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Svensk sammanfattning

Avsikten med denna avhandling är att studera två klassiska linjära integraloperatorer,
HilbertmatrisoperatornH och den generaliserade Volterraoperatorn T ϕg mellan Banach-
rum av analytiska funktioner på den öppna enhetsdisken i det komplexa talplanet.

Den exakta normen av Hilbertmatrisoperatorn undersöks i viktade Bergmanrum A
p
α

för olika värden på parametrarna α och p. Božin och Karapetrović fann den exakta nor-
men av Hilbertmatris operatorn på oviktade Bergmanrum Ap då 2 < p < 4. I denna
avhandling förenklas deras bevis och med hjälp av den nya bevismetoden generaliseras
detta resultat partiellt till viktade Bergmanrum. Normen av Hilbertmatrisoperatorn
undersöks också på Korenblumrum H∞vβ . Ett resultat gällande viktade kompositionsop-
eratorer används för att få ett partiellt resultat gällande normen av Hilbertmatrisoper-
atorn på H∞vβ .

För den generaliserade Volterra operatorn undersöks operatorteoretiska egenska-
per, såsom begränsning, kompakthet och svag kompakthet såväl på rummet av begrän-
sade analytiska funktioner som på rummet av begränsade analytiska funktioner med
vikt samt på Bloch-liknande rum. Avsikten är att relatera dessa egenskaper till egen-
skaper hos de inducerande symbolerna g och ϕ.

v





Contents

Preface iii

Svensk sammanfattning v

Contents vii

1 Introduction 1
1.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Banach spaces of analytic functions 3
2.1 Classical Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Weight functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Bloch-type and Korenblum spaces . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 General Banach spaces satisfying some axioms . . . . . . . . . . . . . . . 5
2.5 Operators between Banach spaces . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Hilbert matrix operator 9
3.1 Integral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Weighted composition representation . . . . . . . . . . . . . . . . . . . . . 14
3.3 The norm of the Hilbert matrix operator on Hp . . . . . . . . . . . . . . . 15
3.4 An upper estimate of the norm of H on weighted Bergman spaces . . . . 15
3.5 Lower bound of the Hilbert matrix operator . . . . . . . . . . . . . . . . . 20
3.6 The Hilbert matrix operator on Korenblum spaces . . . . . . . . . . . . . 21

4 The Volterra operator 23
4.1 Boundedness and compactness results of Tg :Hvβ →H∞ . . . . . . . . . . 23

4.2 Boundedness, compactness and weak compactness results for T ϕg . . . . . 25

Bibliography 29

vii





Chapter 1

Introduction

The set of all analytic functions f : D→C on the open unit disc

D = {z ∈C : |z| < 1}

is denoted by H(D). One of the reasons for confining ourselves to analytic functions on
the open unit disc is that, by the Riemann mapping theorem, any open non-empty sim-
ply connected set Ω ⊂ C can be bijectively mapped onto D by some analytic function,
the inverse of which is also analytic.

The purpose of this thesis was to study properties of two classical linear operators
on Banach spaces of analytic functions on the open unit disc, namely, the Hilbert ma-
trix operator H and the generalized Volterra operator T ϕg . The properties studied were
norm, essential norm, boundedness, weak compactness and compactness. These no-
tions will be discussed in detail in the following chapters.

The thesis is outlined as follows. In chapter 2 I will recall the classical Banach spaces
of analytic functions on the unit disc considered in this thesis and also the properties of
the linear operators mentioned above. Chapter 3 will lay the framework for the Hilbert
matrix operator as well as serve as a thorough introduction of the Hilbert matrix op-
erator on weighted Bergman spaces and Korenblum spaces. In the last chapter I will
discuss the generalized Volterra operator.
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Chapter 2

Banach spaces of analytic functions

2.1 Classical Banach spaces

In this section properties of the Banach spaces of analytic functions considered in this
thesis is discussed. We begin with Hardy spaces Hp. Let 1 ≤ p ≤ ∞. The functions
f ∈H(D) satisfying

‖f ‖Hp = sup
0<r<1

(
1

2π

∫ 2π

0
|f (reiθ)|pdθ

)1/p

<∞

and
‖f ‖∞ = sup

z∈D
|f (z)|

when p =∞, are called Hardy functions. The spaceH∞ is the space of bounded analytic
functions on the unit disc. For f ∈Hp there exists a sharp pointwise estimate

|f (z)| ≤
‖f ‖Hp

(1− |z|2)1/p
, z ∈D. (2.1.1)

Let −1 < α <∞ and 1 ≤ p <∞, the weighted Bergman space Apα is the set of functions in
H(D) satisfying

‖f ‖Apα =
(∫

D

|f (z)|pdAα(z)
)1/p

<∞,

where
dAα(z) = (α + 1)(1− |z|2)αdA(z)

and
dA(z) =

1
π
dxdy =

1
π
rdrdθ, z = x+ iy = reiθ

is the normalised area measure so that A(D) = 1 on D. For f ∈ Apα there exists a sharp
pointwise estimate

|f (z)| ≤
‖f ‖Apα

(1− |z|2)(2+α)/p
, z ∈D. (2.1.2)

3



4 CHAPTER 2

We write Apα = Ap if α = 0. The polynomials are dense in the weighted Bergman space,
meaning that for any f ∈ Apα there exists a sequence of polynomials {fn}∞n=1 with the
property ‖f − fn‖Apα → 0 when n → ∞, see [21]. For more information about Hardy
spaces the reader is referred to the books by Duren [20], Garnett [24] and Koosis [28].
For information about the weighted Bergman spaces we refer the reader to the books by
Hedenmalm, Korenblum and Zhu [26], Duren and Schuster [21] and Zhu [43].

2.2 Weight functions

Many of the classical Banach spaces of analytic functions on the unit disc can be gener-
alized by adding a weight function satisfying some properties. More precisely, a weight
is a continuous, strictly positive function that satisfies lim|z|→1 v(z) = 0. To be able to
prove more interesting results one sometimes needs to put additional regularity condi-
tions on the weight v. The most important regularity condition is that of normality. An
almost decreasing weight v, see below, is called normal if it is radial, meaning that it
satisfies v(z) = v(|z|) for all z ∈D, and if it has the additional properties

inf
n∈N

v(1− 2−n−1)
v(1− 2−n)

> 0 and inf
k∈N

limsup
n→∞

v(1− 2−n−k)
v(1− 2−n)

< 1. (2.2.1)

The concept of almost increasing and almost decreasing functions was introduced by
Bernstein [8], f : [a,b]→ R is called almost increasing if there exists a constant C > 0
such that if x < y then f (x) < Cf (y). An almost decreasing function f : [a,b] → R is
defined similarly. Shields and Williams [39] first introduced the concept of normal
weights, in their definition a weight v is said to be normal if there exists k > ε > 0 and
r0 < 1 such that

v(r)
(1− r)ε

↘ 0 and
v(r)

(1− r)k
↗∞ (r0 ≤ r, r→ 1−). (2.2.2)

In [18] Domański and Lindström showed that conditions (2.2.1) and (2.2.2) are equiv-
alent. The most important weights considered in this thesis are the standard weights
defined by

vβ(z) = (1− |z|2)β , β > 0.

