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Mabinogion

I Mabinogion, en walesisk saga,
beskrivs en uppgift for matematiken:
tva flockar far, en svart, en vit, ses draga
i bet langs floden pa var sida viken.

De brakningar som hors dr inte svaga,
for varje ljud far krafter av magiken

och skrammer herden att ta far av daga.
Det far som brékt tycks ¢ka flodtrafiken:

ett djur ses lystra, byta farg och sida!
Till slut har alla far fatt samma férg.
Hur lidnge tar det? Dér &r fradgans marg.

Matematiken ger en strategi
som maximerar farens mangd: savida
en flock ar storre, ska det sé forbli.

Erik Andersson (1948-2018)

This sonnet was written for a local newspaper (Abo Underrittelser, 26 October 2016)
after the author of the thesis won a Three Minute Thesis competition at Abo Akademi
University, during which the research project was presented in 180 seconds.
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Sammanfattning pa svenska

Den hir avhandlingen handlar huvudsakligen om vissa funktionaler av Markovpro-
cesser. Det dr frdga om processer som varierar slumpmadssigt med tiden, men med den
speciella egenskapen att den framtida utvecklingen beror enbart av det nuvarande
vdrdet hos processen och inte pa tidigare viarden. Denna “minneslosa” egenskap
medfoér att Markovprocesser ofta dr en anvandbar typ av stokastiska processer. De
aspekter hos processerna som hir undersoks har fraimst att géra med tiden. Dels
undersoks sa kallade trafftider, som innebér tiden det tar innan processen uppnar ett
visst védrde. Dels behandlas vistelsetider, som i sin tur anger hur lang tid som processen
befinner sig inom ett visst omrade. I avhandlingen betraktas speciellt momenten av
dessa tidsfunktionaler.

Avhandlingen kan sédgas besta av tre huvudavsnitt. Det forsta handlar om tréfftider
i urnmodeller, som dr Markovprocesser i diskret tid. I synnerhet behandlas den s&
kallade Mabinogionmodellen. Den kan beskrivas som att man gér slumpméssiga
dragningar ur en lada innehallande svarta och vita kulor, och varje gdng lagger man
till en kula av den dragna fargen men tar samtidigt bort en av motsatt farg. Antalet
svarta respektive vita kulor kommer d& att variera med antalet gjorda dragningar,
men forr eller senare kommer samtliga kulor att vara av samma farg och da upphor
processen. I avhandlingen ges uttryck fér den forvantade tiden tills detta absorberande
tillstdnd uppnas, som en funktion av processens starttillstdind, bdde nir det géller den
vanliga Mabinogionmodellen och nédr man tillimpar en strategi som 16ser ett visst
optimeringsproblem. Resultaten jamfors ocksd med den forvantade tréfftiden i en
annan urnmodell, den sa kallade Ehrenfestmodellen.

Det andra huvudavsnittet beror vistelsetider for diffusioner, som dr Markovpro-
cesser i kontinuerlig tid. Ett typexempel pa en diffusionsprocess dr det som kallas
Brownsk rorelse, som kan anvéndas for att beskriva sma partiklars rorelse i en vitska,
men som &ven tillimpas inom ménga andra omraden, exempelvis finansmatematiken.
Hér behandlas endimensionella diffusionsprocesser, och bland annat ges en rekursiv
formel for momenten av vistelsetiden pé de positiva reella talen i det fall att diffusionen
uppfyller en viss skalningsegenskap, eller f6r Laplacetransformen av momenten nér
diffusionen &r helt godtycklig. Rekursionsformeln baserar sig pa den Greenska kdrnan
hos diffusionen. Resultaten tilldimpas framfor allt pa skeva Besselprocesser, vilket i det
fallet leder till en explicit och relativt enkel momentformel.

I det tredje och sista huvudavsnittet behandlas kombinatoriska summationsformler
som anknyter till de 6vriga resultaten i avhandlingen. A ena sidan handlar detta om
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dndliga dubbelsummor dér termerna bestdr av kvoter av binomialkoefficienter, som
med hjélp av hypergeometriska funktioner kan skrivas om och i vissa fall férenklas
betydligt. A andra sidan betraktas summor som innehéller Stirlingtal av saval forsta
som andra slaget, och hidr ges nya bevis for ndgra formler med saddana uttryck.
Bevisen dr baserade pa den erhéllna rekursionsformeln f6r momenten av den positiva
vistelsetiden hos skeva Besselprocesser.

Resultaten presenteras framst i de fyra artiklar som ingér i doktorsavhandlingen.
Den inledande delen dr &mnad att fungera dels som en introduktion till &mnet, med
bakgrundsinformation som kan behévas for att ta del av innehallet i artiklarna, dels
dven som en sammanfattning och 6vergripande diskussion.
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Abstract

The main subject of this thesis is certain functionals of Markov processes. The thesis
can be said to consist of three parts. The first part concerns hitting times in urn
models, which are Markov processes in discrete time. In particular, the expected time
to absorption in the Mabinogion model is studied. For instance, we give formulas for
the expected time to absorption as a function of the initial state of the process, both in
the ordinary Mabinogion model and under a strategy that solves an optimal control
problem. The second part of the thesis is about occupation times of one-dimensional
diffusions, which are continuous Markov processes. We give a recursive formula
for the moments of the occupation time on the positive real line, in the case that the
diffusion has a self-similar property, or for the Laplace transform of the moments, in
case of a general diffusion. The recurrence is based on the Green kernel of the diffusion.
In the third part of the thesis, we give results on some combinatorial summation
identities that are connected to the other presented results. These include double
sums with ratios of binomial coefficients, as well as sums involving Stirling numbers
of both first and second kind.
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Chapter 1

Introduction

Future events always have a degree of uncertainty. Therefore, in mathematical models
of real world phenomena, it is often appropriate to use random processes. One
important aim in probability theory is to develop the mathematical theory behind
such stochastic processes. Although a stochastic process is by definition random, so
that future values of the process cannot in general be predicted with absolute certainty,
we may still be able to determine the probabilities for different outcomes, and thereby
know in advance how the process is expected to behave.

