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Chapter 1

Introduction

In 2017 I participated in the course "Markov chains” at Abo Akademi Univer-
sity, Finland, and found the material, as well as the applications, interesting.
Therefore I knew that this was a subject that I wanted to write my master’s
thesis about. According to Lateef (2019), Markov chains are applied in many
areas to solve real-world problems, such as Google page ranking, predicting
typing of words, and generating texts. Another area is weather predictions,
which we will see in Chapter 3 with empirical observations from the Finnish
meteorological institute (FMI).

The purpose of this thesis is to present the theory of discrete Markov
chains and simulate two different ergodic and irreducible Markov chains.
Moreover, we will see how these chains behave in the long run. Hence, the
main core of this thesis is the stationary distribution. The reader is supposed
to have basic knowledge of mathematics and programming to understand the
content.

The name "Markov” is from the russian mathematician Andrei Andreevich
Markov, who lived between the years 1856-1922. According to |5, Chapter 2],
Markov systematically studied a certain property. Informally the property
states that the probability of being at a certain state at a future time point,
given any set of time points up to present time, only depends on the last of
the time points up to present time. This property is called the Markov prop-
erty. The conditional probabilities, which correspond to transitions from one
state to another, can be connected as a chain. Hence, the whole designation
"Markov chain”. Also, the conditional probabilites can be represented in a
matrix, which we call a transition matrix. A transition matrix has different
properties depending on its entries. One example of Markov chains, with



certain properties, is irreducible and ergodic Markov chains. These are the
type of Markov chains I have chosen to simulate in Chapter 4.

Chapter 2 covers some introductory theory that mainly is used in Chapter
4, where we go through the theory of discrete Markov chains, provided with
examples. The open source software Geogebra is used to plot and visualize
some of the theory, and Microsoft Excel to read in and manipulate the em-
pirical data provided by FMI. The empirical data, which is used in examples,
originate from measurements made in Kilpisjarvi (in the north of Finland)
during 30 years. After manipulation, the empirical data is transformed into
a transition matrix. Most of the theory for Markov chains is obtained from
[5].

In Chapter 4 we simulate two ergodic and irreducible Markov chains,
where the first chain consists of the empirical data from FMI. The second
chain we simulate is larger, in terms of dimension, consisting of 7 rows and
7 columns. Chapter 4 starts with a presentation of a coding algorithm to
simulate Markov chains, where the algorithm is mainly based on an internet
publication from Bonakdarpour M. (2016). All code for tables and charts is
added to the appendices at the end of the thesis.

I have put much of effort in the visualizations, since I believe that they
are vital. Vital especially for showing content to the reader for the purpose of
understanding. One aspect of that can be seen in the simulations in Chapter
4, where I found a way to visualize convergence for Markov chains for smaller
and larger numbers of transitions.



Chapter 2

Introductory theory

In this section, we review some of the basic theory of probability needed in
this thesis. For further details, see [7] and |9].

2.1 Distribution functions and probability mea-
sures

Definition 2.1. The function F' : R — [0,1] is said to be a probability
distribution function if

i) F' is non-decreasing and right-continuous,
i) lim, ., o F(z) =0 and lim, ,, . F(z) =1

Example 2.2. Let for a < b

0, r<a
Flr): =952 a<x<bh.
1, x>0

Then F'is the probability distribution function of a uniform probability dis-
tribution on [0, 1].

Definition 2.3. (€, F,P) is said to be a probability space if it consists of



the following three parts:

1) The sample space €2 consisting all possible outcomes.
2) The o-algebra F, where F is a set of subsets E C €.

3) The probability measure P assigning probabilities to events.

Remark 2.4. The subsets E € F are called events.

Definition 2.5. Let (2, F,P) be a probability space and B € F, where F
is a o-algebra, be such that P(B) > 0. The conditional probability for event
A with respect to event B is defined as

P(AN B)

PAIB) = —5 5

(2.1)

Theorem 2.6. For n € N = {1,2,...}, let {A;}", be events such that

ANA =2,i# ]
U?’:lAZ:Q

Furthermore let P(A4;) > 0 for i = 1,2,...,n. For B € F it holds that

ZIP P(B|4;). (2.2)

Theorem 2.7. Bayes Formula. Let {A;}" , be events as in Theorem 2.6 and
B € F be such that P(B) > 0. Then for £ = 1,...,n, it holds that

P(Ar) P(B[A)
2o P(A) P(BA))

Definition 2.8. A function X : 2 — Nis a geometrically distributed random
variable, with parameter p € (0,1) if

P(Ax|B) =

(2.3)

P(X = k) :=P{w: X(w) =k}) =p"(1 —p) =: pFq,Vk > 0. (2.4)

Definition 2.9. The expectation value of a geometrically distributed random
variable (with parameter p) is

=Y kP(X =k) =) _kp'q. (2.5)



Theorem 2.10. Let X be a discrete random variable with the geometric
distribution with paramater p. Then

E[X] = % (2.6)

Proof. From the definition of expectation and by the definition of the geo-
metric distribution we get that

EX) = (1- )3 kot = g3kt

n (2.7)
=qpy ko =ap L7
p (1-p? 1-p
where we used the well known identity: For 0 < p < 1

. 1

Z kpt = 2

k=1 (1 - p)

O

Theorem 2.11. (Markov’s Inequality) Let X :  — N be a function, P(X >
n) =Pw: X(w) >n),and E[X] =>7 nPw: X(w) =n), then

E[X]

P(X >n)< — (2.8)
Proof. By (2.5) we get that
EX]=) «P(X =z)
=Y 2P(X =2)+ Y zP(X =u1) (2.9)

> ixP(X = ).



Since x > n, it follows that

o0

Zx]P’(X =) > ZnIP’(X =)

r=n

o0 (2.10)

]

Theorem 2.12. Let {X;}? , be a sequence of independent and identical
random variables, and let E[X;] = u. Then, as n — oo, we have that

Xi+Xo+ ...+ X,
n

— (2.11)

with probability one, or equivalently

X1+ Xo+ ...+ X,
P(lim s B :,u)zl.

n— 00 n

(2.12)

Equation (2.11) is called the strong law of large numbers. For a simplified
proof, see [8]. The somewhat simplified proof assumes that E[X?] < oo and

E[X!] < oo, in comparison to the formal proof, which only requires that



Chapter 3

Discrete time Markov chains

3.1 Snowfall at Kilpijarvi, Finland

The Finnish Meteorological Institute (FMI) provides a large amount of open
data for the public use. The amount of precipitation throughout Finland
is one measurement that is constantly monitored and has been monitored
for many years back. Omne weather station that monitors the amount of
precipitation is located in the far north of Finland, namely in Kilpisjarvi.
We will use observed data in January between the time period 01.01.1989-
31.12.2018 to explain some of the theory of Markov chains. In the first simple
model called the Bernoulli model we only look at the pattern of snowy and
dry days. A day is defined as "snowy” if the precipitation amount is larger
than 0,1 millimeters (mm) and "dry” otherwise. By using the data we get
626 snowy and 304 dry days in total. Let X;; = 1(A), where A=(day 7 of
year j snowy). 1(A) = 1 if the event A occurs and 0 otherwise.
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Today dry Today wet Total
Yesterday dry 82 87 169
Yesterday wet 88 313 401
Total 170 400 570

Table 3.1: Observed precipitation data in January at Kilpisjarvi, Finland,
between the time period 01.01.1989-31.12.2018.

Definition 3.1. A random process { Xy, X, ...} with finite and discrete state
space S = {0,1,..., N}, for simpilicity, composes a Markov chain (abbrevia-
tion M.C.) if for all n € N and all i, i1, ..., 7 € S it holds

]P<Xn = j|XO = Z-07)(1 =1,... y X1 = in—l) = ]P(Xn = j|Xn—1 = Z-n—l)'
(3.1)
A M.C. is said to be time homogenous if the probability in (3.1) does not
depend on n, i.e. the transition probability from one state to another stays
the same no matter the time point we observe the chain. (3.1) is called the
Markov property.

Definition 3.2. An (N+1)x (N+1) matrix P with elements P = (p; ;)\,
is called a transition matrix of the time homogenous M.C. {X,,}>° .

The matrix representation of the elements (p;;)};_, is

Poo Poi - DPoN
bPio P1a - DPiN

p= |00 (3.2)
PNo PN1 ' DPNN

where all rows in P add up to 1, such that

Poo +Po1+ - +DoN=DP1o+P1a+ - +PIN

=pNno+PN1+ - +pyn =1

3.2 The marginal distribution

Marginal probabilities play an important role in Markov chains and are not
very hard to compute. If we consider a 0 — 1 Markov chain, i.e. S = {0,1},
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we have that

P(Xpir =1) = P(Xpp1 = 1, X, = 0) + P(Xpiy = 1, X, = 1)
=P(X, =0)po1+P(X, = 1)p11
= (1 - P(X, =1))po1 +P(X,, = 1)p11 (3.3)
=po1 — P(X,, = 1)po1 + P(X,, = 1)p1a
=P(X, = 1)(p11 — Po,1) + Poa

Let p; :=P(Xy = 1). Then py = P(Xo =0) =1 — py, and from (3.3) we get
a general recursive scheme that can be calculated for each n:

P(X1 =1) = p1(p11 — po,1) + Po.