It is easy to verify that the standard weights are normal, on the other hand the weight
defined by

vlog,β(z) = (1− log(1− |z|2))−β , β > 0

fails to satisfy the second condition in (2.2.2) and hence is not a normal weight.

2.3 Bloch-type and Korenblum spaces

Let v : D→R+ be a weight. The Bloch-type spaces considered in this thesis are defined
by

B∞v = {f ∈H(D) : ‖f ‖B∞v = |f (0)|+ supz∈D v(z)|f ′(z)| <∞};
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B0
v = {f ∈ B∞v : lim|z|→1− v(z)|f ′(z)| <∞}.

The Korenblum spaces, or the weighted Banach spaces of analytic functionsH∞v andH0
v

are defined by

H∞v = {f ∈H(D) : ‖f ‖H∞v = supz∈D v(z)|f (z)| <∞};

H0
v = {f ∈H∞v : lim|z|→1− v(z)|f (z)| = 0}.

By a result of Lusky [33] it holds that H∞v ≈ l∞ and H0
v ≈ c0 when the weights are

normal. Lusky [32] also proved that one can identify H∞v = B∞w and H0
v = B0

w by using
the weight w(z) = (1−|z|)v(z). In this thesis we will predominantly deal with Korenblum
spaces with standard weights. In some cases we have considered Korenblum spaces
with normal weights, these weights satisfy the property lim|z|→1− v(z) = 0. This is be-
cause if lim|z|→1− v(z) > 0 then H∞v = H∞. For the Korenblum spaces with standard
weights it follows immediately that

|f (z)| ≤
‖f ‖H∞vβ

(1− |z|2)β
, z ∈D. (2.3.1)

2.4 General Banach spaces satisfying some axioms

A property common for all the spaces Hp, Apα and H∞vβ is that their norm topologies
are finer than the compact-open topology, this follows from the pointwise estimates
that hold in these spaces. The compact-open topology defined on H(D) is the topology
generated by subsets of the form

B(K,U ) = {f ∈H(D) : f (K) ⊆U },

where K ⊂D is compact and U ⊂C is open. On the unit disc we have that uniform con-
vergence on compact subsets is equivalent to convergence in the compact-open topol-
ogy. We will denote H(D) endowed with the compact-open topology by (H(D), co).
There are also other properties that these spaces share, which will be the topic for this
section.

When studying bounded linear operators on Banach spaces of analytic functions one
only needs to use properties that the spaces possess. We can therefore assemble a list
of conditions that we require our general space X to have and then give examples of
spaces that satisfy the given conditions. Let X be a Banach space of analytic functions
containing the constant functions, and let ‖·‖X denote its norm. For any z ∈D, the point
evaluation functional δz : X → C is defined by δz(f ) = f (z) for f ∈ X . The following
conditions will be considered on the space X (see [13] or [22]).

(I) The closed unit ball BX of X is compact with respect to the compact-open topol-
ogy.

(II) The point evaluation functionals δz : X → C satisfy lim|z|→1‖δz‖X→C
=∞.
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(III) The linear operator Tr : X → X mapping f 7→ fr , where fr (z) := f (rz) is compact
for every 0 < r < 1.

(IV) The operators Tr in (III) satisfy sup0<r<1‖Tr‖X→X <∞.

(V) The pointwise multiplication operator Mu : X → X satisfies ‖Mu‖X→X . ‖u‖∞ for
every u ∈H∞.

The notation A . B indicates that there is a positive constant c, not depending on prop-
erties of A and B, such that A ≤ cB. If both A . B and B . A we will write A � B.

Condition (I) is true for all spaces considered in this thesis, except for B0
v and H0

v .
Furthermore, the evaluation map X →X ∗∗, f 7→ f̃ , where f̃ (l) = l(f ) for f ∈ X and l ∈ X ∗
is a natural embedding of X into its second dual X ∗∗ so we can think of X as a subset of
X ∗∗. The evaluation map is always injective, but not necessarily surjective when X is a
Banach space. Instead we consider a subset of the dual space X ∗

∗X = {l ∈ X ∗ : l
∣∣∣
BX

is co-continuous}.

It turns out that ∗X is itself a Banach space if one assumes condition (I), this follows
from the Diximier-Ng Theorem [35]

Theorem 2.4.1. Let (X ,‖·‖X ) be a normed space with closed unit ball BX . Suppose there
exists a (Hausdorff) locally convex topology τ for X such that BX is τ-compact. Then X itself
is a Banach dual space, that is, there exists a Banach space V such that X is isometrically
isomorphic to the dual space V ∗ of V (in particular, X is complete).

The theorem above can be applied to Banach spaces X ⊂ H(D) satisfying condi-
tion (I), this is because the compact-open topology defined on H(D) is a locally convex
topology. Finally, in the proof of theorem 2.4.1 the space V is of the form

V = {l ∈ X ∗ : l
∣∣∣
BX

is τ-continuous}

and so ∗X is a Banach space such that X is isometrically isomorphic to (∗X )∗. By the
Hahn-Banach theorem the linear span of the set {δz : z ∈D} is contained and norm dense
in ∗X , see [11] for further details. By using (2.1.1), (2.1.2) and (2.3.1) we can calculate
the operator norm of the point evaluation functionals on Apα , Hp and H∞vβ . They are

‖δz‖Hp→C
=

1

(1− |z|2)
1
p

;

‖δz‖Apα→C
=

1

(1− |z|2)
2+α
p

, α > −1;

‖δz‖H∞vβ→C
=

1
(1− |z|2)β

, β > 0.

From the above it is easily seen that condition (II) is satisfied in the spaces Hp, Apα and
H∞vβ . Condition (II) is not, however, satisfied inH∞ since ‖δz‖H∞ = 1. The spacesHp and
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A
p
α satisfy all conditions (III)-(V) when 1 ≤ p <∞ and α > −1, and the same is true for

H∞v if the weight v is normal and equivalent to its associated weight defined by

ṽ(z) = ‖δz‖−1
H∞v →C

,

for proofs see [10].

2.5 Operators between Banach spaces

Let X and Y be Banach spaces and let L(X ,Y ) denote the set of all continuous linear
maps T : X → Y . A linear operator T is bounded if there exists a constant M > 0 such
that

‖T (x)‖Y ≤M‖x‖X .

It is a well-known fact that a linear operator T is bounded if and only if T is continuous
and furthermore if the operator norm

‖T ‖X→Y = sup
‖x‖X≤1

‖T (x)‖Y

is finite. The space L(X ,Y ) equipped with the operator norm is itself a Banach space.
The notion of a compact operator will be useful to us, we begin with the definition.

Definition 2.5.1. Let X and Y be Banach spaces and assume that T ∈ L(X ,Y ), then T :
X → Y is a compact operator if for every bounded sequence {xn}∞n=1 in X the sequence
{T (xn)}∞n=1 has a convergent subsequence in Y .

The essential norm of a bounded linear operator T : X → Y is defined to be the
distance to the compact operators, that is

‖T ‖e,X→Y = inf{‖T −K‖X→Y : K : X→ Y is compact}.