When studying stochastic processes there are many different aspects that might be
of significance. Often the value and fluctuations of a stochastic process are relevant
features. For instance, given that a certain stochastic process is used to model a
financial asset, an investor may want to know what value the process is likely to have
after a given amount of time, or the variance of the process, signifying the amount of
risk.

However, sometimes the variable of interest rather concerns the time of the process.
For instance, how long time will it take before the process reaches a determined level
for the first time? This is a so called hitting time, and it is important in many financial
problems, for instance when finding the optimal time to sell an asset. Another question
might be: how long time will the process stay above a given threshold? This is an
example of an occupation time of the process. Both these concepts are central here and
will be explained in more detail later.

This thesis concerns different types of Markov processes. The defining feature
of such processes is a so called memorylessness property, which means that future
outcomes of the process only depends on the current value and not on how the process
has moved in the past. This property makes Markov processes a very useful class of
stochastic processes, with applications in many different fields.

The common theme of the thesis could be described as moments of time functionals
in Markov processes. The title makes this somewhat more specific. Namely, one part of
the thesis focuses on hitting times in some urn models, which are examples of discrete
Markov processes, and especially the absorption time in the Mabinogion urn model.
The other main part of the thesis concerns occupation times, primarily the occupation

1



2 CHAPTER 1

time on the positive real numbers for one-dimensional diffusion processes. The main
results are expressions for either the first moment or general moments of the hitting
time and occupation time distributions.

Although not the main topic of the thesis, another recurring theme is combinatorial
summation identities. In fact, two of the included articles arose initially from a few
particular identities that are used to derive some of the moment formulas. A discussion
of such identities is, therefore, given in a separate chapter.

Functionals of Markov processes is far too wide a topic for a comprehensive
treatment of the whole subject. Also, the list of references are but a selected sample
from the vast literature on Markov processes. Naturally, the contents of the included
articles in the thesis are rather specific, but the following chapters contain a somewhat
more general treatment of the subject.

1.1 Structure of the thesis

The thesis consists of an introduction part and four original research articles. Sum-
maries of the articles are given as part of Chapters 3-5, and the full articles are enclosed
at the end of the thesis. Chapter 2 provides some background on stochastic processes.
First, Markov processes are treated in a general setting. Thereafter, Markov processes
in discrete time, called Markov chains, and one-dimensional diffusion processes are
discussed separately. In both cases, a number of supplementary examples are given.
Finally, martingale processes are briefly introduced.

The presentation in Chapter 3 is focused on the so called Mabinogion urn model.
This includes a summary of the results in Article I regarding the absorption time of
the Mabinogion process. Chapter 4 is about occupation time functionals for Markov
processes. The primary instance concerned is the occupation time on the positive
real numbers for one-dimensional diffusions, which is the topic of Article III, but
a couple of new results are also given for occupation times in the Mabinogion urn
model. The introduction part of the thesis is concluded in Chapter 5 with a discussion
on combinatorial identities, including summaries of Articles II and IV, as well as an
outline of computerized proofs.
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1.2 List of original articles

The following four articles are included in the thesis, and will be referred to using the
numbers I-1V.

I Stenlund, D. (2018). On the Mabinogion urn model. Adv. in Appl. Probab. 50,
327-346.

I Stenlund, D. and Wan, J. G. (2019). Some double sums involving ratios of
binomial coefficients arising from urn models. J. Integer Seq. 22, Art. 19.1.8, 1-17.

ITI Salminen, P. and Stenlund, D. (2020). On occupation times of one-dimensional
diffusions. . Theoret. Probab. DOI 10.1007 /s10959-020-00993-3

IV Stenlund, D. (2020). Some observations on the connection between Stirling
numbers and Bessel numbers. Submitted, preprint available at arXiv:2007.11557
[math.CO].

1.3 Contributions by the author

The following comments clarify the contributions of the author of the thesis (DS) to
the two co-authored articles.

IT The original idea is due to DS. The proof method and some extensions were
provided by JW and later refined by DS. Both authors contributed to the
development of the results and to the writing of the article.

III The basic idea behind the method is due to PS. Most of the calculations were
carried out by DS. Otherwise, both authors contributed jointly to the article.






Chapter 2

Preliminaries on stochastic processes

A stochastic process is a mathematical object that describes the development over time
of a random phenomenon. To be more precise, a stochastic process X = (X;)ser is
a collection of random variables X; that are defined on the same probability space
(Q, 7, P) and take values in the same space. The variable ¢ is usually interpreted as
the time of the process, and thus the stochastic process is seen as moving randomly
over time. If the time set T is countable, the stochastic process “jumps” at discrete time
intervals, whereas if T is an interval in R, the transitions happen continuously in time.
The processes primarily treated here are Markov processes, either discrete urn models
or continuous diffusion models. In this chapter, we define some important concepts
regarding these processes.

2.1 General Markov processes

Let X = (X¢)ter be a stochastic process on a probability space (Q, 7, P) taking values
in a measurable state space (E, &). Here & is a o-algebra on E. The index set T can
be defined in a very general way, although in what follows we take T to be either
N:={0,1,2,...} orR; = [0, 0). Assuming that the process X is in a given state x € E
at time s, there is a certain probability that X will have a value in a given subset A C E
at time ¢. If all such transition probabilities depend only on the time difference t —s,
and not on the individual values of s and ¢, the process is said to be homogeneous in
time. Here we will only consider time-homogeneous stochastic processes.