P(Xy =1) =P(X1 = 1)(p11 — po1) + pos
= (p1(P1,1 — Po,1) + Po,1) (P11 — Po1) + Poa
= p1(pr1 — po.1)” + Po1 (P11 — Po) + Po

= p1(pr1 — Po.1)” + o

(

1+ (p1,1 — po,1))
P(X3 =1) = pi(pr1 — po1)’ + por(1+ (pr1 — por) + (P11 — pos)?) (3.4)
) .
= p1(p11 = poa)® + poa Z(pl,l —poa)’
r=0
n—1
P(Xn =1) =pi(p1,1 —po1)" + poa Z(pl,l —poa)"
r=0

In case poo = p11 = 1 in equation (3.4) we see that P(X,, = 1) = p, since
poa = 0. If po1 # p11 we can write

n—1

1— — n
Po,1 Z(pl,l - poyl)r = po’ll( — ((pl,l_ po’)1> )
r=0 D1 DPo,1 (35)

_ Po,1 ~ poi(pii —poa)"
1- (pl,l - po,l) 1 - (pl,l - Po,l)

by using geometric series. Therefore equation (3.4) can be written

Po,1
P11 — po,l)

Po,1
- (p1,1 - po71)

P(Xn=1)=1— ( + |p1— (P11 —poa1)", (3.6)

10



when po1 # p11. If we take a look at equation (3.6) we see that the choice of
the initial distribution p; is crucial. The effect of p; is dampened exponen-
tially and when p; = po1/1 — (p11 — po.1) it has no effect at all. In that case
P(X, = 1) is the same for each n. This choice of p; is called the stationary
initial distribution, which we will return to later on.

The following lemma is an important computation, called the Chapman-
Kolmogorov equation. We let the state space S = {0, ..., N}, and define

pY = P(X, = j|Xo = i).

Lemma 3.3. Chapman-Kolmogorov equation. It holds that

p” Zplkpk] dA<m<n-1. (3.7)

Proof. For1<m <n—1

(n)

pi? =P Xy = j} N (Ulo{ Xm = k})[ X0 = 1)

P({Xn = J} M {Xm = k}‘XO = Z)

I
MZE

il
[e=)

P(Xy = j, X = k| Xo = 1)

NE

B
Il
o

By using Theorem 2.7, we know that

P(X, =j,Xm =k|Xo=1) P(X, =74, Xn=Fk Xo=1)P(Xo=1)
P(X,, = k| X, = 1) B IP’(XO—@)IP’(X =k, Xo=1)
_]P(X ], k’X()—Z)

11



Finally by using Markov property in the following equation we get that

k=0
N
SN
k=0

Equation (3.7) can be rewritten in matrix notation as

M) = pr=mpm

n
]

Pt =(p

Let p, = (pn(0),...,pn(N)) = (P(X,, = 0),...,P(X,, = N)) denote the prob-
ability distribution of X,,. By recalling the computation of P(X,, = 1) in
equation (3.4), we see that

Dn = Ppn_1P (3.8)

can be calculated with the initial distribution py. Therefore

Pn = poP". (3.9)

12



9 =10 i =10 ig =0 iy =0 i =0

i =1 iy =1 ip =1 in—y =1 iy = 1

Po P1 P2 Pn—1 Pn

Figure 3.2: Visualization of the transitions for S = {0,1}.
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Figure 3.3: Kilpisjirvi transition diagram

Example 3.4. (Kilpisjérvi precipitation) The observed data in table (3.1)
can be used as a Markov chain model. Let us say that it rains on January 1
this year. In our model that is considered as "wet”, i.e. the initial distribution
po = (0,1). Now, what would the probability of rain be 6 days hence on
January 7? By using (3.9) we see that we need to determine P where

0485 0.515
F= (0.219 0.781) (8.10)

and after matrix-multiplication of P we get that

0.299 0.701
©) _
P (0.298 0.702) ' (8:11)

Since we want to know the probability distribution (p,) 6 days hence, given
that we obeserve "rain” the first day we get from (3.9)

pe = (0,1)P® = (0.298,0.702). (3.12)

14



In the first column in (3.12) we have the probability of a "dry” day on January
7, given "wet” day on January 1. In the second column we have the probability
we want to compute. The probability of a "wet” day in Kilpisjarvi on January
7, given a "wet” day on January 1, is 0.702.

3.3 Classification of states

Definition 3.5. For a Markov chain { X, }°° , in the state space S, the hitting
time of a given state j € S is defined as

T; :=inf{n > 0: X, =j}. (3.13)

Definition 3.6. A random variable 7' € Z, U {00} is called a stopping time
if the event {T'= m} can be expressed in terms of X, X5, ..., X,,.

This means that a stopping time is a specific random time such that we
at time m know weather an event has occured or not. The hitting time 7j is
a stopping time, since the event {T; = m} ={X1 # 7, Xo # j,..., X\, = j}.

Theorem 3.7. (The strong Markov property) Let {X,} be an M.C. with
the transitions probabilities p; ; and statespace S. Also, let T} be a stopping
time with respect to {X,,}. Then for any integer m, we need to show that

P(Xpim = j|Xo =0, X1 =t1,..., Xp = 1)
= P(X, = j|Xo = i) = p{}’

1,J

(3.14)

and
P(Xrim = j| X7 = i) = P(X,, = j|Xo = 0) = p7. (3.15)

Proof. First we prove equality (3.14):

P(Xpsm = 5| X0 = d0, X1 = i1, ..., X7 = 1)
CP(Xpim =, Xo = i, X1 = i1, ..., Xp = i)
P(Xo = 0, X1 = 11, ..., X7 = 1) (3.16)
S P(Xrm = 5, Xo = g, X3 = i, o, Xp =4, T = 7)
P(Xo = o, X1 = i1, .., X7 = 1)

15



Next, since 7" is a stopping time, the event {T' = 7} can be expressed as
the process up to time 7, i.e. as Xo, Xy, ..., X;. The Markov property now
gives us that

P(XTer = ]‘XO == ’io, -~-7XT = Z,T = 7') == ]P(XTer = j’XT = Z)

=p’

(3.17)

Hence, equation (3.16) becomes

2?_021 ]P)(X7‘+m = j; XO = ’io, -..,XT = Z,T = 7')
P(X() - io, ...,XT == Z)

X P(Xrim = G Xo = gy Xp = i, T = 1) P(Xo = gy o0, Xp =i, T = 1)
N ]P)(X() :io,...,XT :Z)
Ziozl pﬁ(‘?) P(Xo=1ig,...., X7 =i, T =7)
]P)(X(] == io, --~7XT = Z)
_ e P(Xo =g, ., Xr =i, T =17)
P P(Xy = ig, ..., X7 = i)

(3.18)
Finally we get equality (3.15) from (3.14):
. . ]P(XT—HTZ = j) XT = 7’)
P(Xp = | Xp = i) =
(X7t il Xr = 1) P(Xy — i)
:Ziozl ]P<XT+m = j? XT = Z7T = T)
2 PXpm = j[Xp =i, T =7)P(Xp =i, T =7) (3.19)
P(X7r = 1)
_ o m 2 P(Xp =4, T =7)
pz’] ]P)(XT = Z)
=p\"
[

Definition 3.8. State i reaches state j, denoted as ¢ — 7, if
(n)

In>0:p;; >0.

16



Definition 3.9. Two states ¢ and j that reach each other are said to com-
municate, denoted as <, i.e.

14> jifi—jand j— 1. (3.20)
Definition 3.10. The probability of an event associated with the M.C. when
the chain starts at state i is defined as

Pi(...) :==P(...| Xy = 1), (3.21)
and 7 is called the initial state.

Proposition 3.11. For all 4,5 € {0,..., N} it holds

plj Z Pi(Ty =m p]n] "
Proof. Write {X,, = j} = >." _{T; = m,X,, = j}. Starting from initial

state ¢ by using conditional probability and finally taking advantage of the
Markov property we get that

pY =Py(X, = j)

=Y Pi((Tj =m) N (X, =j))
=Y Pi(X, = j|Tj = m)Py(T; = m)

=Y P(Xn=j|Xo =14, X1 #j, ... Xon1 # §, Xow = J)Pi(Tj = m)

n

Definition 3.12. A state j is called absorbing if

pij =1,

which means that if the chain reaches state j it will stay there with probability
one.

