
Benjamin Byholm

Optimizing Stateful
Serverless Computing

B
enjam

in B
yho

lm
 /

/ O
p

tim
izing

 Stateful Serverless C
o

m
p

uting
 /

/ 2
0

2
1

ISBN 978-952-12-4053-9

9 789521 240539

Benjamin Byholm

Optimizing Stateful Serverless Computing
Stateful serverless computing is a new paradigm within cloud computing. It successfully
incorporates state management with serverless computing. Serverless computing is a form
of cloud computing where the servers necessary for performing computation have been
abstracted away, leaving the choice of where and how to perform a computation solely in
the hands of the cloud provider. This abstraction simplifies the programming model for the
cloud user, who can focus on business logic instead of scaffolding. It also offers the cloud
provider greater freedom in how to manage the involved data centers, allowing for greater
utilization of available resources.

In this thesis, I propose an autonomous platform for stateful serverless computing, provide a
reference design and study the involved problems while providing their solutions. I focus on
optimizing the entire system from the perspective of a cloud provider in terms of efficiency,
cost and quality. The platform is able to autonomously adjust the supply of computing
resources to meet fluctuations in demand without unnecessary waste. I show how to manage
state in an efficient manner, which reduces latency while retaining flexibility in moving
computations among servers. I further show how to manage a data cache in a cost-efficient
manner, trading computation for storage. I present a new model for assigning computations
to servers, allowing for higher utilization of available computing resources, thereby reducing
the operational expenses of the cloud provider. I also show how to quickly solve this model,
allowing for continuous redistribution of computations among servers to help maintain high
resource utilization.

Benjamin Byholm
Born 1987

Previous studies and degrees
 B.Sc., Computer Engineering, Åbo Akademi University, 2011
 M.Sc., Computer Engineering, Åbo Akademi University, 2013

Optimizing Stateful
Serverless Computing

Benjamin Byholm

Åbo Akademi University
Faculty of Science and Engineering

Agora, Vattenborgsvägen 3
20500 Åbo, Finland

2021

Supervisor

Prof. Ivan Porres

Department of Information Technologies

Åbo Akademi University

Finland

Reviewers

Prof. Tommi Mikkonen

Department of Computer Science

University of Helsinki

Finland

Dr.-Ing. habil. Josef Spillner

Service Prototyping Lab

ZHAW School of Engineering

Switzerland

Opponents

Prof. Tommi Mikkonen

Department of Computer Science

University of Helsinki

Finland

Dr.-Ing. habil. Josef Spillner

Service Prototyping Lab

ZHAW School of Engineering

Switzerland

ISBN: 978-952-12-4053-9 (printed)

ISBN: 978-952-12-4054-6 (digital)

Painosalama Oy, Turku, Finland 2021

Abstract

Stateful serverless computing is a new paradigm within cloud com-

puting. It successfully incorporates state management with serverless

computing. Serverless computing is a form of cloud computing where

the servers necessary for performing computation have been abstracted

away, leaving the choice of where and how to perform a computation

solely in the hands of the cloud provider. This abstraction simplifies the

programming model for the cloud user, who can focus on business logic

instead of scaffolding. It also offers the cloud provider greater freedom in

how to manage the involved data centers, allowing for greater utilization

of available resources.

In this thesis, I propose an autonomous platform for stateful server-

less computing, provide a reference design and study the involved prob-

lems while providing their solutions. I focus on optimizing the entire

system from the perspective of a cloud provider in terms of efficiency,

cost and quality. The platform is able to autonomously adjust the sup-

ply of computing resources to meet fluctuations in demand without

unnecessary waste. I show how to manage state in an efficient manner,

which reduces latency while retaining flexibility in moving computations

among servers. I further show how to manage a data cache in a cost-

efficient manner, trading computation for storage. I present a new model

for assigning computations to servers, allowing for higher utilization

of available computing resources, thereby reducing the operational ex-

penses of the cloud provider. I also show how to quickly solve this model,

allowing for continuous redistribution of computations among servers

to help maintain high resource utilization.

Merging theory and practice, I evaluate my designs both analytically

and empirically. For empirical evaluation, I employ computational exper-

iments, primarily through discrete-event simulation. While this work

remains in its infancy, I believe that the presented concepts can be further

refined into a working production system through dedicated, practical

work. Some important questions remain unanswered, but hopefully they

will one day be settled.

i

Sammanfattning

Serverlösa datortjänster med tillståndsdata utgör en ny paradigm bland

molnbaserade datortjänster. Detta område införlivar hanteringen av tillstånds-

data och serverlösa datortjänster. Serverlösa datortjänster är ett delområde

inom molnbaserade datortjänster där servrarna som behövs för beräkning

har abstraherats bort, vilket låter leverantören av molnbaserade datortjänster

avgöra var och hur beräkningar utförs. Detta förfarande förenklar utvecklings-

modellen för användaren av molnbaserade datortjänster, i och med att denne

kan fokusera på verksamhetslogik i stället för infrastruktur. Å andra sidan er-

håller leverantören av molnbaserade datortjänster större frihet i hanteringen

av involverade datacentra, vilket tillåter en högre nyttjandegrad av tillgängliga

resurser.

I denna avhandling lägger jag fram en självstyrande plattform för server-

lösa datortjänster med tillståndsdata, tillhandahåller en referensutformning

samt undersöker och löser de underliggande problemställningarna. Huvudin-

riktningen ligger på optimering av systemet som helhet, utgående från leve-

rantörens synvinkel i fråga om effektivitet, kostnad och kvalitet. Plattformen

förmår självmant anpassa utbudet av beräkningsresurser för att tillmötesgå

variation i efterfrågan utan onödigt spill. Jag fastslår hur man effektivt hante-

rar tillståndsdata, vilket minskar latens samtidigt som flexibiliteten i att flytta

beräkningar mellan servar kvarhålls. Vidare påvisar jag hur man förvaltar ett

cacheminne på ett kostandseffektivt sätt genom att byta beräkning mot lag-

ring. Jag presenterar en ny modell för att tilldela beräkningar till servrar, vilket

främjar en högre nyttjandegrad av tillgängliga beräkningsresurser. På detta

vis minskas leverantörens driftskostnader. Jag fastslår även hur man snabbt

löser denna modell, vilket tillåter kontinuerlig omfördelning av beräkningar

mellan servrar i syfte att behålla en hög nyttjandegrad av beräkningsresurser.

Genom att sammanfläta teori och praktik utvärderar jag mina skapelser

såväl analytiskt som empiriskt. För empirisk utvärdering begagnar jag beräk-

ningsexperiment, främst genom diskret händelsesimulering. Även om detta

arbete fortfarande ligger i sin linda tror jag att de förevisade koncepten kan vi-

dareutvecklas till ett fungerande produktionssystem genom hängivet, praktiskt

arbete. Vissa viktiga frågor förblir obesvarade, men förhoppningsvis kommer

de en dag att avklaras.

ii

Acknowledgments

I wish to thank Prof. Ivan Porres for mentoring me in my scientific en-

deavors while giving me the freedom to do it my way. I also wish to thank Dr.

Adnan Ashraf for a highly fruitful collaboration over the years. All my other

colleagues and collaborators also deserve my gratitude, we have had many

rewarding discussions and conducted highly engaging research. Finally, I wish

to thank my friends and family for patiently giving me the time to work on my

research, despite other plans and commitments. It is finally done. I will host a

graduation party this year.

Benjamin Byholm

Åbo, April 2021

iii

Original Publications

I Ashraf, A., B. Byholm, and I. Porres (2016). “Prediction-Based VM Provi-

sioning and Admission Control for Multi-Tier Web Applications.” Journal of

Cloud Computing, 5.(1), pp. 1–21. ISSN: 2192-113X.

II Ashraf, A., B. Byholm, and I. Porres (2018). “Distributed virtual machine

consolidation: A systematic mapping study.” Computer Science Review, 28C,

pp. 118–130. ISSN: 1574-0137.

III Byholm, B. and I. Porres (2014). “Cost-Efficient, Reliable, Utility-Based Ses-

sion Management in the Cloud.” In 14th IEEE/ACM International Symposium

on Cluster, Cloud, and Grid Computing. Ed. by P. Balaji et al. IEEE/ACM Inter-

national Symposium on Cluster, Cloud and Grid Computing. IEEE Computer

Society, 102–111.

IV Byholm, B., F. Jokhio, et al. (2015). “Cost-Efficient, Utility-Based Caching

of Expensive Computations in the Cloud.” In 23rd Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing. Ed. by

M. Daneshtalab et al. Euromicro International Conference on Parallel, Dis-

tributed and Network-Based Computing. IEEE Computer Society Confer-

ence Publishing Services, 505–513.

V Byholm, B. and I. Porres (Oct. 2018). “Fast algorithms for fragmentable

items bin packing.” Journal of Heuristics, 24.(5), pp. 697–723. ISSN: 1572-

9397. DOI: 10.1007/s10732-018-9375-z.

VI Byholm, B. and I. Porres (2017a). “Optimized Deployment Plans for Plat-

form as a Service Clouds.” In Companion Proceedings of the 10th Interna-

tional Conference on Utility and Cloud Computing. Ed. by G. Fox and Y. Chen.

UCC ’17 Companion. ACM, 41–46.

VII Byholm, B. and I. Porres (2017b).Dynamic Horizontal and Vertical Scaling

of Multiple Cloud Services in Soft Real-Time, tech. rep. 1182. TUCS.

VIII Ashraf, A., B. Byholm, and I. Porres (2015). “A Multi-Objective ACS Algo-

rithm to Optimize Cost, Performance, and Reliability in the Cloud.” In 8th

IEEE/ACM International Conference on Utility and Cloud Computing. Ed. by

O. Rana and M. Parashar. IEEE, 341–347.

v

https://doi.org/10.1007/s10732-018-9375-z

Contents

Original Publications v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Services and Sessions . 1

1.2 Cloud Computing . 2

1.3 Serverless Computing . 4

1.4 Implementation . 7

1.5 Design Considerations . 9

1.6 Research Questions . 12

1.6.1 How to build a stateful serverless computing platform? 12

1.6.2 How to optimize virtual machine consolidation? 13

1.6.3 How to optimize session management? 14

1.6.4 How to optimize caching? 14

1.6.5 Which optimization model suits serverless computing? 14

1.6.6 How to optimize scaling of stateful serverless systems? 15

1.6.7 How to optimize service deployments with many objec-

tives? . 15

1.7 Overview of Research . 15

2 Contributions 17

2.1 Prediction-Based VM Provisioning and Admission Control for

Multi-Tier Web Applications . 17

2.2 Distributed virtual machine consolidation: A systematic map-

ping study . 21

2.3 Cost-Efficient, Reliable, Utility-Based Session Management in

the Cloud . 24

2.4 Cost-Efficient, Utility-Based Caching of Expensive Computa-

tions in the Cloud . 27

2.5 Fast algorithms for fragmentable items bin packing 30

2.6 Optimized Deployment Plans for Platform as a Service Clouds 36

vi

2.7 Dynamic Horizontal and Vertical Scaling of Multiple Cloud Ser-

vices in Soft Real-Time . 40

2.8 A Multi-Objective ACS Algorithm to Optimize Cost, Performance,

and Reliability in the Cloud . 43

2.9 Discussion . 46

3 Conclusion 49

3.1 Future Work . 51

Glossary 53

Bibliography 55

Paper I 61

Paper II 85

Paper III 101

Paper IV 113

Paper V 125

Paper VI 155

Paper VII 163

Paper VIII 183

vii

List of Figures

1.1 Overallocation versus underallocation 3

1.2 System model . 6

1.3 The serverless computing platform 8

2.1 Virtual machine consolidation 22

2.2 Fragmentable bin packing . 31

2.3 Worst-case and asymptotic worst-case performance bounds . 33

2.4 Example of service deployment. 39

2.5 A Pareto frontier . 45

3.1 The combined platform management algorithm 52

ix

List of Tables

1.1 Themes of papers constituting this thesis 13

2.1 Example of deployment plans . 38

xi

I’d like to say that I knew this would

happen, that it’s all part of the plan

for world domination.

Linus Torvalds

1
Introduction

Serverless computing is a new paradigm within cloud computing, popularized

by industry. According to Baldini et al. (2017), interest in this new paradigm

has been rising steadily within industry over recent years, while the academic

community has paid it comparatively little attention. Back in 2011, when I first

started working on this thesis, neither I, nor my colleagues had heard of the

term. Baldini et al. (2017) identified Amazon as the popularizer of serverless

computing through AWS Lambda in 2014, with other vendors following suit

in 2016. That is not to say that the concept of serverless computing is com-

pletely new. Baldini et al. (2017) see it as emergent technology, following the

increased adoption of virtualization and container techonologies.

1.1 Services and Sessions

A service, e.g. a login service, a file upload service or a video transcoding service,

offers a computational resource at some cost of resources, e.g. central process-

ing unit (CPU), random-access memory (RAM) or storage. Stateful services,

such as session-based services, need reliable access to state stored between

invocations. Many services that support authenticated access for multiple

users are stateful by their nature, this includes modern web applications.

Session state is a form of soft state, i.e. state that can theoretically be

recreated, which expires after a given duration of inactivity. Sessions exhibit

workloads that are not pure online transaction processing (OLTP). That ses-

sion state can be recreated does not mean that it is good to lose it. From the

application’s point of view, it still functions without this state, but from the

1

perspective of the user whose session that was, the application failed, since

the state was lost and it might be practically impossible to recreate an exact

replica of the lost state.

This thesis focuses on the ubiquitous session-based services in its anal-

ysis and experimentation, since they constitute a real-world use case. The

thesis presents strategies for dealing with session-based services in serverless

computing.

1.2 Cloud Computing

To understand serverless computing, one must first understand cloud com-

puting. A common definition of cloud computing given by Mell and Grance

(2011) states that: “Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable computing resources

(e.g. networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction.” The economy of scale reduces cost, while the shared pool of

computing resources that can be rapidly provisioned and released reduces

waste. Fox et al. (2009) state that cloud computing allows converting capital

expenses to operating expenses. Users no longer have to build a dedicated data

center for their computing needs, nor must they rent a given number of servers

from a hosting provider. Cloud computing enables utility computing, where,

just as water or electricity, a theoretically unlimited amount of computing

resources are available almost instantly and can be scaled up or down to meet

fluctuations in demand.

This model of computing is a fairly new concept, having only existed for

about a decade. While the underlying technologies, e.g. hardware virtualiza-

tion, metering and distributed computing have existed for half a century and

vast computing resources (relative to advancements in miniaturization, elec-

tronics and semiconductor technology) have been available on mainframes and

supercomputers for almost 70 years, it is the combination of these technologies

together with pay-as-you-go pricing that form the essence of cloud computing.

According to Fox et al. (2009), large-scale elasticity of affordable computing

resources is unprecedented in the history of information technology.

Provisioning and releasing of computing resources is known as scaling.

Scaling can be done in two dimensions: horizontal and vertical. Horizontal

scaling manipulates the number of computation nodes (servers) by adding

or removing them, while vertical scaling manipulates individual computation

nodes by increasing or decreasing their available resources. Horizontal scaling

is theoretically unlimited, since it is always possible to allocate more servers

to the pool. In practice, this is not always true, but that is a different problem.

In contrast, vertical scaling is limited by the resources available to a server: a

2

Time

Re
so

ur
ce

Overallocation
Underallocation

Figure 1.1: Changes in the amount of available resources must occur in discrete

steps. Overallocation is an opportunity cost, while underallocation is lost revenue.

single server cannot offer more resources than it has. Scaling is required for

supply to efficiently meet fluctuations in demand.

Figure 1.1 shows how supply can be varied to meet varying demand over

time through scaling. Since computing resources are discrete, both horizontal

and vertical scaling is quantized at some granularity, so scaling occurs in

discrete steps. Always allocating sufficient resources to meet peak demand is

unprofitable, since allocating too much resources is an opportunity cost. The

same applies to allocating just enough resources to meet the minimum demand,

which leads to lost revenue since the demand cannot be met. Allocating enough

resources to cover mean demand could be seen as a compromise, but it is still

far from optimal.

As previously stated, cloud computing offers convenient, on-demand ac-

cess to shared computing resources over a network at short notice. Computing

resources can be provisioned and released on the order of minutes or even

seconds. Cloud computing is traditionally regarded through three paradigms:

infrastructure as a service (IAAS), platform as as service (PAAS) and software

as a service (SAAS). IAAS offers basic infrastructure, such as (virtual) servers

in various configurations and it is the responsibility of the cloud user to man-

age these resources, which are billed according to a combination of duration,

computational power, bandwidth and storage. On the other extreme is SAAS,

which offers specific software applications to customers who may be billed on,

say, a monthly basis for a software subscription. Here, the cloud user is the

3

application owner, who may employ a lower tier, e.g. IAAS, to host the applica-

tions. The SAAS user is not aware of any infrastructure or how the software

is hosted and need not manage any resources. PAAS is the odd one without a

universally agreed definition, existing somewhere between IAAS and SAAS. It

usually does not require explicit resource management by the PAAS user, but is

more generic than SAAS in that it does not offer specific application software

for end users, but provides hosting for the SAAS provider who does not desire

to be an IAAS user, with all the need for explicit resource management.

1.3 Serverless Computing

What is serverless computing then? The term “serverless computing” is some-

what of a misnomer, since computation does involve servers. It is a further

development of cloud computing, lying somewhere between IAAS and PAAS

or SAAS, which abstracts away the servers. According to Baldini et al. (2017),

the serverless paradigm is difficult to define, since there is plenty of overlap

with these traditional models of cloud computing. Baldini et al. (2017) even

pose an open research problem of defining the boundaries of the serverless

paradigm.

