an interface that can be used to interact with the application. [16, p. 19]
Because web applications are accessed over the internet using a web browser, the
same version of the web application can be accessed from many locations, by many
users using many different devices and browsers, at the same time [17]. Some
examples of web applications include Google Docs, Gmail, Evernote and Netflix.

Web applications consist of a client-side part and a server-side part. The client-side
part is the part that the user sees and interacts with in the browser. The server-side
part contains most of the business logic, and it can be seen as the “brains” of the
application. [18] The server-side of web applications will not be explained further in
this thesis, as it is not necessary to understand how the acceptance tests in Chapter 7
are implemented.

3.1 The client-side of web applications
The client-side of a web application contains the user interface (UI) of the web
application and everything else the user can see in the browser, such as text and
images. Some common user interface elements and controls include buttons, text and
input fields, checkboxes and sliders. The client-side of a web application is
implemented using HTML, CSS, and JavaScript, a programming language that is
used to make web pages interactive.

HTML stands for HyperText Markup Language [19], a markup language that defines
the structure of the web page. HTML-documents contain tags, also known as

9

https://paperpile.com/c/QhE7ac/n42K
https://paperpile.com/c/QhE7ac/n42K
https://paperpile.com/c/QhE7ac/OiEg
https://paperpile.com/c/QhE7ac/v7cy
https://paperpile.com/c/QhE7ac/xuog
https://paperpile.com/c/QhE7ac/TgKO


elements, that are defined using opening and closing brackets. Below is an example
of the markup of an HTML-element that defines a button:

<button>Click Here!</button>

HTML documents can be styled using Cascading Style Sheets (CSS) [20]. HTML
elements can be styled by giving them classes or IDs that identify them on the web
page. Using CSS, different styles can be applied for elements of a certain type, or for
elements that have certain attributes, such as particular classes and IDs. Below is the
markup of the same button, after class and ID attributes have been applied:

<button class="styled-button--red" id="unique-button">Click Here!</button>

JavaScript is a versatile programming language that can be used to e.g. add, modify,
and delete HTML elements, run code in response to events performed on the page,
such as mouse clicks, and much more. Below is an example of JavaScript code that
finds an HTML element with the CSS ID “foo”, changes it to “bar”, and then
displays the text content of the element inside an alert box [21]. The JavaScript code
in the example has been embedded inside the body tag of the web page.

<body>
<script>

let element = document.querySelector("#foo");
element.id = "bar";
alert(element.textContent);

</script>
</body>

10

https://paperpile.com/c/QhE7ac/ctx3
https://paperpile.com/c/QhE7ac/9RH9


4. Software testing
Software Testing is the process of checking that software fulfils the expected
requirements and ensuring that software is defect-free. Using manual or automated
testing tools, software or system components are executed to evaluate one or more
properties of interest. Software testing is used to discover errors, which can originate
from implementation or from missing, incorrect or incomplete requirements. [22] To
do this, test cases are written, which give the system under test (SUT) some input.
The output of the SUT is then compared to some expected output. If the output of
the program matches the expected output, it passes the test case, otherwise, it fails
the test case. Related test cases are commonly organized into test suites [23]. See
Figure 3 below for an illustration of how a test case interacts with the SUT.

Figure 3: How a test works (adapted from [24]).

A test execution engine or testing framework can be used to automate the process of
sending inputs to the system, comparing the output produced by the system with the
expected output, and creating test reports [25]. Examples of testing frameworks
include Jest for JavaScript, and JUnit for Java [26]. The test report might contain
information such as how many test cases were run, and how many of the tests passed

11

https://paperpile.com/c/QhE7ac/nZ7o
https://paperpile.com/c/QhE7ac/ZlKn7
https://paperpile.com/c/QhE7ac/Vbmo
https://paperpile.com/c/QhE7ac/XWDs
https://paperpile.com/c/QhE7ac/rGMG


and failed. Good test reports will make it clear what test cases failed and depending
on the type of test, the size of the program, and if the source code is available,
approximately on which line of code the error occurred. It is also preferable that the
test reports are easy to read and understand for non-technical people, as the reports
might be shared within the team.

4.1 Unit and integration testing
Unit tests are used to test that a part (e.g., component, module, function) of the
system works as intended. Most of the code should be unit tested to catch bugs early.
For these reasons, most of the tests should be unit tests. Since the goal of unit testing
is to verify the functionality of individual modules [27], one needs to do integration
testing to verify their interaction. Integration tests are tests that expose defects in the
interaction between software modules that might be developed by different
programmers.

4.2 System testing

System testing tests the software product as a whole to determine whether the system
meets its specifications. System testing is typically done to discover specification
and design problems. [28, p. 6] System tests typically test the application from a
customer’s perspective, treating the system as a black-box [29, p. 207]. There are
more than 50 types of system tests, both functional and nonfunctional. For the latter,
examples include load tests, which tests how the software performs under real-life
loads, usability tests, which test how easy or difficult the system is to use, and
regression tests, which test for the presence of software bugs during development
[30].

4.3 Acceptance testing
Acceptance testing is one of the last types of testing to be done before the release of
the software. The International Software Testing Qualifications Board defines
acceptance testing as “Formal testing with respect to user needs, requirements, and
business processes conducted to determine whether a system satisfies the acceptance
criteria and to enable the user, customers or other authorised entities to determine

12

https://paperpile.com/c/QhE7ac/SXfZo
https://paperpile.com/c/QhE7ac/2G7u
https://paperpile.com/c/QhE7ac/oDUX
https://paperpile.com/c/QhE7ac/vfAI


whether to accept the system.” [31]. In short, acceptance testing is used to determine
whether the software, or a part of it, meets the needs of the customer that were
captured during the requirements analysis phase. Similarly to system testing,
acceptance testing is also a type of black-box testing, meaning that the tests do not
test the program code directly, but rather the system as a whole. Parts of the system
such as the UI or the application programming interface, or reports produced by the
system can also be tested with acceptance tests. [8, p. 51]. The benefits of acceptance
testing is that acceptance tests can prove that the application works as intended in a
real-world scenario and that it delivers the business value its users are expecting.
[32, p. 189]

In order to fully simulate a user’s experience when interacting with an application,
the acceptance tests can be run against the UI of the application. This will test the
same code paths that the users of the system will invoke in real interactions.
However, this comes at a cost, as it is difficult to write maintainable acceptance tests
that are coupled to the UI. This is because changes to the UI during development,
and after release due to usability improvements, spell corrections, etc. are common.
For instance, if acceptance tests contain a reference to a UI element and the UI
element changes, it will break all the tests that reference the UI element. [32, p. 191]

4.4 Test automation
Test automation is important because manual testing can be extremely expensive in
large software projects. If software needs to be tested manually before each release,
the costs of releasing new software can be too high, preventing the company from
releasing software frequently. [32, p. 188-189] Most types of tests can be automated
using testing tools.

The test pyramid, which is illustrated below in Figure 5, provides a rule of thumb for
implementing automated tests [33, p. 311-312]. It argues that there should be fewer
UI tests than unit and integration tests. This is because writing UI tests that will
remain valid and useful and that will not break easily takes longer, and they are
harder to maintain. It is also not uncommon for teams to have acceptance tests that
cannot be run every night because they take so long to run. [33]

13

https://paperpile.com/c/QhE7ac/p0L62
https://paperpile.com/c/QhE7ac/LedI
https://paperpile.com/c/QhE7ac/yJWxd
https://paperpile.com/c/QhE7ac/yJWxd
https://paperpile.com/c/QhE7ac/yJWxd
https://paperpile.com/c/QhE7ac/9tVW
https://paperpile.com/c/QhE7ac/9tVW


Figure 4: The test pyramid [34].

5. Behaviour-Driven Development
Behaviour-Driven Development (BDD) is a set of software engineering practices
invented in the 2000s by Dan North. BDD is designed to help teams deliver higher
quality software that delivers more value to the customer, faster. BDD is built on
Agile practices, such as Test-Driven Development (TDD). According to [1, p. 12]
“BDD provides a common language based on simple, structured sentences expressed
in English (or in the native language of the stakeholders) that facilitate
communication between project team members and business stakeholders”.

BDD was invented as a way to teach TDD, a software engineering practice that uses
unit tests to specify, verify, and design software code. While TDD has many
advantages, it can often lead to developers focusing too much on the details, instead
of the business value the code is supposed to provide. An example of this, is that the
names of unit tests, whether they are written with TDD or not, are often not
descriptive. For instance, if the name of a test only consists of the name of the
method it is testing, plus the word “test”, it becomes hard to understand, and fix the
method if it breaks. North noticed that naming tests based on the functionality of the
methods they are testing helps developers write more meaningful tests. By focusing
on the expected behavior, instead of the method being tested, it becomes easier to
focus one’s efforts on the underlying business requirements. North also noticed that
naming tests using full sentences, using the word ”should”, helps focus the attention

14

https://paperpile.com/c/QhE7ac/jR4n
https://paperpile.com/c/QhE7ac/HmXI


on the requirements. An example would be renaming the test testTransfer() to the
more descriptive should_transfer_funds_to_a_local_account(). This makes the name
of the test more similar to a specification than a unit test. Because tests written in
this manner focus on the behaviour of the software, North started calling this
approach Behaviour-Driven Development. [1, p. 12-14]

North and his colleague Chris Matts realized that this could be applied to the
requirements analysis phase. They wanted to create a language that business analysts
could use to define requirements, and that could also be used to run automated
acceptance tests. Their solution was to express acceptance criteria for user stories
using specifications that explain how the feature should work, also known as
“scenarios”. The scenarios make it clear what should be developed and tested. Below
is an example of such a scenario: [1, p. 14]

Given a customer has a current account

When the customer transfers funds from this account to an overseas account

Then the funds should be deposited in the overseas account

And the transaction fee should be deducted from the current account

This notation is now commonly known as the Gherkin style. [1, p. 14] The
emphasized words in the example above are Gherkin language keywords, the rest is
written as natural language. Testing tools that support BDD are able to transform
scenarios written in Gherkin into automated acceptance tests by associating the
sentences with methods using regular expressions [3, p. 47].

5.1 Benefits and drawbacks of BDD
The main benefit of BDD is that it facilitates organized communication within the
team. This means that the product owners, developers, and testers will have a better
shared understanding of how the system works. With BDD there is a direct path
from end-user requirements to usable, automatable tests. The requirements written
by the customer in the Given-When-Then format can be directly used as the starting
point for acceptance tests. This means that it is easier for non-developers to
participate in the creation of the acceptance tests. Chapter 6 will explain in more

15

https://paperpile.com/c/QhE7ac/HmXI
https://paperpile.com/c/QhE7ac/HmXI
https://paperpile.com/c/QhE7ac/HmXI
https://paperpile.com/c/QhE7ac/QQWM


detail how requirements written in Gherkin language are implemented as executable
acceptance tests.

Some drawbacks of BDD is that prior experience with TDD is needed to adopt it.
BDD is also incompatible with the waterfall software development model, and it
may not be effective if the requirements are not properly specified. Testers using
BDD also need to have sufficient technical skills. [35]

5.2 The BDD development process
The BDD development process consists of three steps (see Figure 5). The first step is
to create a user story for an upcoming feature and to discover how the system should
behave using concrete examples. The user stories should be related to business
outcomes. Only the behaviours that contribute directly to these business outcomes
should be implemented. The second step is to document those examples in a way
that could be used to run acceptance tests automatically. This is commonly
accomplished using the Given-When-Then format. To improve communication, the
domain experts, testers, and developers should have direct access to this
documentation [36]. During the third step, the documented behaviour is
implemented with code. The automated test is used to guide the development of the
code. Over time, this process helps create living documentation, that is,
documentation that accurately reflects the behaviour of the system [37, p. 16].

