
Customizing an Open Source ERP System

Dan Björkgren, 40072
Master’s Thesis in Computer Science

Supervisors: Annamari Soini, Marina Walden
Faculty of Science and Engineering

Åbo Akademi University
2020-06-17

Abstract:

At a point in time when the use of computers and software within companies
and corporations is ubiquitous there is still reason to question their purpose and
validity. The mere use of computers is not enough to enable efficient management
of our time and work processes. Off-the-shelf software has a tendency to streamline
organizations into facsimiles, leaving no room for developing and defining superior
business processes. Refining business processes while figuring out what the true
value of our endeavors is, be it in the manufacturing of goods or providing a service
is, I believe, a path that is remarkably rewarding for both market and staff, as
the cost of a commodity may begin to approach its perceived value. The business
process becomes a true competitive advantage. This thesis explores the century-old,
but often forgotten, models of business process refinement, combining them and
the theory behind them with modern era business software into a system that is
easily customized to fit any organization. A business process can be characterized
as the description of how to complete a certain task. A process has a starting
point and an end point with subtasks in between. Depicting the process in the
form of a graph is a natural progression from that fact. In this thesis I create a
software application for this purpose, storing the graph in a graph database. Since
this type of graph has a natural path from starting point to end point it is possible
to follow the graph programmatically from start to finish, in other words it is
possible to use the graph as a form of source code, given that the correct parameters
are available on the graph. Some tasks may involve decisions that are hard to
program due to their circumstantial nature. In such cases the process must be
halted and a notification be sent to whomever is responsible for allowing the process
to continue. As part of the system a workflow engine is developed that reads the
graph and performs tasks as they are encountered. In the simple process given as
an example in this thesis, the performed tasks are all functions in an open source
ERP software, but the implied possibilities for automation are endless, as long as
the task can be performed by a software programmable device. With this system I
show that it is possible to automate and orchestrate an off-the-shelf software system
in a way that is less limiting with regard to business processes than a standard
system, without the enormous effort to create a custom system from scratch.

Keywords: Business Process, Enterprise Resource Planning, Workflow Man-
agement, Petri Net, Graph Database

ii

Contents

Abbreviations v

1 Introduction 1

2 Enterprise Resource Planning Systems vs. real workflows in
manufacturing 4
2.1 Business Processes . 4
2.2 Workflow Management . 6

2.2.1 Creating the process definition 8
2.2.2 Workflow Enactment Service 11
2.2.3 Conclusion regarding workflow management systems . 11

2.3 Enterprise Resource Planning Systems 12
2.4 Two paradigms to be merged 14
2.5 Quality Assurance . 16

2.5.1 Traceability and Material Identification 17
2.5.2 Implications for manufacture 18
2.5.3 Implications for software 19

3 ERPNext 20
3.1 Frappe framework . 20
3.2 ERPNext application . 25
3.3 Customizing ERP Systems . 26
3.4 Customizing ERPNext . 27

3.4.1 Process Workflows . 28
3.4.2 Communication to other critical applications in the or-

ganization . 28

4 Tools and Technologies used 29
4.1 Docker . 29
4.2 Git . 30
4.3 Storage . 30
4.4 Workflow Editor . 34
4.5 Workflow Engine . 34
4.6 ERPNext Connector for the Workflow Engine 35
4.7 Custom Applications . 35

iii

5 A Customized ERP System 36
5.1 Example Organization . 36
5.2 Custom Use Cases . 37

5.2.1 Sales Order . 37
5.2.2 Connecting existing platforms to ERPNext 41

5.3 Workflow Editor . 42
5.4 Workflow Engine . 46

5.4.1 Implementation of the workflow engine 49
5.4.2 REST API . 51
5.4.3 Implementation of the custom connector 54

5.5 Custom Application . 55
5.6 Custom Connector for Manufacturing 56

5.6.1 Item and Work Order Item 57
5.7 Dockerizing ERPNext . 58
5.8 Tying it all together . 60

5.8.1 Implemented workflow 60
5.8.2 Problems encountered 63

6 Conclusion 65
6.1 Measuring results . 65
6.2 Further research . 66

Appendix i
Tables . i
Petri net diagram symbols . iv

Sammandrag v

Bibliography ix

iv

Abbreviations

API Application Programming Interface
ASAP Asyncronous Application Service Protocol (for SOAP)
BOM Bill of Materials
BPEL Business Process Execution Language
BPM Business Process Management
BPML Business Process Modeling Language
BPMN Business Process Modeling Notation
BPR Business Process Re-engineering
BSE Bovin Spongiform Encefalopati
CORBA Common Object Request Broker Architecture
CRM Customer Relations Management
CSS Cascading Style Sheets
ERP Enterprise Resource Planning
GDB Graph Database
GNU GPL GNU General Public License
HTML Hypertext Markup Language
IDL Interface Definition Language
JSON Javascript Object Notation
MES Manufacturing Execution System
MRP Material Resource Planning
MRP II Manufacturing Resource Planning
OLE Object Linking and Embedding
ORM Object Relational Mapping
PCB Printed Circuit Board
pdf Portable Document Format
RDBMS Relational Database Management System
REST Representational State Transfer
SaaS Software as a Service
SOAP Simple Object Access Protocol
SQL Structured Query Language
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
VAT Value Added Tax
WfMS Workflow Management System
Wfd Workflow Definition
WFSL Web Services Flow Language
WSDL Web Service Definition Language
XML Extensible Markup Language
XPDL XML Process Definition Language

v

1 Introduction

This thesis is a continuation of my Bachelor’s thesis [41] which outlines
my findings on the importance of letting software reflect business processes
as opposed to forcing business processes onto a company by the choice of
software. The main point of that thesis is that processes that have been
worked out through pragmatic continuous improvements are to be regarded
as a competitive advantage. Disregarding these processes when introducing
new software leads to a nullification of these advantages, equalizing companies
to the point where the only differentiator among subcontractors is price. It is
not hard to imagine the downward spiral that follows. Business processes are
discussed in Section 2.1.

Software is, however, essential in any business adventure at this point, in
and of itself it is a competitive advantage over not using software at all. No-
one has the appropriate resources available for assembling reports, tracking
shipments and orders, let alone tracking manufacturing details or handling
traceability, using handwritten notes. The process of manual recording is far
too error prone, searching and compiling information far too slow to be realistic
with today’s workload. Any business that grows beyond one or two employees
will have to implement a software system to handle these problems. As a
first step, many a small business starts by using spreadsheets. Spreadsheets
come with their own set of problems, the findings of van der Aa et al. [42]
regarding process information also pertain to business information scattered
around the computer network. One answer to this problem may be a well-
defined Workflow Management System, WfMS. With a WfMS it is possible
to tie different applications and systems together in a way that resembles the
process flow at hand. Each business process is described, usually in the form
of a graph, and stored in a format that the WfMS can use. The WfMS is
responsible for enacting each application specified in the process definition in
turn, sending notifications to users when user action is needed. Somehow this
concept has never reached any overwhelming popularity. Many systems are
said to incorporate workflows and the names of the components of the concept
are well known to anyone with a little experience in business processes, but
the large benefits and the flexibility of these systems have somehow been lost.
Workflow Management is discussed in Section 2.2.

Disregarding the benefits of a true WfMS, at some point the only viable
solution is a database or a system of interconnected databases that holds most,
if not all, of the information that is collected during the daily operations of

1

the company, along with accompanying software to record, retrieve, edit, and
compile said data. These systems are commonly known as Enterprise Re-
source Planning systems or ERP systems. Other, more specialized systems
like e.g. Manufacturing Execution Systems (MES) may supply and retrieve
data to and from the ERP system. As the name implies, ERP systems origi-
nate in the enterprise world where thousands of employees have access to the
same data set and different departments may be spread over several continents.

The feature set of such a system is hardly the answer for a small en-
trepreneurial company with less than 20 employees. Over time, as the en-
terprise market is being saturated, the main manufacturers of these systems
are expanding their market into the medium sized and small business segments
with less features and, unfortunately, less options of customization. Most fea-
ture rich and customizable ERP-systems are also prohibitively expensive, in
licensing, hosting, maintenance, and customization. The systems are usually
sold preconfigured to conform to ”best practice” business processes, leading to
the fore-mentioned equalization of similar companies. [41] ERP is the topic of
Section 2.3.

Open Source ERP systems are also available. As the source code is freely
available, these can theoretically be customized by anyone with the right skill
set. Some of these systems emerged in the late 90’s with ongoing refinements
and expanding feature sets and are actually comparable with the commercial
solutions. Others are younger, but still rich enough in features to be viable
in small companies. Common to all these systems is, again, the failure to be
flexible enough when it comes to business processes. Other negative aspects in-
clude that necessary customization like translations and localized legal aspects,
e.g. finance reporting style, can become extensive. Additionally, as recently
expressed by Jessica Joy Kerr, via a tweet from Avdi Grimm - ”OSS: Your
production software depends on a bunch of people’s hobbies” [43].

Due to the relative popularity of ERP systems, and the negative factors
listed above and in Table 3, my conclusion is that there is a need for combin-
ing these rather disparate views on business processes or, rather, bringing the
workflow aspect to the ERP domain in a more concrete manner. I have chosen
to do this by amending an open source ERP system with a Workflow Man-
agement System and in the process creating a very flexible system that has
the features of ERP, including the central database, and the business process
adherence of a WfMS, including the graphical tools for defining the processes.
Additionally, I will address a few customizations that have been made to the
ERP system during my research at Comsel System and a few points of interest
arisen from my earlier work at Oy Maxel Ab.

2

Making a production-ready system capable of handling any workflow is out
of scope for this thesis. I will, however, create a rough user interface for creating
and editing process graphs, using open source software when possible. I will
also create a workflow engine that can be utilized to enable the flow of any case
from start to finish, calling the appropriate ERP API functions in the order
needed, automating the flow whenever possible, and sending notifications to
the right user whenever needed. The practical work is described starting in
Section 5.

The goal of this effort is to evaluate if the flexibility of a workflow-enabled
ERP system will affect the overall performance of a business process. In Sec-
tion 5.2.1 I describe a rudimentary but generally applicable business process
encompassing an incoming sales order, checking stock level, deciding on manu-
facture or purchase if not immediately available for delivery, replenishing the
warehouse if needed through to delivery of the items sold. Section 5.2.2 de-
scribes a manufacturing workflow triggered by an external application. Two
different measurements are then applied comparing the ERP system ”out-of-
the-box” to the ”workflow-enabled” system. Firstly, I am interested in the
amount of effort that is needed to enact the example workflow using each vari-
ant of the system. I theorize that by measuring the time needed to perform
the example workflow from start to finish we should be able to depict the labor
involved. Additionally, a comparison of how closely we are able to follow the
specified process is of interest. Summarizing the deviation count is a basic mea-
surement, however, some reasoning around the consequences of each deviation
is likely useful in this context. Some deviations identified in the manufactur-
ing workflow have also been remedied in the course of this exploration and a
discussion is provided as an example of more elaborate tailoring of the chosen
ERP system.

3

2 Enterprise Resource Planning Systems vs. real
workflows in manufacturing

2.1 Business Processes

A business process describes the daily work in an organization. It defines
what is to be done, the tasks, who should do what, the roles, and how things
should be done, the rules, and procedures. Together this specification regulates
the business. [14]

The maturity of business processes has been described by McCormack [1] as
a linear path from Ad-hoc, where nothing is described and you do what must
be done, to Defined, where the process has been identified and documented,
further to Linked, where process management is deliberately handled as a
strategic instrument, and finally to Integrated where process management is
integral to the organization and traditional functions (i.e. sales, manufacturing,
etc.) are losing their importance.

Over time several ways of categorizing processes have evolved, for exam-
ple Medina-Mora et al. [15] distinguishes between material, information, and
business processes. Material processes are concrete work done in the physi-
cal world, e.g. assembling a product. Information processes are automated or
partially automated tasks handling information. Business processes describe
these processes on a business level, answering the question what is to be done
to satisfy a market need or a business contract.

Van der Aalst has another way of describing this, although the categories
mainly remain the same. Processes can intuitively be divided as Primary,
which are the producing processes, such as manufacturing or service processes,
Secondary, or support processes like Human Resources, tooling and marketing,
and finally Tertiary, or managerial processes, directing and supervising the
other two, such as formulating preconditions and objectives. [2]

Defining the business processes in general will have positive implications
on many aspects of the business. Without them, as in Ad-hoc, decisions are
made on a whim, traceability, as to who has done what, is nearly impossible
to achieve, and any form of improvement is out of the question since there is
nothing to measure advancements against.

In the nineties, with emerging office automation and client server systems
replacing mainframes and terminals, and with the promise of more affordable
computerized office systems even for small entrepreneurial businesses, the no-
tion of business process re-engineering (BPR) became a popular buzzword.

4

BPR was meant to reinvent the way business was done within organizations
as the prospect of automating tasks was nearing realization. The idea was
to ignore any current processes and reinvent the way to do work while intro-
ducing new technology with new possibilities.[16] Most re-engineering projects
struggled with resistance to change and ineffective leadership according to
Chamberlin. [17] From my own experience I could also add that resistance
to change may have different reasons, but in a small business the following
cartoon says it all:

Figure 1: Too busy…[44]

In my point of view the BPR industry may have overemphasized the ”oblit-
eration” part and in the process scared many smaller companies out of any
improvements. The changes that Hammer describes in what could be thought
of as the BPR manifesto [16] are not that radical. Improving the order han-
dling instead of improving how to clean up the resulting mess seems to me like
a natural evolution with the use of computers.

Since this radical BPR was largely a failure [18] a broader and more inclu-
sive approach emerged, e.g. Zairi [19] with a focus on customer satisfaction,
reliance on current processes, and the importance of quality systems and doc-
umentation, along with continuous improvements. Zairi writes about how to
manage processes as opposed to re-engineering them and the new movement
became known as Business Process Management or BPM. BPM is to me an at-
tractive approach since its primary goal according to Hung [20] is ”to improve
business processes and so ensure that the critical activities affecting customer
satisfaction are executed in the most efficient and effective manner”. Hung
further states that ”In order to sustain a competitive advantage and so face
the rapidly increasing global competition, companies must continuously imple-
ment best practice management principles, strategies and technologies”. This
is in line with my earlier findings that business processes are a key factor in
reaching competitive advantage.[41]

5

2.2 Workflow Management

Software systems in use in organizations are often a plethora of applications
dedicated to a single or a limited number of activities, even if there is a central
database in place, as with ERP systems. To be able to automate the flow
of a business process, to create a workflow, one would have to describe the
business process in a language suitable for a software system to be able to
redirect documents and other digital artifacts between these applications in
a timely manner. This is called a process definition. There will always be
some actions that cannot be easily automated, such as the initial input of case
data, amending case data, or fault handling. In many decision situations, only
recommendations can be made automatically, while the final decision must be
made by a human. This type of human interaction must be dealt with using
e.g. notifications to alert the worker that the automated process needs human
input. The software used for managing these workflows is called a Workflow
Management System
Workflow Definition

”The computerized facilitation or automation of a business process, in
whole or part.” [3]

Workflow Management System Definition

”A system that completely defines, manages and executes ”workflows”
through the execution of software whose order of execution is driven by
a computer representation of the workflow logic” [3]

Process Definition Definition

”The computerized representation of a process that includes the manual
definition and workflow definition” [3]

Case Definition

”An instance of a process performed as detailed in a Process Definition.
Examples include producing a single item, handling a single insurance
claim.”

The Workflow Reference Model [3] is the standard document developed
by the Workflow Management Coalition1 outlining the needed capabilities of

1” Founded in 1993, the Workflow Management Coalition (WfMC) is a global organiza-
tion of adopters, developers, consultants, analysts, as well as university and research groups
engaged in workflow and BPM.” [45]

6

a Workflow Management System. The main characteristics are presented in
Figure 2.

Figure 2: Workflow System Characteristics [3][sic]

In short, the workflow of the workflow management system itself includes
creating the process definition using modeling and definition tools and running
a workflow enactment service to manage and apply the workflows to applica-
tions and to interact with users.

There are five interfaces defined in or in relation to the Workflow Refer-
ence model [4]. We should note that the reference model was developed in
the early- to mid-nineties when the World Wide Web was still in its infancy,
but distributed computing using CORBA messaging was emerging. The fun-
damental aspects of the APIs (Application Programming Interfaces) are still
relevant, at least as a reference point.

