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Abstract

The autonomous systems are typical examples of complex distributed cyber-physical
systems (CPS). The main characteristics of such systems is the use of autonomous
vehicles. They are increasingly used in various mission-critical tasks such as
surveillance and rescue operations. To execute the required tasks, the autonomous
swarm systems should fulfil such important dependability requirements as safety
and reliability. On the hand, while designing a swarm system, we should guarantee
that the robotic systems in the swarm do not collide with each other and objects
in the operating environment, i.e., ensure motion safety. On the other hand, to
ensure that the robots have sufficient resources to reliably complete the required
goals, we should also achieve efficiency while implementing the swarm mission, i.e.,
minimise the travelling distance of the robots vehicles. In this thesis, we propose a
novel integrated approach that ensures motion safety and efficiency while planning
and controlling an operation of swarms of autonomous robots. We validate our
approach in different case studies and compare them with some state-of-the art
benchmarks. Moreover, we rely on formal modelling to derive the safety constraints
guaranteeing that the swarm system can cope with both predicted and dynamically
emerging safety hazards. We define an architecture of the controlling software
that combines static and dynamic mechanisms for safe and efficient swarm control
and navigation. To ensure efficiency, while preserving safety, we propose a new
parallel algorithm for swarm mission planning. This algorithm is a combination of
evolutionary computing methods, machine learning and deterministic approaches
that coordinated by a central management component. The algorithm controls the
swarm actions on three different layers: the offline, online and vehicle layer as
well as allows us to plan and optimise at the run-time the routes of the vehicles to
maximise safety while minimising the travelling distance. Our solution promotes
a holistic approach to designing CPS — from a formal requirements definition to a
software implementation that fulfils the defined requirements in an efficient way.
The results of benchmarking demonstrate that our approach allows safe and efficient
control of swarms.
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Sammandrag

Autonoma system ir typiska exempel pa komplexa distribuerade cyber-fysiska
system (CPS). De viktigaste anvindningsomradet av sddana system #r autonoma
fordon. Autonoma fordon anvénds alltmer i olika uppdragskritiska uppgifter
som Overvaknings- och raddningsinsatser. For att utféra de uppgifter som krivs
bor de autonoma svirmsystem uppfylla viktiga palitlighetskrav som sidkerhet och
tillforlitlighet. Samtidigt, nér vi utformar ett svarmsystem, bor vi garantera att robot-
systemen i svirmen inte kolliderar med varandra och féremal i driftsmiljon, dvs
sikerstélla rorelsesdkerhet. For att sdkerstilla att robotarna har tillrdckliga resurser
for att pa ett tillforlitligt sétt fullgora de nodvéndiga malen, bor vi ocksa vara effek-
tiva nédr vi genomfor svirmuppdraget, dvs. minimera robotfordonets fiardavstand. 1
denna avhandling foreslar vi ett nytt integrerat tillvigagangssétt som sékerstéller
mandveringssikerhet och effektivitet samtidigt som man planerar och kontrollerar
en operation av svidrmar av autonoma robotar. Vi validerar var strategi i olika
fallstudier och jamfor dem med négra toppmoderna implementationer. Vi anvinder
ocksa formell modellering for att hirleda sidkerhetsbegrinsningarna som garan-
terar att svirmsystemet klarar av bade forutsagda och dynamiskt framkommande
sikerhetsrisker. Vi definierar en arkitektur for den styrande programvaran som kom-
binerar statiska och dynamiska mekanismer for séker och effektiv svirmkontroll
och navigering. For att sdkerstilla effektivitet, samtidigt som sdkerheten bevaras,
foreslar vi en ny parallell algoritm for planering av svirmuppdrag. Denna algoritm
dr en kombination av evolutiondra datormetoder, maskininldrning och determinis-
tiska tillvdgagangssitt som samordnas av en central styrkomponent. Algoritmen
kontrollerar svirmatgéirderna i tre olika lager: ett offline-, ett online- och ett for-
donslager som léter oss planera och optimera fordonens rutter for att maximera
sakerheten och samtidigt minimera korstrickan. Var 16sning framjar en helhetssyn
pa utformningen av CPS - fran en formell kravdefinition till en programvaruim-
plementation som uppfyller de definierade kraven pa ett effektivt sitt. Resultaten
av benchmarkingen visar att vart tillvigagangssitt mojliggor siker och effektiv
kontroll av svidrmar.
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Chapter 1

Introduction

1.1 Autonomous Vehicles

Autonomous Vehicles (AVs) are increasingly integrated into our everyday life. AVs
of all kinds, variety of servo-robots, industrial and medical robots perform a wide
spectrum of tasks alongside humans. This raises serious concerns regarding the
risks associated with blending the autonomous technologies into the safety-critical
activities as well as dependability of the resulting socio-technical systems.

Autonomous swarm (robotic) systems are increasingly used in a variety of
domains such as surveillance, observation, and monitoring of rescue areas, etc.
Moreover, it is envisaged that autonomous robotic systems will be able to perform
complex shipping and transportation operations. To ensure that a swarm can cor-
rectly and reliably perform a required mission, we should develop efficient and
highly-performant navigation algorithms.

Autonomous robots, in particular, swarms of drones are increasingly used in
a variety of applications such as surveillance, good delivery, rescue operations
etc. Strong business incentives drive fast development and deployment of the
drone technology. However, since the number of incidents involving drones is
increasing, it raises a serious concern regarding the safety implications of the
employed technology.

For instance, in November 2016, it was reported that “Passenger plane ap-
proaching Heathrow (was) in near-miss with drone 650ft to the east of the Shard”
[1]. Therefore, ensuring dependability in controlling autonomous systems, such as
swarms of drones, constitutes an important engineering problem. The autonomous
swarms of drones are typical examples of complex distributed cyber-physical sys-
tems (CPS). To execute the required tasks, the swarm systems should fulfil such
important dependability requirements as safety and reliability. On the hand, while
designing a swarm system, we should guarantee that the drones in the swarm do
not collide with each other and objects in the operating environment, i.e., ensure
motion safety. On the other hand, the drones are resource-constrained systems,



and hence, we should ensure that the drones have sufficient resources to reliably
complete the required task, i.e., achieve high efficiency while implementing the
mission. This introduces an additional complexity vector into the dependability
assurance. Therefore, the problem of ensuring dependability of swarm systems calls
for the integrated approaches that allow the designers to match the system-level
dependability requirements with their efficient implementations.

The navigation concept is divided into three main categories: placement, path
planning and control instructions to AVs. In this thesis we have focused on place-
ment and path planning. The placement of AVs defines the best configurations of
AVs at a different time in the dynamic environments. The goal of placement is to
make the best configuration to maximise the total benefit of the swarm. It works as
a dynamic optimisation problem. The path planning tries to improve the safety and
efficiency of AV’s routes. Usually, the shortest path is selected by common path
planning algorithms. For real-world application, computing the shortest path is not
sufficient, and we need to optimise routes to achieve the maximum level of safety
and efficiency at the same time.

The placement problem is an NP-hard problem, and when it is even more
difficult for dynamic swarm systems needs more computation resources and time
to define the best configurations. Using common evolutionary algorithms (EA)
and machine learning (ML) approaches are not applicable for the placement prob-
lem in dynamic swarm systems with lots of unpredictable obstacles. EAs work
efficiently for optimisation problems. However, they need more time and computa-
tional resources to generate an acceptable solution in real-time, or moreover, they
sometimes converge to local optimum results. As the navigation and placement
approaches need to make the best decision in the shortest possible time, they need
to be customised and more light-weight.

On the other hand, ML methods are successfully and widely used in the different
research areas. A ML method needs to be trained (to make a model), evaluated
and tested. Also, they need a complete data set to be trained correctly. In dynamic
environments that we would need to rebuild and retrain the algorithm for all dynam-
ically changing coordination whenever it happens. ML needs to be combined with
other methods to be capable to address navigation and placement problems.

1.2 Distributed Autonomous Navigation (DIANA)

Distributed Autonomous Navigation (DIANA) as a general and dynamic framework
is proposed in this thesis to address the above mentioned problems.

In this thesis, I tried to work on the development of high-performance algorithms
for controlling the swarm of AVs. The framework proposes algorithms for ensuring
safe, reliable and efficient control of swarm systems. The theoretical basis consists
of ML, EA, some deterministic approaches, and formal modelling. As a result
of my research, I have proposed the algorithm that combines EA, supervised and

2



unsupervised machine learning to allow swarm systems to maintain safe, reliable
and efficient operation despite the changes in the internal and external operating
conditions. Unsupervised learning is used to identify an unforeseen safety risk,
while supervised learning is used to develop risk mitigation strategies as well as
reconfigure the swarm to maintain reliability and increase efficiency. Finally, the
evolutionary computing provides us with a basis for creating high-performance
algorithms that can optimise the safety/reliability and efficiency ratio.

To guarantee safety and reliability, we needed to verify the proposed algorithms.
We have also developed formal models and applied advanced verification techniques
to ensure the correctness of the proposed algorithms. The DIANA framework can
be implemented on a heterogeneous computing platform. Such a platform has a
layered architecture, i.e., allow us to perform some computations directly in AVs
(for example drones), some computation at the fog layer and finally, offload the
most computationally intensive tasks to the cloud.

Finally, we have validated the framework by several case studies illustrating
a safe and efficient control of swarms of drones and monitoring missions using a
swarm of AVs.

In this thesis, we propose a novel integrated approach to ensuring dependability
of swarms of drones. Our approach combines formal modelling and evolutionary
computing to derive the architecture and efficient implementation of software that
controls the behaviour a swarm of drones and guarantee system dependability.

To ensure efficiency, while preserving safety, we propose a new parallel algo-
rithm for safety-aware swarm mission planning. The algorithm builds on the idea of
the evolutionary computing [2]. We consider the route planning as an optimization
problem that aims at maximizing safety while minimizing the length of the path
of each drone. As a basis of our solution, we take the Imperialist Competitive
Algorithm (ICA) [3]. By mimicking the processes associated with a competition of
imperialistic countries to acquire colonies, the algorithm iteratively generates the
solutions that progressively maximize (or minimize) the value of the defined fitness
function. In our definition of the fitness function, we explicitly introduce safety as
an argument, i.e., ensure that our route planning finds the safest shortest route for
each drone. The proposed solution allows the system to proactively recalculate the
routes of the drones to ensure that the swarm continues its mission execution in a
safe and efficient manner.

Our solution promotes a holistic approach to designing a particular class of CPSs
— from formal requirements definition to software implementation that fulfils the
defined requirements in an efficient way. The results of benchmarking demonstrate
that our approach guarantees safe and efficient control of swarms.

The main research questions addressed by the thesis:

1. How to combine EA, ML, and coordination algorithms to achieve a safe and
efficient real-time implementation of AVs?

2. How to formally verify safety of the proposed architecture?






Chapter 2

Background of the Modalities
Used in This Work

2.1 Dependability of Swarms of Drones

The swarms of drones are increasingly used for surveillance, shipping, rescue, etc.
A swarm is a group of autonomously functioning drones that in a coordinated
manner provide the required services, i.e., execute a number of missions. The
swarms of drones are the typical examples of complex distributed CPS (or even
systems of CPS). Each drone has an individual goal that contributes to achieving
an overall system-level goal of the entire swarm. Usually it is assumed that the
system-level goal remains unchanged for the entire mission. The system-level goal
can be defined in terms of the individual goals that each drone should achieve.
However, the behaviour of the swarm is highly dynamic, i.e., the tactics of achieving
the required goal continuously change depending on the situations emerging during
the mission execution.

Situation-awareness — an ability of the swarm system to assess its own state and
the state of its operating environment — is implemented by diverse set of means.
Firstly, each drone can communicate with its peers and the coordinator. In our
work, we assume that the communication is reliably maintained during the entire
mission. Secondly, each drone is capable of detecting and communicating its own
telemetry data: coordinates, speed, energy level, etc. Moreover, each drone has
some capability to monitor its environment, i.e., it might be equipped with sensors,
a radar or a camera to detect objects within certain proximity.

At a high level of abstraction, a swarm system follows the “monitor-adapt-plan-
execute” (MAPE) pattern [4]. The situation-awareness capabilities of the system
provide the necessary run-time feedback on the mission execution. The coordinator
collects the required telemetry data, performs the required adaptation to plan further
steps of the mission and communicates the plans to the drones. By using its own
navigation equipment, each drone executes the received plan. The overall system



behaviour is cyclic: at each cycle (usually called a time frame) the coordinator
receives the telemetry data and analyses them, computes further steps of the mission
using a route planning algorithm, and communicates the planned actions to each
drone of the swarm.

Let us now discuss the dependability aspect of controlling the swarms of drones.
A generic high-level requirement imposed on a broad range of swarm systems is to
ensure the the mission goal is achieved with a high likelihood despite unforeseen
changes and deviations. The main obvious implications of such a requirement are:
firstly, to preserve the structural integrity of drones, i.e., ensure collision avoidance,
and secondly, to minimise the risk of premature resource depletion, i.e., minimise
the travelling distance of drones.

The problem of collision avoidance, or more generally, motion safety poses a
significant challenge in engineering a large variety of autonomous vehicles. In the
context of the swarm system, the complexity of solution is even higher, because a
safety strategy should be devised for all drones in a coordinated manner. To ensure
motion safety of a swarm of drones, we propose to define the following three types
of requirements:

Reql The drones do not collide with the static objects (obstacles).
Req2 The drones do not collide with each other.

Req3 The drones do not collide with the dynamically appearing objects not belong-
ing to the swarm, e.g., airplanes or helicopters.

Let us consider Req1- expressing a collision avoidance with the static objects.
Since the terrain of the flying zone is known for each mission, to ensure that Req1
is satisfied, we should guarantee that the obstacles occurring on the flying altitude of
the drones are faithfully introduced as the constraints of the planning algorithm and
no unsafe routes are planned. The hazard “collision with a static obstacle” is known
in advance and hence can be avoided by the appropriate design and verification
measures.

Our next requirement Req2 — drones do not collide with each other — is more
challenging to address. Indeed, under the assumption of a fault-free system, to
deal with Req2, we could have adapted the same strategy as for dealing with
Req1 — avoid placing the drones at the positions occupied by other drones while
planning their routes. However, such an assumption is unrealistic because, due to
internal problem or sudden changes in the environment (e.g., wind gusts), drones
might deviate from their planned routes. Therefore, the hazard “mutual collision
avoidance” is semi-dynamically emergent: under the nominal conditions, it can be
avoided via the routing planning but requires monitoring and routing recalculation
if deviations are detected.

Finally, to address Req3 — the drones do not collide with the dynamically
appearing objects not belonging to the swarm — in our system design, we should
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include the mechanisms for dealing with the dynamically emerging hazards. Such
mechanisms put stringent requirements on the situation-awareness capabilities of
the system. To ensure that such a class of hazards can be mitigated, we firstly should
guarantee a reliable object detection. Secondly, we should halt autonomous flight of
the swarm, and execute controlled step-wise collision avoidance maneuver under
the continuous monitoring of the sensor data. The autonomous flight is resumed
only after the dynamically appearing object is no longer in a close proximity to the
drones.

It is worth mentioning a special case of Req2 — the situation when the deviations
in the drones behaviour are extremely adverse and the time before the predicted
collision is insufficient for the route recalculation. In this case, the system should
execute the procedure similar to Req3: halt the swarm movement and execute a
controlled maneuver. After the collision point is avoided, the autonomous flight
mode can be resumed. Here we observe a transformation of a semi-dynamically
emerging hazard into a dynamically emerging one.

A reverse transformation is also possible. For instance, consider a situation
when a swarm should fly over an airport runway or approach zone. Since it is known
in advance that an appearance of a dynamic object is likely in the corresponding set
of positions, the dynamically emerging hazard can be treated as a semi-dynamically
emerging one. When the drones approach the corresponding zone, while planning
the continuation of the mission, the system should ask for the information from the
air traffic controller.

In the next chapter, we demonstrate how to formalize the proposed motion
safety requirements. Meanwhile, let us discuss the second aspect of dependability
— reducing the risk of premature resource depletion. Each drone is a resource-
constrained system and every time unit spent in the air consumes power. Therefore,
achieving motion safety is a necessary, but not always sufficient condition for
achieving system dependability. The route planning algorithm should also aim at
minimising the travelling distance of each drone to ensure that the mission goal
remains achievable under the given resource constraints.

While preplanning a mission, the designers should estimate whether the mission
is feasible for the given resource characteristics of the system. Therefore, our
route planning algorithm should introduce a predictable bounded overhead to the
travelling distance of the swarm. Such an overhead should also be acceptable with
respect to the mission type:

Req4 The travelling distance overhead required to achieve safety is predictable and
bounded.

This is an important requirement that should be imposed on the route planning
algorithm.