Figure 5: The BDD development process (adapted from [38]).

6. Overview of acceptance testing tools
Many tools that can be used for acceptance testing and automation testing have been
developed. There are at least 59 tools that can be used for automated testing [39].

16

https://paperpile.com/c/QhE7ac/IQQK
https://paperpile.com/c/QhE7ac/MIJWC
https://paperpile.com/c/QhE7ac/ld3B
https://paperpile.com/c/QhE7ac/SPGT
https://paperpile.com/c/QhE7ac/4gAbc


There are both commercial and open-source acceptance testing tools. Commercial
tools often require less coding skills of the testers and they also have better support.
Paid tools are often an all-in-one solution that can handle all types of testing.
Open-source tools require some coding skills for writing and running the tests and
they typically focus on one type of testing.

The following sections will provide an overview of the testing tools and walk
through the implementation of a test on a simple to-do list application. The same test
will be implemented with all the tools to show the exact implementation differences.
The to-do list application allows the user to add notes to a list of items to be
completed. This is done by typing in the note in the input field and pressing a button,
which adds the note to the list. By clicking on the checkboxes next to each item
added to the list, the user can indicated that the task has been completed. A
screenshot of the to-do list application is provided in Figure 6 below:

Figure 6: Screenshot of the to-do list application.

17



6.1 Motivation for the choice of acceptance testing tools
to be compared

To limit the scope of the thesis, only three tools that can be used for BDD were
chosen. The tools were chosen out of 15 testing tools that support BDD [40]. Due to
financial limitations, as paid testing tools can be very expensive, only open-source
tools were chosen. The tools were chosen based on their popularity, which was
determined by the number of stars their projects have on the website GitHub.com, a
code hosting platform. The amount of stars and forks on GitHub often reflects the
popularity of the software. While these metrics depend on the age of the tools, this is
not expected to be a major factor, as development of all of the tools started over 10
years ago, between 2005-2008 [41], [42], [43].

The first tool, Cucumber, was chosen because it is a well-recognized open-source
testing tool that supports BDD [44]. Cucumber has 3200 stars on GitHub and 634
forks [45]. The Python port of Cucumber, called Behave, was chosen because of
Python’s concise syntax. Robot Framework was chosen as the second tool because it
is popular and it also supports BDD. Robot Framework has 5600 stars on GitHub
and 1600 forks [45], [46]. The last tool chosen was Concordion, which also supports
BDD. Concordion is less popular, as it only has 199 stars on GitHub and 63 forks
[47].

6.2 Selenium WebDriver

What all the selected tools have in common is that they allow to write high level test
scenarios in their specification language, but on the lower level, they need to interact
with the SUT. For this thesis, Selenium WebDriver [48] was chosen as the tool that
interacts with the UI of the web application.

Selenium is probably the most popular test automation tool that can be used to
automate a web browser to interact with a web application [3, p. 51-52]. Selenium is
open-source, available in many programming languages, and supports the most
common browsers [3, p. 56-57].

18

https://paperpile.com/c/QhE7ac/xLYc
https://paperpile.com/c/QhE7ac/xFTc
https://paperpile.com/c/QhE7ac/bz3r
https://paperpile.com/c/QhE7ac/3nTJ
https://paperpile.com/c/QhE7ac/IefY
https://paperpile.com/c/QhE7ac/scjK
https://paperpile.com/c/QhE7ac/scjK+48jU
https://paperpile.com/c/QhE7ac/j2ax
https://paperpile.com/c/QhE7ac/Bxpb
https://paperpile.com/c/QhE7ac/QQWM
https://paperpile.com/c/QhE7ac/QQWM


To perform actions on the web page, such as clicking buttons, or typing in text in an
input field using Selenium, the HTML-elements will need to be accessed. This can
be done using Selenium’s built-in functions that can access elements on the page
using their element type, attributes, or a combination of both. Below is an example
of code written in Java that uses Selenium's library to select an element on the page
of the type “input” with the class “inputLogin”, and then inputting the text
“username” into the input field.

WebElement textInput =

test.getBrowser().getDriver().findElement(By.xpath("//input[@class='inputLogin']"));

textInput.sendKeys("username");

6.2 Cucumber (Behave)
Cucumber is a testing tool that supports BDD. Cucumber supports the most common
programming languages. With Cucumber it is possible to write acceptance tests in a
language that is easy to understand for everybody in the team. Cucumber supports
over 40 different spoken languages [49].

When using BDD with Cucumber, the product owners write scenarios, also known
as user stories, that explain how the system should work from the end-user’s
perspective. There are three layers to Cucumber: the Gherkin layer, the “Glue” layer
and the helper functions layer.

6.2.1 Gherkin layer
The first layer, Gherkin, is used to describe the feature in an easily understandable
way, using Give-When-Then steps. The feature is described in a feature file and it is
the first file to be created. A feature file contains the name and a description of the
feature at the top, followed by one or several scenarios consisting of any number of
Given-steps, one When-step and one or multiple Then-steps. The Given-steps might
be left out if the system shares the set up inside the code, or if set up is not needed
before starting the application. The When and the Then-steps, however, are
mandatory. [50] This is the feature description for adding an item to a to-do list using
Gherkin:

19

https://paperpile.com/c/QhE7ac/ohGMY
https://paperpile.com/c/QhE7ac/iCCMZ


Feature: Test to add item to TODO list

As a user

I want to add items to a TODO list

So that I can keep track of tasks to be done

Scenario: Test TODO App

Given I go to the TODO app to add an item

When I enter an item to be added

When I click on the add button

Then I should verify the added item exists

6.2.2 Glue-layer
The second layer is the “Glue” where all of these steps are hooked up to some
program code. In Cucumber language, these hooks are called step definitions and
how they are implemented is highly dependent on the programming language used.
In Python, the Given-, When-, and Then-steps are defined as annotations, followed
by a regular expression that matches the line in the feature file. Each Given-, When-,
Then-step is associated with a function that finds elements and performs actions on
the page by calling helper functions that exist in a separate file. The helper functions
are abstracted away in a different file to keep the step files small and to make it
possible to re-use the helper functions in multiple step files. Below is the example of
the Glue code for adding an item to a to-do list:

@given('I go to TODO app to add item')

def step(context):

context.helperfunc.open('https://lambdatest.github.io/sample-todo-app/')

context.helperfunc.maximize()

@when('I enter item to add')

def enter_item_name(context):

context.helperfunc.find_by_id('sampletodotext').send_keys(

"Yay, Let's add it to the list")

@when('I click add button')

def click_on_add_button(context):

context.helperfunc.find_by_id('addbutton').click()

20



@then('I should verify the added item')

def verify_todo_item(context):

added_item_text = context.helperfunc.find_by_xpath(

"//span[@class='done-false']").text

assert added_item_text == "Yay, Let's add it to the list"

6.2.3 Helper functions layer
The last layer is the code that performs the actions, such as controlling the web
driver, or making API calls. It is recommended to put this code in helper functions in
a separate file to make the Glue-code easier to read [51]. The web driver is used to
simulate user interactions on the page. Below are some examples of helper functions
that utilize Selenium’s built-in functions, using the to-do list application example.
The functions are used to find elements on the page by their name and by their ID.

def find_by_name(self, name):

return self._driver_wait.until(EC.visibility_of_element_located((By.NAME, name)))

def find_by_id(self, id):

return self._driver_wait.until(EC.visibility_of_element_located((By.ID, id)))

6.3 Robot Framework
Robot Framework was initially developed as a generic test automation solution for
Nokia Networks in 2005. The first open-source version of Robot Framework was
released in 2008. [42] Robot Framework is used by many large companies, such as
Finnair, Wärtsilä, and the Finnish tax administration. Robot Framework is a versatile
tool that can be used for automated acceptance testing, as well as robotic process
automation, among other things. Support for BDD using Gherkin is built into Robot
Framework. Robot Framework is open-source and operating system and
application-independent. The core framework runs on Python, JVM, and .NET.
Many test libraries and tools have been developed that extend Robot Framework’s
capabilities. [52]

Acceptance tests with Robot Framework are written using keywords. This means
that one does not have to write e.g. the code that controls the web driver, as that is
handled by the tool. Instead, short keywords, such as ”Title Should Be”, “Click

21

https://paperpile.com/c/QhE7ac/3oLj
https://paperpile.com/c/QhE7ac/bz3r
https://paperpile.com/c/QhE7ac/xkI9C


Element”, and “Open Browser” are used to control the web driver. It is
recommended that the keywords are written to be reusable in many test cases to
minimize code duplication. The two most important files when writing tests using
Robot Framework are: the file that contains the test cases, and the file that controls
the web driver.

6.3.1 Test case file
This file defines the keywords for the test cases. The settings for this file are defined
at the top of the file. The Resource file that contains the keywords which control the
web driver must be referenced in the settings. Below is a simple example of settings
that contain the documentation, a reference to the Resource file, and keywords to be
executed when the test is completed:

*** Settings ***

Documentation A test suite with a single Gherkin style test.

Resource resource.robot

Test Teardown Close Browser

The test cases are specified below the settings. Each test case has unique and
descriptive keywords. Below is an example of keywords for a test case using Robot
Framework that opens up a browser, navigates to the URL of a to-do list application,
clicks on checkboxes on the to-do list, adds a new item to the list, and verifies the
item was added:

*** Test Cases ***

Add TODO item

Given I go to the TODO app

Then I click on the first checkbox and second checkbox

When I enter the item "Yay! Added task to the list." to be added

When I click the add button

Then I should verify the item was added

The keywords are defined under the test cases. The description of the keywords must
match the exact words used in the test cases. In the example below, “I go to the
TODO app” is the description, and “Open browser to TODO app” is the keyword.

22



The actions of the keywords are defined in the Resources file using the same words
as the keyword. The actions in the Resources file are used to control the web driver
that performs actions on the page. Multiple keywords can be defined for each
description. Below is an example of a keyword:

*** Keywords ***

I go to the TODO app

Open browser to TODO app

6.3.2 Resource file
This file specifies what actions the web driver should take for each keyword
mentioned in the test case file. Each top level keyword should be defined in the test
case file. This file also contains settings at the top of the file. Below is an example of
settings containing documentation and that specifies libraries that are used:

*** Settings ***

Documentation A resource file with reusable keywords and variables.

...

... The system specific keywords created here form our own

... domain specific language. They utilize keywords

... provided by the imported SeleniumLibrary.

... by the imported SeleniumLibrary.

Library SeleniumLibrary

Below the settings, the variables that are used in the file are defined. Variables are
specified using a dollar sign and brackets syntax. Below is an example of some
variables:

*** Variables ***

${SERVER} lambdatest.github.io

${BROWSER} Chrome

${TODO URL} http://${SERVER}/sample-todo-app/

23



The keywords are defined below the variables. Below is an example of a keyword
that controls the web driver using two keywords and that also defines another
keyword (“TODO App Should Be Open”):

*** Keywords ***

Open Browser To TODO app

Open Browser ${TODO URL}    ${BROWSER}

Maximize Browser Window

TODO App Should Be Open

The “TODO App Should Be Open” keyword further maps to the “Title Should Be”
keyword, which checks that the title of the web page is correct using Selenium
WebDriver:

TODO App Should Be Open
Title Should Be    Sample page - lambdatest.com

6.3.2.1 How the keywords map to SeleniumLibrary

The keywords used in the Resources file map to methods in SeleniumLibrary, the
web testing library of Robot Framework. SeleniumLibrary utilizes the Selenium tool
internally. [53] The keywords used to control the web driver must be identical to the
names of the methods in the library, except with spaces instead of underscores, and
capitalized words instead of lowercase words [54]. For instance, the keyword
“Maximize Browser Window” maps to the method maximize_browser_window in
the class WindowKeywords in the file window.py in SeleniumLibrary [53]. The code
for the method is provided below:

@keyword
def maximize_browser_window(self):

"""Maximizes current browser window."""
self.driver.maximize_window()

As another example, the “Title Should Be” keyword maps to the method
title_should_be in the class BrowserManagementKeywords in the file

24

https://paperpile.com/c/QhE7ac/W43F
https://paperpile.com/c/QhE7ac/7lWN
https://paperpile.com/c/QhE7ac/W43F


browsermanagement.py in SeleniumLibrary [53]. The code for the method is
provided below:

def title_should_be(self, title: str, message: Optional[str] = None):
"""Verifies that the current page title equals ``title``.
The ``message`` argument can be used to override the default error
message.
``message`` argument is new in SeleniumLibrary 3.1.
"""
actual = self.get_title()
if actual != title:

if message is None:
message = f"Title should have been '{title}' but was '{actual}'."

raise AssertionError(message)
self.info(f"Page title is '{title}'.")