The first interface, which is still relevant, is for exchanging business process
definitions. It is defined in WFMC-TC-1025 [46] and has an accompanying
XML schema definition XPDL.xsd. [5] The specification can be used for storing
business process definitions in an interchangeable format.

7

The second interface was developed as a way for applications to be able to
communicate with varying vendors’ workflow engines. This was specified in C
as several APIs for handling worklists, activities, and processes. It was later
redefined in IDL for use with Corba and OLE.

Interface number three describes the Invoked Application Functions which
are functions dealing with connecting to external (in respect to the workflow
service) applications and invoking activity functions in the external applica-
tions. This can be done with or without what is called Application Agents
(essentially proxy or connector applications). It has later been amalgamated
into interface 2.

Interfaces two and three, while they are reasonable and allow for all func-
tionality one would expect from a workflow enactment service, they have ap-
parently remained a theoretical exercise. All workflow systems I have come in
contact with define their own APIs.

The fourth interface defines functions for communication between workflow
services. This has been revised several times and has also been defined in XML
as Wf-XML with implementations over SOAP2and ASAP3. As it stands, this
interface partly overlaps with interfaces 1 and 2. For example ListDefinitions
of interface 4 and WMOpenProcessDefinitionsList of interface 1 in essence do
the same thing, i.e. return a list of available process definitions.

The last defined interface is for systems administration purposes. No final
implementation of this specification has been made public, however, there is
an unnumbered draft of an ”Audit Data Specification” available at the WFMC
website. [48]

2.2.1 Creating the process definition

The Workflow Reference Model does not give specific advice on what tools
to use for this step. Any way of defining a process is acceptable whether
textual, graphical, or in a formal language.

Flowcharting, to graphically express the flow of the process, the Workflow,
was already being done earlier on but became a more explicit part of BPM
than it had been in BPR. Different but similar (since most of them were based
on Frank and Lilian Gilbreth’s work from the 1920s) types of graphs have been

2Simple Object Access Protocol is an XML-based transport protocol developed by Mi-
crosoft, enabling messaging and remote procedure calls over standard transports like HTTP
[21].

3Asynchronous Service Access Protocol enables starting, monitoring and controlling web
services over the SOAP protocol. It was developed by OASIS (non-profit worldwide con-
sortium promoting open standards ”for the global information society”) in 2003 but was
seemingly abandoned in working draft status in 2004. [47]

8

proposed as the solution to flowcharting processes. This is true for the Activity
Diagram, which is part of the UML language, and for the Business Process
Modelling Notation, BPMN, developed by the Business Process Management
Initiative (later merged with the Object Management Group, OMG), endorsed
by the Workflow Management Coalition and later standardized in ISO 19510,
the latter of which is now the most commonly used diagram type within BPM.
[6]

A basic BPMN chart describes a process by means of Activities represented
as rounded rectangles, Gateways (corresponding to decisions in flowcharts)
drawn as diamond shapes and Flows, directed arrows depicting the order of
events. [6]. Finally, we find Events represented by circles. In addition, there
are variations in border styles and fills with specific meaning and extended
symbols that can be inserted into the shapes for more advanced use.

Activities and events are distinguished by time aspect. An event has zero
time duration whereas an activity takes time.

Figure 3: BPMN representation of a process

Unfortunately, BPMN is stateless [49], and lacks in formal semantics [49]
which leads to problems verifying and simulating the resulting workflows.

One slightly different approach is the work of W.M.P. van der Aalst which
is based on Petri nets [2], [22], [23], [50], [51]. The origin of Petri nets goes
back to 1962, proposed by Carl Adam Petri (1926-2010). Petri nets are con-
sidered the first formalism to model concurrency. [24] Petri nets consist of
two main components, Places denoted by circles and Transitions denoted by
bars in the graphic notation. Formally these components are denoted by p
and t respectively. Places and transitions are connected by directed arcs from
places to transitions and from transitions to places. This static representa-

9

tion is amended with dynamic properties showing the execution of the model.
Markers (called tokens and represented by dots) in the flowchart denote what
function is executed at the moment and by moving the markers the net can
be simulated. A transition cannot fire unless there is a token available in all
preceding places. The transition fires by moving said token to the next place.
[25]

Figure 4: Petri net[25]

Figure 5: Petri net in the next state, token in p1 has been moved to p2 and is
duplicated in p3 [25]

Formally the basic Petri net is defined as a triple (P, T, F). [26] P is a
finite set of places, T is a finite set of transitions (P ∩ T = ∅), and F ⊆
(P × T) ∪ (T × P) is a set of arcs (flow relation) [26].

10

It is not possible to express real life workflows with the basic Petri net,
however, according to Van Der Aalst, by extending the net with arc weight
functions W, (activity) labels A, labeling functions L, reset arc functions R,
and an inhibitor arc function H most workflow scenarios can be modelled.
Further restricting the net to have a single source place i, a single sink place
o, keeping all other nodes on the path from i to o, and prohibiting reset arcs
from connecting to o gives us a WorkFlow net. [26] Introducing timing allows
us to calculate duration.

Van Der Aalst has done extensive research in the field of workflows, and
along with his colleagues he has identified a multitude of patterns [27] (cf. Alexan-
der [7], GoF [8]) which have been used to identify how different modeling
techniques are equipped to handle the modeling of workflows. A few of these
patterns are hard to model using Petri nets, a fact that led to the development
of YAWL (yet another workflow language). [23]

Following the Workflow Reference Model any process definition should be
possible to convert into the XML process definition language defined in the
process definition interface [46].

2.2.2 Workflow Enactment Service

The Workflow Enactment Service, as defined in the workflow reference
model, is used to interpret the process model definition and direct each case
through the workflow from start to finish. This includes communicating with
applications, to start execution of activities, and communicating with users,
essentially thereby controlling the state of each case. The core component in
this service is called a Workflow Engine and as the reference model is described,
several workflow engines can act upon the same workflow instance (case) and
may also be distributed on several systems.

2.2.3 Conclusion regarding workflow management systems

A workflow management system could in the best of worlds be used to tie
together all the small applications, including spreadsheet files and word pro-
cessing documents, accounting software and special case applications used in
an organization, into a single more or less coherent system to handle automa-
tion or semi-automation of a company’s business processes. To my knowledge
no such system has ever been marketed to small (1-50 employees) businesses
and certainly not made popular. Reasons for this anecdotal fact are unknown
but could make for an interesting field of study.

Although I have concentrated my efforts regarding workflow systems to the

11

WfMC Reference Model it is worth noticing that other competing models exist
and, in fact, are more generally in use due to the size of the companies that
endorse and implement them. For example, SAP, in cooperation with others,
developed the BPML language for modeling and executing workflows. BPML,
although its notation is XML-based, is based on pi-calculus4 and thus has the
ability to describe processes as first-class entities5. [28] OASIS, an organiza-
tion including among others IBM, Microsoft, and Oracle, has developed the
BPEL range of languages, aimed at orchestrating web services over WSDL as
workflows. None of these have native graphical representations even though
WFSL is graph-based. [52]

2.3 Enterprise Resource Planning Systems

Enterprise Resource Planning (ERP) systems is an umbrella term for soft-
ware systems aiming to support and control the daily work at a company.
They are typically a compilation of different modules handling customer rela-
tions, human resources, manufacturing, warehousing, logistics, and so on. All
modules talk to a common large database to reduce redundancy and allow for
effortless compilation of reports. [29]

These systems have evolved independently from the process oriented ap-
proach and their roots can be found in the development of inventory control
applications of the early 1960s. [53] Material Requirements Planning (MRP)
introduced the Bill of Materials (BOM), and time-phased planning to cope
with the material flow on the shop floor [9], [53]. Manufacturing Resource
Planning (MRP II), introducing capacity planning and master scheduling [53]
evolved from MRP and as more and more areas of the enterprise, like ac-
counting, human resources, and customer relations were added to the central
database, ERP was born. Specifically transactional systems consisting of mod-
ules with their boundaries (separated by function rather than by organizational
division), interfaces between modules (input and output extended by including
data sets, such as working files, master files, directories of information, and
tables), and the database as a ”common corporate data bank”, were defined
by S.C. Blumenthal in 1969. [10] As similarities between different industries
are obvious, the ERP systems were offered as ”off-the-shelf” applications from

4Pi-calculus is a model of concurrent computation based on naming. It is a formal way of
expressing concurrency using actors (processes, etc.) and interactions between these agents
(e.g. messaging).

5A first class entity is any data type that can be used as a construct in the language in
question e.g. it can be assigned to a variable, passed as a parameter, and so on.

12

companies such as IBM, SAP, and Oracle to name a few of the most renowned.
Workflow logic and functional logic are traditionally embedded in the system it-
self, i.e. hardcoded, but a parameterized approach is being used to enable more
flexible systems. Parameters are set as preconditions to e.g. user interfaces and
control e.g. what fields are present and how the information is routed. These
are normally set during the implementation of a system in an organization. Pa-
rameters can be of three types according to Soffer et al. [30]; high-level process
definitions, the aforementioned preconditions to user-interface sessions, low-
level process definitions, choosing algorithms and rules for each action, and
value-based parameters that determine how an action is performed. Exam-
ples of the third type would include vastly different concepts like VAT rates,
planning time spans, or how orders and invoices are numbered. To accom-
modate for different markets and different fields of business there are usually
pre-defined templates for the setting of these parameters. Other means of
customization, like programming efforts to change the behavior of the system,
are mostly discouraged by vendors who may even refuse future support for
packages that have been altered. Instead, implementing companies are encour-
aged to change their processes to suit the system, alternatively (but, of course,
rarely pushed by vendors), to find a more suitable system.

There is logical reasoning behind this unwillingness to alter the software.
Many implementations have failed, sometimes leading to the failure of the
business itself [31], and the risks involved are numerous. Business Process Re-
engineering is cited as an important success factor in ERP implementations
[54] and customization is also discouraged broadly due to maintenance risk
(updating the ERP package often breaks the customized code). Thus, it is
left to the buyer to find the software that fits the company’s processes best
when choosing an ERP system. Choosing the right system has been found
to be an important factor [32], but in reality it is often overlooked and many
vendors simply ignore the problem in the sales process. [33] We should note
that Blumenthal, as the proposed father of ERP, however, states that ”One
should not start out by redesigning the organization merely because that would
make its architecture more elegant, or our systems-design job easier.” [10, p.
41]

Open source ERP software projects are also an option, a number of forks of
the original Compiere system (Adempiere, Metasfresh), Odoo, and Dolibarr,
to name a few. For the practical section of this thesis I have chosen to build on
yet another open source system called ERPNext, due to the way customization
is supported in this particular project.

13

2.4 Two paradigms to be merged

The previous sections described two radically different paradigms in busi-
ness software systems. Workflow Management aims at automating any busi-
ness process while simultaneously guiding the process to a more mature and
”better” state using continuous improvements, removing actions that do not
add value, and automating any action ripe for automation. ERP, on the other
hand, represents the rigor of ”best-practices”, practices that may evolve over
time with the arrival of modernized versions of the software and force the
organization to adapt to these changing practices.

Most papers cited in this thesis are from the ’90s and early 2000s. Some
are much older. Yet, very little has happened to bring these two paradigms
closer together. To me the obvious answer to the problem of fitting software
to the business processes would be to combine the two worlds, to create an
ERP system that can be customized by drawing process charts graphically.

Some effort has been made, in the form of ERP software vendors acquir-
ing workflow management software companies, e.g. Baan buying COSA and
incorporating the workflow solution into the ERP system, or Oracle’s Oracle
Workflow which is a separate offering in the e-Business Suite range of products.
[34] Still, ERP systems are considered mainly parameterized and hardcoded
(e.g. [35]).

The possibility to activate ERP systems and their functions from the work-
flow management system does, of course, remain. This has recently been fur-
ther simplified with the emergence of web technologies like REST APIs which
have often been used to bring ERP systems to the modern web platforms.

The term REST (Representational State Transfer) was first used by Robert
Fielding in his PhD dissertation in 2000 [36] and it describes the set of con-
straints a web-based client-server architecture would impose on the communi-
cation between its components. As with all client-server architectures we have
the implication that the user interface and storage functionality should be sepa-
rated. Further, the system should be stateless, in that the server does not keep
track of the state of each client, i.e. the Session state. This in turn implies that
each request to the server must contain all necessary information for the server
to be able to handle the request. The architecture also imposes constraints re-
garding caching, a server can explicitly or implicitly allow or disallow caching,
which may reduce repetitive requests. The key to the REST API lies, however,
in the uniform interface which in short means fetching or manipulating re-
sources (any data, including executable code) by means of a resource identifier
(URN, URL, URI), the resource being transported in a representation format

14

(HTML document, JSON structure, etc.) known to the user agent (e.g. in-
ternet browser), possibly accompanied by representation metadata (data type,
time stamp), resource metadata, and control data (e.g. caching constraints,
request parameters). There is also the constraint that the system should be
hierarchically layered, in the sense that ”each component can not ”see” beyond
the immediate layer with which they are interacting”. [36] As earlier stated,
any client application code may be treated as a resource and fetched by the
user agent on demand. A resource in this sense is no longer a specific file on
the storage system as was the case with the static web pages of the early days
of the World Wide Web, but can be composed from any number of information
sources by the server application. The client, however, receives the data as a
single resource.

The result of adhering to these architectural principles is a system that is
easily scalable (statelessness, API consistency), easily revised (no components
necessarily permanently installed on the client, except for the user agent), and
flexible, while unified resource naming provides the key to mapping resources
by intent as opposed to physical location, thereby enabling different versions
of a resource (HTML, pdf, JSON, XML, etc.) to be requested and delivered,
depending on context and capabilities. Replacing server side hardware, op-
erating systems, or server-side application implementation does not require
changing the interface, leading to more options in regard to future demands.

Taking advantage of REST APIs is a natural evolution in the development
of ERP systems due to increasing diversity of client operating systems, along
with the ubiquitous use of internet browsers on all platforms. Internet browsers
allow for thin (or even not so thin) clients to run on any platform because of the
standardized application runtime environments (Javascript, WebAssembly) in
use. This eliminates developing client software for different systems, or forcing
customers to use one particular operating system. Furthermore, updates to
these client applications can be easily applied simply by changing the resource
on the server. This also brings new opportunities to vendors who are now able
to sell their systems as Software as a Service (SaaS) offerings, bringing ERP
”to the cloud”. [37]

In Section 5 I set out to implement this kind of merger between Workflows
and ERP systems. For the ERP system I have chosen ERPNext. This is not
a result of scrutiny on my part, rather, it was suggested by Comsel System
that ERPNext would fit their needs better than some alternatives. The cus-
tomizations done in cooperation with Comsel System are discussed in sections
5.2.2 and 5.6. This system turned out to be a lucky draw for the thesis - it
is easily customized and anything and everything can be overridden without

15

really touching the code of the ERPNext project. For the Workflow Manage-
ment System, parts of the user interface for creating process definitions will
utilize the Open Source library JointJS for creating graphs. Choosing between
BPMN and Petri nets is not an easy task, BPMN being a well-known stan-
dard in the industry, and Petri nets being formally defined with the possibility
of verification and simulation. My decision to use Petri nets is firstly due to
the formalism. This will enable verification and simulation to be added at a
later stage. BPMN can be converted to Petri nets (e.g. [26], [38], [55]) which
indicates that it would be possible to add BPMN editing capabilities later if
desired. I have also decided to forego the recommendation in the Workflow
Reference Model to use the storage interface defined in the reference model.
Instead I will store the models as graphs in a Graph database, Neo4J. This
is primarily due to my own interest in the graph database technology, but it
should also be faster and simpler to interpret the models in the workflow en-
gine. If needed, e.g. to interact with other visualization software, conversion to
the WFC storage interface format can be programmed separately. The work-
flow engine will be programmed from scratch. To keep the workflow engine as
generic as possible I will also implement a connector application acting as a
proxy between ERPNext and the workflow engine.

2.5 Quality Assurance

One area gaining interest in later years is that of Quality Assurance. In-
creasingly detailed legal requirements in varying fields, from toys to electronics
and beyond, put demands on the safety of goods produced. Ethical and moral
demands from consumers are pressuring companies to declare in what way raw
materials are sourced. ISO quality management standards (ISO 9000 family)
and environmental management standards (ISO 14000 family), and to some
extent LEAN manufacturing and other related disciplines put quality assur-
ance in high regard. This is a broad topic but I will briefly touch upon a few
issues that we will need to address in this thesis. Although not the focus of
the rest of the thesis, the reasoning in this section occasionally refers to prob-
lems specifically encountered in the metalworking industry in order to better
explain the concepts discussed.