Finally, high performance of the algorithm should also be guaranteed to ensure
dependability. Indeed, we assume that at each time frame the system implements
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the MAPE pattern. Therefore, the following constraint formulated as ReqS should
be satisfied:

Req5 Performance of the algorithm is sufficient to complete calculations within
each time frame, i.e.,

2 X Max Communication Delay + Algorithm WCET < Time frame

In this work, we propose an approach that integrates formal modelling to derive
the dynamic architecture of the swarm control system, which satisfies requirements
Reql - Req3, and evolutionary computing to develop an efficient algorithm for
safety-aware route planning, which comply with the requirements Req4 and Req5.

In Section 2.4, we give an overview of Event-B — the formal framework in which
we model requirements of motion safety and define the corresponding dynamic
system architecture.

2.2 Evolutionary Algorithms: Basic Concepts

Evolutionary computing comprises a set of optimization algorithms, which are
inspired by a biological or societal evolution [2]. The evolutionary algorithms (EA)
are widely used in the autonomous systems due to their ability to find, in a highly
performance way, near optimal solutions for the computationally hard problems.
Let us briefly overview the basics of the evolutionary algorithms.

The aim of an EA is to find an optimal solution for some real world problem.
The algorithm keeps on producing generations of the solutions until the generation
achieving a near-optimal solution is found. An EA mimics the survival of the fittest
principle of the nature. The first step in defining an EA is to establish a link between
the real world and a computational world of EA. This step relies on two fundamental
concepts: phenotype and genotype. Phenotype is a candidate solution (often called
an individual) in the real world. A genotype (often called a chromosome) is an
encoding of the phenotype in the domain of EA. For instance, if we are given an
optimization problem, in which the possible solutions are integers, then we can
represent them by their binary code, e.g., the phenotype 5 is represented by the
genotype 101. A representation of a phenotype by a genotype is called encoding,
while mapping of a genotype to a phenotype is called decoding.

The vast majority of EA starts from random generation of the initial population
of genotypes in the overall search space according to a certain probability distribu-
tion. For each genotype, we can evaluate the fitness function, which represents the
requirements to which the population should adapt. The fitness function assigns
quality measures to the genotypes and drives the population improvement. An
evaluation of a fitness function typically requires decoding of a genotype into the
corresponding phenotype and computing a certain quality measure. For instance,
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if the goal of EA is to find an integer x that maximizes x? then to evaluate fitness
function of, say, a genotype 101, we first decode the given genotype 101 to the
corresponding phenotype 5 and then compute square 5% = 25.

An EA evaluates the fitness function for all genotypes of a given population. The
genotypes with a higher values of the fitness function get the higher probability to be
chosen as the parents of the next generation. The chosen parents undergo variations
to create offsprings. A variation consists of mutation and recombination. Mutation
is a unary operator applied to a genome to produce a (slightly) modified mutant — a
child (offspring). Mutation is stochastic, i.e., the child depends of the outcomes of
random choices. For instance, a mutation of a genotype represented by a bit-string
can be achieved by a random flip of a bit. Recombination (or crossover) merges
the information from two parent genotypes into offspring genotype. Similarly to
mutation, the recombination is also stochastic — the choice of parents’ genotype parts
and the way of combining is random. Intuitively, recombination can be understood
as mating two individuals with the different but desirable features to produce an
offspring that combines both of those features.

Since the EAs keep the population size constant, we need to implement a
survivor selection mechanism that chooses the individuals that remain in the next
generation. Typically, it relies on the fitness ranking over the united set of parents
and off-springs and selecting the top fittest segment as the next generation.

The algorithm terminates either when the predefined number of generations
has been produced, the time allocated for running the algorithm has elapsed, or
the successive generations bring only a negligible improvement (and hence further
execution of the algorithm is impractical). There is a large variety of evolutionary
algorithms — some of them are inspired by natural phenomena, while other by the
social processes. An example of the former is ICA [3]. The algorithm simulates
a human social evolution. Its parallel implementation [5] shows a remarkable
performance in comparison with the other EAs and offers a promising solution
supporting computationally intensive tasks of autonomous systems.

ICA starts by a random generation of a set of countries — the chromosomes — in
the search space of the optimization problem. The fitness function determines the
power of each country. The countries with the best values of the fitness function
become Imperialists, the other countries become Colonies. The Colonies are divided
between the Imperialists and hence the overall search space is divided into empires.
An association of a Colony with an Imperialist means that only the chromosomes of
the Imperialist and its associated colonies will be used to crossover. The intuition
behind it as follows: since the Imperialist has a higher value of the fitness function,
by crossing it over with an associated Colony, which is known to have a lower
value of the fitness function, we inherit the strongest traits of the current population.
The mutation and crossover are implemented by the Assimilation and Revolution
operators. Assimilation moves colonies closer to an imperialist in its socio-political
characteristics. For instance, it can be implemented by a replacement of a bit of a
Colony chromosome by the corresponding bit (or a certain function over such a bit)
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of the Imperialist.

Revolution results in a drastic change of a colony characteristic. It can be
implemented by a random replacement of a certain bit in the Colony chromosome.
As a result of Assimilation and Revolution, a colony might reach a better position
and has a chance to take the control over the entire empire, i.e., to replace the current
imperialist. This can, of course, happen only if the evaluation of the fitness function
of such a colony gives a higher value (if we are solving a maximization problem)
than the value of the fitness function of the current imperialist. The next step of the
algorithm is to compute the power of each empire and implement the Imperialistic
Competition, which corresponds to the selection of the survivals process. The power
of an empire is computed as a sum of the value of the fitness function of imperialist
and a weighted value of the sum of the fitness functions of the colonies.

The imperialists try to take a possession of colonies of other empires, i.e., the
weakest empire loses its weakest colony. Indeed, the weakest empire does not offer
a promising solution in the search space and further assimilation of colonies to the
current imperialist would not bring any significant improvement. Therefore, it is
practical to reallocate the weakest colony to a more promising empire. In each step
of the algorithm, based on their power, all the empires have a chance to take control
of one or more of the colonies of the weakest empire. The steps of the algorithm are
repeated until a termination condition is reached. As a result, the imperialist of the
strongest empire will give us a near-optimal solution.

Similarly to all EAs, ICA suffers from two main problems. Firstly, if we have
to deal with a far-reaching search area, we need a large initial population to obtain
an accurate and reliable result. Secondly, if computations of the fitness function and
ranking are complex, the algorithm will suffer from severe performance degradation.
We have developed a solution that overcomes these limitations and can also be easily
parallelized. To solve the problem associated with a search in the far-reaching area,
we introduce the notion of multi-population, i.e., we divide the overall search space
into the clusters and perform the localized search first. The best local solutions are
taken as the input to perform the search in the entire space. Obviously, since the
local search procedures are independent of each other, they can be implemented in
parallel. Moreover, the multi-population based search increases the reliability of the
result, since it enables an exploration of a wider area by using migration operation.

To reduce the complexity associated with computation of the fitness function
and ranking, we propose to use the simpler operations of Genetic Algorithms (GAs).
For instance, the ranking based on converting between phenotypes and genotypes
requires much simpler computation as well as crossover. Such an approach results
in the significant savings in terms of the required computing resources.

The benchmarking [5] experiments demonstrate that the parallel implementation
of the proposed algorithm significantly outperforms similar parallel algorithms.
Therefore, it makes our approach a suitable candidate for solving the routing problem
of a swarm of drones — the topic that we discuss next.
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2.3 Machine Learning

ML is a sub-field of artificial intelligence (AI). Generally, the goal of ML is to
learn the structure of data first, and then fit that data into different models to predict
and utilize the behaviour of the data. The main difference between traditional
computational approaches and machine learning comes from their inputs and outputs.
In traditional approaches, the algorithm receives input data (features) and solution
(model) and generate the output data (labels). Machine learning receives input and
output data and generates a solution. This solution is made based on the samples
and their labels. It means ML depends on the quality of the data.

Although machine learning is a field within computer science, it differs from
traditional computational approaches. In traditional computing, algorithms are sets
of explicitly programmed instructions used by computers to calculate or solve a
problem. The machine learning algorithms instead allow for computers to train on
the given input data and use statistical analysis in order to output values that fall
within a specific range. Because of this, machine learning facilitates computers
in building models from sample data in order to automate the decision-making
processes based on input data.

The ML methods are categorized into three main categories: supervised, un-
supervised, and semi-supervised learning. In supervised learning, the algorithm is
trained with input data (instances) that are labelled by their desired outputs. The
algorithm learns the model of data by comparing the actual labels and predicted
data to find the possible error. There are many different supervised methods such as
support vector machines (SVM) [6], Linear regression [7], logistic regression [8],
Naive Bayes [9], k-Nearest Neighbors (kNN) [10], etc. In this work, we have used
two well-known supervised methods: k-Nearest Neighbours and Linear regression.

In unsupervised learning, the instances are unlabeled, so the learning algorithm
is left to find commonalities among its instances. As unlabeled data are more
plentiful than labelled data, ML approaches that promote unsupervised learning are
particularly helpful. The main goal of unsupervised learning may be as straightfor-
ward as discovering hidden patterns within a dataset, but it may also have a goal of
feature learning, which allows the computational machine to automatically discover
the representations that are needed to classify raw data. There are also different
unsupervised learning algorithm such as hierarchical clustering [11], k-means [12],
mixture models [13], etc. In the thesis, we have chosen to use k-means.

2.3.1 Kk-Nearest Neighbours

The k-Nearest Neighbours (kNN) algorithm is a supervised learning method. The
kNN can be used for classification and regression problems. The kNN is a fast and
straightforward machine learning method. Similar to other learning methods, the
quality of its results depend on the training data. The kNN predicts a value for
any input data (test set) based on the labels of its k-nearest neighbours based on
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the Euclidean distance between its place and other instances in the search space.
The kNN makes a model for each instance in the test set independently. Means
rebuilding the model takes more time. To reduce the total time, kNN relies on the
hyper-parameter optimization to enable fast and simple operation for the model
construction. As a result, a kNN works only based on one hyper-parameter. In
different ML methods, tuning of hyper-parameters is the most time-consuming
operation, and thus using only one hyper-parameter takes less time.

2.3.2 Linear Regression

One of the most popular supervised machine learning algorithms is Linear Regres-
sion. It performs a regression task. Regression generates an objective prediction
value based on independent variables. This method is used for discovering the main
relationship between forecasting and variables. The regression models differ based
on the variety of correlations between the independent and dependent variables
that are considered and the number of independent variables being used. Linear
regression predicts a dependent variable value (y) based on a given independent
variable (x). As a result, a regression algorithm determines a linear correlation
between x (input) and y(output):

=0+ 6 @1

2.3.3 k-Means

The K-means algorithm is an unsupervised and iterative algorithm that tries to
categorize the data set into K pre-defined separate clusters where each instance
refers to only one cluster. The algorithm tries to make the inter-cluster data points
as similar as possible while also keeping the clusters as different (far) as possible. It
assigns data points to a cluster such that the sum of the squared distance between the
data points and the cluster’s centroid (i.e., the arithmetic mean of all the data points
that belong to that cluster) is at the minimum. The smaller variation within clusters,
the more homogeneous (similar) the data points are within the same cluster.

The way k-means algorithm works is as follows: (i) Specify number of clusters
K; (ii) initialize centroids by first shuffling the data set and then randomly selecting
K data points for the centroids without replacement; (iii) keep iterating until there is
no change to the centroids. i.e., assignment of data points to clusters is not changing.

2.3.4 LeNeT-5

LeNet-5 [14] was used on a large scale to automatically classify hand-written digits
on bank cheques in the United States. This network is a convolutional neural
network (CNN) [15]. CNNs are the foundation of modern, state-of-the-art deep
learning-based computer vision. These networks are built upon three main ideas:
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local receptive fields, shared weights and spacial subsampling. The local receptive
fields, with shared weights are the essence of the convolutional layer and most
architectures described below use convolutional layers in one form or another.
Another reason why LeNet is a vital architecture is that before it was invented,
character recognition had been done mostly by using feature engineering by hand,
followed by a machine learning model to learn to classify the hand-engineered
features. LeNet made hand engineering features redundant because the network
determines the best internal representation from raw images automatically.

By modern standards, LeNet-5 is a straightforward network. It only has seven
layers, among which there are three convolutional layers (C1, C3 and C5), two sub-
sampling (pooling) layers (S2 and S4), and one fully connected layer (F6), that are
followed by the output layer [14]. Convolutional layers use five by five convolutions
with stride 1. Sub-sampling layers are two by two average pooling layers. Tanh
sigmoid activations are used throughout the network. There are several interesting
architectural choices that were made in LeNet-5 that are not very common in the
modern era of deep learning.

First, individual convolutional kernels in the layer C3 do not use all of the
features produced by the layer S2, which is very unusual by today’s standard. One
reason for that is to make the network less computationally demanding. The other
reason was to make convolutional kernels learn different patterns. This makes
perfect sense: if different kernels receive different inputs, they will learn different
patterns.

Second, the output layer uses 10 Euclidean Radial Basis Function neurons
that compute L2 distance between the input vector of dimension 84 and manually
predefined weights vectors of the same dimension. The number 84 comes from
the fact that it is essentially the weights represent by 7x12 binary mask, one for
each digit. This forces the network to transform the input image into an internal
representation that will make outputs of layer F6 as close as possible to hand-coded
weights of the ten neurons of the output layer.

LeNet-5 was able to achieve error rate below one percent on the MNIST data
set, which was very close to state of the art at the time (produced by a boosted
ensemble of three LeNet-4 networks).

2.4 Overview of the Event-B Framework

Event-B [16] is a state-based framework that promotes the correct-by-construction
approach to system development and formal verification by theorem proving. In
Event-B, a system model is specified using the notion of an abstract state machine
[16]. An abstract state machine encapsulates the model state, represented as a
collection of variables, and defines operations on the state, i.e., it describes the
dynamic behaviour of a modelled system. A machine also has an accompanying
component, called context, which includes user-defined sets, constants and their
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properties given as model axioms.

Machine M

Variables v

Invariants / Context C

Events Carrier Sets d
Initialisation | | Constants c
evt Axioms A
evty

Figure 2.1: Event-B machine and context

A general form for Event-B models is given in Fig. 2.1. The machine is uniquely
identified by its name M. The state variables, v, are declared in the Variables clause
and initialised in the Initialisation event. The variables are strongly typed by the
constraining predicates / given in the Invariants clause. The invariant clause might
also contain other predicates defining essential properties (e.g., safety invariants)
that should be preserved during system execution.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

evt = any a where G, then R, end,

where e is the event’s name, a is the list of local variables, the guard G, is a pred-
icate over the local variables of the event and the state variables of the system.
The body of an event is defined by a multiple (possibly non-deterministic) assign-
ment over the system variables. In Event-B, an assignment is represented by the
corresponding next-state relation R,. Later on, using the concrete syntax in our
Event-B models, we will rely on two kinds of assignment statements: determinis-
tic ones, expressed in the standard form x := E(x,y), and non-deterministic ones,
represented as x :| some_condition(x,y,x’). In the latter case, the state variable x
gets non-deterministically updated by the value x’ which may depend on the initial
values of the variables x and y.

The guard defines the conditions under which the event is enabled, i.e., its body
can be executed. If several events are enabled at the same time, any of them can be
chosen for execution nondeterministically.

If an event does not have local variables, it can be described simply as:

evt = when G, then R, end.

Event-B employs a top-down refinement-based approach to system development.
Development typically starts from an abstract specification that nondeterministically
models the most essential functional requirements. In a sequence of refinement steps,
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we gradually reduce non-determinism and introduce detailed design decisions. In
particular, we can add new events, split events, as well as replace abstract variables
by their concrete counterparts, i.e., perform data refinement.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demonstrated by
discharging a number of verification conditions — proof obligations. For instance, to
verify invariant preservation, we should prove the following logical formula:

A(d,c), I(d,c,v), Ge(d,c,x,v), R.(d,c,x,v,V') = I(d,c,V),(INV) 2.2)

where A are the model axioms, I are the model invariants, d and ¢ are the model
constants and sets respectively, x are the event’s local variables and v,V are the
variable values before and after event execution. The full definitions of all the proof
obligations are given in [16].

The Rodin platform [17] provides an automated support for formal modelling
and verification in Event-B. In particular, it automatically generates the required
proof obligations and attempts to discharge them. The remaining unproven condi-
tions can be dealt with by using the provided interactive provers.

2.5 Related work

The problem of motion safety of semi-autonomous robotic systems is currently
attracting significant research attention [18]. A comprehensive overview of the
problems associated with autonomous mobile robots is given in [19]. The analysis
carried out in [20] shows that the most prominent routing schemes do not guarantee
motion safety. Our approach resolves this issue and ensures not only safety but also
efficiency at online routing.

