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Abstract

In recent years there has been an increasing demand for real-time streaming applications that handle
large volumes of data with low latency. Examples of such applications include real-time monitoring
and analytics, electronic trading, advertising, fraud detection, and more. In a streaming pipeline
the first step is ingesting the incoming data events, after which they can be sent off for processing.
Choosing the correct tool that satisfies application requirements is an important technical decision
that must be made. This thesis focuses entirely on the data ingestion part by evaluating three
different platforms: Apache Kafka, Apache Pulsar and Redis Streams. The platforms are compared
both on characteristics and performance. Architectural and design differences reveal that Kafka
and Pulsar are more suited for use cases involving long-term persistent storage of events, whereas
Redis is a potential solution when only short-term persistence is required. They all provide means
for scalability and fault tolerance, ensuring high availability and reliable service. Two metrics,
throughput and latency, were used in evaluating performance in a single node cluster. Kafka proves
to be the most consistent in throughput but performs the worst in latency. Pulsar manages high
throughput with low message sizes but struggles with larger message sizes. Pulsar performs the best
in overall average latency across all message sizes tested, followed by Redis. The tests also show
Redis being the most inconsistent in terms of throughput potential between different message sizes.
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1 Introduction

Real-time data processing is a problem that has been worked on since the 1990s [11]. As the amount
of data being produced has increased, coupled with increasingly complex software solutions being
developed, there is a need for platforms that address these needs. Streaming applications such as
fraud detection, network monitoring and electronic trading rely on real-time data processing to
ensure that the service provided is deemed correct and reliable.

The vast majority of modern applications use some sort of database management system for
handling data. As data is gathered or produced by the application, it is stored and indexed such
that it can be queried later on by the application. However, for applications that have stricter
requirements on real-time data processing this is not a suitable approach. This is where stream
processing comes into play.

Stream processing is about processing the data directly as it is received. Real-time stream
processing applications often have certain key requirements that must be fulfilled. Having low
latency between the input and the processed data output is a key characteristic in enabling real-
time applications [12]. A more traditional batch-processing approach requires gathering data in so
called batches, where the processing can begin only once the final piece of data of each batch has
arrived. For real-time use cases, the delay this causes is unacceptable, as the latency in these real-
time streaming applications should preferably be within milliseconds. For example, in electronic
trading a delay of even 1 second is deemed intolerable. These applications often also require high
throughput, i.e. allow for processing of large volumes of data. Additional key features of stream
processing platforms include data safety and availability, handling data that is out of order or
missing, storage system support, and more [13].

Traditionally, custom solutions were being developed by the companies themselves to address
the requirements of real-time processing. This mostly resulted in inflexible solutions with a high
development and maintenance cost [13]. Today, however, there exists several stream processing
platforms and frameworks that address these requirements to various degrees. These technologies
keep continuously evolving by introducing new features and improving performance.

In a real-time stream processing pipeline, two of the major components are data ingestion and
processing. This thesis will focus on evaluating and comparing three open-source technologies
that address the data ingestion part of the pipeline; Apache Kafka [14], Apache Pulsar [15] and
Redis Streams [16]. Understanding which platform to choose for data ingestion based on the
characteristics and performance of the system is important when developing real-time streaming
applications. The thesis work is a collaboration with Addiva AB [17] in an attempt to assess these
factors in the context of a real-world software project.

1.1 Problem Formulation

The objective of the thesis is to evaluate the selected platforms that solve the data ingestion part
of the real-time data pipeline. The evaluation of the different platforms is done based on certain
characteristics and performance metrics that the company is interested in. The characteristics used
for evaluation are data persistence and retention, fault tolerance, language and container support.
A high-level architecture overview will also be provided for each of the selected platforms. In terms
of the performance evaluation, throughput and end-to-end latency are the two metrics that are
of interest. For measuring the maximum throughput, benchmarking tools for respective platforms
will be used. Measuring the end-to-end latency will be done by creating a test program for each of
the platforms, where the timestamp of the message when it was sent is compared to the timestamp
of when it is received. The parameters affecting the performance, i.e. message size and messages
sent per time unit, are determined by the company based on their real-world needs. Based on the
objective of the thesis, the following research questions have been derived:

RQ 1: What are the differences in the identified characteristics of the chosen platforms?

RQ 2: What are the differences in performance metrics of the chosen platforms?
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2 Background

The following section aims to present the basic terminology and concepts related to the data
ingestion part of a real-time stream processing pipeline. A high-level architectural overview is also
given for Redis, Kafka and Pulsar, which are the platforms selected for comparison.

2.1 Event stream

The fundamental concept to grasp in stream processing is the stream itself. Many different ter-
minologies have been used depending on the domain; for example event stream, data stream and
event sourcing [11]. In the context of this work, the stream will be referred to as an event stream.
The event stream can be described as an append-only log, i.e. the events that are captured are
immutable and in fixed order. For example, the popular stream processing platform Apache Kafka
uses this approach, as seen in figure 1. In a real-time streaming application the event stream is
likely to be a sequence of unbounded events, i.e. the incoming events are infinite with no expected
end. An event could for example be a sensor reading, credit card transaction, web search or weather
station observation [12].

Figure 1: Apache Kafka commit log of events [1]

2.2 Publish/subscribe

Publish/subscribe is one of the most well-known messaging patterns used to communicate data
between a sender (publisher) and a receiver (subscriber) [18]. Instead of sending the messages
directly between each other, a broker is most often used to facilitate the communication. The
publishers send messages to so-called topics in the broker, which are used to separate different
types of data that are being communicated. The broker is responsible for correctly routing each
message to the subscribers of a topic. Each topic can have several subscribers, and the incoming
messages will be delivered to all of them. Figure 2 visualizes the publish/subscribe pattern.

While the terminology used in systems such as Apache Kafka, Apache Pulsar and Redis Streams
are slightly different, they are all based on this publish/subscribe type of communication. They also
offer more advanced platform specific features that extends the foundation of publish/subscribe
messaging.
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Figure 2: Publish/subscribe pattern [2]

2.3 Performance metrics

In comparison to more traditional software, streaming applications have certain requirements that
must be fulfilled. Since the event stream is unbounded, the application must be able to process the
events as quickly as possible, as well as be able to handle a high rate of incoming events. Therefore,
the two main metrics that are used for evaluating performance of such systems are latency and
throughput [12].

Latency is a measurement of the delay between when the event has been received and when it has
successfully been successfully processed. Latency in streaming systems is measured in milliseconds.
Depending on the type of application one might be interested in either the average latency or
maximum latency. Low latency is the key requirement in many streaming applications as it enables
the processing of data in real-time. [12]

Throughput refers to the rate of events that can be processed during a certain time period.
In contrast to latency, the maximum possible throughput should be as high as possible. If the
incoming events are arriving at a faster rate than the system can process them, the events will be
buffered and thus negatively affecting the latency [12]. Thus, it might often be a trade-off between
throughput or latency based on how the system is configured. Stream processing systems are
usually categorized as either scale-out or scale-up. Scale-out systems take advantage of distributed
processing over a large amount of nodes, while scale-up systems try to take advantage of a single
high-performance machine [19].

2.4 Redis Streams

Redis is an in-memory key-value store that has had widespread use as a database, cache and
message broker [20]. Previously, it has been possible to do simple stream processing using Redis’
implementation of the publish/subscribe messaging paradigm, using Redis itself as the broker.
The publisher could for example be the data source, which continuously sends streams of data
to a specific channel. One or more subscribers can then subscribe to this channel and consume
the data as it arrives. Figure 3 shows an example twitter data processing pipeline using Redis’
publish/subscribe system.

A problem with this approach is data loss, as there is no data persistence. Once the data in the
channel has been sent out and consumed by the subscriber(s), that data is lost. The implication
of this is that historical data cannot be revisited at a later time. Additionally, data loss will
also occur if the subscriber loses connection with the broker, as Redis publish/subscribe does not
guarantee message delivery to its subscribers. These are often key requirements that are wanted
in a streaming application.

Redis version 5.0 came with the introduction of Redis Streams [16], a new data structure that
aims to alleviate the shortcomings of the previously mentioned solution. The stream data structure
resembles an append only log, where new entries are added to the end of the stream. A Redis
server can contain multiple stream structures, which can be identified by giving them a unique
name. Producers are the components responsible for writing data to the stream. For example, a
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Figure 3: Redis publish/subscribe example [3]

streaming application could collect data from different types of sources such as temperature sensors
and pressure sensors. In this case, each type of sensor would most likely send the data to its own
respective stream for storage and processing. Each data entry in the stream can be a set of one or
more key-value pairs, which could for example contain the sensor id, timestamp of sensor reading,
and the sensor value itself.

For consuming the data, Redis Streams makes use of so-called consumer groups. One or more
consumer groups can be attached to a single stream, where each group can contain one or more
consumers. Consumer groups have two main purposes: distribution and scalability [16]. Having
several consumer groups attached to a single stream means that each message in the stream will be
delivered to every consumer group using a fan-out approach. This is useful in situations where the
data is needed for several purposes. An application could for example have one consumer group
responsible for saving the consumed data in a database, and another one for providing real-time
analytics. For scaling the data processing, multiple consumers per consumer group can be used.
In this case, each message in the stream is delivered to different consumers of the group, assuring
that each message will be consumed only once. Using consumer groups with multiple consumers
for scaling the processing is useful when dealing with high volumes of incoming data. Figure 4
showcases a simple streaming data pipeline featuring producers and consumers.

Working with the stream data structure in Redis is simple, and it only contains 13 different
commands [21]. Examples of the most notable ones are as follows:

– XADD. Used to append a new entry to a stream using a unique identifier. If the stream
does not yet exist when the first entry is added, the stream will automatically be created.
An entry can be added as one or more key-value pairs.