16

2.5.1 Traceability and Material Identification

Traceability is the procedure of documenting the history of a specific prod-
uct and its parts. In many industries traceability is mandatory and many
times the demands for traceability are regulatory. To meet demands, a man-
ufacturer must have the ability to answer questions pertaining to a specific
produced item such as where the raw materials originated from, the quality as-
surance procedure, and the specific quality assurance measurements obtained.
Concerning the raw materials or parts incorporated into a product, it must in
some cases be possible to trace them sequentially down to where and how the
minerals were sourced.

Material identification is the ability to prove that a specific item has been
produced using materials specified by blueprints and order details. For exam-
ple, if an item is specified to be made of S355J2 round bar steel it should not be
made of 34CrNiMo6 or vice versa (which would be a worse mistake). Material
identification is a slightly less involved procedure than traceability but is, on
the other hand, always mandatory.

2.5.1.1 Reasons to aspire to traceability and identification
Several reasons for, as well as factors contributing to, the need for traceabil-

ity and identification have been identified [11]. Age may have an impact on
both the configuration of a product and shelf life. Configuration in this context
is a question of what components have been used in building the product, as
specifications may have changed over time. Shelf life is intuitively associated
with food supplies, but also other products may deteriorate over time and may
have to be discarded. Determining the validity of warranty claims will also fall
into this category. The origin of goods, be it produce or products, may impact
the quality of the product. Töyrylä [11] uses the example of BSE, ”mad cow
decease”, which initiated regulations on meat traceability. Similar products
from different manufacturers, and even different lots from the same manufac-
turer, may well differ in quality, which may become obvious over time. Such
differences may be used as basis for future purchase decisions when identified.
Destination may be important in the case of recalls in that some configurations
may have been sold on specific markets and the need for global recalls can be
reduced. Customizations are beneficial to track in order to identify correct
spare parts for a specific item. Errors and variations may occur in manufac-
turing or in the supply chain, leading to irregularities in shipments. Finally,
illegal activity can be traced, examples include supply chain ”mishaps”, illegal
copying of branded goods, and unauthorized distribution.

17

2.5.1.2 Product recalls
If products need to be recalled, in particular for safety reasons, traceabil-

ity is invaluable. With traceability it is possible to track the exact products
affected. E.g. if a specific heat number has been shown to be defective all
products produced from that heat number can be listed by serial number and
traced through sales channels to the current owner of the product. Without
traceability all products that could possibly have been made from that heat
number would have to be recalled and replaced.

In metal work manufacturing, demands for both traceability and identifi-
cation can be met by considering two things. The heat (or smelt) number
must be traced for all raw materials within the factory, along with the cor-
responding approval and identifying documents, and the quality inspection
must produce a document specifying the exact measurements of the item. The
quality assurance procedure and what to measure should be specified by the
customer.

Naturally it follows that each item produced must be permanently marked
with the corresponding heat number and a unique serial number which cor-
responds to a quality assurance document. This marking can be done with
laser imprinting or by stamping. Small parts that are physically impossible to
imprint with these numbers are grouped into lots where each lot is correspond-
ingly documented, and the packaging marked.

In the manufacturing of electronic devices, we face a similar issue. Elec-
tronic devices are assembled from one or multiple printed circuit boards, each
of which is loaded with semiconductors and other components. These com-
ponents can usually be traced by batch numbers or serial numbers. Would a
recall be necessary due to a failing component, items recalled can be limited to
those where the faulty component is of a certain batch, as opposed to recalling
every item sold.

2.5.2 Implications for manufacture

Raw material such as round bar steel is often stamped or painted with
the heat number in a not so permanent way or in the worst scenario there
is a separate tag attached to the material in some way, e.g. hanging off some
strap used to bunch the bars together. Depending on how the material is
stored painted numbers will soon be unreadable due to rust and tags have a
tendency to fall off, at the latest when the bunch is opened. There have to be
procedures in place to permanently mark the material as soon as possible to
eliminate mistakes. Removing a bar from the bunch is the next critical step
as the specific bar may or may not be marked and may also be the only bar

18

that was marked in that bunch. Cutting the bar, whatever the procedure, is
the last critical step when each piece must be marked accordingly. Regarding
lot production, a lot cannot consist of parts made from more than one heat
number if traceability is required, since it would otherwise be impossible to
know which part is made from which smelt. (These are exceptional cases,
e.g. bolts intended for nuclear plants etc. where traceability is mandatory
and definitely specified accordingly in the purchase order. Whether these edge
cases are necessary to include in software intended for the average shop floor
is arguable.)

Serial or lot numbering procedures are more flexible. Since they are depen-
dent on the quality assurance documents it is not mandatory to mark a piece
until the first documented quality assurance measure is performed.

Electronic components in the form of PCBs can, as in the case described in
Section 5.6 be marked with a bar code or some other form of machine-readable
marking.

2.5.3 Implications for software

Each OrderRow should have aggregated Item or Lot objects that link Serial-
Numbers or LotNumbers to corresponding HeatNumbers and documentation
for both as soon as such documents are produced.

In order to assist operators in marking workpieces there should be a map-
ping of HeatNumbers to specific Materials so that the operator is less likely to
mis-mark a workpiece or, more critically, use the wrong material. This also
requires each WorkPiece or Item to be specified as being of a certain Material.

In order to mandate the creation of Identification, Traceability, and Quality
Assurance documents it should be possible to include attributes for documen-
tation demands in Workflow Operations.

Traceability and Identification would imply a need for a reasonably flexible
structure to facilitate a link between the physical raw material, whatever shape,
and the corresponding heat number and documentation. This, in turn, requires
the stock-keeping of raw materials to be managed in the application which,
in turn, makes it feasible to include functionality for raw material purchase
orders and the communication pertaining to this. Purchase orders are usually
handled not in a MES but rather an ERP or some similar system. It would be
reasonable to create an interface, or rather a plug-in module, to communicate
with such software to avoid redundant information processing.

19

3 ERPNext

This chapter introduces the ERPNext ERP system. It can not be explained
easily without a thorough investigation of its underlying (and sometimes inter-
twined) framework Frappe. After a short introduction, the Frappe framework
is described in detail, which will give us an understanding of what parts will
need to be customized to achieve our goal of a truly customizable ERP system.

ERPNext is an Enterprise Resource Planning system from the Indian com-
pany Frappe Technologies Pvt. Ltd. [56] It is built on their own Frappe frame-
work, which is somewhat similar to Django in usage, but more specialized,
and with more features. This is a full-blown ERP system with an abundance
of modules. The core modules include Accounting, Stock (inventory), CRM,
Selling, Buying, Human Resources, Projects, (Customer) Support, Asset, and
Quality. Additionally, there are industry-specific modules including Manufac-
turing, Education, Healthcare, Agriculture, Non-profit, and Hospitality. Finally,
there is an integrated web shop and customer portal.

3.1 Frappe framework

The Frappe framework, and thus ERPNext, is built around the concept of
document types, or DocTypes. Each DocType is mapped to a single table in the
relational database that is at the core of Frappe. A DocType in turn consists
of fields, each mapped to its own column in the table. On the other end, each
DocType corresponds to a single form in the user interface, and each field to a
field in this form. A DocType may also have one or multiple Child DocTypes
which represent one-to-many relations.

Frappe connects to a MariaDB database instance (PostgreSQL connection
is in beta), includes an Object Relational Mapping (ORM) framework and
provides background job queuing using Python RQ and Redis. The ORM
is rather basic and can only handle a single Document i.e. an instance of a
DocType along with its Child DocTypes. Since the system still has to uphold
relations between different DocTypes this leads to custom SQL statements
wherever such relations must be upheld. This format is a blessing and a curse;
for example, there may be many other kinds of relations between document
types in an ERP system, and thus between the tables in the database, but these
remain the responsibility of the programmer. The database system is not used
for much more than raw storage. No foreign keys, nor stored procedures, are

20

used. All relations are handled by joins in the SQL code embedded in the
Python source code. From a data integrity point of view this feels somewhat
dangerous, and it also takes its toll on performance since relations are by
definition what relational databases are built and optimized for.

Each DocType has its designated Python Module with application code
(both server-side Python code and client-side Javascript) for the DocType as
well as a JSON structure that defines the fields of the DocType. These JSON
files are used to initialize the database tables, and to populate user interface
forms and lists with the proper fields. Server-side logic for the DocType is
called a Controller in Frappe terminology. A Controller is a normal Python
class that must extend the Document class.

The main user interface of Frappe is called Desk. Up to and including
v. 11 of Frappe the desk resembles the user interface of a smartphone, with
numerous clickable icons depicting different functions. Since v. 12 this has
been replaced with a hierarchical card layout, rectangular boxes with drop-
down menus and/or navigation links. The difference is illustrated in Figures 6
and 7.

Figure 6: ERPNext v. 11 UI

21

Figure 7: ERPNext v. 12 UI

Security is handled with user accounts and role-based permissions. It is
possible to assign multiple roles to a user. Permissions for each role can be set
separately on each DocType and even for particular fields in a DocType. As an
administrator can freely define new roles, assign roles to any user, and restrict
documents and fields to be edited only by specific roles, this makes for a very
flexible, if somewhat cumbersome, system. Icons, or cards in later versions,
can be added or removed depending on user or role.

Frappe supports three different ways of creating reports; the Report Builder,
Query Reports, and Script Reports. Listed in order of difficulty the Report
Builder is a GUI-based interface creating reports for single DocTypes. A Query
Report is based on an SQL query where special syntax is used for column
aliases to configure the layout of the report. Script reports are written in
Python and should be developed as part of an application rather than be user
definable. This approach allows for very flexible reporting, from user defined
one-off lists of inventory to utilizing machine learning as part of assembling
reports. Print layouts can be specified with Jinja [57] templates, HTML, CSS,
Frappe’s own JS Scripting (based on John Resig’s JavaScript micro templating
[58]), or any combination of these. Based on these templates reports are then
converted to PDF format that should be readily printable on any modern
system.

Frappe includes workflows as a fundamental concept. It is possible to create
rules that in effect override the programmed behavior of the application. One
can e.g. modify the handling of a leave application (sick leave, vacation etc.) so

22

that anyone can create an application, but it would then have to be approved
by a manager, or a consecutive row of managers, before it can be submitted.

Unfortunately, each workflow pertains solely to a single document type, and
consequently to all documents of that type. This is in stark contrast to the
concept of process-based workflows outlined in Section 2.2. Such a workflow
would have to span multiple document types, the submission of each perhaps
triggering a new document to be created. We would also need to allow for
variants of each workflow, depending on different criteria, such as product-
specific workflows or even customer-specific workflows. Nothing like that is in
any way possible with the Frappe concept of workflow. Whenever I refer to
workflow in this text, I refer to the broader workflow management, business
process kind of workflow, not to the Frappe workflow.

The Customer Portal module already included in Frappe allows for custom
static pages to be written in Markdown or HTML, and dynamic content created
using Python programming and Jinja templates. Customizing the portal is as
easy as arranging the content under the /www folder in any Frappe App.

At the core of the Frappe framework is the Bench architecture. Figure 8
gives a conceptual overview of the Bench.

Figure 8: Frappe Bench [59]

The architecture allows for running multiple instances of Frappe applica-
tions (sites) on the same physical server hardware, each with its own database
schema. Werkzeug refers to the Python web server that is part of Frappe.

23

Bench also refers to a command line utility that is used for installing, config-
uring, and maintaining the Frappe environment. Installing Frappe creates the
directory structure shown in Figure 9.

Figure 9: Bench Directory Structure [59]

Frappe App is the concept that connects custom built applications to the
Frappe framework. An App can define custom DocTypes, code to handle that
DocType, and can also be used to override just about any behavior defined in
other Apps or Frappe itself. Apps are initially created by running a Bench-
command that sets up a skeleton app in the form of a local Git [60] repository,
in the /apps directory inside the Bench directory structure (Figure 9). For
more on Git see Section 4.2.

The Frappe app skeleton includes the required subdirectories and a few
special files. Frappe itself is an app, and so is ERPNext. When an app has
been created, and has been uploaded to a remote Git repository server as its
own project, it can be installed locally on any system running Frappe, using a
Bench command specifying the remote repository as source repository. Branch
or tag can also be specified. Frappe Bench depends on Git for downloading
new apps and for keeping the installed apps up to date. It is also possible to
configure the system to automatically check if updates are available, and in
that case automatically download and install them.

When apps are installed (or created) with the Bench utility a reference is
created in the file apps.txt in the sites directory (see Figure 9). The order

24

is important as apps can only override the functionality in apps that are ref-
erenced previously in the file. The app must also be installed in a site (see
Figure 8). Overriding functionality is done in several steps. Naturally the
new functionality must be programmed. Overrides must also be referenced in
the file hooks.py. This file has several sections where ”hooks”, i.e. intercep-
tion points, can be placed for different purposes. For example, DocTypes have
events that are triggered in response to user actions, e.g. on_create, on_update,
etc. As an event is triggered, the corresponding Python function is called in
response to the event. Using hooks one can make the event mechanism call
another function, specified in the hook. Hooks can be defined for all DocTypes
using the ’*’ wildcard, or for a specific event targeting a specific DocType.
Hooks are not limited to events, however, almost everything in the system can
be overridden using hooks. This is, of course, the key to the customizations
we will make in Section 5.

Apps may also specify what icons (or cards) are available in Desk.

3.2 ERPNext application

As stated earlier, ERPNext consists of multiple modules. All the modules
are always available to the system. When first accessing ERPNext after a
new site has been created, the system requires the administrator to specify
what kind of business is conducted by the organization. The business domains
offered are manufacturing, education, health care, agriculture, nonprofit, hos-
pitality, retail, and service. Multiple domains can be chosen for a single organi-
zation. Depending on the chosen domains, the Desk is populated with different
cards or clickable icons. These links give access to a wide range of lists and
forms for different DocTypes deemed relevant to each business domain.

As with any full-blown system, Frappe (and ERPNext) has its own idea of
how things should be done. In other words, the workflow is largely pre-defined.
In practice these restrictions, if not automated far beyond the imagination of
the system’s creators, lead to an overwhelming increase in the work needed in
any organization.

Assume, for example, that your company produces a product that consists
of a number of parts. Assume also that you need to track the origin of these
parts using a serial number and a batch number. In this scenario ERPNext
demands that these tracked numbers are entered when the shipment is received,
i.e. entered into the system. If left out at this point, they can no longer be
added at a later date. In practice this is a ludicrous demand for what if

25

the shipment consists of thousands of items? You would bind up some poor
human entering these serial numbers for weeks, introducing as many failure
possibilities as the number of items. Meanwhile the serial numbers may not
be needed until a product is built out of the parts. This specific example will
be addressed in Section 5.

3.3 Customizing ERP Systems

Brehm et al. [61] makes a distinction between nine different types of cus-
tomization that can be applied to an ERP system, as listed in Table 5. Any
combination of these may be used to accomplish the desired functionality. In
the same paper they develop a topology of choices for modifying ERP systems,
assessing the implications of each modification type on the system. For exam-
ple, setting parameters is a less involved operation than modifying source code,
which in turn implies less risk to the implementation project as a whole. By
comparing different combinational options, it would then be possible to assess
the overall impact on the system.

Some customization is always needed to implement an ERP system, even
if only considering organizational information such as users, roles, and what
modules have been implemented. Technically speaking these are configura-
tions, while some vendors choose to view them as customizations.

Whether based on scientific research like Brehm and similar publications,
or concrete business experience, ERP vendors are generally reluctant when it
comes to customization, other than the setting of parameters. Even this may
already impose problems, as a parameter may have an unintended impact on
other, otherwise unrelated, modules. Definitions of the following concepts can
be found in table 5. Bolt-ons come in different flavors. They can be supplied
by the ERP vendor as a way to introduce extra functionality not available in
the core package. They may also have been developed by a partner to the ERP
vendor utilizing privileged knowledge about the ERP system. These bolt-ons
are generally considered safer to implement than a third-party bolt-on from a
non-partner. Screen masks and custom reporting tools are generally built in
in modern ERP systems. User Exits are predefined places in the ERP code
where the code can call an external program if properly configured. This cre-
ates the opportunity to include custom code to be executed at these predefined
locations. Since the ERP vendor is in control of where in the process this code
can be run, it is a generally accepted way of customizing ERP code. Naturally
this requires extensive expertise in both business aspects and programming.

