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Chapter 1

Introduction

In 2017 I participated in the course �Markov chains� at Åbo Akademi Univer-
sity, Finland, and found the material, as well as the applications, interesting.
Therefore I knew that this was a subject that I wanted to write my master's
thesis about. According to Lateef (2019), Markov chains are applied in many
areas to solve real-world problems, such as Google page ranking, predicting
typing of words, and generating texts. Another area is weather predictions,
which we will see in Chapter 3 with empirical observations from the Finnish
meteorological institute (FMI).

The purpose of this thesis is to present the theory of discrete Markov
chains and simulate two di�erent ergodic and irreducible Markov chains.
Moreover, we will see how these chains behave in the long run. Hence, the
main core of this thesis is the stationary distribution. The reader is supposed
to have basic knowledge of mathematics and programming to understand the
content.

The name �Markov� is from the russian mathematician Andrei Andreevich
Markov, who lived between the years 1856-1922. According to [5, Chapter 2],
Markov systematically studied a certain property. Informally the property
states that the probability of being at a certain state at a future time point,
given any set of time points up to present time, only depends on the last of
the time points up to present time. This property is called the Markov prop-
erty. The conditional probabilities, which correspond to transitions from one
state to another, can be connected as a chain. Hence, the whole designation
�Markov chain�. Also, the conditional probabilites can be represented in a
matrix, which we call a transition matrix. A transition matrix has di�erent
properties depending on its entries. One example of Markov chains, with
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certain properties, is irreducible and ergodic Markov chains. These are the
type of Markov chains I have chosen to simulate in Chapter 4.

Chapter 2 covers some introductory theory that mainly is used in Chapter
4, where we go through the theory of discrete Markov chains, provided with
examples. The open source software Geogebra is used to plot and visualize
some of the theory, and Microsoft Excel to read in and manipulate the em-
pirical data provided by FMI. The empirical data, which is used in examples,
originate from measurements made in Kilpisjärvi (in the north of Finland)
during 30 years. After manipulation, the empirical data is transformed into
a transition matrix. Most of the theory for Markov chains is obtained from
[5].

In Chapter 4 we simulate two ergodic and irreducible Markov chains,
where the �rst chain consists of the empirical data from FMI. The second
chain we simulate is larger, in terms of dimension, consisting of 7 rows and
7 columns. Chapter 4 starts with a presentation of a coding algorithm to
simulate Markov chains, where the algorithm is mainly based on an internet
publication from Bonakdarpour M. (2016). All code for tables and charts is
added to the appendices at the end of the thesis.

I have put much of e�ort in the visualizations, since I believe that they
are vital. Vital especially for showing content to the reader for the purpose of
understanding. One aspect of that can be seen in the simulations in Chapter
4, where I found a way to visualize convergence for Markov chains for smaller
and larger numbers of transitions.
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Chapter 2

Introductory theory

In this section, we review some of the basic theory of probability needed in
this thesis. For further details, see [7] and [9].

2.1 Distribution functions and probability mea-

sures

De�nition 2.1. The function F : R → [0, 1] is said to be a probability
distribution function if

i) F is non-decreasing and right-continuous,

ii) limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1

Example 2.2. Let for a < b

F (x) :=


0, x ≤ a
x−a
b−a , a ≤ x ≤ b

1, x ≥ b

.

Then F is the probability distribution function of a uniform probability dis-
tribution on [0, 1].

De�nition 2.3. (Ω,F ,P) is said to be a probability space if it consists of
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the following three parts:
1) The sample space Ω consisting all possible outcomes.
2) The σ-algebra F , where F is a set of subsets E ⊂ Ω.

3) The probability measure P assigning probabilities to events.

Remark 2.4. The subsets E ∈ F are called events.

De�nition 2.5. Let (Ω,F ,P) be a probability space and B ∈ F , where F
is a σ-algebra, be such that P(B) > 0. The conditional probability for event
A with respect to event B is de�ned as

P(A|B) :=
P(A ∩ B)

P(B)
(2.1)

Theorem 2.6. For n ∈ N = {1, 2, ...}, let {Ai}ni=1 be events such that{
Ai ∩ Aj = ∅, i 6= j

∪ni=1Ai = Ω.

Furthermore let P(Ai) > 0 for i = 1, 2, ..., n. For B ∈ F it holds that

P(B) =
n∑
i=1

P(Ai)P(B|Ai). (2.2)

Theorem 2.7. Bayes Formula. Let {Ai}ni=1 be events as in Theorem 2.6 and
B ∈ F be such that P(B) > 0. Then for k = 1, ..., n, it holds that

P(Ak|B) =
P(Ak)P(B|Ak)∑n
i=1 P(Ai)P(B|Ai)

(2.3)

De�nition 2.8. A functionX : Ω→ N is a geometrically distributed random
variable, with parameter p ∈ (0, 1) if

P(X = k) := P({ω : X(ω) = k}) = pk(1− p) =: pkq, ∀k ≥ 0. (2.4)

De�nition 2.9. The expectation value of a geometrically distributed random
variable (with parameter p) is

E[X] =
∞∑
k=0

k P(X = k) =
∞∑
k=0

kpkq. (2.5)
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Theorem 2.10. Let X be a discrete random variable with the geometric
distribution with paramater p. Then

E[X] =
p

1− p
(2.6)

Proof. From the de�nition of expectation and by the de�nition of the geo-
metric distribution we get that

E[X] = (1− p)
n∑
k=0

kpk = q
n∑
k=0

kpk

= qp
n∑
k=1

kpk−1 = qp
1

(1− p)2
=

p

1− p
,

(2.7)

where we used the well known identity: For 0 < p < 1

∞∑
k=1

kpk−1 =
1

(1− p)2
.

Theorem 2.11. (Markov's Inequality) Let X : Ω→ N be a function, P(X ≥
n) = P(ω : X(ω) ≥ n), and E[X] =

∑∞
n=0 nP(ω : X(ω) = n), then

P (X ≥ n) ≤ E[X]

n
. (2.8)

Proof. By (2.5) we get that

E[X] =
∞∑
x=0

xP(X = x)

=
n∑
x=0

xP(X = x) +
∞∑
x=n

xP(X = x)

≥
∞∑
x=n

xP(X = x).

(2.9)
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Since x ≥ n, it follows that

∞∑
x=n

xP(X = x) ≥
∞∑
x=n

nP(X = x)

= n
∞∑
x=n

P(X = x)

= nP(X ≥ n).

(2.10)

Theorem 2.12. Let {Xi}ni=1 be a sequence of independent and identical
random variables, and let E[Xi] = µ. Then, as n→∞, we have that

X1 +X2 + ...+Xn

n
→ µ (2.11)

with probability one, or equivalently

P
(

lim
n→∞

X1 +X2 + ...+Xn

n
= µ

)
= 1. (2.12)

Equation (2.11) is called the strong law of large numbers. For a simpli�ed
proof, see [8]. The somewhat simpli�ed proof assumes that E[X2

i ] <∞ and
E[X4

i ] < ∞, in comparison to the formal proof, which only requires that
E[Xi] <∞ .
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Chapter 3

Discrete time Markov chains

3.1 Snowfall at Kilpijärvi, Finland

The Finnish Meteorological Institute (FMI) provides a large amount of open
data for the public use. The amount of precipitation throughout Finland
is one measurement that is constantly monitored and has been monitored
for many years back. One weather station that monitors the amount of
precipitation is located in the far north of Finland, namely in Kilpisjärvi.
We will use observed data in January between the time period 01.01.1989-
31.12.2018 to explain some of the theory of Markov chains. In the �rst simple
model called the Bernoulli model we only look at the pattern of snowy and
dry days. A day is de�ned as �snowy� if the precipitation amount is larger
than 0, 1 millimeters (mm) and �dry� otherwise. By using the data we get
626 snowy and 304 dry days in total. Let Xi,j = 1(A), where A=(day i of
year j snowy). 1(A) = 1 if the event A occurs and 0 otherwise.
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Precipitation at Kilpisjärvi

Figure 3.1: The pattern of January precipitation at Kilpisjärvi, Finland,
between the time period 01.01.1989-31.12.2018. (30 years in total) Rows
correspond to days, columns to years, and the blue dots to matching data
whenever we have precipitation ≥ 0, 1 mm.
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Today dry Today wet Total
Yesterday dry 82 87 169
Yesterday wet 88 313 401
Total 170 400 570

Table 3.1: Observed precipitation data in January at Kilpisjärvi, Finland,
between the time period 01.01.1989-31.12.2018.