6.4 Concordion
Concordion is an open-source testing framework for Java-based projects that
supports BDD. Concordion can turn requirements written in plain English into
automated tests, similarly to Cucumber and Robot Framework. [47] Concordion
supports writing specifications in HTML or Markdown. While Concordion only
supports Java, it has been ported to Python (PyConcordion), C# (Concordion.NET),
and Ruby (Ruby-Concordion).

6.4.1 Specification file
With Concordion, one starts by creating the specification first in Markdown or
HTML. See Figure 7 below for a preview of the to-do list app’s specification for the
feature of adding an item to the list, written in Markdown. Concordion does not
require that specifications are written in a certain format. It is possible to start by
writing the specifications in the Given-When-Then format, and later change it to a
more natural language, once you become familiar with thinking about the context,
action and outcome of an example. [55]

25

https://paperpile.com/c/QhE7ac/W43F
https://paperpile.com/c/QhE7ac/j2ax
https://paperpile.com/c/QhE7ac/cCicJ


Figure 7: Preview of a Concordion specification written in Markdown.

The main difference between Concordion and the other tools chosen is that it is
developed specifically for creating living documentation written in HTML or
Markdown files. Living documentation can be accessed and read by all members of
the team and it is directly tied to how the system works. The specifications can be
written in normal language, and media files can also be added to the specifications.

To create executable specifications using Markdown documents and Concordion,
commands need to be added to the specification. The commands have to be added as
links in the Markdown document. A hyphen has to be added, to differentiate the
Concordion commands from regular Markdown links. [56] In the specifications, you
can specify variables from the text, run methods that exist in a Fixture file, do
assertions, etc.

In the specification for adding an item to the list of the to-do list application, which
is provided below in Markdown, the first method that is called in the Fixture file is
openTodoApp. On the second line, the variable newItem is defined and given the
value “Yay, added item to list”. The method enterItem is then called with newItem as
the argument. Finally, the method verifyItemExists is called with the argument
newItem, to check that the item has been added to the list.

26

https://paperpile.com/c/QhE7ac/lKoAN


# Test to add item to TODO list

As a user

I want to add items to a TODO list

So that I can keep track of tasks to be done

## [Example](-)

Given I [go to TODO app](- "openTodoApp()")

When I enter the item "[Yay, added item to list](- "#newItem")" [ ](-

"enterItem(#newItem)")

Then I should [verify the item exists](- "verifyItemExists(#newItem)")

6.4.2 Fixture file
The methods that are called from the specification are placed in the Fixture file. The
function of the Fixture file is to open up different pages in the application and to run
methods that exist on the pages that test different features on the pages. In the
Fixture file (which is provided below) of the to-do list app, the browser, that is
initialized in the method openTodoApp, is stored in a variable browserInstance, so
that it can be used in the other methods that are called from the specification. The
URL of the to-do list app is fetched from the AppConfig file.

public class TodoAddItemFixture extends CubanoDemoBrowserFixture {

private BrowserBasedTest browserInstance;

public String getTodoAppURL() {

return AppConfig.getInstance().getTodoAppUrl();

}

public void openTodoApp() throws Exception {

browserInstance = TodoAppPage.open(this);

}

public void enterItem(String newItem) throws Exception {

TodoAppPage.enterItem(browserInstance, newItem);

}

public void addItem(String newItem) throws Exception {

27



TodoAppPage.addItem(browserInstance);

}

public void verifyItemExists(String item) throws Exception {

TodoAppPage.verifyItemExists(browserInstance, item);

}

}

6.4.3 Page Object file
In the Page Object files, the code for the web driver is implemented, if a web driver
such as Selenium is used to test the web application. Each page should have a Page
Object class. This is to make sure not all test cases are put into one giant Page
Object. In the to-do list app’s Page Object provided below, the enterItem method
enters text into an input field using Selenium WebDriver, while the addItem method
clicks on a button which adds the item to the list, also using Selenium WebDriver.
The open method opens the browser and navigates to the to-do list app’s URL. The
verifyItemExists method looks for a certain element on the page and checks whether
it contains the new item.

public class TodoAppPage extends PageObject<ConcordionEvernoteLoginPage> {

public TodoAppPage(BrowserBasedTest test) throws InterruptedException {
super(test);

}

public static BrowserBasedTest enterItem(BrowserBasedTest test, String newItem)
throws InterruptedException {

WebElement newItemInput =
test.getBrowser().getDriver().findElement(By.id("sampletodotext"));

newItemInput.sendKeys(newItem);
return test;

}

public static BrowserBasedTest addItem(BrowserBasedTest test) throws
InterruptedException {

WebElement addItemButton =
test.getBrowser().getDriver().findElement(By.id("addbutton"));

addItemButton.click();
return test;

}

public static void verifyItemExists(BrowserBasedTest test, String correctItem)

28



throws InterruptedException {
WebElement newItemElement =

test.getBrowser().getDriver().findElement(By.xpath("//span[@class='done-false"));
String newItemElementText = newItemElement.getText();
Assert.assertThat(newItemElementText,

CoreMatchers.containsString(correctItem));
}

public static BrowserBasedTest open(BrowserBasedTest test) throws
InterruptedException {

test.getBrowser().getDriver().navigate().to(AppConfig.getInstance().getTodoAppUrl()
);

return test;
}

}

29



7. Evaluation of the selected testing tools via
a reference application
The first sections of this chapter explains the methods, and the motivation behind
choosing the methods used to evaluate the testing tools. To better evaluate the tools,
a longer test case is implemented on a popular web application in the later sections
of this chapter. In the later sections, the implementation of the test case is also
explained in detail for each tool.

7.1 Methods used to evaluate the testing tools
To compare the testing tools, it must be known what priorities testers have when it
comes to selecting an acceptance testing tool. Surveys and literature were examined
to discover the top priorities testers have when selecting a test automation tool.
These priorities are used in Chapter 8 to compare the testing tools, to decide which is
best suited for BDD in web applications. Two surveys of testers [57], [58] and three
pieces of literature, [59], [60], [61] were examined to find important priorities.
Omitting licensing and support costs, as all tools used are free, the five important
priorities identified were:

- Ease of use
- Good test reports
- Popularity. training, documentation, and tutorials
- Ease of adoption and configuration
- Efficiency

To evaluate the ease of use, ease of adoption, and efficiency of the tools, a test case
will be implemented and run on a web application using each tool. The
documentation available on the websites of each tool and online sources will be used
to evaluate the test reporting capabilities, as well as the popularity, training,
documentation, and tutorials available. The tools will be evaluated based on 10
questions in the five categories. The questions are provided below in Table 1:

30

https://paperpile.com/c/QhE7ac/2kNKN
https://paperpile.com/c/QhE7ac/l5ikk
https://paperpile.com/c/QhE7ac/vi1gQ+mU1tA
https://paperpile.com/c/QhE7ac/on1v0


Table 1: Evaluation questions

Criteria ID Questions

Usability Q1 What is the SUS score?

Q2 Is it possible to write tests without coding?

Q3 How many lines of code is needed to implement the test
case?

Test reporting Q4 Can the tool generate highly configurable test reports
automatically, and if not, is it possible to integrate a test
reporting tool?

Popularity,
training
resources and
community
support

Q5 How many visitors does the tool’s website get from
search engine results pages per month?

Q6 How many times is the tool searched on Google per
month?

Q7 Are there workshops, paid or free training, certifications
or conventions?

Q8 Is there community support, and if so, on what platform?

Ease of
adoption

Q9 Can a demo project from the documentation be installed
and executed within 60 minutes?

Efficiency Q10 What was the execution time for the test case?

7.1.1 Evaluating usability

Three factors will be used to evaluate the usability of the tools: the System Usability
Score (SUS), whether coding is required to implement test cases using the tool, and
how many lines of code (LOC) are needed to implement the test case in the later
sections of this chapter.

The SUS system is a reliable way to quickly evaluate the usability of a system, and it
has been in use for over 30 years [62]. SUS has also been used in previous research
to measure the usability of automatic testing tools [61]. The SUS system uses a

31

https://paperpile.com/c/QhE7ac/2tdAi
https://paperpile.com/c/QhE7ac/on1v0


Likert scale [63] that includes 10 questions that the users have to answer with a
number. The 10 questions used in SUS are:

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use

this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very

quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

The answers are given in a numerical form, from 1-5, 1 meaning that the participant
strongly disagrees, and 5 meaning that the participant strongly agrees with the
statement. Calculations are then done to transform the numerical answers into a
value ranging from 0 to 100, 0 being the least user friendly, and 100 being the most
user friendly.

As usability is highly subjective, it is commonly measured using many participants
to get a more objective result. However, due to a lack of access to participants who
were able to test the tools and answer questions, the 10 questions will only be
answered by the author of this thesis. A low number of participants makes the SUS
scores more subjective, as e.g. the programming knowledge of the individual will
affect the answers greatly. For instance, as the author has intermediate programming
knowledge, the answers may not reflect the opinions of users with very little
programming knowledge, as they may find it harder to use the tools. Inversely,
individuals with more extensive programming knowledge may find the tools easier
to use. Despite this, SUS is useful in this thesis because the scores indicate the
relative usability of the tools.

32

https://paperpile.com/c/QhE7ac/kLp5


Because one of the goals of BDD is to engage all members of the team, even those
that lack coding knowledge, it is important to consider whether it is possible to write
test cases using the tools without coding. Also, if the tool does not require coding,
testers with less, or no coding knowledge can be hired and trained quicker, saving
resources. Tools that do not require coding are expected to be easier to use for people
without coding experience.

The number of LOC required to implement the same test case using the different
tools is also compared. If fewer LOC are required, the tool is determined to be easier
to use. This is especially true for users with limited coding skills. Fewer LOC also
means that the tests can be written quicker and that there likely will be fewer errors.

7.1.2 Evaluating test reporting

Test reporting is important, as it provides information about how the test execution
went, and e.g. helps with debugging the application. Three factors will be used to
evaluate the test reporting capabilities of each tool: whether the reports are
automatically generated, whether the reports are highly configurable, and whether it
is possible to integrate a test reporting tool if the tool does not have built-in test
reporting.

7.1.3 Evaluating popularity, training resources and community
support
Four factors will be used to evaluate the popularity, training resources, and
community support of the tools. The factors are: how many website visitors the
tool’s website receives per month, how many Google searches are performed for the
tool per month, whether there is paid training, certifications, conventions and
workshops, and whether there is community support available.

To evaluate the popularity of the tools, SERanking [64], a tool that is used to analyze
search engine traffic will be used. The tool will be used to determine approximately
how much traffic the testing tools’ websites receive from Google’s search engine
results pages per month [65], and how many times the tool is searched per month
[66]. If the name of the testing tool is ambiguous, as is the case with Cucumber, the

33

https://paperpile.com/c/QhE7ac/Y3lx
https://paperpile.com/c/QhE7ac/RJMj
https://paperpile.com/c/QhE7ac/CX3m


number of searches that contain the tool’s name and terms related to testing will be
summed to get the overall search volume.