17



Corollary 3.13. For an absorbing state j it holds that
P =P(T; < n). (3.22)

Proof. Equation (3.22) says that starting from the state 4, the chain has to
hit j before or at time n. From Proposition 3.11 we know that

Py = ZP j=mply ",

m)

Since j is an absorbing state we have that pg-z-_ = 1for all m < n. Therefore

PZ(Z) = IP;(T; < n) for an absorbing state j. =

Theorem 3.14. < is an equivalence relation.
Proof. P(” =P(X, =i|Xo =1i) and P(O) = 1 which means that i <+ i. Next

if i communicates Wlth k and k commumcates with 7 we can find integers m

and n such that pgk) > (0 and pk] > (. Then by summing over all possible

states t in the state space S we have that

pEZHH szt ptz Z D; k)p](gn]) >0 (3.23)

and ¢ — 7. Similarly we can show that 7 — ¢ since

Py = Zpﬂpm > p{ipl) > 0 (3.24)
for integers r and s such that p] " ) > 0 and p > 0. ]

Definition 3.15. A Markov chain (X, X7, ...) with state space S =
{0, ..., N} is irreducible if for all 7,7 € S there exist nonnegative integers k
and [ such that

This means that a chain is irreducible if, given any two states, the states
with a positive probability can reach one another. Any two states of the
chain are hereby communicating and will always be reachable.

18



Definition 3.16. The period d(s;) of a certain state s; of a given Markov
chain with state space S is defined by
d(s;) = ged{n > 1: (p\") > 0)}. (3.25)

Here the abbreviation ”gcd” stands for the greatest common divisor. A
state s; is said to be aperiodic if d(s;) = 1 in (3.25). If d(s;) = 1 holds for all
1 € S of a Markov chain, it means that the chain itself is aperiodic, otherways
the chain is called periodic.
A chain that is both irreducible and aperiodic (Definition 3.15 and 3.16) is
called ergodic.

Theorem 3.17. Periodicity is an equivalence class property, i.e., if ¢ com-
municates with j then d(i) = d(j).

Proof. Let 7, s be such that pg,rj) > O,pg-i-) > 0 and assume that p§t]) > 0. Then
0 < ppls) < pt (3.26)

and
0 < p)pilpl) < pl . (3.27)

By definition d(7) must be a fraction of r + s and r + s + ¢, since state i can
not have multiple periods. Hence d(i) must divide their difference t for any
t such that pgtj) > (0. Therefore d(7) divides d(j). By similar arguments d(j)
divides d(i), so the two numbers have to be equal. ]

Let fl-{?) = IP;(T; = n) be the first passage distribution from starting state
1, to ending state j. In zero steps, i.e. when n = 0, we have that fég) =0
and in general for n > 1

L =B(X =, X # Gk = 1,0n = 11X = i). (3.28)

7.j

Lemma 3.18. Let n; and ny be two positive integers that are relatively
prime (greatest common divider = 1). Then any integer n > niny can be
written as n = snj + tngy, for non-negative integers s and ¢.

Proof. Consider the modulo ny congruence classes of the ny distinct positive
integers n—0ny,n—1ny,n—2ny,...,n — (ny — 1)n;. We have two possibilities
with these congruence classes. The first possibility is that all the congru-
ence classes are different and the second one is that at least two congruence

19



classes are the same. If all congruence classes are different it means that one
congruence class must be 0. Then n — sn; is divisible by ny such that

n— sng

=t <> n=sn +tnsg. (3.29)
T2

Equation (3.29) holds if all congruence classes are different. In case two

congruence classes are the same, we are able to write n — sn; = kng + [ and

n—tni=mny+lfor0<t<s<ny,—1,k<m,and 0 <l <ny—1. For

these two congruence classes to be equal we get that

n—sny — (n—tny) =kng +1— (mng + 1)
> —sny +tny = kng — mns
“ (s —t)ny = (m — k)ns. (3.30)

Since n; and ny are relatively prime, for equation (3.30) to be true, (s — t)
must contain all prime factors of ny,. That is a contradiction, since then
s—t>nyg—1. ]

Proposition 3.19. Let X be an irreducible and aperiodic chain and 7,5 € S.
Then there is an integer N = N (i, 7) such that pgz) >0 for all n > N.

Proof. Since X is aperiodic, we know that d(j) = 1. Therefore we can find
two integers n, no that are relatively prime such that pﬁl) > 0 and p'"? > 0.
From Lemma 3.18 any large enough n can be written as n = sn;+tny. Hence

J-J
s t
o = = () () > 0, (3.31)

since pﬁ»f}l),pﬁﬂ > 0 and s,t > 0. In other words, starting from state j, the
probability of returning to state j in n steps is greater than zero. Now, for
each pair 7, j there is an ng such that p(’}(’) > (. Therefore

i7

pgz+no) > pEZ)pEZO) >0, (3.32)

since pg}), pEEO) > 0. O
Corollary 3.20. Assume that X and Y are identically and independently
distributed (iid) irreducible aperiodic Markov chains. Furthermore let Z =

(X,Y). Then Z is an irreducible Markov chain.

20



Proof. The Markov property holds for Z since

P(Z, = (3,0)|Zo = (i0, ko), Z1 = (i1, k1) ooy Zn1 = (in—1, kn—1))
=P(X, =7,Y, =1|Xo =0, Yo = ko; X1 =41, Y1 = k15 ..; Xopt = U1,
Yn—l = kn—l)
= P(Xn = j7 Y, = l|Xn—1 = Z.n—lu Y1 = kn—l)
P(Zn = (j?l)‘anl = (infhknfl))-
(3.33)

By using Theorem 2.7 we get the transition probabilities for Z as following:

Pikjl = P(Zn = (]7l>|Zn—1 = (ka))
—P(X, =}, Y, =Xy =i, Y,y = k)
_PEXn =3 n{Xa =) P{HYn = F N {Yo1 = k})
]P)(Xn,1 - Z) ]P)(Yn,1 == k)
=P(X, =j|Xna=0)PY, =1|Y,1 =k)
= PijPr,l;

(3.34)

since X and Y are iid. By Proposition 3.19 there is an N = (i, k, j,1) such

that pgz) > (0 and p,(:l) > (0 for n > N. Hence pg,?w > (0 which means that Z
is irreducible. O]

Definition 3.21. .
fii=> F =BT < 0) (3.35)
n=0

The state ¢ in equation (3.35) is persistent, or by another name recurrent,
it f;; = 1. Otherwise state ¢ is called transient. We can think of transient
states as if there are one or more absorbing states in the chain, there is a
chance that we will never return to starting state again. It is also possible
that the chain never enters the starting state after running for a while. In
both of these cases we have a positive probability of no return with f;; # 1.
On the other hand a persistent state is one that the process will eventually
with certainty return to, in a finite amount of steps.

Theorem 3.22. A state i is persistent if and only if Y >, pgz) = 00.
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Proof. Suppose i is transient and let M be the number of returns to i. Then

M(i) = 1(X, =1). (3.36)

n=1
Since
fii =Pi(T; < 00) =P;(M > 1)

and

Py(M > 2) = Py(T; < 00, T?) < 0)
= f2

where Ti(Q) is the time we return to ¢ the second time. Because the chain
starts over once we return to ¢ and reach state Xr, by strong Markov property.
Hence by the strong Markov property

Pi(M > k) = (Bi(T; < o0))F = zkm
which is the probability that we will return to ¢, £ times or more. The
expected value of returns to ¢ is hence

Ewﬂ=§3RU4Z@- (3.37)

We are interested in how many times we return to state ¢ and only have two

options for each step, i.e. we return to state ¢« or we do not return to state

1. We also need to know how many times we hit state ¢, until 2 can not be

reached anymore (i transient). Hence M — 1 has a geometric distribution
(Definition 2.8) with parameter f;;,. Theorem 2.10 states that

Jii

E,M] = ———. 3.38

i[M] =1 (3.38)

Since state i is transient we know that f;; < 1 and E;[M] < oo, and

consequentely

SOp = SOE(X, = )] = E(M] < oo (3.39)
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On the other hand, if 7 is persistent, the chain returns to ¢ with probability
1. Then the process starts over and again the chain will return to ¢ with
probability 1. This happens an infinite number of times. By the strong
Markov property P;(M = c0) = 1 and E;[M] = oo, i.e.

> p = E{M] = . (3.40)
n=1

]

Definition 3.23. The mean recurrence time of a persistent state ¢ with
probability distribution fi(,?) is defined as

pi= > f. (3.41)
n=1

State ¢ is called null persistent if ; = oo and positive persistent if p; < oco.

(n)

Corollary 3.24. For a transient state ¢ it holds that lim,, pii — 0.