De�nition 3.1. A random process {X0, X1, ...} with �nite and discrete state
space S = {0, 1, ..., N}, for simpilicity, composes a Markov chain (abbrevia-
tion M.C.) if for all n ∈ N and all i0, i1, ..., j ∈ S it holds

P(Xn = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1) = P(Xn = j|Xn−1 = in−1).
(3.1)

A M.C. is said to be time homogenous if the probability in (3.1) does not
depend on n, i.e. the transition probability from one state to another stays
the same no matter the time point we observe the chain. (3.1) is called the
Markov property.

De�nition 3.2. An (N+1)×(N+1) matrix P with elements P = (pi,j)
N
i,j=0,

is called a transition matrix of the time homogenous M.C. {Xn}∞n=0.

The matrix representation of the elements (pi,j)
N
i,j=0 is

P =


p0,0 p0,1 · · · p0,N
p1,0 p1,1 · · · p1,N
...

...
. . .

...
pN,0 pN,1 · · · pN,N

 (3.2)

where all rows in P add up to 1, such that

p0,0 + p0,1 + · · ·+ p0,N = p1,0 + p1,1 + · · ·+ p1,N
...

= pN,0 + pN,1 + · · ·+ pN,N = 1.

3.2 The marginal distribution

Marginal probabilities play an important role in Markov chains and are not
very hard to compute. If we consider a 0− 1 Markov chain, i.e. S = {0, 1},
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we have that

P(Xn+1 = 1) = P(Xn+1 = 1, Xn = 0) + P(Xn+1 = 1, Xn = 1)

= P(Xn = 0)p0,1 + P(Xn = 1)p1,1

= (1− P (Xn = 1))p0,1 + P(Xn = 1)p1,1

= p0,1 − P(Xn = 1)p0,1 + P(Xn = 1)p1,1

= P(Xn = 1)(p1,1 − p0,1) + p0,1

(3.3)

Let p1 := P(X0 = 1). Then p0 = P(X0 = 0) = 1− p1, and from (3.3) we get
a general recursive scheme that can be calculated for each n:

P(X1 = 1) = p1(p1,1 − p0,1) + p0,1

P(X2 = 1) = P(X1 = 1)(p1,1 − p0,1) + p0,1

= (p1(p1,1 − p0,1) + p0,1)(p1,1 − p0,1) + p0,1

= p1(p1,1 − p0,1)2 + p0,1(p1,1 − p0,1) + p0,1

= p1(p1,1 − p0,1)2 + p0,1(1 + (p1,1 − p0,1))
P(X3 = 1) = p1(p1,1 − p0,1)3 + p0,1(1 + (p1,1 − p0,1) + (p1,1 − p0,1)2)

= p1(p1,1 − p0,1)3 + p0,1

2∑
r=0

(p1,1 − p0,1)r

...

P(Xn = 1) = p1(p1,1 − p0,1)n + p0,1

n−1∑
r=0

(p1,1 − p0,1)r

(3.4)

In case p0,0 = p1,1 = 1 in equation (3.4) we see that P(Xn = 1) = p1, since
p0,1 = 0. If p0,1 6= p1,1 we can write

p0,1

n−1∑
r=0

(p1,1 − p0,1)r =
p0,1(1− (p1,1 − p0,1)n)

1− (p1,1 − p0,1)

=
p0,1

1− (p1,1 − p0,1)
− p0,1(p1,1 − p0,1)n

1− (p1,1 − p0,1)

(3.5)

by using geometric series. Therefore equation (3.4) can be written

P(Xn = 1) =
p0,1

1− (p1,1 − p0,1)
+

[
p1 −

p0,1
1− (p1,1 − p0,1)

]
(p1,1− p0,1)n, (3.6)
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when p0,1 6= p1,1. If we take a look at equation (3.6) we see that the choice of
the initial distribution p1 is crucial. The e�ect of p1 is dampened exponen-
tially and when p1 = p0,1/1− (p1,1 − p0,1) it has no e�ect at all. In that case
P(Xn = 1) is the same for each n. This choice of p1 is called the stationary
initial distribution, which we will return to later on.

The following lemma is an important computation, called the Chapman-
Kolmogorov equation. We let the state space S = {0, ..., N}, and de�ne

p
(n)
i,j = P(Xn = j|X0 = i).

Lemma 3.3. Chapman-Kolmogorov equation. It holds that

p
(n)
i,j =

N∑
k=0

p
(m)
i,k p

(n−m)
k,j , 1 ≤ m ≤ n− 1. (3.7)

Proof. For 1 ≤ m ≤ n− 1

p
(n)
i,j = P({Xn = j} ∩ (∪Nk=0{Xm = k})|X0 = i)

=
N∑
k=0

P({Xn = j} ∩ {Xm = k}|X0 = i)

=
N∑
k=0

P(Xn = j,Xm = k|X0 = i)

By using Theorem 2.7, we know that

P(Xn = j,Xm = k|X0 = i)

P(Xm = k|X0 = i)
=

P(Xn = j,Xm = k,X0 = i)P(X0 = i)

P(X0 = i)P(Xm = k,X0 = i)

=
P(Xn = j,Xm = k,X0 = i)

P(Xm = k,X0 = i)

= P(Xn = j|Xm = k,X0 = i).
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Finally by using Markov property in the following equation we get that

p
(n)
i,j =

N∑
k=0

P(Xn = j|Xm = k,X0 = i)P(Xm = k|X0 = i)

=
N∑
k=0

P(Xn = j|Xm = k)P(Xm = k|X0 = i)

=
N∑
k=0

p
(m)
i,k p

(n−m)
k,j

Equation (3.7) can be rewritten in matrix notation as

P n ≡ (p
(n)
i,j ) = P n−mPm.

Let pn = (pn(0), ..., pn(N)) = (P(Xn = 0), ...,P(Xn = N)) denote the prob-
ability distribution of Xn. By recalling the computation of P(Xn = 1) in
equation (3.4), we see that

pn = pn−1P (3.8)

can be calculated with the initial distribution p0. Therefore

pn = p0P
n. (3.9)
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Figure 3.2: Visualization of the transitions for S = {0,1}.
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Figure 3.3: Kilpisjärvi transition diagram

Example 3.4. (Kilpisjärvi precipitation) The observed data in table (3.1)
can be used as a Markov chain model. Let us say that it rains on January 1
this year. In our model that is considered as �wet�, i.e. the initial distribution
p0 = (0, 1). Now, what would the probability of rain be 6 days hence on
January 7? By using (3.9) we see that we need to determine P (6), where

P =

(
0.485 0.515
0.219 0.781

)
(3.10)

and after matrix-multiplication of P we get that

P (6) =

(
0.299 0.701
0.298 0.702

)
. (3.11)

Since we want to know the probability distribution (pn) 6 days hence, given
that we obeserve �rain� the �rst day we get from (3.9)

p6 = (0, 1)P (6) = (0.298, 0.702). (3.12)
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In the �rst column in (3.12) we have the probability of a �dry� day on January
7, given �wet� day on January 1. In the second column we have the probability
we want to compute. The probability of a �wet� day in Kilpisjärvi on January
7, given a �wet� day on January 1, is 0.702.