Each tool’s website will also be examined to determine what training resources are
available, and whether community support is provided, such as forums and Slack
channels.

7.1.4 Evaluating ease of adoption and configuration

The ease of adoption and configuration will be evaluated based on how quickly the
tool can be installed, configured, and a basic demo project from a tutorial on the
tool’s website can be run. If this can be accomplished within 60 minutes, the tool is
considered to be easy to install and configure.

7.1.5 Evaluating efficiency

To evaluate the efficiency, the execution times for the same test case will be
compared for each tool.

7.2 Web application to be tested
The web application that was chosen to be tested was Evernote [67], a popular
note-taking web application. Evernote allows the user to store and organize notes.
Evernote was chosen because it is a popular and relatively simple web application,
which makes it a good choice for writing short test cases that show the features of,
and how to implement simple acceptance tests using the testing tools.

The tools will be used to test the process of logging in and adding a note using
Evernote. The test will check that the note has been added by checking that the title
of the latest note is correct. The same test case will be written using Cucumber,
Robot Framework and Concordion.

7.3 Implementing and running the tests with Cucumber
For Cucumber, the Python port of Cucumber called Behave was used. The feature
description for adding a note in Evernote in the AddANote.feature file is provided
below:

34

https://paperpile.com/c/QhE7ac/0J9Z


Feature: Add a note in Evernote

As a user

I want to add a note in Evernote

So that I can access it later

Scenario: Add a note in Evernote

Given I go to the Evernote app

When I write a note

Then I should verify the added note

As described previously, the “Given”, “When”, “Then” keywords hook into the
methods in the steps file using annotations which mention the keywords. The code in
the steps file is provided below:

@given('I go to Evernote to add a note')

def start(context):

context.helperfunc.open('https://www.evernote.com/Login.action')

context.helperfunc.maximize()

context.helperfunc.find_by_id('username').send_keys(

"username")

context.helperfunc.find_by_id('loginButton').click()

context.helperfunc.find_by_id(

'password').send_keys("password")

context.helperfunc.find_by_id('loginButton').click()

This code visits the Evernote login page, finds the username input field and inputs a
username, and finds the login button by its ID on the page, and clicks it. Then the
password field appears; it is selected by its ID, and the password is entered, after
which the login button is pressed and the user is logged in.

@when('I write a note')

def add_note(context):

# click add note

context.helperfunc.find_by_id('qa-CREATE_NOTE').click()

35



time.sleep(2)

# switch to note editor iframe

context.helperfunc.switch_frame("qa-COMMON_EDITOR_IFRAME")

# type in title

context.helperfunc.find_by_xpath(

"//textarea[@class='_3wdDa _2gdsJ']").send_keys("Test title")

# type in note

context.helperfunc.find_by_xpath("//div[@class='para']").send_keys(

"Test text")

# switch back to parent document

context.helperfunc.switch_back()

This code finds the button for creating a new note and clicks it. Then it waits for two
seconds because it takes some time for the iframe which is used for editing the note
to load. Then it switches to the editor iframe, using the iframe’s ID on the page.
Then it finds the textarea that is used for inputting the title of the note, and it inputs
the title “Test title”, using the send_keys function. Then it does the same thing for
the body of the note. Finally, it switches back to the main document from the editor
iframe.

@then('I should verify the added note')

def verify_note_exists(context):

time.sleep(2)

note_title_text = context.helperfunc.find_by_xpath(

"//div[@class='OzCyOGOuSNLMCuvVYJesK Y8p50x11YFkD12NFEwqvc

_2tWVs2YDKEIUbIZYp_SNA6']/span").text

assert note_title_text == "Test title"

The last step is to verify that the note was added. This is done by finding the element
that contains the title of the latest note. The title is located within a span element
inside a div element with a rather long class name. Then it asserts that the title text is
“Test title”.

36



The code for the helper function, which uses Selenium WebDriver’s Python API to
control the web driver is provided below:

class HelperFunc(object):

__TIMEOUT = 30

def __init__(self, driver):

super(HelperFunc, self).__init__()

self._driver_wait = WebDriverWait(driver, HelperFunc.__TIMEOUT)

self._driver = driver

def open(self, url):

self._driver.get(url)

def maximize(self):

self._driver.maximize_window()

def close(self):

self._driver.quit()

# Helper functions that are used to identify the web locators in the Selenium

Python tutorial

def find_by_xpath(self, xpath):

return self._driver_wait.until(EC.visibility_of_element_located((By.XPATH,

xpath)))

def find_by_name(self, name):

return self._driver_wait.until(EC.visibility_of_element_located((By.NAME,

name)))

def find_by_id(self, id):

return self._driver_wait.until(EC.visibility_of_element_located((By.ID,

id)))

def find_by_class(self, className):

return

self._driver_wait.until(EC.visibility_of_element_located((By.CLASS_NAME,

className)))

def switch_frame(self, id):

37



return self._driver.switch_to.frame(id)

def switch_back(self):

self._driver.switch_to_default_content()

The test case was run using the following command:

behave -f allure_behave.formatter:AllureFormatter -o /allure-reports
features/AddANote.feature

Allure [68], a test report tool that can be easily integrated with Behave, was used to
generate the test reports because Behave only supports creating test reports in JSON
or XML format, neither of which are easily readable [69]. In the command, it was
specified that only the AddANote feature should be run. Running the test case using
Behave took 24.070 seconds, as can be see in the report created by Allure in Figure 8
in Chapter 8. In total, 100 LOC were used for the Gherkin feature file, the steps file,
and the helper functions file. For the Gherkin file, 10 LOC were used. For the steps
file, 49 LOC were used. For the helper file, 41 LOC were used.

7.4 Implementing and running the test with Robot
Framework
The Gherkin file for the test case implemented using Robot Framework is provided
below. When the test is run, Robot Framework looks for the keywords in the
resource.robot file in order, starting with the keyword “Open browser to Evernote”,
and ending with “Verify added note”, which takes the variable ${correct_note_title}.

*** Settings ***

Documentation A sample test case for adding a note with Evernote

...

... This test checks the feature of adding a note.

Resource resource.robot

Test Teardown Close Browser

*** Test Cases ***

Add a note

38

https://paperpile.com/c/QhE7ac/6pTg
https://paperpile.com/c/QhE7ac/8yti


Given I go to the Evernote app

When I write a note with title "Test title" and text "Test text"

Then I should verify the added note exists and has the title "Test title"

*** Keywords ***

I go to the Evernote app

Open browser to Evernote

Login to Evernote

I write a note with title "${note_title}" and text "${note_text}"

Write a note ${note_title}    ${note_text}

I should verify the added note exists and has the title "${correct_note_title}"

Verify added note ${correct_note_title}

Selenium WebDriver is then controlled in the resource.robot file to perform actions
on the page using keywords, such as “Open Browser”, and “Input Text”. At the last
step, an assertion is performed using the keyword “Element Text Should Be”, to
check that the latest note has the correct title. The resource.robot file is provided
below:

*** Settings ***

Documentation A sample test case for adding a note with Evernote

Library SeleniumLibrary

*** Variables ***

${SERVER} evernote.com

${BROWSER} Chrome

${DELAY} 0

${VALID USER} username

${VALID PASSWORD} password

${LOGIN URL} https://${SERVER}/Login.action

*** Keywords ***

Open Browser To Evernote

Open Browser ${LOGIN URL}    ${BROWSER}

Maximize Browser Window

Set Selenium Speed ${DELAY}

39



Login To Evernote

Input Text  username ${VALID USER}

Click Button    loginButton

Wait Until Element Is Visible   password

Input Password  password ${VALID PASSWORD}

Click Button    loginButton

Write A Note

[Arguments]    ${note_title}    ${note_text}

Wait Until Element Is Visible   qa-CREATE_NOTE timeout=15

Click Button    qa-CREATE_NOTE

Wait Until Element Is Visible   qa-COMMON_EDITOR_IFRAME

Select Frame    qa-COMMON_EDITOR_IFRAME

Input Text    //textarea[@class='_3wdDa _2gdsJ'] ${note_title}

Input Text    //div[@class='para'] ${note_text}

Unselect Frame

Verify Added Note

[Arguments]    ${correct_note_title}

Sleep  2s

${added_note_title} Get WebElement    //div[@class='OzCyOGOuSNLMCuvVYJesK

Y8p50x11YFkD12NFEwqvc _2tWVs2YDKEIUbIZYp_SNA6']/span

Element Text Should Be ${added_note_title} ${correct_note_title}

The test case was run with the following command:

robot evernote_tests/gherkin_add_note.robot

According to the built in test reporting tool of Robot Framework, running the test
case took 27.144 seconds. In total 67 LOC were used for the Gherkin and the
resource.robot files. When running the test, an output file in XML format, and a log
and report file in HTML format was created. See Figure 9 in Chapter 8 for a
screenshot of the generated report.

7.5 Implementing and running the tests with Concordion
The specification for the Concordion test is provided below in Markdown format.
The specification contains the commands which run the methods in the Fixture.

40



# Adding a note in Evernote

As a user

I want to add a note in Evernote

So that I can access it later

## [Example](-)

Given I [go to the Evernote app](- "loginToEvernote()")

When I write a note with the title "[Test title](- "#noteTitle")" [ ](-

"writeANote(#noteTitle)")

Then I should [verify the added note exists and has the title "Test title"](-

"verifyNoteWithTitleExists(#noteTitle)")

The first method that is called in the Fixture is loginToEvernote, which starts the
browser, navigates to Evernote and logs in. On the second line, the variable noteTitle
is defined and given the value “Test title”. The method writeANote is then called
with noteTitle as the argument. Finally, the method verifyNoteWithTitleExists is
called with the argument noteTitle. The Fixture class that implements the methods is
provided below:

public class ConcordionAddNoteFixture extends CubanoDemoBrowserFixture {

private BrowserBasedTest browserInstance;

public String getConcordionEvernoteLoginURL() {

return AppConfig.getInstance().getConcordionEvernoteLoginUrl();

}

public void loginToEvernote() throws Exception {

browserInstance = ConcordionEvernoteLoginPage.open(this);

ConcordionEvernoteLoginPage.loginToEvernote(browserInstance);

}

public void writeANote(String noteTitle) throws Exception {

ConcordionEvernoteAppPage.writeANote(browserInstance, noteTitle);

}

public void verifyNoteWithTitleExists(String correctNoteTitle) throws Exception

{            ConcordionEvernoteAppPage.verifyNoteWithTitleExists(browserInstance,

correctNoteTitle);

}

41



}

The browser that is initialized in the method loginToEvernote is stored in a variable
browserInstance, so that it can be used in the other methods that are called from the
specification. The URL of the login page is fetched from the AppConfig file. The
loginToEvernote method is called from the ConcordionEvernoteLoginPage
PageObject class, while the writeANote and verifyNoteWithTitleExists methods are
called from the ConcordionEvernoteAppPage PageObject class.