Proof. Since i is transient, f;; < 1 and thus 220:1 pgz) < oo. Thus lim,, o p}; =
0. O

3.4 The long time behaviour and stationary dis-
tribution of Markov chains

Definition 3.25. A row vector m = (mg, 71, ..., 7Ty) is a stationary distri-
bution for a Markov chain if 7; > 0 for ¢ = 0,..., N and Zf\;o m; = 1 and
mP = m, which is equivalent of solving the equation

(P —1)=0 (3.42)

where [ is the identity matrix for P. [ has ones on the main diagonal and
zeros elsewhere.

Remark 3.26. A Markov chain need not to have a stationary distribution, but
if it has a limiting distribution, then the limit is stationary, as one readily
checks.
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Example 3.27. Consider the Markov chain with the transition matrix

p:(‘l) (1))

Since the chain, with a periodicity of 2, will jump between the two states
with probability 1, the chain never will converge to any certain distribution
7. However, Definition 3.25 states that P has a stationary distribution, since

(o) (o) - (33)

While we manually calculate the stationary distribution of a Markov
chain, it can be convenient to take the transpose of equation (3.42), de-
pending on how the transition matrix we work with looks like. This will be
done in the following example where we calculate the stationary distribution
using Gaussian elimination.

Example 3.28. Consider a Markov chain with the state space S = (0, 1, 2, 3,4)
and transition matrix

1 1
123100
polilzl g
33131
A
2 2

and we want to find a stationary distribution of P. Recall from equation
(3.42) that we want to solve the equation w(P — I) = 0 that is equivalent
of solving the transpose of the equation, i.e. (PT — )77 = 0. We start by
calculating the matrix PT — I by using Gaussian elimination.
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Here the notation ”~” means that row operations have been calculated
according to Gaussian elimination. Since there are only zeros in the last row,
s will be a free variable. We now have an equation system that consists of
5 unknown variables and all equations are functions of m5. The stationary
distribution can be calculated as following. We have that

(
™ = %% 11
_ 10 i
Ty = ?335 g
_9 T _
T3 = 55 where 7 =75 | 5
T4 = 2:5'5 2
) 1
(75 = free variable

Definition 3.25 states that 75 should be such that
5
87
Sonf = (E) 1
=1
22 20

that gives us m5 = (%) and thus 1 = (2) ,m = (8) ,m = (55) ,m = (55)-
The stationary distribution as a row vector is thereby

22 20 9 4 2
T=—= = —, —, — .
87787729729’ 29
Lemma 3.29. Let y be as in (3.41) and v; as in (3.44). For an irreducible
and positive persistent Markov chain there exists a stationary distribution

Uik
ﬂ-l _ 3.43
M ( )

for a fixed state k and i,k € S. For a proof of this statement, see [5].

Theorem 3.30. The expected number of visits to state ¢ between successive
visits to state j is given by

T;—-1
. M Ur
n=0 v

for i,j € S. For a proof of this statement, see |5].
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Theorem 3.31. An irreducible Markov chain has a stationary distribution
if and only if the the chain is positive persistent. This implies that the
stationary distribution is unique and given by

1

i

Theorem 3.32. For an irreducible Markov chain with mean recurrence time
w; < oo, if j is an aperiodic state, then

1
lim p;’; ) — — (3.46)

Corollary 3.33. If a Markov chain is irreducible and aperiodic, then

lim pf " = fw (3.47)

For a proof of these three statements above, see [5].
Definition 3.34. The time spent in state j is defined as
Nj(n) =Y 1(X; =), (3.48)
i=1
where N;(n) counts the number of times we hit state j.

Corollary 3.35. Let 5 be a persistent and an aperiodic state. Then

hmJE{N( ]_ lim Zp”— ‘ (3.49)

n—oo n n—oo 1

for all starting states communicating with j. Equation (3.49) is called the

Cesaro-limit of the transition probabilities py;

Proof. Theorem 3.32 states that pglg — Ml as n — oo. We make use of the
’ j
basic fact that if a limit exists, it equals the cesaro-limit. Next we have that

=D _Pi(Xs =)= p (3.50)
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Because of persistence in the equation above, starting from state j, we know
that we will return to j with probability one. The same holds if we change
the starting state from j to k, if 7 and k communicate with each other. We
get that

Ex[Nj(n)] = 3 Pu(Xi =) = 3 i) (3.51)

When we let n — oo in (3.51), Corollary 3.33 states that

“~ ey 1
P (3.52)
i=1 K Ky
since k and j communicate and therefore f; ; = 1. O]

Theorem 3.36. Given an ergodic state j, the limiting occupation probability
of 7 is uL with probability one, i.e.
J

P ( lim 200 i) _1 (3.53)

Proof. Suppose that the Markov chain starts in state j. Let Tj(1),T;(2), ....
be the successive times when the chain hit state j. When we hit state j,
at specific random time, we can by the strong Markov property consider
it as restarting the chain. Hence T;(1),7;(2) — T3(1),7;(3) — T;(2),.... are
independent and identically distributed random variables with probability
generating function F};(s) and mean p; < co. By the Strong law of large
numbers (2.12) we have that

L) + (1;(2) = T5(W) + .. + (T() = T3(1 = 1))

llim l
—00
3.54
lsoo | J
with probability 1 for the specific random times 7}(l). We have that NJT(") is

the proportion of time spent in state j up to time n. Also, we reach state j
before, at, or after n steps. Hence

Ty(Ny(n)) < n < Ty(N;(n) +1). (3.55)
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Furthermore, N;(n) — oo as n — oo with probability one, since we hit state
J an infinite amount of times. Thus, as n — oo, with probability one

N _ N1
< N 3.56
n S Tm) ok (3:56)
and Nm)+1_ Nm+1 1
j n) -+ > j n) -+
N 357
n SN D n (3.57)
which means that N .
i), L (3.58)
n 1
0

Theorem 3.37. (Ergodic theorem for Markov chains) For a positive per-
sistent chain X, if f : S — R satisfies E; [|f(X1)|] < oo, where 7 is the
stationary distribution, we have that

3" F(X) = B [(X0) (3:59)

in probability, regardless of the initial distribution.

Proof. As in Theorem 3.36, we let 7}(l) stand for specific random times of
successive hits of state j. By splitting the random times into intervals, each
interval represents one successive return to state j. Then we let Y; represent
the intervals with corresponding transitions so that

T;(1+1)

Z F(X). (3.60)

T;(0) = 0 since even though we start at state j, it does not count as a succes-
sive return to j. By the strong Markov property are Yy, Y1, ... independent
and furthermore Y7, Y5, ... identical.Y; starts from an initial distribution at
time 0, hence the distribution differs from Y7, Y5, .... By decomposing we get

Nj(n) T;(N;(n))

;f(xk ~ Yo+ Z Y — Z F(X) (3.61)

k=n+1
=Y, + SN].(n) —R,.
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Since we have that

Yo = f(X1) + o + [(X)
Vi = f(Xn,0041) + -+ F(X1y2) (3.62)

Yo = f(Xrymy41) + o + f(X1y(n11)

we know that Y;, for any ¢ € S, is a sum of a finite number of random
variables. Therefore lim,, . % = 0. Next, persistence ensures us that, as
n — 00,P(N;(n)) — oo) = 1. Provided that E[|Y;]] < oo, the law of large

numbers gives us that

f(Xnmn) + o+ F (Xne) + o+ F (Knopemin) + o+ (Xnomi)

N;(n)
= = — E[Zl]
N;(n)
(3.63)
in probability. Also, according to (3.36) NJ;E") — Mi = ;. Hence since
SN,y SN;m) N
Ny _ SNy Nj(n) (3.64)
n Nj(n) n
we get that
SN;(n
2Ny r RV (3.65)
n

in probability. Next we know that the earliest time point we can hit state j
the next time, after n amount of steps, is at time n + 1. Also, we know that
the time points T;(N;(n)) +1 <n+1 < T;(N;(n) + 1). Hence

Tj(Nj(n)+1) T5(N;j(n)+1)
Ral< D XIS D X = (3.66)
k=n+1 kZTj (Nj (n))+1

By the strong Markov property 7i,79,... are independent and identically
distributed. Hence

B(|R,| > n) < B(n, > n) <

0, (3.67)
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by Markov’s inequality (2.11)Next using Theorem 3.30, if E[n; < oo] then

E[|Y;] < oo since

T5(2)

Elm =E| > 11| = 1@ = 3101

k=T;(1)+1

and

m . 1 m .
Vil =Y fliyvi; = — > Fiym
i=1 I i=1
for m € S. Then finally we have that
SN.(n
L() — T le - 7Tj Zf - 7rf Xl)

n
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Figure 3.4: Visualization of the intervals in equation 3.60

33



Chapter 4

Simulation

The purpose of this chapter is to simulate the long time behaviour of Markov
chains and compare it to theoretical results. The simulations are done with
the programming language R, which is an environment for statistical com-
puting and graphics. For each simulation in R the function rmultinom()
will be used. That is because we want to include randomness between each
transition from one transition to another. The inclusion of randomness re-
flects well real life situations, where random events usually occur and have
an effect.