3.3 Classi�cation of states

De�nition 3.5. For a Markov chain {Xn}∞n=0 in the state space S, the hitting
time of a given state j ∈ S is de�ned as

Tj := inf{n > 0 : Xn = j}. (3.13)

De�nition 3.6. A random variable T ∈ Z+ ∪ {∞} is called a stopping time
if the event {T = m} can be expressed in terms of X1, X2, ..., Xm.

This means that a stopping time is a speci�c random time such that we
at time m know weather an event has occured or not. The hitting time Tj is
a stopping time, since the event {Tj = m} = {X1 6= j,X2 6= j, ..., Xm = j}.

Theorem 3.7. (The strong Markov property) Let {Xn} be an M.C. with
the transitions probabilities pi,j and statespace S. Also, let Tj be a stopping
time with respect to {Xn}. Then for any integer m, we need to show that

P(XT+m = j|X0 = i0, X1 = i1, ..., XT = i)

= P(Xm = j|X0 = i) = p
(m)
i,j

(3.14)

and
P(XT+m = j|XT = i) = P(Xm = j|X0 = i) = p

(m)
i,j . (3.15)

Proof. First we prove equality (3.14):

P(XT+m = j|X0 = i0, X1 = i1, ..., XT = i)

=
P(XT+m = j,X0 = i0, X1 = i1, ..., XT = i)

P(X0 = i0, X1 = i1, ..., XT = i)

=

∑∞
τ=1 P(XT+m = j,X0 = i0, X1 = i1, ..., XT = i, T = τ)

P(X0 = i0, X1 = i1, ..., XT = i)

(3.16)
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Next, since T is a stopping time, the event {T = τ} can be expressed as
the process up to time τ , i.e. as X0, X1, ..., Xτ . The Markov property now
gives us that

P(XT+m = j|X0 = i0, ..., XT = i, T = τ) = P(XT+m = j|XT = i)

= p
(m)
i,j

(3.17)

Hence, equation (3.16) becomes∑∞
τ=1 P(Xτ+m = j,X0 = i0, ..., XT = i, T = τ)

P(X0 = i0, ..., XT = i)

=

∑∞
τ=1 P(Xτ+m = j,X0 = i0, ..., XT = i, T = τ)P(X0 = i0, ..., XT = i, T = τ)

P(X0 = i0, ..., XT = i)

=

∑∞
τ=1 p

(m)
i,j P(X0 = i0, ..., XT = i, T = τ)

P(X0 = i0, ..., XT = i)

=p
(m)
i,j

∑∞
τ=1 P(X0 = i0, ..., XT = i, T = τ)

P(X0 = i0, ..., XT = i)

=p
(m)
i,j = P(Xm = j|X0 = i)

(3.18)

Finally we get equality (3.15) from (3.14):

P(XT+m = j|XT = i) =
P(XT+m = j,XT = i)

P(XT = i)

=

∑∞
τ=1 P(XT+m = j,XT = i, T = τ)

P(XT = i)

=

∑∞
τ=1 P(XT+m = j|XT = i, T = τ)P(XT = i, T = τ)

P(XT = i)

=p
(m)
i,j

∑∞
τ=1 P(XT = i, T = τ)

P(XT = i)

=p
(m)
i,j

(3.19)

De�nition 3.8. State i reaches state j, denoted as i→ j, if

∃n ≥ 0 : p
(n)
i,j > 0.
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De�nition 3.9. Two states i and j that reach each other are said to com-
municate, denoted as ↔, i.e.

i↔ j if i→ j and j → i. (3.20)

De�nition 3.10. The probability of an event associated with the M.C. when
the chain starts at state i is de�ned as

Pi(...) := P(...|X0 = i), (3.21)

and i is called the initial state.

Proposition 3.11. For all i, j ∈ {0, ..., N} it holds

p
(n)
i,j =

n∑
m=1

Pi(Tj = m)p
(n−m)
j,j

Proof. Write {Xn = j} =
∑n

m=1{Tj = m,Xn = j}. Starting from initial
state i by using conditional probability and �nally taking advantage of the
Markov property we get that

p
(n)
i,j = Pi(Xn = j)

=
n∑

m=1

Pi((Tj = m) ∩ (Xn = j))

=
n∑

m=1

Pi(Xn = j|Tj = m)Pi(Tj = m)

=
n∑

m=1

P(Xn = j|X0 = i,X1 6= j, ..., Xm−1 6= j,Xm = j)Pi(Tj = m)

=
n∑

m=1

P(Xn = j|Xm = j)Pi(Tj = m)

=
n∑

m=1

Pi(Tj = m)p
(n−m)
j,j .

De�nition 3.12. A state j is called absorbing if

pj,j = 1,

which means that if the chain reaches state j it will stay there with probability
one.
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Corollary 3.13. For an absorbing state j it holds that

p
(n)
i,j = Pi(Tj ≤ n). (3.22)

Proof. Equation (3.22) says that starting from the state i, the chain has to
hit j before or at time n. From Proposition 3.11 we know that

p
(n)
i,j =

n∑
m=1

Pi(Tj = m)p
(n−m)
j,j .

Since j is an absorbing state we have that p(n−m)
j,j = 1 for allm ≤ n. Therefore

p
(n)
i,j = Pi(Tj ≤ n) for an absorbing state j.

Theorem 3.14. ↔ is an equivalence relation.

Proof. P
(n)
i,i = P(Xn = i|X0 = i) and P (0)

i,i = 1 which means that i↔ i. Next
if i communicates with k and k communicates with j we can �nd integers m
and n such that p(m)

i,k > 0 and p(n)k,j > 0. Then by summing over all possible
states t in the state space S we have that

p
(m+n)
i,j =

N∑
t=0

p
(m)
i,t p

(n)
t,j ≥ p

(m)
i,k p

(n)
k,j > 0 (3.23)

and i→ j. Similarly we can show that j → i since

p
(r+s)
j,i =

N∑
t=0

p
(r)
j,t p

(s)
t,i ≥ p

(r)
j,up

(s)
u,i > 0 (3.24)

for integers r and s such that p(r)j,u > 0 and p(s)u,i > 0.

De�nition 3.15. A Markov chain (X0, X1, ...) with state space S =
{0, ..., N} is irreducible if for all i, j ∈ S there exist nonnegative integers k
and l such that

P(Xk = j|X0 = i) > 0 and P(Xl = i|X0 = j) > 0.

This means that a chain is irreducible if, given any two states, the states
with a positive probability can reach one another. Any two states of the
chain are hereby communicating and will always be reachable.
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De�nition 3.16. The period d(si) of a certain state si of a given Markov
chain with state space S is de�ned by

d(si) = gcd{n ≥ 1 : (p
(n)
i,i > 0)}. (3.25)

Here the abbreviation �gcd� stands for the greatest common divisor. A
state si is said to be aperiodic if d(si) = 1 in (3.25). If d(si) = 1 holds for all
i ∈ S of a Markov chain, it means that the chain itself is aperiodic, otherways
the chain is called periodic.
A chain that is both irreducible and aperiodic (De�nition 3.15 and 3.16) is
called ergodic.

Theorem 3.17. Periodicity is an equivalence class property, i.e., if i com-
municates with j then d(i) = d(j).