Below is the code for the Evernote login page PageObject class, which contains the
method for logging in a user:

public class ConcordionEvernoteLoginPage extends

PageObject<ConcordionEvernoteLoginPage> {

public ConcordionEvernoteLoginPage(BrowserBasedTest test) throws

InterruptedException {

super(test);

}

public static BrowserBasedTest loginToEvernote(BrowserBasedTest test) throws

InterruptedException {

WebElement usernameInput =

test.getBrowser().getDriver().findElement(By.id("username"));

usernameInput.sendKeys("username");

WebElement loginButton =

test.getBrowser().getDriver().findElement(By.id("loginButton"));

loginButton.click();

WebDriverWait wait = new WebDriverWait(test.getBrowser().getDriver(), 10);

WebElement passwordInputElement = wait.until(

ExpectedConditions.visibilityOfElementLocated(By.id("password")));

passwordInputElement.sendKeys("password");

loginButton.click();

return test;

}

42



public static BrowserBasedTest open(BrowserBasedTest test) throws

InterruptedException {

test.getBrowser().getDriver().navigate().to(AppConfig.getInstance().getConcordionEv

ernoteLoginUrl());

return test;

}

}

Below is the code for the Evernote app page PageObject class. This page is the main
page for the web application, where notes can be viewed and added.

public class ConcordionEvernoteAppPage extends

PageObject<ConcordionEvernoteAppPage> {

public ConcordionEvernoteAppPage(BrowserBasedTest test) throws

InterruptedException {

super(test);

}

public static BrowserBasedTest writeANote(BrowserBasedTest test, String

noteTitle) throws InterruptedException {

WebDriverWait wait = new WebDriverWait(test.getBrowser().getDriver(), 10);

WebElement addNoteButton = wait.until(

ExpectedConditions.visibilityOfElementLocated(By.id("qa-CREATE_NOTE")));

addNoteButton.click();

WebElement noteEditorFrame = wait.until(

ExpectedConditions.visibilityOfElementLocated(By.id("qa-COMMON_EDITOR_IFRAME")));

test.getBrowser().getDriver().switchTo().frame(noteEditorFrame);

WebElement noteTitleInput =

test.getBrowser().getDriver().findElement(By.xpath("//textarea[@class='_3wdDa

_2gdsJ']"));

noteTitleInput.sendKeys(noteTitle);

43



WebElement noteTextInput =

test.getBrowser().getDriver().findElement(By.xpath("//div[@class='para']"));

noteTextInput.sendKeys("Test text");

test.getBrowser().getDriver().switchTo().defaultContent();

return test;

}

public static void verifyNoteWithTitleExists(BrowserBasedTest test, String

correctTitle) throws InterruptedException {

Thread.sleep(2000);

WebElement noteTitleElement =

test.getBrowser().getDriver().findElement(By.xpath("//div[@class='OzCyOGOuSNLMCuvVY

JesK Y8p50x11YFkD12NFEwqvc _2tWVs2YDKEIUbIZYp_SNA6']/span"));

String noteTitleElementText = noteTitleElement.getText();

Assert.assertThat(noteTitleElementText,

CoreMatchers.containsString(correctTitle));

}

}

Implementing the test case took approximately 165 LOC. The test case was executed
by running the specification file as a JUnit test. According to the built in test
reporting tool of Concordion, running the test case took 27.368 seconds. The results
of the test case were stored automatically in an HTML file. See Figure 10 in Chapter
8 for a screenshot of the generated test report.

44



8. Analysis
This chapter discusses the differences between the tools within the five categories
that were discovered to be important to testers in Chapter 7. To make it easier to
compare the differences, 10 questions (see Table 1), each belonging to one of the
five categories, were answered for each tool. The results are summarised in Table 2
below. The following sections discuss the results in depth.

Table 2: Final testing tool assessment results

ID
Tools

Cucumber (Behave) Robot Framework Concordion

Q1 75 85 42.5

Q2 Yes No Yes

Q3 100 LOC 67 LOC 167 LOC

Q4 Possible to integrate a
test reporting tool

Automatically generated,
highly configurable test
reports

Automatically
generated test
reports

Q5 57,000 visitors / mo. 9,600 visitors / mo. 33 visitors / mo.

Q6 6,500 searches / mo. 4,400 searches / mo. 20 searches / mo.

Q7 Free and paid courses,
workshops

Free and paid training,
workshops, and
certifications

Free guides

Q8 Community forum,
Slack channel, mailing
list

Community forum, Slack
channel

Google Group
support

Q9 Yes Yes No

Q10 24.070 s 27.144 s 27.368 s

45



8.1 Ease of use

When comparing System Usability Scale (SUS) scores to determine the usability of
the tools, it is useful to know what the industry standards are. A SUS score of 80.3 or
higher is comparable to an “A” in the academic grading system in the United States,
which uses letter grades ranging from “F” to “A”, with F being the lowest, and A+
being the highest grade. A SUS score of 80.3 or higher thus means that the usability
is excellent, whereas a score of 68 is comparable to a C, meaning that there are
improvements to be made. A SUS score of 51 or lower is the equivalent to an “F”, a
failed grade, indicating that the usability of the system needs to be improved
urgently. [62]

8.1.2 Cucumber (Behave)

Cucumber had the second-highest SUS score of 75. Detailed documentation and
demo projects are available on the tool's website that can be used as a reference.
Cucumber's website also provides many video tutorials that explain how to
implement tests using the tool. Writing tests with Cucumber requires coding,
however, a user that has completed an introductory course in programming is
expected to be able to write tests using the provided documentation and learning
resources. It was easier to get started with Cucumber compared to Robot
Framework, as writing tests with Cucumber did not require learning how to use
keywords. However, writing tests with Robot Framework is expected to be faster
once the user understands how to use the keywords, as it does not require coding.
Implementing the test with Cucumber required 100 LOC.

8.1.1 Robot Framework

The tool with the highest SUS score, 85, was Robot Framework. Writing tests using
Robot Framework was easy, due to the good documentation and the availability of
demo projects and tutorials on the tool's website. Using Robot Framework’s
keywords required a learning curve, but the fact that no coding was needed makes it
possible for users without coding knowledge to write tests using the tool. Once it
became clear how the keywords should be used, writing tests using the tool was fast

46

https://paperpile.com/c/QhE7ac/2tdAi


and easy. Robot Framework required the least lines of code, 67, to implement the
test case.

8.1.3 Concordion

Concordion had the lowest SUS score at 42.5, indicating that the usability needs to
be improved. Implementing the test case was more difficult using Concordion,
compared to the other tools. For instance, there were many errors in the Cubano
demo project that were caused by missing libraries. It is unclear whether the errors
were caused by user error due to lacking documentation, or whether the provided
demo project was outdated.

The tutorials on Concordion's website were also less clear compared to the other
tools. For instance, the architecture of the codebase was not explained in the tutorial
of the demo project on Concordion’s website, making it difficult to understand which
files did what in the demo project. To use Selenium with Concordion a separate
library, Cubano had to be installed. The demo project for Cubano was larger than
Cucumber’s and Robot Framework’s demo projects. The demo project contained
more than 40 Java files, and the function of most of the files were not explained in
the documentation. This made it difficult to modify the demo project to implement
the test case. A considerable amount of trial and error, as well as external sources,
were used when implementing the tests. Implementing the test in Concordion also
required the most lines of code, 167. However, the fact that the Java version of
Concordion was used should be taken into consideration, as implementing the same
feature in Java typically requires more lines of code than Python.

Concordion has one advantage, however, when it comes to usability. With
Concordion, it is possible to write specifications in normal language using proper
punctuation, paragraphs, etc., while the other tools require that the Gherkin language
is used. [70]

47

https://paperpile.com/c/QhE7ac/hxAKI


8.2 Test reporting

8.2.1 Cucumber (Behave)

Using Behave, the Python port of Cucumber, it is possible to output
JUnit-compatible reports without installing extra dependencies, by adding --junit at
the end of the command when running the tests. However, this only produces reports
in XML format that are difficult to read. To generate HTML reports that are easier to
read, Allure, a test-reporting library that can integrate with Behave can be installed.
[71]. See Figure 8 below for a a screenshot of the test report generated using Allure.

Figure 8: Screenshot of the Allure test report.

8.2.2 Robot Framework

During the test execution, Robot Framework generates XML output files. Rebot, a
tool that is included with Robot Framework, automatically post-processes the XML
output files. Rebot is able to automatically generate easily readable test reports in
many formats, including HTML. Rebot can also be used separately to merge and
combine results and to create custom logs and reports. [72] See Figure 9 below for a
screenshot of the test report generated by Robot Framework.

48

https://paperpile.com/c/QhE7ac/E7yzH
https://paperpile.com/c/QhE7ac/sirL


Figure 9: Test report generated by Robot Framework.

8.2.3 Concordion

Concordion automatically generates test reports in HTML format. No information
about the configurability of the reports was found in Concordion's documentation.
However, as the software is open-source, it is possible to modify the code to
configure the test reports. See Figure 10 below for a screenshot of the test report
generated by Concordion.

49



Figure 10: Concordion test output HTML file.

8.3 Available documentation, support, and popularity

8.3.1 Cucumber

Cucumber has substantial support and documentation. On Cucumber’s website, there
are free and paid courses on how to use Cucumber [73], as well as e-books, case
studies, webinars, and events that explain how to use Cucumber and BDD [74].
There is also an open forum, community Slack channel and mailing list available for
support [75], [76].

The Cucumber website receives approximately 57,100 visitors organically from
Google’s search engine results pages per month. The keywords “cucumber testing”,

50

https://paperpile.com/c/QhE7ac/8dl3
https://paperpile.com/c/QhE7ac/lwIf
https://paperpile.com/c/QhE7ac/yY8K
https://paperpile.com/c/QhE7ac/zgI3


“cucumber test”, “cucumber testing tool” are searched a total of approximately 6500
times per month. It is therefore the most popular testing tool out of the three tools
compared.

8.3.2 Robot Framework

There are many guides and tutorials available for Robot Framework [77]. The Robot
Framework foundation also provides training and certifications and hosts yearly
conferences [78]. There is also a forum available for Robot Framework users. The
forum is active, with new posts being created daily. [79] There is also a Slack
channel available for support.

Robot Framework’s website receives approximately 9,600 visitors organically from
Google’s search engine results pages per month. The keyword “Robot Framework”
is searched a total of approximately 4400 times per month.

8.3.3 Concordion

Concordion’s website provides documentation and a guide on how to get started with
Concordion. There are no video tutorials or other learning resources available on the
tool’s website. There is a Google Group available for Concordion, where the project
leader answers questions [80].

Concordion’s website receives approximately 33 website visitors organically from
Google’s search engine results pages per month. The keyword “Concordion” is
searched a total of approximately 20 times per month.

8.4 Ease of adoption and configuration

Using official tutorials and demo projects, it was possible to install, configure, and
run a simple project with both Cucumber and Robot Framework within 60 minutes.
This process took many hours using Concordion, mostly because of import errors
that had to be fixed, but also because of inadequate documentation.

51

https://paperpile.com/c/QhE7ac/lfzX
https://paperpile.com/c/QhE7ac/BUbb
https://paperpile.com/c/QhE7ac/snaC
https://paperpile.com/c/QhE7ac/jUxa


8.5 Efficiency
Cucumber was approximately three seconds faster at running the test case compared
to the other tools. The test took 24.070 seconds to run using Cucumber, 27.144
seconds to run using Robot Framework, and 27.368 seconds to run using
Concordion. Cucumber was thus approximately 12% faster at running the test
compared to the other tools. Multiple, longer test cases would have to be run to more
accurately determine the differences in execution times.

52



9. Conclusion and future research
This thesis compared three testing tools that support BDD in web applications, based
on five criteria testers find important when choosing a testing tool. The goal was to
help testers choose the correct testing tool for BDD in web applications. The tools
were evaluated by implementing and running a test case on a web application.
Documentation, past research, and literature were also examined when evaluating
the tools. The results of comparing the tools in the five categories were summarised
in Table 2.

The results show that both Behave (the Python port of Cucumber) and Robot
Framework are good choices for BDD in web applications, as they are easy to use,
have good documentation and many available learning resources, and they are easy
to adopt. Both Concordion and Cucumber require that the users have coding
knowledge. Robot Framework, on the other hand, is also suitable for users that do
not have coding experience, due to its keyword syntax.