R has many built-in packages to manipulate data and new ones are con-
tinuously created and developed by users around the world. If you can not
find a certain package in the library of R, it is usually possible to install new
packages manually by downloading the packages to your computer. A more
convenient way though is to use the built-in respository (CRAN) to install
the package directly in R. In the coding process I have used RStudio that
is a user environment to R with many built-in tools. One useful integrated
tool is RMarkdown, which is a file format that can convert the code to many
other formats. RMarkdown displays both the source code (input) and the
result (output) in a convenient way, and hence I have used it for some of my
created tables.

I have chosen to simulate two different ergodic Markov chains, where
the first matrix is based on my manipulated data from FMI. The second
matrix is made up and created by me, with the properties of an ergodic
Markov chain. In Section 4.1 we go through the simulation algorithm, used
for both matrices, followed by the coding process and the results. The coding
process is similar for both matrices, but the data manipulation differs, since
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the created matrix is larger in terms of dimension. The results from the
simulations are presented in tables as estimates, where

=)
and
— = ji(n)
Nj(n) ™
In my results tables I also calculate
by
>
1€SHFE]

which is similar to v; ; from (3.44). Estimates of v; are presented in the result
tables as 0;(n).
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4.1 Algorithm

In order to reproduce the same results in a simulation R has a built-in func-
tion set.seed(seed, kind = Null,normal.kind = Null), where seed takes on
a single value interpreted as an integer , or Null. Hence if we keep the same
seed-value for a random number generator, set.seed() function will produce
the same random numbers. As random number generator we will use the
built-in multinomial distribution rmultinom(n, size, prob), where n is the
number of random vectors to draw, size the number of objects going into
K boxes, and prob a numeric positive vector of length K. prob specifies the
probability for the K classes. Next we use the built-in function

function(arglist){{expr}return(value)}.

arglist can consist of zero, one, or many expression terms as we call for the
function. expr and value consist of an expression, where the expression itself
can consist of several expressions. Before running the algorithm we set the
seed to some number, which in this case is 148:

Again, the number inside set.seed() could be another one, but in this case
the number 148 will produce the same randomly generated vectors for this
simulation. Next, we have the code for the algorithm:
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set.seed (148)

zim.mark.chain <- function( P, num.iters=50, num.chains=5 }

num. states <— nrow (P)

] <- matrix (N, ncol=num.chainz, nrow=num.iters)
probakbilities <- matrix (NA, nrow=num.iters, nocol=num.s3tates)
pi 0 <— c(l, rep(d, num.states-1)]}

Pn <~ P

init.states <- sample{l:num.state=z, num.chainz, replace = T)

probabilities[l,] <- pi O

5[1,1] <— init.states

for(i in 2:num.itersa) |

't
[
=]

<— pi 0 %*%

probabilities[i,] <- pi n

for(k in seq len(num.chains)) {
ju <- P[ 5[i-1,k],

5[i,k] <- which(rmultincm(l, 1, p} == 1)

Pn<— P n %*% F

}
retorn{list (probakilities, S5, num.iters))
Figure 4.1: Code for simulation algorithm

sim.mark.chain is the name of the function that we call for when we
simulate a transition matrix. P is in our case a matrix, num.iters a variable
name for the number of iterations, and num.chains a variable name for the
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number of simulations. The first step is that we save the number of rows
in the input in the variable num.states. Then we create two new empty
matrices named S and probabilities. S saves the number of columns accord-
ing to num.chains and probabilities saves the number of rows according to
num.iters. Above in picture (4.1) num.iters has the value of 50 that can
be changed according to how many iterations, i.e. transitions, we want to
do. num.iters is changed to greater values in the simulations. Similarly,
num.chains can be changed, according to the number of times we simu-
late the Markov chain. Next we have the variables pi 0 and P_n, where
P _n saves the input matrix and updates its values for each transition, as
we see later on. pi_ 0 is a vector of the same length as the number of rows
in num.states. The first number in the vector is 1 followed by one or more
zeros depending on the number of rows in num.states. As an example, if
the input matrix has 5 rows (= 5 states), then the output of pi 0 for one
transition would be the following:

$# [1] 1 00 0 O

pi_ 0 is as following saved in the first row of the matrix probabilities. We
then pick a random starting state, for each simulation, which is saved in the
first row of the matrix S. The variable init.states saves all random starting
states, which depend on the value of num.chains:

init.=states <— gsample(l:num.state=s, num.chains, replace = T)
probabilities[l,] <— pi 0
5[1,1] <— init.states

We loop through the numbers of transitions from the second number,
until num.iters reaches its last value:

for(i in Z2:num.iters)
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Similarly we loop through the number of simulated chains k € (1, num.chains)
for each i € (2, num.iters) :

for(k in seq len(num.chains)]

In the first for-loop a new variable pi_n obtains the value of pi_ Ox P_n,
where P _n initially has the value of the input matrix P. For each transition
P _n is updated and therefore also pi_n. pi_n is then saved in the matrix
probabilities in row i for i € (2, num.iters):

pin <— pi 0 %¥*% P n
probabilities[i, <— pi n

A new variable p gets the value from a row of P, in form of a vector,
where the vector is taken from the [i — 1, k]:th matrix position of S, storing
all states for the transitions. This means that the state number returned
from S[i — 1, k| determines the row number for P. Then the vector p storing
probabilities, i.e. probability vector, is passed into the rmultinom() function,
where the function draws a sample from the probability vector. The sample
number, determining the next state, is stored in S on row ¢, and column k:

<- P[ S[i-1,k],

[ ]

[i; k] <- which({rmultinom(l, 1, p) == 1}

Finally the matrix P_n, initially set as P, is updated by multiplying
it to P for each iteration. The algorithm continues until it reaches its last
value of num.iters and num.chains. For each iteration i, the values in
probabilities, S, and num.iters are stored in a list:

Pn<-Pn %% E

39



4.2 Simulating the data from Kilpisjirvi pre-
cipitation
The first simulation we do is with the 0-1-chain with the obtained data from

Table 3.1. Firstly we create the matrix in R with the corresponding states
"Dry” and "Wet” and set the name of the matrix to transMatrix:

ztates <- o ("Dry", "Wet™)

transMatrix <— matrix{c({0.485, 0.515,0.219,

transMatrix

"
H
[
H
[ I
0

¥ Dry

= oo

[ T

T
[ |
=1 &n

[ K ]

£F Wet

Then we call for the function in figure (4.1) and run the chain:

z3ims «<— sim.mark.chain(transMatrix)

For given number of iterations and number of chains declared in the
function in Figure (4.1), the variable sim2 stores all values for the simula-
tion of the inputmatrix transMatriz. All values in sim?2 are returned by
the function sim.mark.chain. The returned data in sim2 is devided into
three variables storing the two matrices, probabilities and S, and the integer
number returned from num.iters:

probabilities <— sim2[[1]]
atatess <— gimZ[[2]]

i <= gimZ[[3]]

Next we manipulate the data so that it can be used in tables and charts:
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library(data.table)

T 1 «- as.data.frame (atatea2[,1:5])
T 3j <- asg.data.frame (lapply(T i, table})
T_j_freq <= T j[,ci{2,4,6,8,10)
T j freqT <— transpose (T j freq)
1limOccProbStl <— transform(T j fregT[[l]], new = T j freqT[[
limOccProbSt2 <— transform(T j fregT[[2]], new = T j fregT]|
df «<— Ccbind.data.frame (1imCccProb5tl, limOccProbS
df <— transform({df, mul = n / d4df[[1]], muZ2 = n /
colnames (df) <— c("3N_{1}(n}&","sN _{1l}(n) / n&", "N {2} (n)
"N {2} (n nsm, sn/N {1} (n)&", "sn/H_
rownames (df) <— Cc("sM.c. 35", "sSM.c. 45", "SsM.c. 35",
II:_J :. :: I|I mo q = 1.\_I||
df[,1:6] <— round {df[,1:68], digit =3}
df <— df[, c(1,3,2,4,5,8)]

T ¢ stores the columns consisting five simulated markov chains as a
dataframe data type. The library data.table is added to access the table func-
tion, for counting state occupancy. Frequencies are added to the dataframe
T 7 and then selected columns consisting only of the frequencies in the vari-
able T'_j freq. Finally T _j freq consisting of all the frequencies in each
state, for each Markov chain, is manipulated to fit the measurements, and
rounded up to three digits.
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4.3 Results

Ni(n) N;(n) Ni(n)/n Ni(n)/n n/N;(n) n/Nz(n)
M.e.1 17 33 0.34 066 2.9412 1.5152
M.c.2 14 36 0.28 072 35714 1.3889
M.c.3 18 32 036 064 27778 15625
M.c.4 18 32 0.36 0.64 27778 1.5625
M.c.5 14 36 0.28 072 3.5714 1.3889

Figure 4.2: Table of measurements, n = 50.