– XREAD. Used to read entries from one or multiple streams at the same time. Able to read
one or more entries at a time, while also specifying from what point in the stream (beginning,
end, or starting from a specific entry ID). Can be used in a blocking or non-blocking fashion.

– XRANGE. Used to fetch entries in a specific time range by providing the start and end IDs.
Often used to iterate a stream, for example when you want to go through past data. The
opposing XREVRANGE command returns the entries in the reverse order.

– XGROUP. Used to manage the consumer groups of a stream; creating and attaching a group
to a specific stream, deleting groups, as well as adding and removing consumers from a group.

– XREADGROUP. Similar to XREAD, but specifically for consumer groups. When a consumer
has read the data, XACK should be used to inform the pending entry list that the data has
been successfully read.

– XPENDING. Used to fetch entries that have not been acknowledged with XACK by a con-
sumer that is part of a consumer group. Useful for example if a consumer disconnects and
you want to process entries that have been left in the pending list.

4
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Figure 4: Redis Streams example [4]

2.5 Apache Kafka

Apache Kafka [22] is a distributed stream processing platform originally developed by LinkedIn.
It was later open-sourced and donated to the Apache Software Foundation in 2011 [5], and has
since become one of the more popular technologies used in stream processing pipelines. Kafka
offers high performance messaging and processing due to its highly scalable architecture. At
first, it was developed purely as a publish/subscribe messaging system, while simultaneously also
offering durable on-disk storage that many other messaging systems did not. However, it has
since transformed into a fully fledged stream processing platform. In Kafka version 0.10, the
Kafka Streams DSL (domain-specific language) was introduced [23]. Kafka Streams introduced
the possibility of also using Kafka as a stream processor for data transformation. A popular use
case for Kafka has been to combine it with some other dedicated stream processing frameworks
that do the actual processing, such as Apache Spark, Flink or Storm, while using Kafka simply as
a high performance data ingestion and storage system. In the context of this thesis, we will focus
on Kafka as a solution for this exact use case.

The central part of the Kafka architecture is the broker, which works as the intermediary
between producers and consumers. It is responsible for ingesting incoming data from producers,
storing the data on disk, as well as providing the data to consumers when requested. In a real
production environment, it is always advised to run several Kafka brokers. This forms a so-called
Kafka cluster, as showcased in figure 5. Each partition of a topic belongs to a single cluster, called
the leader. Having a cluster setup with several brokers is not only a way to scale the system for
incoming load, but it also provides a way to replicate the data for redundancy by assigning a
partition to multiple brokers.

The data in Kafka is represented in a so-called commit log. Conceptually it works similarly to
the stream structure is Redis, i.e. it stores the data captured from the data source in an append-
only fashion. In Kafka, the terminology used for incoming events or data is a message, which
consists of a key and value. There are two types of clients in Kafka; producers and consumers.
Producers send messages to certain topics, while the consumers read the data by subscribing to
these topics. Using topics allow for a logical separation of the incoming data. For example, data
from different sensors would be sent to their respective topic. Topics are further divided into one
or more partitions, where each partition is a single append-only log. By default, messages are
evenly distributed over all partitions, but message keys can be used to assign messages to specific
partitions. Having several partitions of the same topic provides not only redundancy, but also
allows for scalability when multiple consumers of the same topic are used [5]. The word stream is
often used to refer to the data belonging to a topic, going from the producer to the consumer.

5
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Figure 5: Kafka cluster with two brokers [5]

Like Redis Streams, the consumers of a Kafka topic are grouped into consumer groups, where
a group can consist of one or more consumers. In Kafka, using consumer groups in conjunction
with partitioned topics allows for scaling the data consumption in a horizontal way by adding more
consumers to the group. Depending on the partition size of the topic, as well as the number of
consumers that are part of the group, each consumer will be assigned ownership to one or more
topic partitions. This assures that the data at each partition is only being consumed by one
member of the group. Consumer groups also provide reliability by automatically rebalancing the
members’ partition ownerships in case of a consumer shutting down or losing connection. It is also
possible to have several consumer groups attached to a single topic if for example multiple parts
of a system need to consume the same data. In this case, the data can be consumed by each group
independently of each other. Figure 6 describes an example consumer group interaction with a
partitioned topic.

Figure 6: Kafka consumer group reading from topic partitions [5]

6



Sebastian Tallberg Comparison of data ingestion platforms

2.6 Apache Pulsar

Apache Pulsar [15] is an open source publish/subscribe messaging system built for high-performance
distributed messaging [24]. While originally created by Yahoo, it has since become apart of the
Apache Software Foundation. It is used for gathering and processing different events in near real-
time, for use cases such as reporting, monitoring, marketing and advertising, personalization and
fraud detection. For example, at eBay, Pulsar has been used to improve the user experience by
analyzing user interactions and behaviors [25].

Pulsar is closely related to Apache Kafka in terms of features and use cases. It offers great scal-
ability for message processing on a large scale, with high throughput and low end-to-end latency.
Messages received are stored persistently with the help of Apache BookKeeper, and message deliv-
ery is guaranteed between producers and consumers [24]. While Pulsar is not a stream processing
framework as the likes of Apache Storm or Spark Streaming, it does provide some light stream
processing features with the use of Pulsar Functions [26].

A high-level overview of the architecture of a Pulsar deployment can be seen in figure 7. A Pulsar
instance can consist of one or more clusters, where each cluster has the following components [27]:

– One or more brokers. The main function of the broker is to facilitate the communication
between producers and consumers. It is also responsible for storing the incoming messages in
BookKeeper instances (bookies) if persistent messaging is enabled. It is generally preferred
to use several brokers in a single cluster for load balancing the incoming messages, as well as
for availability in case of broker malfunction.

– A BookKeeper cluster that consists of one or more bookies. Apache BookKeeper is a storage
system that is responsible for providing durable and persistent storage of messages. Number
of bookies used in a cluster depends on the required capacity and throughput of the system.

– A ZooKeeper node for storing metadata, as well as responsible for cluster-level configuration
and coordination. If the Pulsar instance consists of several clusters, a separate instance-level
ZooKeeper node is also used to handle coordination tasks between clusters.

Figure 7: Overview of a Pulsar cluster [6]

Like Kafka, Pulsar is based on the publish/subscribe messaging pattern [28]. Producers send
messages to certain topics, which are used to separate different types of messages. Consumers can
then subscribe to specific topics to consume the data. The persistent storage that Pulsar offers
means that all messages are retained, even when a consumer loses connection. The disconnected
consumer can therefore easily reconnect and continue consuming the remaining data without any
data loss.

7
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Normally, a topic can only reside on a single broker. However, similar to Kafka, Pulsar offers
partitioned topics that scale for higher throughput [28]. In contrast to normal topics, partitioned
topics can be spread out over several brokers, taking full advantage of a multi-broker cluster.
Figure 8 shows how the data is distributed from producer to consumer using a partitioned topic
with five partitions (P0-P4).

Figure 8: Subscription modes in Apache Pulsar [7]

Pulsar offers several different subscription modes for distributing the messages to consumers,
as shown in figure 9. This includes the following modes:

– Exclusive. Only one consumer can be subscribed to the topic at a time.

– Failover. Several consumers can be subscribed to the topic at the same time using a master-
slave approach. Only one of the consumers receive messages (the master). However, if the
master consumer happens to disconnect, any subsequent messages will be directed to the
following consumer (slave).

– Shared. Multiple consumers can be subscribed to the same topic. Messages are load bal-
anced between all the connected consumers, i.e. messages are only consumed once. Shared
subscription does not guarantee correct message ordering.

– Key shared. Similar to shared subscription mode, except that the message distribution is
done based on key values.

8
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Figure 9: Overview of a Pulsar cluster [8]

3 Related Work

The purpose of the following section is to perform state-of-the-art. Stream processing related
technologies that have been evaluated and compared in published research will be identified, as
well as which metrics have been used for evaluation. It will also serve as a motivation for why the
topic is worth researching based on the shortcomings mentioned in the papers. Only papers from
the past couple of years have been considered due to the continuous advancements in the field,
assuring that the results are relevant.

Comparative studies of stream processing technologies do exist in current research. Isah et
al. [29] summarize the strengths and weaknesses of different distributed stream processing engines
(DSPE) by performing a literature review of academia and industrial papers. Additionally, a subset
of processing engines was chosen for a more in-depth comparison of certain key DSPE features
such as the programming model, processing guarantees, state management, fault tolerance and
more. According to the authors, the study revealed an apparent research gap when it comes to
benchmarking different DSPEs based on performance and security.

Andreoni et al. [30] compared the performance of the open source stream processing platforms
Apache Storm, Apache Flink and Spark Streaming. Throughput (messages processed per time
unit) was used to evaluate performance, including how parallelism affects throughput. Additionally,
the behavior under system failure was studied for the different platforms. The study also mentions
the lack of performance evaluations and comparisons between different stream processing systems
in research due to how recent the area of distributed stream processing is. Karimov et al. [31] also
benchmark the performance of the same systems using throughput and latency as metrics.

The authors in [32] evaluate the performance of distributed stream processing frameworks in
the context of Internet of Things (IoT) for building applications for Smart Cities. The stream
processing frameworks that have been chosen for evaluation are Apache Storm, Apache Spark
Streaming and Apache Flink, using throughput and latency as performance metrics. The conclu-
sion drawn from the experiments done is that the appropriate framework to use depends on the
requirements of the application being developed in terms of latency versus throughput. Apache
Storm and Apache Flink are shown to have similar performance, while Spark Streaming offers
higher throughput in exchange for a significant increase in processing latency.