If Concordion is used for BDD in web applications, it needs to be taken into account
that the tool has lacking documentation, which makes the tool harder to adopt and
use. Concordion is also less popular than the other tools, by a large margin.
Concordion can be used if more elaborate specifications in HTML or Markdown
format are needed. Concordion also has fewer learning resources available and less
community support. For these reasons, Concordion is more suitable for testers with
good coding knowledge and troubleshooting abilities.

To better determine the differences in efficiency between the tools in future research,
a longer test case can be run for each tool. In this thesis, only one short test case was
run, which makes the differences in execution times small, as the execution times
were short. Of particular interest would be whether the differences in execution
times between Cucumber and the other tools increases with a longer test case. To
more objectively measure usability in future research using the SUS system, more
participants are required. As only the author answered the SUS questionnaire, the
SUS scores only indicate the usability of the tools relative to each other.

53



Swedish summary

Överblick över Behaviour-Driven Development-verktyg för
webbapplikationer

Företag och privatpersoner har blivit allt mer beroende av mjukvara. På senare tid
har speciellt webbapplikationer blivit populära för att lagra och organisera
information, samarbeta inom företag, köpa och sälja varor och aktier, underhållning
och mycket mer. Att bygga välfungerande mjukvara är ingen lätt uppgift. Nästan
hälften av alla mjukvaruprojekt misslyckas på något sätt, och webbapplikationer är
inget undantag. En vanlig orsak till detta är brister i kommunikationen mellan
kunden och mjukvaruutvecklarna. Dålig kommunikation mellan kunden och
utvecklarna leder till oklara eller felaktiga krav på mjukvaran. Detta förlänger
mjukvaruutvecklingsprojektet och ökar risken för att mjukvaran inte är av nytta för
kunden. En annan vanlig orsak till att mjukvaruprojekt misslyckas är otillräcklig
testning. Detta leder ofta till buggig mjukvara som inte uppfyller kundens krav.

Det huvudsakliga målet med Behaviour-Driven Development (BDD), en relativt ny
metod för att utveckla mjukvara, är att förbättra kommunikationen mellan
intressenterna i mjukvaruutvecklingsprojektet. Genom att skapa användarberättelser
tillsammans med kunden får man reda på vilka egenskaper mjukvaran bör ha, hur
egenskaperna bör fungera ur användarens perspektiv och hur egenskaperna bör
prioriteras. Många testverktyg som stöder BDD har utvecklats som kan användas för
att översätta användarberättelser till automatiskt körbara acceptanstester.
Acceptanstesternas mål är att försäkra att egenskaperna uppfyller kundens krav. Då
man använder BDD fungerar användarberättelserna både som lättförståelig
dokumentation av egenskaper och som test som försäkrar att egenskaperna uppfyller
kundens krav.

I avhandlingen jämfördes tre testverktyg som kan användas för BDD och för att testa
webbapplikationer. Syftet med att jämföra testverktygen var att hjälpa
mjukvarutestare att välja rätt testverktyg för BDD. Att byta testverktyg är både dyrt

54



och tidskrävande då det ofta kräver stora ändringar i källkoden och extra träning av
mjukvarutestarna. Att välja rätt testverktyg är inte lätt eftersom man måste ta många
saker i beaktande, som till exempel testverktygets pris, användarvänlighet,
effektivitet, egenskaper och tillgänglig dokumentation och stöd.

För att begränsa avhandlingens omfattning jämfördes endast tre testverktyg som
stöder BDD, Cucumber, Robot Framework och Concordion. Eftersom betalda
testverktyg ofta är dyra jämfördes endast gratis testverktyg med öppen källkod.
Testverktygen valdes utifrån deras popularitet som bestämdes baserat på hur många
stjärnor och förgreningar testverktygets öppna källkod hade på GitHub.com, en
populär plattform för lagring av versionshistorik för mjukvaruutvecklingsprojekt.
Mängden stjärnor och förgreningar som källkoden har på GitHub återspeglar ofta
mjukvarans popularitet. Tidigare forskning om testverktyg och litteratur undersöktes
för att avgöra vilka krav mjukvarutestare anser är viktiga när de väljer testverktyg.
Testverktygen jämfördes utifrån dessa krav. De fem viktigaste kraven som
identifierades var:

- Användarvänligheten
- Testrapporteringen
- Testverktygets popularitet, stöd och dokumentation
- Hur lätt testverktyget är att ta i bruk
- Effektiviteten

Kostnaden togs inte i beaktande eftersom endast gratis testverktyg jämfördes.
Användarvänligheten utvärderades med hjälp av system usability scale (SUS),
tidigare forskning samt antalet rader av kod som krävdes för att implementera ett
testfall. SUS är en metod för att på ett enkelt sätt kunna jämföra och utvärdera
användbarhetsaspekter mellan olika system. I resultaten bör det tas i beaktande att
SUS-bedömningen endast utfördes av författaren av avhandlingen, vilket leder till att
SUS-värdena är subjektiva. SUS-värdena ger därmed endast en bild av hur
användarvänliga testverktygen är jämfört med varandra. Testrapporteringen
utvärderades baserat på hur detaljerade rapporterna är och vilka format som stöds.
Testverktygens popularitet, stöd och dokumentation utvärderades baserat på hur
många som söker efter testverktyget på sökmotorn Google samt hur mycket

55



stödmaterial och dokumentation som finns tillgängligt på testverktygets hemsida.
Hur lätt det var att ta i bruk testverktygen utvärderades baserat på hur länge det tog
att installera testverktyget och implementera samt köra ett exempeltestfall ur
dokumentationen på testverktygens hemsida. Ifall det tog mindre än 60 minuter att
göra detta, ansågs testverktyget vara lätt att ta i bruk. Effektiviteten utvärderades
baserat på hur länge det tog att köra testfallet. För att jämföra testverktygen
implementeras ett testfall för Evernotes webbapplikation. Evernote är en
applikationsprogramvara för insamling av ljud-, bild- och textanteckningar, med
mera. Samma testfall implementerades och kördes med Cucumber, Robot
Framework och Concordion.

Vid jämförelsen av testverktygen hade Robot Framework det högsta SUS-värdet, 85,
och det krävdes minst rader av kod, 67, för att implementera testfallet med Robot
Framework. Detta var tack vare Robot Frameworks kortfattade nyckelords-syntax.
Av denna orsak lämpar sig Robot Framework även för mjukvarutestare som saknar
kodningserfarenhet. Cucumber hade det näst-högsta SUS-värdet, 75, och det krävdes
100 rader av kod för att implementera testfallet. Concordion hade det lägsta
SUS-värdet, 42.5 och det krävdes flest rader av kod, 167, för att implementera
testfallet. Robot Framework och Concordion hade inbyggd, detaljerad
testrapportering i HTML-format, medan Behave, Python-versionen av Cucumber
som användes för denna avhandling inte hade inbyggd testrapportering. Både
Cucumber och Robot Framework var populära eftersom det gjordes ungefär 6500
sökningar på Cucumber-testverktyget och 4500 sökningar på Robot Framework per
månad med Google-sökmotorn. Concordion var mindre populärt eftersom det endast
gjordes ungefär 20 sökningar på Concordion per månad med Google-sökmotorn.
Cucumber hade mest stödmaterial och dokumentation tillgängligt på testverktygets
hemsida och det var även det enda testverktyget som erbjöd interaktiva
självstudieprogram på hemsidan. Både Cucumber och Robot Framework var lätta att
ta i bruk eftersom det tog mindre än 60 minuter att implementera ett exempeltestfall
från dokumentationen på testverktygens hemsidor. Concordion hade minst
dokumentation och stödmaterial på hemsidan, vilket gjorde att det tog längre att
implementera testfallet. Att man var tvungen att installera Cubano, ett
mjukvarubibliotek, för att köra acceptanstester med Selenium med Cubano gjorde
också att det tog en längre tid att implementera testfallet. Alla tre testverktyg var

56



ungefär lika effektiva. Det tog 24 sekunder att köra testafallet med Cucumber, medan
det tog 27 sekunder att köra testfallet med de övriga testverktygen. För att se en
större skillnad i effektiviteten krävs att ett längre testfall körs.

Resultaten av jämförelserna indikerar att både Robot Framework och Cucumber är
bra val för BDD i webbapplikationsutvecklingsprojekt. Concordion var sämst i alla
jämförelser förutom testrapportering och effektivitet. Robot Framework och
Cucumber var båda lättanvända, det fanns mycket dokumentation och stödmaterial
tillgängligt på testverktygens hemsidor, de var lätta att ta i bruk och de hade god
testrapportering, antingen inbyggt eller med mjukvarubibliotek. Concordion var
mindre populärt, mera svåranvänt och det fanns mindre dokumentation och
stödmaterial tillgängligt på testverktygets hemsida. Concordion lämpar sig därför
bäst för mjukvarutestare som har längre kodningserfarenhet och som är bekväma
med att utföra felsökning.

57



Bibliography

[1] J. F. Smart, BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle. Manning Publications, 2014.

[2] The Standish Group, “CHAOS Report”, Standish Group, Boston, MA, USA, 1995.
Accessed on: May., 12, 2021. [Online]. Available:
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

[3] A. Axelrod, Complete Guide to Test Automation: Techniques, Practices, and Patterns
for Building and Maintaining Effective Software Projects. Apress, 2018.

[4] J. C. Goodpasture, Project Management the Agile Way, Second Edition: Making it Work
in the Enterprise. J. Ross Publishing, 2015.

[5] “SDLC - Waterfall Model.”
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm (accessed May 04,
2021).

[6] K. Rungta, “What is Waterfall Model in SDLC? Advantages & Disadvantages,” Jan.
01, 2020. https://www.guru99.com/what-is-sdlc-or-waterfall-model.html (accessed May
04, 2021).

[7] “SDLC - V-Model.” https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm (accessed
Feb. 17, 2021).

[8] B. Hambling, Software Testing: An ISTQB-BCS Certified Tester Foundation Guide.
2015.

[9] “SDLC - Agile Model.” https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm
(accessed Feb. 17, 2021).

[10] “What is Agile Software Development?,” Jun. 29, 2015.
https://www.agilealliance.org/agile101/ (accessed May 04, 2021).

[11] “Agile Manifesto for Software Development,” Jun. 29, 2015.
https://www.agilealliance.org/agile101/the-agile-manifesto/ (accessed May 04, 2021).

[12] “Scrum,” Apr. 07, 2017. https://www.agilealliance.org/glossary/scrum/ (accessed May
05, 2021).

[13] “Extreme Programming (XP),” Jun. 14, 2017.
https://www.agilealliance.org/glossary/xp/ (accessed May 05, 2021).

[14] L. Koskela, Test Driven: Practical TDD and Acceptance TDD for Java Developers.
Manning Publications, 2008.

[15] L. Shklar and R. Rosen, Web Application Architecture: Principles, Protocols and
Practices. John Wiley & Sons, 2004.

[16] P. McFedries, Web Coding & Development All-in-One For Dummies. John Wiley &
Sons, 2018.

[17] T. Contributor, “What is Web Application (Web Apps) and its Benefits,” Aug. 26, 2019.
https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app
(accessed May 05, 2021).

[18] “Website.”
https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-side/
(accessed May 05, 2021).