26

More specialized customizations require ERP programming, e.g. development
of custom modules. Interface programming is used to communicate with other
non-ERP systems, e.g. MES applications, external CRM systems, etc. What is
generally considered bad practice and mostly prohibited by vendors, is chang-
ing the system source code itself. Normally access to source code is not pro-
vided, making this kind of customization impossible.

3.4 Customizing ERPNext

As ERPNext is an open source system, anything and everything can be
customized freely. What we need to consider is how to incorporate new fea-
tures with as little effort as possible. Blindly changing architecture or primary
concepts would lead to overly complex changes and most likely a defect system
that furthermore would not be able to fully take advantage of future improve-
ments to ERPNext itself. The fact that the Frappe Bench environment is
dependent on Git [60] (see Section 4.2) also sets limitations on the way the
application can be customized. Changing code directly on a running server
breaks automatic updates. As the update pulls the remote Git repository and
recognizes local changes, the update often fails with merge conflicts. This effec-
tively closes any possibility of changing code in the existing codebase without
having a pull request accepted in the official project, or forking the project, the
latter of which would lead to full responsibility for maintaining the application
yourself.

Enter Frappe applications [62], Section 3.1. An App in the Frappe frame-
work is a separate Git repository containing any extension or change that you
would want to make to the system. A custom application can change the
existing system by defining hooks in the file hooks.py. Since v. 11 released
in late 2018, just about any function that can be called from the front-end
application can be replaced or refined in this manner. Apps can also be used
to introduce new document types and to save customizations made through
the user interface using fixtures (see Section 5).

Much of the system can be customized through the normal user interface.
For example, forms, print layouts, workflows (document specific), and even
custom fields in a document type can easily be customized to a great extent by a
user without any programming knowledge. With the slightest of programming
knowledge and a bit of Python (including Jinja Templates), JavaScript, and
HTML even more radical customizations can be made directly through the UI.
These changes, however, are normally just saved in the database, or saved to

27

disk in the ERPNext source code directory. This will clutter the codebase of
ERPNext itself and may easily lead to problems and merge conflicts during
future updates. For a containerized deployment this is definitely the wrong
way to go. Whenever the container goes down and is replaced with a fresh one,
all changes not stored in the database would be lost. Defining fixture hooks
(see Section 5) in a custom app mitigates this problem and moves the changes
into a separate Git repository.

3.4.1 Process Workflows

My own main focus of this thesis is, as earlier stated, how a company’s
processes can be supported by an ERP or a similar system. ERPNext is, in
more than one way, a good example to make my point. Out of the box it may
seem to be very customizable; however, with more experience of the system
one realizes that it is very much fixed in the developers’ assumptions about
how a business works. Document types are small islands with little or no
connection to other document types. Where connections exist, they are held
together by Python functions within those documents. One example is the
connection between Item and Work Order Item described in Section 5.6.1.

3.4.2 Communication to other critical applications in the organiza-
tion

Frappe exposes an Application Programming Interface (API), or rather two
different APIs, to any client that has the ability to connect to the server. The
first is a REST API (see Section 2.4), which can return raw data for any
DocType, or resource in the system. The second exposes functions that can
return and manipulate any data in the system. The function API is restricted
to functions decorated with the Frappe @whitelisted function decorator6 in the
Python code. There is an abundance of these whitelisted functions and in
practice any function can be called by introducing a whitelisted proxy function
in a custom application.

6A decorator in Python is a shorthand for extending the functionality of a function.
A decorator function is a function that takes a pointer to another function as parameter
and thus ”wraps itself” around the passed function. This construct can be used e.g. to
conditionally run code. Extending a function with the functionality of the decorator function
is simply a matter of prepending a function with @decorator_function_name. In Frappe
only whitelisted, i.e. decorated with @whitelisted, functions can run if called from an
external application via the function API.

28

4 Tools and Technologies used

Current software systems, both cloud based services and on premise systems,
often require a large amount of tools and technologies before any, what an old
time programmer would refer to as ”real work” i.e. programming, can begin.
This endeavor is no exception. This chapter describes the tooling used in the
practical section of this thesis.

4.1 Docker

Virtualization, isolating operating system and user space from the actual
computer hardware, has been around since the ’60s. [39] Into the early 21st
century this was achieved mainly by running complete guest operating systems
in virtual machines. Containers, by contrast, are virtualized at the operating
system level and the underlying technologies started appearing around 2000.
Containers are lightweight in that all guests share the same operating system
or run directly on the host operating system. LXC was the first container
manager to appear on Linux in 2008. Popularity exploded, however, after
Docker, built on top of LXC, launched in 2013. Each container gets its own
kernel-level namespace, e.g. user names are separated from the host’s user
names. The file system is also separated in a similar manner using a layered
filesystem called AuFS. AuFS gives the container its own filesystem but al-
lows, along with other related technologies, administrators to create shared
directories when starting a container, in essence a pointer to a directory or
file on the host filesystem. This technique allows e.g. databases to retain their
data between container startups. Apart from providing a platform to run con-
tainers, Docker also includes tools for creating images, the ”blueprint” if you
will, for a running container, storing these images in repositories from where
they are downloaded upon starting a container that is not already available in
the system, and finally tools for managing running containers. There is also
a tool called docker-compose used to administer the startup and shutdown of
any number of related containers. In practice Docker allows for pre-installing
applications to be running on any system capable of running Docker contain-
ers. Presently this includes any unix-like operating system and even Windows
although some limitations in features may exist. It is thus possible to assemble
and run a large number of different ”servers” or services on a single system,
without contaminating the physical server with all the libraries and services a

29

certain product may require. Further introducing an orchestrator like Kuber-
netes into the mix allows for distributing these ”servers” over multiple physical
servers. Since Kubernetes is only an orchestrating tool to manage containers
and in practice only replaces docker-compose, I will not discuss it in further
detail, however, some references may exist in Section 5.

4.2 Git

Git is a very popular distributed version control system. It was created by
Linus Torvalds in 2005 after a fallout between the creator of BitKeeper, the
versioning system earlier used by the Linux project, and people in the Linux
project over licensing issues. [63] Git is intended for tracking the develop-
ment history of source code, specifically the Linux project. It is distributed,
in the sense that every developer gets his own copy of the complete history.
Conceptually, the Git repository can be thought of as a tree structure where
branches can be created, separating the current file set from the trunk until
they are again merged with another branch, or the trunk. In this manner the
codebase may evolve separately on each branch until merged to the trunk. In
general, it is customary for each developer to also have his own remote repos-
itory, while the master repository for a project is restricted and can only be
updated by an administrator. Updates to the master repository are then han-
dled via so called pull requests whereby a developer notifies the administrator
that proposed changes can be pulled from his/her remote, public (i.e. at least
the administrator has access), repository. Pull requests can then be reviewed
and discussed before being merged with the master repository. Releases or
milestones, points in time on the specific branch, can be tagged using freetext.
Using branches and tags it is easy to obtain a snapshot of the project at a spe-
cific point in time. The Frappe Bench utility uses Git to handle installations
and updates.

4.3 Storage

Storing Workflow definitions (Wfd) is an interesting topic that seems to
be somewhat overlooked. All papers I have come in contact with during my
research for this thesis only mention storage in passing, generally referring to
persistent storage.

30

The Workflow Reference Model [3] introduces its XPDL data format, de-
tailed in the XPDL specification, [46] to be stored as an XML structure. XML
implies a text file written to disk, or possibly a chunk of XML data in a re-
lational database or key-value store. There are also native XML databases
available. In my opinion XML is a bad choice for storing Workflow definitions.
Admittedly my opinion may partly be a question of bias due to the countless
hours I have spent searching XML documents for debugging purposes during
my life. XML is not human readable in practice, despite efforts to express the
contrary. [12]. The fundamental problem, however, is that arbitrary graph
data is simply a bad fit for XML. XML is conceptually a hierarchical tree
structure, with one root node and child nodes. Thus, an XPDL file consists
of the Package root node, with child nodes PackageHeader, TypeDeclarations,
Participants, Applications, DataFields, and WorkflowProcesses. The Work-
flowProcesses node in turn contains one or multiple WorkflowProcess nodes
which in turn have child nodes DataFields, Activities, Transitions, etc. This is
conceptually something completely different than having a start node with a
transition to an activity. The relations between an Activity node and the tran-
sitions that connect it to other Activities are buried deep in the structure of
the document, which leads to relatively complex and error prone parsing algo-
rithms when constructing a visual interpretation of the data and vice versa, or
when constructing a memory representation suitable for traversing the graph.
Even more problematic are the needs of a workflow engine. Simply stated,
to move a case from one state to another one would only need to know the
current state, what transition is to be fired, and the next state for the partic-
ular workflow. To accomplish this, we would have to reconstruct the graph
in-memory into a more suitable representation, e.g. an adjacency matrix, or
list, and search the graph using an appropriate algorithm. To this concern
there are no easy solutions, parsing the document in one way or another is
necessary to reconstruct the graph once stored. Native XML databases may
ease the burden of indexing and searching for workflows and their components
but offer no conversion of the data.

Relational databases (RDBMS) have traditionally been used as the stan-
dard way of storing business data. Storing graphs in a RDBMS is in my
experience somewhat cumbersome. The same disconnection of the different
parts of the graph occurs here, as well as in the case of the hierarchical tree
structure. Workflows would typically be stored in one table, actions in another,
transitions in yet a third table, and so on. Foreign keys would be used to bind
them together. Logically and conceptually the work needed to reconstruct the
data is equivalent to that of using a hierarchical tree structure, although it

31

might be easier to retrieve e.g. all transitions to and from a specific activity. It
would perchance also be possible to introduce many-to-many relationships us-
ing join tables, something inherently impossible in hierarchical tree structures.
The problem of easy retrieval and conversion into a graph structure is still as
complicated as with the XML document.

A relatively new concept is that of the Graph Database (GDB). Appearing
first in the early ’90s building on the then thirty-year old Network Database
model, they almost disappeared towards the end of the decade [40] but have
again gained in popularity. The applications are endless, as much of the world
we live in can be represented by graphs. From computer networks to social
structures to biology, relations between nodes can easily be detected in real life.
The size of these real-world networks can be massive, take as an example the
social network of big social media company such as Facebook. Our workflow
graphs are orders of magnitude smaller but still lend themselves perfectly to
be stored in a graph database. The opportunities for a simple system are to
me obvious; by storing the graphs truly as graphs we can offset the work of
converting between formats, and instead query the database for relevant parts
of a workflow, cf. the previously discussed transition problem. If needed, e.g. to
enable third party visual tools, the stored graphs can be converted to XPDL
on the fly.

One very popular Graph Database is Neo4J, ranking first at the moment in
the DB-Engines ranking (see Table 4). [64] Neo4J Community Edition is an
open source project owned and maintained by Neo4J, Inc. Additionally, there
is an Enterprise edition with paid licensing and a number of interesting speed,
stability, and security features not available in the Community edition. For
the initial development research, the Community edition should suffice. Neo4J
stores everything as nodes, and relations between these nodes. Nodes and
relations can be classified using labels, and hold data as properties. A simple
example depicting a minimal computer network can be seen in Figure 10.

32

Figure 10: Minimal computer network graph saved in Neo4J

Neo4J has its own query language called Cypher. The language structure
is in many respects similar to SQL, but since the underlying concepts are
so completely different, in practice, the resemblance is not obvious. Cypher
introduces visually descriptive elements that aid in the construction of queries.
The syntax to describe a node visualizes the traditional round shape of a node
by a parenthesis, and relationships resemble arrows. To create the network
depicted in Figure 10 the following Cypher statement could be used:

Listing 1 Example of Cypher statement to create a simple computer network
graph

CREATE (r:Router {ip:"192.168.1.1"}),
2 (c1:Computer {ip:"192.168.1.10"}),
(c2:Computer {ip: "192.168.1.11"}),

4 (s:Switch {ip:"192.168.1.5"}),
(i:Internet),

6 (r)-[:Connection]->(i),
(s)-[:Connection]->(r),

8 (c1)-[:Connection]->(s),
(c2)-[:Connection]->(s)

10 return *

In the example I have created the five nodes labeled ”Router”, ”Computer”,
”Switch”, and ”Internet”. Each node has been given a property ”ip”, each with
a unique ip-address value. Relations labeled ”Connection” have been created
between nodes using the variables denoted to each node in the earlier part of

33

the statement. Thus, e.g. the variable ”s” holds the node created on line 4,
a ”Switch” with ”ip” ”192.168.1.5”. Lastly, the complete graph is returned,
e.g. to visualize the graph, as in Figure 10.

4.4 Workflow Editor

Since the user interface of ERPNext is based on web technologies using
Javascript, it only makes sense to provide the user with a similar interface for
the workflow editor. As stated in Section 2.4 the editor will, initially and for
the purpose of this thesis, enable creating Petri nets visually and storing them
in the workflow definition database. As not to involve myself too much with
the graphical parts of the system, I opted to make use of open source software
as the basis for this part. The library of choice is JointJS, which already has
building blocks for many of the shapes needed. The application itself is built
using the React framework developed by Facebook inc.

4.5 Workflow Engine

The Workflow Engine component will be written in Go. My first motivation
is that I want a compiled native language. Primarily this is a question of per-
formance. Every server query that is part of a workflow will engage the services
of this component. Therefore, it is of great importance that the services be fast
and impose as little overhead as possible. The second factor is the availability
of drivers for the Neo4J database. As of this writing there are drivers for Java,
Python, Javascript, .NET, and Go. Of these, only .NET (C#) and Go are true
compiled languages. Java runs on a virtual machine and Javascript is originally
an interpreted language, although virtual machines running Javascript have re-
cently been developed. Since the application will be run in a Linux Docker
container (see secs. 4.1 and 5.7) and the Neo4J .NET driver is not listed as
compatible with .NET Core (the Open Source version of .NET) and thus is
likely to be limited to the Windows environment, Go appears to be the only
option. As it happens, Go has excellent built-in features for communicating
over HTTP, which will be the primary communications protocol.

34

4.6 ERPNext Connector for the Workflow Engine

In order to make the workflow engine as generic as possible it will be nec-
essary to implement a connecting element of sorts, to translate between the
interface of the workflow engine and the ERP system. This connector, or proxy
if you will, is created as a Frappe application, intercepting any calls from a
client to ERPNext that are part of a defined workflow. It is my intention to
make this as transparent as possible and ignore functions that are not part of
any workflow, in order to create as little impact on the application’s perfor-
mance as possible. The language of choice is Python, as this is the ”native”
language of Frappe. This part will be open sourced as it is in direct connection,
and to some extent may be considered ”linked” with ERPNext and thus bound
to the license (GNU GPL) of ERPNext.

4.7 Custom Applications

To enable the workflow described in Section 5.2.1 some custom algorithms
have to be implemented. These include logic to handle the removal of items
from the ”free-to-order” warehouse proposed and add them to the ”ordered”
warehouse. I have chosen to separate these from the ERPNext connector, as
these are specific to the workflows they contribute to. This app is also created
as a Frappe custom application.

Additionally, a custom application was made to handle the synchronization
between Item and WorkOrderItem described in Section 5.6.1, as well as any
custom fixtures needed.

35

5 A Customized ERP System

5.1 Example Organization

Our fictive organization deals in electronics, both as a manufacturer and as
a reseller. The core business is designing and manufacturing electronics under
the company brand. Manufactured products are assembled from components
which are mostly purchased from subcontractors, even if the part itself may be
designed in-house. Some components may be readily available standard units
from large suppliers. Shelf life is rarely an issue, but traceability is required
to avoid mass failure due to components of a certain batch failing over time.
In addition to the manufactured products customers may require peripherals
and a variety of mounting brackets that may be resold with or without the
company’s own branding.

The organization has chosen ERPNext as their preferred ERP system. They
have found it to be rich in features and flexible enough for their needs. There
are, however, a few things they would like to change. Entering received compo-
nents into the warehouse is cumbersome. In fact, the way the software works
does not fit their process at all. Since traceability is an important aspect,
components entered should have serial and possibly batch numbers attached.
Unfortunately, for this to happen, each serial number must be entered indi-
vidually, and since a given shipment may consist of thousands of items this
is a practically impossible task. ERPNext provides automatic serial number-
ing, but again these serial numbers are built from patterns. Serial numbers
from different suppliers do not adhere to the same pattern for interchangeable
products and, once a serial number is entered, it is not possible to change it.
Another problem has been identified regarding sales orders. When entering a
sales order, there is no easy way to ensure that sold products are available for
delivery. There is a small colored dot on the side of the item code on the or-
der form, green if items are available in stock, yellow if available but reserved
for other orders, and red if not available in any warehouse. Restocking the
warehouse is not the responsibility of the sales personnel but the warehouse
manager. Unfortunately, the stock level is not readily visible to the warehouse
manager until wares have been dispatched, not when an order is entered
into the system. This has led to situations where orders have been delayed
because replenishing orders were not issued on time.