Definition 2.1. A family of mappings P;: EX & — [0,1], t € T, is called a time-
homogeneous transition function if

(i) the mapping x — Pi(x, A) is measurable forall A € Eand t € T,
(ii) the mapping A — Py(x, A) is a probability measure on & forall x e Eand t € T,

(iii) forallx e Eand A € &,
1, x€eA,

PO(X/A):{O XQA

5



6 CHAPTER 2

(iv) the Chapman-Kolmogorov equation

Pros(x, A) = /E Pu(x, dy)Pi(y, A)

holds forallx e E, A€ Eand s, t € T.

For a stochastic process, the interpretation of the transition function P;(x, A) is that
it represents the probability that the process moves from state x to a state in the set A
in the time ¢,
Pi(x,A) = P(X; € Al Xy = x).

The linear operator P; generated by the transition function is defined as

P (x) = /E F@)Pi(x, dy),

where f is a bounded and measurable function on E. It can be seen that the family
{P; : t € T} is a semi-group, since

Piis = PiPs.
Let (F¢)¢=0 be a filtration, that is, a non-decreasing ordering of sub-g-algebras in 7.

Definition 2.2. The process X is said to be adapted fo the filtration (F)ier if X¢ is
Ft-measurable for every t € T.

Loosely speaking, a filtration represents the information about the process that
is available at time ¢, and if a process X is adapted to the filtration then we can
determine X; based only on this information. Every stochastic process X is adapted to
its natural filtration X := 0(X; : s < t), which is the smallest o-algebra generated by
(Xs)s<t. Itis a standard assumption that the filtration (7;):er of a stochastic process is
right-continuous,

Fi=F =
s>t
meaning that any information about the process known immediately after ¢ is also
known at time ¢.

Definition 2.3. An adapted process X is called a time-homogeneous Markov process
with respect to the filtration (F+)ier and with transition function Py if, for any bounded and
measurable function f ands,t €T,

E(f(Xeo)|Fs) = P f(Xs),  P-as. @

The defining property of a Markov process is perhaps best illustrated by considering
the function f = 14 for some A € &, in which case the identity in (1) becomes

P(Xirs € AlFs) = Pi(Xs, A), P-as. 2
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In other words, at any time s, the probability that the process takes a value in the
set A at any fixed point in the future depends only on the current value X, of the
process, and not on any of the past values. All Markov processes are therefore said to
be memoryless. This fundamental property makes Markov processes a very useful
class of stochastic processes. There is also a stronger version of the Markov property,
but for that we first need the notion of stopping times.

Definition 2.4. A random variable T that takes values in T U {oo} is called a stopping time
with respect to the filtration (¥ )ier if, forall t € T,

{t <t} € F;.

This definition means that 7 is a stopping time if we at any time f can determine
whether 7 has occurred or not, if we know everything that has happened up to ¢. For
instance, a typical example of a stopping time is the first hitting time of a process X on
a given value a, defined as

H, =inf{t € T : X; = a}. (3)

Under very general assumptions on X this is a stopping time, since at any point we
can check if the process X has already attained the value a. On the other hand, the
time at which the process X attains its maximum value is not a stopping time, since at
any t we cannot know if the maximum value has already been attained or if X will
eventually reach a greater value than the highest so far.

In the following, let P, and E, denote the probability measure and expectation,
respectively, when the process starts at x € E. Let 7 be a stopping time with respect to
a right-continuous filtration (7 ):er, and define the stopping time o-algebra

Fo={AcFiAn(rstyer, vizo),

which describes the information of the process known up to and at the stopping time 7.

Definition 2.5 (Strong Markov property). The stochastic process X is said to have the
strong Markov property at a finite stopping time t if, forany t > 0,

E. (f(XesIFe) = Bx, (F(X1)), Peas.

The process X is called a strong Markov process if it has the strong Markov property at any
finite stopping time T.

The strong Markov property means that the Markov property holds not only at
deterministic times but also at stopping times. As its name suggests, the strong
Markov property implies the Markov property, since any deterministic time is clearly
a stopping time. However, the reverse is not necessarily true. The strong Markov
property is of major importance in the treatment of occupation times of diffusions
in Article III, where a diffusion process starting from an arbitrary positive value is
restarted at the first hitting time of zero.
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2.2 Markov chains

In this section we focus on Markov processes in discrete time.

Definition 2.6. A Markov process (X¢)ter with a countable index set T is called a Markov
chain.

By the term “Markov chain” we hereafter refer to Markov processes where both the
state space E and the time index set T = N are countable, and & is a discrete o-algebra
on E. Note, however, that the definition also includes Markov processes in discrete
time taking values in a general measurable space [36]. Sometimes the term is also
used in a wider sense, for instance “continuous-time Markov chain” referring to a
Markov process with countable state space E but T = [0, o), although such cases are
not treated here.

For a Markov chain, the Markov property in (2) can be expressed as the identity

P(Xuv1 =an1|Xo=a0,..., Xy =ay) = P(Xp1 = a1 Xy = ay)

holding for every n € N and all states {ag,a1...,a,+1} € E. It may be noted that
with a discrete state space, the Markov property is equivalent with the strong Markov
property, which means that every Markov chain also has the strong Markov property.

For a Markov chain that is time-homogeneous, the transition probabilities can be
written as a transition probability matrix P with entries

Pi,j =P(Xp41 = aj|Xn = a;).

The probabilities of transitioning from one state to another in precisely k steps are
subsequently given by the entries in the kth power of the matrix P, that is,

(PY)ij = P(Xpsk = a1 Xy = a7).

Especially if the state space is small, a Markov chain can also be described using a
graph with directed edges, where every node is a state, and an edge from node i to
node j represents a positive transition probability from state i to state j. The values of
the transition probabilities are usually indicated as weights on the edges.

Definition 2.7. A state a; is called an absorbing state if
Pi,i =1, Pi,]‘ =0,1+# ]

A Markov chain is called an absorbing Markov chain if it has at least one absorbing state
and it is possible to move from any state to an absorbing state in a finite number of steps.

Later we will see some examples of absorbing Markov chains. When such a process
reaches an absorbing state, it cannot move to any other state after that. The following
theorem says that this will eventually happen with probability 1.