Proof. Let r, s be such that p(r)i,j > 0, p
(s)
j,i > 0 and assume that p(t)j,j > 0. Then

0 < p
(r)
i,j p

(s)
j,i ≤ p

(r+s)
i,i (3.26)

and
0 < p

(r)
i,j p

(s)
j,i p

(t)
i,i ≤ p

(r+s+t)
i,i . (3.27)

By de�nition d(i) must be a fraction of r + s and r + s+ t, since state i can
not have multiple periods. Hence d(i) must divide their di�erence t for any
t such that p(t)j,j > 0. Therefore d(i) divides d(j). By similar arguments d(j)
divides d(i), so the two numbers have to be equal.

Let f (n)
i,j = Pi(Tj = n) be the �rst passage distribution from starting state

i, to ending state j. In zero steps, i.e. when n = 0, we have that f (0)
i,j = 0

and in general for n ≥ 1

f
(n)
i,j = P(Xn = j,Xk 6= j, k = 1, ..., n− 1|X0 = i). (3.28)

Lemma 3.18. Let n1 and n2 be two positive integers that are relatively
prime (greatest common divider = 1). Then any integer n > n1n2 can be
written as n = sn1 + tn2, for non-negative integers s and t.

Proof. Consider the modulo n2 congruence classes of the n2 distinct positive
integers n−0n1, n−1n1, n−2n1, ..., n− (n2−1)n1. We have two possibilities
with these congruence classes. The �rst possibility is that all the congru-
ence classes are di�erent and the second one is that at least two congruence
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classes are the same. If all congruence classes are di�erent it means that one
congruence class must be 0. Then n− sn1 is divisible by n2 such that

n− sn1

n2

= t↔ n = sn1 + tn2. (3.29)

Equation (3.29) holds if all congruence classes are di�erent. In case two
congruence classes are the same, we are able to write n− sn1 = kn2 + l and
n − tn1 = mn2 + l for 0 ≤ t < s ≤ n2 − 1, k < m, and 0 < l ≤ n2 − 1. For
these two congruence classes to be equal we get that

n− sn1 − (n− tn1) = kn2 + l − (mn2 + l)

↔ −sn1 + tn1 = kn2 −mn2

↔ (s− t)n1 = (m− k)n2. (3.30)

Since n1 and n2 are relatively prime, for equation (3.30) to be true, (s − t)
must contain all prime factors of n2. That is a contradiction, since then
s− t > n2 − 1.

Proposition 3.19. Let X be an irreducible and aperiodic chain and i, j ∈ S.
Then there is an integer N = N(i, j) such that p(n)i,j > 0 for all n ≥ N .

Proof. Since X is aperiodic, we know that d(j) = 1. Therefore we can �nd
two integers n1, n2 that are relatively prime such that p(n1)

j.j > 0 and p(n2)
j.j > 0.

From Lemma 3.18 any large enough n can be written as n = sn1+tn2. Hence

p
(n)
j,j = p

(sn1+tn2)
j,j ≥

(
p
(n1)
j,j

)s (
p
(n2)
j,j

)t
> 0, (3.31)

since p(n1)
j,j , p

(n2)
j,j > 0 and s, t ≥ 0. In other words, starting from state j, the

probability of returning to state j in n steps is greater than zero. Now, for
each pair i, j there is an n0 such that p(n0)

i,j > 0. Therefore

p
(n+n0)
i,j ≥ p

(n)
j,j p

(n0)
i,j > 0, (3.32)

since p(n)j,j , p
(n0)
i,j > 0.

Corollary 3.20. Assume that X and Y are identically and independently
distributed (iid) irreducible aperiodic Markov chains. Furthermore let Z =
(X, Y ). Then Z is an irreducible Markov chain.

20



Proof. The Markov property holds for Z since

P(Zn = (j, l)|Z0 = (i0, k0), Z1 = (i1, k1), ..., Zn−1 = (in−1, kn−1))

= P(Xn = j, Yn = l|X0 = i0, Y0 = k0;X1 = i1, Y1 = k1; ...;Xn−1 = in−1,

Yn−1 = kn−1)

= P(Xn = j, Yn = l|Xn−1 = in−1, Yn−1 = kn−1)

= P(Zn = (j, l)|Zn−1 = (in−1, kn−1)).

(3.33)

By using Theorem 2.7 we get the transition probabilities for Z as following:

pi,k;j,l = P(Zn = (j, l)|Zn−1 = (i, k))

= P(Xn = j, Yn = l|Xn−1 = i, Yn−1 = k)

=
P ({Xn = j} ∩ {Xn−1 = i})

P(Xn−1 = i)

P ({Yn = l} ∩ {Yn−1 = k})
P(Yn−1 = k)

= P(Xn = j|Xn−1 = i)P(Yn = l|Yn−1 = k)

= pi,jpk,l,

(3.34)

since X and Y are iid. By Proposition 3.19 there is an N = (i, k, j, l) such
that p(n)i,j > 0 and p(n)k,l > 0 for n > N . Hence p(n)i,k;j,l > 0 which means that Z
is irreducible.

De�nition 3.21.

fi,j :=
∞∑
n=0

f
(n)
i,j = Pi(Tj <∞) (3.35)

The state i in equation (3.35) is persistent, or by another name recurrent,
if fi,i = 1. Otherwise state i is called transient. We can think of transient
states as if there are one or more absorbing states in the chain, there is a
chance that we will never return to starting state again. It is also possible
that the chain never enters the starting state after running for a while. In
both of these cases we have a positive probability of no return with fi,i 6= 1.
On the other hand a persistent state is one that the process will eventually
with certainty return to, in a �nite amount of steps.

Theorem 3.22. A state i is persistent if and only if
∑∞

n=1 p
(n)
i,i =∞.
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Proof. Suppose i is transient and let M be the number of returns to i. Then

M(i) =
∞∑
n=1

1(Xn = i). (3.36)

Since
fi,i = Pi(Ti <∞) = Pi(M ≥ 1)

and

Pi(M ≥ 2) = Pi(Ti <∞, T (2)
i <∞)

= Pi(Ti <∞)Pi(Ti <∞)

= f 2
i,i,

where T (2)
i is the time we return to i the second time. Because the chain

starts over once we return to i and reach stateXTi by strong Markov property.
Hence by the strong Markov property

Pi(M ≥ k) = (Pi(Ti <∞))k = fki,i,

which is the probability that we will return to i, k times or more. The
expected value of returns to i is hence

Ei[M ] =
∞∑
k=1

Pi(M ≥ k). (3.37)

We are interested in how many times we return to state i and only have two
options for each step, i.e. we return to state i or we do not return to state
i. We also need to know how many times we hit state i, until i can not be
reached anymore (i transient). Hence M − 1 has a geometric distribution
(De�nition 2.8) with parameter fi,i. Theorem 2.10 states that

Ei[M ] =
fi,i

(1− fi,i)
. (3.38)

Since state i is transient we know that fi,i < 1 and Ei[M ] < ∞, and
consequentely

∞∑
n=1

p
(n)
i,i =

∞∑
n=1

Ei[1(Xn = i)] = Ei[M ] <∞. (3.39)
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On the other hand, if i is persistent, the chain returns to i with probability
1. Then the process starts over and again the chain will return to i with
probability 1. This happens an in�nite number of times. By the strong
Markov property Pi(M =∞) = 1 and Ei[M ] =∞, i.e.

∞∑
n=1

p
(n)
i,i = Ei[M ] =∞. (3.40)

De�nition 3.23. The mean recurrence time of a persistent state i with
probability distribution f (n)

i,i is de�ned as

µi :=
∞∑
n=1

f
(n)
i,i . (3.41)

State i is called null persistent if µi =∞ and positive persistent if µi <∞.

Corollary 3.24. For a transient state i it holds that limn→∞ p
(n)
i,i → 0.

Proof. Since i is transient, fi,i < 1 and thus
∑∞

n=1 p
(n)
i,i <∞. Thus limn→∞ p

n
i,i =

0.