To remedy these shortcomings a workflow engine based on a number of
interesting technologies and theories was implemented and the following chap-

36

ters will describe it in detail, with emphasis on the latter problem regarding
re-stocking to avoid missed delivery dates.

5.2 Custom Use Cases

5.2.1 Sales Order

5.2.1.1 Problem statement
In ERPNext when entering a sales order, one would manually have to see

it through to the next step, whatever that is. A possible user scenario would
be the following:

1. User enters sales order
2. User checks the available warehouses to see if each item is in stock. Note

that the stock level is not readily visible to the user at the time of order
entry.

3. If an item is not in stock the user must issue a replenishing order, either
a purchase order or, for a manufactured item, a work order. The user
must know how to deal with each entry (should a purchase order be
issued, or a work order?)

4. Keep track of unfinished orders
5. Keep track of incoming deliveries
6. When stock has been replenished, fulfill the sales order by creating a

delivery note.

Figure 11: Workflow for the fulfillment of a sales order

Unfortunately, this leaves a lot of opportunities for failed deliveries. There is
no reminder to check the stock level, in fact, this task may easily be postponed
until the date of delivery comes around, at which point the user will try to
create a delivery note which then fails due to lack of items to send. To see
what action to take for replenishing, the Item data must be brought on-screen

37

from the item list, and the view scrolled far down to see if the check box ”is
purchase item” is checked. If these actions succeed the list of open orders
must constantly be scanned to check if purchase or work orders perchance
have been fulfilled so that the sales order can be delivered. Admittedly, this
is an attempt at creating the worst imaginable workflow possible for this task.
There are simpler ways of achieving the same results in ERPNext. However,
ERPNext allows you to perform this task in this complicated manner without
questioning.

The workflow promoted in ERPNext documentation [65] is to immediately
create a work order for the sales order upon entry. This is again a manual
decision to make, and additionally, a decision one must remember to make.
This design is based on the assumption that the item in question is exclusively
made to order, and never kept in stock. We should also take into account the
possibility of an item that is kept in stock, but in small quantities that would
cover at most a few orders, or that items left over from a previously cancelled
order may exist. Both of these are in my experience very common scenarios.
Keeping stock value low is one of the key principles of LEAN manufacturing.

ERPNext has an option to automatically issue a re-order on an Item [66],
however, this only creates a Material Request document and notifies the person
in charge of purchase orders. He would then have to fulfill the request by
creating a Work Order or Purchase Order as appropriate. Furthermore, the
automatic reordering function is based on the reorder point philosophy, i.e. a
certain stock level is defined for the item, and when this level is reached, a
reorder process will be initiated.

To complicate the matter even more, items are not moved from the ware-
house when a sales order has been placed, rather they are removed on delivery.
In the case of raw materials, the stock ledger is updated when issuing a ma-
terial request as part of a Work Order. This means popular items may be
ordered far beyond capacity, as there is no way to know what the real unsold
stock level is at any point. At the same time, the automatic re-ordering is
rendered useless as any stock replenish is likely to occur too late anyway.

The above criticism would be a showstopper, even a deal breaker, in case I
would be evaluating this software for corporate use. For this thesis, however, it
exemplifies how bad software design can be made reasonably good with a few
customizations and workflow management. The reason workflow management
is mandatory is the fact that the software allows this kind of, I would go so far
as to call it, malpractice. We need to stop that and demand the user follows
a reasonable workflow.

38

5.2.1.2 Proposed solution
Using the Workflow editor we should be able to create the following work-

flow:

1. User enters a sales order.
2. The system automatically checks availability of each item in the sales

order and automatically creates Purchase Orders or Work Orders as
appropriate. The user is immediately informed that these new orders are
available for confirmation. For any item that can be partly or completely
delivered immediately, the system moves the appropriate amount from
the free-to-order warehouse to an ordered warehouse.

3. As such an automatic Work Order is completed, or the corresponding
Purchase Order has been entered as received, the user is automatically
notified that the Sales Order is ready for delivery.

4. User initiates delivery workflow.

In practice we have the same workflow as in Figure 11 but now we have
automated the mind-intensive parts and the user is free to concentrate on work
at hand. We eliminate the need for checking the stock level, the need to know
what type of document to create in case the available stock is lacking, and
finally the need to keep track of pending work orders and deliveries. We have
also eliminated the need to create the orders, even though, as stated, they
must still be confirmed. Additionally, we have eliminated the possibility of
creating work or purchase orders for items already available for delivery. As
an extra bonus we have eliminated the ”double spending” possible with the
manual workflow.

Some of these functions are readily available in ERPNext and we only need
to call the right functions in the right order. Other functions must be custom
coded.

A conceptual view of the components needed is shown in Figure 12.

39

Figure 12: Deployment diagram

The workflow depicted in Figure 11 is rather naïve, e.g. checking the avail-
ability must be done for each item in the order, and not, as inferred from the
diagram, simply for the order as a whole. As a consequence, even for this
simple workflow we must resort to high-level Petri nets, introducing sub-nets
and semantics for multiple tasks. This construct is shown in Figures 13 and
14. A description of the symbols used can be found in the appendix Figure 30.

Figure 13: High level Petri net of Sales Order workflow

40

Figure 14: Ensure stock level sub-workflow

5.2.2 Connecting existing platforms to ERPNext

5.2.2.1 Problem statement
An electronic device is assembled from multiple pre-manufactured electronic

components in a made-to-order fashion. Additionally, it is to be configured
with firmware and tested. Some specifics are determined by operating condi-
tions and customer preference, both firmware version and hardware compo-
nents to be chosen are determined by these specifics. Each hardware com-
ponent is marked with serial and batch numbers and is subject to tracking.
Already in use is a software system that is used by the worker doing the as-
sembly. This software is used to scan each component and save the specifics
of an assembled device, simultaneously giving the device a serial number and
attaching the device to a monitoring system.

Adding ERP to the mix allows the worker to find the correct parts to assem-
ble for a specific sales order while maintaining the stock ledger automatically.

5.2.2.2 Proposed solution
The existing application is modified to be aware of work orders. In essence

this includes fetching a list of work orders from the ERP system, letting the
user choose a work order, and for each component notify the ERP system
that a device has been successfully assembled. For each of these three actions
multiple requests have to be made to the ERP application. To accomplish this,
with as little impact as possible on the manufacturing application, a separate
library was developed. This library is discussed in Section 5.6.

41

5.3 Workflow Editor

The workflow editor was developed using the React Javascript framework de-
veloped by Facebook Inc. Additionally it uses the separate Redux and Thunks
frameworks to represent the application’s state. The concept of the Redux
framework is visualized in Figure 15. When a user interacts with the user in-
terface the changes are calculated using thunks (hard to visualize as the term
stems from the non-standard past participle of the verb think) and filtered
through a reducer that interacts with and saves the new state to a central
store. This store is by principle immutable, an object in the store should not
be changed but replaced whenever the reducer changes the state. The user
interface is then re-rendered using the new state from the store. This enables
a more rigorous state-handling when there are many components involved in
a React app, each component would otherwise need to keep track of its own
state, a situation that usually results in nothing working and a debugging
nightmare.

Figure 15: Redux

Due to the design of JointJS, an immutable store for the main UI state in
this application, namely the graph itself, is not feasible. The library handles
manipulation of the graph within its inner workings and adhering to the im-
mutability principle for the graph would mean rewriting most of the library.
Luckily, the immutability principle is not enforced outside of the reducer but is

42

merely conceptual. This allows us to maintain references to the graph both in
the store and in the JointJS framework. The conceptual model of the JointJS
framework is depicted in Figure 16.

Figure 16: JointJS framework, conceptual class diagram

It consists of the Paper representing the drawing area and the Graph with
its collection of Elements and Links. An element is an object, or in our case a
node in the graph, and links represent the connections between the elements.
There are a number of existing element types pre-configured in the framework
and these are easily subclassed to extend the functionality. Figure 17 visualizes
part of the implementation in this regard. The Element type present in the
JointJS library was subclassed with implementation for each of the node types
necessary to create process definitions. Figure 17 omits a layer of classes
between Element and the classes used for the editor. As JointJS implements a
set of classes designed for visualizing Petri nets, including the ability to display
tokens, I found it natural to extend on these classes, would implementing
simulation ever be of interest.

43

Figure 17: Workflow Editor, partial conceptual class diagram

Each subclass can define its own appearance and other features. The Wf-
Properties property is used as a generic way to store the properties that will
eventually be persisted in the graph database.

The main window of the workflow editor consists of a top toolbar with
buttons for opening and saving a workflow graph, adding a new graph, and a
button for calling up the drawing toolbar (Figure 18). By clicking on one of
the tools this becomes the selected tool.

44

Figure 18: Workflow editor toolbar

Clicking on the paper after selecting a tool renders the corresponding node
element on the screen and adds it to the graph. Links, or in our case arcs, are
added by dragging from one node to another. Selecting a node brings up a
context-aware sidebar that allows the user to fill in properties for the selected
node (Figure 19). At the time of capturing this screen the exact properties for
each node type were yet to be finally decided on, indicated by the somewhat
confusing set of properties in the screenshot below (Figure 19).

Figure 19: Workflow editor, screenshot

As is, this is a valuable tool for creating the workflow graphs needed for

45

this project but should not be considered a production-ready application by
any standards. Features include creating, editing, loading, and storing process
definitions. Storing and loading are handled through REST API calls to the
workflow engine, which handles the actual saving and retrieving to and from
the Neo4J database respectively. Future improvements would include user
experience features, better layout functionality, better error handling, and the
ability to define the specific properties for each node type without having to
edit the source code.

5.4 Workflow Engine

In this chapter I will discuss the design of the workflow engine and the
connector application that ties it to ERPNext. There will also be a brief
mention of the custom code needed to implement parts of the automation of
our example workflow.

The workflow engine should be a generic component designed to handle
workflows. This means that no functionality specific to ERPNext should be
placed in the workflow engine. Its sole purpose is to interpret workflows and
call the appropriate functions defined in the workflow depending on the state
of the document at hand, and the action to take place. This sets the target
for our design goals regarding the workflow definitions themselves.

Workflow Definitions will be represented as Petri nets. Petri nets are, as
explained more in detail in Section 2.2, graphs consisting of Places (P), Transi-
tions(T), and the flow relations (F) between places and transitions. Represent-
ing workflow state can, according to Haesen et al. [67] be accomplished in one
of two ways. Either the state is present in the workflow engine, in which case
a ”working copy”, we call this a process instance, of the workflow must be cre-
ated for each case going through the system, giving us a state-aware workflow
engine. Otherwise state information must be present in input data, e.g. on the
document instances themselves, making the workflow engine state-unaware.

The state-unaware approach requires no process instances. Some changes
to the targeted ERP system are likely to be needed as each document must
hold the state in a representation the workflow engine can unambiguously in-
terpret. Pure state-unaware engines require more alertness in designing proper
algorithms for searching and for managing workflows that include several doc-
uments. It is also possible that some state logic must be handled outside of
the workflow engine. In other words, this is a more complicated approach
involving changes to ERPNext itself.

46

In this discussion it is wise to take into account how workflows are created
and edited. In practice, a workflow definition could change at any point in
time as a user is free to bring up the workflow in the workflow editor, make
changes, and store the new workflow. The question then becomes whether
cases already in progress should adhere to the new workflow, or remain bound
to the earlier version. Since workflow editing surely may change vital aspects
of preconditions pertaining to workflow routing, i.e. a new requirement may
be present for an action to take place, where no such requirement previously
existed, I find it imperative that a case that is already initiated would have to
obey the rules of the workflow version that were in place when the case was
initiated. This implies versioning of the workflows or that process instances
must exist. Workflow versioning might seem a tempting proposition, however,
if the workflow engine is state-unaware, this requires algorithms to choose the
right workflow version pertaining to a specific workflow action message received
by the workflow engine. In a state aware system this can be avoided by keeping
the process instances intact despite changes to the master workflow.

State-aware engines may be stateful or stateless. A stateful engine keeps
track of each process instance and the state is saved in the process instance.
A stateless engine derives the state from business data, potentially interacting
with the managed system. This would require extensive knowledge of the
managed system within the process definitions. As I have chosen to represent
the process definition as a Petri net, it is easy to represent state within the
definition by simply moving a token within the definition as the case progresses
through the process.

Haesen et al. further defines engines as optional or middleman. For an
optional approach, any action can take place with or without interacting with
the workflow engine. A middleman approach, on the other hand, requires every
action to go through the workflow engine. This implies that a stateful engine
must be a middleman and an optional engine must be stateless.

Our goal is to control the ERP system using process definitions. In this
case, a middleman system would be preferred as it would emphasize the ”con-
trolling” part. In the real world, we must unfortunately always deal with
exceptions to any rule, including the rules of workflows. Numerous business-
related coincidences might require a workflow to be ignored, or parts of the
workflow bypassed. This is a dilemma as we have already stated that a state-
aware, stateful system would be easiest to implement given our preconditions.
Furthermore, there is no way to apply a custom field to all DocTypes apart
from customizing each DocType separately. Common fields are all hardcoded
in Python code, which we are not allowed to touch as that would break future

47

updates. Since there is no way of knowing what DocTypes are present on the
system (any custom app can add its own DocTypes) we can not put a refer-
ence to the workflow on the DocType itself. We could, however, create our own
DocType, in the connector application, to effectively create a join table in the
relational database as a way to map Documents to Process instances.

As it turns out, in Frappe each DocType implements a state property that
can be used to enforce state awareness. Unfortunately, the implementation is
rather haphazard. Apart from a few DocTypes partially utilizing a common
dictionary of states, most states are set within the Python (or in some cases
Javascript) code and are impossible to extract in a reliable manner. In some
places the function set_doctype is called with the new state as parameter while
in others a simple self.state = "NewState" is used, with or without whites-
pace between operator and operands. Furthermore, states can be combined,
e.g. Purchase Orders may be in the state ”To Receive and Bill”, which is not
listed in the common dictionary despite the fact that Purchase Order is one of
the DocTypes in the dictionary. I still regard this state property to be our best
option to obtain a state-aware system and suggest this as the solution would
state awareness be implemented. The natural solution would be to mine the
system for state changing lines of code and build a dictionary of possible states
for each DocType. Updates to the system would need careful examination of
possible changes but that is still doable. For this thesis implementing full state
awareness is not necessary. The state property is, however, used as a trigger
for restarting waiting process instances.

The API could reflect the WAPI (interfaces 2 and 3 of the Workflow Man-
agement Coalition interfaces [13]) as far as possible, as they have been a stan-
dard at some point in time. Note, however, that the specification is for the
COM/CORBA era of client-server computing and does not match the current
standard ways of communication over the internet. For example, the specified
protocol seems to assume a stateful server model, incompatible with REST
API requests. The Wf-XML 2.0, the ”current” implementation of interface
4, is in draft, but seems to have been commonly accepted among vendors of
workflow systems. Wf-XML lacks any definition of query parameters, instead
any parameters are derived from earlier requests. E.g. requesting a list of
the available process definitions should result in a list of URIs being returned
by the workflow engine, including any request parameters that are needed
for retrieving a specific process definition. In fact, this is a rather uncompli-
cated approach, as it frees the specification from any details, simultaneously
freeing the implementors from restrictions regarding parameters and formats.
The specification is, as the name suggests, in XML format over SOAP, which

48

is a rather difficult format to work with. The value of following seemingly
abandoned standards to the letter is questionable, the only conceivable rea-
son would be to allow for direct communication with other vendors’ workflow
engine solutions. This, however, is not a feature I would consider important
for this thesis as my main goal is to provide a customizable structure to the
ERPNext application. With these reservations I will use the Workflow Man-
agement Coalition APIs as a starting point, but I do not intend to follow them
to the letter.

In order to keep the workflow engine itself generic, I have devised an in-
terface for communication with the ERP system. It consists of Frappe Hooks
as briefly mentioned in Section 3.4 and a restrictive set of REST API calls to
collect information from the ERP system. This connector will be discussed in
Section 5.4.3.