In the paper [33], the performance of Apache Kafka as a data ingestion system is investigated
in the context of Big Data streaming applications. The authors look at different configuration
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parameters and how they affect certain performance metrics to avoid bottlenecks for optimal
performance. Configuration parameters such as message size, batch size, message replication and
system hardware are looked at. Performance metrics such as throughput and latency, as well as
CPU, disk, memory and network usage are used as evaluation criteria. The experiments show that
there exists certain ranges of batch sizes that lead to better performance. Changing the amount
of compute nodes used on the hardware side also lead to sudden performance drops in some cases.
This behaviour is thought to be due to the synchronization in Kafka as well as the underlying
network, but additional work must be done to verify this. The tests were run on a distributed
testbed called Grid5000 [34] with up to 32 compute nodes.

The performance of the Apache Spark Streaming framework is evaluated in terms of through-
put in [35]. The performance is evaluated with three different types of data source integrations;
TCP, file streaming and Apache Kafka. The message sizes used range between 100 bytes to 10
megabytes, with CPU costs for processing each message ranging from 0 to 1 seconds. Spark
Streaming with TCP integration achieved high throughput when the message size was small, with
a rapid performance degradation as the message size was increased. Processing messages larger
than 105 bytes proved to be unreliable no matter what frequency they were processed at. Spark
with file streaming also performed best at lower message sizes and CPU loads. Integrating Spark
Streaming with Apache Kafka performed well with message sizes smaller than 1 megabyte and with
CPU loads under 0.1 seconds per message. The overall conclusion of the performance of the Spark
Streaming framework is that it has excellent throughput when dealing with smaller messages and
low processing costs, but struggles when processing larger messages in the 1 to 10 megabyte range.

Zeuch et al. [19] analyze the performance of different stream processing engines on modern
hardware, using latency and throughput as metrics. They conclude that modern stream processing
engines are not capable of fully taking advantage of modern hardware such as multi-core processors
and high-speed networks.

Wu et al. [36] propose a model to predict the performance of an Apache Kafka setup in terms
of throughput and end-to-end latency. The model uses the number of brokers, batch size and
partition size of a topic as input parameters. The study concludes that the model shows great
accuracy when compared to the experimental results, and that it will be developed further to take
into account more configuration options.

In [37], the authors evaluate Apache Kafka on reliability by testing how Kafka handles message
delivery under poor network conditions. Message loss rate and duplicate rate are used as met-
rics, and the results show that the size of data being sent matters the most under poor network
conditions.

The authors in the paper [38] compare Apache Kafka and Apache Pulsar based on throughput
and latency, as well as resource utilization in terms of CPU, RAM and bandwidth usage. The
experiments show that Pulsar performs better in all aspects of performance. For small messages (1
KB) the maximum throughput of Pulsar is almost double the throughput if Kafka. Additionally,
the average latency is about 20 times lower for Pulsar. For larger messages (1 MB) Pulsar still
performed better than Kafka, however the gap was significantly decreased. Pulsar still managed
a 10% higher throughput and a 10 time lower latency. The study concludes that even though
Pulsar performs better than Kafka, it does not automatically make it the obvious choice. The
authors mention that Kafka has a much richer ecosystem around it, with great integration to
stream processor frameworks such as Apache Spark, as well as a much bigger community and user
base in general.

According to the introduction to Redis Streams [16] on the official web site, Redis Streams is
capable of handling 99.9% of the messages with a latency of under or equal to 2 milliseconds, with
the rest falling between a 2 and 5 millisecond interval. The latency was calculated by attaching
the current timestamp as an additional field to the message that was sent by the producer, which
was then compared to the time the message was received by the consumer. Several producers were
used to produce data at a rate of 10000 messages per second. The data was consumed by a single
consumer group containing 10 consumers. The producers, consumers and the Redis server itself
was running on the same dual-core instance used for testing, implying that the results would be
better in a proper real-world setting. The size of the data sent per message was not specified, nor
was the source code provided to allow for replication of the latency test.

Based on the papers reviewed, there does seem to be a need for high-quality performance

10



Sebastian Tallberg Comparison of data ingestion platforms

evaluations and comparisons of different streaming platforms. While there does exist several Kafka
related studies, newly emerged solutions such as Redis Streams can’t be found in any published
empirical studies. Studies related to Apache Pulsar are also almost non-existent. These factors
make this a relevant area for conducting research.

4 Method

A high-level view of a real-time stream processing pipeline can be seen in figure 10. Producers
send data (in this context, vehicle event data) to the data ingestion system from potentially various
sources. The data ingestion system also works as a storage system, providing a means to store
past events for durability and historical access. The data being ingested is then forwarded to the
stream processor, which does the actual processing or transformation of the data. The processed
data is then stored in some data warehouse for long-term storage and used for analysis. While the
ingestion and processing part can be done using the same tool (e.g. Kafka with the Kafka Streams
API), it is more common to have a separate dedicated stream processing framework connected to
the data ingestion system. This thesis will focus specifically on evaluating technologies regarding
the ingestion and storage part of the data pipeline, to sensibly narrow the scope of the thesis.

Figure 10: Example stream processing pipeline [9]

In order to address the research questions, two types of methodologies will be used; literature
review and case study research. A literature review will be conducted to perform state-of-the-art.
This will give an overview of several things, including identifying relevant streaming platforms for
evaluation, analyzing benchmark results currently found in research, as well as which evaluation
criteria have been used for comparing these types of technologies in terms of characteristics and
performance metrics. The state-of-the-art will also provide the motivation for why the topic is
worth researching from an academic point of view. Additionally, it will provide the necessary
background information for the reader to understand what is being studied, i.e. fundamental
terminology and concepts. The literature review will answer RQ1 by reviewing current published
research, white papers, books and official documentation for the chosen technologies.

To answer RQ2, a case study will be conducted. Case study research is an appropriate method
when wanting a deeper understanding of the phenomena being studied in its real-world context;
the industrial context here being the software development project at the company. It is also a
proven methodology in software engineering, with guidelines on how to conduct and report the
research. The guidelines provided by Runeson et al. [39] will be used and adapted for this specific
context. The overall workflow looks as follows:

1. Identify a set of technologies for evaluation and comparison. This decision is done based on
the state-of-the-art performed as well as what the company wants.

2. Give an overview of the chosen technologies.

3. Create a test environment for each of the chosen technologies.

4. Benchmark each of the technologies using the chosen performance metrics (latency and
throughput) and analyze the data.

5. Report and discuss the results.
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4.1 Company context

The thesis work is done in collaboration with the company Addiva AB [17]. They are involved in
both hardware and software, however the work conducted during this thesis is entirely software
based. One of their provided software solutions is called AddTrack [40], as showcased in figure 11.
AddTrack provides the possibility for collecting and storing vehicle data, with an easy to use
graphical user interface for analysis of both historical and real-time data. The software reports
errors in the vehicles by detecting anomalies in the captured data. Some component of the vehicle
might not be working correctly, for example the doors of a train. One of their customers is
Bombardier [41], who use the software in the trains they manufacture.

The software currently runs on the old and deprecated Silverlight application framework, which
is ending support in 2021. They are also not taking advantage of proper stream processing tech-
nologies for the real-time data processing pipeline. Due to these reasons, they are currently in
the process of rearchitecting the software from scratch, and thus interested in selecting the proper
technologies for solving the real-time data processing pipeline.

As the software is being built from scratch, there is no concrete system under test as such.
Therefore, a test environment will be setup to benchmark the performance (maximum throughput
and end-to-end latency) for each of the technologies. Due to confidentiality reasons, real customer
data will not be accessible. However, for performing the benchmarks, that is not necessary. When
benchmarking the performance, there are two main parameters that affect the results; size of the
message in bytes and the rate at which messages are produced per time unit. The tests will be
carried out using dummy data that adheres to their data specification (i.e. dummy data that is
similar in size to the real data). The rate of messages sent per time unit for the tests is also
determined by the company to reflect their needs.

Figure 11: AddTrack - Vehicle analysis software [10]

4.2 Evaluation criteria

The chosen technologies will be evaluated on two fronts; characteristics and performance. The
different types of characteristics of the system that will be evaluated are as follows:

– Data persistence and retention. How does the platform manage data persistence, where does
it store the data, and for how long is the data accessible to consumers.

– Fault tolerance. How does the platform provide means to make sure that complete system
failure can be mitigated.

– Language and container support. For which languages do client libraries exist (official versus
third party libraries), and what are the differences in terms of feature support. The company
also intends to run everything in a containerized environment, so whether there exists ready-
made Docker images is of interest.
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For evaluating performance, the following metrics will be used:

– Throughput. The maximum load that the platform can handle. Measured in terms of mes-
sages/second and MB/second.

– End-to-end latency. The amount of time it takes for messages to travel between a producer
and consumer. Mean, minimum and maximum latency values are measured in terms of
milliseconds.

4.3 Benchmarking set-up and configuration

Since the company is interested in deploying their application in a containerized environment,
all the platforms under performance evaluation have been setup as such. Docker containers have
been used, and the Dockerfiles and respective commands for running them can be found in the
appendices.

The performance benchmarks for measuring throughput and latency will be executed on a
single machine setup. The machine is deployed on the cloud service provider UpCloud, running
Debian 10 (Buster) as an operating system. Regarding the hardware, it is important that the
machine running the benchmarks is powerful enough to handle realistic workloads. For example,
running the tests on a basic quad-core machine configuration would not yield interesting results,
as this type of setup would most likely never be used in a real-world use case. Generally, it is
recommended that these type of data ingestion systems should run on CPUs with a high core
count, as well as enough memory and disk space. The relevant hardware configurations used for
the benchmarks are as follows:

– 20 Core Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz

– 32GB RAM

– 200GB SSD storage

In a production environment, it is usually recommended to run a multi-node cluster (i.e. each
node on a separate machine) not only for scaling the system to the incoming load, but most
importantly for assuring high availability by reducing the possibility of data loss and providing
reliable service. This stands true for both Redis, Kafka and Pulsar deployments. However, in this
context, all the platforms under test will be running on a single machine. The reasoning for this is
that when testing the end-to-end latency (latency between producer and consumer), we are only
interested in the processing latency caused by the platform itself. If the producers, consumers,
and brokers were to be run on separate machines on the cloud, there would be additional network
latency caused by the communication between the machines. By running the tests on a single
machine setup, this additional overhead will not affect the results.