Macek et al. [21] proposed a layered architectural solution for robot navigation.
However, in their work, they focused on the safety issues associated with the
navigation of a single vehicle and did not consider the problem of collision-free
navigation in the context of swarms of robots. Aniculaesei et al. [22] presented a
formal approach that employs formal verification to ensure motion safety. Petti and
Fraichard [23] proposed an approach that relies on partial motion planning to ensure
safety. Their solution supports navigation of a single vehicle. In our work, we have
discretized the movement zone and have developed a highly efficient approach that
computes the next safe states for an entire swarm and provides a mechanism for
online route regeneration and collision avoidance.

Dong et al. [24] presented a software platform for real-time cooperative control
of multiple drones. Their work focuses on monitoring and control of multiple
drones from a ground control station. The approach does not generate paths for
the drones. Instead, the complete flight information (including the drone paths) is
provided to the ground control station that sends control commands to the drone
fleet. Olivieri and Endler [25] presented an approach for movement coordination of
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swarms of drones using smart phones and mobile communication networks. Their
work focuses on the internal communication of the swarm and does not provide
a solution for collision-free route generation. Biirkle et al. [26] proposed a multi-
agent system architecture for team collaboration in a swarm of drones. They also
developed a simulation platform for patrolling or surveillance drones, which monitor
a protected area against potential intrusions. However, they did not address path
planning and collision avoidance for the swarm.

Ivanovas et al. [27] proposed an obstacle detection and avoidance approach
for a drone. Their approach uses computer vision techniques for detecting static
obstacles in stereo camera images. The main focus of their approach is on how some
block matching algorithms can be used for obstacle detection. However,they did
not present a path planning and collision avoidance approach for multiple drones.
Barry and Tedrake [28] proposed an obstacle detection algorithm for drones that
allows the algorithm to detect and avoid collisions in real-time. Similarly, Lin
[29] presented a real-time path planner for drones that detects and avoids moving
obstacles. These approaches are only applicable for individual drones and they do
not provide support for a swarm of drones. In our work, we focused on collision
prediction and avoidance and efficient navigation of swarms of drones.

A comprehensive literature review on motion planning algorithms for drones can
be found in [30]. The approaches reviewed in [30] are applicable to the preliminary,
offline motion planning phase to plan and produce an efficient path or trajectory for
a drone before the start of the mission. A more recent survey on motion planning
of drones can be found in [31]. Augugliaro et al. [32] also presented a planned
approach for generating collision-free trajectories for a drone fleet. In contrast to
these approaches, our proposed approach combines offline motion planning with a
more realistic online route generation approach to produce efficient collision-free
routes.

In our previous works [33] and [34], we proposed a path planning and navigation
approach for a swarm of drones. We have combined the offline path planning with an
online navigation approach and used machine learning and evolutionary algorithms
to generate efficient paths while maximizing safety of the drones in a swarm. We
have also used collision prediction and drone reflexes to prevent collisions with
unforeseen obstacles.

Sujit and Beard [35] proposed a particle swarm optimization (PSO) based algo-
rithm for path planning for a swarm of drones. In their approach, whenever a drone
detects a moving obstacle, the anytime algorithm generates a new path for the drone
depending on the time allowed to compute a new path before a collision can occur.
Although the anytime algorithm avoids collisions with moving obstacles, it works
only in certain cases in which the obstacles can be detected from a significant dis-
tance. In comparison to the PSO-based algorithm, our proposed approach combines
an efficient path generation algorithm with a drone reflex computation algorithm to
avoid moving obstacles collisions in various kinds of scenarios. Moreover, our clus-
tering algorithm reduces the computation time by allowing to selectively regenerate
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paths in a close proximity of a moving obstacle. Silva Arantes et al.[36] presented a
drone path planning approach for critical situations requiring an emergency landing
of a drone. Their approach uses greedy heuristics and genetic algorithms (GGA)
to generate and optimize feasible paths under different types of critical situations
caused by equipment failures.

Currently, the problem of motion safety of autonomous robotic systems attracts
significant research attention. A comprehensive overview of the problems associated
with autonomous mobile robots is given in [37]. The analysis carried out in [38],
shows that the most prominent routing schemes do not guarantee motion safety.
Our approach resolves this issue and ensures not only safety but also efficiency of
routing. Macek et all [39] have proposed a layered architectural solution for robot
navigation. They focus on a problem of safe navigation of a vehicle in an urban
environment. Similarly to our approach, they distinguish between the global route
planning and a collision avoidance control. However, in their work, they focus
on the safety issues associated with the navigation of a single vehicle and do not
consider the problem of route optimization that is especially acute in the context of
swarms of robots.

A formal approach that employs formal verification to ensure motion safety
has been proposed by Aniculaesei et al. [40]. They employ UPPAAL to verify
that a moving robot engages brakes and safely stops upon detection of an obstacle.
Since in our work we have focused on finding an algorithm that optimizes the
safety/efficiency ratio, we have only employed formal verification to ensure that
our algorithm preserves the required safety properties. The solution proposed in
our work is more performant and flexible — it allows the system to dynamically
recalculate the route to prevent a collision and avoids unnecessary stopping of
drones.

Petti and Fraichard [41] have proposed an approach that relies on a partial
motion planning to ensure safety. They state that a calculation of an entire route is
such a complex and computationally-intensive problem that the only viable solution
is a computation of the next safe states and navigation within them. The solution is
proposed for navigation of a single vehicle. In our work, to overcome the problem
of heavy computational costs and hence insufficiently quick response, we have on
the one hand, discretized the search space, and on the other hand, developed a highly
performant algorithm that guarantees the desired responsiveness. As a result, we
could not only calculate the entire safe and efficient routes, but also solve this task
for a swarm of drones.

The problem of dynamic configuration of swarm-based monitoring systems is
novel, and to the best of our knowledge, the similar integrated solutions have not
been described in the literature. Therefore, in our overview of the related work, we
describe the research focusing on a similar problem of sensors placement in the
mobile sensor networks. Finding the optimal placement to improve connectivity,
reliability and energy consumption is an NP-hard problem [42]. There are different
heuristic methods to solve this problem [43], [44]. Thomas et al. [45] have devel-
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oped a heuristic algorithm to increase the network lifetime by iteratively moving a
router node to a better location. In [46], the authors present several trajectory control
algorithms with different assumptions regarding locating capabilities to achieve
the objectives of re-ducing the hop count and overhead. Youssef et al. [47] have
employed genetic algorithms (GAHO) for selecting the best spot for placing each
gateway so that that sensor data can be delivered to a gateway with the least latency.
Krause et al. [48] presented a data-driven approach (pSPIEL) that addresses the
three central aspects of this problem: measuring the predictive quality of a set of
sensor locations, predicting the communication cost incurred by these placements,
and designing an algorithm that is guaranteed to optimize the NP-hard tradeoff.
Dhumathi et al. [49] analyzed the total coverage area of a wireless sensor network,
identified the types of sensor nodes and coverage sensing distance, and calculated
the coverage sensing distance for the combination of all sensor types based on the
radius of each node. Majd et al. [50] presented two static methods for positioning
drones. They aimed at improving the deployment of dynamic nodes using a genetic
algorithm (DGA) to maximize the coverage. These methods have focused either
on maximizing the coverage or minimizing the energy consumption. However,
DIANA is the first framework to address both issues simultaneously. Another
difference between our work and the related works is that our approach utilizes a
multi-population implementation to find more reliable results in solving a complex
NP-hard multi-objective problem [51]. Furthermore, our approach is specifically
tailored to swarm configuration.
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Chapter 3

Proposed Method

3.1 Thesis Contributions

Today, due to the complexity of modern AVs, Al methods have emerged as a vital
solution. Generally, Al are time-demanding computational models for complex
problems, particularly when the search spaces and the number of objectives are
large. In this thesis, we focus on safe and efficient navigation and placement of
AVs. These two problems are optimization problems that can be solved in static
and dynamic environments. Among of EA’s we have selected ICA due to its high
performance and accuracy.

In Paper 1, we have used ICA to solve the optimal placement of swarm of
drones in an 2D static situation. The proposed method obtained good results, but
did not address dynamic environments. In Paper 2 and 3, we have presented a real-
time, collision-free motion coordination and navigation system for an Unmanned
Aerial Vehicle (UAV) fleet. This approach uses geographical locations of the UAVs
and their movement interaction about static and moving obstacles to predict and
avoid: (1) UAV-to-UAV collisions, (2) UAV-to-static-obstacle collisions, and (3)
UAV-to-moving-obstacle collisions. Our collision prediction approach leverages
efficient runtime monitoring to make timely predictions. A distinctive feature of
the proposed system is its ability to foresee a risk of a collision in real-time and
proactively find the best ways to avoid the predicted collisions in order to ensure
the safety of the entire fleet.

In Paper 4, as the placement and safe navigation of a swarm of AVs are multi-
objective problems, we have proposed a dynamic EA method to be applied in the
real-time environments. In Paper 5 and Paper 6, a two-layer hybrid method to solve
safe and efficient placement problem has been presented. These two layers are
called the off-line and real-time layers. The off-line layer computes some predicted
tasks such as the distance between two different points. In the online layer, an
efficient dynamic EA suggests the most efficient and safe paths. To avoid any
collision between drones, a central decision centre checks the safety of suggested
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paths.

The obtained results show that the proposed work has better performance than
other similar methods. In the Paper 7, to improve the speed and accuracy of our
approach, we have added a supervised machine learning algorithm that works
synchronously with our dynamic EA method to generate two independent solutions
for our path planning problem. In our approach, we need to build a model very
fast, be able to rebuild it efficiently in dynamic environments. Therefore, kNN
has been selected as a well-know, fast, accurate and straightforward supervised
learning method. The kNN in our approach uses the most similar instances based
on the number of drones in the future, and our training set updates continuously.
Avoiding collision between drones and dynamic obstacles is the most challenging
problem in the navigation of AVs. Therefore, we have added one more component to
analyze the movement of dynamic obstacles and predict their next movements. This
component uses linear regression to predict the movements of dynamic obstacles.

We improved our proposed method in Paper 8. In this paper, to maximize safety,
we expand the generated routes with dynamically computed drone reflexes. The
drone reflex computation module mimics a self-preservation control mechanism of
humans. The reflexes are automatic immediate or mechanical responses to particular
hazardous situations, such as quickly moving the hand away from a hot surface.
They aim at relieving and confining the effects and damages of suddenly occurring
hazards. In our proposed approach, when a drone detects a possible collision with
an unforeseen obstacle, the drone reflexes computation module quickly computes
a reflex movement for the drone to prevent and mitigate the collision. The reflex
movement is computed in the AVs layer (drone’s layer).

In all complex problems, when size of the problem increases, the computation
time will be increased. In Paper 9, we introduced our proposed framework DIANA.
To overcome complexity, we have used k-Means to cluster the flying zone. The
k-Means is a well-known unsupervised machine learning algorithm. By dividing
the flying zone into several distinct areas, the problem is broken down into smaller
areas and thus it is more straightforward to solve. Also, in this paper, for the first
time, we have used a deep neural network (LeNet-5) to generate 30 percent of the
initial population of the dynamic EA method. In normal EA methods, the initial
population is generated randomly, but in this work, the LeNet-5 method generates
different chromosomes based on the current situation of the environment. Also,
the algorithm can start its exploration based on some chromosomes that have more
chances to be selected as the best solution. In Paper 10, for the optimal dynamic
placement of drones, we have used the DIANA framework.

In Paper 11, we demonstrated formally how to derive the resilience-enhancing
mode transition logic from the goals that the system should achieve. In Paper 12, we
have proposed a novel multi-layered approach to ensuring the safety of drone navi-
gation. The approach aims at maintaining the most optimal ratio between efficiency
of mission execution and safety at a hierarchical distributed way. We formalize
the proposed approach in Event-B and derive the coordination and reconfiguration
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mechanisms, ensuring efficiency and safety of mission execution. The obtained
results show the DIANA can achieve efficient and safe results in the navigation and
placement of swarm of AVs in a dynamic environment. Finally, Paper 13 builds
on the previous results by proposing a multi-layered architecture of autonomous
systems. We define the notations of strategic, tactic, activity safety and underlying
communication model to implement the defined complementary safety mechanism.

3.2 The DIANA Framework

Figure 3.1 presents the structure of the proposed framework for intelligent navigation
of swarms of drones called DIANA. The Offline Part uses a Dynamic Evolutionary
Algorithm (DEA) to generate drone routes before the start of the mission. Moreover,
it computes and uses the shortest paths between the start and destination locations
of the drones. The shortest paths are computed by using the Dijkstra’s algorithm
[52]. Since a drone swarm is a highly dynamic system, we augment our offline
module with an online approach that provides run-time means for monitoring and
reconfiguration.

The information obtained from the Dynamic Monitoring component has two
main purposes. On one hand, it is a feedback mechanism. On the other hand, it
allows us to detect the changes in the drone swarm and in the flying zone. Such
changes may invoke swarm reconfiguration and regeneration of the drone routes.
In addition, the Prediction module uses the run-time monitoring data to predict
the movement of drones and moving obstacles in the flying zone. We feed the
monitoring data and prediction results to both DEA and kNN algorithms. As result,
these modules compute the alternative routes. The routes are compared by the
Decision Center that chooses the best solutions from the proposed alternatives. The
Navigation Center then issues the corresponding commands to the drones. The
Clustering Algorithm splits the set of drones into smaller subsets called clusters.
A cluster is formed by first checking the geographical locations of all drones and
then by grouping the drones base on their proximity to one another. The Safe Area
Computation and Reflexes Computation modules compute the safe area and drone
reflexes, respectively.

They implement our proposed drone reflexes approach [33]. The safe area
computation module uses the information of the known and predicted obstacles to
compute a safe area for each drone. Moreover, when a drone suddenly detects a
possible collision with an unpredicted obstacle, the reflexes computation module
quickly computes a reflex movement for the drone to prevent and mitigate the
collision.

For the DEA module, DIANA uses our parallel implementation of the ICA[53]
with an integrated migration operation (referred henceforth as the MICAP algo-
rithm). The MICAP algorithm computes the initial drone routes in the offline part
as well as the subsequent new routes during the execution of the mission. For the

21



Dynamic
Offline Part Evolutionary
Algorithm

Shortest Path
Computation

Online Part

v ¥ v

KNN 4—‘ Dynamic Monitoring %V DNN | p| Dynamic

Evolutionary
T Algorithm
P Decision Center

Best Decision
A

Safe Area o Clustering
4—» Navigation Center <P .
Algorithm

v
Reflexes
Drones .
Computation

Figure 3.1: The proposed DIANA framework

Computation

learning module, we use k kNN-based learning algorithm[54] that runs alongside
the MICAP algorithm.

The main steps of the DIANA approach are presented in Algorithm 1. The
algorithm starts with the preplanning of the mission — the offline execution of
MICAP to find the initial routes (Line 1-4). It then obtains the current actual and
predicted state of the system by invoking the dynamic monitoring and prediction
modules (Line 7) and runs the MICAP algorithm and the kNN-based learning
algorithm until the mission completes. In each iteration, it compares the results of
MICAP with that of the kNN-based learning algorithm and selects the best solutions
(Line 18 and 20). In the next step, our clustering algorithm generates drone clusters
(Line 8). It is based on the k-means clustering algorithm [55]. In each iteration, the
safe area computation module computes and updates the safe area for each drone
(Line 9). If a drone detects an unpredicted obstacle in its safe area (Line 10), the
drone reflex computation module is invoked to prevent and mitigate the collision
(Line 12-13). Moreover, the drone clusters and the best drone routes are regenerated
(Line 15-18).

The pseudocodes of the proposed MICAP, kNN, prediction, safe area com-
putation, and drone reflex computation algorithms are presented in Procedure 2,
3,4, 5, and 6, respectively. All five procedures are invoked by the main DIANA
algorithm presented in Algorithm 1. The MICAP, kNN, prediction, and safe area

22



Algorithm 1 DIANA
1: {Offline part in the cloud layer}

2: Compute the shortest path for each drone € D
3: Best-Routes <— Call MICAP(Initial-State)
4: Send(Best-Routes) — Navigation Center
5: {Online part in the cloud layer}
6: while Mission is in progress do
7. Current-State <— Call Dynamic Monitoring and Prediction modules
8:  Generate drone clusters by using k-means clustering
9:  FD < Call Compute-Safe-Area(Current-State)
10:  if drone d, detects an unpredicted obstacle in its safe area then
11 {Online part in the drones layer}
12: Reflex-Position <— Call Compute-Drone-Reflex(Obstacle-Position, FD)
13: Prevent and mitigate the collision by moving the drone to Reflex-Position
14: {Online part in the cloud layer}
15: Safey, <~ {Vd; € D | Distance’j <+ q <r}
16 Layer2g, < {VCZ;,EIl <j< c]Cl}ﬁ Safeq, # 0}
17: Diemp < LayeerqU Safedq
18: Call Compute-Send-Best-Routes(Dyenp)
19:  else
20: Call Compute-Send-Best-Routes(D)
21:  endif

22: end while

Procedure 1 Compute-Send-Best-Routes(Current-State)
1: Best-EC-Result < Call MICAP(Current-State)
2: Best-kNN-Result < Call KNN(Current-State)
3: Best-Routes < Max(Best-EC-Result, Best-kNN-Result)
4: Send(Best-Routes) — Navigation Center
5. Send(Best-Routes)— KNN-Dataset

computation modules can be implemented on a remote server in the cloud layer,
while the latency-sensitive operation involving the computation of drone reflexes
runs in the drones layer or on a fog or edge server. Our MICAP algorithm, learn-
ing algorithm, prediction algorithm, drone reflex computation algorithm, and the
clustering algorithm are described in the following subchapters.