Notice that T : X → Y is compact if and only if ‖T ‖e,X→Y = 0, we will denote the set
of compact operators T : X → Y by K(X ,Y ). The definition of weak compactness of an
operator between Banach spaces is given by

Definition 2.5.2. Let X and Y be Banach spaces and assume that T ∈ L(X ,Y ). Then
T : X → Y is weakly compact if for every bounded sequence {xn}∞n=1 in X the sequence
{T (xn)}∞n=1 contains a weakly convergent subsequence in Y .

We will denote the set of all weakly compact operators by W (X ,Y ). The following
lemma is very useful to check if a linear operator, satisfying some conditions, is compact
or weakly compact, see [15].

Lemma 2.5.3. Let X ⊂H(D) be a Banach space such that the closed unit ball BX is compact
with respect to the compact-open topology co, and let Y ⊂ H(D) be a Banach space such
that the point evaluation functionals on Y are bounded. Assume that T : X → Y is a co-co
continuous linear operator. Then T : X → Y is compact(respectively weakly compact) if and
only if {T (fn)}∞n=1 converges to zero in the norm(respectively in the weak topology) of Y for
each bounded sequence {fn}∞n=1 in X such that fn→ 0 uniformly on compact subsets of D.
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As a final note it can be seen that K(X ,Y ) ⊂W (X ,Y ), or in other words all compact
operators are weakly compact.



Chapter 3

The Hilbert matrix operator

The Hilbert matrix is an infinite matrix with entries ai,j = 1
i+j+1 or in matrix form

H =


1 1/2 1/3 · · ·

1/2 1/3 1/4 · · ·
...

...
. . .

...

 .
This matrix was introduced by Hilbert in connection to his double series theorem, if∑∞
k=0 a

2
k <∞, then

0 ≤

∣∣∣∣∣∣∣∣
∞∑
i=0

∞∑
j=0

aiaj
i + j + 1

∣∣∣∣∣∣∣∣ ≤ C
∞∑
i=0

a2
i .

The proof of this theorem was published by Weyl in his thesis [42] and the optimal
constant C = π was found by Schur [38]. Hardy and Riesz later generalized this result
for 1 < p,q <∞, 1/p+ 1/q = 1. If (ak) ∈ `p and (bk) ∈ `q, then

∞∑
k=0

∞∑
j=0

|ajbk |
j + k + 1

≤ π
sin(πp )

 ∞∑
k=0

|ak |p
1/p  ∞∑

k=0

|bk |q
1/q

,

see [25]. From the above it follows that
∞∑
k=0

∣∣∣∣∣∣∣∣
∞∑
j=0

aj
j + k + 1

∣∣∣∣∣∣∣∣
p

1/p

≤ π
sin(πp )

 ∞∑
k=0

|ak |p
1/p

,

where the constant π
sin( πp ) is optimal. In other words H : lp → łp, ak 7→ Ak , where Ak =∑∞

j=0
aj

j+k+1 is bounded and ‖H‖lp→lp = π
sin( πp ) . The Hilbert matrix was first considered as

an operator H : `2 → `2 by Magnus [34]. He showed that the spectrum of the Hilbert
matrix operator on l2 is [0,π].

9



10 CHAPTER 3

The Hilbert matrix operator can also be defined on Banach spaces of analytic func-
tions by its action on the Taylor coefficients. Namely let f (z) =

∑∞
k=0 akz

k then the
Hilbert matrix operator H is defined as the double sum

H(f )(z) =
∞∑
n=0

 ∞∑
k=0

ak
n+ k + 1

zn.
The Hilbert matrix operator defines an analytic function on the open unit disc when the
coefficients An =

∑∞
k=0

ak
n+k+1 are bounded for every n ∈N. Note that this is not always

the case, let f (z) = 1
1−z =

∑∞
k=0 z

k then

∞∑
k=0

1
n+ k + 1

=∞

for all n ∈N. Therefore we need to restrict H(D) to linear subspaces of H(D) where H
is defined. A few examples of such spaces are Hp, Apα and H∞vβ . In the Hardy case we
apply Hardy’s inequality to obtain

∞∑
k=0

|ak |
k + 1

≤ π‖f ‖H1

showing that the Hilbert matrix operator defines an analytic function when f ∈ Hp

with p ≥ 1. For the spaces Apα andH∞vβ we present similar results to the above inequality,
which is the topic of the next lemma.

Lemma 3.0.1. (a) If p ≥ 2 + 2α and f ∈ Apα , then

∞∑
k=0

|ak |
k + 1

<∞.

(b) if 0 < β < 1/2 and f ∈H∞vβ , then

∞∑
k=0

|ak |
k + 1

<∞.

Proof. Let f (z) =
∑∞
k=0 akz

k .

(a) Let

mp(r, f )p =
1

2π

∫ 2π

0
|f (reiθ)|pdθ,

where 0 ≤ r < 1. Since mp(r, f ) is a non-decreasing function of r it follows for
t ∈ (r,1) that

t(1− t2)αmp(r, f )p ≤mp(t, f )pt(1− t2)α

integrating with respect to t we get

1
2(1 +α)

(1−r2)1+αmp(r, f )p ≤
∫ 1

r
t(1−t2)αmp(t, f )pdt ≤ 1

2

∫ 1

0
2t(1−t2)αmp(t, f )pdt.
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By rearranging terms we arrive at

mp(r, f ) ≤
‖f ‖Apα

(1− r2)(1+α)/p
≤

‖f ‖Apα
(1− r)(1+α)/p

.

Since α ≥ 0 and p > 2 +α ≥ 2 we get that m2(r, f ) ≤mp(r, f ) from which we get

∞∑
k=0

|ak |2r2k =m2(r, f )2 ≤
‖f ‖2

A
p
α

(1− r)2(1+α)/p
.

By setting r = 1− 2−(k−1), k ≥ 2 it follows that

2k−1∑
j=2k−1

|aj |2 ≤ C2(k−1) 2(1+α)
p ‖f ‖2

A
p
α

for some constant C > 0.

(b) For the Korenblum case we use the pointwise estimate (2.3.1) to get

(1− r)2βm2(r, f )2 ≤ ‖f ‖2H∞vβ .

Now by using the equality
∑∞
k=0 |ak |2r2k =m2(r, f )2 we obtain

∞∑
k=0

|ak |2r2k ≤ ‖f ‖2Hv∞β
(1− r)−2β .

By putting r = 1−2−(k−1), k ≥ 2 into the above inequality we arrive at the following
estimate

2k−1∑
j=2k−1

|aj |2 ≤D2(k−1)2β‖f ‖2H∞vβ

for some constant D > 0.

To complete the proof we observe that in both case (a) and case (b) it holds that

∞∑
k=2

|ak |
k + 1

=
∞∑
k=2

2k−1∑
j=2k−1

|aj |
j + 1

≤
∞∑
k=2

2k−1∑
j=2k−1

|aj |
2k−1

≤
∞∑
k=2

21−k


2k−1∑
j=2k−1

12


1
2


2k−1∑
j=2k−1

|aj |2


1
2

=
∞∑
k=2

21−k2
k−1

2


2k−1∑
j=2k−1

|aj |2


1
2

.
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Now for the (a) case we get

∞∑
k=2

|ak |
k + 1

≤ C‖f ‖Apα

∞∑
k=2

2−
k−1

2 (1− 2(1+α)
p ) <∞

if p > 2 + 2α. For the (b) case we get

∞∑
k=2

|ak |
k + 1

≤D‖f ‖H∞vβ

∞∑
k=2

2−
k−1

2 (1−2β) <∞

if 0 < β < 1
2 , completing the proof.