The platform specific configuration file settings used are the default values provided with the
installation, i.e. an out-of-box setup. Redis, Kafka and Pulsar all have extensive configuration
options that can be fine tuned for specific message sizes, throughput rates, and underlying hard-
ware. However, figuring out the most optimal platform specific configuration parameters is simply
out of scope for this thesis. All platforms are tested with persistent storage enabled, i.e. incoming
messages are saved on disk. This has a significant effect on the performance, but it also represents
most real-world use cases, including Addiva’s intended use.

4.4 Message sizes and throughput rates

The platforms are evaluated using three different message sizes: 1 kB, 65 kB and 600 kB. These
message sizes are based on the amount of data sent by the different vehicle models, only taking
into consideration the worst-case scenario. For measuring throughput, the systems are stress tested
to the max to find out the highest possible throughput rate (messages/sec and MB/sec), i.e. no
throttling is done. The built-in platform specific benchmarking tools will be used when evaluating
the maximum throughput.
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When measuring the end-to-end latency for each of the message sizes, a fixed throughput rate
is used. Since each of the platforms can handle different throughput rates for each message size, it
is important that the end-to-end latency is evaluated at a fixed message rate that can be handled
by all the platforms so that the results can be fairly compared. Each message size has been tested
with two different message rates. These are as follows:

– 1 kB message size at 1000 and 5000 messages/sec (0.95 MB/sec and 4.76 MB/sec)

– 65 kB message size at 100 and 500 messages/sec (6.19 MB/sec and 30.99 MB/sec)

– 600 kB message size at 50 and 200 messages/sec (28.61 MB/sec and 144.44 MB/sec)

These latency tests are run using two consumers as part of a group that read incoming data, and
a single producer that sends data at the constant rates mentioned above. The Kafka and Pulsar
topics used are configured with two partitions, one for each consumer. The measured values are
the minimum, maximum and average latency between the producer and consumer. The most
relevant measurement is the mean value, as it is the best overall latency performance indication of
a platform.

The latency tests for each platform have been written using Python 3.7.3 and the following
client libraries:

– Redis-py (version 3.5.2) for Redis 6.0.2

– Pulsar-client (version 2.5.1) for Apache Pulsar 2.5.1

– Confluent-kafka (version 1.4.1) for Kafka 2.5.0

How to reproduce the throughput and latency tests, as well as setting up the respective platform
environments in a containerized environment using Docker can be seen in the appendices.

4.5 Ethical and societal considerations

No ethical or societal considerations have to be addressed in order to conduct and report the
research. As we do not have direct access to the customer data due to privacy concerns, dummy
data that conform to the type description of the event data will be used for the performance
benchmarks.
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5 Results

5.1 Characteristics comparison

This section will present the results of the characteristics comparison between Kafka, Pulsar and
Redis. Overview of the results can be seen in Table 1.

5.1.1 Data persistence and retention

While Redis stores data in memory, it also provides data persistence on disk [42]. Redis can be
configured for several persistence options; RDB persistence, AOF persistence, a combination of
both, or no persistence at all. RDB (Redis Database Backup) is the default persistence mode
in Redis. It creates a point-in-time snapshot of the current data set in a single binary .rdb file.
Redis can be configured to create a snapshot based on a specified time interval or when a specific
amount of writes have been done. Using RDB persistence is great for backups and disaster recovery,
however it is not suitable if minimizing data loss is a priority. For example, if a sudden power
outage was to happen, the data written after the latest snapshot would be lost. AOF (append-only
file) persistence is a much more durable approach, as it stores every write operation in an append-
only log file. This file can then be used to recreate the data set without data loss if a potential
power outage or some other disruption were to happen. An AOF file is bigger in size than a RDB
snapshot, and can be slower than RDB depending on the fsync policy that is used. As of right now,
the only reliable way of managing the data retention of a stream is to use the MAXLEN argument
when adding entries to the stream with XADD. This provides a means to limit the length of the
stream. When the max limit is exceeded the stream will be trimmed, making place for newer
entries. There is currently no option to automatically remove elements from the stream based on
for example size (in terms of bytes) or time limits.

In Kafka, data persistence is done on disk [43]. All the data is written to a persistent log file
that can be replicated and distributed across multiple machines for redundancy. Kafka’s role as
a storage system is very dependent on the file system and page caching for providing persistent
messaging with great performance. The data is written directly to the log on the file system
without necessarily flushing to disk, instead of storing as much data in memory as possible until
a flush to disk is forced due to running out of memory space. This is seen as a superior design
choice compared to maintaining an in-memory cache or some other mechanism. Messages in Kafka
stay in the persistent log even after having being consumed. The retention policy for how long
messages are kept in the log can be configured based on a specific period of time, or when the log
has reached a certain size. Retention policies are configured on a per-topic basis. Messages are
deleted regardless whether they have been consumed or not when the retention policy is surpassed
in time or size. Due to the design of Kafka, having long retention periods, i.e. several days or
weeks, is not an issue from a performance point of view. There is no way to directly turn off
persistent storage due to the core architectural design of Kafka, however the retention period can
be set to a small time period or file size to delete the data at frequent intervals.

In Pulsar, the data is also persisted on disk [27]. However, in comparison to Kafka, Pulsar
relies on a separate storage system called Apache BookKeeper for providing durable and persistent
messaging. BookKeeper is responsible for handling the ledger(s) of a specific topic, which is an
append-only data structure that stores the data, similar to the commit log in Kafka. It is common
to have multiple BookKeeper nodes in a Pulsar cluster, where each ledger is assigned to multiple
nodes. This is done for both performance and redundancy reasons. By default, Pulsar deletes
messages once they have been consumed and acknowledged by all attached subscribers [44]. This
default behaviour can be overwritten by setting retention policies. Similar to Kafka, retention
policies can be set based on a specific size or time limit. Additionally, Pulsar topics can also
be configured with a separate time-to-live (TTL) property. This property can be configured to
delete messages that have not been acknowledged by any consumer within a specific time frame.
In Pulsar it is also possible to directly create non-persistent topics that do not save messages on
disk, but only keep them in memory. This may lead to data loss in case of a broker failure or
a subscriber disconnecting. One can also expect better performance in terms of throughput and
latency when using non-persistent topics, as no communication between brokers and BookKeeper
nodes is required.
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5.1.2 Fault tolerance

At a basic level, Redis supports a master-slave type of replication for providing availability [45].
The master Redis instance is responsible for updating the slaves when some change has happened
in the master node. If a slave node disconnects from the master node for example due to network
issues, it will automatically try to reconnect and perform partial or full resynchronization. Partial
synchronization means that the slave node will try to obtain the stream of missed commands during
the time it was disconnected and replicate them. In case a full resynchronization is required, the
master node will need to take a snapshot of all its data, which can then be used to recreate the
data set in the slave node. Tools such as Redis Cluster[46] and Redis Sentinel[47] also exist, which
offer even more high availability features. These should preferably be used when running Redis at
scale.

In Kafka, a fault tolerant deployment means having multiple brokers and ZooKeeper nodes on
separate machines in the cluster. The concept of partitions in a topic is what drives the replication
in Kafka [43]. Each partition has a leader, with zero or more followers. The number of followers,
including the leader, is referred as the replication factor of a topic. This replication factor is set
on a topic-by-topic basis. The highest possible replication factor is the number of brokers in the
cluster, i.e. a topic with a replication factor of five requires five brokers in the cluster. If one of the
servers in the cluster is shut down due to some failure, automatic failover will be done, assuring
that no messages will be lost and the cluster can continue providing reliable and correct service.

Fault tolerance in Pulsar is similar to Kafka, i.e. having a cluster with multiple brokers,
ZooKeeper nodes and BookKeeper nodes across several machines. In Pulsar, the ledgers can be
replicated to multiple BookKeeper nodes, making sure that data can be continuously stored even
if one of the BookKeeper nodes die [27]. Pulsar also has built-in support for geo-replication [48].
Geo-replication allows for replication of messages across several clusters, where each cluster might
reside in different geographical locations. This is a means to provide disaster recovery capabilities
for Pulsar.

5.1.3 Language and container support

Redis is supported by most programming languages, including Python, Java, C/C++, C#, Nodejs,
and many more [49]. Several different clients exist for each language with various feature support.
As Redis Streams was introduced in Redis 5.0, there are still many clients that do not support
interacting with the streams data structure. Therefore, if one is tied to developing in a specific
language, it might be the case that there does not exist a client library for that language that
supports the streams data structure. Redis also offer an official Docker image for deploying a
Redis server in a containerized environment [50]. The documentation however is very basic, with
no mention of how to handle production level deployments with several nodes for redundancy, fault
tolerance etc. in a containerized environment. Another popular Docker image is by Bitnami [51],
which offers far more detailed information about these things. Additionally, they also offer Helm
charts for deploying with Kubernetes [52], a popular container orchestration tool.