3.2.1 Dynamic Evolutionary Algorithm

A swarm of drones is a typical example of a complex distributed networked system
[56]. Each drone can be seen as a mobile sensing node that is capable of collecting
monitoring data and communicating with some other drones in the swarm as well as
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Procedure 2 MICAP(Current-State)
1: if Processor P; then
2:  for j=1 to Population Size do
Initial-Population [j] <— Country ;
Cost_Initial-Population[j] <— o - Safety-Level +
end for
Initial-Population < Sort Initial-Population
for j=1 to #Empire do
Imperialist[j] < Initial-Population [j]
end for
10:  for j=#Empire+1 to Population Size do
11: Assigned as a Colony to an Empire
12:  end for
13:  for All Colony do
14: Assimilate Colony — Imperialist
15:  end for
16:  for All Colony do

p
Path—Length

R A A

17: if Colony > Imperialist then
18: Colony <« Imperialist
19: end if

20:  end for

21:  for j=1 to #Empire do

22: Empire Power(j] < Cost(Imperialist;) + & - Mean Cost(Empire ; Colonies)
23:  end for

24:  Temp < Worst Countrywo s Empire

25: Empirel#WorstEmpire < Temp

26:  if #lterations % Migration Gap=0 then

27: Best Country <— Worst Country processorP,;. yprocessors
28: Worst Country <— Best COUl’ltI'ypmcesso,»P(i )k Processors
29:  end if

30:  if termination condition then

31 return Best Country

32:  end if

33: end if

Procedure 3 KNN(Current-State)
1: for All Instance € Dataset do
2:  Find Nearest-Neighbor {see Section 3.2.3}
3: end for
4: return Nearest-Neighbor
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Procedure 4 Prediction
1: {see Section 3.2.4}
: Invoke three parallel instances of the Tracker
: Invoke three parallel instances of the Predictor
return prediction results

AW

Procedure 5 Compute-Safe-Area(Current-State)
1: foriin 1 to number of drones do

2 Ds; < (Drones in safe area U Obstacles in safe area)
3:  forjin 1 to |Ds;| do

4 FD;=Y}_; (Fo,~p, - (r- Disp,0,))

5 end for

6: end for

7: return FD

Procedure 6 Compute-Drone-Reflex

I: FOb — FOunpred[r/ed,nh.vtacles‘>Di : (r 7DlsDi‘>Ounpredicted4717stacles)
2: SD <~ FOb + FD;

3: return SD

with the cloud-based navigation center. Finding an efficient and safe route for each
drone is a complex optimization problem. Therefore, we need to rely on certain
heuristics to achieve the required objectives. In this thesis, we use a dynamic EA to
compute the drone routes.

Evolutionary computing comprises a set of optimization algorithms, which are
inspired by a biological or societal evolution [57, 58]. EAs are widely used in the
swarm systems due to their ability to find, in a high-performant way, near-optimal
solutions for the computationally hard problems. An EA mimics the survival of the
fittest principle of the nature.

Most EAs start from a random generation of the initial population of genotypes
— the encodings of candidate solutions — in the overall search space according to
a certain probability distribution. For each genotype, we can evaluate the fitness
function, which represents the requirements to which the population should adapt. A
fitness function assigns quality measures to the genotypes and drives the population
improvement. The genotypes with the higher values of the fitness function get a
higher probability to be chosen as the parents of the next generation. The chosen
parents undergo variations to create offsprings. A variation consists of mutation
and recombination. Mutation is a unary operator applied to a genome to produce a
(slightly) modified mutant — a child (offspring) [58]. Mutation is stochastic, that is,
the child depends on the outcomes of random choices. Recombination (or crossover)
merges the information from two parent genotypes into offspring genotypes. Sim-
ilarly to mutation, the recombination is also stochastic. Since the EAs keep the
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population size constant, we need to implement a survivor selection mechanism that
chooses the individuals that remain in the next generation. Typically, it relies on
the fitness ranking over the united set of parents and offsprings and selecting the
top fittest segment as the next generation. The algorithm terminates either when the
predefined number of generations have been produced, time allocated for running
the algorithm has elapsed, or the successive generations bring only a negligible
improvement.

There is a large variety of EAs. Some of them are inspired by natural phe-
nomena, while others, such as ICA [59], by the social processes. The algorithm
simulates a human social evolution [58]. Its parallel implementation[53] has shown
a remarkable performance in comparison with the other EAs and offers a promising
solution supporting compute-intensive tasks of swarm-based systems.

Figure 3.2 presents a flowchart highlighting the main steps in the ICA. The
algorithm starts by a random generation of a set of countries — the genotypes — in
the search space of the optimization problem [58]. The fitness function determines
the power of each country. The countries with the best values of the fitness function
become imperialists, while the other countries become colonies. The colonies
are divided among the imperialists and hence the overall search space is divided
into empires. An association of a colony with an imperialist means that only the
genotype of the imperialist and its associated colonies are used for crossover. The
intuition behind it as follows: since the imperialist has a higher value of the fitness
function, by crossing over with an associated colony, which is known to have a
lower value of the fitness function, we inherit the strongest traits of the current
population.

The mutation and crossover are implemented by assimilation and revolution
operators. The Assimilation moves colonies closer to an imperialist in its socio-
political characteristics. For instance, it can be implemented by replacing a certain
bit in a colony genotype with the corresponding bit of the imperialist. Revolution

LInitialize the Empires 2.Assimilation

3.Exchange Imperialist
and the best Colony
Ts there a colony that is
dominating its relevant
imperialist?

5.Imperialistic Competitive 4.Compute Total Cost

hc Weakest Empire T.C.n=Cost(Imperialistn)+xmean {Cost(colonies of empiren)}
A
[
&0 go
) gko o)
o 5 OO
Q o
)
Empire 1

Empine 2 Empire 3

Conditions
satisfied?

Figure 3.2: A flowchart highlighting the main steps in the imperialistic competitive
algorithm
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results in a drastic change of a colony’s characteristics. It can be implemented
by a random replacement of a certain bit in the colony genotype. As a result
of assimilation and revolution, a colony might reach a better position and get a
chance to take over the control of the entire empire, that is, to overthrow the current
imperialist. This can happen only if the evaluation of the fitness function of such a
colony gives a higher value (when solving a maximization problem) than the value
of the fitness function of the current imperialist.

The next step of the algorithm computes the power of each empire and im-
plements the imperialistic competition, which corresponds to the selection of the
survivals process. The power of an empire is computed by aggregating the fitness
value of the imperialist and a weighted sum of the fitness values of the colonies.
The imperialists also try to take possession of colonies of other empires, that is,
the weakest empire loses its weakest colony. In each step of the algorithm, based
on their power, all the empires get a chance to take control of one or more of the
colonies of the weakest empire. The steps of the algorithm are repeated until a
termination condition is reached. As a result, the imperialist of the strongest empire
produces the best solution. To improve performance of ICA, we introduce the
notion of multi-population, that is, we divide the overall search space into multiple
populations and perform a local search within each one of them. The best local
solutions are then taken as input to perform the search in the entire search space.
The multi-population based search also allows to use the inter-population migration
operation, which migrates the best country from one population and uses it to
replace the worst country in another population. Since the local search procedures
are independent of each other, they can be implemented in parallel. Moreover,
the multi-population based search enables a wider exploration of the search space,
which helps to find high quality solutions.

3.2.2 Deep Neural Network

In most of the evolutionary algorithms, the initial population of chromosomes is
generated randomly. As DIANA deals with very long chromosomes in a complex
problem, a randomly generated initial population may not provide good results.
Therefore, DIANA uses a deep neural network (DNN) to generate a subset of the
initial population of chromosomes. It uses a convolutional neural network (CNN)
to generate 30% of the initial population based on the previous experience data set.
The choice if a CNN is influenced by the fact that it provides a suitable structure
for the problem under consideration. DIANA finds safe and efficient drone routes
in a three-dimensional grid or mesh of points, which is similar to a colored photo
(two dimensions for the photo size and one dimension for representing the color in
RGB). In the grid, each point can possibly be used for the placement and movement
of drones and can be assigned different weights in different situations. CNNs are
based on three core ideas: (1) local receptive fields, (2) shared weights, and (3)
spacial subsampling [60].
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The CNN component in DIANA starts with a small set of data. Due to the lack
of data in the beginning, CNN does not produce high-quality chromosomes. In the
worst case scenario, the CNN component may produce a population similar to the
one produced by a random population generated. However, as more and more data
become available to DIANA, the results of the CNN component improve and it
starts producing high-quality chromosomes.

The proposed CNN comprises eight layers as presented in Figure 3.3. It is
based on an extension of LeNet-5 [60]. Our extension uses a fully-connected layer
(1024 x 1 FC layer) for the first layer to convert different three-dimensional area
to a linear input data for the same network. With this extension, we do not need to
rebuild the whole network for different problems. Also, in the last layer, we use a
one-dimensional layer, with the layer size equal to the chromosome size. Therefore,
the values of the last layer can be used as chromosomes. Our network receives
information of all locations from the dynamic monitoring component and produces
chromosomes for the initial population. During this process, the network is also
trained to produce high-quality chromosomes.

When compared with other contemporary CNNs, LeNet-5 is a simple network
with seven layers. These layers include two convolutional layers (Conv 1, and Conv
2), two subsampling or pooling layers (Pool 1 and Pool 2), two fully connected
layers (120 FC), and the output layer (is a fully connected that its size is equal to
the length of the chromosome) [60]. The convolutional layers in LeNet-5 use five
by five convolutions with stride one, while the subsampling layers are two by two
average pooling layers.

3.2.3 Kk-Nearest Neighbor (kNN)

The kNN algorithm [54] is a popular learning method. In this thesis, we use it for
classification. The main idea of the algorithm is as follows. We select K samples
in the training set. The algorithm predicts numerical target — the nearest neighbor
— based on the similarity measure, which in our case is the distance function. We
compute the numerical target as the average of the Euclidean distances of the K
nearest neighbors.

In our approach, the algorithm takes as the input K solutions generated for the
same system state. Then it computes an average solution. For each drone in the
swarm, it takes K routes proposed for it. Then it computes an average route in
terms of the Euclidean distance. By computing such a route for each drone in the
swarm, the learning component calculates the complete solution for the swarm. The
decision center uses the fitness function to compute fitness values for the solutions
produced by MICAP and the learning algorithm. It then chooses the solution with
the highest fitness value.
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Figure 3.3: A CNN for generating the initial population of chromosomes

3.2.4 Prediction Module

The prediction module implements a two-step approach [61, 62, 34], which allows
to make predictions under real-time constraints. The approach involves a set of
the trackers that offer a representative view of the trends to the predictors, thus
achieving the two-step approach.

A tracker filters out the noise and can be used to yield a more regular view
of the trend of an obstacle or drone movement [34]. It takes as an input a raw
measure s; monitored at time #;, and a set of previously collected n measures, that is
S_,,>(t,') = (Si—n,---,8;), and outputs a representation of the trends /; at time 7;. Formally,
a tracker is a function Tracker(S,(;)) : R* — R. Multiple applications of a tracker
provides a sequence of values that yield a regular trend of the movement. There are
different classes of linear and non-linear trackers, such as simple moving average
(SMA), exponential moving average (EMA), and cubic spline (CS)[61]. SMA is a
simple linear method, having however the well-known shortcomings of increased
oscillations, when n is small, and of significant delay, when n is large. CS is a non-
linear method that is more expensive to compute than SMA and EMA, but instead
of returning a new tracker value for each raw measure, it returns a new tracker value
after n measures. More sophisticated (time-series) models often require training
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periods to compute the parameters and/or off-line analyses. Similarly, the linear
(auto) regressive models, such as ARMA and ARIMA, usually require frequent
updates to their parameters in the case of highly variable systems [63]. Therefore,
the proposed approach implements a tracker based on the EMA model, which
limits the delay without incurring oscillations and computes a tracker value for each
measure [62]. .

EMA is the weighted mean of the n measures in the vector S, (#;), computed at
time ¢;, where i > n, and the weights decrease exponentially. An EMA based tracker
is defined as

— —
EMA(S,(t;))) =o-s;i+ (1 —a)- EMA(S,(ti-1)) (3.1)
%
where o0 = ﬁ The initial value EMA(S, (1)) is set to the arithmetic mean of the
first n values
n
— Z Y
=0
EMA(S, (1)) =" p (3.2)

The predictor takes as input a set of tracker values Ijq) (ti) = li—g,...,l; and
outputs the future track_e>r value at time f;4, where k > 0. Formally, a predictor is
a function Predictory(Ly(t;)) : R? — R. With the use of the trackers that provide
high correlation among values, even simple linear predictors are sufficient to predict
the future trend of the movement. The predictor is characterized by the prediction
window k and the past time window ¢. Using a simple linear regression model [64],
the predictor uses the last g tracker values L, (#;) [62]. It is based on a straight line
defined as

1=0)+0; 1t (3.3)

where @ and @; are unknown constants, called regression coefficients, which can
be estimated at runtime based on the tracker values L, (;) in the past time window.
One common approach to estimate these regression coefficients is to use the least-
square estimation method [64]. The least-square estimators of ®y and @y, say @0
and @1 , are computed as

Oy=1-0, 7 (3.4)
and
i i
: Xull Ly
;1)) Jj=i—q J=i—q
~ j:,ziq o q
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where

Z t (3.6)

The predictor returns a predicted future tracker value fi+k that corresponds to time
tivx. It is computed as follows:

. — A A A

Predictor(Ly(t;)) = liyx = O+ O1 -t 4 (3.7

The prediction results depend upon the selection of proper values for the tracker
and predictor parameters. Therefore, it is necessary to find a value for n that
represents a good trade-off between a reduced delay and a reduced degree of
oscillations [63]. Similarly, the values of ¢ and k should be selected carefully.

In a three-dimensional flying zone, the current location of an obstacle or a drone
monitored at time #; contains three values (x,y,z), which represent the three axis.
Therefore, for predicting the future location of an obstacle or a drone at time ¢,
we use three parallel trackers and three parallel predictors.

3.2.5 Drone Reflexes

The computation of the drone reflexes is elaborated in the example depicted in
Figure 3.4 and 3.5 [33]. Figure 3.4 shows the safe area for drone d;. It shows the
radius of the safe area (r = 4), the repulsive forces of drone d> and ds to d; (F2 and
F3), and the total force direction (D). In each iteration, our algorithm computes
F D based on all drones in the safe area. The computation of the repulsive forces is
based on the distances of drone d, and d3 from d; (Dis, and Dis3). In this example,
Dis, and Dis3 are v/8 and 3, respectively. In each iteration, the repulsive forces and
FD are computed in the online part in the cloud layer, as shown in Algorithm 1
(Line 9). For example to prevent drone d; from colliding with d;, the repulsive
force for d; is computed as F2 = (r — Dis,) along with the reflex direction in the
opposite direction of d».

Figure 3.5 illustrates that when drone d; detects an unpredicted obstacle, it
computes its reflex position based on the total force direction (¥ D) and the force
of the obstacle to d; (FOb). FOb is a unit vector in the opposite direction of the
obstacle. Finally, the drone computes the safe direction (SD) for reflex movement.
SD is a vector from the drone to a safe position in the flying zone. It is computed as
the sum of FD and FOb, as shown in Procedure 6.

3.2.6 Clustering Algorithm

The proposed clustering approach is based on the k-means clustering algorithm[55].
Figures 3.6 to 3.8 present an example of our clustering approach. Figure 3.6 shows
a configuration of the drones in the flying zone at step i. It also illustrates the drone
clusters at step i and the movement directions of the drones for the next step i+1.
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Figure 3.7 depicts the new configuration of the drones in step i+1. It shows the
effect of the drone movements on the formation of the clusters.

In Figures 3.8, r is the radius of the safe area. In this example, drone dg suddenly
finds an obstacle and our algorithm first recomputes the routes of all drones in the
safe area (d, ds, da, d7, dy, and du) and then it recomputes the routes for other
drones in the close proximity of the safe area (d;, ds, and dg).