3.4 The long time behaviour and stationary dis-

tribution of Markov chains

De�nition 3.25. A row vector π = (π0, π1, ..., πN) is a stationary distri-
bution for a Markov chain if πi ≥ 0 for i = 0, ..., N and

∑N
i=0 πi = 1 and

πP = π, which is equivalent of solving the equation

π(P − I) = 0 (3.42)

where I is the identity matrix for P . I has ones on the main diagonal and
zeros elsewhere.

Remark 3.26. A Markov chain need not to have a stationary distribution, but
if it has a limiting distribution, then the limit is stationary, as one readily
checks.

23



Example 3.27. Consider the Markov chain with the transition matrix

P =

(
0 1
1 0

)
.

Since the chain, with a periodicity of 2, will jump between the two states
with probability 1, the chain never will converge to any certain distribution
π. However, De�nition 3.25 states that P has a stationary distribution, since(

1

2
,
1

2

)(
0 1
1 0

)
=

(
1

2
,
1

2

)
.

While we manually calculate the stationary distribution of a Markov
chain, it can be convenient to take the transpose of equation (3.42), de-
pending on how the transition matrix we work with looks like. This will be
done in the following example where we calculate the stationary distribution
using Gaussian elimination.

Example 3.28. Consider a Markov chain with the state space S = (0, 1, 2, 3, 4)
and transition matrix

P =


0 1

2
1
2

0 0
1
2

0 1
2

0 0
1
3

1
3

0 1
3

0
0 0 1

2
0 1

2
1
2

0 0 1
2

0


and we want to �nd a stationary distribution of P . Recall from equation
(3.42) that we want to solve the equation π(P − I) = 0 that is equivalent
of solving the transpose of the equation, i.e. (P T − I)πT = 0. We start by
calculating the matrix P T − I by using Gaussian elimination.
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P T − I =


−1 1

2
1
3

0 1
2

1
2
−1 1

3
0 0

1
2

1
2
−1 1

2
0

0 0 1
3
−1 1

2

0 0 0 1
2
−1



∼


1 −1

2
−1

3
0 −1

2
1
2
−1 1

3
0 0

1
2

1
2
−1 1

2
0

0 0 1
3
−1 1

2

0 0 0 1
2
−1


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∼


1 −1

2
−1

3
0 −1

2

0 −3
4

1
2

0 1
4

0 3
4
−5

6
1
2

1
4

0 0 1
3
−1 1

2

0 0 0 1
2
−1



∼


1 −1

2
−1

3
0 −1

2

0 1 −2
3

0 −1
3

0 3
4
−5

6
1
2

1
4

0 0 1
3
−1 1

2

0 0 0 1
2
−1



∼


1 0 −2

3
0 −2

3

0 1 −2
3

0 −1
3

0 0 −1
3

1
2

1
2

0 0 1
3
−1 1

2

0 0 0 1
2
−1



∼


1 0 −2

3
0 −2

3

0 1 −2
3

0 −1
3

0 0 1 −3
2
−3

2

0 0 1
3
−1 1

2

0 0 0 1
2
−1



∼


1 0 0 −1 −5

3

0 1 0 −1 −4
3

0 0 1 −3
2
−3

2

0 0 0 −1
2

1
0 0 0 1

2
−1



∼


1 0 0 −1 −5

3

0 1 0 −1 −4
3

0 0 1 −3
2
−3

2

0 0 0 1 −2
0 0 0 1

2
−1



∼


1 0 0 0 −11

3

0 1 0 0 −10
3

0 0 1 0 −9
2

0 0 0 1 −2
0 0 0 0 0



26



Here the notation �∼� means that row operations have been calculated
according to Gaussian elimination. Since there are only zeros in the last row,
π5 will be a free variable. We now have an equation system that consists of
5 unknown variables and all equations are functions of π5. The stationary
distribution can be calculated as following. We have that



π1 = 11
3
x5

π2 = 10
3
x5

π3 = 9
2
x5

π4 = 2x5

π5 = free variable

where πT = π5


11
3
10
3
9
2

2
1


De�nition 3.25 states that π5 should be such that

5∑
i=1

πTi = π5

(
87

6

)
= 1

that gives us π5 =
(

2
29

)
and thus π1 =

(
22
87

)
, π2 =

(
20
87

)
, π3 =

(
9
29

)
, π4 =

(
4
29

)
.

The stationary distribution as a row vector is thereby

π =

(
22

87
,
20

87
,

9

29
,

4

29
,

2

29

)
.

Lemma 3.29. Let µk be as in (3.41) and vi,k as in (3.44). For an irreducible
and positive persistent Markov chain there exists a stationary distribution

πi =
vi,k
µk

(3.43)

for a �xed state k and i, k ∈ S. For a proof of this statement, see [5].

Theorem 3.30. The expected number of visits to state i between successive
visits to state j is given by

vi,j = Ej

Tj−1∑
n=0

1(Xn = i)

 =
µj
µi

=
πi
πj

(3.44)

for i, j ∈ S. For a proof of this statement, see [5].
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Theorem 3.31. An irreducible Markov chain has a stationary distribution
if and only if the the chain is positive persistent. This implies that the
stationary distribution is unique and given by

πi =
1

µi
. (3.45)

Theorem 3.32. For an irreducible Markov chain with mean recurrence time
µj ≤ ∞, if j is an aperiodic state, then

lim
n→∞

p
(n)
j,j =

1

µj
. (3.46)

Corollary 3.33. If a Markov chain is irreducible and aperiodic, then

lim
n→∞

p
(n)
i,j =

fi,j
µj
. (3.47)

For a proof of these three statements above, see [5].

De�nition 3.34. The time spent in state j is de�ned as

Nj(n) :=
n∑
i=1

1(Xi = j), (3.48)

where Nj(n) counts the number of times we hit state j.

Corollary 3.35. Let j be a persistent and an aperiodic state. Then

lim
n→∞

E
[
Nj(n)

n

]
= lim

n→∞

1

n

n∑
i=1

p
(i)
j,j =

1

µj
(3.49)

for all starting states communicating with j. Equation (3.49) is called the
Cesáro-limit of the transition probabilities p(i)j,j.

Proof. Theorem 3.32 states that p(i)j,j → 1
µj

as n → ∞. We make use of the
basic fact that if a limit exists, it equals the cesáro-limit. Next we have that

Ej[Nj(n)] =
n∑
i=1

Pj(Xi = j) =
n∑
i=1

p
(i)
j,j. (3.50)
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Because of persistence in the equation above, starting from state j, we know
that we will return to j with probability one. The same holds if we change
the starting state from j to k, if j and k communicate with each other. We
get that

Ek[Nj(n)] =
n∑
i=1

Pk(Xi = j) =
n∑
i=1

p
(i)
k,j. (3.51)

When we let n→∞ in (3.51), Corollary 3.33 states that

n∑
i=1

p
(i)
k,j →

fk,j
µj

=
1

µj
, (3.52)

since k and j communicate and therefore fk,j = 1.

Theorem 3.36. Given an ergodic state j, the limiting occupation probability
of j is 1

µj
with probability one, i.e.