The official client language for interacting with Kafka is Java, which is also the language that
Kafka itself is written in. Much like Redis, Kafka also has third-party client support for most
of the popular languages like Python, C/C++, C#, Golang, Nodejs and more [53]. The main
difference between the main java client and the third-party ones is feature support. For example,
most third-party client only support the basic consumer and producer APIs, i.e. creating clients
for sending and receiving data directly to and from Kafka. While it might be enough for most
cases, there might be situations where you want to pull data from an external data source, such as
a database, data warehouse, or some other application, using the Connect API. The official java
client is also the only one that supports Kafka Streams, which is the library for taking advantage
of Kafka’s stream processing capabilities. If Kafka is expected to be used both as a data ingestion
system and as a stream processor, then using the official java client is a requirement. There is
no official Docker image maintained by the Kafka team, however two popular alternatives are by
Bitnami [54] and Wurstmeister [55]. The Bitnami image offers far more detailed documentation
regarding deployment, running multiple brokers, security and important configuration settings.
The Docker image itself is also much more regularly updated with bug fixes and recent features
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compared to the Wurstmeister image. Like all Bitnami images, they also offer Helm charts for
deploying in Kubernetes.

For Apache Pulsar, officially released client libraries can be found for Java, Golang, Python,
C++ and Nodejs [56]. Pulsar can also be communicated with over the WebSocket protocol,
meaning that any programming language that has a WebSocket client can connect to Pulsar.
Communicating with Pulsar through the WebSocket protocol gives access to the basic consumer and
producer features, but lacks some of the more advances features that the native client libraries offer.
For example, features such as consuming multiple topics at the same time, key-based subscription
mode, support for data schema, and more, are not supported over WebSockets [57]. However, for
basic use, this is a flexible way to work with Pulsar in languages that do not have an officially
supported client. For deploying Pulsar in a containerized environment, there exists an officially
maintained Docker image by the Pulsar team. This image is however only for starting Pulsar in
standalone mode, i.e. running a single broker, ZooKeeper and BookKeeper node. For deploying
with multiple nodes in Docker with Docker Compose for example, one would need to create separate
custom images for the different parts (broker, ZooKeeper, BookKeeper) which could then be scaled
accordingly. They also offer an official Helm chart for running Pulsar in kubernetes.

Table 1: Summary of the characteristics comparison between Kafka, Pulsar and Redis.

Kafka Pulsar Redis
Data persistence Data is stored on-disk.

Relies heavily on filesys-
tem and page caching for
providing persistent mes-
saging. Easy to scale stor-
age capacity by adding
more disk space.

Data is stored on-disk.
Relies on an external stor-
age system called Apache
BookKeeper for provid-
ing persistent messaging.
Easy to scale storage ca-
pacity by adding more
disk space.

Data is stored in-memory.
How much data that can
be persisted is limited
by the amount of RAM.
Provides separate on-disk
persistence modes, but
mainly used for backups
and disaster recovery.

Data retention Data retention policies
based on specified size and
time limits. Older mes-
sages removed after stor-
age exceeds size limit or
certain amount of time
has passed.

Same data retention poli-
cies as Kafka.

Redis Streams does not
have support for any data
retention policies. Have to
manually trim the size of
the stream to remove old
messages.

Fault tolerance Achieve fault tolerance by
scaling the nodes in the
cluster, i.e. adding more
brokers and ZooKeeper
nodes. Each topic can be
given a replication factor
for redundancy.

Same as Kafka. Addition-
ally, more BookKeeper
nodes for handling per-
sistence should be added.
Built-in support for geo-
replication, allowing repli-
cation across several clus-
ters.

Master-slave principle.
Write commands to the
master nodes are also
replicated on the slave
nodes. Support for ad-
ditional tools such as
Redis Cluster and Redis
Sentinel for even higher
availability.

Language support Offical client in Java, but
third-party ones in most
popular languages. Must
use the offical Java client
to get exposure to all the
Kafka APIs.

Official clients in Java,
Python, C++, Golang
and Nodejs. Can also
be interacted with via
the WebSocket protocol.
Third-party clients for
most languages.

Several clients for most
programming languages.
However, a limited
amount of clients that
have implemented sup-
port for the stream data
structure.

Container support No officially maintained
Docker image. Several
popular third-party main-
tained ones.

Officially maintained
Docker image for running
Pulsar in standalone
mode (single node clus-
ter). Have to create own
images for deploying a
multi-node cluster.

Officially maintained
Docker image. Also pop-
ular third-party images.
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5.2 Performance comparison

This section will present the results of the throughput and end-to-end latency results. An overview
of the throughput results are presented in Table 2.

5.2.1 Throughput

The overall results show a rather major difference in maximum throughput rates for different
message sizes when comparing platforms, as shown in figures 12 - 14. When a payload of 1 kB
is used, Pulsar performs the best with 195 068 messages/sec (186 MB/sec). Kafka manages to
handle 137 676 messages/sec (131.30 MB/sec), significantly behind Pulsar by almost 35%. Redis
performs by far the worst with a throughput rate of only 54 124 messages/sec (51.61 MB/sec).
This is about two and a half times lower than Kafka’s rate, and almost four times lower than what
Pulsar is capable of handling.

Figure 12: Maximum throughput measured in messages/sec with a message size of 1 kB.

When significantly increasing the message size from 1 kB to 65 kB, Redis becomes a much
more competitive choice with a throughput rate of 4684 messages/sec (290.35 MB/sec). This is
almost identical to Kafka, which manages to handle 4738 messages/sec (293.70 MB/sec). Running
the test for Pulsar, however, is when potential problems start to arise. The built-in producer
performance benchmark requires the rate of messages as an input. When testing for maximum
possible throughput, this parameter should be set very high to stress test the system to the max.
However, when running the benchmark with a message rate of for example 5000 or higher, the
results were very inconsistent and low in performance, resulting in an average of 885 messages/sec
(54.86 MB/sec). After some testing, limiting the message rate to 3000 gave the best consistent
output, resulting in 2953 messages/sec (183.05 MB/sec). This is still quite a bit worse than both
Kafka and Redis, with a difference in around 110 MB/sec maximum throughput rate. Pulsar went
from the best performing platform to the worst performing one when increasing the message size
to 65 kB. The results for Pulsar seem to indicate some type of bottleneck in the cluster when
reaching a specific throughput rate of around 180-185 MB/sec. The significant increase in message
size could also be an affecting factor.

Running the benchmarks with an even greater message size of 600 kB shows the struggle of both
Redis and Pulsar. Redis manages a total of 337 messages/sec (192.83 MB/sec), which is roughly
100 MB/sec lower than what it was capable of with a message size of 65 kB. It seems to indicate
that Redis is having issues dealing with very large message sizes. Usually, the higher the message
size is, the higher the throughput in terms of MB/sec (but lower messages/sec). This is the case

18



Sebastian Tallberg Comparison of data ingestion platforms

Figure 13: Maximum throughput measured in messages/sec with a message size of 65 kB.

with Kafka, which performs very well at 870 messages per second (497.81 MB/sec). For Pulsar,
we run into the same issue as in the previous test when trying to run the 600 kB benchmark at a
high message rate. However, this time it resulted in an out of direct memory error which ended
up killing the BookKeeper node. The implication here is that a single BookKeeper node is not
able to handle very high throughput levels in terms of MB/sec, causing it to be the bottleneck of
the cluster. For example, running the same benchmark on a non-persistent topic in Pulsar (no
storage, i.e. no interaction with BookKeeper) results in an impressive 2764 messages/sec (1581.57
MB/sec) maximum throughput. These non-persistence results show that the broker is more than
capable of handling a lot data, but a single BookKeeper node is not enough when persistence is
required at high levels of MB/sec. This behaviour seems to be verified by what another user has
experienced in [58]. For stable results, the 600 kB benchmark had to be run at a max message
rate of 300, which resulted in an average of 293 messages/sec (167.65 MB/sec). This performance
is on par with Redis, however both Redis and Pulsar perform poorly compared to Kafka in this
scenario.
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Figure 14: Maximum throughput measured in messages/sec with a message size of 600 kB.

Table 2: Summary of the throughput results measured in messages/sec and MB/s for message
sizes 1 kB, 65 kB and 600 kB.

Message Size
1 kB 65 kB 600 kB

Msg/s MB/s Msg/s MB/s Msg/s MB/s
Kafka 137 676 131.30 4738 293.70 870 497.81
Pulsar 195 068 186 2953 183.05 293 167.65
Redis 54 124 51.61 4684 290.35 337 192.83

5.2.2 End-to-end latency

All the end-to-end latency results are reported in Table 3-8 based on the parameters described in
section 4.2.

Redis and Pulsar perform the best in terms of average latency for the smallest message size of
1 kB, as seen in Table 3-4. Both platforms manage a sub millisecond average latency with 1000
and 5000 messages/sec. Kafka is notably worse, with an average latency that is 3-4 times higher
than both Redis and Pulsar. Kafka also has a significantly higher max latency when running at a
rate of 5000 messages/sec.

Table 3: Latency in milliseconds with message size 1 kB and message rate 1000 msg/sec.

mean min max
Kafka 1.714 0.406 5.312
Pulsar 0.557 0.300 5.919
Redis 0.440 0.175 4.013
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Table 4: Latency in milliseconds with message size 1 kB and message rate 5000 msg/sec.

mean min max
Kafka 1.995 0.337 21.627
Pulsar 0.472 0.168 6.102
Redis 0.660 0.183 3.395

Sending larger messages (65 kB) at 100 and 500 messages/sec still shows that Redis and Pulsar
are performing the best in terms of average latency, as shown in Table 5-6. Running at 100
messages/sec (6.19 MB/sec), Redis is the fastest with Pulsar slightly behind, with both being
roughly twice as fast as Kafka. Interestingly, both Redis and Pulsar perform better at an increased
message rate of 500 (30.99 MB/sec), resulting in an average latency 4-5 times lower than what
Kafka can handle. For Kafka the latency gets worse as the overall throughput increases, which is
the behaviour one would expect. The increased throughput also results in a notable increase in
max latency for Redis and Kafka.