Theorem 2.8. Let X be an absorbing Markov chain with finite state space E. Then, for any
initial state, the time until X reaches an absorbing state is almost surely finite.



PRELIMINARIES ON STOCHASTIC PROCESSES 9

Proof. Take any state a; € E. Since X is an absorbing Markov chain, there exists a
set A C E of absorbing states, at least one of which can be reached from a;. Let
m; = min{n : P(X,, € A|Xo = a;) > 0} be the least amount of steps needed to reach
one of the absorbing states, and let m be the largest of these numbers for all states
a; € E. Then A can be reached from any state in m steps. Since the number of states in
E is finite, it follows that m is also finite. Hence, for any initial state, the probability of
absorption in at most m steps is at least

p =minP(X,, € A|Xo =a;) > 0.
a;€E

Conversely, the probability of X not being absorbed after m steps is less than or equal
to 1 - p, and, by iteration and the Markov property, the corresponding probability
after nm steps is less than or equal to (1 — p)". Since |1 — p| < 1, this tends to zero
when n — oo, and therefore the probability of no absorption at all also tends to zero,
which means that X reaches an absorbing state almost surely. ]

Corollary 2.9. Let X be a Markov chain with finite state space E and no absorbing states. If a
given state a € E can be reached from every other state in E, then, for any initial state, the first
hitting time of « is almost surely finite.

Proof. If a is the initial state, then the hitting time is 0. If the process X starts in another
state we can consider a as being an absorbing state without it affecting the first hitting
time from any other state. This new Markov chain is absorbing, with a being the
only absorbing state, and the first hitting time of « is then equivalent with the time
to absorption. By Theorem 2.8, it follows that the hitting time of « is almost surely
finite. m|

Next we will have a look at some stochastic processes that are Markov chains. A
random walk is a very typical example of such a process.

Definition 2.10. A stochastic process (Sp)nen is called a random walk if

n
Su =80+ ) Xi,
i=1

where {X,, : n > 1} are independent and identically distributed random variables. If So € Z
and the random variables X; are integer valued, then the process S is a random walk on the
integers Z.

From the definition it is clear that any random walk is a Markov chain, since at any
point in the process, the next step is independent of all past steps. When Sg = 0 and
P(X; = +1) = P(X; = 1) = 1, the random walk is said to be simple and symmetric. This
is a standard example of a random walk, and one that has been widely studied. The
process is easy to picture — you can think of repeatedly flipping a coin and moving
either up or down depending on the coin flip — but it nevertheless has extensive results,
not the least since it can be seen as a discrete approximation of Brownian motion (see
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Section 2.5). For more background and some famous results on random walks, see
Révész [35].

A famous application of a Markov chain model is the PageRank algorithm, which is
likely the most famous sorting algorithm used by Google to rank webpages for search
engine results [16]. Although not the only ranking algorithm used, PageRank has been
a major reason behind the success of the Google search engine. In the PageRank model,
the world wide web is seen as an enormous Markov chain, where the states are web
pages and the transitions are determined by links to or from other pages. The process
is like a person randomly surfing on the web by clicking on links to new pages (but
never using the “back”-button — that would violate the memoryless Markov property).
In addition, there is a certain probability that the random surfer gets bored and jumps
to a completely random page at any point in the process. Then, Markov chain theory
ensures that this system has a unique stationary distribution, which describes the
long term probability that the random surfer will visit any given web page. This is a
measure of the relative importance of the web pages, and the stationary distribution
of the Markov chain thus corresponds to the web page ranking.

Other applications of Markov chains include various Markov Chain Monte Carlo
(MCMC) methods. These are used for sampling from a probability distribution (usually
in high dimensions) by constructing a Markov chain with the target distribution as
its stationary limit. After a large number of steps, the relative amount of time that
the process spends in different states will then correspond to the target distribution.
A number of applications of the MCMC approach, including an interesting example
from cryptography, are given by Diaconis [8].

2.3 Examples of urn models

In this section, we will see a few more examples of Markov chains, in the form of urn
models. The concept of an urn model in probability theory is very old. Urn models
are first mentioned in Ars Conjectandi (1713) by J. Bernoulli, although some problems
that can be expressed in terms of urn models were studied earlier by Huygens. The
image of drawing balls from an urn is simply a representation of a discrete uniform
distribution on a number of objects. A large amount of results in probability theory can
be derived from this rather simple model, as demonstrated by Johnson and Kotz [19].
They show, for instance, that many probability distributions can be thought of in terms
of urn models, and list several areas of applications, including models for genetics,
population growth and learning curves. See also Kotz and Balakrishnan [26] and
Mahmoud [30] for more applications and theory of urn models in general.

In what follows, we let the term “urn model” refer explicitly to a general Pélya urn
model. The basic idea of such a model is the following. Imagine an urn containing
balls of a number of different colours. At every time step in the process, one ball is
drawn uniformly at random from the urn, and is replaced after its colour has been
observed. Depending on the colour of the drawn ball, the state space then changes
according to some predetermined system, i.e., some balls of certain colours may be
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removed from or added to the urn. This change is assumed to depend only on the
colour of the drawn ball. Thereafter, the procedure is repeated, meaning that a new
ball is drawn from the urn, and so on. The resulting process is a (time-homogeneous)
Markov chain, since at any point in the process the transition probabilities correspond
to the probabilities of certain colours being drawn in the next step, and clearly these
probabilities only depend on the current state of the urn.

Assuming that there are n colours, the system determining the change in composi-
tion at each step can be described by an n X n replacement matrix M, where each entry
M; ; is an integer corresponding to the number of balls of colour j that are added to
the urn when a ball of colour i is drawn. A negative number naturally means that
some balls are removed instead. In this case we take it for granted that the number of
removed balls of a certain colour can be at most the number of remaining balls of that
colour, so that there are never any negative numbers of balls in the urn.