P
(

lim
n→∞

Nj(n)

n
→ 1

µj

)
= 1. (3.53)

Proof. Suppose that the Markov chain starts in state j. Let Tj(1), Tj(2), ....
be the successive times when the chain hit state j. When we hit state j,
at speci�c random time, we can by the strong Markov property consider
it as restarting the chain. Hence Tj(1), Tj(2) − Tj(1), Tj(3) − Tj(2), .... are
independent and identically distributed random variables with probability
generating function Fj,j(s) and mean µj < ∞. By the Strong law of large
numbers (2.12) we have that

lim
l→∞

Tj(1) + (Tj(2)− Tj(1)) + ...+ (Tj(l)− Tj(l − 1))

l

= lim
l→∞

Tj(l)

l
= µj

(3.54)

with probability 1 for the speci�c random times Tj(l). We have that Nj(n)

n
is

the proportion of time spent in state j up to time n. Also, we reach state j
before, at, or after n steps. Hence

Tj(Nj(n)) ≤ n ≤ Tj(Nj(n) + 1). (3.55)
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Furthermore, Nj(n)→∞ as n→∞ with probability one, since we hit state
j an in�nite amount of times. Thus, as n→∞, with probability one

Nj(n)

n
≤ Nj(n)

Tj(Nj(n))
→ 1

µ
(3.56)

and
Nj(n) + 1

n
≥ Nj(n) + 1

Tj(Nj(n) + 1)
→ 1

µ
(3.57)

which means that
Nj(n)

n
→ 1

µ
. (3.58)

Theorem 3.37. (Ergodic theorem for Markov chains) For a positive per-
sistent chain X, if f : S → R satis�es Eπ [|f(X1)|] < ∞, where π is the
stationary distribution, we have that

1

n

n∑
k=1

f(Xk)→ Eπ [f(X1)] (3.59)

in probability, regardless of the initial distribution.

Proof. As in Theorem 3.36, we let Tj(l) stand for speci�c random times of
successive hits of state j. By splitting the random times into intervals, each
interval represents one successive return to state j. Then we let Yi represent
the intervals with corresponding transitions so that

Yi =

Tj(l+1)∑
Tj(l)+1

f(Xk). (3.60)

Tj(0) ≡ 0 since even though we start at state j, it does not count as a succes-
sive return to j. By the strong Markov property are Y0, Y1, ... independent
and furthermore Y1, Y2, ... identical.Y0 starts from an initial distribution at
time 0, hence the distribution di�ers from Y1, Y2, .... By decomposing we get

n∑
k=1

f(Xk) = Y0 +

Nj(n)∑
k=1

Yk −
Tj(Nj(n))∑
k=n+1

f(Xk)

≡ Y0 + SNj(n) −Rn.

(3.61)
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Since we have that
Y0 = f(X1) + ...+ f(XTj(1))

Y1 = f(XTj(1)+1) + ...+ f(XTj(2))
...
Yn = f(XTj(n)+1) + ...+ f(XTj(n+1))

(3.62)

we know that Yi, for any i ∈ S, is a sum of a �nite number of random
variables. Therefore limn→∞

Yn
n

= 0. Next, persistence ensures us that, as
n → ∞,P(Nj(n)) → ∞) = 1. Provided that E[|Y1|] < ∞, the law of large
numbers gives us that

f
(
XTj(1)+1

)
+ ...+ f

(
XTj(2)

)
+ ...+ f

(
XTj(Nj(n)+1)

)
+ ...+ f

(
XTj(Nj(n+1))

)
Nj(n)

=
SNj(n)

Nj(n)
→ E[Z1]

(3.63)

in probability. Also, according to (3.36) Nj(n)

n
→ 1

µj
= πj. Hence since

SNj(n)

n
=
SNj(n)

Nj(n)

Nj(n)

n
(3.64)

we get that
SNj(n)

n
→ πj E[Y1] (3.65)

in probability. Next we know that the earliest time point we can hit state j
the next time, after n amount of steps, is at time n+ 1. Also, we know that
the time points Tj(Nj(n)) + 1 ≤ n+ 1 ≤ Tj(Nj(n) + 1). Hence

|Rn| ≤
Tj(Nj(n)+1)∑
k=n+1

|f(Xk)| ≤
Tj(Nj(n)+1)∑

k=Tj(Nj(n))+1

|f(Xk)| ≡ ηn. (3.66)

By the strong Markov property η1, η2, ... are independent and identically
distributed. Hence

P(|Rn| ≥ n) ≤ P(ηn ≥ n) ≤ E[ηn]

n
→ 0, (3.67)
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by Markov's inequality (2.11)Next using Theorem 3.30, if E[η1 < ∞] then
E[|Y1| <∞] since

E[η1] = E

 Tj(2)∑
k=Tj(1)+1

|f(Xk)|

 =
m∑
i=1

|f(i)|vi,j =
m∑
i=1

|f(i)|πi
πj

(3.68)

and

E[Y1] =
m∑
i=1

f(i)vi,j =
1

πj

m∑
i=1

f(i)πi (3.69)

for m ∈ S. Then �nally we have that

SNj(n)

n
→ πj E[Y1] = πj

1

πj

m∑
i=1

f(i)πi = Eπf(X1). (3.70)
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Figure 3.4: Visualization of the intervals in equation 3.60
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Chapter 4

Simulation

The purpose of this chapter is to simulate the long time behaviour of Markov
chains and compare it to theoretical results. The simulations are done with
the programming language R, which is an environment for statistical com-
puting and graphics. For each simulation in R the function rmultinom()
will be used. That is because we want to include randomness between each
transition from one transition to another. The inclusion of randomness re-
�ects well real life situations, where random events usually occur and have
an e�ect.

R has many built-in packages to manipulate data and new ones are con-
tinuously created and developed by users around the world. If you can not
�nd a certain package in the library of R, it is usually possible to install new
packages manually by downloading the packages to your computer. A more
convenient way though is to use the built-in respository (CRAN) to install
the package directly in R. In the coding process I have used RStudio that
is a user environment to R with many built-in tools. One useful integrated
tool is RMarkdown, which is a �le format that can convert the code to many
other formats. RMarkdown displays both the source code (input) and the
result (output) in a convenient way, and hence I have used it for some of my
created tables.

I have chosen to simulate two di�erent ergodic Markov chains, where
the �rst matrix is based on my manipulated data from FMI. The second
matrix is made up and created by me, with the properties of an ergodic
Markov chain. In Section 4.1 we go through the simulation algorithm, used
for both matrices, followed by the coding process and the results. The coding
process is similar for both matrices, but the data manipulation di�ers, since
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the created matrix is larger in terms of dimension. The results from the
simulations are presented in tables as estimates, where

Nj(n)

n
= π̂j(n)

and
n

Nj(n)
= µ̂j(n).

In my results tables I also calculate

vj =
πj∑

i∈S:i 6=j
πi
,

which is similar to vi,j from (3.44). Estimates of vj are presented in the result
tables as v̂j(n).
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4.1 Algorithm

In order to reproduce the same results in a simulation R has a built-in func-
tion set.seed(seed, kind = Null, normal.kind = Null), where seed takes on
a single value interpreted as an integer , or Null. Hence if we keep the same
seed-value for a random number generator, set.seed() function will produce
the same random numbers. As random number generator we will use the
built-in multinomial distribution rmultinom(n, size, prob), where n is the
number of random vectors to draw, size the number of objects going into
K boxes, and prob a numeric positive vector of length K. prob speci�es the
probability for the K classes. Next we use the built-in function

function(arglist){{expr}return(value)}.

arglist can consist of zero, one, or many expression terms as we call for the
function. expr and value consist of an expression, where the expression itself
can consist of several expressions. Before running the algorithm we set the
seed to some number, which in this case is 148:

Again, the number inside set.seed() could be another one, but in this case
the number 148 will produce the same randomly generated vectors for this
simulation. Next, we have the code for the algorithm:
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Figure 4.1: Code for simulation algorithm

sim.mark.chain is the name of the function that we call for when we
simulate a transition matrix. P is in our case a matrix, num.iters a variable
name for the number of iterations, and num.chains a variable name for the
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number of simulations. The �rst step is that we save the number of rows
in the input in the variable num.states. Then we create two new empty
matrices named S and probabilities. S saves the number of columns accord-
ing to num.chains and probabilities saves the number of rows according to
num.iters. Above in picture (4.1) num.iters has the value of 50 that can
be changed according to how many iterations, i.e. transitions, we want to
do. num.iters is changed to greater values in the simulations. Similarly,
num.chains can be changed, according to the number of times we simu-
late the Markov chain. Next we have the variables pi_0 and P_n, where
P_n saves the input matrix and updates its values for each transition, as
we see later on. pi_0 is a vector of the same length as the number of rows
in num.states. The �rst number in the vector is 1 followed by one or more
zeros depending on the number of rows in num.states. As an example, if
the input matrix has 5 rows (= 5 states), then the output of pi_0 for one
transition would be the following:

pi_0 is as following saved in the �rst row of the matrix probabilities. We
then pick a random starting state, for each simulation, which is saved in the
�rst row of the matrix S. The variable init.states saves all random starting
states, which depend on the value of num.chains:

We loop through the numbers of transitions from the second number,
until num.iters reaches its last value:
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Similarly we loop through the number of simulated chains k ∈ (1, num.chains)
for each i ∈ (2, num.iters) :

In the �rst for-loop a new variable pi_n obtains the value of pi_0×P_n,
where P_n initially has the value of the input matrix P . For each transition
P_n is updated and therefore also pi_n. pi_n is then saved in the matrix
probabilities in row i for i ∈ (2, num.iters):

A new variable p gets the value from a row of P , in form of a vector,
where the vector is taken from the [i− 1, k]:th matrix position of S, storing
all states for the transitions. This means that the state number returned
from S[i− 1, k] determines the row number for P . Then the vector p storing
probabilities, i.e. probability vector, is passed into the rmultinom() function,
where the function draws a sample from the probability vector. The sample
number, determining the next state, is stored in S on row i, and column k:

Finally the matrix P_n, initially set as P , is updated by multiplying
it to P for each iteration. The algorithm continues until it reaches its last
value of num.iters and num.chains. For each iteration i, the values in
probabilities, S, and num.iters are stored in a list:
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4.2 Simulating the data from Kilpisjärvi pre-

cipitation

The �rst simulation we do is with the 0-1-chain with the obtained data from
Table 3.1. Firstly we create the matrix in R with the corresponding states
�Dry� and �Wet� and set the name of the matrix to transMatrix:

Then we call for the function in �gure (4.1) and run the chain:

For given number of iterations and number of chains declared in the
function in Figure (4.1), the variable sim2 stores all values for the simula-
tion of the inputmatrix transMatrix. All values in sim2 are returned by
the function sim.mark.chain. The returned data in sim2 is devided into
three variables storing the two matrices, probabilities and S, and the integer
number returned from num.iters:

Next we manipulate the data so that it can be used in tables and charts:
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T_i stores the columns consisting �ve simulated markov chains as a
dataframe data type. The library data.table is added to access the table func-
tion, for counting state occupancy. Frequencies are added to the dataframe
T_j and then selected columns consisting only of the frequencies in the vari-
able T_j_freq. Finally T_j_freq consisting of all the frequencies in each
state, for each Markov chain, is manipulated to �t the measurements, and
rounded up to three digits.
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4.3 Results

Figure 4.2: Table of measurements, n = 50.

Figure 4.3: Occupation in each state for n = 50.
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Figure 4.4: Table of measurements, n = 500.

Figure 4.5: Occupation in each state for n = 500.
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Figure 4.6: Table of measurements, n = 5000.

Figure 4.7: Occupation in each state for n = 5000.
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Figure 4.8: Table of measurements, n = 50000.

Figure 4.9: Occupation in each state for n = 50000.
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Figure 4.10: Simulated estimates from �M.c. 1� and the real value of the
stationary distribution.

Figure 4.11: Simulated estimates from �M.c. 1� and the real value of the
mean occurance time.

Figure 4.12: Simulated estimates from �M.c. 1� and the real value of vj.
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4.4 Simulation of the 7× 7 matrix P

The algorithm in the following simulations is the same as in Figure (4.1) and
the coding process in R follows a similar methodology as in Section (4.2).
The code for the methodology and the code for the tables and charts is added
to appendices. Suppose we have the 7× 7 matrix

P =



0.25 0.5 0.05 0.05 0.05 0.05 0.05
0.2 0.25 0.35 0.05 0.05 0.05 0.05
0.05 0.2 0.25 0.35 0.05 0.05 0.05

0 0 0.25 0.5 0.25 0 0
0.05 0.05 0.05 0.2 0.25 0.35 0.05
0.05 0.05 0.05 0.05 0.2 0.25 0.35
0.05 0.05 0.05 0.05 0.05 0.5 0.25


,

and simulate the matrix P . We simulate matrix P �ve times, with 50, 5000,
and 500000 numbers of transitions, n. The �ve simulated chains are named
�M.c. 1�, �M.c. 2', ... , �M.c. 5�. The main goal is to see how the number of
occurances, Nj(n), for each j ∈ S, changes through time.

4.5 Results
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Figure 4.13: Table of measurements, n = 50.

Figure 4.14: Occupation in each state for n = 50.
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Figure 4.15: Table of measurements, n = 5000.
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Figure 4.16: Occupation in each state for n = 5000.
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Figure 4.17: Table of measurements, n = 500000.

Figure 4.18: Occupation in each state for n = 500000.
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Figure 4.19: Simulated estimates from �M.c. 1� and the real value of the
stationary distribution.

Figure 4.20: Simulated estimates from �M.c. 1� and the real value of the
mean occurance time.

Figure 4.21: Simulated estimates from �M.c. 1� and the real value of vj.
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Chapter 5

Conclusions

5.1 Convergence of the Kilpisjärvi simulation

The results in Figure 4.10 show how the estimate of π for 50000 transitions
is the best one of the estimates, since it is closest to the real value. 50
and 500 numbers of transitions seem to be too few to get a good estimate,
since 50 transitions actually is closer to the real value of π. As I mentioned
before, these values are from the �rst simulation (M.c. 1), so the estimates
from π̂j(50) and π̂j(500) may be extreme. Nevertheless, due to randomness,
we would need more than 500 transitions to ensure a good estimate. Even
though the simulated chain goes in wrong direction, in terms of convergence
comparing n = 50 and n = 500, the local divergences vanish in the long run.
That explains why the same simulated chain for n = 50000 only deviates
0.0003 from the real value of π.

As π̂j(n) converges to πj, µ̂j(n) converges to µj, and v̂j(n) converges to vj,
since π, µ, and v are depending on each other. For µj(50000), we can expect a
dry day on average every 3.3481:st time, and a wet day every 1.4259:th time.
The estimate is close to the real mean occurance time, which has a value
of (3.3516, 1.4252). According to v̂j(50000), we can expect a dry day every
0.4259:th time, between two successive wet days. Similarly we can expect
2.3481 wet days between two succesive dry days. The estimate is close to the
real value of vj , which is (0.4252, 2.3516).
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5.2 Convergence of the matrix P

Each of the chosen discrete time points (n) for the simulation of matrix
P , generated results closer to the stationary distribution, except for j =
5. I interpret these results so that if the time points are far enough from
each other, each larger time point is closer to the value of the stationary
distribution. The magnitude between each of the time point is

In Figure 4.19 we see that for 50 transitions (n = 50), we are in most of
the states far from the stationary distribution, i.e. it would not be a good
estimate for the stationary distribution. For n = 5000, we get a correct distri-
bution of two decimals in all states, except for j = 4. For n = 500000 we get
a correct distribution of two decimals in all states and a correct distribution
of three decimals for j = 1, 2, 4, 5. I interpret the results of the estimates, in
relation to the stationary distribution, that an estimate with a lower amount
of transitions can be accepted, if we allow some variations. A question that
arises is how large the number of transitions should be to be a valid estimate
for the stationary distribution. I think, according to the simulation results in
Figure 4.19, that an n-value somewhere between 5000 and 500000 ensures a
convergence, with two decimals, to the stationary distribution. Nevertheless,
since the thesis is limited, I have not studied how large n should be to ensure
convergence of a certain decimal accuracy.