Table 5: Latency in milliseconds with message size 65 kB and message rate 100 msg/sec.

mean min max
Kafka 2.842 1.991 5.532
Pulsar 1.534 1.029 8.064
Redis 1.237 0.628 12.291

Table 6: Latency in milliseconds with message size 65 kB and message rate 500 msg/sec.

mean min max
Kafka 3.499 1.572 44.027
Pulsar 0.704 0.426 5.530
Redis 0.975 0.456 41.219

When getting into the largest message size of 600 kB and higher throughput rates in terms of
the total amount of data being sent, we start seeing some interesting changes, as seen in Table 7-8.
For example, both Redis and Pulsar performs significantly worse running at 50 messages/sec with
a message size of 600 kB (28.61 MB/sec) compared to running at 500 messages/sec with a size
of 65 kB (30.99 MB/sec). The resulting average latency is approximately 4-5 times higher, even
though the overall throughput rate in terms of MB/sec is lower. This shows the negative effect
that message size has on average end-to-end latency. Interestingly, the average latency for Redis
and Kafka is roughly the same running at 50 messages/sec (28.61 MB/sec) as compared to running
at 200 messages/sec (144.44 MB/sec), even though the overall throughput is about 5 times higher.
The large message size also introduces very significant increases in max latency for both Redis and
Kafka (especially Redis) compared to Pulsar. Pulsar once again proves to be the best performing
platform in all the latency aspects.

Table 7: Latency in milliseconds with message size 600 kB and message rate 50 msg/sec.

mean min max
Kafka 5.407 3.770 65.192
Pulsar 2.782 2.231 6.114
Redis 5.350 3.352 45.216
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Table 8: Latency in milliseconds with message size 600 kB and message rate 200 msg/sec.

mean min max
Kafka 5.728 3.502 71.531
Pulsar 3.773 2.564 12.949
Redis 5.357 3.378 154.397

6 Discussion

Comparing the platforms based on their features as a storage system we can see some clear differ-
ences in how they operate. While all the platforms offer persistent storage, the way they do it and
to what capacity is quite different. Kafka and Pulsar are both similar in that they write the data
directly to disk, the only difference being that Pulsar relies on an external storage system to do
so (Apache BookKeeper). This data can be retained for both short and long periods of time and
is mostly only limited by the amount of available disk space. This makes it extremely easy to for
example consume messages from several weeks ago. Redis on the other hand works in an entirely
different way. In Redis, the whole dataset lives in main memory. Any data that goes into a Redis
stream, or any Redis structure for that matter, does not get written directly to disk. With AOF
persistence enabled, Redis only writes all the write operations that were used in a file on disk,
which can then be used to recreate the dataset in memory when needed. The RDB persistence
option can also be used, but it is mostly for backups and disaster recovery.

The solution to which platform to use based on persistence requirements is entirely depen-
dent on the use case. If long term historical access is required, then Kafka and Pulsar are the
obvious choice. They are both designed as durable messaging systems able to handle and persist
large amounts of data. Redis on the other hand is limited by main memory, which dictates how
large of a dataset is readily available. This makes Redis a potential choice for short-term storage
persistence requirements. Alternatively, a streaming pipeline could always combine both Redis
and Kafka/Pulsar for different types of data streams. However, considering that both Kafka and
Pulsar essentially cover the same use cases as Redis, it is questionable whether that is worthwhile.
Maintaining several platforms would also increase the overall complexity of the streaming pipeline,
including the extra maintenance that comes with it.

Another important aspect to consider is the maturity of the technology. These modern data
streaming solutions are very much considered new technologies, as they have come up in the
spotlight during the past couple of years. While Redis has been around for over a decade by now,
the streams structure for building real-time data pipelines was only introduced a couple of years
ago in version 4.0. Apart from the official documentation and a couple of blog posts, it does not
seem to be something that has gotten proper industry attention. In the case of Kafka and Pulsar,
they were both developed and used by large companies before being open sourced to the public.
While Pulsar is currently being used in industry at a large scale, it is in a lot of ways overshadowed
by the popularity of Kafka. They are both remarkably similar in terms of architectural design
and the problems they solve. This brings up the question of why it is that Kafka has received
the largest userbase out of the three. One probable reason is the overall ecosystem surrounding
it. Although this study is specifically focused on evaluating and comparing systems for the data
ingestion part of the stream processing pipeline, it is important to look at the bigger picture.
In a lot of cases you might want to connect the data ingestion system with a dedicated stream
processing framework if more complex processing is required. In the case of Kafka, Kafka itself can
be used as a stream processor with the Kafka Streams framework. However, more importantly,
Kafka has great compatibility with most of the popular stream processing frameworks. Apache
Storm, Flink and Spark for example all have built-in support for Kafka as a data source. This type
of support and flexibility is something that Pulsar and Redis Streams simply do not offer and is
most definitely something that should be considered when choosing platform.

To expand on this, language support for these platforms is another quite important factor, as it
is something that might affect the overall development time and maintenance of the project. Kafka,
Pulsar and Redis all have client libraries for most of the popular languages. However, a lot of these
clients are third-party developed and maintained, meaning that they often lack the features of the
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native clients. In the case of Kafka, most client only support the basic consumer and producer
API. For getting access to all the features, including the Kafka Streams API for using Kafka as an
actual stream processor, the native Java client must be used. Pulsar offers slightly more variety in
official clients that have full feature support and is in general quite language agnostic considering
the support for the WebSocket protocol. Redis in general supports a wide variety of languages
with many different client libraries, but a lot of them have not implemented support for Redis
Streams. However, for most languages there does exist at least one client that supports the stream
datatype.

The other important aspect is related to performance. If the requirement is to build real-time
data pipelines that can handle large amounts of incoming data at low latency, then you also need
a platform that is able to achieve this. In this case the platforms were evaluated on throughput
and latency. These metrics have been widely used in the related works, as they best describe
the raw performance needs. The performance tests in this study do not take into consideration
other metrics such as CPU and RAM utilization, which was also measured for example in [38]
and [33]. This might be of interest when for example optimizing the hardware used for running
these systems.

In terms of maximum throughput, Kafka is the most consistent one across all the tested mes-
sage sizes. Pulsar performs very well with small messages, however the bottleneck of running a
single BookKeeper node for persistent storage severely affects the potential performance at higher
throughput rates. Considering that Pulsar was able to handle data at 1.5 GB/sec on non-persistent
topics as explained in section 6.2.1, the results would be widely different in a multi-node setup with
several BookKeeper nodes for handling persistence. That being said, you also cannot compare the
results of persistent versus non-persistent messaging speeds, as the overhead of writing the data
to disk is quite significant. The tests that were conducted in [38] show that Pulsar outperforms
Kafka in raw throughput for both 1 kB and 1 MB message sizes. While those tests were run
in multi-node cluster, it shows that Pulsar is capable of outperforming Kafka when there is no
bottleneck related to not having enough BookKeeper nodes for handling persistent storage. The
performance of Redis is quite interesting when looking at the results, as it seems to not be able to
handle too many small messages per time unit, nor does it perform all that great with large 600
kB messages. Interestingly though, it performs similarly to Kafka with a message size of 65 kB.
It should however also be noted that these throughput benchmarks test the absolute maximum
limit of the system. This will always result in a very notable increase in latency since there will
inevitably be some longer queuing or buffering done. In that respect, expecting to run the system
at these throughput levels might not be practical at all if latency is a concern.

In most applications, having the lowest possible average latency is the best measurement of
performance. In this regard Pulsar is the best performing platform across all the tested message
sizes and throughput rates. While there is quite a large relative difference in average latencies
between Pulsar and Kafka, the absolute difference is just a couple of milliseconds. The latency
comparisons in [38] show a much larger difference in latencies between Kafka and Pulsar, but they
were also tested at widely different throughput levels. Both Redis and Pulsar are extremely fast
at low throughput and message size, resulting in an impressive sub millisecond latency. However,
Redis is also the platform that gets most affected by the largest 600 kB message size, both in
average and max latency. The maximum latency of 150 ms when running at 144 MB/sec is quite
significant. There might be certain applications where this is particularly important, i.e. not being
able to process the message within a specific maximum time frame negatively affects the output.

Choosing a platform based on performance requirements generally comes down to a couple of
things. Firstly, throughput requirements must be met. This includes being able to easily scale up
the system to handle increasing workloads, which is something that can be done in Redis, Kafka and
Pulsar by adding more nodes to the cluster. Secondly, the latency requirements must be met. When
talking about real-time streaming applications, it usually means latency measured in milliseconds.
How strict the latency requirements are depends on the domain and type of application. In general,
the decision is often a compromise between high throughput and low latency, as mentioned in [32].
Stressing the system to the very max will always have a negative effect on latency. However, for
some applications low latency might not be that important compared to having a high throughput.
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6.1 Limitations

The main limitations of the study concern the results of the performance evaluation. The tests
that have been performed are very much context dependent. These platforms have been evaluated
based on specific hardware, message sizes, throughput levels and cluster size. While the results
are reproducible on the same or similar hardware, it does not mean that one will arrive to the
same type of conclusions in another environment with different configurations. This is a general
limitation regarding this type of testing, as there are far too many different variables and potential
combinations to test to be able to draw generalized conclusions that would fit every use case.