Here follows a brief presentation of some basic Pélya-type urn models. In all of
the following examples, we consider urns with only two colours, so the replacement
matrix M can be written ,

a
=)

For consistency with results presented later, we call the colours white and black. If
a=d=-1and b = ¢ = 0, then the model simply corresponds to drawing without
replacement from the urn.

Example 2.11. The classical example is often called a Pélya-Eggenberger urn after the
authors of an influential paper on the subject [9]. This is the case whena = d > 0 and
b = ¢ = 0, whereby the replacement matrix becomes

a 0
M, - ( ‘ ) .
In other words, every time a white ball is drawn, that ball and an additional number a
of white balls are added to the urn, and similarly when a black ball is drawn, the same
number a of black balls are added. Thus, the total number of balls in the urn increases
with every step of the process. A typical question regarding this model would be to
determine how the proportion of white balls in the urn is distributed after a certain

number of steps. The Pélya-Eggenberger urn model has been widely studied and also
generalized in various ways. For further reading we refer to Mahmoud [30].

Example 2.12. Another famous urn model is the Ehrenfest urn, for which

-1 1
w1 )
In this model, every time a ball is drawn from the urn it is replaced by a ball of the
opposite colour. This urn model differs significantly from the Pélya-Eggenberger urn,

since the total number of balls in the urn always stays the same throughout the process.
Note that if, after any step, all balls are of the same colour, then one of these has to
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change colour in the following step. Hence, the process has two reflecting boundaries
represented by the states when all balls are either white or black. Also note that unless
the process is stopped at some point it continues on indefinitely without converging
to any single state. In fact the Markov chain is recurrent, meaning that every visited
state will almost surely be visited again at some point.

The Ehrenfest model was intended to illustrate the second law of thermodynamics.
The connection is perhaps clearer if we imagine, rather than two colours of balls
in the same urn, that there are two urns and that every time a ball is drawn it is
moved to the other urn instead. This can be seen as a crude model for the diffusion of
moving particles in two adjacent containers. The particles tend to spread out, and the
system will approach an equilibrium with an equal concentration of particles in both
containers. In a similar way, the process in the Ehrenfest urn model will always tend
towards the symmetric state, in which there is an equal number of white and black
balls. In Section 3.2 we will return to the Ehrenfest urn and obtain a formula for the
expected time it will take to reach this state if the process starts with balls of only a
single colour.

Example 2.13. There are also urn models where the number of balls decreases at every
step. The OK Corral urn is such a model [22, 46]. If a white ball is drawn, then a black
ball is permanently removed from the urn, and vice versa. The name of this model
obviously alludes to the famous gunfight at the O.K. Corral in 1881. The urn model is
described by the matrix

Mok = ( 0 1) ’

-1 0
and we see that, unlike in the Ehrenfest model, the same state can never be visited
again. It is also clear that the process is an absorbing Markov chain, since no more
transitions can take place when there are only balls of one colour left in the urn.
See Kingman and Volkov [23, 24] for results on the number of remaining balls at
absorption.

Example 2.14. The urn model that primarily is studied in this thesis is the Mabinogion
urn model [45]. This model will be described in more detail in Chapter 3, and for now
we only remark that the corresponding replacement matrix is

1 -1
o= )

which gives the process a sort of dual nature compared to the Ehrenfest urn. The
Mabinogion urn shares some similarities with all of the aforementioned models, i.e.,
the Polya-Eggenberger model (the drawn colour increases in number), the Ehrenfest
model (the total number of balls stays constant) and the OK Corral model (the opposite
colour decreases in number), although it seems that the Mabinogion model has
not been as much studied in the literature as its more famous counterparts. The
Mabinogion process is an absorbing Markov chain, and the main results in Article I
are on the expected number of steps until the process stops by reaching one of the
absorbing states.
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2.4 One-dimensional diffusions

We now move from discrete Markov chains to processes in continuous time, and
give some basic properties of one-dimensional diffusion processes. These processes
are complicated to describe in detail, and a rigorous treatment of diffusion theory
inevitably demands rather lengthy explanations. Therefore, some simplifications are
made in the presentation below, and a few technical details may be omitted for the
sake of readability. The references [5, 12,17, 37, 38] provide further results on diffusion
processes in general.

Definition 2.15. A stochastic process X that takes values on an interval I C R is called a
one-dimensional diffusion process (also called linear diffusion) if it is a time-homogeneous
strong Markov process with almost surely continuous sample paths.

Definition 2.16. A diffusion process X is called regular if
Py(Hy, < 00) >0,
forallx,y €l

Recall from (3) that H, here denotes the first hitting time of a € I. The regularity
property means that from any starting point, the diffusion can reach any other point in
the state space in a finite number of steps. We will assume that all diffusion processes
treated here are regular diffusions.

Every diffusion process can be described through three characteristics known as
the speed measure, scale function and killing measure. The killing measure k is related
to the distribution of the location of X at the exit time { := inf{t > 0: X; ¢ I}, when
the process first leaves the interval I. We will not consider diffusions with killing, so
hereafter we assume, for simplicity, that the killing measure k = 0, meaning that the
diffusion will never leave the interval I on which it lives.

Definition 2.17. The scale function S of the diffusion X is a continuous and strictly
increasing function from I to R such that, for any x € (a, b) C I,

_S(b) - S(x)

P.(H, < Hp) =1~ Px(Hp < H,) = S(b)—S(a)’

If S(x) = x the diffusion is said to be in natural scale.

For a proof of the existence of S, see Revuz and Yor [37, p. 301]. The scale function
describes the drift of the diffusion. For example, if X is in natural scale and starts at
some point Xy = x, then it is equally likely that X hits x + 1 before it hits x — 1 as it is
for the other way around. On the other hand, a diffusion process with some other
scale function may instead be more likely to go up than to go down. If the diffusion X
has the scale function S, then it follows that (S(X})):>0 is a diffusion in natural scale.