Let Conf; = {CI{,CL, ... ,CI.} be the configuration of the drones in the ith step,
where Cl{ = {d;,d,, .. .,d,} and Conf; =\J;_, Cl; = D, where D = {d\,dy, ..., dna }
is the set of all drones. When drone d,, detects an obstacle, Algorithm 1 computes
Safeg, (Line 15), which represents the set of all drones around d,;, with a distance
less than r. In the next step, the algorithm computes the set of all clusters that have
common members with Safedq, depicted as Layer2 d, (Line 16). Then, the algorithm
computes new paths for all drones in Safe, and Layer2, (Line 17-18). Safe; and

Figure 3.4: First part of drone reflex computation

. Drones
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o N @ Safe Place

Figure 3.5: Second part of drone reflex computation
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Layer2, are subsets of D :

Layer2dq U Safedq CcD (3.8)

3.3 Safety-Aware Routing Planning and Run-Time Safety
Monitoring

In this section, we present the implementation of the dynamic system architecture
specified and verified in Section 3.4. We present both the algorithm for route plan-
ning and the overall control algorithm. Let us start by discussing the algorithm for
swarm routing planning. As we have previously discussed, the flight area including
the positions of the drones, can be represented by the set of locations AREA. We
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Figure 3.6: Step 1 of the drone clustering computation

Figure 3.7: Step 2 of the drone clustering computation

33



Dynamic Obstacle Drones

Figure 3.8: Step 3 of the drone clustering computation

assume that the entire flight zone is represented by a grid, i.e., the distances between
a pair of neighboring locations are the same, as shown in Fig.3.10(a). The initial
and the destination positions are known for all drones. The drones move from a
location to location. Our goal is to find an optimal routing, where routing is defined
as a union of each individual drone route, i.e., routing represents a plan of a mission
for all drones.

We give an ID to each swarm routing and define the set of phenotypes as
a set of routing IDs. To explain the principle of defining a chromosome, let us
consider an example shown in Fig. 3.10(b). For the drone d1 the shortest path
from the initial location to the destination is a sequence (20,19,18,17,16,11,6),
correspondingly the shortest paths for the drone d2 is (21,22,17,12,7,2,3) and for
d3 (11,12,13,14,9,10, 15). We note that the path of each drone can be succinctly
represented by a turning‘ point — we call it a middle point, which would be 16
for d1, 12 for d2, and 9 for d3. Hence, a chromosome representing such a routing
can be defined as a triple ((16,12,9)). In general, for n drones a chromosome is an
n-tuple consisting of the middle points of the corresponding drones.

To ensure collision avoidance with the static objects, we should explicitly define
the locations, which are occupied by the obstacles as well as store the locations,
which could be occupied by the dynamically appearing objects. Our route planning
starts by generating all shortest paths between each pair of locations in our grid
and storing them in a database. The database of the shortest paths is then used to
compose the routes of the individual drones as a concatenation of the route from the
current to the middle point and from the middle point to the final destination. The
shortest routes are computed using the algorithm proposed by the Dijkstra [65]. For
each given source node in the graph, the algorithm finds the shortest path between
that node and all other nodes. As an input to our implementation of the Dijkstra’s
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algorithm, we define the adjacency matrix of the flight zone AREA with a explicit
representation of the obstacles. The pseudocode of the Dijkstra’s algorithm is given
next:
dist[s] «+— 0
ForAllv € V — {s} Do
dist[v] <— oo
S<+—0
0O «—V
While Q # 0 Do
{u <— mindistance(Q,dist)
For All v € neighbors[u] Do
If dist]v] > dist{u] + w(u,v) Then
dv] «— du] + w(u,v)
Return dist

}

The algorithm starts by initializing the vector of distances from the given node to
the rest of the nodes in the graph. If there is no direct connection between the nodes,
the distance between them is initially defined as infinity. The distance between each
pair of node is computed as a sum of distances between all the nodes, which the
path visits. After a new path is found, its distance is compared with the distance of
the previously found path and the minimum of two is taken as the current minimal
distance. The algorithm terminates after all possible paths in the graph have been
explored.

Now we should define the fitness function to evaluate the fitness of each country
(chromosome). As we discussed in section 2.1, our goal is to devise an algorithms
that optimizes the safety/performance ratio. To achieve this, while evaluating
fitness of each swarm routing, we should not only evaluate the corresponding path
lengths, but also the number of cross points between all drone and dynamic object
trajectories as well as the time gap associated with them. The first argument of our
fitness function is the distance metric:

nd

Distance Metric = Y Distancecurrent,—middie; -+ Distanceniadie,—pestination;
i=1

It defines the total length of the drone routes according to the given routing. For
instance, for our example in Fig.3.10(b) the distance metric of the routing defined
by the chromosome (16, 12,9) is the sum of the lengths of the drone paths: 6+6+
6= 18. The second argument defines the number of cross points associated with the
given routing. For our example, the number of cross points is 3: in the location 17
between the routes 1 and 2, in the location 12 between the routes 2 and 3, and in the
location 11 between the routes 1 and 3 correspondingly. The third argument of the
fitness function is the safety level of the time gap at the cross point. We introduce
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three safety levels: 0 if there is no cross points, 1 if the time gap at the cross point is
above the safety threshold, and 2 if the time gap is below the threshold. For instance,
for our example at Fig.3.10(b) the time gap at cross point 17 is 1, because the drones
arrive at that point at times 3 and 2, the time gap for the cross point 12 is 2, because
the drones arrive there at times 3 and 1, and for the cross point 11 itis 5. As a matter
of illustration, we can assume that the time gaps below threshold 2 are classified as
level 2, while the time gaps at and above threshold 2 as level 1. Hence, the cross
point 17 obtains level 2 , while the cross points 11 and 12 the level 1. We define
our route optimization task as a minimization problem with the following fitness
function:

Fitness Function = Distance Metric +o x Number of CrossPoint + [ x Level

Here o and [ are the weight coefficients defined as follows:

d
1 SOLS% and 1<B</npxnd
where nd is the number of drones and np is the total number of points. These
values allow us to adapt the fitness function evaluation based on the level of complex-
ity of the flying zone and the number of drones. For our example in Fig. 3.10(b), the
value of the fitness function is computed as follows: 18 4+ 1,5x3+4+5x3 =37.5.

The evaluation of the fitness function for the initial population is shown in Fig.3.9.

Current Initial Total # Critical Titness Toumarment Mating T Offspring at- : Offspring
Position Population Distance Cross Level Number Pool ter Crossover after
Point Mutation
20 17]24/13 18 4 1 39 1.3 17)24)1 0.6 162216 0.2 172413
21 3
11 09(17] 18 20 4 2 56 2.4 16/12(1 17/14{18 0.6 1714[18
9
1309123 22 5 1 445 1.4 6121 | 09 161219 0.1 130923
9
16]12/90 18 3 1 375 2.3 13)0912 1309123 04 16[12]09
3
Total # Critical Titness Next Best Current Total & Critical Timess Tournament
Distance Haot Level Generation Position Distance Cross Level Number
Point Point
18 6 2 7 17)24/13 16{12(09 18 14 1 30.5 2.4
20 i) 1 39.5 171418 22 17 2 Z 50 1.3
22 4 2 58 1310923 12 18 4 1 39 1.4
18 2 1 44.5 16]12/09 14 2 2 47 3.2
i
Mating 7z Offspring T Offspring Total # Cross Crirical Fitness Next Best
Pool alter after Dislance Point Level Generalion
Crossover Mutation
16]12j09 0.5 1709109 0.1 17]09|11 16 4 2 52 17)24/13 172413
17)24/13 1621]14 0.3 162114 14 I 1 30.5 1621]14
1712413 0.7 1809123 0.4 18]09/23 18 3 1 375 18/09/23
12|09)23 1224]13 08 12]24/13 14 2 1 12 12]24/09

Figure 3.9: An example of the two iterations of algorithm

In our large scale experiments, after evaluating the fitness values of the initial
population, we have chosen the imperialists — the countries with the fitness function
values smaller than a certain threshold — and the colonies — the other countries. Due
to a very small size of the population in our example, we skip this step and explicitly

36



pairwise compare the fitness values. The chromosomes with the lowest fitness
values are chosen for cross over and mutation, as shown in the Tournament Number
and Mating Pool columns in Fig.3.9. The next column defines the probabilities of
crossover (rc) while the results of applying the crossover operator are shown in the
Offspring after Crossover column. In a similar way, we define the probabilities of
mutation. The Offspring after Mutation column shows the results of the mutation
operator applied to the offsprings. Next, we calculate the fitness function for the
mutated offsprings. To produce a new generation, from the initial population and
the pool of mutated offsprings, we chose the chromosomes with the lowest values
of the fitness function. After that we start the next iteration of the algorithm with the
new generation as the current population. After several iterations of the algorithm,
we find the routing that achieves our goal of minimizing the distance of travelling
and associated danger, i.e., maximizes safety.

Now let us present the dynamic component of our approach. The pseudocode
of the entire approach is shown in Fig.3.11.

As we discussed earlier, the mission planning allows us to maximize safety with
respect to the predicted hazards. To monitor safety and ensure optimality of the
swarm movement, we propose to augment the static part with the dynamic run-time
routing recalculation as well as the mechanisms of controlled (i.e., not autonomous)
collision avoidance.

Let us illustrate the first scenario. In Fig.3.10(c) we present a snapshot of drone
positions after one unit of time has elapsed. Drone 2 and Drone 3 have moved
according to the planned routes with the planned speed. However, due to some
internal problems, Drone 1 moved twice as fast as it was supposed to. If Drone
1 regains the planned speed and the initial routing is not changed then Drone 1
and Drone 2 will collide in the location 17. Hence, we should invoke the route
recalculation and change the routing. This goal is achieved using our proposed
algorithm. As shown in Fig.3.10(c), the new routing avoids the crosspoint 17 by
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Figure 3.10: An illustrative example of drone route planning
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rerouting Drone 2 to the route (22,23,2429,24,9,4,3) and finding a shorter path
for Drone 3 (12,13, 14,15).

1. BEGIN

//**Offline Part

2. Call Dijkstra’ Algorithm to Compute the Shortest Path between all nodes
Read Current Position of all Drones and Dynamic Obstacles

Call Generate Countries

Call Evaluation Operation

. Select the Best Routes

//**Online part

6. While (all Drones arrived to their Destinations) Do

Uk ww

7. Begin

8. IF (# Cross point (Best Routes) == 0)  //**No cross point and only monitoring
9. Begin

10. While (the Best routes and current positions are match) Do only monitoring
11. Call Evaluation Operation

12. End

13. Else IF (the Dangerous level==2) //**Emergency time

14. Begin

15. Run Critical Navigation Instructions

16. Go to 8.

17. End

18. Else

19. Begin //**Finding the better routes

20. Call Assimilation and Revolution Operations

21. Call Evaluation Operation

22. Run Competition Operation

23. Go to 8.

24. End

25 End

26. END.

Figure 3.11: The pseudocode of the overall algorithm

However, if a collision is predicted with a dynamically appearing object in a
close proximity to drones, we need to activate the controlled collision avoidance
mode and in a step-wise manner resolve the dangerous situation. If a collision is
predicted between the drones then the priority to move to the next position is given
to the drone which is closer to the cross point. Then after the safe time gap, the next
drone moves to the next position and the situation is reassessed. After the collision
danger is no longer present, the routing is recomputed and the autonomous flying
mode is resumed.

In case of a danger of collision with a dynamically appearing a the control is
also performed in a step wise way. In this case, however, each proposed move is
first verified to be safe with respect to the on-line sensor readings.

3.4 Safety Constrains in Route Planning and Mission Ex-
ecution

In this section, we use the Event-B framework to formalise the safety motion
requirements Req1-Req3. We start our modelling by proposing a rigorous definition
of the concepts introduced in section 2.1.
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The swarm is represented by a finite non-empty set of drones SWARM. It can
be seen as a set that contains the ids of all drones in the swarm. Without loss of
generality, we assume that the goal of the mission is to ensure that each drone
reaches a certain location. The initial and final locations of each drone are known in
advance. The locations that the drones can fly over constitute the flight zone. For
each mission we can define the corresponding flight zone, which can be represented
by a finite set of locations — a non-empty finite set AREA.

We assume that the interval [0..maxtime] is the interval covering the entire
duration of a mission. The maximal duration of a mission is modelled as the
pre-defined constant maxtime in the swarm to reach the required destinations.

Since the terrain of the flight zone is known, we can explicitly define the
obstacles that should be avoided in the mission planning. Such “no fly” locations
— mountains, tall constructions, etc. — occupy certain locations in our flight zone.
Assume that there are m obstacles located in the flight zone. All the obstacles can be
represented by a subset of locations that they occupy, i.e., defined as the following
relation in the model context:

{Obs € 1..m} «— AREA (3.9)

We use the term swarm routing to represent the union of all individual drone
routes, i.e., swarm routing is essentially the mission plan. A route of each drone is
defined as a sequence that maps time in the [0..maxtime] interval to a location in the
fly zone. The constant

{Routes_Init € {SWARM x 0..maxtime}} — AREA (3.10)

designates the initial routing generated by the planning algorithm. To ensure that
the initial route planning avoids static obstacles, i.e., Reql is satisfied before the
swarm is deployed, we formulate the following axiom:

ran(Routes_Init) Nran(Obs) = 0, (3.11)

where ran denotes a range of a function.
To explicitly model the motion safety requirements, we introduce an abstract
constant total function {update_Routes defined as

update_Routes € {SWARM x 0..maxtime}} — AREA.

It is an abstraction used to represent the outcomes of the route planning algorithm.
Specifically, for every drone and time moment it returns the position where a drone
has to move. We intentionally abstracted away from the actual implementation of
this function since for our modelling it is enough to have it in such a form.

We introduce the constant DO _Traj_Init to model the system knowledge about
dynamically appearing objects. It represents apriori information about possibility
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of dynamic object appearance (e.g., the scheduled flights). The constant type is
defined as the following partial function {

DO _Traj_Init € {DO x 0..maxtime}} - P(AREA),

where DO is the set of dynamic objects. The function result is a set of area locations
where the corresponding object can appear.

The dynamic architecture of the system follows the MAPE pattern. It is mod-
elled by the machine SwarmOfDrones. The outline of the specification is given in
Fig. 3.12.

Machine SwarmOfDrones
Sees SwarmOfDrones_c
Variables mode, time, safety_level, CurLoc, Status, Routes, DO _Traj
Invariants
time € 0..maxtime N\ mode € MODES A safety_level € {0,1,2} A
CurLoc € SWARM x 0..time —» AREA N\
Status € SWARM — STATUSES N\
Routes € SWARM x 0..maxtime —» AREA N

DO_Traj € DO x 0..maxtime -+ AREA N\
safety_level = 2 = mode=CONTR N\
ran(Routes) Nran(Obs) = O A
(mode=CONTR A safety_level # 2 =
(Vd1,d2-d1 € SWARM N d2 € SWARM = CurLoc(d1 — time) # CurLoc(d2 — time))) A
(Vdr,do-dr € SWARM Ndo € DO Ndo — time € dom(DO_Traj) = CurLoc(dr v time) ¢ DO_Traj(do —
time))
Events
Initialisation ...
autonomous_moving ...
monitoring ...
recalculations ...
coordinated_moving ...
dynamic_object ...

Figure 3.12: Specification of SwarmOfDrones

The system operates in two modes: autonomous and controlled. The variable
mode, which takes either value AUTONOM or CONTR designates the current system
mode. The initial mode is autonomous. The variable CurLoc designates the current
locations of all drones in the swarm. As we discussed previously, to guarantee
motion safety, we should ensure that all deviations from the planned routes are
detected and the corresponding safety precaution measures are implemented. To
model the state of the drones, we introduce a variable Status. It is defined as a
function Status € SWARM — STATUSES, where STATUSES is a set consisting of
the constants OK and DEV representing correspondingly the nominal and abnormal
drone behaviour. In the system implementation, the decision about the drone status
is made on the basis of the analysis of the currently received telemetry data and the
mission plan.
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The variable Routes
Routes € SWARM x 0..maxtime —» AREA

represents the current swarm routing, i.e., the currently executed mission plan (i.e.,
the position of a drone at a particular time).

The variable DO _Traj models the dynamically appearing object and is defined
similarly to the DO_Traj_Init constant.

The dynamic behaviour of the system modelled by the machine SwarmOfDrones
is graphically represented in Fig. 3.13. Each rectangle corresponds to the specifica-
tion event.

autonomous_moving

Y

monitoring [« dynamic_object
recalculations ’ coordinated_moving

S~

Figure 3.13: System behaviour

The event autonomous_moving shown below models autonomous flight of the
swarm. The guard of the event ensures that the system is currently in the autonomous
mode, the mission goal has not been achieved yet, and the safety of the planned
mission is maintained. In the process of autonomous flying, the positions of the
drones change. If they change according to the current mission plan then the status
of the drones remains nominal. Otherwise, the deviations are detected and the
statuses of the corresponding drones is altered.