As the distinctions between paradigms erode, a possible future distinction

could be between server-aware and server-agnostic cloud computing. Server-

aware cloud computing would be closer to IAAS, where the user has control over

the servers and how computation is performed, whereas the server-agnostic

model would be on the other side of the spectrum, where the cloud user leaves

all operational concerns to the provider. In essence, the provider no longer

directly offers infrastructure or computational resources, resigning to merely

providing computation as a service, while retaining control of how to carry out

any given computation. Both the server-agnostic paradigm and PAAS abstract

away servers. Baldini et al. (2017) see the main difference as the ability to

scale an application down to zero instances, paying for actual computation

time rather than for resources.

According to Baldini et al. (2017), some forms of PAAS are serverless, but

the main difference is the pricing model: PAAS charges the user for idle time,

while serverless does not. Baldini et al. (2017) also regard current serverless

computing systems as stateless, clearly influenced by the concept of function as

a service (FAAS), but this is merely an issue of convenience. Without state, it is

trivial to execute pure functions without care for where they run. Baldini et al.

(2017) also pose an open research question on whether serverless computing

is fundamentally stateless. As this thesis demonstrates, there is a clear answer

to this question: No, serverless computing is not fundamentally stateless.

Other recent works on serverless computing have also incorporated state, e.g.

the video processing system by Fouladi et al. (2017) and the distributed data

4

store by Klimovic et al. (2018).

For some applications, the server-aware paradigm with its added control

is a better fit, at the cost of higher complexity with the need to actively manage

the available resources, while other applications would benefit more from the

server-agnostic paradigm, which alleviates the cloud user from the concerns

of resource management, but offers less control. Indeed, according to Baldini

et al. (2017), serverless computing poses both an opportunity and a risk to the

typical IAAS user: On one hand, the programming model is simpler, since it need

not deal with operational concerns. On the other hand, the user cannot directly

control quality of service (QOS), monitoring, scaling and fault tolerance. It is

possible to draw a parallel to resource management in programming languages:

The advent of garbage collection alleviated the issue of memory management

for the application programmer, offering higher productivity and ease of use,

but the lack of control, nondeterminism and performance overhead might well

not be suitable for the systems programmer. However, continuing this analogy,

bad manual memory management may well be worse than automatic garbage

collection. Returning to serverless computing, a cloud provider can take a

holistic approach to the allocation of computing resources, which can improve

the efficiency of a data center, since the provider can treat the entire data

center as a single system and optimize it globally, whereas an individual cloud

user is limited to managing the currently allotted resources. This benefits the

cloud provider, who can reduce operational costs by efficient optimization and

management of cloud resources.

This thesis considers stateful systems and shows how they can fit into the

serverless paradigm. Its focus lies on services with hypertext transfer protocol

(HTTP) sessions, but it is also applicable to multimedia services with sessions,

e.g. on-demand video transcoding and streaming, as well as other kinds of

sessions. Figure 1.2 illustrates the abstract architecture of such a system. At

its core is the service, which performs computations in response to requests

belonging to a session. Every user of a service has an associated session,

maintaining some form of state between requests. Since this state must be

kept somewhere, sessions have an affinity for a particular container, which

implements the service to which the session belongs. The number of sessions

for a given service determines how many containers implementing that service

must be deployed to servers, which provide computational resources. In this

context, the term container refers to any construct able to isolate a computation

and limit its used resources. Virtual machines (VMs), unikernels, Docker

containers, and cgroups are all examples of containers. Some containers are

heavy, e.g. VMs used in basic IAAS. Others are light, such as the unikernels

studied by Koller and Williams (2017). Containers could also be nested, e.g.

Docker containers running in VMs.

A significant aspect of this thesis is optimization of cloud computing for

5

1

0..*

10..*

1

0..*

𝑘𝑠..*1
service container

session

server

Figure 1.2: Services are associated with sessions, determining how many con-

tainers they must deploy to servers. A session has affinity for its container. A

container is an abstract construct that can isolate a computation and limit its

used resources.

providers in terms of cost, performance and reliability. Users may indirectly

benefit from these gains, as part of the cost reduction can result in lower prices,

and the productivity gains from not needing to manage resources may result

in significant savings of time and effort. Since OLTP workloads may have high

volatility in demand, which is significantly more difficult to predict compared

to batch processing, decisions on how to manage the computing resources

must be constantly reevaluated as the underlying premises change.

Hellerstein et al. (2019) give a critical analysis of the current state of server-

less computing, analyzing the benefits and shortcomings of FAAS: Current

realizations of FAAS work well for embarrassingly parallel functions, tiny inde-

pendent tasks with no state, e.g. spam filters, object recognition in images and

other applications of pure linear algebra. FAAS also works well for so called or-

chestration functions, tiny functions acting as intermediaries, offloading actual

work to separate computation backends or databases. The final application

of FAAS is function composition, stitching together functions from the former

two categories to perform a more complex operation, similar to traditional,

functional programming, but with the drawback of very high latency, lack of

optimization and general cumbersomeness.

The drawbacks of FAAS listed by Hellerstein et al. (2019) are: limited

lifetimes of function invocations reduces efficiency when state is employed,

physical communication bottlenecks when attempting composition and the

functions are spread across different physical servers, slow communication

6

between function invocations and the lack of specialized hardware. Another

look at the challenges of FAAS is given by van Eyk et al. (2018), where some of

the listed challenges overlap with those mentioned by Hellerstein et al. (2019).

An important, unique challenge listed is that of performance isolation: consol-

idating multiple FAAS functions on the same server makes it more difficult to

ensure performance guarantees of individual functions, because one function

may affect the performance of another. A related challenge is performance

prediction, according to van Eyk et al. (2018), FAAS presents new challenges in

determining the dynamic resource requirements of function invocations.

Contrary to the FAAS paradigm, I mainly deal with long-lasting stateful

services involving HTTP sessions. While my system also can host and employ

existing FAAS solutions, this thesis puts greater emphasis on traditional PAAS

with larger, coherent applications, which incorporate state. Serverless com-

puting is much more than FAAS and FAAS is sadly nowhere near as elegant or

efficient as traditional functional programming in the vein of, say, a Haskell

program. While composition of networked services may be employed, care

must be taken to avoid latency dominating the computation.

1.4 Implementation

The implementation of a stateful serverless computing system warrants further

examination. Figure 1.3 illustrates a reference implementation called ARVUE,

developed and refined over the course of seven years. The whole system sits

behind a dynamically configurable load balancer that transparently distributes

all requests belonging to a session to a suitable application service, maintaining

the natural session affinity for a given container and server, as illustrated

in Figure 1.2, whenever possible.

When a new session arrives, the admission controller decides whether it

should be admitted, rejected or deferred to the busy service according to the

admission policy used in the implementation and the current occupancy of

the system. When a suitable container is available, the session is automatically

redirected. The busy service is infallible and never gets overloaded. If this

is not acceptable, implementations are free to add scalability. A typical busy

service is extremely simple, offering static content to keep a user engaged

while waiting, barely requiring any resources at all and is trivially scalable.

The global controller maintains the load balancer configuration, collects

statistics and manages the entire system. It forms a single point of failure,

so actual implementations are advised to add redundancy as desired. The

server tier is managed by the global controller, partly via the cloud provisioner,

which represents the application programming interface (API) endpoint of

an arbitrary IAAS cloud. This could be a public cloud, a private cloud in the

provider’s own data center or any variation thereof.

7

Global Controller

Config

Busy Service

Admission Controller

Cloud Provisioner

Application Server 1

Application 1

⋮

Application m1

Predictor
Local Controller

Session Manager

Local Store

Application Server n

Application 1

⋮

Application mn

Predictor
Local Controller

Session Manager

Local Store

Load Balancer Repository

HTTP

HTTP

HTTP

HTTP

CRAMP

ACVAS External

Session

Figure 1.3: The serverless computing platform sits behind a load balancer. At

its heart lies the global controller, which makes scaling decisions for the system,

configures the load balancer and directs a dynamic pool of application servers.

8

Application servers run containers implementing application services. Ap-

plication services are fairly large entities, which provide an API exposing sev-

eral related functions. Application services are written in code by developers

and compiled to a common intermediate representation, e.g. Java bytecode.

A set of function callbacks for system events of interest are exposed to appli-

cation services, along with a standard library for interacting with the session

manager and the persistent object store in the repository.

Each application server runs a local controller, which manages everything

local to the application server on behalf of the global controller. Each appli-

cation server also has a local store, which is a fast but unreliable cache since

it is not persistent. It could, of course, store arbitrary items, but a typical

operator uses it for container images, sessions and results. Said container

images and sessions are also kept in the reliable repository, which is persistent

and must be infallible, so implementations must add redundancy. Each local

controller has a session manager that, as the name implies, manages sessions.

It is drawn separately because it is important, but would in practice be more

or less integrated with the local controller. Finally, each local controller also

has a predictor, which makes predictions on resource requirements local to

its application server and sends these predictions to the global controller for

aggregation.

1.5 Design Considerations

In any software design, there are several important considerations depending

on the expected workload and use case of the system. The reference design of

ARVUE is generic, but I have made it with certain use cases in mind.

In computing, workloads may be divided in two categories: batch process-

ing and OLTP. In batch processing, data are processed in groups or batches. It is

typically used for large amounts of data that require processing on a predeter-

mined schedule, e.g. bank transactions and scientific computing. The resource

demands can fairly easily be determined in advance, hence, capacity planning

is straightforward. In OLTP, on the other hand, transactions are processed as

they occur and users interact directly with the system. Compared to batch

processing, OLTP is characterized by a significantly higher degree of volatility.

A clear example of online transaction processing is a web server, where users

make requests, expecting them to be processed as soon as possible. Matching

the supply of computing resources to such variable demand is significantly

more difficult from the perspective of a service provider. Over-allocation leads

to reduced profit due to wasted capacity, while under-allocation leads to re-

duced profit due to the inability of serving requests in a timely manner. Baldini

et al. (2017) describe the core capability of a serverless computing platform

as an event processing system, so serverless computing falls within the OLTP

9

paradigm. Hence, this thesis only considers computation in an OLTP context.

From a user’s perspective, Baldini et al. (2017) argue that infrequent, but

bursty workloads may be well suited for the serverless paradigm, which pro-

vides elasticity and does not charge for idle time. For a cloud provider, bursty

workloads present high volatility, which is why decision algorithms for manag-

ing cloud computing resources should be fast, so that they can make informed

decisions and realize them before the premises change and the decisions be-

come outdated. Depending on the minimum billing period and provisioning

delay in the underlying IAAS cloud, a small deviation from the optimum at a

specific point in time is more affordable than a delay in deciding what course

of action to take when managing the system resources, since deviations can

be quickly corrected as long as sufficiently good decisions are made quickly

enough. Most of the involved problems are very hard, if not impossible, to

exactly solve in a reasonable amount of time. However, approximate solutions

are easier to obtain and may well be sufficient in practice. In fact, since many

practical problems involve incomplete information, predictions and estima-

tions, there is an inherent margin of error involved in any decision. In practice,

an optimal solution to an abstract decision problem may not fare significantly

better than a good approximation, even if the results would be equally easy to

obtain. Another way to think about this is the law of diminishing returns.

As mentioned in section 1.3, my work specifically deals with stateful ser-

vices involving HTTP sessions. ARVUE has been designed with this use case in

mind. However, the underlying principles are far more generic and should suit

any stateful serverless computing service of OLTP nature, whether it involves

HTTP sessions or not. An important problem in distributed systems is latency

reduction. Paper I proposes the use of sticky sessions, which respects the

natural affinity between a session and a particular container in a particular

server. This reduces latency and required bandwidth, thus improving perfor-

mance, compared to the traditional stateless-in-name-only approach where

every stateful operation requires a remote database access. However, sticky

sessions complicate load balancing, since all requests belonging to a session

must be handled by the same container in the same server.

As demand grows, supply must increase to meet the demand, since under-

allocation means loss of revenue. Due to the provisioning delay, horizontal

scaling is not instantaneous. Neither is vertical scaling, since resizing of a

container is not instantaneous. To avoid overloading the system while waiting

for more resources, the admission controller is a required part of the system.

The admission controller developed in Paper I can defer new sessions to the

busy service, which tells the instigator to wait until a suitable container with

enough spare capacity is available for the requested service. Since resources

cost money, the admission controller can outright reject certain sessions if

they are not deemed profitable.

10

Horizontal scaling should not be too aggressive: the growth factor must

increase proportionally to the increase in demand to ensure the ability to meet

the increased demand despite the provisioning delay, while the shrink factor

should terminate unnecessary servers as soon as possible, to reduce opera-

tional cost, without producing oscillations. Paper I partly solves horizontal

scaling via a control-theoretic approach based on observed resource utilization

over time. It works well for meeting an increase in demand, but encounters a

more difficult problem when demand subsequently decreases: Underutilized

servers should be terminated to reduce operational cost, but an underutilized

server with active sessions cannot be terminated without violating QOS re-

quirements. Part of the solution to this problem is server consolidation, which

has been studied in countless papers. Paper II investigates suitable options for

distributed or large-scale server consolidation through a systematic mapping

study. Implementations are free to choose the server consolidation strategy.

A suitable session management strategy should minimize latency, while

maximizing reliability. Paper III presents the session management strategy of

the system in detail. The hybrid solution of caching sessions locally while even-

tually adding them to the reliable store in the repository was shown to be the

best for minimal latency and maximal availability at the lowest operating cost.

Again, this approach also fits with the natural affinity for a given container by a

given session as explained in Figure 1.2. It also facilitates termination of under-

utilized servers, since sessions on an underutilized server may be migrated by

allowing their state to synchronize with the reliable store before terminating

the server. On subsequent requests, the system will assign affected sessions to

a container in another server in the same manner as if the terminated server

had failed. This approach also alleviates the aforementioned problems with

sticky sessions.

Various concrete systems have different bottleneck resources. A system is

limited by its bottleneck resource. In relevant cases, computation is the bottle-

neck resource. Here, it is favorable to trade computation for storage through

caching, but this cache also needs management. Paper IV looks at strategies

for caching computational results in a cloud setting, which is vastly different

from traditional caching of data, since the size of the cache is theoretically

unlimited and there might not be a natural expiration time for the validity of

obtained results, but storing every result forever is too dear.

Containers of various sizes determined by their resource needs may be

deployed to servers in myriad ways. Some ways are better than other, especially

when it comes to minimizing the total number of servers required, since servers

cost money. Paper VI presents the best optimization model for static container

placement, which is not the same as the well-known, classic bin packing, but

bin packing with fragmentable items, which, in this context, is superior in

every way. Paper V efficiently solves said optimization model so quickly for

11

an ungodly number of servers and containers that the container placement

can be continuously re-evaluated whenever a session enters or departs the

system. Hence, Paper VII extends the optimization model to a dynamic setting,

completing the goals of the whole project. The fragmentable bin packing

problem studied in these papers is mainly single-objective, since its solutions

can be objectively evaluated and compared in all situations, can be solved

efficiently and quickly and the systems of interest have one bottleneck resource.

In some cases, the deployment problem truly is multi-objective and cannot

fit in a single-objective model. Paper VIII investigates multi-objective variants

of the deployment problem. Future work should focus on true multi-objective

problems, but this thesis will not do that, since all solutions currently known

are too slow for a dynamic setting.

A recurring theme in this thesis is the application of optimization tech-

niques to resource management problems related to serverless computing

from a cloud provider’s perspective. Internet-scale applications consist of

thousands of servers and services where the resource demands are highly

volatile. Thus, the involved algorithms must be fast and scale to large problem

instances.

1.6 Research Questions

This thesis attempts to answer several important research questions through

eight published papers, where one paper answers a corresponding research

question. The research questions can be categorized by partially overlapping

themes, as shown in Table 1.1. A common theme across all papers is opti-

mization: I wish to minimize the costs of operating a serverless computing

system by maximizing efficiency, using as little resources as possible to meet

any QOS requirements. Four of the papers included in this thesis, Papers I,

VIII, VI and VII, directly deal with resource allocation. Two of them, Papers I

and VII, also deal with the opposite problem of deallocation or termination.

Together with Paper II, Paper VII also treats consolidation. Finally, Papers III

and IV investigate caching.

1.6.1 How to build a stateful serverless computing platform?

Autonomous cloud systems are systems that require little or no external inter-

vention to function properly. They maintain a desired configuration themselves.

Such systems require observations of themselves and their environments to

make informed decisions. Building an autonomous system gives rise to several

important questions: Which variables can be reliably measured under various

scenarios? How should they be interpreted? How should a system react to

various events?

12

Table 1.1: Themes of papers constituting this thesis

Optimization Caching Allocation Consolidation Termination

I x x x

II x x

III x x

IV x x

V x

VI x x

VII x x x x

VIII x x

Autonomous systems should make operational decisions quickly, since

they need to act upon changes in the environment before the premises change

too much for the decision to be meaningful: If you spend ten minutes choosing

a route to catch a bus that leaves in five minutes, you just missed the bus. Not

only was the excessive planning in vain, but the financial consequences of

tardiness could have a negative impact exceeding that of quickly making a

slightly suboptimal choice.

The many degrees of freedom offered to the service provider by serverless

computing enables powerful autonomous systems, which should entail lower

maintenance costs and better performance than manual operation. In Paper I,

I sought to investigate the performance characteristics of an autonomous

serverless computing system, how to sample observations, predict changes

in demand and how to react to them. The system uses heuristics to optimize

scaling decisions in an online fashion. It supports HTTP sessions through

so-called sticky sessions, where all requests in a session are directed to the

same application server.

1.6.2 How to optimize virtual machine consolidation?

VM consolidation aims to optimize the deployment of VMs in physical machines

(PMs). As the resource demands of cloud services vary over time, at some

point the system might require less computing resources than what is currently

allocated. Then it is desirable to scale down the VM deployment and reduce

the number of PMs. This is complicated by the need to actively migrate VMs

between PMs to achieve a denser packing of VMs, consolidating operations to

a lesser number of PMs. The converse problem of requiring more resources

is comparatively easier to handle, since the elastic nature of cloud computing

enables simply adding more servers, without a strict need for consolidating

VMs.