State
Dry Wet
- n=17 n=33
™ n=14 n=236
g e n=1& n=232
~ n=18 n=32
Ty n=14 n=736
[ l I I l 1
0 10 20 30 40 50

# of occurances

Figure 4.3: Occupation in each state for n = 50.
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M.ec.1
M.e.2
M.c.3
M.c4
M.c.5

M.C.

Ny(n)
327

359

Ni(n)/n
0.346
0282
0.278
0.288

0.302

N, (n)/n
0.654
0.718
0.722
0.712

0.698

n/Nj(n) n/Na(n)
28902 1.5291
35461 1.3928
3.5971 1.3850
3.4722 1.4045
3.3113 1.4327

Figure 4.4: Table of measurements, n = 500.

State
Dry

Wet

n=173 n=2327
n=141 n=2359
n=139 n = 361
n=144 n =356
n=181 n =349
I I I I ]
100 200 300 400 500

# of occurances

Figure 4.5: Occupation in each state for n = 500.
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M.el
M.c.2
M.c.3
M.c.4
M.e.5

M.c.

Ni(n) Ny(n) Ni(n)/n Ny(n)/n n/Ny(n) n/Ny(n)
1482 3518 0.2964 0.7036 3.3738 1.4213
1475 3525 0.2950 0.7050 3.3898 1.4184
1529 3471 0.3058 0.6942 3.2701 1.4405
1477 3523 0.2954 0.7046 3.3852 1.4192
1565 3435 0.3130 0.6870 3.1949 1.4556
Figure 4.6: Table of measurements, n = 5000.

State
Dry Wet
n=1482 n=3518
n=1475 n = 3525
n = 1529 n = 3471
n=1477 n = 3523
n=1565 n = 3435
T | | T |
1000 2000 3000 4000 5000

# of occurances

Figure 4.7: Occupation in each state for n = 5000.
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M.ec.1
M.e.2
M.c.3
M.c.4
M.c.5

M.

Ni(n) Na(n) Ni(n)/n Ny(n)/n /Ny (n) n/Ny(n)
14934 35066 0.2987 0.7013 3.3481 1.4259
14773 35227 0.2955 0.7045 3.38486 1.4194
14978 35022 0.2996 0.7004 3.3382 1.4277
14901 35099 0.2980 0.7020 3.3555 1.4243
13172 34828 0.3034 0.6966 3.2955 1.4356
Figure 4.8: Table of measurements, n = 50000.
State
Dry  Wet

n=14934 n = 35066

n=14773 n = 35227

n= 14978 n = 35022

n = 14901 n = 35009

n=15172 n = 34828

T T T T |
10000 20000 30000 40000 50000

45

# of occurances

Figure 4.9: Occupation in each state for n = 50000.



7;(50) 7;(500) 7;(5.000) #;(50.000) ™
J=Dry 034 0346 0.2964 02987 0.2984

= Wet 0656 0654 0.7038 07013 0.7018

j=w

Figure 4.10: Simulated estimates from "M.c. 1”7 and the real value of the
stationary distribution.

f1;(50) /1;(500) fi;(5.000) /1;(50.000) 1
j=Dry 2.9412 2.8902 3.3738 3.3481 3.3516
J=Wet 1.5152 1.5291 14213 1.4259 1.4252

Figure 4.11: Simulated estimates from "M.c. 1”7 and the real value of the
mean occurance time.

;(50) ;(500) ;(5.000) ;(50.000) v;
j=Dry 0.5152 0.5291 0.4213 0.4259 0.4252
Jj=Wwet 1.9412 1.8902 2.3738 2.3481 2.3516

Figure 4.12: Simulated estimates from "M.c. 1”7 and the real value of v;.
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4.4 Simulation of the 7 x 7 matrix P

The algorithm in the following simulations is the same as in Figure (4.1) and
the coding process in R follows a similar methodology as in Section (4.2).
The code for the methodology and the code for the tables and charts is added
to appendices. Suppose we have the 7 x 7 matrix

0.25 0.5 0.05 0.05 0.05 0.05 0.05
0.2 025 035 0.05 0.05 0.05 0.05
0.05 0.2 0.25 035 0.05 0.05 0.05
P = 0 0 025 05 025 0 0

0.05 0.05 0.05 0.2 0.25 0.35 0.05
0.05 0.05 0.05 0.05 0.2 0.25 0.35
0.05 0.05 0.05 0.05 0.05 0.5 0.25

and simulate the matrix P. We simulate matrix P five times, with 50, 5000,
and 500000 numbers of transitions, n. The five simulated chains are named
"M.c. 17, ”M.c. 2°, ... , "M.c. 5”. The main goal is to see how the number of
occurances, N;(n), for each j € S, changes through time.

4.5 Results

Ni(n) Na(n) N3 (n) N;(n) Ns(n) Ng(n) Nz (n)
M.e.1l 3 5 14 17 7 1
M.c.2 4 10 8 7 5 9 7
M.c.3 1 2 7 18 10 9 3
M.c.4 4 2 2 9 8 14 2l
M.c.5 3 3 12 8 7 10 7
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Ni(n)/n N(n)/n Ny(n)/n Ny(n)/n Ns(n)/n Ng(n)/n Ni(n)/n

M.c1 0.06 010 028 034 014 006 0.02
M.c.2 0.08 020 016 014 010 018 014
M.c.3 0.02 0.04 0.14 0.36 020 018 0.05
M.c. 4 0.08 0.04 0.04 018 016 028 022
M.e.5 0.06 0.06 0.24 0.16 0.14 0.20 014
n/Ni(n) n/Ny(n) n/N3(n) n/Ny(n) n/Ns(n) n/Ng(n) n/Nz(n)
M.el 16.6667 10.0000 3.5714 29412 71429 16.6667 50.0000
M.e.2 12.5000 5.0000 6.2500 7.1429 10.0000 5.5556 7.1429
M.e3 50.0000 25.0000 7.1429 27778 5.0000 5.5556 16.6667
M.c. 4 12.5000 25.0000 25.0000 5.5556 6.2500 3.5714 4 5455
M.e.5 16.6667 16.6667 41667 5.2500 7.1429 5.0000 71429
Figure 4.13: Table of measurements, n = 50.
State
I 2 = 3 ® 4 =5 5§ o 7
o~
s
- [ap]
=
=
[Ty
[ I I I I 1
0 10 20 30 40 50

# of occurances

Figure 4.14: Occupation in each state for n = 50.
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M.ec
M.e.2
M.c.3
M.c.4
M.c.5

M.e.l
M.e.2
M.e.3
M.c.4
M.e.5

M.ec.1
M.c.2
M.e.3
M.c.4
M.c.5

N

Ni(n)/n
0.0618
0.0730
00742
0.0722

0.0662

n/Ni(n)
16.1812
13 6986
134771
13.8504

15.1057

(n)
309
365
a7
361
331

Ny(n)
525
518
628
607
653

Ny(n)/n
0.1050
0.1236
01256
0.1214

0.1306

n/Ny(n)
95238
8.0906
79618
82372

7.68570

Ny(n)
761
791
847
805
797

Ny(n)/n
0.1522
0.1582
0 1694
0.1610

0.1594

n/Ny(n)
65703
63211
59032
52112

6.2735

Ny(n)
1141
1080
1108
1084
1025

Ny(n)/n
0.2282
0.2160
02216
0.2168

0.2050

n/Ny(n)
43821
16296
45126
16125

48780

Ns(n)
810
729
685
750
711

N;(n)/n
0.1620
0.1458
01372
0.1500
01422

n/Ns(n)
61728
68567
7.2886
66667

7.0323

Ny(n)
866
859
821
826

891

Ng(n)/n
0.1732
0.1718
01642
0.1652

D.1782

n/Ng(n)
57737
58207
60901
50533

5.6117

Figure 4.15: Table of measurements, n = 5000.
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N;(n)
588
558
539
567
592

Ni(n)/n
0.1178
0.1116
0 1078
0.1134

0.1184

n/Nz(n)
8.5034
B 9606
92764
58183

5.4459



State
" oq 2 n a3 m 485 0E T

-
(o]
o
- [ar]
=
=
w
[ I I I I ]
0 1000 2000 3000 4000 5000
# of occurances
Figure 4.16: Occupation in each state for n = 5000.
Ni(n) Ny(n) Ny(n) Ny(n) N5 (n) Ng(n) N7 (n)
M.l 35437 59185 81324 110104 74489 83797 55664
M.c.2 35243 59540 81292 110362 73876 83917 55770
M.c.3 35800 60091 80760 109239 74547 83740 55823
M.c.4 35536 59930 81329 110290 74272 83257 55386
M.c.5 35710 59777 81313 109876 74143 83470 55711
Ni(n)/n Na(n)/n Ny(n)/n Ny(n)/n Ns(n)/n Ny(n)/n Nz (n)/n
M.c.1 0.0709 01184 0.1626 0.2202 0.1480 0.1676 01113
M.c.2 0.0705 0.1191 01626 0.2207 0.1478 01678 01113
M.c.3 0.0716 01202 01613 0.2183 0.149 01673 01118
M.c.4 0.0711 0.1199 01627 0.2206 0.1485 0.1665 0.1108
M.c.5 0.0714 0.1196 0.1626 0.2198 0.1483 0.1669 01114
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n/Ny(n) n/Na(n) n/Ns(n) n/Ny(n) n/Ns(n) n/Ng(n) n/Nz(n)

M.el 14.1095 5.4481 6.1482 45412 67124 5.9668 59825
M.e.2 141872 8.3977 6.1507 4.5305 6.7681 5.9583 5.9654
M.c.3 13.9665 8.3207 6.1912 45771 6.7072 5.970% 5.9569
M.c.4 14.0702 5.3421 6.1479 4.5335 6.7320 6.0095 9.0278
M.e.5 14.0017 B8.3644 6.1491 4.5506 6.7437 5.9902 89749

Figure 4.17: Table of measurements, n = 500000.