5.3 Visualization of convergence

I found the results of the horizontal barcharts very intriguing, since they
show convergence in a way that is quite easy to understand. Both of my
two di�erent matrix-simulations follow a similar pattern visually. A smaller
number of transitions results in large variation between the �ve simulations.
When n grows bigger, the boxes ofM.c.1, ...,M.c.5 are stacked more similarly.
Finally, when we take the highest simulated value of n, M.c.1, ...,M.c.5 are
stacked almost identically, which is an indication that they all converge.

5.4 Summary

Based on the results I got, it seems as if there are many things that im-
pact how accurate results we get. Firstly, if we have fewer states, the chain
converges faster to the stationary distribution. Secondly, the number of
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transitions impacts how much variation we have for di�erent simulations. A
smaller number of transitions can result in �uctuations, due to randomness,
in a way that the chain does not seem to converge. However, for both of the
two simulated matrices, for a large enough n, they both converge.
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Chapter 6

Summary in Swedish - Svensk

sammanfattning

Målet med denna avhandling är att presentera den grundläggande teorin för
diskreta Markovkedjor och jämföra teoretiska resultat med egna simuleringar.
Tanken är att visa hur Markovkedjor, med vissa egenskaper, beter sig un-
der en lång tidsperiod och att visualisera konvergensen mot Markovkedjans
stationära fördelningen. Kapitel 4 är avhandlingens viktigaste del, där jag
simulerar två olika ergodiska Markovkedjor och visualiserar dessa i tabeller
och diagram. För en djupare förståelse av innehållet i avhandlingen antas
läsaren ha grundläggande kunskap i matematik och programmering.

Avhandlingens första helhet är en introduktion om dess innehåll och del-
moment och där berättar jag även om vad en Markovkedja är. Jag blev
intresserad av att skriva om Markovkedjor efter att ha deltagit i en kurs om
ämnet vid Åbo Akademi. Tillämpning av matematik intresserar mig mer än
teoretisk matematik, varför valet av Markovkedjor föll naturligt, eftersom de
har stora praktiska tillämpningsområden.

Kapitel 2 handlar om introducerande teori till Markovkedjor. Till att
börja med tas det upp grundläggande teori om matriser och gränsvärdessatser
samt teori från sannolikhetsläran. Denna grundläggande teori i kapitel 2
fungerar som byggsten för att introducera och utveckla innehållet när det
gäller Markovkedjor. I den andra helheten behandlar jag även en metod som
heter Gauss eliminering, för numerisk beräkning av Markovkedjans stationära
fördelning.

Kapitel 3 börjar med en allmän de�nition av en Markovkedja, samt
tillämpning av Markovkedjan i form av empiriskt data från det �nska me-
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teorologiska institutet (FMI). Teorin för Markovkedjor byggs på för att föra
läsaren mot avhandlingens kärna, den stationära fördelningen. Avhandlin-
gens empiriska data härstammar från mätningar i Kilpisjärvi i norra Finland
och är tagen under en tidsperiod av 30 år. Data har jag manipulerat i mjuk-
varoprogrammet Microsoft Excel, där jag använder min manipulerade data
för att räkna ut en övergångsmatris, som används för teoriexempel och simu-
leringar.

I kapitel 4 utförs simuleringar, i programmeringsspråket R, av två olika
matriser med �era olika tidsintervall. Den ena matrisen innehåller empirisk
data från FMI och den andra matrisen, som är större i dimension, har jag
skapat med de egenskaper som krävs för en ergodisk Markovkedja. I kapitel 4
presenteras även den algoritm som utförs för varje simulering och visualiseras
i såväl tabeller som diagram. All kod för tabeller och diagram presenteras i
slutet av avhandlingen som appendix.

I kapitel 5 diskuteras resultaten från simuleringarna i kapitel 4. Vid
låga värden på n uppstod det stora variationer i båda simuleringarna, vilket
gav upphov till att ett större n-värde, vid ett förhållandevis lågt n-värde,
kunde resultera i en sämre approximation av den stationära fördelningen.
Det visade sig ändå i mina tabeller, när n-värdet blev tillräckligt stort, att
de simulerade kedjorna konvergerade mot den stationära fördelningen. De
tillfälliga variationerna, på grund av slumpmässighet, hade således mindre
betydelse för stort n-värde. En annan sak som jag tar fasta på utgående
från resultaten är att storleken på en matris, eller närmare bestämt antalet
tillstånd, verkar ha stor betydelse för hur snabbt Markovkedjan konverg-
erar mot sin stationära fördelning. När jag simulerade data från Kilpisjärvi
gav ett övergångsvärde på 50000 ett resultat som var väldigt nära den sta-
tionära fördelningen. För den andra simuleringen, av matrisen P , gav ett
värde på 500000 ungefär samma precision. Jag kan konstatera att båda
mina simuleringar, innehållande slumpmässighet, konvergerar mot deras sta-
tionära fördelning och motsvarar därmed väl teorin för diskreta och ergodiska
Markovkedjor.

Jag funderade över hur jag kunde visualisera konvergensen mot den sta-
tionära fördelningen och kom på ett sätt som jag inte har stött på tidigare.
Jag kodade horisontella stapeldiagram över antalet trä�ar i olika tillstånd,
för olika antalet övergångar. Därmed visualiseras antalet trä�ar i relation
till antalet övergångar, vilket i min mening ger ett snyggt intryck. Stapel-
diagramens värden över antalet trä�ar motsvarar de värden som �nns i mina
tabeller, men dessa visualiseringar är betydelsefulla för att enklare se hur
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simulationer beter sig under olika och längre tidsperioder. För lågt värde på
n var det stora variationer i stapeldiagrammen. När n växte verkade alla
fem simulationer se mer och mer lika ut visuellt och till sist för det största
värdet, var alla fem simulationer nästan visuellt identiska. Precis som i mina
tabeller över simulerade resultat, är detta en indikation på konvergens.

Största delen av teorin för Markovkedjor har hämtats från boken stocha-

stic modelling of scienti�c data, Guttorp, P. (1995), som innehåller uttöm-
mande teoritiska resultat. Algoritmen, som används i simuleringarna i kapitel
4, bygger på en internetpublikation av Bonakdarpour M. (2016). För �era
intressanta resultat, kunde simuleringarna utvecklas till att omfatta icke er-
godiska och icke reducerbara Markovkedjor. Resultaten från simuleringarna
kunde även veri�eras, ur ett statistiskt perspektiv, genom att öka antalet
gånger kedjorna simuleras. Eftersom avhandlingen är begränsad, har jag
valt att avgränsa simulationerna till två olika ergodiska Markovkedjor.
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Appendix A

R code for chapter 4

A.1 Code for the plot of probability through

time for the Kilpisjärvi simulation for n =

50.
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A.2 Code for the barplot from the Kilpisjärvi

simulation

By changing the value of num.iters in the algorithm in Figure (4.1), we get
the barplot for n = 500, n = 5000, and n = 50000.
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A.3 Code for the 7× 7 matrix.

sim.seven saves all values returned from the algorithm in Figure (4.1).
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A.4 Datamanipulation and code for table of

measurements in Figure (4.13).
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The �rst argument passed into kable(), from library knitr, declares what
variable we plot. The variables Occ_7, numb_hits_ave, and visits, consist
of values in Figure (4.13).
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A.5 Barplot code for the 7× 7 matrix.
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