Paper II set out to investigate what had been done in the field of virtual

13

machine consolidation for large-scale, distributed systems. This would help

identify research gaps and unexplored niches, as well as methods for solving

such problems.

1.6.3 How to optimize session management?

Many cloud systems involve stateful services with sessions, where each user

belongs to an active session, containing state information, such as access cre-

dentials, profile data and such. This state must be stored somewhere. Storing

locally in the memory of the server currently handling the request is fast, but

memory is limited and volatile. It also means that sessions cannot be easily mi-

grated between handling servers, since that entails also moving the associated

state, which can be cumbersome and complicates load balancing.

Storing globally in e.g. a shared database, does not directly suffer from this

problem, however it adds increased latency and cost due to the data transfers

involved. Considering the probability of data loss given different combinations

of storing in several, independent storage facilities with individual failure rates,

facilitates more informed decision making regarding how to manage a session

with a given perceived value.

How does one construct a system that makes informed decisions about how

to handle session state? What are the potential gains of such a system? What

strategies for storing session state are relevant under various circumstances?

I investigate this in Paper III.

1.6.4 How to optimize caching?

There are computations that require substantial effort and produce large

amounts of data. Instead of redoing the computation each time its results

are requested, it is possible to cache its data and reuse them for subsequent

requests. However, retaining said data indefinitely quickly gets expensive.

What if there are no subsequent requests for the same data? How should one

develop a system that balances the cost of recomputing a data set versus storing

it for a given duration so that the total cost is minimized? Paper IV addresses

this.

1.6.5 Which optimization model suits serverless computing?

What representation allows modeling the allocation of sessions, services, con-

tainers and servers? One of the strengths of serverless computing is that the

service provider is free to manage the allocation of computing resources, since

actual servers are abstracted away from the perspective of the cloud user.

In Paper VI, I explore a new optimization model that can be quickly solved by

14

the algorithm developed in Paper V and offers many advantages compared to

classic models.

1.6.6 How to optimize scaling of stateful serverless systems?

How should a serverless computing system transition between possible de-

ployment configurations? Given a current deployment configuration and a

desired deployment configuration, what way of transitioning between the cur-

rent and desired deployment configuration is the best? In Paper VII, I extend

the static deployment planning algorithm from Paper VI to work in a dynamic

setting.

1.6.7 How to optimize service deployments with many objec-

tives?

Many software systems must consider multiple antagonistic objectives, such

as cost, performance and availability. Multi-objective optimization strives to

reduce a search space to a Pareto set, consisting of a set of solutions, none

of which are strictly worse than any others. The deployment of services to

computation nodes is a difficult problem, which may well involve multiple

antagonistic objectives. Paper VIII explores possible solutions to this problem.

1.7 Overview of Research

The publications that constitute this thesis have been selected based on their

common themes and applicability to its subject. I have also authored several

other papers on tangential topics, but they are not included here.

The research was conducted over several years as part of two national

research projects involving industry and academia: I started with the Tekes

Cloud program (2010–2013) in cooperation with Vaadin and continued with

the DIMECC Need for Speed program (2014–2017) in cooperation with F-

Secure.

Most of the research has been experimentally validated where applicable.

As is common practice, I have mainly conducted discrete-event simulation for

quantitative analysis. Some experiments have been conducted using actual

prototypes, which helps in validating the simulations, but these were still

under laboratory conditions. Certain aspects of the involved algorithms and

problems have been formally proven, but this is not the norm.

15

Most software today is very much like an Egyptian pyra-

mid with millions of bricks piled on top of each other, with

no structural integrity, but just done by brute force and

thousands of slaves.

Alan Kay

2
Contributions

This chapter contains a descriptive summary of the papers that form the foun-

dation of this thesis, how they relate to the research questions in section 1.6,

as well as my contributions to each paper. All papers have been coauthored

with Professor Ivan Porres, who has secured funding for the research, edited

drafts of manuscripts and suggested that I investigate some of the covered

research areas.

2.1 Prediction-Based VM Provisioning and Admission

Control for Multi-Tier Web Applications

The resource needs of web applications vary over time, depending on the

number of concurrent users and the type of work performed. As the demand

for an application grows, so does its demand for resources, until the demand

for a bottleneck resource outgrows the supply, leading to deteriorated per-

formance of the application. Users of an application starved for resources

tend to notice this as increased latency and lower throughput for requests,

or they might receive no service at all if the problem escalates. To handle

multiple simultaneous users, web applications are traditionally deployed in a

three-tiered architecture, where a computer cluster of fixed size represents

the application server tier. This cluster provides dedicated application hosting

to a fixed amount of users. There are two problems with this approach: a) if

the amount of users grows beyond the predetermined limit, the application

will become starved for resources. b) While the amount of users is lower than

17

this limit, the unused resources constitute waste.

According to Vogels (2008), under-utilization of servers is a matter of

concern. This inefficiency is mostly due to application isolation: a consequence

of dedicated hosting. Sharing of resources between applications leads to higher

total resource utilization and thereby to less waste. Thus, the level of utilization

can be improved by implementing what was traditionally known as shared

hosting. Dedicated VMs are fairly heavy compared to lighter container options,

requiring a fairly coarse granularity, if the overhead is to remain insignificant.

This can be addressed by operating at the PAAS level instead of the IAAS level,

sharing PMs among VMs and VMs among lighter containers.

Capacity planning for dynamic systems is far more complicated than for

static systems, since the premises change continuously and in heterogeneous,

shared systems, different entities may require different amounts of various

resources. Application-specific knowledge is necessary for a PAAS provider

to efficiently host complex applications with highly varying resource needs.

When hosting third-party dynamic content in a shared environment, that

application-specific knowledge might be unavailable. It is also unfeasible for a

PAAS provider to learn enough about all of the applications belonging to the

users.

For example, consider a simple web service having multiple users making

requests in the OLTP fashion. The number of simultaneous users, the demand,

determines the resource needs of the service, or supply. Demand for a given

service can fluctuate periodically over days, weeks or months: There might

be fewer users during the night than during the day, less demand for summer

activities during winter and vice versa. These seasonal trends are fairly easy

to prepare for in advance by increasing capacity, which can then be reduced

during the off-season. However, as durations shorten, the overhead of increas-

ing and decreasing capacity by hand may outweigh the benefits. Besides cyclic

trends, there might also be linear trends, such as continuous, steady growth or

decline. Linear trends are also fairly easy to deal with while the durations are

on the order of months or longer, but they again become challenging when the

durations decrease. Sometimes there can be large spikes over short durations,

e.g. when 10000 tickets for a concert are released and all are purchased within

minutes. These events are the hardest to manage in a traditional data center,

since they usually occur without warning, unless the traffic spike is due to

a foreseeable event of which the hosting provider was notified in advance.

With regard to the concert tickets, the ticket vendor might indeed notify the

service provider in advance, but in the case of a startup experiencing sudden,

exponential growth in the number of users or the well-known Slashdot effect,

described by Kamra et al. (2004), this may well not be the case.

Having enough computational resources to always meet rare peaks implies

that most of it is a waste during the other times. Conversely, preparing only

18

for the mean amount of traffic means loss of business when demand cannot

be met during the peaks. Cloud computing provides a solution to the problem

of acquiring and releasing computational resources in short time, but the

decisions on how and when to acquire or release resources as well as how to

place VMs in PMs require automation to happen fast enough to still be relevant.

Increasing scale of operations requires faster algorithms that can handle larger

problems under soft real-time constraints, since the circumstances may change

rapidly.

Traditional performance models based on queuing theory try to capture

the behavior of purely open or closed systems. However, web applications of-

ten have workloads with sessions, exhibiting a partially-open behavior, which

includes aspects of both the open and the closed model. Given a better per-

formance model of an application, it might be possible to plan the necessary

capacity, but the problem of obtaining said model remains. If the hosted ap-

plications rarely are modified it might be feasible to automatically derive the

necessary performance models by benchmarking each application in isolation.

This might apply to hosting first- or second-party applications. However, when

hosting third-party applications under continuous development, they may

well change frequently enough for this to be unfeasible.

While cloud computing allows fairly rapid provisioning of virtual machines,

this alone is not sufficient to guarantee good QOS for the users of a service:

As the utilization of an OLTP system approaches 1, the response time grows

exponentially. A rule of thumb given by Liu (2009) states that the utilization

of an OLTP system should be kept below 70 % to ensure that the response time

does not exceed three times the service time of the system. Ensuring that

this condition is met requires admission control in addition to load balancing.

Admission control seeks to determine how many users to admit to a specific

server at any given time while ensuring that said server does not become over-

loaded. The problem of overload is exacerbated when stateful applications are

operated with session state kept locally, as with so-called sticky sessions, since

the load must be balanced across entire sessions. When a server becomes

overloaded, the QOS for all users of that server suffers. In an effort to please as

many users as possible, the admission control solution provides a simple de-

ferment mechanism wherein new sessions may be deferred to another service

providing a simple status update until more servers have been provisioned and

the deferred sessions can be admitted. This results in fewer rejected sessions

and should ultimately provide a better user experience.

When this work was started in Ashraf, Byholm, Lehtinen, et al. (2012), the

notion of serverless computing did not exist. The article presents a prediction-

based, cost-efficient VM provisioning approach for multi-tier web applications,

involving three main parts: a) a serverless computing platform called ARVUE

from Ashraf, Byholm, Lehtinen, et al. (2012), b) a hybrid, reactive-proactive

19

scaling algorithm called CRAMP from Ashraf, Byholm, and Porres (2012b)

and c) a session-based adaptive admission control approach called ACVAS

from Ashraf, Byholm, and Porres (2012a). The proposed approach provides

automatic deployment and scaling of multiple concurrent third-party web

applications on a given IAAS cloud in a serverless computing environment. It

monitors and uses resource utilization metrics and does not require a perfor-

mance model of the applications or the infrastructure dynamics. Its design

can be seen in Figure 1.3. At its heart lies the global controller, which makes

scaling decisions for the system, configures the load balancer and directs a

dynamic pool of application servers that execute applications from the reposi-

tory. The busy service server acts as a holding station for deferred sessions

until sufficient capacity has been provisioned for them to safely be admitted

to the system proper. The implementation of the CRAMP algorithm requires

adding predictor units on the application servers, while addition of the ACVAS

admission control approach entails the addition of a separate admission con-

troller. External components are indicated with dashed borders. These are not

part of the system proper, but serve as interaction points between the system

and the outside world.

I compare the performance of three variations of the main system: a purely

reactive implementation where resources are provisioned or released when

certain utilization thresholds are exceeded, a hybrid, reactive-proactive vari-

ation where decisions are based on predictions of future usage weighted by

the observed prediction error and finally the same system with the addition of

session-based admission control. Through experiments, I find that the reactive-

proactive variant performs better than the purely reactive variant, and the

reactive-proactive variant with admission control outperforms both.

All variants have been developed and tested through bespoke, concrete

discrete-event simulations with both synthetic and realistic workloads. The

work was started before now popular cloud simulation frameworks, such as

CloudSim by Calheiros et al. (2011), were published. Hence, no such frame-

works were used. The first two variants, purely reactive and reactive-proactive

horizontal scaling were additionally evaluated through fully functioning pro-

totype implementations running in Amazon EC2 supplied from additional

servers within the same cloud. The original articles by Ashraf, Byholm, Lehti-

nen, et al. (2012) and Ashraf, Byholm, and Porres (2012b) contain the results

from the prototype implementations. By the time of developing the admis-

sion control approach, confidence in the quality of the simulations was high

enough to cease developing prototype implementations together with their

cumbersome testing infrastructure. Hence, the final variant with added ad-

mission control was only evaluated using the aforementioned discrete- event

simulations. The subsequent journal article only contains simulation results.

The paper addresses RQ1 from subsection 1.6.1 by showing how to con-

20

struct an autonomous, stateful serverless platform. I evaluate the entire system

based on data from Dr. Ashraf’s discrete-event simulations and my prototypes.

The scaling algorithms for this version of the platform are centralized, as

opposed to distributed, which is a drawback from a scalability perspective.

However, the general principles remain applicable to distributed algorithms

and the existing design with a division between global and local controllers

facilitates decentralization.

The research was done in close collaboration with Adnan Ashraf, who de-

signed most of the system and developed the algorithms through discrete-event

simulations. I built the prototypes, designed experiments, analyzed data, con-

structed load patterns and developed the hybrid part of the reactive-proactive

predictor, which produces future CPU load estimates by weighting predictions

and observations according to the recent performance measurements based

on the normalized root mean square error of the prediction.

2.2 Distributed virtual machine consolidation:

A systematic mapping study

Cloud service providers wish to minimize the energy requirements of their

data centers. According to Shehabi et al. (2016), in 2014, data centers in the

United States consumed an estimated 70TWh of electricity, corresponding

to 1.8% of the national electricity consumption. High energy consumption

not only translates into high monetary cost, but also contributes to carbon

emissions. According to Barroso and Hölzle (2007), production servers sel-

dom operate near their full capacity. However, according to Fan et al. (2007),

they still consume a substantial proportion of their peak power even when

idle. Beloglazov and Buyya (2012) note that part of the problem is inefficient

resource utilization and that energy is required not only for computation and

data processing but also for cooling the equipment.

Hardware virtualization technologies enable sharing a PM among multiple

VMs. This allows reliably operating several services on a single server, allowing

for increased utilization, without the services and operating system having

been specifically designed for this use case. Virtualization allows isolating

services, thereby preventing interference and providing finer control of the

resources allocated to each service. Increasing the efficiency of servers leads

to energy savings by using fewer PMs.

Virtual machine consolidation refers to the act of redistributing VMs across

PMs with the goal of leaving some PMs unused so that they may be shut down.

For example, assuming two VMs and two PMs, each PM capable of satisfying

the resource demands of both VMs, and each PM currently hosting one VM

each, it is possible to move either VM to the other PM and terminate the unused

21

𝑎3

𝐴

𝑏2

𝐵

⇒

𝑏2

𝑎3

𝐴 𝐵

Figure 2.1: Virtual machine consolidation refers to the act of redistributing VMs

across PMs with the goal of leaving some PMs unused so they may be shut down.

PM, thereby saving energy. Figure 2.1 illustrates this example.

This paper addresses RQ2 from subsection 1.6.2 by reviewing literature

on distributed VM consolidation able to cope with large-scale distributed

systems. Since VM consolidation operates on a lower level than IAAS, which is

the lowest level from a cloud user’s perspective, it rests firmly in the realm of

data center operators, or cloud providers. Hence, this paper solely addresses

cloud providers. However, this does not solely entail public cloud providers.

Anybody operating a cloud, whether a fully private cloud, a hybrid solution or a

public cloud is a cloud provider. The paper serves to present a comprehensive

overview of the state-of-the-art in distributed VM consolidation approaches.

The paper is a systematic mapping study, covering 116 unique, distributed VM

consolidation approaches, narrowing them down to 19 unique approaches

optimizing multiple objectives using various optimization techniques.

Most of the literature on VM consolidation has focused on centralized ap-

proaches, where observations of resource utilization are gathered from all PMs

for processing in a single location where a centralized algorithm makes deci-

sions for all PMs. This does not allow for managing multiple, geographically

distributed data centers as a whole. The main drawbacks with centralized

consolidation algorithms are limited scalability as well as introducing a single

point of failure. In contrast, distributed consolidation algorithms use dis-

tributed algorithms or architectures, or they support multiple, geographically

distributed data centers. Distributed consolidation approaches have recently

become increasingly popular due to avoiding the problems of their centralized

counterparts, thereby being better suited for large-scale data centers with

thousands of VMs and PMs. The studied 19 distributed VM consolidation ap-

proaches form three different categories: pure, distributed VM consolidation

algorithms, centralized algorithms with a distributed architecture and VM

consolidation algorithms for geographically distributed data centers. A pure,

distributed VM consolidation approach uses a distributed algorithm to find

migration plans optimizing the placement of VMs in PMs. The second category

22

uses a centralized algorithm, but the system itself is distributed. The third

category consists of approaches that extend centralized algorithms to support

VM consolidation in multiple, geographically distributed data centers.

This study found that most of the included approaches are decentralized

algorithms where the systems are divided into autonomous regions, which

may coordinate decisions among themselves. Out of 19 studied approaches,

14 use pure, distributed VM consolidation, 2 present centralized algorithms

with a distributed architecture and 3 present VM consolidation approaches

for geographically distributed data centers. Since the problems are NP-hard,

and require automated decision making, the majority of approaches (80 %)

employ heuristics and metaheuristics for optimizing a single objective function.

The most popular algorithm type is distributed or coordinated local search,

employed by 6 approaches. The vast majority of studies (14) are based on

offline optimization. The nature of 3 of the studies was indeterminate. Only

2 approaches were confirmed as using an online algorithm. While offline

optimization algorithms theoretically can give far better solutions than online

algorithms, since they have access to more data, this is often not the case in

practice, since it requires complete knowledge of the problem, all variables and

possible future events. In contrast, an online optimization algorithm makes

decisions based on currently available, limited information in the current state.

This paradigm readily lends itself to distributed algorithms and is therefore

an interesting subject of further research.

Analysis of the employed optimization algorithms revealed that 6 of the

studies used single-objective optimization, 11 used multi-objective (2–3) opti-

mization with an aggregate objective function, while 2 used many-objective

(4–5) optimization with an aggregate objective function. Aggregate objective

functions are a popular means of employing a single-objective optimization

algorithm on a multi-objective problem. They reduce complexity and improve

the execution speed by reducing the search space. However, aggregate ob-

jective functions require weights to be assigned to the objectives, which is a

subjective process requiring detailed domain-specific knowledge to achieve a

desired outcome. None of the studied approaches use pure, multi- or many-

objective optimization. This forms a clear research gap.

Most proposed approaches (16) are evaluated empirically though simula-

tions, with prototype implementations being rare, due to the high cost and

complexity of conducting large-scale tests of actual implementations. Only

3 approaches were evaluated using prototype implementations. There are

hardly any comparative analyses between different approaches, partly due to

lack of readily available simulation code or other artifacts. Only one studied

paper had a comparison of the results from another studied paper.