[19] “HTML.” https://html.spec.whatwg.org/ (accessed May 25, 2021).
[20] “CSS Snapshot 2020.” https://www.w3.org/TR/css-2020/ (accessed May 25, 2021).
[21] “JavaScript Popup Boxes.” https://www.w3schools.com/js/js_popup.asp (accessed May

58

http://paperpile.com/b/QhE7ac/HmXI
http://paperpile.com/b/QhE7ac/HmXI
http://paperpile.com/b/QhE7ac/QQWM
http://paperpile.com/b/QhE7ac/QQWM
http://paperpile.com/b/QhE7ac/5BLO
http://paperpile.com/b/QhE7ac/5BLO
http://paperpile.com/b/QhE7ac/IvHk
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
http://paperpile.com/b/QhE7ac/IvHk
http://paperpile.com/b/QhE7ac/IvHk
http://paperpile.com/b/QhE7ac/eeRx
http://paperpile.com/b/QhE7ac/eeRx
https://www.guru99.com/what-is-sdlc-or-waterfall-model.html
http://paperpile.com/b/QhE7ac/eeRx
http://paperpile.com/b/QhE7ac/eeRx
http://paperpile.com/b/QhE7ac/pv6GF
https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm
http://paperpile.com/b/QhE7ac/pv6GF
http://paperpile.com/b/QhE7ac/pv6GF
http://paperpile.com/b/QhE7ac/LedI
http://paperpile.com/b/QhE7ac/LedI
http://paperpile.com/b/QhE7ac/QmmTI
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm
http://paperpile.com/b/QhE7ac/QmmTI
http://paperpile.com/b/QhE7ac/QmmTI
http://paperpile.com/b/QhE7ac/QiAc
https://www.agilealliance.org/agile101/
http://paperpile.com/b/QhE7ac/QiAc
http://paperpile.com/b/QhE7ac/Ka5z
https://www.agilealliance.org/agile101/the-agile-manifesto/
http://paperpile.com/b/QhE7ac/Ka5z
http://paperpile.com/b/QhE7ac/hfXA
https://www.agilealliance.org/glossary/scrum/
http://paperpile.com/b/QhE7ac/hfXA
http://paperpile.com/b/QhE7ac/hfXA
http://paperpile.com/b/QhE7ac/9NDW
https://www.agilealliance.org/glossary/xp/
http://paperpile.com/b/QhE7ac/9NDW
http://paperpile.com/b/QhE7ac/jmzXU
http://paperpile.com/b/QhE7ac/jmzXU
http://paperpile.com/b/QhE7ac/n42K
http://paperpile.com/b/QhE7ac/n42K
http://paperpile.com/b/QhE7ac/OiEg
http://paperpile.com/b/QhE7ac/OiEg
http://paperpile.com/b/QhE7ac/v7cy
https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app
http://paperpile.com/b/QhE7ac/v7cy
http://paperpile.com/b/QhE7ac/v7cy
http://paperpile.com/b/QhE7ac/xuog
https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-side/
http://paperpile.com/b/QhE7ac/xuog
http://paperpile.com/b/QhE7ac/xuog
http://paperpile.com/b/QhE7ac/TgKO
https://html.spec.whatwg.org/
http://paperpile.com/b/QhE7ac/TgKO
http://paperpile.com/b/QhE7ac/ctx3
https://www.w3.org/TR/css-2020/
http://paperpile.com/b/QhE7ac/ctx3
http://paperpile.com/b/QhE7ac/9RH9
https://www.w3schools.com/js/js_popup.asp
http://paperpile.com/b/QhE7ac/9RH9


27, 2021).
[22] K. Rungta, “What is Software Testing? Definition, Basics & Types,” Jan. 01, 2020.

https://www.guru99.com/software-testing-introduction-importance.html (accessed May
25, 2021).

[23] “What is Software Testing? Definition, Basics & Types.”
https://www.guru99.com/software-testing-introduction-importance.html (accessed Feb.
17, 2021).

[24] “Testing.”
https://nuscs2113-ay1819s1.github.io/website/se-book-adapted/chapters/testing.html
(accessed May 25, 2021).

[25] Testim, “What Is Test Automation? A Simple, Clear Introduction,” Aug. 06, 2019.
https://www.testim.io/blog/what-is-test-automation/ (accessed May 25, 2021).

[26] “List of unit testing frameworks.”
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks (accessed May 25,
2021).

[27] J. Rasmusson, The Way of the Web Tester: A Beginner’s Guide to Automating Tests.
Pragmatic Bookshelf, 2016.

[28] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University
Press, 2016.

[29] J. Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable
Improvement. John Wiley & Sons, 2005.

[30] K. Rungta, “What is System Testing? Types & Definition with Example,” Jan. 01,
2020. https://www.guru99.com/system-testing.html (accessed May 05, 2021).

[31] “ISTQB Glossary.” https://glossary.istqb.org/en/search/ (accessed Feb. 17, 2021).
[32] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation (Adobe Reader). Pearson Education, 2010.
[33] M. Cohn, Succeeding with Agile: Software Development Using Scrum. Pearson

Education, 2009.
[34] H. Vocke, “The Practical Test Pyramid.”

https://martinfowler.com/articles/practical-test-pyramid.html (accessed May 27, 2021).
[35] M. M. Moe, University of Computer Studies, Hpa-An, Kayin State, and Myanmar,

“Comparative Study of Test-Driven Development TDD, Behavior-Driven Development
BDD and Acceptance Test–Driven Development ATDD,” International Journal of
Trend in Scientific Research and Development, vol. -3, no. -4. pp. 231–234, 2019, doi:
10.31142/ijtsrd23698.

[36] “BDD: Learn about Behavior Driven Development,” Dec. 17, 2015.
https://www.agilealliance.org/glossary/bdd/ (accessed Jan. 18, 2021).

[37] G. Adzic, Specification by Example: How Successful Teams Deliver the Right Software.
Manning Publications, 2011.

[38] B. Dijkstra, “Can BDD be combined with ATDD?,” Oct. 23, 2020.
https://specflow.org/blog/can-specflow-and-bdd-be-combined-with-atdd/ (accessed
May 26, 2021).

[39] “59 Best Automation Testing Tools: The Ultimate List Guide.”
https://testguild.com/automation-testing-tools/ (accessed Mar. 08, 2021).

[40] “Behavior Driven Development - Tools.”
https://www.tutorialspoint.com/behavior_driven_development/behavior_driven_develo
pment_tools.htm (accessed May 26, 2021).

[41] “Concordion.”

59

http://paperpile.com/b/QhE7ac/9RH9
http://paperpile.com/b/QhE7ac/nZ7o
https://www.guru99.com/software-testing-introduction-importance.html
http://paperpile.com/b/QhE7ac/nZ7o
http://paperpile.com/b/QhE7ac/nZ7o
http://paperpile.com/b/QhE7ac/ZlKn7
https://www.guru99.com/software-testing-introduction-importance.html
http://paperpile.com/b/QhE7ac/ZlKn7
http://paperpile.com/b/QhE7ac/ZlKn7
http://paperpile.com/b/QhE7ac/Vbmo
https://nuscs2113-ay1819s1.github.io/website/se-book-adapted/chapters/testing.html
http://paperpile.com/b/QhE7ac/Vbmo
http://paperpile.com/b/QhE7ac/Vbmo
http://paperpile.com/b/QhE7ac/XWDs
https://www.testim.io/blog/what-is-test-automation/
http://paperpile.com/b/QhE7ac/XWDs
http://paperpile.com/b/QhE7ac/rGMG
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://paperpile.com/b/QhE7ac/rGMG
http://paperpile.com/b/QhE7ac/rGMG
http://paperpile.com/b/QhE7ac/SXfZo
http://paperpile.com/b/QhE7ac/SXfZo
http://paperpile.com/b/QhE7ac/2G7u
http://paperpile.com/b/QhE7ac/2G7u
http://paperpile.com/b/QhE7ac/oDUX
http://paperpile.com/b/QhE7ac/oDUX
http://paperpile.com/b/QhE7ac/vfAI
http://paperpile.com/b/QhE7ac/vfAI
https://www.guru99.com/system-testing.html
http://paperpile.com/b/QhE7ac/vfAI
http://paperpile.com/b/QhE7ac/p0L62
https://glossary.istqb.org/en/search/
http://paperpile.com/b/QhE7ac/p0L62
http://paperpile.com/b/QhE7ac/yJWxd
http://paperpile.com/b/QhE7ac/yJWxd
http://paperpile.com/b/QhE7ac/9tVW
http://paperpile.com/b/QhE7ac/9tVW
http://paperpile.com/b/QhE7ac/jR4n
https://martinfowler.com/articles/practical-test-pyramid.html
http://paperpile.com/b/QhE7ac/jR4n
http://paperpile.com/b/QhE7ac/IQQK
http://paperpile.com/b/QhE7ac/IQQK
http://paperpile.com/b/QhE7ac/IQQK
http://paperpile.com/b/QhE7ac/IQQK
http://dx.doi.org/10.31142/ijtsrd23698
http://paperpile.com/b/QhE7ac/IQQK
http://paperpile.com/b/QhE7ac/MIJWC
https://www.agilealliance.org/glossary/bdd/
http://paperpile.com/b/QhE7ac/MIJWC
http://paperpile.com/b/QhE7ac/ld3B
http://paperpile.com/b/QhE7ac/ld3B
http://paperpile.com/b/QhE7ac/SPGT
https://specflow.org/blog/can-specflow-and-bdd-be-combined-with-atdd/
http://paperpile.com/b/QhE7ac/SPGT
http://paperpile.com/b/QhE7ac/SPGT
http://paperpile.com/b/QhE7ac/4gAbc
https://testguild.com/automation-testing-tools/
http://paperpile.com/b/QhE7ac/4gAbc
http://paperpile.com/b/QhE7ac/xLYc
https://www.tutorialspoint.com/behavior_driven_development/behavior_driven_development_tools.htm
https://www.tutorialspoint.com/behavior_driven_development/behavior_driven_development_tools.htm
http://paperpile.com/b/QhE7ac/xLYc
http://paperpile.com/b/QhE7ac/xFTc


https://concordion.org/questions/java/markdown/#who-developed-concordion (accessed
May 05, 2021).

[42] Eficode, “Robot Framework: Past, Present and Future.”
https://www.eficode.com/blog/en/blog/robot-framework (accessed May 05, 2021).

[43] J. Stenberg, “BDD Tool Cucumber is 10 Years Old: Q&A with its Founder Aslak
Hellesøy,” InfoQ, Apr. 30, 2018.
https://www.infoq.com/news/2018/04/cucumber-bdd-ten-years/ (accessed May 05,
2021).

[44] “3 open source behavior-driven development tools.”
https://opensource.com/article/19/2/behavior-driven-development-tools (accessed May
05, 2021).

[45] cucumber, “cucumber/cucumber.” https://github.com/cucumber/cucumber (accessed
Jan. 26, 2021).

[46] robotframework, “robotframework/robotframework.”
https://github.com/robotframework/robotframework (accessed Jan. 26, 2021).

[47] concordion, “concordion/concordion.” https://github.com/concordion/concordion
(accessed Jan. 19, 2021).

[48] “WebDriver.” https://www.selenium.dev/documentation/en/webdriver/ (accessed May
26, 2021).

[49] “Behavior Driven Development - Tools.”
https://www.tutorialspoint.com/behavior_driven_development/behavior_driven_develo
pment_tools.htm (accessed Jan. 26, 2021).

[50] M. Gärtner, ATDD by Example. Addison-Wesley Professional, 2012.
[51] H. Sheth, “Selenium Python Tutorial: Getting Started With BDD In Behave,” Jul. 15,

2020. https://dzone.com/articles/selenium-python-tutorial-getting-started-with-bdd
(accessed May 27, 2021).

[52] “Robot Framework.” https://robotframework.org/#documentation (accessed Jan. 25,
2021).

[53] robotframework, “robotframework/SeleniumLibrary.”
https://github.com/robotframework/SeleniumLibrary (accessed May 07, 2021).

[54] “How to write and use your own custom Robot Framework Python libraries.”
https://robocorp.com/docs/development-guide/robot-framework/how-to-use-custom-pyt
hon-libraries-in-your-robots (accessed May 07, 2021).

[55] “Concordion.” https://concordion.org/documenting/java/markdown/ (accessed Feb. 09,
2021).