The event dynamic_object models a non-deterministic appearance of an object
in the flight zone. It results in the corresponding changes in the value of the variable
DO_Traj. There is an implicit assumption on which we rely while formulating the
requirements of motion safety — a dynamically appearing object cannot suddenly
appear in the location that is currently occupied by some drone of the swarm. This is
a reasonable assumption, which, essentially, means that the swarm is not protected
against objects hitting drones from a blind zone. Formal modelling helped us to
make this assumption explicit.

To explain the main mechanism of ensuring motion safety implemented by the
remaining specification events, let us consider the following scenario. Assume that
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autonomous_moving =
any new_CurLoc
where mode=AUTONOM A time € 0..maxtime-1 N\
safety_level # 2 A Status|[SWARM| = {OK} A
new_CurLoc € SWARM x O..time +1 — AREA A
(Vdr,tt-dr € SWARM At € 0..time = new_CurLoc(dr +— tt) = CurLoc(dr — tt)) A
(Vdr-dr € SWARM = new_CurLoc(dr — time + 1) = update_CurLoc(dr) V
new_CurLoc(dr — time+1) = Routes(dr — time+1))
then time:=time+ 1
Status:=update_Status
CurLoc:=new_CurLoc
end

dynamic_object =
anydo, aa
where aa CAREA N do € DOA
Vdr-dr € SWARM = CurLoc(dr — time) ¢ aa
then DO_Traj(do — time):=aa

as a result of the route planning, it is established that the drones d/ and d2 cross
at the location /. Since the speed of each drone and distance from the initial point
till / are known, we calculate that d/ will reach the point / at the time ¢/ and d2 at
the time 72 and 1 —¢2 > A, were A is a constant defining the time gap derived from
the predefined safe proximity distance. However, while the mission is in progress,
due to some internal failure, d/ moves slower than expected and can reach the point
[ at the time t1°, such that t1 — 2 < A, i.e., the likelihood of collision increases.
The similar reasoning can be also applied to the situation, when a dynamic object
appears at the flight zone.

In our specification, we introduce a variable safety_level that can take values
0, 1 or 2. The zero value designated a situation when the current swarm routing
does not contain any cross points, i.e., the routes of the drones do not intersect.
The value 1 represents two possible situations. The first one corresponds to the
fact that there are cross points in the current routing but the time gap is above the
safety threshold for each of them. The second situation describes the fact that a
dynamic object has appeared in the flight zone but the risk of collision is low. If the
variable safety_level assigned the value 2 then the risk of collision is high, i.e., either
according to the current routing drones can collide or the dynamically appeared
object is close to some drones.

Obviously, the system should monitor the safety level and take appropriate
actions, as modelled by the event monitoring defined below:

If, as a result of safety level monitoring, it is established that the safety level
obtains value 2 then the system ceases the autonomous mode and activates the
controlled flight mode. The system behaviour in the controlled mode is modelled
by the event coordinated_moving.

In the coordinated mode the drones in a step-wise coordinated manner perform
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monitoring =
anydr, calc,update_mode, tt,do
where mode=AUTONOM N
((Status(dr) = DEV) V (tt € time + 1..maxtime A Routes(dr — tt) € DO_Traj(do — time))) A
calc € {1,2} A update_mode € MODES N\

((cale =2 Nupdate_mode=CONTR) V (calc = 1 A\ update_mode=AUTONOM))
then safety_level:=calc

mode:=update_mode

coordinated_moving =
any new_CurLoc
where safety_level =2 N\
time € 0..maxtime — 1\
new_CurLoc € SWARM x 0..time+1 — AREAN
(Vdr,tt-dr € SWARM A it € 0..time = new_CurLoc(dr — tt) = CurLoc(dr — tt) A
Vdr-dr € SWARM = new_CurLoc(dr — time + 1) = update_Routes(dr > time + 1) A
Vdl,d2 - dl € SWARM N d2 € SWARM = new_CurLoc(d1 — time + 1) # new_CurLoc(d2
time+ 1)\
Ydr,do,tt - dr € SWARM N do € DO A tt € time + 1..maxtime = CurLoc(dr > time + 1) ¢
DO _Traj(do + tt)
then CurLoc:=new_CurLoc
Status:=SWARM x {OK}
time:=time + 1
safety_level :€ {0, 1}

a safe manoeuvre. At each step, the coordinator assesses the situation and plans the
next safe move.

The event recalculations is enabled when an acceptable level of safety is main-
tained or re-established in the system:

recalculations =
where (safety_level = 1 Amode=AUTONOM) V (safety_level # 2 N mode=CONTR)
then Routes:=update_Routes

Status:=SWARM x {OK}

mode:=AUTONOM

safety_level :€ {0,1}

It maintains or resumes the autonomous mode and models the outcome of swarm
routing re-computation. Such a swarm routing recalculation aims at increasing safety
and minimising the travelling distance.

In the proposed formal model, we have formalised the safety motion requirement
and proved that they are preserved by the system architecture. The requirement

Req1 — collision avoidance with the static objects — is defined by the following
axiom

ran(Routes_Init) N ran(Obs) = 0
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and the invariant
ran(Routes) Nran(Obs) = 0

The requirement Req2 — drones do not collide with each other — is defined by
the axiom that ensures safety of the initial mission planning

Vdl1,d2-dl € SWARM Nd2 € SWARM = CurLoc_Init(d1 +— 0) #
CurLoc_Init(d2 — 0))

and the invariant that guarantees that safety is preserved during the mission execution

mode=CONTR A safety_level #2 = (Vd1,d2-d1 € SWARM Nd2 € SWARM
= CurLoc(d1 — time) # CurLoc(d2 — time))

The guards of the specification events ensure that if the acceptable safety level is
exceeded then the system switches the autonomous function and operates in the
controlled mode.

Finally, Req3 — collision avoidance with the dynamically appearing objects is
also formulated via the corresponding axiom

(Vdr,do-dr € SWARM Ndo € DO Ndo — 0 € dom(DO _Traj_Init)
CurLoc_Init(dr — 0) ¢ DO_Traj_Init(do — 0))

and the invariant:

(Vdr,do-dr € SWARM Ndo € DO Ndo +— time € dom(DO_Traj) =
CurLoc(dr — time) ¢ DO _Traj(do — time))

The guards of the events ensure that the controlled mode is activated if a dynamic
objects appears in a close proximity to the drones.

The model has been formally verified using the Rodin platform. The platform
has automatically generated the corresponding proof obligations and facilitated their
automatic and interactive proving. Therefore, we have demonstrated by proofs, that
the proposed system specification preserves the defined motion safety requirements
Req 1-Req 3.

In Section 2.1, we have discussed that the safety-related requirements are
necessary but not sufficient to guarantee dependability of a swarm system. To
achieve that, we also need to bound the travel distance overhead and achieve high
performance of routing calculation. To address this issue, we have developed a
highly efficient evolutionary algorithm for safety-aware routing planning. The
algorithm is used to compute the initial mission planning as well as dynamically
recalculate the swarm routing at run-time.

The algorithm has been verified in a number of scenarios. The algorithm has
been implemented using both shared memory and message passing styles. Our
experimental configuration consisted of four processors (Intel Core i15-45705, 2.90
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GHz (64-bit), 24GB) connected in a ring topology. The algorithm has demonstrated
a remarkable performance: for a grid 100 x 100 points and eight drones, we
algorithm was able to generate approx 70 routing alternatives per second. Hence,
the routing calculation time is negligible comparing to the communication time.
Therefore, we believe that our solution meets the requirement Req 5.

To validate whether the proposed solution also satisfies the requirement Req 4 —
the travelling distance overhead added to achieve safety is bounded and acceptable —
let us present the results of two extreme benchmarks. The first benchmark focuses
on resolving the problem of the high number of potential cross points, as shown in
Fig.3.14(top). The drones should fly in the opposite directions and hence, there is a
very high risk of collision between each other. Our algorithm has successfully and
efficiently managed to solve the collision avoidance problem: no collisions occurred
and the travel distance has increased only by 5,5% as shown in Table 3.1.

Number of
Obstacles

Number of
Drones

Number
of Points

Shortest
Distance
without Safety

Shortest
Distance with
Safety

Difference
Distance

Benchmark 1

0

6

64

72

76

5.5%

Benchmark 2

8

4

100

68

73

7.3%

Table 3.1: Benchmarking Statistics

The second benchmark aims at validating the algorithms under a challenging
flying zone topology: the static objects (e.g., mountains) are densely located and
leave only narrow curved corridors for flying as shown in Fig.3.14(bottom). The
algorithm has succeeded in finding a safe and efficient routing — the resulting
increase in the travel distance is only 7,3%. Therefore, we argue that the requirement
Req4 is fulfilled as well.
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Figure 3.14: Benchmarking illustration
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Chapter 4

Experimental Results

In this chapter, the experimental results and validating the thesis contributions are
presented. Only some of the results from the original papers have been selected,
and they are presented based on the order of the published papers.

4.1 DIANA-Safe Navigation

In this section, we present some important implementation details and experimental
results. We assume that the flying zone AREA is represented by a three-dimensional
grid. However, for a simpler illustration, we describe the main steps with a two-
dimensional grid shown in Figure 3.10 (a). Our goal is to find an efficient, collision-
free route for each drone from the initial start location of the drone to the destination
location.

4.1.1 Implementation Details

We use the example shown in Figure 3.10 (b) to explain the principles used for
defining the countries (chromosomes) in the MICAP algorithm. For the drone d,
initially situated at the location 20, the shortest path from the initial location to
the destination is a sequence (20,19,18,17,16,11,6) [58]. We note that the path
of each drone can be succinctly represented by its furning point — we call it the
middle point, which would be 16 for d;. Therefore, the proposed approach uses
middle points to optimize the drone routes. By using different values for the drone’s
middle point, it is possible to generate different routes for the drone. Thus, it
allows to explore different alternatives in the search space. Let us assume that the
middle points for the two other drones in Figure 3.10 (b) are 12 and 9. A country
representing all the drone routes for the swarm in Figure 3.10 can be then defined as
a triple ((16,12,9)). In general, for nd drones a country is an nd-tuple consisting
of the middle points of the corresponding drones.

In the offline, planned part of the proposed approach, all the locations occupied
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by static obstacles and the initial locations of the moving obstacles are marked as
occupied or unsafe. The offline route planning module then generates all the shortest
paths between each pair of locations in the flying zone AREA, while avoiding all
locations marked as occupied or unsafe, and stores the generated routes in a database,
which is then used to compose the routes for the individual drones as a concatenation
of the shortest routes from initial locations to the middle points and from the middle
points to the final destinations. The shortest routes are computed by using the
algorithm proposed by Dijkstra [52].

The fitness function to evaluate the fitness of each country optimizes the
safety/performance ratio. The first argument of our fitness function is the distance
metric

nd

Distance Metric = Z Distancecyrrent;—sMiddle;
i=1

+ DisranceMiddle,'—>Destinati0n,-

It defines the total length of the drone routes according to the given solution [58].
For our example in Figure 3.10 (b), the distance metric of the routing defined by
the country (16,12,9) is the sum of the lengths of the drone paths: 6+6+6=18.
The second argument of the fitness function defines the number of cross points
associated with the given solution. For our example in Figure 3.10 (b), the number
of cross points is 3: in the location 17 between the routes 1 and 2, in the location
12 between the routes 2 and 3, and in the location 11 between the routes 1 and 3,
correspondingly.

The third argument is the safety level of the time gap at the cross point [58]. We
introduce three safety levels: O if there is no cross points, 1 if the time gap at the
cross point is above the safety threshold, and 2 if the time gap is below the threshold.
For our example in Figure 3.10 (b), the time gap at cross point 17 is 1, because the
drones arrive at that point at the times 3 and 2, the time gap for the cross point 12 is
2, because the drones arrive there at the times 3 and 1, and for the cross point 11, it
is 5. As a matter of illustration, we can assume that the time gaps below threshold
2 are classified as level 2, while the time gaps at and above threshold 2 as level 1.
Hence, the cross point 17 obtains level 2, while the cross points 11 and 12 obtain
level 1 each. The safety level of a complete routing solution for the swarm can
then be computed by aggregating the individual safety levels of all cross points in
the solution: 2+1+1=4. We define our route optimization task as a minimization
problem with the following fitness function:

Fitness Function = Distance Metric + O-

Number of CrossPoint + - Level

Here o and P are the weight coefficients defined as
1<B</npxnd
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where nd is the number of drones and np is the total number of points. These values
allow us to adapt the fitness function evaluation based on the level of complexity of
the flight zone and the number of drones. For our example in Figure 3.10 (b), the
value of the fitness function is computed as 18+ 1.5 x 345 x4 =42.5.

We have implemented the proposed DIANA approach on using a shared memory
model. We used the message passing interface (MPI) to parallelize the proposed
algorithm and MPICH' to run the algorithm. To implement DIANA, we used four
processors in a ring topology. Our algorithm was tested on Intel® Xeon® E5-1620
v3 @ 3.50 GHz processors with 16 GB memory and NVIDIA® GeForce® GTX
1080 graphics processing units.

4.1.2 Experiment Design and Setup

We present results from two benchmark implementations. Benchmark 1 is based
on a small 100x100x20 flying zone with 16 drones, 3 dynamic obstacles moving
on straight lines from different starting positions, 2 dynamic obstacles moving
randomly from different starting positions, and 8 unforeseen/unpredicted static
obstacles. Benchmark 2 is based on a large 1000x 1000x 100 flying zone with
250 drones, 10 dynamic obstacles moving on straight lines from different starting
positions, 15 dynamic obstacles moving randomly from different starting positions,
and 60 unpredicted static obstacles. Figure 4.1 and 4.2 depict the predicted routes
of the moving obstacles in Benchmark 1 and 2, respectively. The experiment design
is summarized in Table 4.1. We ran each benchmark first with one flight per drone
and then with 1000 flights per drone to evaluate the performance of the proposed
learning approach and to demonstrate how DIANA learns over time and uses this
knowledge to generate safer and shorter drone routes.

We compare DIANA results with the results of the following six alternative
approaches:

1. Dynamic Autonomous Navigation Algorithm (DANA): A baseline ap-
proach which is similar to DIANA except that it does not use learning and
prediction.

2. Dynamic Genetic Algorithm (DGA): A well-known approach [66], which
addresses a similar problem.

3. Particle Swarm Optimization (PSO) based approach: Sujit and Beard
[35] PSO based path planning approach, which generates paths for a swarm
of drones.

4. Greedy heuristics and Genetic Algorithms (GGA) approach: Silva Arantes
et al. [36] approach, which uses greedy heuristics and genetic algorithms to
generate and optimize paths for a drone under critical situations.

Thttps://www.mpich.org/
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5. Rapidly-Exploring Random Trees (RRT): LaValle [67] sampling-based
path planning algorithm.

6. RRT*: Karaman and Frazzoli [68]’s extension of RRT that allows to plan
optimal paths.

In addition, we compare the results of the proposed DIANA approach with three
additional variants of DIANA namely DIANA_S, DIANA_P, and DIANA_N. As de-

scribed in Section 4.1.1, the proposed DIANA approach optimizes the safety/performance
ratio. In contrast:

1. DIANA_S optimizes safety, but does not optimize performance.
2. DIANA P optimizes performance, but does not optimize safety.

3. DIANA N is similar to DIANA, but it does not implement the proposed
clustering algorithm and the proposed drone reflexes approach.

4.1.3 Results and Analysis

Tables 4.2 to 4.6 present a comparison of the results of DIANA and its three variants
with DGA, DANA, PSO, GGA, RRT, and RRT*. The comparison is based on
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Figure 4.1: Predicted routes of the moving obstacles in Benchmark 1
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Figure 4.2: Predicted routes of the moving obstacles in Benchmark 2

the following six metrics. The best achieved results with respect to the evaluation
criteria are highlighted in the tables using bold font.

1. Total route length (TRL): the total length of all drone routes measured as the
number of steps in the drone routes. To be minimized to generate shorter
routes.

2. Minimum distance (MD): the minimum distance between a drone and an
obstacle. To be maximized to generate safer routes.

Table 4.1: Experiment design

Benchmark Benchmark 1 Benchmark 2
Flying zone 100x100x20  1000x1000x100
Problem size Small Large
Number of drones 16 250
Number of unpredicted static obsta- 8 60

cles

Number of moving obstacles 5 25
Number of flights per drone 1000 1000
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3. Frequency of route regeneration (FRR): the number of times the drone routes
are regenerated. To be minimized for reducing the re-computation overhead.

4. Number of crashes (NC): the number of drone collisions. To be minimized to
generate safer routes.

5. Length of the longest route (LLR): the total number of steps in the generated
longest route. To be minimized to generate shorter routes.