The research was done in close collaboration with Adnan Ashraf, who de-

signed the review protocol, conducted the literature search and wrote most

23

of the paper. I suggested the subject of the study, independently reviewed

papers and aided in analyzing the findings. The study follows a review protcol

developed by Dr. Ashraf, wherein all papers selected for inclusion were inde-

pendently reviewed by both him and me with the goal of minimizing bias. The

protocol specifies that disagreements should be resolved through meetings

and discussions until consensus is reached. Thus, the results of the study are

by definition a joint statement, in accordance with the fundamental principles

of the protocol.

2.3 Cost-Efficient, Reliable, Utility-Based Session

Management in the Cloud

According to Ling et al. (2004), session state is a form of soft state that expires

after a certain time interval has passed since the last request in a given ses-

sion. Session state is especially important in interactive web applications that

provide a rich user experience. Services can store session information in dif-

ferent storage systems, e.g. local memory, a flat file system, a distributed cache,

or a database. Each session store has different characteristics, e.g. available

capacity, durability, and reliability.

Session state is also how an application maintains a user’s workflow. If this

state is lost, the user will perceive an application failure. Hence, session state

must be reliably stored with high performance. Although the most efficient

way of storing session state from a performance point of view is to keep it

locally in memory at the application servers, this alone is not reliable and does

not scale well, since it requires session affinity, where where users are assigned

to a specific server for the duration of a session. Session affinity violates the

principle of separation of concerns, as application servers become responsible

not only for application logic, but also for storing session state. Session affinity

also complicates load balancing, since different classes of requests may have

different resource requirements and service times, but the load can only be

balanced at the session level and not at the request level.

In the context of a commercial digital service, successful handling of a

session can lead to some revenue for the service provider. However, in the

context of cloud computing, where the application provider pays for computing

resources per use, each session store also has a different cost per transaction,

reducing the expected profit. The question that I answer in this article is:

How can an application provider maximize the expected profit by minimizing

session costs?

At any given moment, a session management system may decide to store

a session in one or more storage subsystems, or it can decide to delete a ses-

sion. These decisions will affect the reliability, revenue, and cost of the whole

24

application. They must account for hardware constraints, such as how many

sessions fit in a store, e.g. local memory, or how many sessions can be written

to a slow store, e.g. a database, in a particular time interval. Given any number

of sessions with different expected revenues and resource requirements, e.g.

size, a session management system should determine an efficient allocation

of sessions to stores, meeting the reliability requirements while maximizing

profit. For example, at any given moment, the system should decide which

sessions to keep in volatile, but fast, RAM on the application server, which

sessions to keep in a reliable, but slower, remote store and which to drop en-

tirely. I consider that there is a finite amount of RAM available, operations cost

money and the expected revenues differ between sessions. A cost-efficient

solution to this problem makes previously unprofitable services profitable and

increases profit in others.

Ling et al. (2004) note that retrieval of session state should be reliable and

fast, but due to its transient nature, session state does not require full atomicity,

consistency, isolation and durability (ACID) semantics. Instead, many network

services can trade consistency for availability by employing basically available

soft state with eventual consistency (BASE) semantics, which are weaker than

ACID. With soft state, a system writes the state to several independent data

stores and retrieves it from one of them. Thus, data are lost only if all copies

are lost. However, soft state is not free from drawbacks. For example, as

noted by Goldberg (2009), the level of consistency, and thereby reliability, is

determined by the frequency of the update messages. A higher frequency of

update messages leads to increased cost and overhead. Increased overhead

means greater delay. Any delay when retrieving session state will increase

the service time for all requests, as processing of a request cannot proceed

without the required session state.

In this paper, I develop a general utility model to solve this problem that

takes reliability into account and works in other contexts than e-commerce. I

achieve this by applying von Neumann-Morgenstern lotteries, originally devel-

oped by von Neumann and Morgenstern (1953), to represent decisions and

outcomes for storing state, which facilitates applying a utility function to make

informed decisions and maximize the expected utility of said decisions.

A von Neumann-Morgenstern lottery is a set of mutually exclusive out-

comes with associated probabilities that sum to one. For example, 𝐿 = 0.20𝐴 +
0.80𝐵 denotes a lottery 𝐿 where the probability of outcome 𝐴 is 𝑃(𝐴) = 0.20
and the probability of outcome 𝐵 is 𝑃(𝐵) = 0.80. A rational agent obeying the

axioms of the von Neumann-Morgenstern utility theorem has a utility func-

tion 𝑢, assigning a real value 𝑢(𝐴) to every possible outcome 𝐴, so that for

any two lotteries 𝐿 and 𝑀, a preference of 𝑀 to 𝐿 is equivalent to a greater

expected utility of 𝑀 to 𝐿. By constructing a rational agent, I model its choices

as lotteries and compare their expected utilities, facilitating the choice of the

25

most desirable expected outcome.

Utility works as an abstraction that captures the perceived gain from ob-

taining something, its utility. The choice of utility function can affect the risk-

seeking or risk-avoiding nature of the agent, in addition to the overall perceived

utility of the outcomes of a given lottery. Representing utility in terms of money

provides a back-of the envelope cost-benefit analysis and can produce an agent

that tries to minimize loss and maximize profit. This allows for rational deci-

sion making in an autonomous serverless computing system.

I combine my utility model with a Markovian reliability model for multiple

session stores, giving the risk of data loss for a session. Based on the model,

I propose a system for utility-based session management and compare 9 dif-

ferent session management policies, each with 2 different revenue models:

constant revenue and variable revenue per session, in 3 different businesss

scenarios: low, medium and high revenue-cost ratio, through discrete- event

simulations and analyze the results. The results show that utility-based session

management increases cost-efficiency, but if the ratio between expected rev-

enue and cost of sessions is too high, the difference will be negligible. However,

with a low ratio of expected revenue to cost, such as an advertisement- funded

or freemium web application, utility-based session management means the

difference between the application provider operating at a net loss or profit.

The paper uses a knapsack model combined with von Neumann-Morgenstern

lotteries to optimize the expected utility of a session-based cloud system by

choosing whether, when and where to store session data under uncertainty.

The knapsack problems are a family of NP-hard optimization problems that

are at least as hard as the hardest problems in NP. In practice, this means that

exact solutions are extremely computationally expensive. Since the intended

use case needs solutions quickly, because the premises might change, I decided

to use a greedy heuristic for the problem. In the experiments, this heuristic is

compared to a slow, unrealistic algorithm serving to give an upper bound on

how well a policy would perform under ideal conditions, facilitating a further

comparison of policies without the impact of the specific greedy heuristic I

chose to use.

In the knapsack problem, there is a given set of 𝑛 items with associated

profits 𝑝 and resource requirements 𝑟. The objective is to pick a subset of

items that maximizes the total profit without exceeding the capacity 𝑅 of the

knapsack:

maximize
𝑛
∑
𝑖=1

𝑝𝑖𝑥𝑖

subject to
𝑛
∑
𝑖=1

𝑟𝑖𝑥𝑖 ≤ 𝑅

𝑥𝑖 ∈ 𝔹

26

The binary knapsack problem can be extended to multiple resources in a

variant known as the multiple-choice multi-dimension knapsack problem

(MMKP). In this problem there are 𝑛 groups, each having 𝑙 items. The objective is

to pick one item from each group, yielding the highest profit without exceeding

the 𝑚 resource constraints:

maximize
𝑛
∑
𝑖=1

𝑙𝑖
∑
𝑗=1

𝑝𝑖𝑗𝑥𝑖𝑗

subject to
𝑛
∑
𝑖=1

𝑙𝑖
∑
𝑗=1

𝑟𝑖𝑗𝑘𝑥𝑖𝑗 ≤ 𝑅𝑘

𝑙𝑖
∑
𝑗=1

𝑥𝑖𝑗 = 1

𝑥𝑖 ∈ 𝔹
𝑘 = 1,… , 𝑚

The chosen greedy heuristic is a straightforward extension of the well-known

greedy heuristic for a classic knapsack problem, where items are chosen in

the order of highest value-size ratio first. In the MMKP, there can be multiple

resources, which are reduced to one value using the aggregate resource con-

sumption measurement developed by Toyoda (1975), after which items are

picked in the same manner as with the classic knapsack. In practical use, in a

scenario where the details of the employed packing algorithm are important,

a more advanced but equally fast algorithm would be worth investigating.

I simulated a session management system with two storage levels: an un-

reliable, but fast session store contained in RAM on the application server and

a reliable, but slow session store on a remote server. Two session stores yield

four possible decisions for managing a session: store in none, store locally,

store remotely and store in both. I constructed von Neumann-Morgenstern

lotteries over the expected profit from each of these alternatives, which formed

the multiple choices for the MMKP, which I solved using a greedy heuristic.

Prof. Porres suggested that I investigate how von Neumann-Morgenstern lot-

teries could be applied to session management. The paper addresses RQ3

from subsection 1.6.3.

2.4 Cost-Efficient, Utility-Based Caching of Expensive

Computations in the Cloud

In this paper, I present a decision model for caching expensive computations

that produce large amounts of data in a cloud. This model is applicable to cloud

27

services that produce vast quantities of data that can be reused in subsequent

requests for the same data.

Caching in itself is old news, but certain aspects change in a cloud context.

Traditionally, caching strategies pertain to a fixed-size cache, smaller but faster

than the primary storage, with the aim of reducing data movement. For ex-

ample, Pérez et al. (2018) apply caching to containers in a container-based

serverless system with an application to image processing. However, when it

comes to the actual results of a computation, given the theoretically limitless

storage resources available in the cloud, the size of a cache need not be lim-

ited in practice, but data stored in the cloud come at a cost, which increases

over time. Hence, the central question for a caching strategy in this context

is whether caching the result of a given computation is worth the associated

cost, as opposed to running the computation again, and for how long that

result should be cached. The resulting data must always be transferred to

the requester. Thus, the primary purpose of this type of cache is to reduce

operational cost, instead of latency or data movement.

As I show in this paper, an efficiently managed cache can significantly

reduce the operational cost of such a system. As a concrete example, I study its

application to a cloud-based, on-demand video transcoding service, previously

developed by my coauthors. While focusing on caching the results from video

transcoding in particular, the paper answers RQ4 from subsection 1.6.4 in a

generic fashion, directly making it applicable to caching many other expensive

computations in a cloud setting.

An important detail is that the results of a video transcoding operation can

be sent to the requester on the fly, while continuing to process the remainder

of the video. This eliminates latency to the extent that it need not be directly ac-

counted for in the underlying models, simplifying the decisions. I presume that

this holds true for many other practical applications involving vast amounts of

data requested in an OLTP fashion, since the data must be transferred to the

requester.

A video transcoding service converts digital videos from one format to

another. Formats differ in several aspects, mainly in resolution, bitrate and

encoding. This discrepancy is especially problematic on mobile devices, which

may have hardware support for decoding certain encodings, limited bandwidth

and small displays. If a client device does not support a given format, or

desires another, the video must be transcoded. For the uninitiated, Vetro et al.

(2003) offer an overview of video transcoding, but for the purposes of this

paper, it is sufficient to know that video transcoding generally is very expensive

in terms of required computation.

By storing a transcoded video for an additional amount of time after the

client device no longer wants the video, one can avoid repeating expensive

transcoding operations, thereby saving relatively large amounts of money.

28

After this additional time, the circumstances may be reevaluated to make a

new decision on whether or not to continue storing the video.

In the context of a pay-per-use cloud computing infrastructure, each transcod-

ing operation has a monetary cost due to use of computation resources, while

video storage has a cost based on the amount of data and time to be stored.

To reduce the operating costs of the service, one must decide when and for

how long each transcoded video should be cached in the storage. A service

that stores data that will not be requested in the future will incur unnecessary

storage costs. On the other hand, a service that discards data too eagerly is

susceptible to incurring unnecessary computing costs.

In this paper, I study the aforementioned problem and propose a decision

model for cloud-based caches with the objective to reduce operating costs.

This paper applies utility theory to decision making through von Neumann-

Morgenstern lotteries. My utility model for decision making requires three

unknown parameters: 1. the storage duration 𝑡, 2. the mean number of ar-

rivals 𝑚(𝑡) over the storage duration 3. and the popularity distribution 𝑝𝑖 of

cached objects 𝑜𝑖 in the system. I present a natural way of obtaining a good

value for the storage duration 𝑡, having nice properties that help evaluate the

performance of the decision algorithm. I obtain the number of arrivals 𝑚(𝑡)
over the storage duration 𝑡 by solving a sub-problem consisting of predict-

ing future arrival counts through singular value decomposition, as outlined

by Shen and Huang (2008). Finally, I employ the Simple Good-Turing frequency

estimator, developed by Gale and Sampson (1995), to estimate the relative pop-

ularity 𝑝𝑖 of each cacheable object in the system. I evaluate the decision making

approaches through discrete-event simulations and find that the proposed

approach offers 72% lower cost compared to always storing all requested

objects.

Based on Jokhio et al. (2013), I determine the storage duration 𝑡 as the

constant 𝜏, which is the cost of transcoding divided by the cost of storing data

and the transcoding rate. Assuming that I can model requests arriving to the

system as an inhomogeneous Poisson process with mean 𝑚(𝑡), I use Poisson

splitting to derive the mean of requests for each video in a given format 𝑜𝑖
as 𝑝𝑖𝑚(𝑡). For any object 𝑜𝑖, the system can choose whether to delete or store it

and each decision has two possible outcomes: either additional requests arrive,

or they do not. From this I form two von Neumann-Morgenstern lotteries and

conclude that one should opt to store when 𝑝𝑖𝑚(𝜏) ≥ 1, i.e. whenever at least

one more request for a video in a given format in time 𝜏 is expected.

To obtain the mean arrival rate of requests for the entire system 𝑚(𝑡), I

construct a fast predictor using truncated singular value composition, devel-

oped by Baglama and Reichel (2005), to quickly reduce the dimensionality of

the underlying data, allowing the use of simple linear regression to quickly

extrapolate its individual major components. The system may then predict the

29

future number of arrivals over various intervals.

Determining the popularity 𝑝𝑖 of an object 𝑜𝑖 is rather tricky: Using the ob-

vious, empirical maximum likelihood estimator works well for popular objects,

but popular objects are not interesting, since they always have a high likelihood

of being requested, thus benefiting from being stored. The (currently) unpop-

ular objects constitute the matter of concern, since they are less likely to be

requested within time 𝜏 and might be worth deleting. To solve this problem, I

decided to use the Simple Good-Turing frequency estimator, presented by Gale

and Sampson (1995), which accounts for unobserved events. One must also

keep in mind that this is a dynamic system, in which the popularity of videos

changes over time as new videos are added and others fall into oblivion. To

handle this, I apply a sliding window to the historical data.

I evaluate the resulting decision algorithm through discrete-event simu-

lations involving 10000 videos with random sizes following a double Pareto-

lognormal distribution, with video popularity following a truncated Pareto

distribution giving a long tail. I calculate the cost of operating the simulated

system over one year using four decision algorithms: my utility-based algo-

rithm, the same algorithm with perfect information of the future — to allow

comparing the accuracy of the estimation part, a naïve algorithm which always

stores each video indefinitely, as well as the previous approach developed

by my coauthors. I conclude that the accuracy of my predictor appears very

high, since I saw an improvement of only 4 % lower cost when using perfect

information, as opposed to the described estimations and predictions. My

decision algorithm clearly outperforms all other tested algorithms.

This paper is an extension of a previous work on video transcoding done by

my colleagues Jokhio et al. (2013), which developed the method of determining

the storage duration constant 𝜏. I applied von Neumann-Morgenstern lotteries

to develop the utility model that decides whether or not to store a video. To

this end I also developed the predictor that determines the expected number of

future requests for any given video by combining a predictor for the number of

requests to the system with a frequency estimator for rare events. I designed

and conducted the experiments, analyzed the results and wrote most of the

paper.

2.5 Fast algorithms for fragmentable items bin

packing

Unlike the other papers that constitute this thesis, this paper is not about cloud

computing. In this paper I develop fast algorithms for solving a new class of

abstract packing problems known as bin packing with fragmentable items.

Bin packing with fragmentable items is a variant of the classic bin packing

30

𝑎9

𝑏3

𝑐3

𝑑3

𝑒3

⊗

𝐴 𝐵 𝐶

⇒ 𝑎71

𝐴

𝑎22

𝑏3

𝑐21

𝐵

𝑐12

𝑑3

𝑒3

𝐶

Figure 2.2: Packing items into three bins of size seven allowing fragmentation.

problem where items may be cut into smaller fragments. The objective is to

minimize the number of item fragments, or equivalently, the number of cuts,

for a given number of bins. Models based on fragmentable items are useful for

representing finite, shared resources. Figure 2.2 shows an example problem

instance.

Computational complexity involves algorithms that solve problems. The

complexity of an algorithm is the amount of resources required to run it,

while the complexity of a problem is the minimum complexity of all possible

algorithms for that problem.

Because the resource requirements vary with the size of the input 𝑛, the

complexity of an algorithm is expressed as a function 𝑓 (𝑛), representing either

worst-case or average-case complexity. This thesis only considers worst-case

complexity, because it provides true guarantees. Computational complexity

is commonly expressed in asymptotic notation, which describes the limiting

behavior of a function when the argument tends towards infinity. This entails

ignoring constants and low-order terms. In computer science, three common

notations are Big O𝒪(𝑔(𝑛)), Big Theta 𝛩(𝑔(𝑛)) and Big Omega𝛺(𝑔(𝑛)), denoting

an upper bound, a tight bound and a lower bound, respectively.

The primary resource of interest is the time required to run an algorithm,

this is known as time complexity and is the default. The secondary resource

of interest is the amount of memory required to run an algorithm, which is

known as space complexity. A classic, physical computer corresponds to a

deterministic Turing machine. For such a machine, time complexity is a subset

of space complexity. Hence, I only consider time complexity.