5.4.1 Implementation of the workflow engine

Implementing the workflow engine is a rather straight-forward task. From
the partial class diagram shown in Figure 20 we can see that we need a generic
base class representing a node in the graph and that base class needs to imple-
ment PassToken and ReceiveToken methods. Since this application is written
in Go, which implements inheritance by composition, the actual implementa-
tion will differ from the UML but remains conceptually the same. These two
methods, along with dynamic properties on the persistent nodes themselves,
are all we need to implement a workflow. This simplicity stems from the fact
that we use the graph database which directs the flow through the applica-
tion. We need methods to fetch the previous and next nodes in the sequence,
but those do not need to be exposed. We must also handle the special cases
of splits, joins, sub-workflows, and end points, each with their own expecta-
tions on the number of nodes that precede and follow, and possibly different
properties than those of basic action nodes.

49

Figure 20: Workflow engine class diagram

In short, a workflow starts by copying a process definition into a process
instance. The starting node of the instance passes the token to the node on
the other end of its transition arc by calling its ReceiveToken method. The
receiving node checks that all preceding nodes have their tokens set and then
sets its own token to true and the preceding nodes’ tokens to false. It then uses
its properties to determine what action to take, if any, performs that action,
and passes the token to the next node. The special action “await” will trigger
a call to the connector API to wait for an event with the given properties after
which the workflow stops. As the awaited event occurs, the connector will
restart the workflow which continues in the same manner by passing tokens.
The special case of a WfEnd node will trigger a completion of the workflow

50

and subsequent cleanup. The flow is visualized in Figure 21.

Figure 21: Workflow activity diagram

XORJoin nodes invoke the need for special handling since they by definition
have two or more preceding nodes, and thus require only one preceding node
to have its token set.

5.4.2 REST API

Figure 22 lists the REST API functions implemented by the workflow en-
gine. The request and response classes that normally would be attached to the

51

corresponding wide arrows are omitted from this diagram.

5.4.2.1 ListDefinitions
The ListDefinitions API function is used to list the process definitions avail-

able. If a JSON body is present in the http request, this will be interpreted as
a filter to list only process definitions that meet certain criteria, thus sending
the body in Listing 2 will only retrieve process definitions where the DocType
property is “Sales Order”. Any WfStart node property can serve as a filter and
the only limiting factor is the Workflow Editor’s capability to create properties
for the WfStart node.

Listing 2 Example of JSON message body sent to ListDefinitions

{
2 "DocType": "Sales Order"
}

5.4.2.2 GetDefinition
GetDefinition retrieves the complete definition specified as a REST param-

eter using the unique identifier uid assigned to each definition’s WfStart node.
As an example the api call
https://wf.example.com/GetDefinition/37252aa1-268c-47f5-a172-dec3b905b5c8

would return the definition designated by the uid 37252aa1-268c-47f5-a172-
dec3b905b5c8. The definition is returned as a JSON object consisting of one
list of nodes and one list of arcs. The structure is simple, each node is re-
turned as a JSON object with its properties, and each arc is returned as a
JSON object with the unique identities of the nodes defining its endpoints as
parameters. This function is primarily used for opening a process definition in
the Workflow Editor.

52

Figure 22: Workflow engine REST API

5.4.2.3 NewDefinition/SetDefinition
These API functions use the same underlying code to update and store the

supplied process definition in the graph database. If a process definition having
a WfStart node with the uid of the supplied process definition exists, it will be
updated, otherwise a new process definition will be stored. Either function can
be called for either purpose, despite the naming. By convention it would make
no sense to use a function called NewDefinition to store an existing process
definition, which is the reason I chose to retain both varieties.

5.4.2.4 CreateInstance
CreateInstance will clone a process definition into an instance, with the

option to start it immediately.

5.4.2.5 CompleteActivity
CompleteActivity will search the database for the node with corresponding

properties and restart the workflow by having it pass its token.

5.4.2.6 GetBusinessObjectNames
This API function will utilize the connector component to mine the system

for available business object names. The function is used by the Workflow
Editor to create a convenient drop-down list of available document types.
Its siblings GetBusinessObjectChildTypes, GetBusinessObjectStates, and Ge-
tRemoteFunctions serve the same purpose, to obtain system-specific artifact
names from the ERP system without having to interact, or have knowledge

53

of, the ERP system itself. In this manner the Engine serves as a middleman
between the Workflow Editor and the custom connector component in order
to reduce dependencies.

5.4.3 Implementation of the custom connector

This Frappe custom app keeps the workflow engine generic while providing
access to details of the ERPNext system. It serves as a proxy in both directions.
Whenever a document is created this app calls the engine to determine if there
is a process definition that pertains to this DocType. If so, the app will utilize
the engine to instantiate and start a new process instance. Knowing that
a document has been created is straightforward using hooks. An example
can be found in Listing 3. This construct maps each event (more exist than
are present in the example) to a function in the custom application. The
star in the example represents all DocTypes, it is also possible to list each
DocType separately. The effect is that any time any document is submitted
the function submit in the wfproxy module will be called, with the document
as one parameter. From there we are able to determine its DocType and query
the workflow engine for an appropriate workflow definition for that DocType.

Listing 3 Example of the doc_events construct in a Frappe hooks.py file

doc_events = {
2 "*": {

"before_insert": "wfproxy.wfproxy.proxy.before_insert",
4 "after_insert": "wfproxy.wfproxy.proxy.after_insert",

"on_update": "wfproxy.wfproxy.proxy.update",
6 "on_submit": "wfproxy.wfproxy.proxy.submit",

"on_cancel": "wfproxy.wfproxy.proxy.cancel",
8 "on_change": "wfproxy.wfproxy.proxy.change",

"on_trash": "wfproxy.wfproxy.proxy.trash",
10 "after_delete": "wfproxy.wfproxy.proxy.after_delete"

}
12 }

For the purpose of this thesis, on_change and on_submit are the most
critical and their implementation is similar. As an example, for the submit
function Listing 4, a process waiting to be restarted has previously announced
so using the notify_event function in the connector app, supplying its identi-
fication number, the supposed triggering event (submit, update etc) and the
triggering state (e.g. “Completed”). If the expected requirements are met, the
instance is restarted by calling the workflow engine REST API. Otherwise the
workflow engine is queried for a matching process definition and, if such a
process definition exists, starts a new instance.

54

Listing 4 submit function

def submit(doc, method, *args, **kwargs):
2 if doc.get("name") in await_dict["submit"]:

if should_restart(doc,
**await_dict["submit"][doc.get("name")]):

4 restart_process(**await_dict["submit"][doc.get("name")])
elif doc.doctype not in ignored_docs:

6 pd = start_process(doc)

The change function is similar, but naturally does not start new process
instances.

Additionally, the connector app implements functions to obtain a list of
callable functions in ERPNext, a list of available DocTypes, a partial list of
status designations for some DocTypes, and a proxy function for calling any
of the callable functions in ERPNext. A conceptual view of the API, sans
the request and response bodies that normally would be attached to the wide
arrows, can be viewed in Figure 23.

Figure 23: Connector API

5.5 Custom Application

This component ended up being more important than what was initially
intended. Since the structure of ERPNext is rather ad-hoc, functions do rarely
take arguments in the same order, or take the same type of arguments for that
matter. My initial thinking was to supply the right arguments (i.e. argument
names) in the Action node along with the remote call function. This would,
however, require more than basic knowledge of the inner workings of ERPNext
to create functioning workflows for the system. Instead I opted to create
smaller routines within this component to deal with the intricacies of ERPNext.
Thus, this component includes e.g. a function to create Purchase Orders from

55

Sales Orders. This will be the function specified in the appropriate Action
Node of the workflow, even though there is a make_purchase_order function
present on the Sales Order document object. These custom functions are
rather small in size and simply collect the values that we need to send to the
corresponding ERPNext function as parameters. Additionally, this is where I
have created functions that are not related to the workflow engine, but rather
to the workflows themselves, and which are not already part of the ERPNext
system, e.g., a function to check the stock availability of a product. These
functions are called through the connector app API using the remote_function
API call. This allows for decoupling the workflow system completely from the
details of the ERP application. The function name is simply supplied as a node
property and passed to the connector app as a parameter. The connector app
then calls this function using the Frappe framework. Along with the DocType
and the identifier of the document this new document should be based upon,
the function name is in most cases enough to create new documents and push
the workflow forward.

5.6 Custom Connector for Manufacturing

This component was developed as a solution to the problem described in
Section 5.2.2. It was developed in the Go language as a library to be used in
other projects. Additionally, the same project can be used as a stand-alone
REST API server with endpoints for logging in to the ERPNext system using
the OAuth 2.0 protocol, fetching a list of open work orders, and fetching a
specific work order by id. OAuth 2.0 is the de facto standard for logging in
to an application domain using the credentials of another domain. Thus, it
is possible to arrange for logging in to the ERPNext application using the
credentials of the proprietary manufacturing system.

56

Figure 24: Custom connector usage

The above diagram, Figure 24, describes a possible usage scenario for the
component. During manufacturing the appropriate serial numbers for each
used hardware component are sent to the custom connector which then invokes
material transfers from a source warehouse to the work-in-progress warehouse,
finishing off by transferring the finished product to the appropriate warehouse
for finished goods. A number of steps needed for this workflow to function
are omitted in the diagram, for simplicity. There are, however, no more steps
needed between the client and the component which isolates the user from a
number of tedious tasks.

5.6.1 Item and Work Order Item

Item is the document type representing any tangible object in the company’s
possession. This includes both stock and inventory. Relevant to this discussion
are items that are used as parts in a manufactured product. Bill of Materials,
or BOM is the document describing how to produce, assemble, or modify
raw materials and parts into a product or a product bundle. A BOM has a
list of parts, each corresponding to an Item. A Work Order is, as the name
implies, a document used in manufacturing, describing what should be done

57

to manufacture a product, and what raw material and parts are to be used to
manufacture a product. A Work Order Item is then a record for each part used
to create the product. Work Order Items in ERPNext are represented by their
own document type and thus their own table in the database. A custom field
was required on the Item document type, a separate identifier, Part Number,
that represents an item, but is different from the Item Code field that is the
default identifier for items. We also needed this identifier to be reflected in the
Work Order document type. This proved to be a challenging task, but it gave
me a great deal of understanding of the Frappe framework.

As it turns out, creating custom fields on both Work Order Item and Item
was not enough. Looking at the code, starting at the function called by the
front end when creating a Work Order, I was able to see that the data present
in a Work Order Item was in fact fetched from the Bill Of Materials and
joined with Item using a hardcoded SELECT clause. Any custom field would
be ignored. This is an example of the opinionated way ERPNext is built, the
fields in Work Order Item are preconfigured and cannot be easily changed.
Changing the code where it would make the most sense is not possible as it
will result in merge conflicts at the time of the next update.

The solution was to create a document hook in a custom application, essen-
tially rerouting the original function call (get_items_and_operations_from_bom)
to a custom function that incorporates the needed changes. Another way to
deal with the problem would be refactoring the code to handle custom fields
and make a pull request to the project. In this case, however, that option felt
a bit overwhelming as it would require new field properties to be created, as
one would need a way to specify whether the custom field should be brought
over to the Work Order Item or not. Since we are dealing with a JOIN clause
we would also need to define if custom fields are to be brought over from Item,
BOM Item, or both.

5.7 Dockerizing ERPNext

ERPNext out-of-the-box is meant to be run on a single server with a
database instance and three Redis [68] instances running on the same machine.
For a small organization this may be a big hurdle as it would require either
investing in new server hardware, or bad performance from the application, if
deployed to a suboptimal machine. Utilizing the relatively new Docker [69]
container technology together with an orchestrator like Kubernetes [70] would
give us the possibility to deploy to any number of servers that are not already

58

fully utilized, or even to a cloud service, completely avoiding the immediate
hardware cost. At Comsel System a number of software systems already run
on Kubernetes clusters on premise and it was natural that the ERP system
should also run on the same platform. There are some efforts made to make
ERPNext run in virtualized environments and there is a developer environ-
ment available for running on Docker. There have so far been no real efforts
to make the system run on Docker or Kubernetes in production. To describe
the efforts needed to move ERPNext to a container system we need to look at
the installation process. Standard supported installs are done via the Frappe
bench command line utility. The utility has numerous options for configuring
the system. These include installation of applications (e.g. ERPNext), type of
database, migration utilities and so on. All in all, there are 104 standard com-
mands (counted via bench --help which lists all the commands) with numerous
options on each [71]. Custom commands can also be added simply by calling
an add function with a pointer to any Python function as parameter. Unfor-
tunately, this type of installation requires far too much manual interaction to
be feasible in a Kubernetes cluster where containers may die and be restarted
depending on a number of external factors like resource availability and con-
figuration options. In addition to the bench command ERPNext also comes
with an ”easy-install” feature. [72] The easy-install is a system of Ansible [73]
Playbooks [74] to determine what system (hardware, operating system etc.)
we are installing on. I customized these Playbooks so that they can be used
when building a Docker image. Changes include, for example, configuring the
system to use databases and Redis instances running in separate containers.
Most changes were accomplished by simply adding ”not Docker” as argument
to when-clauses in the appropriate playbook.

Listing 5 Example of Ansible playbook with changes

Setup Redis env for RQ
2 - name: Setup Redis

command: bench setup redis
4 args:

creates: "{{ bench_path }}/config/redis_socketio.conf"
6 chdir: "{{ bench_path }}"

when: not docker

This work was mostly a question of trial and error, and since building a
Docker container with this Ansible-script took more than half an hour on my
machine it turned out to be a rather time-consuming effort. Initially each
build took even longer due to the vast amount of dependencies required for
the application so I ended up splitting the installation into two parts, building

59

an initial Docker image with preconfigured dependencies that could be down-
loaded and installed separately, and a second container based on the first that
takes on the task of running the easy-install-script. Source for both images
can be found in the Code Section of the Appendix.

5.8 Tying it all together

This section contains a summary of how the components in the system work,
in a sense the workflow of the final system itself.

5.8.1 Implemented workflow

In order to make a practical working example the workflow depicted in Fig-
ure 11 in Section 5.2.1 was first entered into the database using the Workflow
Editor described in Section 5.3. Since the workflow handles multiple sales order
rows it is in fact necessary to define multiple workflows. The main workflow
(Figure 25) will include a sub-workflow as an action, namely the ”Check Sales
Order Stock Level” workflow, as depicted in Figure 26.
Each action in the workflows will be defined by the parameters entered in the
Element Properties section of the user interface. For example naming the nodes
and determining their type is done using this property sheet as seen in Fig-
ure 27. More elaborate properties are set depending on the type of node, e.g. in
Figure 28 the Remote function property is set to check_stock_availability.
That function is present in the connector app and will be called upon by the
workflow engine at the appropriate time, i.e. when that node has received a
token from the previous node in the workflow. Depending on the response
from that function, either the ”Stock Low” node or the join node preceding
the workflow end node will be the next node to receive the token. The respec-
tive response, true or false, is entered in the Result property of the transitions
going out from the split.

60

Figure 25: Workflow for the fulfillment of a sales order

Figure 26: Sub-workflow for creating work or purchase orders if needed

Figure 27: Properties for a start node

61

Figure 28: Properties for an XORSplit node

Figure 29: Properties pertaining to an await node

A special type of node is the Await node where the workflow stops in order
for an external event to take place, as in the case of manufacturing products
to fulfill an order (Figure 29). In the above example the property AwaitState
is used to re-start the workflow when the work order issued in the previous
node has reached the state ”Completed”. �Saving the above workflows creates
template graphs in the Neo4J database. When the ERPNext user creates a
new Sales Order through the ERPNext interface, this action is intercepted by
the custom connector application which in turn calls on the workflow engine to
start a new workflow. The engine then copies the template workflow and saves
the Sales Order’s unique identifier as the parameter ResourceID in the start
node so as to be able to distinguish different workflow instances and connect

62

them to the appropriate document in ERPNext. The workflow instance is
then started while the ERPNext application, disconnected from this process
as it is, proceeds without interference from the workflow engine. Tokens are
passed from one node to the next in the workflow, calling any function named
by the RemoteFunction property in each node. In this manner, depending on
the actual conditions, purchase orders and work orders may be created by the
workflow engine in coordination with the custom connector and the ERPNext
application.

5.8.2 Problems encountered

Like any software project this one has its share of problems and compro-
mises. Apart from the earlier mentioned conceptual mis-match between the
JointJS graphics framework and the Redux framework the following issues are
the most prominent.