The objective was to show that the Hilbert matrix operator defines an analytic func-
tion in the weighted Bergman case when p > 2 + α, α ≥ 0 and in the Korenblum space
when 0 < β < 1. Therefore Lemma 3.0.1 is not enough for boundedness of H and we
need another approach. The key is using the pointwise estimate for weighted Bergman
spaces to show that H(f ) defines an analytic function on D when f ∈ Apα , α ≥ 0 and
p > 2 +α and then using the fact that H∞vβ ⊆ A

p
α for p large enough.

Theorem 3.0.2. Let α ≥ 0 and p > 2 +α. If f ∈ Apα then H(f ) ∈H(D).

Proof. Let f ∈ Apα . By using (2.1.2) we deduce that∣∣∣∣∣∣
∫ 1

0

f (t)
1− tz

dt

∣∣∣∣∣∣ ≤
∫ 1

0

|f (t)|
|1− tz|

dt ≤
‖f ‖Apα
1− |z|

∫ 1

0

1

(1− t2)(2+α)/p
dt <∞,

since p > 2 +α. From the above it follows that∫ 1

0
|f (t)|dt ≤ C(α,p)‖f ‖Apα (3.0.1)

and

sup
n

∣∣∣∣∣∣
∫ 1

0
tnf (t)dt

∣∣∣∣∣∣ <∞.
Now let f =

∑∞
k=0 akz

k and define SN f (z) =
∑N
k=0 akz

k . By [21, Lemma 1], it holds that
‖f − SN f ‖Apα → 0, N → ∞ if and only if supN≥1‖SN ‖ < ∞. By the boundedness of the
Riesz projection on Hp, 1 < p <∞ there exists a constant C > 0 independent of N and f
such that ∫ 2π

0
|SN f (eiθ)|pdθ ≤ C

∫ 2π

0
|f (eiθ)|pdθ.

Applying this result to the functions fr ∈Hp, 0 ≤ r < 1 we get

‖SN f ‖
p

A
p
α

=
α + 1
π

∫ 1

0

∫ 2π

0
|SN f (reiθ)|pdθr(1− r2)αdr

≤ Cα + 1
π

∫ 1

0

∫ 2π

0
|f (reiθ)|pdθr(1− r2)αdr

= C‖f ‖p
A
p
α
,
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showing that supN≥1‖SN ‖ <∞. Now using estimate (3.0.1) we have∣∣∣∣∣∣∣
∫ 1

0
tnf (t)dt −

N∑
k=0

ak
n+ k + 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫ 1

0
tnf (t)dt −

∫ 1

0

 N∑
k=0

akt
k

 tndt
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ 1

0
tn(f (t)− SN f (t))dt

∣∣∣∣∣∣
≤ C(α,p)‖f − SN f ‖Apα ,

which converges to 0 when N →∞. This shows that∫ 1

0
tnf (t)dt =

∞∑
k=0

ak
n+ k + 1

for each n ∈ N and further that H(f )(z) =
∑∞
n=0

(∑∞
k=0

ak
n+k+1

)
zn is an analytic function

on the open unit disc.

To show that the Hilbert matrix operator defines an analytic function in the Koren-
blum spaces with 0 < β < 1 we use the fact that H∞vβ ⊆ A

p
pβ for p > 2

1−β . Indeed, if f ∈H∞vβ
then

‖f ‖p
A
p
pβ

=
∫
D

|f (z)|p(1− |z|2)pβ(pβ + 1)dA(z)

≤ ‖f ‖pH∞vβ

∫
D

(1− |z|2)pβ

(1− |z|2)pβ
(pβ + 1)dA(z)

= ‖f ‖pH∞vβ (pβ + 1) <∞.

Hence, H(f ) ∈H(D) when H∞vβ with 0 < β < 1.

3.1 Integral representation

For our purposes it is necessary to writeH in a different way, namely as an integral mean
of weighted composition operators, see [17]. Through this representation it is possible
to calculate the norm precisely in the Apα case when α ≥ 0 and 2+α < p <∞, given some
further constraints. In this thesis we will give a thorough account of why this integral
representation holds in the Apα and H∞vβ case. First we give another representation of the
Hilbert matrix operator, namely

H(f )(z) =
∫ 1

0

f (t)
1− tz

dt.

This representation is valid when f ∈ Apα and f ∈H∞vβ . Indeed, let f (z) =
∑∞
k=0 akz

k ∈ Apα
and define

S(f )(z) =
∫ 1

0

f (t)
1− tz

dt, z ∈D.
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By the proof of Theorem 3.0.2 we have that

sup
n

∣∣∣∣∣∣
∫ 1

0
tnf (t)dt

∣∣∣∣∣∣ <∞
and for all n ∈N that ∫ 1

0
tnf (t)dt =

∞∑
k=0

ak
n+ k + 1

.

Thus by Fubini’s theorem we get

S(f )(z) =
∫ 1

0

 ∞∑
n=0

f (t)(tz)n
dt =

∞∑
n=0

(∫ 1

0
tnf (t)

)
zn =

∞∑
n=0

 ∞∑
k=0

ak
n+ k + 1

zn =H(f )(z)

for all z ∈ D. Since H∞vβ ⊂ A
p
pβ , we conclude from the above that for each f ∈ H∞vβ

with 0 < β < 1 it holds that S(f ) = H(f ) ∈ H(D), if we choose p > 2
1−β . The integral

representation for H also holds in Hp spaces, but we will not prove it here.

3.2 Weighted composition representation

In this section we will rewrite H as an integral of weighted composition operators. Re-
call that

H(f )(z) =
∫ 1

0

f (s)
1− sz

ds.

By changing the path of integration,

s = s(t) =
t

(t − 1)z+ 1
, 0 ≤ t ≤ 1,

we arrive at an alternate representation for H(f )

H(f )(z) =
∫ 1

0
ωt(z)f (φt(z))dt,

where

ωt(z) = 1
(t−1)z+1 , 0 ≤ t ≤ 1

φt(z) = t
(t−1)z+1 , 0 ≤ t ≤ 1.