The complexity class P contains all decision problems that can be solved

by a deterministic Turing machine in polynomial time, while the complexity

31

classNP contains all decision problems that can be solved by a non-deterministic

Turing machine in polynomial time, or equivalently, the decision problems

where positive answers are verifiable in polynomial time. The hardest prob-

lems in NP are known as NP-complete. These are problems to which every

other problem in NP can be reduced in polynomial time. A famous unsolved

problem in computer science is whether P = NP, i.e. whether polynomial time

algorithms exist for solving NP-complete problems. I have not attempted to

solve this problem.

Optimization problems are related to decision problems in that an algo-

rithm that exactly solves an optimization problem directly solves the corre-

sponding decision problem. Every optimization problem is thus at least as

hard as its corresponding decision problem. Most of the optimization prob-

lems studied in this thesis correspond to decision problems that have been

proven NP-complete.

The classic bin packing problem is a well-known combinatorial optimiza-

tion problem. Its decision form: “Can these items be packed into 𝑚 bins?”, is

strongly NP-complete. This problem is a special case of bin packing with frag-

mentable items, i.e. “Can these items be packed into 𝑚 bins with 𝑘 = 0 cuts?”,

which makes the latter at least as hard as the former. Hence, any deterministic,

exact algorithm requires time superpolynomial in the size of input, unless

𝒫 = NP.

This paper addresses RQ5 from subsection 1.6.5. It adapts a metaheuristic

known as a grouping genetic algorithm, developed by Quiroz Castellanos et al.

(2015) for classic bin packing (BP), to the problem of minimum fragmentable

items bin packing (MIN-FIBP), presented by LeCun et al. (2015). By reducing

the complexity of the approximation algorithms for MIN-FIBP developed by Le-

Cun et al. (2015), I succeed in turning them into fast packing heuristics for the

grouping genetic algorithm while maintaining their approximation guaran-

tees. I develop fast lower bounds for the problem, to enable early termination

through identification of optimal solutions. The lower bounds and approxi-

mation algorithms provide approximation guarantees known as performance

ratios. The worst-case performance of a lower bound 𝐿 for a problem 𝑃, where

OPT(𝐼) is the optimal value of 𝑃 for instance 𝐼, is given by:

𝑟(𝐿) ≜ sup {
𝐿(𝐼)

OPT(𝐼)
|
|
|
𝐼 is an instance of 𝑃 }

and the asymptotic worst-case performance of 𝐿 is given by

𝑟(𝐿)∞ ≜ lim sup
𝑠→∞

{
𝐿(𝐼)

OPT(𝐼)
|
|
|
𝐼 is an instance of 𝑃 with OPT(𝐼) ≥ 𝑠 } .

The asymptotic worst case performance is the value to which the maximum

tends in the limit, as shown in Figure 2.3, where the maximum tends to 1. Note

that the worst-case performance here is 2.

32

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2.3: The difference between worst-case performance and asymptotic

worst-case performance is that worst-case performance is the extreme value

over the entire range, 2 in this illustration, whereas the asymptotic worst-case

performance is the value that the extreme value tends towards in the limit, 1 in
this case.

33

Algorithm 1 This algorithm yields all possible 3-partitions of a number 𝑟 from a

set of 𝑚 numbers in the sorted array 𝑎.
1: procedure THREESUM(𝑎, 𝑚, 𝑟)
2: 𝑛 ← 0
3: if 𝑟 = 0 ∨ 𝑛 = 𝑚 then

4: return

5: end if

6: 𝑚 ← 𝑚 − 1
7: while 𝑎[𝑚] + 2𝑎[𝑛] < 𝑟 do
8: 𝑚 ← 𝑚 − 1
9: if 𝑚 < 𝑛 then

10: return

11: end if

12: end while

13: while 𝑛 ≤ 𝑚 do

14: while 𝑎[𝑛] + 2𝑎[𝑚] > 𝑟 do
15: 𝑛 ← 𝑛 + 1
16: if 𝑛 > 𝑚 then

17: return

18: end if

19: end while

20: 𝑣 ← 𝑛
21: 𝑤 ← 𝑚
22: 𝑠 ← 𝑟 − 𝑎[𝑚]
23: repeat

24: 𝑡 ← 𝑎[𝑣] + 𝑎[𝑤]
25: if 𝑡 < 𝑠 then
26: 𝑤 ← 𝑤 − 1
27: else

28: if 𝑡 = 𝑠 then
29: yield (𝑣, 𝑤, 𝑚)
30: end if

31: 𝑣 ← 𝑣 + 1
32: end if

33: until 𝑣 > 𝑤
34: 𝑚 ← 𝑚 − 1
35: end while

36: end procedure

34

I present a fast grouping genetic algorithm for the bin packing problem with

fragmentable items. It delivers a worst-case guarantee of a 5/4-approximation

with complexity 𝒪(𝑛 log 𝑛 + |𝒲 |2) = 𝒪(𝑛2). For any given problem instance,

|𝒲 | is a constant, far smaller than 𝑛. This also holds for many practical appli-

cations, despite varying the number of items 𝑛. Under these circumstances,

the complexity is only 𝒪(𝑛 log 𝑛), which is especially attractive when used as a

frequently evaluated packing heuristic.

I study the performance of the involved algorithms through extensive com-

putational experiments involving two problems sets: 𝒫1 consisting of 180 prob-

lem instances and 𝒫2 consisting of 450 problem instances. Since the grouping

genetic algorithm is nondeterministic, I solve each problem instance 10 times,

to get a better understanding of how the algorithm usually performs.

The metaheuristic works well in practice. With problem set 𝒫1, it reached

the optimum in 92 % of runs (1662 out of 1800 runs). No run took longer

than 17ms. Most of the 1800 runs actually completed in less than 6ms. With

problem set 𝒫2, it reached the optimum in 99 % of runs (4473 out of 4500 runs).

No run took longer than 220ms. Most of the 4500 runs completed in less than

13ms.

To this end, I made the following contributions: 1. I developed the greedy

algorithm 𝒢+ for constructing a feasible solution. It has worst-case complex-

ity 𝒪(𝑛) and works for general instances of MIN-FIBP. 2. I adapted the exact

algorithm ℰ2 to the general case of minimum fragmentable items bin pack-

ing with equal capacities (MIN-FIBP-EQ). This avoids the need for a pseudo-

polynomial transformation. 3. Algorithm ℬ3 is a 1/3-approximation with

complexity 𝒪(𝑛 + |𝒲 |2) = 𝒪(𝑛2) for finding blocks of size 3 in the general

case of MIN-FIBP-EQ. Its predecessor 𝒜3 is a 1/3-approximation with complex-

ity 𝒪(𝑛4) for the special case of MIN-FIBP-EQ, where the sum of item sizes is

equal to the aggregated bin capacity. The key behind algorithm ℬ3 is the fast

computation of 3-partitions through Algorithm 1 and subsequent selection

between feasible partitions. 4. I designed a new family of fast lower bounds

for MIN-FIBP-EQ and proved their worst-case performance ratios. The best

lower bound offers a guaranteed worst-case performance of 3/4. In practice,

it usually performs far better than this. With the first problem set, it per-

formed no worse than 5/6. With the second problem set, it performed no

worse than 9/10. Its worst-case complexity is 𝒪(𝑛 log 𝑛). 5. I made significant

changes to a grouping genetic algorithm for classic bin packing, as well as

its constituent operators, and adapted it to the new problem MIN-FIBP-EQ. I

also proposed a more efficient genome representation for all grouping genetic

algorithms designed for bin packing. 6. I created a reference implementation

of a state-of-the-art solver incorporating the proposed algorithms and made it

available to the public. 7. I designed a comprehensive problem instance set 𝒫2
to evaluate the solver and made it publicly available. I published the full result

35

set to allow for future comparisons.

2.6 Optimized Deployment Plans for Platform as a

Service Clouds

I approximately solve theNP-hard problem of computing deployment plans for

multiple cloud services by presenting approximate and heuristic algorithms

that can operate under soft real-time constraints. The objective is to find an

optimal assignment of services to servers, minimizing the number of servers

and service instances, as service instances incur overhead through memory

use and complex management, while running servers cost money and energy.

I also wish to do this quickly, due to the high volatility of many Internet-scale

applications.

I target a PAAS utility model where the cloud provider offers a computing

platform with automatic resource management. This is in contrast to an IAAS

model, where the basic offering is the VM. In the IAAS model, a VM must not

require more computing resources than what is provided by a PM. In both

models, the cloud provider allocates multiple VMs to a single PM and tries to

keep its utilization within allowable limits in order to leverage its hardware

investment.

The distinction between IAAS and PAAS is somewhat blurred, but the tra-

ditional view of PAAS is that it provides users access to elastic computing

resources without the need for explicit management. The PAAS model suits

services that can be deployed in multiple VMs, resulting in increased reliability

and performance, since the performance and reliability requirements of a

service may exceed that which is offered by a single physical server.

The platform in PAAS can be simply regarded as middleware, which any

IAAS user also can leverage to deploy a service in multiple VMs and then

use a scaling and load balancing mechanism to distribute the work among

dynamically allocated VMs. Indeed, many scholars have studied the problem

of horizontal scaling from the perspective of the IAAS user. A common theme

in these works is that cloud providers leverage existing IAAS clouds to deploy

services in combination with an auto-scaling mechanism for deciding how

many VMs a given service will require at any given moment, either now or in the

future, as well as a load balancer for distributing the load between these VMs.

In this way, cloud providers obtain the benefits of a PAAS cloud while using a

basic IAAS cloud, giving greater control to the downstream provider. However,

from a holistic perspective, it is actually beneficial to leave the responsibility

of elastic scaling and resource management to the upstream provider, which

can optimize the entire system globally.

For example, assume that a data center hosts three services (𝑎, 𝑏 and 𝑐),

36

from three different users in three different servers, and that each server is

capable of handling 500million instructions per second (MIPS). The demand

is 600MIPS for service 𝑎, 100MIPS for service 𝑏 and 300MIPS for service 𝑐.
Since the resource demand for service 𝑎 exceeds the capacity of a server,

the downstream provider deploys the service in two VMs: 𝑎1 and 𝑎2, requir-

ing 300MIPS each (horizontal scaling), using a load-balancing mechanism to

spread the requests evenly between the VMs. Now each server is underuti-

lized, partially due to the policy that the load associated with service 𝑎 is evenly

distributed among its two instances. The downstream provider cannot know

that this situation is suboptimal. However, taking into account the comput-

ing needs of all services in the data center, one can find a better allocation of

VMs to servers and consolidate the services in only two servers. This optimal

solution cannot be obtained if the upstream provider is bound by the deci-

sions made by the downstream provider. Only the upstream provider knows

the complete picture, so by leaving resource management to the upstream

provider, a better outcome is achievable. This leads to lower operational costs

for the upstream provider and a lower environmental footprint for all involved

entities. The upstream provider can in turn reduce its prices, gaining an edge

over its competitors, also benefiting the downstream provider.

Due to the high volatility in the load of many Internet-scale applications,

the algorithms involved in deployment planning must be fast and produce

good solutions before they become irrelevant due to changed premises. That

is, they must operate under soft real-time constraints. The algorithms must

cope with large clusters consisting of millions of services and servers without

spending too much resources on producing the deployment plans, since they

are merely means to an end and do not possess any intrinsic value.

Resources are discrete quantities. To make the problem tractable, resource

supply and demand must be quantized at some resolution, e.g. in a scenario

where CPU is the bottleneck resource and the most powerful available server

offers 500MIPS, quantizing supply and demand as units of 100MIPS yields a

set of 5 distinct resource requirements for the entire system. By definition, any

service requiring more than 500MIPS must be broken up into distinct parts

requiring no more than 500MIPS each.

Several authors have used classic BP as the underlying model for such

algorithms. However, algorithms based on classic BP must always produce de-

ployment plans using unaltered services with fixed size, since they cannot alter

the sizes of the VMs that will be deployed. This greatly limits the applicability

of the classic BP model.

For this reason, I have devised an approach based on fragmentable items

bin packing (FIBP), which is a generalization of classic BP and can produce

variable-size deployment plans. This model enables full utilization of an opti-

mal number of servers, as opposed to a classic BP model, which leaves many

37

Table 2.1: Example of deployment plans

(a) Fixed-size plan

Server

Service 𝑆1 𝑆2 𝑆3
a 3/5 3/5
b 1/5
c 3/5

(b) Variable-size plan

Server

Service 𝑆1 𝑆2
a 5/5 1/5
b 1/5
c 3/5

servers underutilized. It naturally incorporates services too large to fit in any

one server, since these require splitting, and is approximately solvable under

soft real-time constraints, where the goal is minimizing the number of service

fragments.

The optimal number of servers is attained practically for free, since it

is straightforward to compute through the linear relaxation of the packing

problem, and any valid FIBP solution will satisfy this optimal set of servers.

Thus, it is a further benefit of the FIBP model that its objective merely consists

of reducing the number of service fragments, not in minimizing the number of

servers. The optimal number of servers for a fragmentable items bin packing

with equal capacities (FIBP-EQ) problem is given by Equation 2.1, where the

sum of item sizes ∑𝑠 is divided by the unique bin capacity 𝑐.

𝐿1 = ⎡
⎢
⎢

∑ 𝑠
𝑐
⎤
⎥
⎥

(2.1)

Figure 2.4 illustrates how a fixed-size plan, such as one produced by solving

a classic BP problem, is less efficient than a variable-size plan, such as one

obtained from MIN-FIBP. In the example, there are three services: 𝑎, 𝑏 and

𝑐, with respective capacity requirements of 6/5, 1/5 and 5/5. Each server

provides 5/5 units of processing power. A classic BP model is not directly

applicable to this problem, since service 𝑎 does not fit in any one server.

If one modifies the problem and splits service 𝑎 in two equal pieces, 𝑎1 and 𝑎2,
each requiring 3/5 of a server, as shown in Table 2.1a, one can solve the problem

using 3 servers, but each server is underutilized, as shown in Figure 2.4a. If one

instead were to split service 𝑎 in two unequal pieces: 𝑎1 with capacity require-

ment 5/5 and 𝑎2 with capacity requirement 1/5, as shown in Table 2.1b, one

can fit all services in two servers with full utilization, as shown in Figure 2.4b.

In the classic BP problem 𝑛 items (services) and 𝑛 bins (servers) are given.

The goal is to produce an assignment 𝜲 of items to bins with a minimum

number of bins in use. Each bin has a capacity 𝑐, which may not be exceeded.

Each item 𝑖 has a size 𝑠𝑖 requiring some capacity of the bin in which it is placed.

38

a1
s = 3

5

b
s = 1

5

S1

a2
s = 3

5

S2

c
s = 3

5

S3
(a) Fixed-size services.

a1
s = 5

5

S1

a2
s = 1

5

b
s = 1

5

c
s = 3

5

S2
(b) Variable-size services.

Figure 2.4: Example of service deployment.

The classic BP problem can be formalized as

min
𝑧

𝑧 =
𝑛
∑
𝑖=1

𝛾𝑖 (2.2a)

subject to

𝑛
∑
𝑗=1

𝑤𝑗𝜒𝑖𝑗 ≤ 𝑐𝛾𝑖, ∀𝑖 ∈ N = {1, … , 𝑛}, (2.2b)

𝑛
∑
𝑖=1

𝜒𝑖𝑗 = 1, ∀𝑗 ∈ N, (2.2c)

𝛾𝑖 ∈ 𝔹, ∀𝑖 ∈ N, (2.2d)

𝜒𝑖𝑗 ∈ 𝔹, ∀𝑖, 𝑗 ∈ N. (2.2e)

This paper applies the fragmentable bin packing model from Byholm and

Porres (2018) to cloud computing and shows why the model is a good fit. It is

effectively serverless computing. The paper thus addresses RQ5 from subsec-

tion 1.6.5. I present a formal definition of the problem of deployment planning

for cloud services in a PAAS context, as well as planning algorithms based on

FIBP that work under soft real-time constraints.

MIN-FIBP is the optimization version of FIBP. In MIN-FIBP, the minimum

number of servers required to solve a problem is always known. The objective

is to minimize the number of fragments for given sets of items and bins. A

solution with no cuts is equivalent to a classic BP solution. The MIN-FIBP

problem can be formalized as follows: It comprises an assigment 𝜲 of services

𝑠 ∈ S to servers 𝑚 ∈ M. The objective Equation 2.3a is to minimize the number

of fragments, i.e. integer entries 𝜒𝑠𝑚 > 0. The first constraint Equation 2.3b

is that each service 𝑠 ∈ S must be fully assigned to some servers 𝑚 ∈ M, so

39

the sizes of all containers of service 𝑠 must add up to the quanta r(𝑠). The

second constraint Equation 2.3c states that each server 𝑚 ∈ M has a capacity

R(𝑚), which must not be exceeded. The third constraint Equation 2.3d restricts

containers to multiples of unit-sized parts, so the size of each container must

be a natural number:

min
𝜲

∑𝟙𝜲>𝟘 (2.3a)

subject to ∑
𝑚∈M

𝜒𝑠𝑚 = r(𝑠), ∀𝑠 ∈ S, (2.3b)

∑
𝑠∈S

𝜒𝑠𝑚 ≤ R(𝑚), ∀𝑚 ∈ M, (2.3c)

𝜒𝑠𝑚 ∈ ℕ, ∀ (𝑠, 𝑚) ∈ S ×M. (2.3d)

I approximately solve the MIN-FIBP problem using the grouping genetic al-

gorithm from Byholm and Porres (2018). The algorithm yields a guaranteed

5/4-approximation with complexity 𝒪(|S|2) in the worst case. For actual ap-

plications, the resolution of resource requirements is a small constant, much

smaller than the number of services |S|. In every case like this, the worst case

complexity is only 𝒪(|S| log|S|).
Through computational experiments involving 10 random deployment

planning problems with 256 services each, I show how my algorithm produces

optimal deployment plans for hundreds of servers in about 3milliseconds. This

is contrasted with attempting to solve the same models using the well-known,

award-winning, state-of-the-art solver CPLEX for mathematical programming,

which produces 30 % worse results, given 100 seconds per problem. I also

compare the classic BP model to the FIBP model and show that the FIBP model

requires 2–4 fewer servers than the BP model for every studied problem. I

thereby show that FIBP is a better model than classic BP for the problem of

computing deployment plans for multiple cloud services in soft real-time.