7 Conclusions

This thesis set out to compare Redis, Kafka and Pulsar as data ingestion systems in a real-
time stream processing pipeline. By evaluating the architecture and general characteristics of
the systems, we conclude that choosing the right platform depends on the use case. Redis is a
potential solution for streaming pipelines that only require short-term persistent storage due to its
in-memory design, while Kafka and Pulsar are designed to handle large amounts of long-term on
disk persistence. While all platforms generally have great language and container support, Kafka
is seen as the most mature technology in terms of integration possibilities in the overall stream
processing pipeline. Redis Streams is the least mature solution and has generally not received
much industry attention. These factors are crucial in choosing the right platform for intended use
case.

Additionally, the paper set out to compare all platforms based on throughput and end-to-end
latency performance using 1 kB, 65 kB and 600 kB message sizes. The results show that Kafka is
the most consistent platform regarding overall throughput levels. Pulsar performs great at small
message sizes but struggles to achieve high throughput with larger messages due to a bottleneck
in the testing configuration. The throughput performance of Redis is slightly inconsistent, with
low performance for small and very large messages, but performance on par with Kafka for 65
kB messages. In terms of end-to-end latency performance, we conclude that Pulsar is the best
performing platform across message sizes at the tested throughput levels. Redis performs very well
with lower message sizes but does not scale as well to larger ones. Both Redis and Pulsar manage
impressive sub millisecond latencies at low message size and throughput levels. Kafka performs
solidly across all the latency tests, slightly worse than both Pulsar and Kafka. In general, all
platforms perform well regarding latency.

From an industrial point of view, the different platforms presented and the conclusions drawn in
the study will hopefully help companies that are in the process of implementing stream processing
pipelines in their product. From a research point of view, the study will work as a base for future
research in benchmarking these types of platforms. The study also addresses platforms like Redis
Streams and Apache Pulsar, which currently have very little or no presence in current published
research.

For future work there is still a need to continue doing performance testing using the same
throughput and latency metrics. There are so many different possible combinations in terms of
message sizes, throughput levels, hardware, platforms specific configurations etc. that could still be
tested. Additionally, there is a need to test the impact that hardware has on overall performance for
figuring out the optimal cluster node hardware configurations. For figuring out optimal platform
specific configurations, the model developed in [36] for predicting the performance of Kafka could
be further expanded on.
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A Setting up the environment

This section will explain the process of setting up each of the environments used in the performance
testing. Since the tests were run on a server machine running the Debian 10 linux distribution,
the following instructions will reflect that. Any command preceded by a $ indicates that it should
be run from the command terminal.

1.1 Docker

Install Docker and Docker-Compose with the following:

$ sudo apt install docker.io docker-compose

$ sudo systemctl start docker

$ sudo systemctl enable docker

Docker version 18.09.1 and Docker-Compose version 1.21.0 were used.

1.2 Redis

The official Redis image has been used for setting up the Redis server. The following command
pulls the image if it has not yet been downloaded locally, and maps the port 6379 on the host
to the container, where the Redis server runs by default. The –appendonly directive means that
Redis will run with AOF persistence.

$ docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes

Confirm that the image is running by typing ”docker ps -a”. To delete a running container run
”docker rm -fv name of container”.

1.3 Pulsar

The Pulsar environment is setup in standalone mode using the official Docker image, i.e. one
broker, one zookeeper node and one bookkeeper node running in the same container. Start it by
running the following:

docker run -d --name pulsar -p 6650:6650 -p 8080:8080 \

apachepulsar/pulsar:latest bin/pulsar standalone

Create the partitioned topic with two partitions which will be used for testing with the following:

$docker exec -d pulsar bash bin/pulsar-admin topics \

create-partitioned-topic persistent://public/default/testing -p 2

1.4 Kafka

The Kafka environment is setup using the Docker images by Bitnami. Since a Kafka deployment
consists of at least one zookeeper node and one broker, Docker-Compose will be used to easily spin
up and tear down an environment with multiple containers. First create a docker-compose.yaml
file with the contents seen below. Then run the following command from the same directory that
contains the .yaml file.

$ docker-compose up -d

Create a topic with two partitions called ”testing”:

$ docker exec -d kafka_kafka_1 bash /opt/bitnami/kafka/bin/kafka-topics.sh \

--create --bootstrap-server localhost:9092 \

--replication-factor 1 --partitions 2 --topic testing

To tear down the environment, simply type the following:
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$ docker-compose down

The docker-compose.yml file used:

ve r s i on : ’2 ’

s e r v i c e s :
zookeeper :

image : ’ bitnami / zookeeper : l a t e s t ’
por t s :
− ’ 2181 :2181 ’

volumes :
− ’ zookeeper data : / bitnami ’

environment :
− ALLOWANONYMOUSLOGIN=yes

kafka :
image : ’ bitnami / kafka : l a t e s t ’
por t s :
− ’ 9092 :9092 ’
− ’ 29094 :29094 ’

volumes :
− ’ ka fka data : / bitnami ’

environment :
− KAFKACFGZOOKEEPERCONNECT=zookeeper :2181
− ALLOW PLAINTEXT LISTENER=yes
− KAFKA LISTENERS=LISTENER BOB:// kafka :29094 ,LISTENER FRED:// kafka :9092
− KAFKA ADVERTISED LISTENERS=LISTENER BOB:// kafka :29094 ,LISTENER FRED:// l o c a l h o s t :9092
− KAFKA LISTENER SECURITY PROTOCOL MAP=LISTENER BOB:PLAINTEXT,LISTENER FRED:PLAINTEXT
− KAFKA INTER BROKER LISTENER NAME=LISTENER BOB

depends on :
− zookeeper

B Running the throughput tests

2.1 Redis

The redis-benchmark tool by default does not support testing the XADD command, which is used
to produce events to the stream structure. Because of this, the tests were executed by running
a forked version of Redis which includes tests for the XADD command for Redis Streams. This
involves downloading the source code and compiling it from source.

$ git clone https://github.com/filipecosta90/redis.git

$ cd redis

$ git checkout remotes/origin/benchmark_xadd

$ make install

Once compiled, navigate under the /src folder and run the tests from there in the following
manner:

$ cd /src

$ ./redis-benchmark -t xadd_1 -n {message amount} -h localhost -d {size in byte}

2.2 Pulsar

The throughput tests in Pulsar are run using the built-in producer benchmark tester, producing
data to the topic that was previously created. This is run within the container by doing the
following:

$ docker exec -it pulsar /bin/bash

$ cd bin

$ ./pulsar-perf produce --num-messages {messages} --size {size in bytes} \

--rate {msg/sec} persistent://public/default/testing
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2.3 Kafka

Similar to Pulsar, the tests for Kafka are run within the container using the built-in performance
benchmarking tool.

$ docker exec -it kafka_kafka_1 /bin/bash

$ cd /opt/bitnami/kafka/bin

$ ./kafka-run-class.sh org.apache.kafka.tools.ProducerPerformance --topic testing \

--throughput -1 --num-records {messages} --record-size {size in bytes} \

--producer-props bootstrap.servers=localhost:9092

C Running the latency tests

The latency tests have all been written in client libraries for Python, tested with Python version
3.7.3. Install the required client libraries with the specific versions used in the tests:

$ pip3 install confluent-kafka==1.4.1 redis==3.5.2 pulsar-client==2.5.1

All the latency tests for the different platforms can be run from the same run.py script. Put all
the code files listed in Appendix D in the same directory using the same filenames. For example,
to start two consumers and a single producer for Kafka, with a message size of 1 kB, a message
rate of 1000 and a number of 30000 total messages, run the following:

$ python3 run.py --platform=kafka --mode=consume --workers=2

$ python3 run.py --platform=kafka --mode=produce --message-count=30000 \

--bytes=1000 --rate=1000 --workers=1

These values can be changed to run the tests on redis and pulsar, as well as with the other
message sizes and message rates used.

D Source code for latency tests

import os
from mul t i p r o c e s s i ng import Pool
import sys
import argparse

par s e r = argparse . ArgumentParser ( )
pa r s e r . add argument ( ’−−plat form ’ , ’−p ’ , type=s t r )
par s e r . add argument ( ’−−message−count ’ , ’−n ’ , type= in t )
par s e r . add argument ( ’−−r a t e ’ , ’−r ’ , type= in t )
par s e r . add argument ( ’−−bytes ’ , ’−b ’ , type= in t )
par s e r . add argument ( ’−−mode ’ , ’−m’ , type= s t r )
par s e r . add argument ( ’−−workers ’ , ’−w ’ , type=in t )

args = par s e r . p a r s e a r g s ( )
p lat form = args . p lat form
message count = args . message count
ra t e = args . r a t e
bytes = args . bytes
mode = args .mode
workers = args . workers

de f run producers ( p roce s s ) :
os . system ( ’ python3 {} {} {} {} ’ . format ( process , message count , rate , bytes ) )

de f run consumers ( p roce s s ) :
os . system ( ’ python3 {} ’ . format ( p roce s s ) )

s c r i p t = f ”produce−{plat form } . py”
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i f (mode == ’ produce ’ ) :
p r o c e s s e s = ( ( s c r i p t ) , ) ∗ workers

e l i f (mode == ’ consume ’ ) :
p r o c e s s e s = ( ( s c r i p t ) , ) ∗ workers

pool = Pool ( p r o c e s s e s=workers )

t ry :
i f (mode == ’ produce ’ ) :

pool .map( run producers , p r o c e s s e s )
i f (mode == ’ consume ’ ) :

pool .map( run consumers , p r o c e s s e s )

except KeyboardInterrupt :
pool . terminate ( )
pool . j o i n ( )

Listing 1: run.py

import r e d i s
import time
import sys
import s t a t i s t i c s

HOST = ’ l o c a l h o s t ’
PORT = 6379

r = r e d i s . Redis ( host=HOST, port=PORT)

stream = ’ t e s t i n g ’
group = ’ consumer−group ’

t ry :
r . xg roup create ( stream , group , mkstream=True )

except r e d i s . except i on s . ResponseError :
p r i n t ( ”Group a l ready e x i s t s ” )