Here ωt is a bounded analytic function on the open unit disc for all 0 ≤ t ≤ 1, and since

|φt(z)| =
t

|(t − 1)z+ 1|
≤ t

1− (1− t)|z|
≤ 1,

it holds that φt : D→ D or in other words φt is an analytic self-map of the unit disc.
Furthermore it holds that φt(D) is a disc with center 1

2−t and radius 1−t
2−t . We denote

Tt(f )(z) = ωt(z)f (φt(z)). Now Tt is a weighted composition operator and we have that

H(f )(z) =
∫ 1

0
Tt(f )(z)dt.
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3.3 The norm of the Hilbert matrix operator on Hp

In [17] Diamantopoulos and Siskakis studied the boundedness of H : Hp → Hp. They
proved thatH :Hp→Hp is bounded for 1 < p <∞ and they also found an upper bound
on the norm of H when 2 ≤ p <∞, namely

‖H‖Hp→Hp ≤ π

sin
(
π
p

) . (3.3.1)

H is not bounded on H1 or H∞, for the H∞ case consider

H(1)(z) =
∫ 1

0

1
1− tz

dt =
∫ 1

0

 ∞∑
k=0

tkzk
dt =

∞∑
k=0

zk

k + 1
=

1
z

log
( 1

1− z

)
,

which is clearly unbounded on D. As such H is unbounded on H∞. In the H1 case we
can use the function

f (z) =
z2

(1− z)(log
(

1
1−z

)
)2
∈H1

and it can be shown that H(f ) < H1. The lower bound of the norm of H was proven to
be the same as the right side of (3.3.1) for all 1 < p <∞ by Dostanić, Jevtić and Vukotić
in [19]. They used test functions of the form

fγ (z) = (1− z)
−γ
p ,

where γ ∈ (ε,1) for ε ∈ (0,1). For the upper bound of the norm ofH, Dostanić et al. [19]
used the exact norm of the Riesz projection for Hardy spaces to determine the above
upper bound for 1 < p < ∞. This method does not work in the Bergman case when
2 < p < 4 and therefore we need another approach.

3.4 An upper estimate of the norm ofH on weighted Bergman
spaces

Recently the norm of the Hilbert matrix operator on Bergman spaces has been under
active study. In [16] Diamantopoulos showed that H : Ap → Ap is bounded when 2 <
p <∞ and determined an upper bound for the norm of H

‖H‖Ap→Ap ≤
π

sin 2π
p

,

when 4 ≤ p < ∞. He also managed to find an upper bound of the norm of H when
2 < p < 4, although less precise. In their work [19], Dostanić et al. improved the estimate
when 2 < p < 4 and they also determined the lower bound forH : Ap→ Ap thus proving
the exact value of the norm of H on 4 ≤ p < ∞. In the same article the authors also
conjectured that the exact value of the norm of H on Ap when 2 < p < 4 is the same
as in the 4 ≤ p < ∞ case. Later on Božin and Karapetrović [12] proved the conjecture
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in the affirmative by reducing the problem of determining the norm of H to estimates
concerning Beta functions. In paper II we simplified the proof in [12] by removing the
dependency on Sturm’s theorem [37] and giving a partial new proof of one of the key
lemmas. By this new proof the lemma could then partly be generalized to the weighted
Bergman case, as was done in paper III. In [27] Karapetrović studied H on A

p
α when

α ≥ 0 and 2 +α < p <∞. He found that the norm of H is

‖H‖Apα→Apα =
π

sin (2+α)π
p

,

when 4 ≤ 2(2 +α) ≤ p <∞ and found an estimate of the norm ofH when 2 ≤ 2 +α < p <
2(2 +α). In paper III we improved the result by showing thatH : Apα→ A

p
α has the same

norm for a subinterval of 2 ≤ 2 + 2α < p < 2(2 +α) and a condition for the remaining p
in the mentioned interval, more on this later. We now return to calculating an upper
bound for the operator norm of H. We get

‖H(f )‖Apα =
(
(α + 1)

∫
D

|H(f )(z)|p(1− |z|2)αdA(z)
)1/p

= (α + 1)1/p

∫
D

∣∣∣∣∣∣
∫ 1

0
Tt(f )(z)dt

∣∣∣∣∣∣
p

(1− |z|2)αdA(z)

1/p

≤ (α + 1)1/p
∫ 1

0

(∫
D

|Tt(f )(z)|p(1− |z|2)αdA(z)
)1/p

dt

=
∫ 1

0
‖Tt(f )‖Apαdt,

where the second last inequality is motivated by the continuous version of Minkowski’s
inequality. We have arrived at the estimate

‖H(f )‖Apα ≤
∫ 1

0
‖Tt(f )‖Apαdt, (3.4.1)

which motivates the study of the norm of the weighted composition operator Tt . Es-
timating the norm ‖Tt(f )‖Apα is done via the change of variables w = φt(z), dA(w) =
|φ′t(z)|2dA(z). We have

‖Tt(f )‖Apα = (α + 1)1/p
(∫

D

|Tt(f )(z)|p(1− |z|2)αdA(z)
)1/p

= (α + 1)1/p
(∫

D

|ωt(z)f (φt(z))|p(1− |z|2)αdA(z)
)1/p

= (α + 1)1/p
(∫

Dt

|f (w)|p |ωt(φ−1
t (w))|p(1− |φ−1

t (w)|2)α |φ′t(φ−1
t (w))|−2dA(w)

)1/p

.

By a few calculations we get the following

|ωt(φ−1
t (w))| = |w|t ;
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|φ′t(φ−1
t (w))|−2 = t2

(1−t)2 |w|4 ;

1− |φ−1
t (w)|2 = t

1−t
2<(w)−t−(2−t)|w|2

(1−t)|w|2 .

So we arrive at the following expression for the norm of Tt

‖Tt(f )‖p
A
p
α

= (α + 1)
t2+α−p

(1− t)2+2α

∫
Dt

|w|p−2α−4|f (w)|pgt(w)αdA(w),

where gt(w) = 2<(w)− t − (2− t)|w|2. Now if α ≥ 0 we can estimate gαt .

gt(w) = 2<(w)− t − (2− t)|w|2 ≤ 1 + |w|2 − t − (2− t)|w|2 = (1− |w|2)(1− t).

This gives us now
gt(w)α ≤ (1− |w|2)α(1− t)α .

Using the above inequality we get the following upper bound for the norm of Tt .

‖Tt(f )‖Apα ≤
t

2+α
p −1

(1− t)
2+α
p

(
(α + 1)

∫
Dt

|w|p−2α−4|f (w)|p(1− |w|2)αdA(w)
)1/p

. (3.4.2)

We will now show how the norm of the Hilbert matrix operator can be calculated
immediately from the above expression in the case when p ≥ 2(2 + α). Indeed, since
|w|p−2α−4 ≤ 1 and Dt ⊂D,

‖H(f )‖Apα ≤
∫ 1

0
‖Tt(f )‖Apαdt

≤ (α + 1)1/p
∫ 1

0

t
2+α
p −1

(1− t)
2+α
p

(∫
Dt

|w|p−2α−4|f (w)|p(1− |w|2)αdA(w)
)1/p

dt

≤ B
(

2 +α
p

,1− 2 +α
p

)
‖f ‖Apα ,

where

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt,

for x,y ∈ C satisfying<(x) > 0,<(y) > 0, is the Beta function. The Beta function can
also be defined via the Gamma function

Γ (z) =
∫ ∞

0
xz−1e−xdx,<(z) > 0.

The Beta function can then be related to the Gamma function by the relation

B (x,y) =
Γ (x)Γ (y)
Γ (x+ y)

.