2.7 Dynamic Horizontal and Vertical Scaling of

Multiple Cloud Services in Soft Real-Time

I approximately solve the NP-hard problem of continuous deployment and

scaling for multiple cloud functions in a serverless computing setting. In this

problem, a number of users want to deploy multiple computing functions in the

cloud. Each function may state a minimum CPU capacity reservation, in order

to ensure a suitable response time. However, the CPU capacity reservation may

be larger than that provided by a physical server and the mapping of functions

to containers and servers is up to the provider.

I solve this problem by presenting approximate and heuristic algorithms

that can operate under soft real-time constraints. The objective is to find an

40

optimal assignment of functions to servers, minimizing the number of servers

and containers, as containers incur overhead through memory use, while

running servers cost money and energy. Figure 1.2 depicts the problem domain.

Sessions can move between containers implementing a service at a cost. Each

session belongs to a specific, fixed service and has an affinity for a specific

container that varies over time. This affinity captures the behavior of storing

session state locally in containers, which might lead to better performance, as

documented in Byholm and Porres (2014).

I study the elastic version of this problem, where users may vary the CPU

reservation of a function over time. In this case, the cloud platform must

not only optimize the number of running servers, but also the number of

function configuration management operations, such as deploying, migrating

or removing containers from servers, since each one of these management

operations incur CPU and traffic overheads.

Serverless computing is a fairly new concept in academia. It is a variant

of classic PAAS but with less control for users. This reduced control is not

necessarily negative, since users are freed from the responsibility of managing

the deployment. Less control for users means more control for providers.

Providers can optimize the deployment more efficiently, leading to reduced

costs.

The FAAS model suits functions that can be deployed in multiple servers,

resulting in increased reliability and performance, since the performance and

reliability requirements of a function may exceed that offered by a physical

server.

This paper addresses RQ6 from subsection 1.6.6 by combining the de-

ployment planner from Byholm and Porres (2017b) with an algorithm for

transitioning between deployments. It relates to Ashraf, Byholm, and Porres

(2016), Ashraf, Byholm, and Porres (2015) and Byholm and Porres (2014). I

introduce the concept of elasticity to the model and provide algorithms for con-

tinuous migration and dynamic updating. The main contribution of this article

are: a) A formal definition of the problem of deployment planning for cloud

functions in a FAAS context, b) deployment planning algorithms based on FIBP

that work in a dynamic setting and c) a migration algorithm for transitioning

between deployments at low cost.

The main algorithm executes whenever the sets of sessions for each service

changes. If a new session arrives, there are two possibilities: Either there

is sufficient capacity in some container, and the session is assigned to that

container, or no container can accommodate the session. If no container has

sufficient capacity, at least one container must grow by at least one unit. If

there is a suitable container on a server with unused capacity, one simply grows

that container by one unit and assigns the session there. If no container has

room to grow, one adds a server, makes a new assignment plan and finally one

41

migrates sessions and containers to realize the new plan. If a session leaves,

its container is shrunk, if possible. If this reduction in container size allows

using at least one server fewer, one makes a new assignment plan, migrates

sessions and terminates the then unused servers.

I represent the problem of assigning services to containers and containers

to services as the MIN-FIBP problem, like I did in Byholm and Porres (2017b). I

solve the problem in𝒪(|S|2) using the method of Byholm and Porres (2018). For

real-world problems, this complexity is further reduced to 𝒪(|S| log|S|). This

produces an abstract plan of containers with various sizes assigned to servers.

One must now make a concrete realization of this plan by mapping existing

containers to containers in the new plan and migrating sessions. I reduce

the problem of migrating sessions among containers to a linear assignment

problem, which I solve using an implementation of the LAPMOD algorithm

by Volgenant (1996). I solve the assignment problem as follows: Given an ex-

isting deployment 𝑨, a desired deployment 𝑩 of equal size and a cost matrix 𝜱,

find an assignment 𝜴∶ 𝑨 → 𝑩 with minimum cost.

To compute the cost of an assignment, one forms the cost matrix 𝜱 as the

amount of data (including code and cached program resources and application

state) that must be moved to make 𝑨 and 𝑩 equivalent. All data that are moved

out from a server must be moved in to another server. This means that one

only needs to compute the cost of moving data out:

𝜱 = [∑{d(𝑐)∶ 𝑐 ∈ ⋃𝛼 ⊖ 𝛽}∶ (𝛼, 𝛽) ∈ 𝑨M × 𝑩M], (2.4)

where d(𝑐) gives the size of data in (part of) a container 𝑐, while 𝛼 ⊖𝛽 denotes a

form of set difference between sets 𝛼 ⊆ 𝑨C and 𝛽 ⊆ 𝑩C, where a container in 𝛼
that is also found in 𝛽 is reduced to a container with capacity for a subset of the

smallest function invocations that must be moved out, given the capacity of the

container from 𝛽, while containers in 𝛼 that are not found in 𝛽 are returned as

usual. In other words: if a container for a function is found in both the existing

and the desired assignment and the container in the desired assignment is

smaller, return the smallest function invocations that must be moved to meet

the new capacity requirements, otherwise apply regular set difference. I then

solve the ensuing problem:

min
𝜴

⟨𝜱, 𝜴⟩F (2.5a)

subject to ∑
𝛼∈𝑨

𝜔𝛼𝛽 = 1, ∀𝛽 ∈ 𝑩M, (2.5b)

∑
𝛽∈𝑩

𝜔𝛼𝛽 = 1, ∀𝛼 ∈ 𝑨M, (2.5c)

𝜔𝛼𝛽 ∈ 𝔹, ∀ (𝛼, 𝛽) ∈ 𝑨M × 𝑩M, (2.5d)

where ⟨𝜱, 𝜴⟩F is the Frobenius inner product of 𝜱 and 𝜴.

42

I present a new take on the NP-hard problem of continuous deployment

and scaling for multiple cloud functions with soft real-time constraints. I

recognized that this is a generalized bin packing problem with fragmentable

items combined with an assignment problem. I formalized the problem domain

and designed scaling algorithms for a FAAS platform. I recognized that the

FIBP model is a better fit than the classic BP model, since it enables using

fewer servers, supports heterogeneous servers with multiple configurations

and copes with functions too large to fit in any single server. The FIBP model

enables denser packings with less wasted capacity. The linear assignment

problem offers an efficient way of transitioning between deployments. While

theoretically sound, the proposed design has yet to be implemented, integrated

with the ARVUE system and verified experimentally. The work remains at an

early stage and an extension would be an excellent research contribution.

2.8 A Multi-Objective ACS Algorithm to Optimize Cost,

Performance, and Reliability in the Cloud

Public cloud providers such as Amazon, Google and Microsoft operate large

data centers around the world using economies of scale to offer computing

resources at competitive prices. Their IAAS clouds offer various types of VMs

with varying levels of cost, performance and reliability. Some VM types have

large amounts of RAM relative to CPU, others provide more resources in all

aspects and some have specialized hardware, such as graphics processing units

(GPUs) for general-purpose computing on graphics processing units (GPGPU).

The choice of VM types and how many VMs of each type to procure directly

affects the QOS and cost of a system. A large number of contemporary software

systems are built from software components that can be deployed on one or

more VMs. A typical software system comprises a number of software com-

ponents, where each component often requires certain levels of performance

and reliability. Therefore, when deploying a component-based software sys-

tem in an IAAS cloud, performance and reliability requirements of individual

software components should be taken into account. In practice, it is often

possible to provide high QOS levels by over-provisioning resources. However,

over-provisioning results in increased cost of operation. Therefore, perfor-

mance and reliability of software systems can not be optimized in isolation

from the resource cost. Thus, a software deployment configuration should be

simultaneously optimized in terms of cost, performance and reliability.

The cloud-based software component deployment problem is a special

case of the generic software architecture optimization problem, in which the

search-space of architecture design alternatives is explored with respect to one

or more objectives. The component-based software development paradigm

43

provides various generic architectural degrees of freedom that can be exploited

to create different functionally equivalent alternatives of an architectural de-

sign. An architectural degree of freedom refers to a way an architecture model

can be modified and improved in terms of certain quality properties without

affecting the functionality of the system. For instance, the component alloca-

tion degree of freedom allows changing the allocation of software components

to servers in order to optimize a software architecture model with respect to

certain objectives. Thus, architectural degrees of freedom define the search-

space for optimization in which all solutions provide the same functionality,

but with different qualitative properties.

This paper defines the cloud-based software component deployment prob-

lem as a multi-objective optimization problem with three antagonistic ob-

jectives: 1. cost, 2. performance and 3. reliability. Manually exploring the

search-space of deployment configurations with respect to three antagonistic

objectives is time-consuming, error-prone, and may lead to sub-optimal solu-

tions. Moreover, since the multi-objective cloud-based software component

deployment problem is an NP-hard combinatorial optimization problem, it

should be approached in a systematic way by using efficient optimization tech-

niques. Furthermore, since the problem involves multiple objectives, single-

objective optimization techniques are not appropriate. Therefore, it should be

approached with a multi-objective optimization technique that produces a set

of Pareto-optimal configurations, which can later be evaluated on subjective

criteria. It is up to a utility function to pick the most preferred one, since this

cannot be done in an objective manner.

Pareto-optimal solutions to a multi-objective optimization problem lie on

the Pareto frontier. Figure 2.5 illustrates a Pareto frontier. Here, solution 𝐶 is

dominated by solutions 𝐴 and 𝐵, since both 𝐴 and 𝐵 score lower than 𝐶 in both

objectives 𝑓1 and 𝑓2. Solutions 𝐴 and 𝐵 do not, however, dominate each other,

since 𝐴 is better than 𝐵 in objective 𝑓2, but worse in objective 𝑓1.
This paper presents an ant colony system approach for multi-objective

optimization and compares it with a basic implementation of the well-known

genetic algorithm NSGA-II by Deb et al. (2002). It considers three degrees

of freedom: component allocation, VM selection and number of VMs. The

ant colony system outperforms the genetic algorithm in terms of quality and

number of Pareto-optimal solutions found, but its implementation is far slower.

This inefficiency could likely be improved in a production implementation. In

contrast to many existing approaches, the search algorithms function without

requiring initial, user-supplied architecture configurations, since that might

limit the search to a local area around the initial starting point. The method

is intended for design-space exploration rather than micro-optimization of a

given design. The paper addresses RQ7 from subsection 1.6.7 by exploring

design spaces through multi-objective optimization and Pareto analysis. The

44

𝐴 𝐵

𝐶

Pareto

𝑓2

𝑓 1

Figure 2.5: The Pareto frontier forms a Pareto set consisting of non-dominated

solutions. In this multi-objective minimization problem, solution 𝐶 is dominated

by solutions 𝐴 and 𝐵, since both 𝐴 and 𝐵 score less than 𝐶 in both objectives 𝑓1
and 𝑓2. Solutions𝐴 and 𝐵 do not, however, dominate each other, since𝐴 is better

than 𝐵 in objective 𝑓2, but worse in objective 𝑓1.

45

approach has been experimentally validated through a test problem loosely

based on an actual production system used in industry. The ant colony system

algorithm is compared with an alternative implementation using the well-

known NSGA-II algorithm by Deb et al. (2002). While the implementation of

the ant colony system algorithm is vastly slower than the alternative based

on NSGA-II, it does produce more solutions of higher quality for this specific

case study. One should also bear in mind that it is an early research prototype

focused on correctness, not on speed, whereas the NSGA-II implementation is

production ready. Neither approach is currently suitable for use as a frequently

evaluated routine in a time-sensitive cloud system, but further research into

that area is warranted.

The research was done in close collaboration with Adnan Ashraf, who

designed the ant colony system algorithm. I designed the problems and experi-

ments, analyzed the data, drew figures and developed the alternative approach

based on NSGA-II. I also aided in development of the scoring functions of the

ant colony system algorithm.

2.9 Discussion

I propose a new take on stateful serverless computing, defining its boundaries

while answering open research questions on the essence of serverless com-

puting. Serverless computing is not inherently stateless. In fact, no serious

computing is stateless. My work has a solid basis in proven theory, in addition

to experimental verification. The presented papers form the basis of what is re-

quired of a modern, cost-efficient, autonomous, serverless computing platform.

Stateful serverless computing is no silver bullet, but neither is anything else.

It is not sensibly applicable to every conceivable use case within computing

in general, nor cloud computing in particular. Stateful serverless computing

works when there are services associated with sessions in an OLTP setting.

When designing the system, I have considered three primary quality factors:

time, cost and reliability. As usual, the objectives are mostly antagonistic and

two of the options may be chosen at the expense of the third.

Machines are meant to serve humans. Hence, at the end of every computa-

tion sits a human waiting for a result. Humans have finite life spans, which is

why time is of the essence and latency should be minimized. This is especially

important in an OLTP context, which is what I primarily consider, as opposed

to batch processing. I have taken great care when designing the system to

minimize latency wherever possible.

Cost is important to the extent that service providers should be profitable,

else there would be no service providers, but time and quality must not suf-

fer too much at the expense of cost, since that would likely lose customers.

Reducing latency and maintaining reliability keeps users content, which is

46

beneficial to all involved parties. Increasing efficiency also reduces cost for

service providers, further increasing their profit margins.

The system should be reliable enough to maintain customers, but must

still meet the time and cost restrictions. Always ensuring perfect reliability

for every system interaction would often be too slow or expensive. Separating

data into soft and hard state, as I propose in this thesis, allows having lighter

reliability guarantees on soft state, which helps reduce latency and lower costs.

Because this work and the entire field of stateful serverless computing

is in its infancy, there are many relevant, concrete implementation details

which have not been studied in detail. Again, I do not believe that any single

implementation of the described system would be ideal for every possible

use case. While stateful services with HTTP sessions constitute the recurring,

practical use case throughout this thesis, this is not the only straightforward

application. Yet, there is a fine balance between specificity and generality.

Describing something too generically can lead to obfuscation, while being

overly specific hides the larger picture. In the end, successful products tend to

be more specific than general. To compare with many-objective optimization

and Pareto efficiency, pick one or two primary objectives and optimize for

them, because it is not possible to satisfy them all. As the old adage tells: Jack

of all trades, master of none.

To contrast my work from FAAS, I have not envisioned a swarm of tiny

functions composed to make a service, since that already exists and has sev-

eral known drawbacks, as previously discussed. For lack of a better name,

my vision could be described as service as a service, keeping data local to

where it is needed, preserving state over a long duration, increasing cohesion

and lowering coupling. This model is closer to traditional, monolithic design,

which reduces latency. At the same time, there should be enough flexibility to

easily restructure service deployments and manipulate the server pool in an

autonomous fashion so that the system can adjust to variations in demand and

provide redundancy to increase availability. I will conclude this discussion by

reflecting back on the research questions posed in section 1.6 and answering

them in a few sentences each.

The generic answer to RQ1 from subsection 1.6.1 on how to build an au-

tonomous serverless computing platform is to treat services as black boxes,

measure their impact on key performance indicators of the whole system

and take appropriate scaling decisions based on these measurements. The

answer to RQ2 in subsection 1.6.2 on how to optimize VM consolidation is

to pick a model which can be solved quickly enough for a system of a partic-

ular size, optimizing for the cost of consolidating the servers compared to

the cost of doing nothing, while accounting for the estimated future demand.

RQ3 in subsection 1.6.3 asked how to optimize session management. The

answer is to treat session state as soft state, maintain the affinity for sessions

47

to particular servers, cache session state locally in the application server and

settle for eventual consistency by asynchronously storing session state in a

reliable store. RQ4 in subsection 1.6.3 asked how to optimize caching. The

answer is that there is a constant storage duration obtained by dividing the

cost of computing an answer by the cost of storing said answer over time.

Only store data if at least one new request is likely to arrive for the same data

during the subsequent storage period. The anwer to RQ5 in subsection 1.6.5

on which optimization model suits serverless computing. The answer is bin

packing with fragmentable items, since it is better than classic bin packing

in every aspect. RQ6 in subsection 1.6.6 asked how to optimize scaling of

stateful serverless systems. My answer is to quickly compute a new desired

deployment configuration, determine whether a transition to the new new

deployment configuration is worth the effort and only then to transition into

the new deployment configuration through the shortest, cheapest path. As

for RQ7 in subsection 1.6.7 on how to optimize service deployments with

many objectives, the answer is not to do it, avoiding this scenario at all cost,

because true many-objective problems are too hard and complex to effectively

solve in any reasonable amount of time. Take every opportunity to discard in-

significant objectives, combine objectives using aggregate objective functions

and redefine the problem until it no longer is a true many-objective problem.

Many-objective problems warrant significant future research, but it might well

be a dead end.

48

And programming computers was so fascinat-

ing. You create your own little universe, and

then it does what you tell it to do.

Vint Cerf

3
Conclusion

This thesis presents resource management algorithms for many different prob-

lems in the field of serverless computing, as well as general cloud computing.

Contrary to the FAAS paradigm, which might be the most well known form of

serverless computing, I have incorporated the management of state into the

serverless system.

The ARVUE platform presented in Paper I was initially developed by Ashraf,

Byholm, Lehtinen, et al. (2012), before the term serverless computing existed,

and possesses all the necessary features to be considered a stateful serverless

computing platform. The platform seamlessly manages the computational re-

sources required for hosting stateful, third-party applications in a cost-efficient

manner, without charging for idle time.

VM consolidation aims to optimize the placement of VMs in PMs. Paper II

studied existing approaches to VM consolidation for large-scale, distributed

systems, comparing and categorizing various solutions to this problem.