Note that if S is a scale function of X then S = aS + b, where a > 0 and b are
constants, is also a scale function. Moreover, it holds that all scale functions of X must
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be of the form § [37, p. 301], so up to this kind of increasing affine transformation, the
scale function is uniquely determined (which explains that it is usually referred to as
the scale function).

Definition 2.18. Let F: [a, b] — R bea strictly increasing function. A real-valued function u
is F-concave on [a, b] if, foralla <1 <x <r <},

FO) -F) o F@-F0)
F(r) - F(]) F(r) - F()

A function u is F-convex if —u is F-concave. The right and left F-derivatives of u are defined
as

u(x) >

() + ().

dfu o u(x+h)—ux) du gy M) —ul)
aF M e -rm ™ Y TR e -y
respectively.

The right and left F-derivatives in the above definition exist on (4, b) and are
non-increasing functions, and furthermore, if F is continuous, they are right and left
continuous, respectively [37, pp. 544-547].

Proposition 2.19. There exists a unique measure m on the interior of I such that, for any
open subinterval (a, b) where [a,b] C I, it holds for all x € (a, b) that

b
E. (min{H,, Hy}) = / Gap(x, y)m(dy), @)

where

(5(x) = S(a))(5(b) = S(y))
S(b)-S ’
Gus(: 1) = (s(y) - SN0 - 5:)
S(b) - S(a) ’
Proof. See Revuz and Yor [37, p. 304], or Freedman [12, pp. 126-128] for a diffusion in

natural scale. The proof is based on the fact that the left hand side of (4) is a continuous
and strictly S-concave function in x on the interval [a, b]. O

a<x<y<b,

a<y<x<b.

Definition 2.20. The measure m in (4) is called the speed measure of the diffusion X.

As can be seen from (4), the speed measure is connected to the expected exit time
of the process from a given interval. Thereby, the speed measure is an indicator of how
fast the process moves, although if the speed measure is large, the diffusion actually
moves slower. Rogers and Williams remark that “if the name ‘speed” measure were
not so well established, we would be tempted to call m the ‘sloth’ measure” [38, p. 277].
One could thus think of m as a measure of how much time it takes for the process to
move through a certain area (or point). For instance, a sticky point is a point where the
diffusion stays for a positive amount of time before moving on, and this is reflected
in the speed measure by an additional term of the Dirac measure in this point. We
could also allow m to be infinite, in which case m({x}) = co would mean that x is an
absorbing point where the diffusion stops altogether. However, note that then the
diffusion is no longer regular.
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Definition 2.21. Let Cy,(I) be the space of continuous and bounded functions from I to R
equipped with the supremum norm, || f|| = sup,; | f(x)|. The infinitesimal generator of the
diffusion X is the operator G given by

Pif - f
Gf =lim —

t}0

whose domain is all functions f € Cy(I) for which the limit above exists in Cy(I) and

sup
t>0

One could say that the infinitesimal generator describes the movement of the
diffusion process in an infinitesimal time interval, and this generator thus contains a
lot of information about the process. The infinitesimal generator can also be described
through

d d*
Gf() = 435 f0).

There exists two linearly independent functions i/, and ¢, that are continuous

and positive solutions to the generalized differential equation

Gf(x)=Af(x), @)

such that ¢, is increasing and ¢, is decreasing, and both functions are uniquely
determined up to a multiplicative constant under certain boundary conditions. These
functions are called the fundamental solutions to (5). Their Wronskian determinant,
with respect to the scale derivative, is given by

- 4

[

4 ¢<x)

d*(ﬁ(x)

P(x) = p(x)

() — p(1) (’)("),

(6)

and depends only on A and not on x. The fundamental solutions determine the
Laplace transform of the first hitting time H, of a point a € I, namely

lpA(x), x<a,
E, (e ") = ¥a(@)
pa(x)
pa(a)’
see Itd6 and McKean [17, p. 128] or Jeanblanc, Yor and Chesney [18, p. 278].
Forany t > 0, x € I and A € B(I), it holds that

Py(x, A) = /A p(t;x, yym(dy),

where the transition density p is symmetric, p(¢; x, y) = p(t; y, x), and jointly continu-
ous in all variables (Itd6 and McKean [17, p. 149]).
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Definition 2.22. The Green kernel (or Green’s function) G, is defined as

Ga(x,y) :=/O e Mp(t;x, y)dt, )

where p is the transition density with respect to the speed measure m.

Thus, the Green kernel is the Laplace transform of the transition density p(¢; x, v)
with respect to the time variable ¢. It can also be expressed as

wllYa(ealy), x<y,

Galx,y) = {wfl/)/\(y)@/\(x)/ x>y,

where 1, and ¢, are the fundamental solutions to (5) and w, is the Wronskian
constant as defined in (6), so the functions ¢, and ¢, can be determined directly from
the Green kernel when this is known.

For a list of characteristic features, including speed measure, scale function, infinites-
imal generator and Green kernel, for several common one-dimensional diffusions, see
Borodin and Salminen [5, Appendix 1].

2.5 Examples of diffusions

There are numerous applications of diffusion processes in a wide range of fields. In
this section are a few examples of well-known one-dimensional diffusions.

Brownian motion

The origin of the term “diffusion” comes from physics and the tendency of particles in
a gas or fluid to spread out (diffuse) from an area of higher concentration. In 1827, the
botanist Robert Brown observed that microscopic particles in a fluid displayed tiny
and seemingly erratic movements [6]. Brown himself could not give an explanation,
but he examined particles from many different materials, both organic and inorganic
(including a fragment from the Sphinx), and concluded that such a motion is found in
all sufficiently small particles suspended in a fluid. This phenomenon is now known
as Brownian motion. The explanation for the motion — that it is caused by the collisions
of molecules in the fluid — was given by Albert Einstein in 1905, and his paper on the
subject gave conclusive arguments for the existence of atoms.