6. Total time (TT): total runtime of the algorithm in minutes. To be minimized
to reduce the algorithm runtime.

Table 4.2 presents Benchmark 1 results with one flight per drone. The results
show that DIANA _P generated the shortest routes and outperformed DANA, DGA,
PSO, GGA, RRT, and RRT* in terms of TRL and LLR. On the other hand, DIANA_S
produced the safest routes with the MD of 7. Moreover, DIANA_N minimized
the FRR more efficiently than all other approaches. Finally, DIANA, DIANA_S,
DANA, DGA, and RRT produced routes with NC of 0, while RRT* performed best
in terms of TT. Table 4.3 presents Benchmark 1 results with 1000 flights per drone.
It shows that DIANA _P generated the shortest routes in terms of TRL, DIANA_S
produced the safest routes with an MD of 5, DIANA performed best in terms of
FRR and TT, and RRT* generated the shortest routes in terms of LLR. Moreover,
both DIANA and DIANA_S produced routes with NC of 0.

Table 4.2: Benchmark 1 results with one flight per drone
DIANA DIANAS DIANAP DIANAN DANA DGA PSO GGA RRT RRT*

TRL 3448 4122 3386 3580 4057 4146 3745 3612 3608 3534
MD 5 7 0 0 4 2 0 0 1 0
FRR 14 23 12 9 22 21 19 17 16 16
NC 0 0 3 2 0 0 3 1 0 2
LLR 242 265 234 251 266 258 255 242 257 248
TT 1.9 2.1 2.0 2.2 2.7 3.0 2.4 2.4 2.0 1.8

Table 4.3: Benchmark 1 results with 1000 flights per drone
DIANA DIANAS DIANAP DIANAN DANA DGA PSO GGA RRT RRT*

TRL 2657 4358 2649 3454 3925 4038 3506 3422 3508 3412
MD 4 5 0 0 0 0 0 0 0 0
FRR 11245 18246 11843 80146 19522 21010 17840 14531 16000 16000
NC 0 0 942 982 7 61 412 29 2119 2208
LLR 259 267 241 266 284 264 271 284 248 236
TT 1137 1643 1211 1391 1477 1874 1811 1707 1275 1359

Table 4.4 presents Benchmark 2 results with one flight per drone. The results
show that DIANA_P performed best in terms of TRL and FRR, DIANA_S produced
the safest routes in terms of MD, both DIANA and DIANA_S produced routes with
the NC of 0, RRT* generated the shortest routes in terms of LLR, and DIANA
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performed best in terms of TT. Table 4.5 presents Benchmark 2 results with 1000
flights per drone. It shows that DIANA outperformed DANA, DGA, PSO, GGA,
RRT, and RRT* in terms of TRL, FRR, and TT. Moreover, both DIANA and
DIANA_S produced the safest routes in terms of MD and NC, while DIANA_N
generated the shortest routes in terms of LLR.

The results show that DIANA and its three variants DIANA_S, DIANA _P, and
DIANA N produced the safest and shortest drone routes for both benchmarks with
one flight per drone and 1000 flights per drone. For Benchmark 1 with one flight per
drone, DIANA and its variants performed best in all metrics except TT. Similarly,
for Benchmark 1 with 1000 flights per drone and for Benchmark 2 with one flight
per drone, DIANA and its variants performed best in all metrics except LLR. Finally,
for Benchmark 2 with 1000 flights per drone, DIANA and its variants performed
best in all six metrics. Other than DIANA and its three variants, RRT* also produced
some good results in terms of TT and LLR for Benchmark 1 and 2, while DANA,
DGA, and RRT generated some good results in terms of NC for Benchmark 1. Both
PSO and GGA did not perform best with respect to any metric.

Table 4.4: Benchmark 2 results with one flight per drone

DIANA DIANA_S DIANAP DIANAN DANA DGA PSO GGA RRT RRT*
TRL 460891 642510 448909 464532 548450 528940 493521 484766 546287 464521

MD 9 11 0 0 7 0 0 0 0 0
FRR 286 621 208 383 736 524 539 412 250 250
NC 0 0 18 13 0 6 9 4 47 61
LLR 2440 2984 2670 2494 2674 2845 2511 2498 2670 2418
TT 14.2 16.8 15.8 14.8 18.3 20.1 19.5 16.3 15.8 14.7

Table 4.5: Benchmark 2 results with 1000 flights per drone

DIANA DIANAS DIANAP DIANANN DANA DGA PSO GGA RRT RRT*
TRL 278460 584757 378541 438497 488975 497725 402587 422498 378279 286524

MD 7 7 0 0 0 0 0 0 0 0
FRR 143527 468244 282264 298445 664507 328068 462147 222652 250000 250000
NC 0 0 1430 1288 896 1128 1315 608 4105 3890
LLR 2561 2996 2798 2468 2740 2834 2604 2531 2567 2531
TT 8491 16441 14123 11761 17077 21491 16644 14106 11301 10171

Overall, DIANA generated the shortest drone routes in terms of aggregate TRL
of all experiments, while RRT* performed second best and DIANA _P performed
third best (as shown in Table 4.6). DIANA produced 29%, 28%, 17%, 18%, 20%,
and 2% shorter drone routes than DANA, DGA, PSO, GGA, RRT, and RRT*,
respectively. In terms of the aggregate LLR of all experiments, RRT* performed
best, while DIANA N performed second best and DIANA performed third best.
Similarly, in terms of aggregate MD, DIANA_S generated the safest routes in all
experiments, while DIANA performed second best and DANA performed third
best. Moreover, both DIANA and DIANA_S generated collision-free routes in
all experiments with aggregate NC of 0. DIANA also performed best in terms of
aggregate FRR and aggregate TT of all experiments. Therefore, DIANA and its
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three variants generated the safest and shortest drone routes while minimizing the
computation overhead.

Tables 4.2 to 4.5 also present a comparison of the results of the proposed DIANA
approach with its three variants. As expected, DIANA_P generated the shortest
drone routes in most of the cases, but it did not prevent the drones from colliding
with one another. On the other hand, DIANA_S generated longer, but the safest
routes. It maximized the MD metric more efficiently than all of the other approaches.
DIANA N produced the best results with respect to FRR for Benchmark 1 with one
flight per drone and with respect to the LLR metric for Benchmark 2 with 1000
flights per drone, but did not perform well in most of the cases. Moreover, since it
does not implement the proposed drone reflexes approach, it could not prevent the
drones from colliding into some unpredicted static obstacles.

Table 4.6: Aggregate results of all experiments

DIANA DIANAS DIANAP DIANAN DANA DGA PSO GGA RRT RRT*
TRL 745456 1235747 833485 910063 1045407 1034849 903359 914298 931682 757991

MD 25 30 0 0 11 2 0 0 1 0
FRR 155072 487134 294327 378983 684787 349623 480545 237612 266266 266266
NC 0 0 2393 2285 903 1195 1739 642 6271 6161
LLR 5502 6512 5943 5479 5964 6201 5647 5555 5742 5433
T 9644 18103 15352 13169 18575 23388 18477 15832 12594 11547

4.2 DIANA-Efficient Placement

Now, we will demonstrate the efficiency of our proposed method on three various
case studies. Since this method targets dynamic positioning, we try to consider the
search space as a dynamic space. In the first case study, we have a fixed search space
according to Table 4.7 as mentioned earlier, each point has a specific weight which
shows its importance to be covered. In this case study, we randomly assign weights
to the points, collect the experimental results, and then compare the efficiency of
our method with other methods.

In the second case study, we randomly change the number of drones. In other
words, we simulate situations at which some drones fail due to some technical
problems.

The third case study is a combination of the first and second ones: we dynam-
ically change both the weights of the points and the number of drones. In the all
case studies, we changed the weights, number of drones or both 10,000 times.

Our search space is 100¥100 points and the maximum number of drones are
1000 and the minimum number is equal to 750. Each drone has the covering radius
(r =1/2). Also each drone can cover 9 points in our search spaces.

In first case study, we changed the weights 10,000 times, and in the second one,
we changed the number of drones 10,000 times. Finally, in the third case study, we
changed both the weights and the number of the drones 10,000 times.
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Table 4.7: Experiment design on the same size of search space = 100 x 100,the
parameters are Number of Changing Weights (#NCW), Number of Drones (#ND),
and Number of Changing Drones (#NCD).

Weights #NCW #ND #NCD
Case 1 Dynamically Change 1000 1000 1000
Case 2 No Change 0 750-1000 1000

Case 3 Dynamically Change 1000  750-1000 1000

Table 4.8: Case study 1 results (changed the weights 10,000 times)

DIANA+ DQN NSGA-II  A(1)-AQ3) OD3pP CPlace

#CP 87464826 85989478 77466577 77594538 73285761 86751565
TCW 165724276 157846858 135275719 141384679 117687594 160872332
APS 4356.27 9567.77 18946.64 7648.11 4967.25 6827.44
MPT 0.338 0.745 15.142 0.678 0.468 0.482
WPT 0.512 1.214 22.246 1.164 0.582 0.865

The comparison result of the three case studies are shown in Tables 4.8, 4.9,
and 4.10. In these tables, five importance scales are used to compare the results:

e The number of covered points (#CP): this is equal to the total number of
covered points during 10,000 changes.

o Total covered weights (TCW): this shows the quality of the coverage and the
accuracy of the algorithm to choose the optimum points.

e Average processing speed (APS): this shows the average time needed to
process a new configuration after every change.

e Minimum processing time (MPT): the minimum time required to determine a
new configuration.

e Worst processing time (WPT): the maximum time required to determine a
new configuration.

Figure 4.3 shows the efficiency of two decision-making components. In other
words, it shows the ratio between the number of times the result of the evolutionary

method is used and the number of times the result of the learning method is used.
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Table 4.9: Case study 2 results (changed the number of drones 10,000 times)

DIANA+ DQN NSGA-II  A(1)-AQ3) OD3pP CPlace

#CP 79485378 72485764 61034672 71802525 70496622 76285437
TCW 148506792 137854682 116285710 11976853 109867512 142665448
APS 4427.24 9428.44 19678.57 7738.24 5021.34 6992.65
MPT 0.346 0.812 17.477 0.712 0.443 0.497
WPT 0.521 1.208 22.467 1.121 0.591 0.845

Table 4.10: Case study 3 results (changed both the weights and the number of the
drones 10,000 times (10,000 for each))

DIANA+ DQN NSGA-II A(1)-AQ3) OoD3pP CPlace

#CP 78642892 70984573 59422984 70984522 68495764 77454265
TCW 146850332 129576483 98246765 120132546 98258612 143667522
APS 4419.37 9589.41 20119.47 7658.64 5234.21 7120.88
MPT 0.342 0.985 18.995 0.744 0.485 0.501
WPT 0.552 1.247 21.475 1.182 0.607 0.886

One of the issues that should be considered is that one of our methods is a
machine-learning method and depends on a proper data set. The main question
is that how this can perform in a dynamic environment. As mentioned earlier,
we applied 10,000 times changes for each of the case studies. To investigate the
efficiency of this algorithm, we divided the original set of cases into ten subsets of
1000 cases and examined the success rate of each decision-making method to find
an acceptable solution. The bar charts in Figure 4.3 show this fact.

As can be seen in the bar charts, during the first 1000 changes, most of the
solutions were provided by the MICGA, since the learning algorithm lacks a proper
data set. For the following ranges, the efficiency of the learning algorithm has
improved. But the more interesting point in these histograms is that both methods
reach a relatively equal situation, which has been repeated in the last ranges and
proves the necessity of both methods. In other words, the methods are efficiently
supporting each other.

This improving trend shows that our evolutionary algorithm, in addition to
generating the beneficial solutions, is doing the data set update task well. The
histogram C, which shows that as the problems becomes more complex, there is
more need for the cooperation between two methods.
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To show the efficiency of our method, we compare it with five successful
positioning methods for drones. The first method is deep Q-learning (DQN). In
DQN, to handle the dynamic swarm topology and time-varying link condition, they
have designed a deep Q-learning (DQN) model to determine two UAV nodes, and
then use an optimization algorithm to locally fine-tune the position of UAV node to
the overall network performance. The second method with which we have compared
our results is a Non-Dominated Sorting Genetic Algorithm 11 (NSGA-II). Using
NSGA-II, and a set of optimum points has been considered for an UAV.

In order to improve the accuracy of the comparison, we implemented three other
algorithms A[1]-A[3] [69] , OD3P [70], and CPlace [71] that were able to be used
on our benchmarks. We experimented with them in the same setting as ours and
the result are shown in Tabels 4.8, 4.9, and 4.10. To investigate and compare the
proposed method with the methods mentioned above, all they were implemented
and run on the same system.

Regarding the number of covered points, our method and CPlace performed
better than the others although our method was getting better quality results in all
three cases. Further investigation showed that increase in the complexity of the
search space and the rate of the changes in the dynamic environment the difference in
the quality of our method and the previous method becomes more evident. The same
behavior can be seen in the second metric (TCW), which our method outperforms
the other ones when the complexity increases.

According to the obtained results, it is clear that due to its static optimization,
NSGA-II need more time to solve this problem, while our method is faster in solving
these problems.

Although the CPlace algorithm has a higher accuracy than OD3P, it needs a
longer time to do the calculations to find the appropriate places. However, as shown
in Table 4.8, 4.9, and 4.10, it is obvious that our proposed method has managed to
achieve the highest speed and accuracy as compared with the other methods.

The results show that the proposed method has been able to find more valuable
points with a lower computation time. Moreover, the results show that our method
has been able to solve various problem in a stable time (less than a second after
each change).
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Chapter 5

Conclusions

The primary focus of this thesis was related to developing a hybrid framework to
improve the safety and efficiency of autonomous vehicles. Due to the increasing
popularity of AVs, and their diversity, we selected a swarm of drones as a fast group
of AVs, that need a swift reaction and decision making in real-time environments.
In the first step, we focused on the safety and efficiency of navigation in a swarm of
AVs. We have improved our approach step by step by defining new challenges and
proposing new solutions.
Therefore, the main conclusions of this thesis can be summarized as follows:

e To achieve the safety and efficiency of AVs in the navigation problem, we
had to solve it as an optimization problem. Therefore, we started to use
the dynamic implementation of an evolutionary algorithm. This approach is
suitable for environments without any dynamic obstacles.

e To present an efficient method for real dynamic environments, we developed
a hybrid framework with different modules for make a fast and reliable deci-
sions for a swarm of autonomous vehicles. Different modules work together
under the supervision of a central decision centre to simplify the problem
and support each other to generate the most reliable solution. The modules
encompass the chosen evolutionary algorithm along with supervised and
unsupervised learning algorithms. This combination help to avoid collisions
between drones and other objects (static and dynamic objects).

e Also, we solved the dynamic placement of drones to maximize the coverage
and minimize the communication cost.

The proposed method have been tested in different complex case studies. These case
studies simulated based on the high diversity of dynamic behaviour. For example,
in the Paper 10 the weight of points in the case studies have been changed 10000
times.
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Also, we have compared the obtained experimental results of our method with
other related works. The comparisons showed the proposed framework computed
safer and more efficient solutions in shorter computation times.
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Chapter 6

Overview of Original
Publications

Articles published including the results and analysis from the thesis are summarized
below.

6.1 Paper 1: Optimal Placement for Smart Mobile Access
Points

In this paper, we proposed a method to solve the efficient placement problem of
smart mobile access points (SMAPs). The placement should be simultaneously
informative and achieve a low communication cost. The proposed method generates
a near-optimal solution to maximize the coverage area and minimizing communica-
tion cost.

The proposed algorithm selects the placements of SMAPs achieving a specified
volume of certainty, with near-maximal coverage and minimal communication
cost, which can ensure providing a near-optimal solution for this hard problem. In
this paper, we have used the multi-population MICAP, and MICAP selects SMAP
placements at informative and cost-effective locations by the following actions:

1. Discretize the search space area for covering by defining a finite number of
points (P).

2. Measure the communication cost for each SMAP and define the corresponding
communication cost matrix.

3. Execute MICAP to present the best placement with the minimal communica-
tion cost and maximal covering.

The evaluation shows our solution improves efficiency and stability comparing
for the other related works.

61



6.2 Paper 2: Towards A Real time, Collision-Free Motion
Coordination and Navigation System for a UAV Flee

In this paper, we presented a real-time, collision-free motion coordination and
navigation system for a UAV fleet that used geographical locations of the UAVs
and successfully detected, static and dynamically appearing, dynamic obstacles to
predict and avoid: 1) UAV-to-UAV collisions, 2) UAV-to-static obstacle collisions,
and 3) UAV-to-dynamic obstacle collisions.

The proposed system, includes two main functions: 1) a complex event process-
ing (CEP) and collision prediction module, and 2) a collision avoidance tool.

Also, in this paper presented a simulation-based implementation of the mo-
tion coordination and navigation system, along with an experimental evaluation
concerning a series of experiments.