Optimization problems involving more than one objective do not produce

a single optimal solution, since there are trade-offs between the antagonis-

tic objectives. Instead, they produce a set of Pareto-optimal solutions, none

strictly worse than any others. Paper VIII studied the problem of deploying

services requiring multiple resources to computation nodes with various cost,

performance and availability guarantees.

Many systems involve stateful services with sessions, where each user

belongs to an active session, containing state information, such as access cre-

dentials, profile data and work in progress. This state must be kept somewhere

available to the application server handling a particular request. Storing state

49

locally in RAM at an application server is fast, but memory is limited and

volatile. A fault anywhere in the application server can easily lead to loss of

the stored state, which will be perceived as a failure. Load balancing is also

harder, since all requests belonging to a session must be handled by the server

containing said state. Storing session state in a reliable, remote database, as

is common when a so-called stateless service requires state, adds cost and

latency due to data transfers. In Paper III, I studied various approaches to

optimized session management.

There are computations that require substantial computational effort and

produce large amounts of data. Paper IV developed an autonomous system

that balances the cost of recomputing a data set versus storing it for a given

duration.

One of the strengths of serverless computing is that the cloud provider

is free to manage the allocation of computing resources without input from

the users. In this context, the allocation of sessions, services, containers and

servers may be represented as a new abstract optimization problem known

as MIN-FIBP. In Paper V, I presented fast algorithms for solving said prob-

lem, which I applied in Paper VI after studying the merits of FIBP over BP.

In Paper VII, I extended this from the static deployment planning case to the

dynamic reconfiguration case.

Figure 3.1 shows the combined platform management algorithm. Operat-

ing in conjunction with the underlying stateful serverless computing platform

primarily developed in Paper I, shown in Figure 1.3, the prescribed algorithm

executes whenever there is a change in the set of sessions. If a new session

arrived, check for a suitable container implementing the service to which said

session belongs. If a suitable container with enough remaining capacity exists,

assign the session to that container. If no suitable container is available, the

system must scale up to meet the increase in demand. First attempt vertical

scaling by checking if an existing container has room to grow with its server. If

such a container exists, grow the container and assign the session to said con-

tainer. Otherwise, perform horizontal scaling by adding a new server. When

doing horizontal scaling, it is a perfect opportunity to reduce fragmentation

by creating a new deployment of services to servers, so solve a new MIN-FIBP

instance and migrate the existing deployment to this new deployment with

minimal effort, as described in Paper VII.

Before migrating between deployments, make sure to synchronize affected

session state to the reliable store formed by the repository. The session man-

ager described in Paper III is then able to successfully maintain the state for

said sessions. Since the changes between deployments are minimized by the

migration algorithm and the entire system is continuously kept close to an

optimal configuration, the impact of a migration operation is kept minimial.

Conversely, if a session left the system, check if the system can scale down

50

vertically by seeing its associated container can shrink without becoming

overloaded. If that is the case, shrink the container and see if the system could

scale down horizontally by removing a server. If this is possible, create a new

service deployment with fewer servers than the existing deployment by again

solving a new MIN-FIBP instance and migrating to this new deployment in the

same manner as when scaling up. On the other hand, if the affected container

could not be shrunk or a server could not be removed, do nothing.

3.1 FutureWork

The stateful serverless computing platform presented in this thesis is still in

its infancy. Hence, there remains plenty of practical future work in assembling

all the described components into a functioning unit, tuning parameters for

a specific use case, selecting which management policies to use and adding

redundancy to components where desired before it can be used in production.

Alas, building a fully functioning production-quality system of this magnitude

requires more resources than I have at my disposal as a poor doctoral student

and warrants proper compensation, which only the private sector has to offer.

There is, however, one remaining research avenue left to explore: A de-

tailed simulation of the complete system at a concrete level, e.g. using CloudSim

by Calheiros et al. (2011). Testing a feature-complete, fully functioning im-

plementation in a simulator together with actual traces of relevant activity

in a similar production cloud could yield new insights, as well as shorten

the development process of a concrete, production-quality implementation.

My work primarily deals with algorithms in the abstract, not so much with

implementation-specific concerns. Hence, many of the algorithms have only

been tested through abstract discrete-event simulations, which might not

always capture the full picture. For instance, bandwidth restrictions in the

network connecting PMs have only indirectly been accounted for. I suspect that

there may be more to investigate in that area, both within cloud computing in

general and in stateful serverless computing in particular.

On a more general note, as previously stated, some real-world problems

unfortunately have multiple relevant bottleneck resources that cannot easily

be transformed to single-objective problems via aggregate objective functions.

It would be highly desirable to see an extension of the FIBP problem to multiple

dimensions, together with with new algorithms which would retain as much

as possible of the speed and accuracy offered by my algorithms for MIN-FIBP,

but this lies more in the domain of operations research.

51

Session change Session
arrive?

Container
can shrink?

Shrink

Can remove
server?

Remove server

Nothing

Suitable
container?

Container
can grow?

Add server

Pack

Assign

Grow

Migrate

𝑛

𝑦

𝑦

𝑛

𝑛

𝑦 𝑦

𝑛

𝑛 𝑦

Figure 3.1: The stateful serverless computing platform performs horizontal and

vertical scaling combined with consolidation of servers and containers in an

efficient manner, which avoids unnecessary effort.

52

Glossary

ACID atomicity, consistency, isolation and durability

API application programming interface

BASE basically available soft state with eventual consistency

BP bin packing

CPU central processing unit

FAAS function as a service

FIBP fragmentable items bin packing

FIBP-EQ fragmentable items bin packing with equal capacities

GPGPU general-purpose computing on graphics processing units

GPU graphics processing unit

HTTP hypertext transfer protocol

IAAS infrastructure as a service

MIN-FIBP minimum fragmentable items bin packing

MIN-FIBP-EQ minimum fragmentable items bin packing with equal capacities

MIPS million instructions per second

MMKP multiple-choice multi-dimension knapsack problem

OLTP online transaction processing

PAAS platform as as service

PM physical machine

53

QOS quality of service

RAM random-access memory

SAAS software as a service

VM virtual machine

54

Bibliography

Ashraf, A., B. Byholm, J. Lehtinen, et al. (2012). “Feedback Control Algorithms to

Deploy and Scale Multiple Web Applications per Virtual Machine.” In 38th

Euromicro Conference on Software Engineering and Advanced Applications.

Ed. by V. Cortellessa, H. Muccini, and O. Demirors. IEEE Computer Society,

431–438.

Ashraf, A., B. Byholm, and I. Porres (2012a). “A Session-Based Adaptive Ad-

mission Control Approach for Virtualized Application Servers.” In The 5th

IEEE/ACM International Conference on Utility and Cloud Computing. Ed. by

C. Varela and M. Parashar. IEEE Computer Society, 65–72.

Ashraf, A., B. Byholm, and I. Porres (2012b). “CRAMP: Cost-Efficient Resource

Allocation for Multiple Web Applications with Proactive Scaling.” In 4th

IEEE International Conference on Cloud Computing Technology and Science

(CloudCom). Ed. by T. W. Wlodarczyk, C.-H. Hsu, and W.-c. Feng. IEEE Com-

puter Society, 581–586.

Ashraf, A., B. Byholm, and I. Porres (2015). “A Multi-Objective ACS Algorithm to

Optimize Cost, Performance, and Reliability in the Cloud.” In 8th IEEE/ACM

International Conference on Utility and Cloud Computing. Ed. by O. Rana

and M. Parashar. IEEE, 341–347.

Ashraf, A., B. Byholm, and I. Porres (2016). “Prediction-Based VM Provisioning

and Admission Control for Multi-Tier Web Applications.” Journal of Cloud

Computing, 5.(1), pp. 1–21. ISSN: 2192-113X.

Ashraf, A., B. Byholm, and I. Porres (2018). “Distributed virtual machine con-

solidation: A systematic mapping study.” Computer Science Review, 28C,

pp. 118–130. ISSN: 1574-0137.

Baglama, J. and L. Reichel (2005). “Augmented Implicitly Restarted Lanczos

Bidiagonalization Methods.” SIAM Journal on Scientific Computing, 27.(1),

pp. 19–42. DOI: 10.1137/04060593X.

Baldini, I. et al. (2017). “Serverless Computing: Current Trends and Open

Problems.” In Research Advances in Cloud Computing. Ed. by S. Chaudhary,

G. Somani, and R. Buyya. Singapore: Springer Singapore, pp. 1–20. ISBN:

978-981-10-5026-8. DOI: 10.1007/978-981-10-5026-8_1.

Barroso, L. A. and U. Hölzle (2007). “The Case for Energy-Proportional Com-

puting.” Computer, 40.(12), pp. 33–37. DOI: 10.1109/MC.2007.443.

55

https://doi.org/10.1137/04060593X
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1109/MC.2007.443

Beloglazov, A. and R. Buyya (Sept. 2012). “Optimal online deterministic al-

gorithms and adaptive heuristics for energy and performance efficient

dynamic consolidation of virtual machines in Cloud data centers.” Concur-

rency and Computation: Practice and Experience, 24.(13), pp. 1397–1420.

DOI: 10.1002/cpe.1867.

Byholm, B., F. Jokhio, et al. (2015). “Cost-Efficient, Utility-Based Caching of

Expensive Computations in the Cloud.” In 23rd Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing. Ed. by

M. Daneshtalab et al. Euromicro International Conference on Parallel, Dis-

tributed and Network-Based Computing. IEEE Computer Society Confer-

ence Publishing Services, 505–513.

Byholm, B. and I. Porres (2014). “Cost-Efficient, Reliable, Utility-Based Session

Management in the Cloud.” In 14th IEEE/ACM International Symposium on

Cluster, Cloud, and Grid Computing. Ed. by P. Balaji et al. IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing. IEEE Computer

Society, 102–111.

Byholm, B. and I. Porres (2017a). Dynamic Horizontal and Vertical Scaling of

Multiple Cloud Services in Soft Real-Time, tech. rep. 1182. TUCS.

Byholm, B. and I. Porres (2017b). “Optimized Deployment Plans for Platform

as a Service Clouds.” In Companion Proceedings of the 10th International

Conference on Utility and Cloud Computing. Ed. by G. Fox and Y. Chen. UCC

’17 Companion. ACM, 41–46.

Byholm, B. and I. Porres (Oct. 2018). “Fast algorithms for fragmentable items

bin packing.” Journal of Heuristics, 24.(5), pp. 697–723. ISSN: 1572-9397.

DOI: 10.1007/s10732-018-9375-z.

Calheiros, R. N. et al. (2011). “CloudSim: a toolkit for modeling and simulation

of cloud computing environments and evaluation of resource provisioning

algorithms.” Software: Practice and Experience, 41.(1), pp. 23–50. DOI: 10.
1002/spe.995.

Deb, K. et al. (Apr. 2002). “A fast and elitist multiobjective genetic algorithm:

NSGA-II.” IEEE Transactions on Evolutionary Computation, 6.(2), pp. 182–

197. ISSN: 1089-778X. DOI: 10.1109/4235.996017.

Fan, X., W.-D. Weber, and L. A. Barroso (June 2007). “Power Provisioning for a

Warehouse-Sized Computer.” SIGARCH Comput. Archit. News, 35.(2), pp. 13–

23. ISSN: 0163-5964. DOI: 10.1145/1273440.1250665.

Fouladi, S. et al. (Mar. 2017). “Encoding, Fast and Slow: Low-Latency Video

Processing Using Thousands of Tiny Threads.” In 14th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 17). Boston, MA:

USENIX Association, 363–376. ISBN: 978-1-931971-37-9.

Fox, A. et al. (2009). Above the Clouds: A Berkeley View of Cloud Computing,

tech. rep.

56

https://doi.org/10.1002/cpe.1867
https://doi.org/10.1007/s10732-018-9375-z
https://doi.org/10.1002/spe.995
https://doi.org/10.1002/spe.995
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1273440.1250665

Gale, W. A. and G. Sampson (1995). “Good-turing frequency estimation without

tears.” Journal of Quantitative Linguistics, 2.(3), pp. 217–237. DOI: 10.1080/
09296179508590051.

Goldberg, D. W. (Mar. 2009). “State considerations in distributed systems.”

XRDS, 15.(3), pp. 7–11. ISSN: 1528-4972. DOI: 10.1145/1525902.1525905.

Hellerstein, J. M. et al. (2019). “Serverless Computing: One Step Forward, Two

Steps Back.” In Proceedings of the 9th Biennial Conference on Innovative

Data Systems Research. CIDR ’19. Asilomar, CA, USA: CIDR.

Jokhio, F. et al. (2013). “A Computation and Storage Trade-Off Strategy for Cost-

Efficient Video Transcoding in the Cloud.” In 39th EUROMICRO Conference

on Software Engineering and Advanced Applications. Ed. by O. Demirors

and O. Turetken. IEEE Computer Society, 365–372. DOI: 10.1109/SEAA.
2013.17.

Kamra, A., V. Misra, and E. M. Nahum (2004). “Yaksha: A Self-Tuning Controller

for Managing the Performance of 3-Tiered Web sites.” In Twelfth IEEE

International Workshop on Quality of Service, 47–56. DOI: 10.1109/IWQOS.
2004.1309356.

Klimovic, A. et al. (Oct. 2018). “Pocket: Elastic Ephemeral Storage for Serverless

Analytics.” In 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18). Carlsbad, CA: USENIX Association, 427–444.

ISBN: 978-1-939133-08-3.

Koller, R. and D. Williams (2017). “Will Serverless End the Dominance of Linux

in the Cloud?” In Proceedings of the 16th Workshop on Hot Topics in Oper-

ating Systems. HotOS ’17. Whistler, BC, Canada: Association for Comput-

ing Machinery, 169–173. ISBN: 9781450350686. DOI: 10.1145/3102980.
3103008.

LeCun, B. et al. (2015). “Bin packing with fragmentable items: Presentation

and approximations.” Theor. Comput. Sci. 602, pp. 50–59. ISSN: 0304-3975.

DOI: 10.1016/j.tcs.2015.08.005.

Ling, B. C., E. Kiciman, and A. Fox (2004). “Session State: Beyond Soft State.”

In Proceedings of the 1st Symposium on Networked Systems Design and

Implementation (NSDI 2004). Ed. by R. T. Morris and S. Savage. USENIX,

295–308.

Liu, H. H. (2009). Software Performance and Scalability: A Quantitative Ap-

proach, Wiley Publishing. ISBN: 9780470462539.

Mell, P. and T. Grance (Sept. 2011). SP 800-145. The NIST Definition of Cloud

Computing, tech. rep. Gaithersburg, MD, United States. DOI: 10.6028/NIST.
SP.800-145.

Pérez, A. et al. (2018). “Serverless computing for container-based architec-

tures.” Future Generation Computer Systems, 83, pp. 50–59. ISSN: 0167-739X.

DOI: 10.1016/j.future.2018.01.022.

57

https://doi.org/10.1080/09296179508590051
https://doi.org/10.1080/09296179508590051
https://doi.org/10.1145/1525902.1525905
https://doi.org/10.1109/SEAA.2013.17
https://doi.org/10.1109/SEAA.2013.17
https://doi.org/10.1109/IWQOS.2004.1309356
https://doi.org/10.1109/IWQOS.2004.1309356
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1016/j.tcs.2015.08.005
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1016/j.future.2018.01.022

Quiroz Castellanos, M. et al. (2015). “A grouping genetic algorithm with con-

trolled gene transmission for the bin packing problem.” Comput. Oper. Res.

55, pp. 52–64. ISSN: 0305-0548. DOI: 10.1016/j.cor.2014.10.010.

Shehabi, A. et al. (June 2016). United States Data Center Energy Usage Report,

tech. rep. Berkeley, CA, United States. DOI: 10.2172/1372902.

Shen, H. and J. Z. Huang (2008). “Interday forecasting and intraday updating

of call center arrivals.” Manufacturing & Service Operations Management,

10.(3), pp. 391–410. DOI: 10.1287/msom.1070.0179.

Toyoda, Y. (Aug. 1975). “A Simplified Algorithm for Obtaining Approximate Solu-

tions to Zero-One Programming Problems.” Manage. Sci. 21.(12), pp. 1417–

1427. ISSN: 0025-1909. DOI: 10.1287/mnsc.21.12.1417.

Van Eyk, E. et al. (2018). “A SPEC RG Cloud Group’s Vision on the Perfor-

mance Challenges of FaaS Cloud Architectures.” In Companion of the 2018

ACM/SPEC International Conference on Performance Engineering. ICPE

’18. Berlin, Germany: Association for Computing Machinery, 21–24. ISBN:

9781450356299. DOI: 10.1145/3185768.3186308.

Vetro, A., C. Christopoulos, and H. Sun (2003). “Video transcoding architectures

and techniques: an overview.” IEEE Signal Processing Magazine, 20.(2),

pp. 18–29. DOI: 10.1109/MSP.2003.1184336.

Vogels, W. (Jan. 2008). “Beyond Server Consolidation.” Queue, 6.(1), pp. 20–26.

ISSN: 1542-7730. DOI: 10.1145/1348583.1348590.

Volgenant, A. (1996). “Linear and semi-assignment problems: A core oriented

approach.” Computers & Operations Research, 23.(10), pp. 917–932. ISSN:

0305-0548. DOI: 10.1016/0305-0548(96)00010-X.

Von Neumann, J. and O. Morgenstern (1953). Theory of Games and Economic

Behavior, Third. Princeton, NJ: Princeton University Press. 641 pp.