5.8.2.1 Diverse implementation of functions in ERPNext
Functions in ERPNext, though conceptually similar, may have widely dif-

ferent signatures. This makes it hard for a non-technical user to configure the
workflow correctly, were we to include parameter lists, etc. in the workflow
definition. To avoid this situation, simpler proxy functions are required for
almost any action in a workflow. This partly defies the original purpose of the
workflow engine as any new workflow creates the need for programmer exper-
tise. I had hoped for the end user to be able to simply define workflows to
control the application but, unfortunately, this is not a likely scenario due to
the way ERPNext is implemented. The functions needed are mostly less than
ten lines of code in size, and with knowledge of ERPNext or ability to use a
debugger, it is an easy task for a programmer to implement them. Nonetheless,
I consider this to be an unfortunate turn of events.

5.8.2.2 Document Status and Await
The haphazard construct of status in ERPNext is one of the bigger issues

facing someone trying to implement this workflow system in a real-world sce-
nario. There is no simple way to obtain what the range of status codes for
a given document could be. Status codes are implemented as text strings in
the system and the state may change in a number of ways. No common set of
status codes exists, and the way of changing them varies from using functions
to assigning new hard-coded values directly. As long as this practice is allowed
to continue in the ERPNext community, any workflow where this functionality
is needed requires access to the source code and programming experience. As

63

a way to mitigate these problems, a workaround could be to implement a dic-
tionary of possible values for each document in the custom connector app, but
any such effort could be broken by updating to a newer version of the project.

5.8.2.3 Configuration of the ERPNext system.
ERPNext has many features that may not always be obvious. Setting a

certain parameter in one document may prevent certain features to be available
in other parts of the system. For the implemented workflow to run without
errors the Item document must meet certain criteria, for example, a default
supplier must be set in order to automatically issue a Purchase Order. For a
Work Order to be placed, a BOM for that product must be present. These
requirements are hard to mandate in the original system.

64

6 Conclusion

Creating a workflow engine using a graph database system and connecting
it to a randomly selected Open Source ERP system is certainly possible. It
is possible to automate parts of the system that otherwise would demand a
great deal of manual process routines and rules. Using stateful extended Petri
nets keeps the workflow engine algorithms simple, especially when backed by
a GDB.

6.1 Measuring results

To evaluate the efficiency of incorporating the workflow described in Sec-
tion 5.8.1 a series of tests were made, manually entering a sales order with and
without the automation in question. In practice the difference can also be cal-
culated by measuring the time it would take to manually create a purchase or
work order. One part that is hard to measure is the convenience of not having
to remember to check the availability of each item and the consequences of
forgetting said task. In practice a sales order with one item can be recorded
in about 40 seconds. Looking up stock availability for one item and creating a
purchase order takes about three minutes, a task that is fully automated when
the workflow is implemented. Extrapolating from the table we can see that a
workload of 50 orders each day with five items on each order could save up to
8.25 minutes for each order giving a total of nearly seven hours, or almost one
full time worker freed up for other tasks.

Table 2: Sample of time duration needed to create a sales order and ensure all
items are available to fulfill the order

#of items Baseline with workflow

1 3:18 0:42
3 6:10 0:45
5 9:24 1:10

Parts of the proposed solution were not implemented in practice. Notifi-
cations, although quite simple to achieve using Frappes built-in notification
system, were omitted for brevity. The same is partly true for moving stock be-
tween the free-to-order and ordered warehouses, however, in this case I found
a shortcut as the reorder demand could be calculated from available data.

65

These are not counted as deviations since the omissions are decision based.
The solution fulfills all other requirements from the workflow described in Sec-
tion 5.2.1.2.

It is my opinion that I have managed to combine a workflow engine with an
open source ERP system and shown that this kind of automation is a viable
alternative.

6.2 Further research

The software solution created as part of this thesis is far from a finished
product. Much work is needed in areas such as error handling and the workflow
editor user interface. As such the application is to be considered a rough
starting point if e.g. creating a commercially viable product is of interest.

Regrettably there are also performance issues that are visible in all of the
ERPNext application as every document creation event polls the workflow
engine to see if there is a potential workflow that needs to run. It is not very
obvious to people using the application sporadically but definitely noticeable
when comparing to an instance of ERPNext running without the connector
application. This should be easy enough to remedy for example by storing
information about existing workflows in the connector application and thus
avoiding the rather costly network traffic when creating documents.

I am not exited about the state handling mechanism in the ERPNext ap-
plication. I would prefer a more solid solution where states would be more
homogeneous across the different document types. Additionally I have doubts
about the transfer of control between different document types, or put in an-
other way, the management of depending state over document boundaries. In
ERPNext the state of a document may change in response to another doc-
ument’s change of state. As an example, when a delivery is being marked
delivered, this also closes the sales order related to that delivery. It is not a
given that this event would trigger a state change event for both documents, it
is possible that only the delivery document event is ever passed on to the con-
nector. Furthermore this behavior is not consistent throughout the ERPNext
application, each case of dependency may be handled differently. There is also
the possibility that more than one document may trigger the closing of the
sales order - how can we know which documents are being created and how?
Should we make the workflows more stringent and in the process deny the use
of certain features? More research is needed in regard to these matters.

The current solution creates separate purchase orders for each item in a

66

sales order. Functionality to automatically consolidate these purchase orders
into one for each supplier and possibly even combine purchase orders from
multiple sales orders into one, e.g. on a daily basis, would help reduce the
workload for the warehouse workers.

In reference to Section 5.8.2.3 it is my belief that mandating certain prop-
erties of a document could be accomplished by automation utilizing the same
workflow system that has been developed in this thesis. This path has not
been explored and could be of interest for further studies.

67

Appendix

Tables

Table 3: Negative aspects of ERP

Cons Reason

Cost ERP systems are prohibitively expensive
to a micro- or small business in terms of
license fees, implementation,
customization, support, and hardware

Lack of flexibility Vendors push ”best-practice” workflows
onto the organization

High risk of failure Bad fit for the organization

Table 4: Graph Database ranking 8/18/2019 [64]

Aug ’19 Jul ’19 Aug ’18 DBMS Database Model Score

1. 1. 1. Neo4j Graph 48.39
2. 2. 2. Microsoft Azure Cosmos DB Multi-model 29.94
3. 3. 3. OrientDB Multi-model 6.28
4. 4. 4. ArangoDB Multi-model 5.12
5. 5. 5. Virtuoso Multi-model 3.06
6. 6. 10. JanusGraph Graph 1.94
7. 7. 7. Amazon Neptune Multi-model 1.64
8. 11. 16. Dgraph Graph 1.31
9. 9. 6. Giraph Graph 1.26

10. 8. 9. GraphDB Multi-model 1.14

i

Table 5: Types of ERP customization [61]

Tailoring Type Description Examples

Configuration
(customiza-
tion, in SAP
parlance)

Setting of
parameters (or
tables), in order
to choose
between different
executions of
processes and
functions in the
software package

Define
organizational
units; create
standard reports;
formulate
available-
to-promise logic;
use of a standard
interface to an
archive system

All layers

Bolt-ons Implementation
of third-party
package designed
to work with
ERP system and
provide
industry-specific
functionality

Provide ability to
track inventory
by product
dimensions (e.g.,
2 500 m. lengths
of cable do not
equal 1 1000 m.
length)

All layers

Screen masks Creating of new
screen masks for
input and output
(soft copy) of
data

Integrate three
screens into one

Communication
layer

Extended
reporting

Programming of
extended data
output and
reporting options

Design new
report with sales
revenues for
specific criteria

Workflow
programming

Creating of
non-standard
workflows

Set up automated
engineering
change order
approval process

Application layer
and/ or database
layer

ii

Tailoring Type Description Examples

User exits Programming of
additional
software code in
an open
interfaceDevelop
a statistical
function for
calculating
particular metrics

Application layer
and/ or database
layer

ERP
Programming

Programming of
additional
applications,
without changing
the source code
(using the
computer
language of the
vendor)

Create a program
that calculates
the phases of the
moon for use in
production
scheduling

All layers

Interface
development

Programming of
interfaces to
legacy systems or
3rd party
products

Interface with
custom-build
shop-
floor-system or
with a CRM
package

Application layer
and/ or database
layer

Package code
modification

Changing the
source-codes
ranging from
small change to
change whole
modules

Change error
message in
warning; modify
production
planning

Can involve all
layers

iii

Petri net diagram symbols

Figure 30: Petri net diagram symbols. These symbols are partly borrowed
from YAWL [23]

iv

Sammandrag

Denna avhandling är en uppföljning till min kandidatavhandling IT-system
för små företag [41]. Den beskriver mina reflektioner om ett IT-systems roll
i ett litet företag och framför teorin att de dagliga processerna i ett litet in-
dustriföretag borde styra systemets funktion och inte tvärtom. Ett företags
processer är en del av företagets identitet och ska uppfattas som en konkur-
rensfördel. Om standardlösningar tillåts styra företagets processer blir slutre-
sultatet en likriktning av konkurrerande företag inom samma bransch och det
enda återstående konkurrensmedlet blir produktens pris. Detta leder till att
prispressen ökar vilket medför att företaget måste fokusera på kostnadsinbe-
sparingar i stället för att i första hand utveckla områden som kvalitet och lever-
anssäkerhet. Min pro gradu-avhandling är en fortsättning på samma tema och
behandlar hur man praktiskt kunde gå tillväga för att utveckla system som är
tillräckligt flexibla för att undvika problemen med likriktning.

När ett företag växer ökar behovet av datalagring. Uppgifter om tillverkn-
ing, kundåtaganden lagernivåer och liknande, som i ett enmansföretag kan
skötas med papper och penna, måste nu vara åtkomligt för flera anställda i
realtid. Statistiska beräkningar behövs som grund för beslutsfattande. Ett
första steg kan vara användningen av kalkyleringsprogram men användningen
av dessa blir ofta komplicerad till exempel när kalkylark kopieras och olika
uppgifter introduceras i olika kopior eller när mängden olika kalkylark blir för
stor. En bättre lösning kan då hittas i affärssystemet.

Affärssystem (ERP, ”Enterprise Resource Planning”) är stora och dyra
system uppbyggda av moduler. Kännetecknande för ett affärssystem är att
alla dessa moduler använder en gemensam databas för att lagra uppgifter om
verksamheten. De kräver också en stor anpassningsinsats av företaget, antin-
gen måste företaget anpassas till affärssystemet eller tvärtom. Problematiskt
i sammanhanget är att affärssystemens leverantörer ofta är av den åsikten
att företaget bör förändras för att passa systemet. Många systemleverantörer
har utvecklat branschvisa standardlösningar där leverantören valt ut de mod-
uler och de regler för verksamheten som anses vara bästa praxis. Att komma
med egna anpassningskrav är i den situationen både dyrt och riskabelt. Som
det engelska namnet antyder är systemen ursprungligen utvecklade för stora
multinationella bolag. På senare tid har den marknaden delvis mättats varvid
leverantörerna svarat med att anpassa systemen för allt mindre företag. Arvet
efter storbolagens processer är ofta till nackdel för små företag och leder till
stela system som ändrar arbetssättet i ett mindre företag på ett negativt sätt.

v

Det finns också affärssystem med öppen källkod på marknaden. Fördelen
med öppen källkod är att oberoende utvecklare kan anlitas för att anpassa
systemet. Öppen källkod har sina egna begränsningar främst när det gäller
ansvaret för den förändrade koden, frågan är om övriga delar av systemet kan
hållas uppdaterade över tid utan att förändringarna orsakar oförutsedda fel.
Också ansvaret för det ursprungliga projektet måste beaktas, man måste ta
ställning till om man kan lita på att projektet fortgår och hålls uppdaterat
vartefter myndigheternas krav ändras, i synnerhet då många sådana projekt
är helt beroende av frivilligarbete, d.v.s. är någon annans hobby.

Avhandlingen utgår från teoretiska diskussioner om IT-systemens motsvarighet
till affärsvärldens processer, nämligen arbetsflöden (workflows). Dessa arbets-
flöden var ursprungligen avsedda att sammanfoga helt åtskilda system, ex-
empelvis bokföringsprogram och system för lagerhållning. Tanken var att
dessa system för hantering av arbetsflöden (WfMS, workflow management sys-
tems) skulle förmedla meddelanden mellan olika program för att styra i vilken
ordning uppgifter kunde utföras och för att automatisera processer genom
att starta upp de program som behövdes för en specifik uppgift. Denna ur-
sprungsidé står i stark kontrast mot affärssystemens enhetliga uppbyggnad.
Vartefter affärssystemen har vunnit marknadsandelar har tanken på arbetsflö-
den tonats ner eftersom arbetsflödena redan sköts enligt vad systemleverantör-
erna anser vara bästa praxis.

Parallellt med att bästa praxis blivit allt mer dominerande i IT-system
avsedda för allt mindre företag har ändå tanken på arbetsflöden förts vidare
inom akademiska kretsar. Business Process Re-engineering, BPR, vars före-
språkare hävdade att företagets processer måste skrotas och göras om med de
nya förutsättningar som datoriseringen ger, och Business Process Management,
BPM, som i mildare form omarbetar processerna över tid är två historiskt sett
viktiga åsiktsriktningar. Båda beskriver hur företagsprocesserna kan förbät-
tras med hjälp av IT och båda har någon form av diagram för att beskriva
processer. W. M. P. van der Aalst har under många år arbetat med pro-
cesshantering och förespråkar en variant av Petrinät som modell för processer
och arbetsflöden.

Att förena dessa två vitt skilda tankemönster kunde vara ett sätt att priorit-
era företagets processer och samtidigt utnyttja de fördelar ett affärssystem ger,
utan att behöva utveckla ett skräddarsytt affärssystem från grunden. För att
undersöka denna idé, skapar jag i denna avhandling ett system för hantering av
arbetsflöden och kombinerar det med ett affärssystem i syfte att automatisera
och styra affärssystemet enligt mer eller mindre godtyckliga regler. Slutresul-
tatet är inte ett komplett system utan ska ses som en validering av konceptet.

vi

Min ”Workflow engine” (ung. arbetsflödesmotor) är uppbyggd kring pro-
cessmodeller i form av grafer med noder och bågar. Processmodellerna bygger
på van der Aalsts modifierade Petrinät där noderna representerar aktiviteter
och tillstånd medan bågarna representerar en förändring av tillstånd. Dessa
modeller lagras i en databas som fungerar enligt grafkonceptet (eng. Graph
Database) varvid man undviker den i sammanhanget vanliga konverteringen
mellan grafiska nät och hierarkiska strukturer. Detta möjliggör att fler vari-
anter av processer kan beskrivas. Processgrafen har alltid en startnod, eller
källa och en slutnod, utlopp. Ett externt program kan starta en process genom
att anropa arbetsflödesmotorn som då kopierar den valda processen till ett
ärende (eng. process instance) och låter en pant (eng. token) passera genom
grafen. När en nod tar emot panten utförs den procedur som är lagrad som
ett attribut på den noden varefter panten skickas vidare till nästa nod. Den
procedur som ska utföras är vanligen en funktion i ett externt program som
tillhör, eller kommunicerar med, affärssystemet som ska styras. I de flesta pro-
cesser kan man också behöva invänta manuella åtgärder varvid noden anropar
en väntefunktion och stoppar flödet. Flödet startas igen när de villkor som
specificerats i noden uppfylls.

ERPNext är ett affärssystem utvecklat av det indiska företaget Frappé,
licensierat som öppen källkod. Systemet är uppbyggt kring det centrala be-
greppet dokumenttyp (”DocType”), motsvarande verkliga dokument i en verk-
samhet. Sådana dokument kan till exempel vara inköpsorder, försäljningsorder
och ordermottagning men även entiteter som kunder, lagervaror och inven-
tarier beskrivs i form av dokument.

När ett dokument skapas eller modifieras i användargränssnittet är det
möjligt att styra om anropet och så att säga genskjuta den befintliga algo-
ritmen. Detta gör det möjligt att anropa arbetsflödesmotorn för att skapa
ärenden eller starta väntande ärenden. Tack vare systemets uppbyggnad är
det enkelt att utveckla små rutiner som arbetsflödesmotorn kan anropa och vi
kan därför både styra och automatisera affärssystemet.