State

=1 2 B384 85 856 8T

M.c.

| | | |
1e+05 2e+05 3e+05 4e+05 5e+05

? -

Oe

# of occurances

Figure 4.18: Occupation in each state for n = 500000.
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7,(50) #,(5.000) 7,(500.000) m

j=1 0.06 0.0618 0.0709 0.0711
j=2 0.10 0.1050 0.1184 0.1191
j=3 0.28 0.1522 0.1626 0.1622
j=4 0.34 02282 0.2202 0.2200
j=5 0.14 0.1620 0.1490 0.1489
j=6 0.06 01732 0.1676 0.1673
=7 0.02 0.1176 01113 01115

Figure 4.19: Simulated estimates from "M.c. 1”7 and the real value of the
stationary distribution.

/i;(50) 1;(5.000) 1;(500.000) 1
j=1 16.6667 16.1812 14.1095 14.0661
j=2 10.0000 9.5238 8.4451 8.3928
j=3 3.5714 6.5703 61482 6.1663
j=4 29412 4.3821 45412 45462
j=5 7.1429 6.1728 6.7124 6.7179
j=6 16 6667 57737 5 9668 59779
j=7 50.0000 85034 89825 8.9700

Figure 4.20: Simulated estimates from "M.c. 17 and the real value of the
mean occurance time.

;(50) ;(5.000) ;(500.000) v;
j=1 0.0638 0.0659 0.0763 0.0765
j=2 0.1111 01173 0.1343 0.1353
j=3 0.3589 0.1795 0.1942 0.1936
j=4 0.5152 0.2957 0.2524 0.2520
j=5 0.1628 0.1833 0.1751 0.1749
j=6 0.0638 0.2095 0.2013 0.2009
=7 0.0204 0.1333 0.1253 0.1255

Figure 4.21: Simulated estimates from "M.c. 1”7 and the real value of v;.
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Chapter 5

Conclusions

5.1 Convergence of the Kilpisjarvi simulation

The results in Figure 4.10 show how the estimate of 7 for 50000 transitions
is the best one of the estimates, since it is closest to the real value. 50
and 500 numbers of transitions seem to be too few to get a good estimate,
since 50 transitions actually is closer to the real value of m. As I mentioned
before, these values are from the first simulation (M.c. 1), so the estimates
from 7;(50) and 7;(500) may be extreme. Nevertheless, due to randomness,
we would need more than 500 transitions to ensure a good estimate. Even
though the simulated chain goes in wrong direction, in terms of convergence
comparing n = 50 and n = 500, the local divergences vanish in the long run.
That explains why the same simulated chain for n = 50000 only deviates
0.0003 from the real value of .

As 7;(n) converges to m;, f1;(n) converges to p;, and v;(n) converges to v;,
since 7, i1, and v are depending on each other. For 1;(50000), we can expect a
dry day on average every 3.3481:st time, and a wet day every 1.4259:th time.
The estimate is close to the real mean occurance time, which has a value
of (3.3516,1.4252). According to v,(50000), we can expect a dry day every
0.4259:th time, between two successive wet days. Similarly we can expect
2.3481 wet days between two succesive dry days. The estimate is close to the
real value of v; , which is (0.4252,2.3516).
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5.2 Convergence of the matrix P

Each of the chosen discrete time points (n) for the simulation of matrix
P, generated results closer to the stationary distribution, except for 5 =
5. I interpret these results so that if the time points are far enough from
each other, each larger time point is closer to the value of the stationary
distribution. The magnitude between each of the time point is

In Figure 4.19 we see that for 50 transitions (n = 50), we are in most of
the states far from the stationary distribution, i.e. it would not be a good
estimate for the stationary distribution. For n = 5000, we get a correct distri-
bution of two decimals in all states, except for 7 = 4. For n = 500000 we get
a correct distribution of two decimals in all states and a correct distribution
of three decimals for j = 1,2,4,5. T interpret the results of the estimates, in
relation to the stationary distribution, that an estimate with a lower amount
of transitions can be accepted, if we allow some variations. A question that
arises is how large the number of transitions should be to be a valid estimate
for the stationary distribution. I think, according to the simulation results in
Figure 4.19, that an n-value somewhere between 5000 and 500000 ensures a
convergence, with two decimals, to the stationary distribution. Nevertheless,
since the thesis is limited, I have not studied how large n should be to ensure
convergence of a certain decimal accuracy.

5.3 Visualization of convergence

I found the results of the horizontal barcharts very intriguing, since they
show convergence in a way that is quite easy to understand. Both of my
two different matrix-simulations follow a similar pattern visually. A smaller
number of transitions results in large variation between the five simulations.
When n grows bigger, the boxes of M.c.1, ..., M.c.5 are stacked more similarly.
Finally, when we take the highest simulated value of n, M.c.1,..., M.c.5 are
stacked almost identically, which is an indication that they all converge.

5.4 Summary

Based on the results I got, it seems as if there are many things that im-
pact how accurate results we get. Firstly, if we have fewer states, the chain
converges faster to the stationary distribution. Secondly, the number of
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transitions impacts how much variation we have for different simulations. A
smaller number of transitions can result in fluctuations, due to randomness,
in a way that the chain does not seem to converge. However, for both of the
two simulated matrices, for a large enough n, they both converge.
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Chapter 6

Summary in Swedish - Svensk
sammanfattning

Malet med denna avhandling &r att presentera den grundliggande teorin for
diskreta Markovkedjor och jamféra teoretiska resultat med egna simuleringar.
Tanken &r att visa hur Markovkedjor, med vissa egenskaper, beter sig un-
der en lang tidsperiod och att visualisera konvergensen mot Markovkedjans
stationdra fordelningen. Kapitel 4 &r avhandlingens viktigaste del, dir jag
simulerar tva olika ergodiska Markovkedjor och visualiserar dessa i tabeller
och diagram. For en djupare forstaelse av innehallet i avhandlingen antas
ldsaren ha grundliggande kunskap i matematik och programmering.

Avhandlingens forsta helhet ar en introduktion om dess innehall och del-
moment och dar berdttar jag dven om vad en Markovkedja dr. Jag blev
intresserad av att skriva om Markovkedjor efter att ha deltagit i en kurs om
amnet vid Abo Akademi. Tillimpning av matematik intresserar mig mer &in
teoretisk matematik, varfor valet av Markovkedjor f6ll naturligt, eftersom de
har stora praktiska tillimpningsomraden.

Kapitel 2 handlar om introducerande teori till Markovkedjor. Till att
bérja med tas det upp grundlaggande teori om matriser och gransvirdessatser
samt teori fran sannolikhetslaran. Denna grundliggande teori i kapitel 2
fungerar som byggsten for att introducera och utveckla innehallet nir det
géller Markovkedjor. I den andra helheten behandlar jag &ven en metod som
heter Gauss eliminering, for numerisk berdkning av Markovkedjans stationira
fordelning.

Kapitel 3 borjar med en allmin definition av en Markovkedja, samt
tillimpning av Markovkedjan i form av empiriskt data fran det finska me-
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teorologiska institutet (FMI). Teorin for Markovkedjor byggs pa for att fora
lasaren mot avhandlingens kirna, den stationdra fordelningen. Avhandlin-
gens empiriska data harstammar fran métningar i Kilpisjarvi i norra Finland
och dr tagen under en tidsperiod av 30 ar. Data har jag manipulerat i mjuk-
varoprogrammet Microsoft Excel, dir jag anvinder min manipulerade data
for att rdkna ut en 6vergangsmatris, som anvinds for teoriexempel och simu-
leringar.