58

https://doi.org/10.1016/j.cor.2014.10.010
https://doi.org/10.2172/1372902
https://doi.org/10.1287/msom.1070.0179
https://doi.org/10.1287/mnsc.21.12.1417
https://doi.org/10.1145/3185768.3186308
https://doi.org/10.1109/MSP.2003.1184336
https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1016/0305-0548(96)00010-X

Benjamin Byholm

Optimizing Stateful
Serverless Computing

B
enjam

in B
yho

lm
 /

/ O
p

tim
izing

 Stateful Serverless C
o

m
p

uting
 /

/ 2
0

2
1

ISBN 978-952-12-4054-6

Benjamin Byholm

Optimizing Stateful Serverless Computing
Stateful serverless computing is a new paradigm within cloud computing. It successfully
incorporates state management with serverless computing. Serverless computing is a form
of cloud computing where the servers necessary for performing computation have been
abstracted away, leaving the choice of where and how to perform a computation solely in
the hands of the cloud provider. This abstraction simplifies the programming model for the
cloud user, who can focus on business logic instead of scaffolding. It also offers the cloud
provider greater freedom in how to manage the involved data centers, allowing for greater
utilization of available resources.

In this thesis, I propose an autonomous platform for stateful serverless computing, provide a
reference design and study the involved problems while providing their solutions. I focus on
optimizing the entire system from the perspective of a cloud provider in terms of efficiency,
cost and quality. The platform is able to autonomously adjust the supply of computing
resources to meet fluctuations in demand without unnecessary waste. I show how to manage
state in an efficient manner, which reduces latency while retaining flexibility in moving
computations among servers. I further show how to manage a data cache in a cost-efficient
manner, trading computation for storage. I present a new model for assigning computations
to servers, allowing for higher utilization of available computing resources, thereby reducing
the operational expenses of the cloud provider. I also show how to quickly solve this model,
allowing for continuous redistribution of computations among servers to help maintain high
resource utilization.

	Abstract
	Sammanfattning
	Acknowledgments
	Original Publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Services and Sessions
	1.2 Cloud Computing
	1.3 Serverless Computing
	1.4 Implementation
	1.5 Design Considerations
	1.6 Research Questions
	1.6.1 How to build a stateful serverless computing platform?
	1.6.2 How to optimize virtual machine consolidation?
	1.6.3 How to optimize session management?
	1.6.4 How to optimize caching?
	1.6.5 Which optimization model suits serverless computing?
	1.6.6 How to optimize scaling of stateful serverless systems?
	1.6.7 How to optimize service deployments with many objectives?

	1.7 Overview of Research

	2 Contributions
	2.1 Prediction-Based VM Provisioning and Admission Control for Multi-Tier Web Applications
	2.2 Distributed virtual machine consolidation: A systematic mapping study
	2.3 Cost-Efficient, Reliable, Utility-Based Session Management in the Cloud
	2.4 Cost-Efficient, Utility-Based Caching of Expensive Computations in the Cloud
	2.5 Fast algorithms for fragmentable items bin packing
	2.6 Optimized Deployment Plans for Platform as a Service Clouds
	2.7 Dynamic Horizontal and Vertical Scaling of Multiple Cloud Services in Soft Real-Time
	2.8 A Multi-Objective ACS Algorithm to Optimize Cost, Performance, and Reliability in the Cloud
	2.9 Discussion

	3 Conclusion
	3.4 Future Work

	Glossary
	Bibliography

\documentclass[archive,11pt,b5paper,twoside,fancychapters,reprints]{tucsdissertation}
\usepackage[binary-units]{siunitx}
\usepackage{booktabs}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{subcaption}
\usepackage{pgfplots}
\pgfplotsset{compat=1.17}
\usepackage{tikz-uml}
\usepackage{tikz}
\usetikzlibrary{arrows}
\usetikzlibrary{calc}
\usetikzlibrary{chains}
\usetikzlibrary{patterns}
\usetikzlibrary{positioning}
\usetikzlibrary{shapes}
\usepackage[acronyms,nomain,nonumberlist,nopostdot,nowarn,toc]{glossaries}
\renewcommand*{\glossarysection}[2][\glossarytoctitle]{%
	\glsclearpage%
	\chapter*{#2}%
	\ifglstoc%
		\phantomsection%
		\ifglsnumberline%
			\addcontentsline{toc}{chapter}{\protect\numberline{}#1}%
		\else%
			\addcontentsline{toc}{chapter}{#1}%
		\fi%
	\fi%
}
\addpubresource{publications}
\addbibresource{bibliography.bib}

\setacronymstyle{long-sc-short}
\loadglsentries{acronyms}
\makeglossaries

\ifluatex
	\renewcommand{\matrix}[1]{\symbf{#1}}
	\renewcommand{\vec}[1]{\symbf{#1}}
\else
	\renewcommand{\matrix}[1]{\mathbb{#1}}
	\renewcommand{\vec}[1]{\mathbb{#1}}
\fi
\DeclarePairedDelimiter\ceil{\lceil}{\rceil}
\DeclarePairedDelimiter\floor{\lfloor}{\rfloor}
\DeclarePairedDelimiter\cardinality{|}{|}
\DeclarePairedDelimiter\buildset{\lbrace}{\rbrace}
\DeclarePairedDelimiter\buildmatrix{[}{]}
\DeclarePairedDelimiter\pair{\langle}{\rangle}
\DeclarePairedDelimiter\norm{\lVert}{\rVert}
\DeclarePairedDelimiter\abs{|}{|}
\DeclarePairedDelimiter\iverson{[}{]}
\DeclareMathOperator{\quantize}{r}
\DeclareMathOperator{\Quantize}{R}
\DeclareMathOperator*{\fmap}{\mapsto}
\DeclareMathOperator*{\foldl}{/\kern-0.2em{|}}
\DeclareMathOperator*{\foldr}{|\kern-0.2em{\backslash}}
\newcommand*\opair[2]{\left({#1,#2}\right)}

\newcommand*{\BigO}[1]{\operatorname{\mathcal{O}}(#1)}
\newcommand*{\BigTheta}[1]{\operatorname{\mathcal{\Theta}}(#1)}
\newcommand*{\BigOmega}[1]{\operatorname{\mathcal{\Omega}}(#1)}
\newcommand*{\frobenius}[2]{\pair{#1,#2}_\mathrm{F}}

\def\algorithmautorefname{Algorithm}

\newcommand*\ALGORITHM[4][]{\centering #2\ifx&\caption{\emph{#3}\label{alg:#4}}\else\caption[#1]{\emph{#3}\label{alg:#4}}\fi}
\newcommand*\FIGURE[4][]{\centering #2\ifx&\caption{\emph{#3}\label{fig:#4}}\else\caption[#1]{\emph{#3}\label{fig:#4}}\fi}
\newcommand*\TABLE[4][]{\ifx&\caption{\emph{#3}}\else\caption[#1]{\emph{#3}}\fi\label{tab:#4}\centering #2}

\newcommand*{\set}[1]{\mathbf{#1}}
\def\symdiff{\mathbin\triangle}
\def\dataop{\mathbin{\oplus}}
\def\hadamard{\mathbin{\circ}}
\def\p{\mathbf{\mathrm{P}}}
\def\np{\mathbf{\mathrm{NP}}}
\def\apx{\mathbf{\mathrm{APX}}}
\def\from{\colon}
\def\where{\colon}
\def\opt{\mathop{\mathrm{OPT}}}
\def\BFzero{\mathbb{0}}
\def\BFone{\mathbb{1}}

\hfuzz=8pt

\begin{document}
\begin{preamble}
\title{\texorpdfstring{Optimizing Stateful Serverless~Computing}{Optimizing Stateful Serverless Computing}}
\author{Benjamin Byholm}
\subject{Serverless Computing}
\isbnp{978-952-12-4053-9}
\isbnd{978-952-12-4054-6}
\department{Faculty of Science and Engineering}
\university{\AA bo Akademi University}
\address{Agora, Vattenborgsv\"agen 3 \\ 20500 \AA bo, Finland}
\city{\AA bo}
\defensedate{May 21, 2021}
\defenselocation{Auditorium XX, the Agora building,}
\printer{Painosalama Oy, Turku, Finland 2021}

\begin{supervisor}
	Prof.\ Ivan Porres \\
	Department of Information Technologies \\
	\AA bo Akademi University \\
	Finland
\end{supervisor}

\begin{reviewers}
\begin{reviewer}
 Prof.\ Tommi Mikkonen \\
 Department of Computer Science \\
 University of Helsinki \\
 Finland
\end{reviewer}

\begin{reviewer}
 Dr.-Ing. habil. Josef Spillner \\
 Service Prototyping Lab \\
 ZHAW School of Engineering\\
 Switzerland
\end{reviewer}
\end{reviewers}

\begin{opponents}
\begin{opponent}
 Prof.\ Tommi Mikkonen \\
 Department of Computer Science \\
 University of Helsinki \\
 Finland
\end{opponent}

\begin{opponent}
 Dr.-Ing. habil. Josef Spillner \\
 Service Prototyping Lab \\
 ZHAW School of Engineering\\
 Switzerland
\end{opponent}
\end{opponents}

\begin{dedication}
	To my mother and father.
\end{dedication}

\maketitle

\begin{abstract}
	Stateful serverless computing is a new paradigm within cloud computing.
	It successfully incorporates state management with serverless computing.
	Serverless computing is a form of cloud computing where the servers
	necessary for performing computation have been abstracted away, leaving
	the choice of where and how to perform a computation solely in the hands
	of the cloud provider. This abstraction simplifies the programming model
	for the cloud user, who can focus on business logic instead of scaffolding.
	It also offers the cloud provider greater freedom in how to manage the
	involved data centers, allowing for greater utilization of available resources.
	
	In this thesis, I propose an autonomous platform for stateful serverless
	computing, provide a reference design and study the involved problems while
	providing their solutions. I focus on optimizing the entire system from the
	perspective of a cloud provider in terms of efficiency, cost and quality.
	The platform is able to autonomously adjust the supply of computing resources
	to meet fluctuations in demand without unnecessary waste. I show how to manage
	state in an efficient manner, which reduces latency while retaining flexibility
	in moving computations among servers. I further show how to manage a data cache
	in a cost-efficient manner, trading computation for storage. I present a new
	model for assigning computations to servers, allowing for higher utilization
	of available computing resources, thereby reducing the operational expenses of
	the cloud provider. I also show how to quickly solve this model, allowing for
	continuous redistribution of computations among servers to help maintain high
	resource utilization.

	Merging theory and practice, I evaluate my designs both analytically and
	empirically. For empirical evaluation, I employ computational experiments,
	primarily through discrete-event simulation. While this work remains in its
	infancy, I believe that the presented concepts can be further refined into
	a working production system through dedicated, practical work. Some important
	questions remain unanswered, but hopefully they will one day be settled.
\end{abstract}

\begin{sammanfattning}
	Serverlösa datortjänster med tillståndsdata utgör en ny paradigm bland
	molnbaserade datortjänster. Detta område införlivar hanteringen av
	tillståndsdata och serverlösa datortjänster. Serverlösa datortjänster
	är ett delområde inom molnbaserade datortjänster där servrarna som behövs
	för beräkning har abstraherats bort, vilket låter leverantören av molnbaserade
	datortjänster avgöra var och hur beräkningar utförs. Detta förfarande förenklar
	utvecklingsmodellen för användaren av molnbaserade datortjänster, i och med att
	denne kan fokusera på verksamhetslogik i stället för infrastruktur. Å andra
	sidan erhåller leverantören av molnbaserade datortjänster större frihet i
	hanteringen av involverade datacentra, vilket tillåter en högre nyttjandegrad
	av tillgängliga resurser.
	
	I denna avhandling lägger jag fram en självstyrande plattform för serverlösa
	datortjänster med tillståndsdata, tillhandahåller en referensutformning samt
	undersöker och löser de underliggande problemställningarna. Huvudinriktningen
	ligger på optimering av systemet som helhet, utgående från leverantörens
	synvinkel i fråga om effektivitet, kostnad och kvalitet. Plattformen förmår
	självmant anpassa utbudet av beräkningsresurser för att tillmötesgå variation
	i efterfrågan utan onödigt spill. Jag fastslår hur man effektivt hanterar
	tillståndsdata, vilket minskar latens samtidigt som flexibiliteten i att flytta
	beräkningar mellan servar kvarhålls. Vidare påvisar jag hur man förvaltar ett
	cacheminne på ett kostandseffektivt sätt genom att byta beräkning mot lagring.
	Jag presenterar en ny modell för att tilldela beräkningar till servrar, vilket
	främjar en högre nyttjandegrad av tillgängliga beräkningsresurser. På detta vis
	minskas leverantörens driftskostnader. Jag fastslår även hur man snabbt löser
	denna modell, vilket tillåter kontinuerlig omfördelning av beräkningar mellan
	servrar i syfte att behålla en hög nyttjandegrad av beräkningsresurser.
	
	Genom att sammanfläta teori och praktik utvärderar jag mina skapelser såväl
	analytiskt som empiriskt. För empirisk utvärdering begagnar jag
	beräkningsexperiment, främst genom diskret händelsesimulering. Även om detta
	arbete fortfarande ligger i sin linda tror jag att de förevisade koncepten
	kan vidareutvecklas till ett fungerande produktionssystem genom hängivet,
	praktiskt arbete. Vissa viktiga frågor förblir obesvarade, men förhoppningsvis
	kommer de en dag att avklaras.
\end{sammanfattning}

\begin{acknowledgments}
	I wish to thank Prof.\ Ivan Porres for mentoring me in my scientific
	endeavors while giving me the freedom to do it my way. I also wish to thank
	Dr.\ Adnan Ashraf for a highly fruitful collaboration over the years.
	All my other colleagues and collaborators also deserve my gratitude, we have
	had many rewarding discussions and conducted highly engaging research.
	Finally, I wish to thank my friends and family for patiently giving me the time
	to work on my research, despite other plans and commitments. It is finally
	done. I will host a graduation party this year.
\end{acknowledgments}
\end{preamble}
\include{introduction}
\include{contributions}
\include{conclusion}
\printglossary[type=\acronymtype,title=Glossary]
\end{document}

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 72; only odd numbered pages
 Trim: none
 Shift: move left by 11.34 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 11.3386
 -0.2835

 Odd
 2
 SubDoc
 72

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 62
 206
 70
 35

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 77 to page 97; only odd numbered pages
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 5.6693
 -0.2835

 Odd
 77
 SubDoc
 97

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 76
 206
 96
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 77 to page 97; only even numbered pages
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 5.6693
 -0.2835

 Even
 77
 SubDoc
 97

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 77
 206
 95
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 101 to page 113; only odd numbered pages
 Trim: none
 Shift: move left by 5.03 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 5.0270
 -0.2835

 Odd
 101
 SubDoc
 113

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 100
 206
 112
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 101 to page 113; only even numbered pages
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 5.6693
 -0.2835

 Even
 101
 SubDoc
 113

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 101
 206
 111
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 117 to page 126; only odd numbered pages
 Trim: none
 Shift: move left by 4.52 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 4.5162
 -0.2835

 Odd
 117
 SubDoc
 126

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 118
 206
 124
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 117 to page 126; only even numbered pages
 Trim: none
 Shift: move left by 6.62 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 6.6217
 -0.2835

 Even
 117
 SubDoc
 126

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 119
 206
 125
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 129 to page 137; only odd numbered pages
 Trim: none
 Shift: move right by 7.78 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Right
 7.7831
 -0.2835

 Odd
 129
 SubDoc
 137

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 128
 206
 136
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 129 to page 137; only even numbered pages
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 5.6693
 -0.2835

 Even
 129
 SubDoc
 137

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 129
 206
 135
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 141 to page 167; only odd numbered pages
 Trim: none
 Shift: move right by 6.63 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Right
 6.6331
 -0.2835

 Odd
 141
 SubDoc
 167

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 140
 206
 166
 14

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 141 to page 167; only even numbered pages
 Trim: none
 Shift: move left by 17.01 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 17.0079
 -0.2835

 Even
 141
 SubDoc
 167

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 141
 206
 165
 13

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 171 to page 176; only odd numbered pages
 Trim: none
 Shift: move left by 5.39 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 5.3858
 -0.2835

 Odd
 171
 SubDoc
 176

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 170
 206
 174
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 171 to page 176; only even numbered pages
 Trim: none
 Shift: move left by 6.60 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 6.6047
 -0.2835

 Even
 171
 SubDoc
 176

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 171
 206
 175
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 179 to page 196; only odd numbered pages
 Trim: none
 Shift: move left by 4.96 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 4.9635
 -0.2835

 Odd
 179
 SubDoc
 196

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 182
 206
 194
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 179 to page 196; only even numbered pages
 Trim: none
 Shift: move left by 7.17 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 7.1666
 -0.2835

 Even
 179
 SubDoc
 196

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 183
 206
 195
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 199 to page 205; only odd numbered pages
 Trim: none
 Shift: move right by 7.26 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Right
 7.2635
 -0.2835

 Odd
 199
 SubDoc
 205

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 198
 206
 204
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 199 to page 205; only even numbered pages
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 Fixed
 Left
 5.6693
 -0.2835

 Even
 199
 SubDoc
 205

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 199
 206
 203
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.717 x 10.630 inches / 196.0 x 270.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 -4

 D:20210427102352
 765.3543
 Blank
 555.5906

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 None
 Left
 5.6693
 -0.2835

 Both
 199
 AllDoc
 205

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 14
 206
 205
 206

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: 6.929 x 9.843 inches / 176.0 x 250.0 mm

 Blanks
 0
 Always
 118
 2
 /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
 1

 D:20150206130427
 708.6614
 B5
 Blank
 498.8976

 LAST-1
 Tall
 1289
 415
 AllDoc
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 Custom
 BeforeCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 -4

 D:20150206130427
 708.6614
 B5
 Blank
 498.8976

 Tall
 1
 0
 No
 1910
 350
 QI2.9[QI 2.9/QHI 1.1]
 None
 Up
 8.5039
 -0.2835

 Both
 67
 AllDoc
 93

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 207
 208
 207
 208

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: 6.929 x 9.843 inches / 176.0 x 250.0 mm

 Blanks
 0
 Always
 118
 1
 /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
 1

 D:20150206130427
 708.6614
 B5
 Blank
 498.8976

 LAST-1
 Tall
 1289
 415

 AllDoc
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 Custom
 AfterCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