We will also use the following equality concerning the Beta function

B(x,1− x) =
π

sin(πx)
. (3.4.3)
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These and more properties concerning the Beta function can be found in the book by
Abramowitz and Stegun [1]. By using property (3.4.3) we deduce

‖H(f )‖Apα ≤
π

sin (2+α)π
p

‖f ‖Apα

in the case when p ≥ 2(2 +α).
As was seen the case p ≥ 2(2+α) follows immediately from (3.4.2). The case p < 2(2+

α) has proven to be much more cumbersome to solve, because in the above expression
the term |w|p−2α−4 grows large. The following theorem, which is the main result in
paper III, gives a partial solution to the problem of determining the norm of H when
2 + 2α < p < 2(2 +α).

Theorem 3.4.1. Let α ≥ 0. Suppose that either of the following conditions holds

(a) 2 +α +
√
α2 + 7

2α + 3 ≤ p < 2(2 +α);

(b) 2 + 2α < p < 2 +α +
√
α2 + 7

2α + 3 and

∫ 1

0
It

(
2 +α
p

,1− 2 +α
p

)
t2p−4α−5(1− t4)αdt − 1

4(α + 1)
≤ 0.

Then
‖H‖Apα→Apα ≤

π

sin (2+α)π
p

.

Here It refers to the regularized incomplete Beta function and is defined by

It =
Bt(x,y)
B(x,y)

, Bt(x,y) =
∫ t

0
sx−1(1− s)y−1ds.

The proof rests upon two useful lemmas, the first being due to Bhayo and Sándor [9].
This handles the (a) case in 3.4.1.

Lemma 3.4.2. Let x > 1,0 < y < 1. Then

(a) B(x,y) < 1
xy (x+ y − xy);

(b) B(x,y) ≥ 1
xy

x+y
1+xy .

The inequalities reverse when x,y ∈ (0,1].

For the following lemma we need to introduce two new functions. Let α ≥ 0, 2+2α <
p < 2(2 +α). Define for s ∈ [0,1], 0 < t < 1

Hα,p(s) =
∑∞
k=0

(α
k

)
(−1)k 1

p−2α−2+2k −
1

α(α+1) (1− s4)α+1;

Kα,p(s, t) =
∑∞
k=0

(α
k

)
(−1)k 1

p−2α−2+2k max(s2, t2)p−2α−2+2k ,
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where (
α
k

)
=
α(α − 1)(α − 2) · · · (α − k + 1)

k!
,

(
α
0

)
= 1

are the generalized binomial coefficients. It is easily seen that the two sums above are
convergent for every α ≥ 0 and 2+2α < p < 2(2+α). With the help of these two functions
we get the second important lemma.

Lemma 3.4.3. Let α ≥ 0, 2 + 2α < p < 2(2 +α), and define ψα,p(t) = t
2+α
p −1(1− t)−

2+α
p . The

following two conditions are equivalent:

(a) B
(

2+α
p ,1− 2+α

p

)
Hα,p(0)−

∫ 1
0 ψα,p(t)Kα,p(0, t)dt ≤ 0

(b)
∫ 1

0 It
(

2+α
p ,1− 2+α

p

)
t2p−4α−5(1− t4)αdt − 1

4(α+1) ≤ 0.

Moreover, if α ∈ [0,1] or α ∈ [2,3], then

1
2p − 4α − 4

− 1
(2p − 4α − 4)2

1

B
(

2+α
p ,2p − 4α − 4

)
−α

 1
2p − 4α

− 1
(2p − 4α)2

1

B
(

2+α
p ,2p − 4α

)
+
α(α − 1)

2

 1
2p − 4α + 4

− 1
(2p − 4α + 4)2

1

B
(

2+α
p ,2p − 4α + 4

)− 1
4(α + 1)

≤ 0

implies that (a) and (b) hold.

The last inequality in the above lemma can be shown to hold when α = 0, we get

1
2p − 4

− 1
(2p − 4)2

1

B
(

2
p ,2p − 4

) − 1
4
≤ 0.

The above inequality is equivalent to

B

(
2
p
,2p − 4

)
≤ 1

(p − 2)(4− p)
.

Lemma 3.4.4. Let 2 < p < 4. Then

B

(
2
p
,2p − 4

)
≤ 1

(p − 2)(4− p)
.

Proof. (1) Case 2 < p < 5
2 . By using B(x,y) ≤ 1

xy ,x,y ∈ (0,1] and observing that both
parameters in the Beta function belong to the interval (0,1], we have

B

(
2
p
,2(p − 2)

)
≤ 1

(p − 2)(4− p)
.
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(2) Case 5
2 < p < 4. Now 2(p − 2) > 1 and 2

p < 1. Hence by Lemma 3.4.2, we have

B

(
2
p
,2(p − 2)

)
<

1
2
p · 2(p − 2)

(
2
p

+ 2(p − 2)− 2
p
· 2(p − 2)

)
=

1
2(p − 2)

(p2 − 4p+ 5).

The claim follows from the inequality

1
2

(p2 − 4p+ 5) ≤ 1
4− p

,

which is equivalent to
(p − 3)2(p − 2) ≥ 0.

Note that inequality (b) in lemma 3.4.3 does not hold for all α ≥ 0 and 2 + 2α < p <

2 +α +
√
α2 + 7

2α + 3. In the case when α = 1 we have the following example.

Example 3.4.5. Let α = 1. Then condition (b) in 3.4.3 does not hold when 4 < p ≤ 5.1
but it holds when 5.5 ≤ p < 5.74. This is shown in paper III.

3.5 Lower bound of the Hilbert matrix operator

To get the exact norm of the Hilbert matrix operator on the weighted Bergman spaces
we still need to find the lower bound for this operator. To find the lower bound for the
operator norm it is sufficient to find suitable test functions. Karapetrović [27] proved
for 1 < 2 +α < p <∞ that the following holds

‖H‖Apα→Apα ≥
π

sin (2+α)π
p

.

This was done through the use of test functions of the form

fγ (z) = (1− z)−
γ
p , z ∈D

for 1 < γ < α + 2 < p. For α ≥ 0 it is easy to show that fγ ∈ A
p
α for the aforementioned

values on γ . Indeed,

‖fγ‖
p

A
p
α

=
∫
D

|fγ (z)|p(1− |z|2)α(α + 1)dA(z)

=
∫
D

|(1− z)|−γ (1− |z|2)α(α + 1)dA(z)

≤ (α + 1)
∫
D

|(1− z)|−γdA(z)

= 2(α + 1)
∫ π

2

0

∫ 2cos(θ)

0
r1−γdrdθ

≤ (α + 1)23−γ

2−γ

∫ π
2

0
cos2−γ (θ)dθ <∞,
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where the final inequality holds because γ < 2. In the above we changed to polar coor-
dinates centered around z = 1. The rest of the proof uses Stirling’s formula and some
properties of hypergeometric functions, see [27] for further details.

3.6 The Hilbert matrix operator on Korenblum spaces

Recall that the Korenblum spaces are defined as

H∞v = {f ∈H(D) : ‖f ‖H∞v = sup
z∈D

v(z)|f (z)| <∞}.