Som exempel på hur denna lösning kan vara till nytta i användningen av ett
affärssystem skapar jag en processmodell för kundorderhantering. I standard-
utförande är denna del av processen onödigt arbetsdryg i ERPNext, eftersom
systemet inte tillräckligt tydligt klargör för operatören huruvida det finns till-
räckligt med varor i lager för att leverera beställningen inom utsatt tid. I
praktiken innebär detta att den som skapar ordern måste öppna lagersaldot
för varje beställd produkt och dessutom kontrollera att de befintliga varorna
inte reserverats för tidigare inkomna beställningar. Med arbetsflödesmotorn
kan systemet automatiskt både kontrollera lagersaldot och vid behov skapa

vii

inköpsbeställningar, alternativt tillverkningsorder för produkter som tillverkas
på plats.

I denna avhandling visar jag att det är möjligt att kombinera principerna
för arbetsflöden med standardprogramvara i form av affärssystem och att man
delvis kan automatisera de sistnämnda för att underlätta den dagliga verk-
samheten i ett litet företag.

viii

Bibliography

[1] K. McCormack and W. C. Johnson, Business process orientation: Gain-
ing the e-business competitive advantage. Boca Raton: St. Lucie Press, 2001.

[2] W. van der Aalst and K. M. van Hee, Workflow management: Models,
methods and systems, 1. MIT Press paperback ed. Cambridge, Mass.: MIT
Press, 2004.

[3] W. M. Coalition, Workflow Reference Model, WFMC-TC-1003rd ed.
1995.

[4] L. Fischer and W. M. Coalition, Eds., Workflow handbook 2004: Pub-
lished in association with the Workflow Management Coalition WfMC. Light-
house Point, Fla: Future Strategies Inc, 2004.

[5] Robert M Shapiro, Mike Marin, Tim Stephenson, and Wojciech Zurek,
Xpdl.Xsd. http://www.wfmc.org/docs/TC-1025_bpmnxpdl_24.xsd.

[6] M. Dumas, Fundamentals of business process management, 1st ed. New
York: Springer, 2013.

[7] Alexander and C. Alexander, A Pattern Language Towns, Buildings,
Construction. Cary: Oxford University Press USA - OSO, 1977.

[8] E. Gamma, Ed., Design patterns: Elements of reusable object-oriented
software. Reading, Mass: Addison-Wesley, 1995.

[9] M. Lewis and N. Slack, Eds., Operations management: Critical perspec-
tives on business and management. London ; New York: Routledge, 2003.

[10] Blumenthal, S.C., Management Information Systems: A framework for
planning and development. NJ: Prentice Hall, 1969.

[11] I. Töyrylä, Realising the potential of traceability: A case study research
on usage and impacts of product traceability. Espoo: Finnish Acad. of Tech-
nology, 1999.

[12] M. Birbeck, Ed., Professional XML, 2nd ed. Birmingham, UK: Wrox
Press, 2001.

[13] W. M. Coalition, Workflow Management Application Programming In-
terface (Interface 2&3) Specification, WFMC-TC-1009th ed. 1998.

[14] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of work-
flow management: From process modeling to workflow automation infrastruc-
ture,” Distributed and Parallel Databases, vol. 3, no. 2, pp. 119–153, Apr.
1995.

[15] R. Medina‐Mora, T. Winograd, R. Flores, and F. Flores, “The action
workflow approach to workflow management technology,” The Information
Society, vol. 9, no. 4, pp. 391–404, Oct. 1993.

ix

[16] M. Hammer, “Reengineering Work: Don’t Automate, Obliterate.” Har-
vard Business Review, vol. 68, no. 4, pp. 104–112, 1990.

[17] J. Chamberlin, “Business Process Reengineering: A retrospective look.
Part two,” Management Services, vol. 54, no. Spring 2010, pp. 13–20.

[18] R. Valentine and D. Knights, “TQM and BPR ‐ can you spot the
difference?” Personnel Review, vol. 27, no. 1, pp. 78–85, Feb. 1998.

[19] M. Zairi, “Business process management: A boundaryless approach to
modern competitiveness,” Business Process Management Journal, vol. 3, no.
1, pp. 64–80, 1997.

[20] R. Y.-Y. Hung, “Business process management as competitive advan-
tage: A review and empirical study,” Total Quality Management & Business
Excellence, vol. 17, no. 1, pp. 21–40, Jan. 2006.

[21] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the Web services web: An introduction to SOAP, WSDL,
and UDDI,” IEEE Internet Computing, vol. 6, no. 2, pp. 86–93, Mar. 2002.

[22] W. M. P. van der Aalst and T. Basten, “Inheritance of workflows:
An approach to tackling problems related to change,” Theoretical Computer
Science, vol. 270, nos. 1-2, pp. 125–203, Jan. 2002.

[23] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: Yet another
workflow language,” Information Systems, vol. 30, no. 4, pp. 245–275, Jun.
2005.

[24] W. M. P. van der Aalst, “Business process management as the ‘Killer
App’ for Petri nets,” Software & Systems Modeling, vol. 14, no. 2, pp. 685–691,
May 2015.

[25] J. L. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9, no. 3,
pp. 223–252, Sep. 1977.

[26] W. M. P. van der Aalst et al., “Soundness of workflow nets: Classifica-
tion, decidability, and analysis,” Formal Aspects of Computing, vol. 23, no. 3,
pp. 333–363, May 2011.

[27] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A.
P. Barros, “Workflow Patterns,” Distributed and Parallel Databases, vol. 14,
no. 1, pp. 5–51, Jul. 2003.

[28] H. Smith, “Business process management—the third wave: Business
process modelling language (bpml) and its pi-calculus foundations,” Informa-
tion and Software Technology, vol. 45, no. 15, pp. 1065–1069, Dec. 2003.

[29] T. H. Davenport, “Putting the Enterprise into the Enterprise System,”
Harvard Business Review, vol. 76, no. 1998/07/Jul/Aug1998, pp. 121–131.

[30] P. Soffer, B. Golany, and D. Dori, “ERP modeling: A comprehensive
approach,” Information Systems, vol. 28, no. 6, pp. 673–690, Sep. 2003.

x

[31] Scott, Judy, “The FoxMeyer Drugs’ Bankruptcy: Was it a Failure of
ERP?” AMCIS 1999 Proceedings. 80., 1999.

[32] Y. van Everdingen, J. van Hillegersberg, and E. Waarts, “Enterprise
resource planning: ERP adoption by European midsize companies,” Commu-
nications of the ACM, vol. 43, no. 4, pp. 27–31, Apr. 2000.

[33] K.-K. Hong and Y.-G. Kim, “The critical success factors for ERP im-
plementation: An organizational fit perspective,” Information & Management,
vol. 40, no. 1, pp. 25–40, Oct. 2002.

[34] J. Cardoso, R. P. Bostrom, and A. Sheth, “Workflow Management
Systems and ERP Systems: Differences, Commonalities, and Applications,”
Information Technology and Management, vol. 5, no. 3/4, pp. 319–338, Jul.
2004.

[35] W. M. P. van der Aalst, M. La Rosa, and F. M. Santoro, “Business
Process Management,” Business & Information Systems Engineering, vol. 58,
no. 1, pp. 1–6, Feb. 2016.

[36] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” 2000.

[37] B. Johansson and P. Ruivo, “Exploring Factors for Adopting ERP as
SaaS,” Procedia Technology, vol. 9, pp. 94–99, 2013.

[38] A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Formal verification of
complex business processes based on high-level Petri nets,” Information Sci-
ences, vols. 385-386, pp. 39–54, Apr. 2017.

[39] J. E. Smith and Ravi Nair, “The architecture of virtual machines,”
Computer, vol. 38, no. 5, pp. 32–38, May 2005.

[40] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM
Computing Surveys, vol. 40, no. 1, pp. 1–39, Feb. 2008.

[41] D. Björkgren, “IT-system för små industriföretag,” Bachelor’s thesis,
Unpublished, Åbo Akademi, 2017.

[42] H. van der Aa, H. Leopold, F. Mannhardt, and H. A. Reijers, “On the
Fragmentation of Process Information: Challenges, Solutions, and Outlook,”
in Enterprise, Business-Process and Information Systems Modeling, vol. 214,
K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro, and Q. Ma, Eds. Cham:
Springer International Publishing, 2015, pp. 3–18.

[43] Avdi Grimm, “OSS: Your production software depends on a bunch of
people’s hobbies - @jessitron,” Twitter, 21-Aug-2019. [Online]. Available at:
https://twitter.com/avdi/status/1163993453467963392?s=21. [Accessed: 23-
Aug-2019].

[44] Unknown, Cavemen too busy..

xi

https://twitter.com/avdi/status/1163993453467963392?s=21

[45] “Workflow Management Coalition.” [Online]. Available at: https://ww
w.wfmc.org. [Accessed: 27-Sep-2019].

[46] W. M. Coalition, “Process Interface – XML Process Definition Lan-
guage.” 10-Mar-2005.

[47] Jeffrey Ricker, Mayilraj Krishnan, and Keith Swenson, “Asynchronous
Service Access Protocol (ASAP) Version 1.0.” OASIS.

[48] “Audit Data Specification.” Workflow Management Coalition, 15-Jul-
1998.

[49] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede,
and N. Russell, “On the Suitability of BPMN for Business Process Modelling,”
in Business Process Management, 2006, pp. 161–176.

[50] W. M. P. Aalst, “Three Good Reasons for Using a Petri-Net-Based
Workflow Management System,” in Information and Process Integration in
Enterprises, T. Wakayama, S. Kannapan, C. M. Khoong, S. Navathe, and J.
Yates, Eds. Boston, MA: Springer US, 1998, pp. 161–182.

[51] W. M. P. van der Aalst and K. M. van Hee, “Framework for business
process redesign,” in Proceedings 4th IEEE Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WET ICE ’95), 1995, pp.
36–45.

[52] van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., and Wohed,
P., “Pattern-Based Analysis of BPML (and WSCI).” Faculty of IT, Queensland
University of Technology, Brisbane, Australia, 2002.

[53] J. C. Wortmann, “Evolution of ERP Systems,” in Strategic Management
of the Manufacturing Value Chain: Proceedings of the International Conference
of the Manufacturing Value-Chain August ‘98, Troon, Scotland, UK, U. S.
Bititci and A. S. Carrie, Eds. Boston, MA: Springer US, 1998, pp. 11–23.

[54] B. Wong and D. Tein, “Critical Success Factors for ERP Projects,”
2003.

[55] R. N. Gottumukkala and D. T. Sun, “Modeling and Assessment of
Production Printing Workflows Using Petri Nets,” in Business Process Man-
agement, 2005, pp. 319–333.

[56] “About Frappe.” [Online]. Available at: https://frappe.io/about. [Ac-
cessed: 19-Mar-2019].

[57] The Pallets Project, “Jinja Template Engine,” Jinja. [Online]. Avail-
able at: https://palletsprojects.com/p/jinja/. [Accessed: 14-Aug-2019].

[58] John Resig, “JavaScript Micro-Templating.” [Online]. Available at:
https://johnresig.com/blog/javascript-micro-templating/. [Accessed: 14-Aug-
2019].

xii

https://www.wfmc.org
https://www.wfmc.org
https://frappe.io/about
https://palletsprojects.com/p/jinja/
https://johnresig.com/blog/javascript-micro-templating/

[59] Frappe Technologies, “Bench.” [Online]. Available at: https://frappe.i
o/docs/user/en/architecture. [Accessed: 14-Aug-2019].

[60] “Git.” [Online]. Available at: https://git-scm.com/. [Accessed: 19-
Mar-2019].

[61] L. Brehm, A. Heinzl, and M. L. Markus, “Tailoring ERP systems: A
spectrum of choices and their implications,” in Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, 2001, p. 9.

[62] “New App.” [Online]. Available at: https://frappe.io/docs/user/en/t
utorial/new-app. [Accessed: 19-Mar-2019].

[63] Joe Barr, “BitKeeper and Linux: The end of the road?” [Online]. Avail-
able at: https://www.linux.com/news/bitkeeper-and-linux-end-road. [Accessed:
14-Aug-2019].

[64] DB-Engines, “DB-Engines Ranking of Graph DBMS.” [Online]. Avail-
able at: https://db-engines.com/en/ranking/graph+dbms. [Accessed: 18-Aug-
2019].

[65] “ERPNext for manufacturers (Make-to-Order.” [Online]. Available
at: https://erpnext.com/docs/user/videos/learn/manufacturing-make-to-ord
er. [Accessed: 20-Aug-2019].

[66] “Auto Creation of Material Request.” [Online]. Available at: https://er
pnext.com/docs/user/manual/en/stock/articles/auto-creation-of-material-req
uest. [Accessed: 20-Aug-2019].

[67] R. Haesen, S. Goedertier, K. Van de Cappelle, W. Lemahieu, M. Snoeck,
and S. Poelmans, “A Phased Deployment of a Workflow Infrastructure in the
Enterprise Architecture,” in Business Process Management Workshops, vol.
4928, A. ter Hofstede, B. Benatallah, and H.-Y. Paik, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 270–280.

[68] “Redis.” [Online]. Available at: https://redis.io/. [Accessed: 18-Apr-
2019].

[69] “Docker: Lightweight Linux Containers for Consistent Development
and Deployment | Linux Journal.” [Online]. Available at: https://www.linuxj
ournal.com/content/docker-lightweight-linux-containers-consistent-developmen
t-and-deployment. [Accessed: 18-Apr-2019].

[70] “Production-Grade Container Orchestration.” [Online]. Available at:
https://kubernetes.io/. [Accessed: 18-Apr-2019].

[71] “Bench Command cheat-sheet.” [Online]. Available at: https://frappe
.io/docs/user/en/bench/resources/bench-commands-cheatsheet.

[72] “Frappe Bench.” [Online]. Available at: https://github.com/frappe/be
nch#easy-install.

xiii

https://frappe.io/docs/user/en/architecture
https://frappe.io/docs/user/en/architecture
https://git-scm.com/
https://frappe.io/docs/user/en/tutorial/new-app
https://frappe.io/docs/user/en/tutorial/new-app
https://www.linux.com/news/bitkeeper-and-linux-end-road
https://db-engines.com/en/ranking/graph+dbms
https://erpnext.com/docs/user/videos/learn/manufacturing-make-to-order
https://erpnext.com/docs/user/videos/learn/manufacturing-make-to-order
https://erpnext.com/docs/user/manual/en/stock/articles/auto-creation-of-material-request
https://erpnext.com/docs/user/manual/en/stock/articles/auto-creation-of-material-request
https://erpnext.com/docs/user/manual/en/stock/articles/auto-creation-of-material-request
https://redis.io/
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://kubernetes.io/
https://frappe.io/docs/user/en/bench/resources/bench-commands-cheatsheet
https://frappe.io/docs/user/en/bench/resources/bench-commands-cheatsheet
https://github.com/frappe/bench#easy-install
https://github.com/frappe/bench#easy-install

[73] A. Hat Red, “Ansible is Simple IT Automation.” [Online]. Available
at: https://www.ansible.com. [Accessed: 18-Apr-2019].

[74] “Working With Playbooks — Ansible Documentation.” [Online]. Avail-
able at: https://docs.ansible.com/ansible/latest/user_guide/playbooks.html.
[Accessed: 18-Apr-2019].

xiv

https://www.ansible.com
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html

	Abbreviations
	Introduction
	Enterprise Resource Planning Systems vs. real workflows in manufacturing
	Business Processes
	Workflow Management
	Creating the process definition
	Workflow Enactment Service
	Conclusion regarding workflow management systems

	Enterprise Resource Planning Systems
	Two paradigms to be merged
	Quality Assurance
	Traceability and Material Identification
	Implications for manufacture
	Implications for software

	ERPNext
	Frappe framework
	ERPNext application
	Customizing ERP Systems
	Customizing ERPNext
	Process Workflows
	Communication to other critical applications in the organization

	Tools and Technologies used
	Docker
	Git
	Storage
	Workflow Editor
	Workflow Engine
	ERPNext Connector for the Workflow Engine
	Custom Applications

	A Customized ERP System
	Example Organization
	Custom Use Cases
	Sales Order
	Connecting existing platforms to ERPNext

	Workflow Editor
	Workflow Engine
	Implementation of the workflow engine
	REST API
	Implementation of the custom connector

	Custom Application
	Custom Connector for Manufacturing
	Item and Work Order Item

	Dockerizing ERPNext
	Tying it all together
	Implemented workflow
	Problems encountered

	Conclusion
	Measuring results
	Further research

	Appendix
	Tables
	Petri net diagram symbols

	Sammandrag
	Bibliography