I kapitel 4 utfors simuleringar, i programmeringsspraket R, av tva olika
matriser med flera olika tidsintervall. Den ena matrisen innehaller empirisk
data fran FMI och den andra matrisen, som &r storre i dimension, har jag
skapat med de egenskaper som krévs for en ergodisk Markovkedja. I kapitel 4
presenteras dven den algoritm som utfors for varje simulering och visualiseras
i savil tabeller som diagram. All kod for tabeller och diagram presenteras i
slutet av avhandlingen som appendix.

I kapitel 5 diskuteras resultaten fran simuleringarna i kapitel 4. Vid
laga viarden pa n uppstod det stora variationer i bada simuleringarna, vilket
gav upphov till att ett stérre n-virde, vid ett forhallandevis lagt n-vérde,
kunde resultera i en simre approximation av den stationdra foérdelningen.
Det visade sig dnda i mina tabeller, nidr n-vardet blev tillrdckligt stort, att
de simulerade kedjorna konvergerade mot den stationidra fordelningen. De
tillfalliga variationerna, pa grund av slumpmaéssighet, hade saledes mindre
betydelse for stort n-virde. En annan sak som jag tar fasta pa utgaende
fran resultaten &ar att storleken pa en matris, eller nirmare bestdmt antalet
tillstand, verkar ha stor betydelse fér hur snabbt Markovkedjan konverg-
erar mot sin stationédra fordelning. Nir jag simulerade data fran Kilpisjarvi
gav ett Overgangsviarde pa 50000 ett resultat som var vildigt ndra den sta-
tiondra fordelningen. For den andra simuleringen, av matrisen P, gav ett
viarde pa 500000 ungefir samma precision. Jag kan konstatera att bada
mina simuleringar, innehallande slumpmassighet, konvergerar mot deras sta-
tiondra fordelning och motsvarar darmed val teorin for diskreta och ergodiska
Markovkedjor.

Jag funderade 6ver hur jag kunde visualisera konvergensen mot den sta-
tiondra fordelningen och kom pa ett sitt som jag inte har stott pa tidigare.
Jag kodade horisontella stapeldiagram over antalet triffar i olika tillstand,
for olika antalet Gvergangar. Dérmed visualiseras antalet tréffar i relation
till antalet dvergangar, vilket i min mening ger ett snyggt intryck. Stapel-
diagramens virden 6ver antalet traffar motsvarar de virden som finns i mina
tabeller, men dessa visualiseringar ar betydelsefulla for att enklare se hur
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simulationer beter sig under olika och ldngre tidsperioder. For lagt varde pa
n var det stora variationer i stapeldiagrammen. Néar n vixte verkade alla
fem simulationer se mer och mer lika ut visuellt och till sist for det storsta
vardet, var alla fem simulationer néstan visuellt identiska. Precis som i mina
tabeller 6ver simulerade resultat, dr detta en indikation pa konvergens.

Storsta delen av teorin for Markovkedjor har himtats fran boken stocha-
stic modelling of scientific data, Guttorp, P. (1995), som innehaller uttom-
mande teoritiska resultat. Algoritmen, som anvinds i simuleringarna i kapitel
4, bygger pa en internetpublikation av Bonakdarpour M. (2016). For flera
intressanta resultat, kunde simuleringarna utvecklas till att omfatta icke er-
godiska och icke reducerbara Markovkedjor. Resultaten fran simuleringarna
kunde dven verifieras, ur ett statistiskt perspektiv, genom att O0ka antalet
ganger kedjorna simuleras. FEftersom avhandlingen ar begrinsad, har jag
valt att avgransa simulationerna till tva olika ergodiska Markovkedjor.
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Appendix A

R code for chapter 4

A.1 Code for the plot of probability through
time for the Kilpisjarvi simulation for n =
50.

matplot (probabilities, type='l', col=l:2, 1lty=l, ylab="prebsability', xlab="time')

legend('topright', c{('Dry"', 'Wet"), 1lty=1l, col=1l:2, cex=0.H)
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A.2 Code for the barplot from the Kilpisjarvi
simulation

library (RColorBrewer)
state.color <— brewer.pal (7, "Set3"

freqg matrix <- as.matrix(T j freq)

horPos <- apply(freqg matrix, 2L, cumsum)

horPos <- horPos - freq matrix / 2

freg.plot <- barplet(freq matrix,

horiz = TRUE,

xlab = "# of occurances",

", freq matrix, sep="") ,cex=0.8)

By changing the value of num.iters in the algorithm in Figure (4.1), we get
the barplot for n = 500, n = 5000, and n = 50000.
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A.3 Code for the 7 x 7 matrix.

P «<- matrixic{

0.25, 0.5 , 0.05, 0.05, 0.05, 0.05, 0.05,
0.2 , 0.25, 0.35, 0.05, 0.05, 0.05, 0.05,
0.05, 0.2 , 0.25, 0.35, 0.05, 0.05, 0.05,
o , o0 , 0.25, 0.5, 0.25, 0 , O ,
0.05, 0.05, 0.05, 0.2 , 0.25, 0.35, 0.05,
0.05, 0.05, 0.05, 0.05, 0.2 , 0.25, 0.35,
0.05, 0.05, 0.05, 0.05, 0.05, 0.5 , 0.25
\n

-

=]
)
-
6

byrow =

L [

nrow = 7, )
2im.seven <— sim.mark.chain (P}
probabilities <- sim.seven[[1l]]

ztate=s.seven <- sim.zeven[[2]]
n <— gim.zewven[[3]]

sim.seven saves all values returned from the algorithm in Figure (4.1).
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A.4 Datamanipulation and code for table of
measurements in Figure (4.13).

T i 7 <— Aas.data.frame (states.seven[,1:5]]
Tj.seven <- as.data.frame (lapply(T i 7, table}}

library (data.table)

Tj.seven freg <— Tj.sewven|[,c(2,4,6,8,10)]
Tj.seven fregl <- transpose(Tj.seven freg)
limOccFProbSt <— chind.data.frame (Tj.zeven freg[[1l]].

newl = Tj.seven freqg[[1l]] fon,
mul = n f Tj.seven freq[[1]],
Tj.seven freqg[[2]],
newz = Tj.seven freg[[2]] / n,
mu2 = n f/ Tj.seven freq[[2]],
Tj.seven freg[[3]],

new3 = Tj.seven fregq[[3]] S n,
mu3 = n f Tj.seven freq[[3]],
Tj.seven fregf[4]].

new: = Tj.seven freqg[[4]] Sl
mu4 = n f Tj.seven frea[[4]],
Tj.seven freqg[[5]],

newS = Tj.sewven_ freqg[[5]] / n,

muS5 = n / Tj.seven freqg[[5]])
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rl <— c({t{1limOccProbSt[[1]]) .t (limOccProbSt[[2]]),t{limOccProbSt([[3]1]))
2 <= c(t{limOccProbSt[[4]]) .t (limOccProbSt[[5]]1),t(limOccProbSt[[6]]))
r3 <= c{t(limOccProbSt[[7]]),t(1limOccProbSt([[8]]),c(limbccProbSt[[9]])}
r4 <— c({t({limOccProbSt[[10]]),t{limlccProbSt[[11]]),t{limOccProbSt[[12]
rS <— c{t{limOccProbSt[[13]]),t(limlccProbSt[[14]] ) ,t{limO0ccProbSt[[15]
1limQccProbSt <— rbind.data.frame{rl,r2,xr3,r4,r5)
colnames (l1imOccProbSt)

(n)&",

rownames {1imdccProbSt) <- cf S8", "SM.c. 357,
M.c. 25", "SM.c. )

1imOccProbSt[,1:21] <— round(limCccProbSt[,1:21], digit =4)

1imOccProbSt <— limbccProbSt[c({5,4,3,2,1},]

Cocc_7 <— 1limOccProbSt[,1:7

numb _hits_ awve <— limOccProbSt[,8:1

visits <= 1limOccPrebSt[, |

library (knitr)
knitr::kable(Occ 7, eszcape = FARLSE)

The first argument passed into kable(), from library knitr, declares what
variable we plot. The variables Occ 7, numb_hits ave, and visits, consist
of values in Figure (4.13).
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A.5 Barplot code for the 7 x 7 matrix.

library ({RColocrBrewer)

state.colar <- brewer.pal (7, "Set3i")

y.mat <- as.matrix(Tj.seven freq)
#get the horizontal posziti in the boxes for the number of occurances
H <— apply|(y.mat, 2L, cumsum)
H <— H - y.mat /2
v.plot <— barplot (y.mat,
heriz = TRUE,
xlab = "# of occurances",
ylab = "M.c.",
names.arg = c{"s", w"4w, w3w,  waw wjwy,

col=state.color,

legend = rownames (y.mat))

text (H, rep(v.plot, each = nrow(H)), labels = paste(y.mat) ,cex=0.9)
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