For our purposes we are only interested in the Korenblum spaces with the standard
weights v(z) = (1−|z|2)β . The boundedness ofH on the Korenblum spaces with standard
weight was noted by Aleman, Montes-Rodríguez and Sarafoleanu in [3]. Since H is not
bounded on H∞vβ for β = 1 and β = 0 we will focus on the scale 0 < β < 1. In the same
way as in the weighted Bergman case, take a f ∈H∞vβ then

‖H(f )‖H∞vβ = sup
z∈D

∣∣∣∣∣∣
∫ 1

0
Tt(f )(z)dt(1− |z|2)β

∣∣∣∣∣∣
≤

∫ 1

0
sup
z∈D
|Tt(f )(z)|(1− |z|2)βdt

=
∫ 1

0
‖Tt(f )‖H∞vβ dt.

So we are again able to reduce the problem of determining the norm ofH to finding the
norm of the weighted composition operator Tt . The following lemma is important in
establishing the upper bound of the norm of H.

Lemma 3.6.1. Let 0 < β < 1. Then

‖Tt‖H∞vβ→H∞vβ =


tβ−1

(1−t)β if 0 < β ≤ 2/3 and 0 < t < 1 or if 2/3 < β < 1 and 3β−2
4β−2 ≤ t < 1

(1− x0)2β−1
(

1−| x0
1−t |

2

(1−x0)2−t2

)β
if 2/3 < β < 1 and 0 < t < 3β−2

4β−2 ,

where

x0 =
β + 2βt − t −

√
4β2t − 2βt + β2 − 2β + 1

2β − 1
.

The proof of the above lemma relies on a representation of the norm of weighted
composition operators, namely let u ∈H∞vβ and let ϕ be an analytic self-map of the unit
disc, then the norm of the weighted composition operator uCϕ can be written as

‖uCϕ‖H∞vβ→H∞vβ = sup
z∈D
|u(z)|

(
1− |z|2

1− |ϕ(z)|2

)β
,

see [14]. Before we move to the main proof concerning the norm on Korenblum spaces
in paper II we will briefly discuss the lower bound of the norm of H.
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Theorem 3.6.2. If H :H∞vβ →H∞vβ , then

‖H‖H∞vβ→Hv∞β
≥ π

sin(πβ)

holds for 0 < β < 1.

The proof of this theorem is done by estimating the operator norm of H with test
functions of the form

fβ(z) =
1

(1− z)β
, 0 < β < 1, z ∈D.

Indeed, for 0 < β < 1 we have fβ ∈H∞vβ , since

‖fβ‖H∞vβ = sup
z∈D

(1− |z|2)β

(1− z)β
≤ sup
z∈D

(1 + |z|)β = 2β .

Furthermore, if r ∈ (0,1) it holds that

|fβ(r)|(1− r2)β =
(1− r2)β

(1− r)β
= (1 + r)β ,

letting r→ 1− we get |fβ(r)|(1− r2)β → 2β and so

‖fβ‖H∞vβ = 2β .

By the help of the above lemma and the lower bound of the norm of H we manage to
find the exact norm of the Hilbert matrix operator on the 0 < β < 2/3 scale, and an upper
estimate on the 2/3 < β < 1 scale. The result in paper II is as follows

Theorem 3.6.3. Let 0 < β < 2/3, and letH :H∞vβ →H∞vβ be the Hilbert matrix operator. Then

‖H‖H∞vβ→H∞vβ =
π

sin(βπ)
.

For 2/3 < β < 1, we have the following upper bound.

‖H‖H∞vβ→H∞vβ ≤
∫ 3β−2

4β−2

0
G(x0)dt +

∫ 1

3β−2
4β−2

tβ−1(1− t)−βdt,

where

G(x) = (1− x)2β−1
(

1− | x1−t |
2

(1− x)2 − t2

)β
and

x0 =
β + 2βt − t −

√
4β2t − 2βt + β2 − 2β + 1

2β − 1
.



Chapter 4

The Volterra operator

The generalized Volterra operator T ϕg , for a fixed function g ∈ H(D) and an analytic
selfmap ϕ : D→D is defined as

T
ϕ
g (f )(z) =

∫ ϕ(z)

0
f (ξ)g ′(ξ)dξ, z ∈D, f ∈H(D).

Note that T ϕg (f ) defines an analytic function when f ∈ H(D). Li and Stević [29] intro-
duced the operator T ϕg in the form

T
ϕ
g = Cϕ ◦ Tg ,

where Cϕ is the composition operator f 7→ f ◦ϕ and Tg is defined below. The classical
Volterra operator is obtained in the case when ϕ(z) = z,

Tg (f )(z) =
∫ z

0
f (ξ)g ′(ξ)dξ, z ∈D, f ∈H(D).

The operator Tg has been extensively studied in the last decades, beginning with the
paper by Pommerenke [36]. Later on Aleman and Siskakis [4], [5] and Aleman and Cima
[2] continued investigating Tg on Hp and characterized boundedness and compactness.
One of the remaining open problems was characterizing boundedness and compactness
for Tg :H∞→H∞, which is the topic of the next section.

4.1 Boundedness and compactness results of Tg :Hvβ →H∞

In [6] Anderson, Jovovic and Smith studied the boundedness of Tg :H∞→H∞ in terms
of its symbol g and conjectured that the set

T [H∞] = {g ∈H(D) : Tg :H∞→H∞ is bounded}

would be the same as the space of analytic functions on the unit disc with bounded
radial variation

BRV = {f ∈H(D) : sup
0≤θ<2π

∫ 1

0
|f ′(reiθ)|dr <∞}.

23
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It is easily seen that BRV ⊆ T [H∞] since if g ∈ BRV then for any f ∈H∞ we have

‖Tg (f )‖H∞ = sup
z∈D

∣∣∣∣∣∫ z

0
f (ξ)g ′(ξ)dξ

∣∣∣∣∣ = sup
0≤θ<2π

sup
0≤R<1

∣∣∣∣∣∣∣
∫ Reiθ

0
f (ξ)g ′(ξ)dξ

∣∣∣∣∣∣∣
= sup

0≤θ<2π
sup

0≤R<1

∣∣∣∣∣∣
∫ R

0
f (reiθ)g ′(reiθ)dr

∣∣∣∣∣∣
≤ ‖f ‖H∞ sup

0≤θ<2π

∫ 1

0
|g ′(reiθ)|dr

and thus Tg : H∞ → H∞ is bounded. In [40] Smith, Stolyarov and Volberg proved the
reverse inclusion T [H∞] ⊆ BRV when g is univalent, or in other words

T [H∞]∩ {g ∈H(D) : g is univalent} ⊂ BRV . (4.1.1)

The same paper also contains a counterexample to the general conjecture proving that
T [H∞] * BRV. The proof of (4.1.1) utilizes a result concerning uniform approximation
of Bloch functions, for details see [40] and [41]. Let β and r be positive constants and
let B(Ωr

β) denote the class of analytic functions in the open sector

Ωr
β =

{
z ∈C : 0 < |z| < r and

−β
2
< arg(z) <

β

2

}
with the property

|F′(z)| ≤ CF
|z|

for z ∈Ωr
β .

The constant CF depends only on β,r and the function F. In the theorem below Ωβ = Ω1
β

and ũ denotes the harmonic conjugate of u with ũ( 1
2 ) = 0.