#holds a l l the l a t ency c a l c u l a t i o n s
l a t e n c i e s = [ ]

t ry :
whi l e True :

f o r stream , messages in r . xreadgroup ( group , ” reader ” , { stream : ’> ’ } ) :
t ime r e c e i v ed n s = time . p e r f c oun t e r n s ( )
t ime sent = messages [ 0 ] [ 1 ] [ b ’ timestamp ’ ] . decode ( ” utf−8” )
t ime s en t n s = in t ( t ime sent )

l a t ency = ( t ime r e c e i v ed n s − t ime s en t n s ) / 1000000
l a t e n c i e s . append ( l a t ency )

msg id = messages [ 0 ] [ 0 ]

#make sure that the same msg does not
#get proce s s ed by the other consumers in the group
r . xack ( stream , group , msg id )

except KeyboardInterrupt :
p r i n t ( ”Consumer shut down . ” )

f i n a l l y :
p r i n t ( f ”{ l en ( l a t e n c i e s )} messages consumed” )
p r i n t ( f ”mean la t ency : { s t a t i s t i c s .mean( l a t e n c i e s )} ms” )
p r i n t ( f ”min la t ency : {min( l a t e n c i e s )} ms” )
p r i n t ( f ”max la t ency : {max( l a t e n c i e s )} ms” )

Listing 2: consume-redis.py

import r e d i s
import time
import sys
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HOST = ’ l o c a l h o s t ’
PORT = 6379

r = r e d i s . Redis ( host=HOST, port=PORT)

stream = ’ t e s t i n g ’

num messages = in t ( sys . argv [ 1 ] )
msg rate = in t ( sys . argv [ 2 ] )
d a t a s i z e = in t ( sys . argv [ 3 ] )

#Used f o r t h r o t t l i n g the messages / sec based on the g iven ra t e
f a c t o r = 1 / ( msg rate /1000000000)

#a r e d i s stream value i s always a s t r i ng ,
#so have to c r e a t e a s t r i n g that i s o f wanted s i z e in terms o f bytes
d a t a s t r i n g = ’A ’ ∗ da t a s i z e

#Use the timestamp to c a l c u l a t e l a t ency when message a r r i v e s at consumer
data = {” value ” : da ta s t r i ng , ” timestamp” : ”0” }

s t a r t = time . time ( )
f o r i in range ( num messages ) :

data [ ” timestamp” ] = time . p e r f c oun t e r n s ( )
r . xadd ( stream , data )

stop = time . p e r f c oun t e r n s ( ) + f a c t o r
whi l e (True ) :

cur r = time . p e r f c oun t e r n s ( )
i f ( cur r >= stop ) : break

end = time . time ( )
e lapsed = end − s t a r t
p r i n t ( ”\n\n{} messages sent per second \n\n” . format ( i n t ( num messages / e lapsed ) ) )

Listing 3: produce-redis.py

import pulsar , pu l s a r
import datet ime
import s t a t i s t i c s
import time

c l i e n t = pu l sa r . C l i en t ( ’ pu l sa r : // l o c a l h o s t :6650 ’ )

consumer = c l i e n t . sub s c r i b e ( ’ p e r s i s t e n t : // pub l i c / d e f au l t / t e s t i n g ’ ,
’ consumer−group ’ ,
consumer type= pu l s a r . ConsumerType . Shared )

#holds a l l c a l c u l a t ed la t ency va lue s
l a t e n c i e s = [ ]

whi l e True :
t ry :

msg = consumer . r e c e i v e ( t ime ou t m i l l i s =10000)

# Acknowledge that message has been r e c e i v ed
consumer . acknowledge (msg)

#ca l c l a t ency between the sent and r e c e i v ed timestamp
la t ency = ( time . p e r f c oun t e r n s ( ) − msg . event timestamp ())/1000000
l a t e n c i e s . append ( l a t ency )

except :
p r i n t ( ”Closed connect ion ” )
break

p r in t ( f ”\n{ l en ( l a t e n c i e s )} messages consumed” )
p r i n t ( f ”mean la t ency : { s t a t i s t i c s .mean( l a t e n c i e s )} ms” )
p r i n t ( f ”min la t ency : {min( l a t e n c i e s )} ms” )
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pr in t ( f ”max la t ency : {max( l a t e n c i e s )} ms\n” )

Listing 4: consume-pulsar.py

import pu l sa r
import sys
import time
import datet ime

c l i e n t = pu l sa r . C l i en t ( ’ pu l sa r : // l o c a l h o s t :6650 ’ )

producer = c l i e n t . c r ea t e p roduce r ( ’ p e r s i s t e n t : // pub l i c / d e f au l t / t e s t i n g ’
, b l o c k i f q u e u e f u l l=True )

num messages = in t ( sys . argv [ 1 ] )
msg rate = in t ( sys . argv [ 2 ] )
data = bytes ( i n t ( sys . argv [ 3 ] ) )

f a c t o r = 1 / ( msg rate /1000000000)

de f s end ca l l ba ck ( res , msg ) :
r e turn

s t a r t = time . time ( )
f o r i in range ( num messages ) :

producer . send ( data , event timestamp=time . p e r f c oun t e r n s ( ) )

#when the t h r o t t l e de lay should be stopped
stop = time . p e r f c oun t e r n s ( ) + f a c t o r
whi l e (True ) :

cur r = time . p e r f c oun t e r n s ( )
i f ( cur r >= stop ) : break

#f l u s h and c l o s e producer
producer . f l u s h ( )
producer . c l o s e ( )

#Basic producer s t a t i s t i c s
end = time . time ( )
e lapsed = end − s t a r t
p r i n t ( ”\n\n{} messages sent per second \n\n” . format ( i n t ( num messages / e lapsed ) ) )

Listing 5: produce-pulsar.py

from con f l u en t ka f ka import Consumer , Top i cPar t i t i on
import socke t
import time
import s t a t i s t i c s
import datet ime
import s t a t i s t i c s

conf = { ’ boots t rap . s e r v e r s ’ : ” l o c a l h o s t :9092 ”}

c = Consumer ({
’ boots t rap . s e r v e r s ’ : conf [ ’ boots t rap . s e r v e r s ’ ] ,
’ group . id ’ : ’ cg ’ ,
’ auto . o f f s e t . r e s e t ’ : ’ e a r l i e s t ’ ,

})

de f p r in t a s s i gnment ( consumer , p a r t i t i o n s ) :
p r i n t ( ’ Assignment : ’ , p a r t i t i o n s )

c . sub s c r i b e ( [ ’ t e s t i n g ’ ] , on a s s i gn=pr in t a s s i gnment )
#c . a s s i gn ( [ Top i cPar t i t i on ( ’ t e s t i n g ’ , 0 ) ] )

#holds a l l the l a t ency measurements
l a t e n c i e s = [ ]

t ry :
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whi le True :
msg = c . p o l l ( 1 . 0 )
i f msg i s None :

cont inue

e l i f msg . e r r o r ( ) :
p r i n t ( ’ e r r o r : {} ’ . format (msg . e r r o r ( ) ) )

e l s e :
# Check f o r message
l a t ency = ( datet ime . datet ime . now ( ) . timestamp ( ) ∗ 1000) − msg . timestamp ( ) [ 1 ]
l a t e n c i e s . append ( l a t ency )

except KeyboardInterrupt :
pass

f i n a l l y :
c . c l o s e ( )
p r i n t ( f ”{ l en ( l a t e n c i e s )} messages consumed” )
p r i n t ( f ”mean la t ency : { s t a t i s t i c s .mean( l a t e n c i e s )} ms” )
p r i n t ( f ”min la t ency : {min( l a t e n c i e s )} ms” )
p r i n t ( f ”max la t ency : {max( l a t e n c i e s )} ms” )

Listing 6: consume-kafka.py

from con f l u en t ka f ka import Producer
import sys
import time
from fun c t o o l s import wraps

i f name == ’ ma in ’ :

broker = ” l o c a l h o s t :9092 ”
top i c = ” t e s t i n g ”

conf = { ’ boots t rap . s e r v e r s ’ : broker }

# Create Producer i n s t ance
p = Producer (∗∗ conf )

num messages = in t ( sys . argv [ 1 ] )
msg rate = in t ( sys . argv [ 2 ] )
data = bytes ( i n t ( sys . argv [ 3 ] ) )

#used f o r t h r o t t l i n g based on the wanted ra t e
f a c t o r = 1 / ( msg rate /1000000000)

de f d e l i v e r y c a l l b a c k ( err , msg ) :
i f e r r :

sys . s t d e r r . wr i t e ( ’%% Message f a i l e d d e l i v e r y : %s \n ’ % e r r )

de f produce (p , top ic , data , cb ) :
p . produce ( top ic , data , c a l l b a ck=cb )

i = 0
s t a r t = time . time ( )
whi l e ( i < num messages ) :

t ry :
produce (p , top ic , data , d e l i v e r y c a l l b a c k )
stop = time . p e r f c oun t e r n s ( ) + f a c t o r

i+=1
whi le (True ) :

cur r = time . p e r f c oun t e r n s ( )
i f ( cur r >= stop ) : break

except Buf f e rEr ro r :
sys . s t d e r r . wr i t e ( ’ Local producer queue i s f u l l ! ’ )

34



Sebastian Tallberg Comparison of data ingestion platforms

p . p o l l ( 0 )

# Wait un t i l a l l messages have been d e l i v e r e d
p . f l u s h ( )

end = time . time ( )
e l apsed = end − s t a r t
p r i n t ( ”{} messages sent per second” . format ( i n t ( num messages / e lapsed ) ) )

Listing 7: produce-kafka.py
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