[56] “Concordion.” https://concordion.org/instrumenting/java/markdown/ (accessed Feb. 09,
2021).

[57] M. Tiitinen, "Key Factors for Selecting Software Testing Tools," M.S. thesis, Bus.
Inform., MUAS., Helsinki, 2013. Accessed on: Mar. 8, 2021. [Online]. Available:
https://www.theseus.fi/bitstream/handle/10024/70826/Tiitinen_Minna.pdf

[58] “How do People Select Test Automation Tools?,” Jun. 20, 2018.
https://www.katalon.com/resources-center/blog/select-test-automation-tools-criteria/
(accessed Mar. 08, 2021).

[59] S. Sharma, S. Patnaik, and D. Naresh, “10 Points to Help You Choose the Right Test
Automation Tool,” Apr. 02, 2020.
https://testsigma.com/blog/10-points-to-help-you-choose-the-right-test-automation-tool/
(accessed Mar. 08, 2021).

[60] J. Simpson and J. Wisnowski , “Automated Software Testing Implementation Guide,”

60

https://concordion.org/questions/java/markdown/#who-developed-concordion
http://paperpile.com/b/QhE7ac/xFTc
http://paperpile.com/b/QhE7ac/xFTc
http://paperpile.com/b/QhE7ac/bz3r
https://www.eficode.com/blog/en/blog/robot-framework
http://paperpile.com/b/QhE7ac/bz3r
http://paperpile.com/b/QhE7ac/3nTJ
http://paperpile.com/b/QhE7ac/3nTJ
https://www.infoq.com/news/2018/04/cucumber-bdd-ten-years/
http://paperpile.com/b/QhE7ac/3nTJ
http://paperpile.com/b/QhE7ac/3nTJ
http://paperpile.com/b/QhE7ac/IefY
https://opensource.com/article/19/2/behavior-driven-development-tools
http://paperpile.com/b/QhE7ac/IefY
http://paperpile.com/b/QhE7ac/IefY
http://paperpile.com/b/QhE7ac/scjK
https://github.com/cucumber/cucumber
http://paperpile.com/b/QhE7ac/scjK
http://paperpile.com/b/QhE7ac/scjK
http://paperpile.com/b/QhE7ac/48jU
https://github.com/robotframework/robotframework
http://paperpile.com/b/QhE7ac/48jU
http://paperpile.com/b/QhE7ac/j2ax
https://github.com/concordion/concordion
http://paperpile.com/b/QhE7ac/j2ax
http://paperpile.com/b/QhE7ac/j2ax
http://paperpile.com/b/QhE7ac/Bxpb
https://www.selenium.dev/documentation/en/webdriver/
http://paperpile.com/b/QhE7ac/Bxpb
http://paperpile.com/b/QhE7ac/Bxpb
http://paperpile.com/b/QhE7ac/ohGMY
https://www.tutorialspoint.com/behavior_driven_development/behavior_driven_development_tools.htm
https://www.tutorialspoint.com/behavior_driven_development/behavior_driven_development_tools.htm
http://paperpile.com/b/QhE7ac/ohGMY
http://paperpile.com/b/QhE7ac/iCCMZ
http://paperpile.com/b/QhE7ac/3oLj
http://paperpile.com/b/QhE7ac/3oLj
https://dzone.com/articles/selenium-python-tutorial-getting-started-with-bdd
http://paperpile.com/b/QhE7ac/3oLj
http://paperpile.com/b/QhE7ac/3oLj
http://paperpile.com/b/QhE7ac/xkI9C
https://robotframework.org/#documentation
http://paperpile.com/b/QhE7ac/xkI9C
http://paperpile.com/b/QhE7ac/xkI9C
http://paperpile.com/b/QhE7ac/W43F
https://github.com/robotframework/SeleniumLibrary
http://paperpile.com/b/QhE7ac/W43F
http://paperpile.com/b/QhE7ac/7lWN
https://robocorp.com/docs/development-guide/robot-framework/how-to-use-custom-python-libraries-in-your-robots
https://robocorp.com/docs/development-guide/robot-framework/how-to-use-custom-python-libraries-in-your-robots
http://paperpile.com/b/QhE7ac/7lWN
http://paperpile.com/b/QhE7ac/cCicJ
https://concordion.org/documenting/java/markdown/
http://paperpile.com/b/QhE7ac/cCicJ
http://paperpile.com/b/QhE7ac/cCicJ
http://paperpile.com/b/QhE7ac/lKoAN
https://concordion.org/instrumenting/java/markdown/
http://paperpile.com/b/QhE7ac/lKoAN
http://paperpile.com/b/QhE7ac/lKoAN
http://paperpile.com/b/QhE7ac/l5ikk
https://www.katalon.com/resources-center/blog/select-test-automation-tools-criteria/
http://paperpile.com/b/QhE7ac/l5ikk
http://paperpile.com/b/QhE7ac/l5ikk
http://paperpile.com/b/QhE7ac/vi1gQ
http://paperpile.com/b/QhE7ac/vi1gQ
https://testsigma.com/blog/10-points-to-help-you-choose-the-right-test-automation-tool/
http://paperpile.com/b/QhE7ac/vi1gQ
http://paperpile.com/b/QhE7ac/vi1gQ


Airforce Institute of Technology. (AFIT), Dayton., OH, USA, Apr., 2017, Accessed on:
Mar., 8, 2021. [Online]. Available:
https://www.afit.edu/stat/statcoe_files/Automated_Software_Testing_Implementation_
Guide.pdf

[61] P. Sabev and K. Grigorova,  "A Comparative Study of GUI Automated Tools for
Software Testing," in Proc. of The Third International Conference on Advances and
Trends in Software Engineering, Apr. 23-27, 2017, Venice, Italy [Online]. Available:
https://www.thinkmind.org/articles/softeng_2017_1_20_64068.pdf. [Accessed: 23 Mar.
2021].

[62] N. Thomas, “How To Use The System Usability Scale (SUS) To Evaluate The Usability
Of Your Website,” Jul. 13, 2015.
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usa
bility-of-your-website/ (accessed Mar. 24, 2021).

[63] S. Mcleod, Likert Scale Definition, Examples and Analysis. 2020.
[64] “SEO Software for 360° SEO Analysis of your Website.” https://seranking.com/

(accessed May 26, 2021).
[65] “Competitors Analysis & Research Tool.”

https://seranking.com/competitor-traffic-research.html (accessed May 26, 2021).
[66] “Keyword Suggestion Tool.” https://seranking.com/keyword-suggestion-tool.html

(accessed May 26, 2021).
[67] “Best Note Taking App - Organize Your Notes with Evernote.” https://evernote.com

(accessed May 26, 2021).
[68] “Allure Framework.” https://docs.qameta.io/allure/ (accessed May 26, 2021).
[69] “Formatters and Reporters — behave 1.2.6 documentation.”

https://behave.readthedocs.io/en/stable/formatters.html (accessed May 26, 2021).
[70] “Concordion Integration With Jenkins,” May 09, 2014.

https://shinesgio.wpcomstaging.com/2014/05/09/concordion-integration-with-jenkins/
(accessed Mar. 24, 2021).

[71] “How to generate reports in Behave-Python?”
https://stackoverflow.com/questions/40763066/how-to-generate-reports-in-behave-pyth
on (accessed Mar. 22, 2021).

[72] “Robot Framework User Guide.”
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#po
st-processing-outputs (accessed May 11, 2021).

[73] “Cucumber School - Free Online BDD Training.” https://cucumber.io/school/ (accessed
May 12, 2021).

[74] “Resources & Upcoming Events.” https://cucumber.io/resources/products/ (accessed
May 12, 2021).

[75] “Cucumber Open - Get Started with BDD Today.”
https://cucumber.io/tools/cucumber-open/support/ (accessed May 12, 2021).

[76] “Cucumber Open.”
https://community.smartbear.com/t5/Cucumber-Open/bd-p/CucumberOS (accessed
May 12, 2021).

[77] “Robot Framework.” https://robotframework.org/ (accessed May 12, 2021).
[78] “RoboCon 2021.” https://robocon.io/ (accessed May 12, 2021).
[79] “Robot Framework.” https://forum.robotframework.org/ (accessed May 12, 2021).
[80] “concordion.” https://groups.google.com/g/concordion (accessed May 12, 2021).

61

http://paperpile.com/b/QhE7ac/2tdAi
http://paperpile.com/b/QhE7ac/2tdAi
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
http://paperpile.com/b/QhE7ac/2tdAi
http://paperpile.com/b/QhE7ac/kLp5
http://paperpile.com/b/QhE7ac/Y3lx
https://seranking.com/
http://paperpile.com/b/QhE7ac/Y3lx
http://paperpile.com/b/QhE7ac/Y3lx
http://paperpile.com/b/QhE7ac/RJMj
https://seranking.com/competitor-traffic-research.html
http://paperpile.com/b/QhE7ac/RJMj
http://paperpile.com/b/QhE7ac/CX3m
https://seranking.com/keyword-suggestion-tool.html
http://paperpile.com/b/QhE7ac/CX3m
http://paperpile.com/b/QhE7ac/CX3m
http://paperpile.com/b/QhE7ac/0J9Z
https://evernote.com
http://paperpile.com/b/QhE7ac/0J9Z
http://paperpile.com/b/QhE7ac/0J9Z
http://paperpile.com/b/QhE7ac/6pTg
https://docs.qameta.io/allure/
http://paperpile.com/b/QhE7ac/6pTg
http://paperpile.com/b/QhE7ac/8yti
https://behave.readthedocs.io/en/stable/formatters.html
http://paperpile.com/b/QhE7ac/8yti
http://paperpile.com/b/QhE7ac/hxAKI
https://shinesgio.wpcomstaging.com/2014/05/09/concordion-integration-with-jenkins/
http://paperpile.com/b/QhE7ac/hxAKI
http://paperpile.com/b/QhE7ac/hxAKI
http://paperpile.com/b/QhE7ac/E7yzH
https://stackoverflow.com/questions/40763066/how-to-generate-reports-in-behave-python
https://stackoverflow.com/questions/40763066/how-to-generate-reports-in-behave-python
http://paperpile.com/b/QhE7ac/E7yzH
http://paperpile.com/b/QhE7ac/sirL
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#post-processing-outputs
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#post-processing-outputs
http://paperpile.com/b/QhE7ac/sirL
http://paperpile.com/b/QhE7ac/8dl3
https://cucumber.io/school/
http://paperpile.com/b/QhE7ac/8dl3
http://paperpile.com/b/QhE7ac/8dl3
http://paperpile.com/b/QhE7ac/lwIf
https://cucumber.io/resources/products/
http://paperpile.com/b/QhE7ac/lwIf
http://paperpile.com/b/QhE7ac/lwIf
http://paperpile.com/b/QhE7ac/yY8K
https://cucumber.io/tools/cucumber-open/support/
http://paperpile.com/b/QhE7ac/yY8K
http://paperpile.com/b/QhE7ac/zgI3
https://community.smartbear.com/t5/Cucumber-Open/bd-p/CucumberOS
http://paperpile.com/b/QhE7ac/zgI3
http://paperpile.com/b/QhE7ac/zgI3
http://paperpile.com/b/QhE7ac/lfzX
https://robotframework.org/
http://paperpile.com/b/QhE7ac/lfzX
http://paperpile.com/b/QhE7ac/BUbb
https://robocon.io/
http://paperpile.com/b/QhE7ac/BUbb
http://paperpile.com/b/QhE7ac/snaC
https://forum.robotframework.org/
http://paperpile.com/b/QhE7ac/snaC
http://paperpile.com/b/QhE7ac/jUxa
https://groups.google.com/g/concordion
http://paperpile.com/b/QhE7ac/jUxa