A stochastic process corresponding to Brownian motion was first described by
Louis Bachelier in 1900, but the first rigorous mathematical construction was done by
Norbert Wiener, who proved the existence of a stochastic process that satisfies all the
properties in the following definition.

Definition 2.23. A stochastic process (W;);»o is called a standard Brownian motion if the
following properties hold.

(i) Wop =0.
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(ii) The process has independent increments; for all 0 < t; < tp < --- < ty, the random
variables

Wi, = Wiy, Wi, = Wy, oo, W, = Wy,
are independent.

(iii) The increments are stationary and normally distributed; for all0 < t1 < tp, Wy, = Wy, ~
N, ty — £1).

(iv) The function t — Wy is almost surely continuous.

In order to distinguish the stochastic process from the physical phenomenon also
called Brownian motion, the process defined above is sometimes called a Wiener
process. Despite the slight risk of confusion, the term Brownian motion will hereafter
be used for the stochastic process, since this notation is widely used. A tribute to
Wiener is instead given through the notation (W;);»o for a standard Brownian motion.

As described in the previous section, a diffusion process is determined by its scale
function S and speed measure m. A standard Brownian motion is a regular diffusion
on R with the speed measure and scale function given by

m(dx) =2dx and S(x)=1x,

respectively. Recall that this choice is unique only up to a certain affine transformation.
Some authors instead let the speed measure be equal to the Lebesgue measure, but
here we prefer, as is a common choice, to have the Brownian motion in natural scale.

Brownian motion can be considered to be the most important stochastic process,
due to both its purely mathematical properties and its widespread impact on models
in other fields [40, p. 29]. It lies in the intersection of several significant classes of
stochastic processes, being both a Markov process and a martingale, as well as a Lévy
process and a Gaussian process. Furthermore, Brownian motion is the quintessential
diffusion process. In fact, other diffusions can be constructed via a time transformation
on a Brownian motion [38, Ch. V, Sect. 7]. Standard Brownian motion is also central in
stochastic integrals (Itd calculus) and stochastic differential equations.

Diffusions as solutions to stochastic differential equations

Some diffusions can be expressed as a solution to a stochastic differential equation
(SDE) of the form
dX; = H(Xt)dt + G(Xt)th,

where W is a standard Brownian motion. Here y is called the drift function and
o the volatility function of the diffusion satisfying some regularity assumptions.
This gives an alternative representation of the diffusion process compared to the
characteristics of scale function and speed measure. Note that the equation above is
for time-homogeneous diffusions, which we focus on here, but it could be written
more generally by letting the functions p and o depend also on ¢.



18 CHAPTER 2

Geometric Brownian motion

Some commonly used applications of one-dimensional diffusions are found in financial
mathematics. In particular, the famous Black-Scholes—-Merton market model assumes
that the stock price of a risky asset follows a diffusion process known as geometric
Brownian motion. It was the first widely used model for fair pricing of option contracts,
and the model has had a significant influence on the financial option markets. In 1997,
Scholes and Merton were awarded the Nobel Prize in Economics for their work (Black
had passed away by then).
A geometric Brownian motion (S;);»o satisfies the SDE

dSt = ySt dt + 0S; th,

for constants y and o. This is one of few SDEs that can be solved analytically, and the
solution is given by

S; =S exp((y - 1o%)t+ th).

Letting v = % — 1, the speed measure of the geometric Brownian motion is

m(dx) = %xzv‘l dx,

and the scale function is

X—2v
— oy * 0/
Sry=4 7
In(x), v=0.

Geometric Brownian motion is a very widely used model for stock price movements.
The assumption that volatility is constant over time is, however, seldom realistic, and
therefore the model is often modified so that ¢ is a function of time and stock price,
or of another Brownian motion to account for randomness in the volatility. An
advantage of the ordinary geometric Brownian motion is that it allows for relatively
easy calculations compared to other more intricate processes.

Bessel processes

Let W be a Brownian motion in n dimensions, W; = (W(l), ., Wt(n)), where the
components W are independent Brownian motions in R. Then the distance from
the origin, given by the Euclidean norm |[|[W;|| in R”, is a Bessel process, which is a
one-dimensional diffusion. The Bessel process X satisfies the SDE

=1+ dw,.

dX; =
L7 ox,

This SDE is reasonable also if 7 is not an integer, so the dimension parameter n of a
Bessel process can be any real number. An alternative and commonly used parameter
is v = n/2 — 1, which is used in Article III. With this parametrization, the speed
measure is given by

m(dx) = 2x?"* 1 dx,
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and the scale function by

x72v
—i2, v #0,
S(x) — 2v v
In(x), v=0.

The state space of a Bessel process is either [0, o) or (0, ), depending on v, but
the process can be made two-sided by allowing excursions from 0 to be either on
the positive side or the negative side. Furthermore, if the probabilities for the next
excursion being positive or negative are not necessarily equal, but some number
B € (0,1), then the process is called a skew Bessel process. Note that this only makes
sense for v € (-1, 0), since for positive v (dimension > 2) the Bessel process never hits
0 and is therefore strictly positive at all times, whereas for v < -1 the drift towards
zero is so strong that the Bessel process is absorbed immediately when it hits 0.

The occupation time on the positive real line (0, o) of skew Bessel processes is
studied in Article III. These processes include, as special cases, skew Brownian motion
(when v = —1/2) and standard Brownian motion (when also § = 1/2).

2.6 Briefly on martingales

Most of this presentation concerns different types of Markov processes, but a few
words need to be said about another useful class of stochastic processes, namely that
of martingales. The theory of martingales, primarily pioneered by Doob based on
some earlier work by Lévy and Ville, has become a very important part of modern
probability theory.

The defining feature of a martingale process is that at any given time during the
process, the conditional expected value at a future time is always equal to the present
value. Therefore, the notion of a martingale can be thought of as a fair game — if the
process represents the payoff from some form of betting game, then the martingale
property ensures that the player is neither expected to make a profit nor expected to
lose, and hence the game is fair. This defining property is given a precise meaning in
the definition below.