Theorem 4.1.1. Let 0 < γ < β < π and ε > 0. Then there is a number δ(ε) > 0 such that for
each F ∈ B(Ω1/2

γ ) there exists a harmonic function u : Ωβ →R with the properties

(1) |<(F(x))−u(x)| ≤ ε, for x ∈ (0,δ(ε)];

(2) |ũ(z)| ≤ C(ε,γ,β,CF) <∞, for z ∈Ωβ .

In [15] Contreras, Peláez, Pommerenke and Rättyä proved that the Volterra operator
Tg : H∞v1

→ H∞ is bounded if and only if g is a constant function, with this in mind
and since H∞vα ⊂ H

∞
vβ , α ≤ β the only bounded Volterra operator Tg : H∞vα → H∞ when

α ≥ 1 is the zero operator, as such the only interesting case left is when 0 ≤ α < 1. In
paper I we showed that a similar condition to (4.1.1) characterizes boundedness of the
Volterra operator Tg :H∞vα →H∞ for a univalent symbol g ∈H(D) and standard weights
vα(z) = (1− |z|2)α .

Theorem 4.1.2. If g ∈ H(D) is univalent and 0 ≤ α < 1, then Tg : H∞vα → H∞ is bounded if
and only if

sup
0≤θ<2π

∫ 1

0

|g ′(reiθ)|
(1− r2)α

dr <∞.
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The proof of this theorem leans heavily on Theorem 4.1.1. In [6] the authors also
studied compactness of the Volterra operator Tg :H∞→H∞ and suggested the space

BRV0 =
{
f ∈H(D) : lim

t→1−
sup

0≤θ<2π

∫ 1

t
|f ′(reiθ)|dr = 0

}
of functions analytic in the unit disc with derivative uniformly integrable on radii as a
possible candidate for the set of such functions g. The main result of paper I is proving
this conjecture in the affirmative when g is univalent. The result is as follows

Theorem 4.1.3. If g ∈ H(D) is univalent and 0 ≤ α < 1, then Tg : H∞vα → H∞ is compact if
and only if

lim
t→1−

sup
0≤θ<2π

∫ 1

t

|g ′(reiθ)|
(1− r2)α

dr = 0.

Note that the proof of the conjecture by the authors of [6] appears as the α = 0 case
in the above theorem. The proof utilizes Theorem 4.1.1 as well as Lemma 2.5.3, where
the last lemma is allowed to be used because of the following lemma.

Lemma 4.1.4. Let g ∈ H(D) and let ϕ be an analytic self-map of D. Then T ϕg : H(D)→
H(D) is co-co continuous.

Proof. Begin by assuming that fn→ 0 uniformly on compact subsets of D. Choose such
a compact subset K ⊂D. Since the image ϕ(K) is contained in some closed disk D(0, rk)
for some 0 < rk < 1 we have that

sup
z∈K
|T ϕg (fn)(z)| = sup

z∈K

∣∣∣∣∣∣
∫ ϕ(z)

0
fn(ξ)g ′(ξ)dξ

∣∣∣∣∣∣ ≤ sup
z∈ϕ(K)

∫ z

0
|fn(ξ)||g ′(ξ)|d|ξ |

≤ sup
η∈D(0,rk )

|fn(η)| sup
z∈ϕ(K)

∫ z

0
|g ′(ξ)|d|ξ |.

Now, since fn→ 0 uniformly on compact sets, the first term in the last expression tends
to zero. Therefore T ϕg (fn)→ 0 uniformly on compact sets. This shows that T ϕg :H(D)→
H(D) is co-co continuous.

We did not use this method to prove boundedness and compactness results for the
Volterra operator Tg :H∞vα →H∞vβ , where α ≥ 1 and β > 0 since much better results hold,
see the next section and the papers [7], [15].

4.2 Boundedness, compactness and weak compactness results for T ϕg

To see how the situation changes for the Volterra operator when the target space H∞

changes to a weighted Banach space H∞v we also studied generalized Volterra operators
of the type T ϕg : X → H∞v and Tg : X → B∞v , here X is a general Banach space satisfying
the conditions outlined in section 2.4. In this case the differentiated Volterra operator
D◦T ϕg = (g◦ϕ)′Cϕ is a weighted composition operator, and as such we can apply results
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concerning weighted composition operators from [22] to get the following estimates of
the norm and essential norm of T ϕg , proved in paper I.

Theorem 4.2.1. Let X be a Banach space of analytic functions on D satisfying condition (I)
and assume that ϕ(0) = 0.

(i) if the weight v is normal, then

‖T ϕg ‖X→H∞v � sup
z∈D

(1− |z|)v(z)|(g ◦ϕ)′(z)| ‖δϕ(z)‖X→C
.

(ii) For any weight v,

‖T ϕg ‖X→B∞v = sup
z∈D

v(z)|(g ◦ϕ)′(z)| ‖δϕ(z)‖X→C
.

Theorem 4.2.2. Let X be a Banach space of analytic functions on D satisfying conditions (I)
- (IV) and assume that ϕ(0) = 0.

(i) If the weight v is normal and T ϕg : X →H∞v is bounded, then

‖T ϕg ‖e,X→H∞v � limsup
|ϕ(z)|→1

(1− |z|)v(z)|(g ◦ϕ)′(z)| ‖δϕ(z)‖X→C
.

(ii) For any weight v, if T ϕg : X → B∞v is bounded, then

‖T ϕg ‖e,X→B∞v � limsup
|ϕ(z)|→1

v(z)|(g ◦ϕ)′(z)| ‖δϕ(z)‖X→C
.

The above norm estimates can for instance be applied to the weighted Bergman case
by recalling that

‖δz‖Apα→C
= (1− |z|2)

−2−α
p

one then arrives at the expression

‖T ϕg ‖e,Apα→H∞v � limsup
|ϕ(z)|→1

1− |z|

(1− |ϕ(z)|)
2+α
p

v(z)|(g ◦ϕ)′(z)|.

By using the essential norm estimates above we are also able to relate compactness
of T ϕg : X → H∞v to compactness of T ϕg : X → H0

v , and a corresponding result for Bloch-
type spaces, in the following way

Theorem 4.2.3. Let X be a Banach space of analytic functions and assume that ϕ(0) = 0.

(i) If the space X satisfies conditions (I) -(IV) and the weight v is normal, then T ϕg : X →
H∞v is compact if and only if T ϕg : X →H0

v is compact.

(ii) If the space X satisfies conditions (I) and (IV), then for any weight v, T ϕg : X → B0
v is

compact if and only if T ϕg : X → B∞v is compact and g ◦ϕ ∈ B0
v .
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We also had some results showing that compactness and weak compactness coincide
for operators of the type T : H∞v → Y and T : B∞v → Y , where Y ⊂ H(D) is a Banach
space. The theorem is as follows

Theorem 4.2.4. Let v be a normal weight and assume that the Banach space Y ⊂ H(D)
satisfies condition (I).

(i) If the restriction T
∣∣∣
BH∞v

is co-co continuous then T :H∞v →Y is compact if and only if

it is weakly compact.

(ii) If the restriction T
∣∣∣
BB∞v

is co-co continuous then T : B∞v →Y is compact if and only if

it is weakly compact.

The above theorem can be applied to the generalized Volterra operator T ϕg by Lemma
4.1.4.
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