6.3 Paper 3: Online Path Generation and Navigation for
Swarms of UAVs

This paper is an extended version of Paper 2. In this paper, we focus on collision
prediction and avoidance, as well as online path generation and navigation for
swarms of UAVs. Same as Paper 2, we present our online, collision-free path
generation and navigation system for swarms of UAVs. Our collision prediction
strategy leverages efficient run-time monitoring and complex event processing
(CEP) to make timely predictions. A distinctive feature of the proposed system
is its ability to predict potential collisions and proactively find the best ways to
avoid predicted collisions in order to ensure the safety of the entire swarm. We also
present a simulation-based implementation of the proposed system, along with an
experimental evaluation involving a series of experiments, and compare our results
with the results of four other existing approaches.

6.4 Paper 4: Safety-Aware Control of Swarms of Drone

This paper proposes an innovative method for ensuring motion safety of swarms of
drones. Our method combines safety-explicit route planning with the run-time safety
monitoring and route recalculation aiming at increasing safety and minimizing the
travelling distance.

The route planning of swarm of drones is based on two critical convexes,
maximizing safety while minimizing the length of the path of each drone. We
start by explicitly establishing the requirements that should be verified to guarantee
motion safety of a swarm: drones do not collide with the static objects and each
other. Then, we use dynamic multi-population ICA to generate the most efficient
path for a swarm of drones in a 2-D flying zone. Iteratively, the proposed method
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produces the solutions that progressively maximize the value of the specified fitness
function.

The key contribution of this paper is the “middle point” concept. A middle
point can be any point in the flying zone that shows that a drone should come to this
point from the initial point, and then the drone should move to the destination. Each
chromosome contains a certain number of middle points, one per each drone.

6.5 Paper 5: Ensuring fault tolerance and efficiency in au-
tonomous swarm-based monitoring systems

This paper proposes a novel approach to combining optimization and learning
methods to achieve fault tolerance and efficiency in swarm-based monitoring. In our
solution, there are two main components. The first component is a high-performance
dynamic EA for swarm configuration. The second component is a fast and accurate
reinforced learning algorithm for incorporating the run-time data and feedback
about the system state.

We have proposed a multi-population implementation of the ICA to find a
near-optimal swarm configuration, that allows us to maximize the area coverage
while minimizing the energy consumption. The k-NN algorithm has been used as
the learning component.

Our synchronous algorithm generates a new configuration for a distributed
swarm based on the environment state. Both the EA and machine learning algo-
rithms work in parallel to compute alternative swarm configurations. The results
of dynamic EA and machine learning algorithm are compared, and a more optimal
solution is chosen.

The results show that our method, which integrates EA and machine learning
to fine tune the swarm configuration, provides us with a promising solution to
guarantee fault tolerance and efficiency of the swarm-based monitoring systems.

6.6 Paper 6:Improving Motion Safety and Efficiency of
Intelligent Autonomous Swarm of Drones

In this paper, we proposed a novel approach to ensuring motion safety of swarms of
drones. Our approach consists of five components including: (/) offline-part, (2)
dynamic evolutionary, (3) critical instruction, (4) run-time safety monitoring, and
(5) decision center. We started by explicitly defining the conditions that should be
verified to ensure motion safety of a swarm, which are (i) swarms do collide with
the static objects, (ii) with each other and/or (iii) with the objects that dynamically
appear in the fly zone of the swarm. In addition, we considered the route planning
as an optimization problem aiming to maximize safety while minimizing the length
of the path of each drone to achieve higher efficiency. The main novel contribution
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of this paper compared to a similar solution, DANA [72], is the consideration of
dynamic obstacles in the environment with on-line re-scheduling.

To solve such a complex multi-criteria optimization problem, we have relied on
evolutionary computing paradigm [73], [74]. Combination of the genetic algorithm
and the the imperialist competitive algorithm (MICGA) [74] is the basis of our
proposed solution. By mimicking the processes associated with a competition of
imperialistic countries to acquire colonies, the algorithm iteratively generates the
solutions that progressively maximize (or minimize) the value of the defined fitness
function. In our definition of the fitness function, we explicitly introduce safety as
an argument, i.e., ensure that our route planning finds the safest shortest route for
each drone.

6.7 Paper 7: Integrating Learning, Optimization, and Pre-
diction for Efficient Navigation of Swarms of Drones

In this paper, we have developed our approach described in Paper 5 by integrating
optimization, learning, and prediction for generating efficient and safe paths for
swarms of drones.

The proposed method satisfy three main requirements to predict and avoid: (1)
drone-to-static-obstacle collision, (2) drone-to drone collisions, and (3) drone-to-
moving-obstacle collisions. The proposed method generates more knowledge about
the behaviour of moving obstacles to present to our solution generator components.
This knowledge generates based on a prediction method based on the last movements
of moving-obstacles.

To find the most efficient paths, we have used a parallel and dynamic ICA and
machine learning algorithm again. Our experiments has shown that the dynamic EA
and the learning algorithm generate a more accurate and efficient solution based on
the knowledge that they receive from the prediction component.

Both the learning and optimization algorithms work in parallel to compute
alternative routing solutions. The results are compared, and a more efficient solution
is chosen. Since with each run the training set increases, eventually, the learning
algorithm becomes capable of proposing better solutions. We believe that our
proposed approach provides a promising solution to ensure efficient, collision-free
navigation of the drones in a swarm. We also present a parallel implementation
of the proposed approach and evaluate it against two benchmarks. The results
demonstrate that the proposed approach allows us to significantly reduce the route
lengths and computation overhead while producing efficient and safe routes.
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6.8 Paper 8: Using Optimization, Learning, and Drone
Reflexes to Maximize Safety of Swarms of Drones

In this paper, we have improved the proposed method again, and tried to find a
solution for some other open questions in this thesis.

To find efficient drone routes, we have proposed a parallel and dynamic imple-
mentation of the ICA that allows us to find efficient collision free routes for the
drones in a swarm. The learning component is based on the K-nearest neighbour
(KNN) learning algorithm. Each path produced by our parallel ICA for a given
swarm and environment state is evaluated to train the system. Both the learning and
optimization algorithms work in parallel to compute alternative routing solutions.
Then the results are compared and the most efficient solution is chosen. Since with
each run the training set increases, eventually, the learning algorithm becomes capa-
ble of proposing better solutions. To maximize safety, we augment the generated
routes with dynamically computed drone reflexes. The drone reflexes computation
module mimics a self-preservation control mechanism of humans. The reflexes are
the automatic immediate or mechanical responses to particular hazardous situations,
such as quickly moving the hand away from a hot surface. They aim at mitigating
and confining the effects and damages of suddenly occurring hazards.

In our proposed approach, when a drone detects a possible collision with an
unforeseen obstacle, the drone reflexes computation module quickly computes a
reflex movement for the drone to prevent and mitigate the collision. We also present
a parallel implementation of the proposed approach and evaluate it against two
benchmarks. The results show that the proposed approach produces highly efficient
and safe routes.

6.9 Paper 9: A Frame-work for Intelligent Navigation of
Swarms of Drones

In this paper, we present a framework for intelligent navigation of swarms of
drones called DIANA (Dynamic Intelligent Autonomous Navigation Algorithm).
It integrates evolutionary optimization, machine learning, prediction, clustering,
and automatic immediate responses (reflexes) of drones to ensure safe and efficient
operations of swarms of drones. We assume that a swarm executes certain missions,
in which each drone flies from its start location to its destination location [18]. The
proposed approach uses geographical locations of the drones as well as the static
and moving obstacles in the flying zone to predict and avoid: (1) drone-to-drone
collisions, (2) drone-to-static-obstacle collisions, and (3) drone-to-moving-obstacle
collisions.

DIANA comprises five main components: (1) a high-performance dynamic evo-
lutionary algorithm (EA) for optimizing drone routes, (2) a reinforcement learning
algorithm for incorporating the feedback and run-time data about the system state,
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(3) a light-weight prediction approach to predict the movement of drones and mov-
ing obstacles in real-time, (4) a clustering algorithm to split the set of drones into
smaller subsets called clusters, and (5) a reactive module to dynamically compute
drone reflexes to prevent collisions with unforeseen obstacles in the flying zone.
It uses the dynamic EA and the reinforcement learning algorithm to generate safe
and efficient drone routes and then augments the generated routes with dynamically
computed drone reflexes to prevent collisions with unforeseen obstacles in the flying
zone.

To find efficient drone routes, we propose a parallel and dynamic implementation
of the imperialistic competitive algorithm (ICA)[59] that allows us to find efficient
collision-free routes for the drones in the swarm. The learning component is based
on the k-nearest neighbor (kNN) learning algorithm [54]. Each placement produced
by our parallel ICA for a given swarm and environment state is evaluated to train the
system. Both the learning and optimization algorithms work in parallel to compute
alternative routing solutions. The results are compared and a more efficient solution
is chosen. Since with each run the training set increases, eventually the learning
algorithm becomes capable of proposing better solutions.

The proposed prediction approach is based on a light-weight prediction algo-
rithm [61, 62] that allows to predict the movement of drones and moving obstacles
under real-time constraints. Therefore, a distinctive feature of the proposed frame-
work is its ability to foresee a risk of a collision in real-time and proactively find
best ways to prevent the predicted collisions in order to ensure safety of the entire
swarm [18].

To generate clusters of drones, DIANA uses the K-means clustering algorithm
[55]. Moreover, to maximize safety, we augment the generated routes with dynami-
cally computed drone reflexes [33]. The drone reflexes computation module mimics
a self-preservation control mechanism of humans. The reflexes are the automatic im-
mediate or mechanical responses to particular hazardous situations, such as quickly
moving the hand away from a hot surface. They aim at mitigating and confining
the effects and damages of suddenly occurring hazards. In our proposed approach,
when a drone detects a possible collision with an unforeseen obstacle, the drone
reflexes computation module quickly computes a reflex movement for the drone to
prevent and mitigate the collision.

We also present a parallel implementation of the proposed framework and eval-
uate it against two benchmarks. The results show that the proposed framework
maximizes safety, generates highly efficient drone routes, has a low computation
overhead, and is highly suitable for large-sized problem instances involving hun-
dreds of drones.
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6.10 Paper 10: Cost-Efficient Coverage of Mobile Access
Point Placements in Dynamic Cyber Physical Envi-
ronments

The main goal of the proposed method in this paper is the introduction of an efficient
solution to multi-objective optimization problems that maximize the coverage while
minimizing the number of agents and communication costs. The placements in
a static setting is an NP hard problem [75]. Adding the dynamism concept will
make it more complicated. Additionally, the method’s latency in finding a solution
is more critical, as a new solution after any change in problem dynamics must be
found in a short time. In the proposed method, we leverage the deep learning and
linear-regression-based method to improve the recognition level of the environment.

We also use the dynamic EC and a supervised learning algorithm to find the
optimum placement. Also, the correct operation of all above-mentioned mechanisms
is monitored and controlled through the global module. To our knowledge, the
proposed method is the only one to solve the dynamic problem of the mobile agents,
moreover, it has the following features: In this work, considering the dynamic
nature of the problem, we propose a hybrid and dynamic method. In order to have
an appropriate functionality, our algorithm has the ability of better recognition of
the environment and forecasting event in the future. Also, the method introduces the
result as quick as possible. We could not use none of already existing solutions. For
example, machine learning algorithms could have an acceptable efficiency if they
received inputs similar to the data used during training. In other words, they cannot
solve the problems without having prior experience. Conversely, the evolutionary
methods try to solve the problem without getting help from the prior experiences.
As a result of the above-mentioned issues, we introduce a hybrid method which
consists of several algorithms. In this method, we use a combination of dynamic
evolutionary, supervised and unsupervised machine learning algorithms, and some
deterministic control algorithms which have the responsibility to supervise the
whole system and make appropriate decisions. In this section we introduce each
component shortly. Later, the exact operation of each of them and their correlation
will be explained.

Our algorithm needs the relation with environments. This is done through two
parts. One part of our algorithm is responsible to receive the information from
the environment. This information is collected from sensors, cameras, or drones.
We call this the dynamic monitoring component. This component, in addition to
sending information to the MICGA and KNN components to make the decisions and
provide with the solutions, sends these information to another component, which is
called prediction. This component, after recognizing the dynamic obstacles, probes
their behavior, and gives the probability of the presence in a specific place in the
future to the dynamic monitoring component, using an optimized linear regression
method.
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Our solution includes two different methods to find the placement solution,
which work in parallel and send their results to the decision center. In this work, we
use the dynamic MICGA and KNN in our solution. One of them is an evolutionary
method, which has the ability to find solutions without needing prior information
(history), and only based on the present situation. The other one (KNN), is a
supervised machine learning algorithm that always makes decisions according to the
prior experiences. It is also possible to use other learning methods, however KNN
is a simpler method with the ability to train the model in the minimum possible
time. It is a very time-consuming task in other learning methods, which makes them
inefficient in real-time applications.

Evolutionary algorithms begin finding the solution based on an initial random
population. This is very ineffective and time-consuming in dynamic environments.
In our solution, a semi-random initial population is used that will cause the algorithm
to converge to the solution faster. In other words, if we can generate an initial
population using the prior knowledge based on the current situation, the convergence
speed will increase, and the algorithm reaches the intended solution in a fewer
number of iterations. We used a simple and popular CNN to generate a portion
of the initial population. We modified it and allowed it to suggest a portion of the
initial population using the appearance of the two-dimensional problem space.

The proposed solution by the two above-mentioned methods are sent to the
decision center to assess. This component first investigates whether or not any of
the proposed solutions meet the required conditions to be sent to the agents. If
so, the most suitable one would be selected and announced to the agents. Then,
a copy of it is sent to update the placement data sets. If neither of them was
satisfactory, for instance is not satisfying safety requirements, this component
sends some predefined instructions to the agents until finding a suitable solution.
This predefined instruction can be a stop moving until further notice. Thus, this
component has the responsibility to keep the agents safe. In other words, this
component (decision center) is responsible for final assessment of the suggested
solutions and prevention of accidents in the case of any faults in the system.

6.11 Paper 11: Deriving Mode Logic for Autonomous Re-
silient Systems

In this paper, we have proposed an approach to the formal development of flexi-
ble, autonomous systems. The proposed approach allows a developer to derive a
resilience enhancing mode logic in a structured, disciplined way. The main objects,
which the system should satisfy, serve as a base for determining the mode transition
logic.

We have considered distributed autonomous systems that are composed of
asynchronously communicating heterogeneous components — agents. Each agent
has specific capabilities. Our goal reachability and degree of satisfaction conditions
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are defined as corresponding functions over the agent capabilities. Since mode
transitions, in general, incur complex agent coordination and system reconfiguration,
we need a formal structured approach to ensure the correctness of the mode transition
logic. In this paper, we rely on Event-B a state-based approach to correct-by-
construction system development to specify and verify the mode logic. moreover,
we propose a specification pattern for modelling mode transitions triggered by
changes in reachability and degree of satisfaction of non-functional conditions.

6.12 Paper 12: Multi-Layered Approach to Safe Naviga-
tion of Swarms of Drone

In this paper, a novel multi-layered approach to safe and efficient navigation of
swarms of drones has been presented and formalised it in Event-B. We have defined
and validated the architecture that supports a multi-layered distributed approach to
ensuring the safety and efficiency of swarm navigation. We have formally defined
the requirements that ensure correct coordination of drones using the notion of
modes.

The Rodin platform was used to automate modelling and verification efforts.
The framework has demonstrated good scalability and provided us with a suitable
basis for designing such a complex distributed system as a swarm of drones. We
believe that the following aspects were critical for the success of the development.
The first aspect is support for refinement and decomposition. It allowed us to
start from a centralised succinct system model and derive a complex and tangled
coordination mechanism gradually in correctness preserving way. The second aspect
is support for highly iterative development provided by the Rodin platform.

Proofs provided us with immediate feedback on our models and helped to spot
many intricate interdependencies between modes, phases and effects of faults. We
believe that our work has offered a promising solution to the problem of ensuring
the dependability of swarm systems.

6.13 Paper 13: Multi-Layered Safety Architecture of Au-
tonomous Systems: Formalising Coordination Per-
spective

In this paper, we have presented a novel multi-layered approach to ensuring the
safety of autonomous systems. Our approach introduced the notions of strategic,
tactical and active safety and defined the multi-layered architecture implementing
them. The proposed architecture is novel since it allows us to enhance safety in
three ways: at the pre-deployment state — by performing safety explicit mission
planning; at the run-time — by replanning, the mission and reconfiguring the system
to maintaining safety and efficiency; at critical state — when an unexpected hazard
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emerged and drones should promptly react to mitigate the risks. This paper com-
plements our work on developing high-performance optimization algorithms for
safe navigation of autonomous systems. They allow us to safely navigate the drones
and optimize the travel distance, resource consumption and quality of the payload
data ratio. The algorithms also ensure the inter-drone and drone-obstacle collision
avoidance. Since the proposed multi-layered safety architecture requires complex
coordination and intercommunication, we have employed the Event-B framework
to formalize and verify the proposed coordination and communication mechanisms.
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