Definition 2.24. A stochastic process X on a probability space (QQ, ¥, P) is a martingale
with respect to the filtration (F)ier if

(i) X is adapted to (Ft)ter,
(ii) B(X[) <o, VteT,
(iii) B(X;|Fs) = Xs, as. Vs, te€T,s < t.

If the last identity holds with inequality < (>) instead, then X is called a supermartingale
(submartingale) with respect to (F)ter.

Note that a martingale is always defined with respect to a given filtration. The
process may not be a martingale when another filtration is considered. The martingale
property is not connected to the Markov property described in Definition 2.3, so there



20 CHAPTER 2

are some martingales that are also Markov processes, and there are some martingales
that are not. Naturally, it is the former group that are of interest in this thesis.

A few examples of martingale processes include the simple, symmetric random
walk (in discrete time) and standard Brownian motion (in continuous time). In
addition, the concept of martingales will be used in Section 3.1 when we consider an
optimal control strategy in the Mabinogion urn model.

Theorem 2.25. Let & be any random variable with E(|&|) < co and let (F)ter be a filtration.
Then the stochastic process (Z;)ier defined by

Z; = E(&|FY)
is a martingale with respect to (F)ter.

Proof. (i) Clearly, Z; is adapted to (F¢)ser-
(ii) By the law of total expectation,

E(1Z:]) = E([E(E|F)D) < E(E(IE]|F+)) = E(&]) < 0.

(iii) For s, t € T with s < t it follows directly from the tower property of conditional
expectation that
E(Z:|F5) = B(E(E|F0)IF5) = E(EIFs) = Zs,

almost surely. O

A martingale defined as in Theorem 2.25 is sometimes called a “Doob martingale”,
and is a useful construction of a martingale process. The following theorem on the
convergence of supermartingales (or submartingales) was also first given by Doob,
and is a central result in martingale theory.

Theorem 2.26 (Martingale convergence theorem). Let X be a supermartingale, either
right-continuous or in discrete time, which is bounded in L1, i.e., sup, E(|X¢|) < co. Then
the limit Xoo = lim; oo X; exists almost surely and is a.s. finite.

Proof. We refer to Williams [45, Ch. 11] for a proof of the martingale convergence
theorem in discrete time. The same reasoning can be extended to the (right-)continuous
case; cf. Theorems (2.2) and (2.10) in Revuz and Yor [37, Ch. II]. O

The next chapter contains an example of how the martingale convergence theorem
can be used to show the optimality of a strategy in an optimal control problem.
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The Mabinogion urn model

3.1 The Mabinogion sheep problem

We now take a closer look at the Mabinogion urn model, which is the topic of Article I.
Recall from the description in Section 2.3 that this urn model is defined in the following
way:

* There is an urn containing balls of two colours (white and black).

e Attimes1,2,3,... one ball is drawn uniformly at random from the urn. The
colour of the ball is observed, after which the drawn ball is returned to the urn.

¢ If all remaining balls are of the same colour, nothing happens (the process has
been absorbed).

* Otherwise, if the drawn ball was white, one of the black balls is replaced by
a white ball. Conversely, if the drawn ball was black, one of the white balls is
replaced by a black ball.

Let W, and B, be the number of white balls and black balls, respectively, at time n
in the Mabinogion urn model. Then the stochastic process {(W,,B,) : n =0,1,...}
is a Markov chain. Moreover, it is an absorbing Markov chain with two absorbing
states, namely when all balls are of the same colour, either black or white. Since the
state space is finite (the number of states being one more than the total number of
balls in the urn), it follows from Theorem 2.8 that the first hitting time of either of the
absorbing states,

H := min{n : W, =0or B, =0},

is almost surely finite. We refer to this as the absorption time of the process.

The Mabinogion urn model has been suggested as a discrete model for transmission
of radiation damage [3, pp. 227-230] and as a model for a presidential election campaign
between two candidates [11]. The model was first connected to the name “Mabinogion”
by David Williams in his book Probability with Martingales [45, pp. 159-163], where he
considered a certain optimal control problem. The rest of this section is largely based

21
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on his account. Although Williams did not explicitly call it an urn model, it is clear
that the system can be described as such.

The Mabinogion is a collection of eleven medieval tales from Wales that were written
down in the 12th-13th centuries. These stories thus belong to the oldest prose literature
of Britain. Some of these tales are Arthurian legends, and for instance there are many
similarities between the story of Peredur and the more well-known tales about knight
Percival, one of the knights of the round table. It is within the story of Peredur, son of
Evrawc, that the following passage is found [15, pp. 144-145]:

And he came towards a valley, through which ran a river; and the borders of
the valley were wooded, and on each side of the river were level meadows.
And on one side of the river he saw a flock of white sheep, and on the
other a flock of black sheep. And whenever one of the white sheep bleated,
one of the black sheep would cross over and become white; and when one
of the black sheep bleated, one of the white sheep would cross over and
become black.

This magical herd of sheep is never mentioned again in The Mabinogion. They leave
the story as abruptly as they had entered it. Nevertheless, this short passage seems
to have served as inspiration for the optimal control problem that will be referred to
as the Mabinogion sheep problem. The problem goes as follows. Suppose that the
process can be adjusted by permanently removing any number of balls from the urn
just after time 0 and just after any time 1,2, ... when a ball is drawn from the urn.
What would be the optimal strategy if the objective is to maximize the expected final
number of black balls?

It is obvious that no black balls should be removed during the process, so we can
assume that only white balls are removed. Consider the following control strategy. At
time 0 and after each time a ball has been drawn from the urn:

e if the number of white balls is more than or equal to the number of black balls,
immediately reduce the number of white balls to one less than the number of
black balls;

¢ otherwise, do nothing.

This is an optimal strategy, as proved by Williams [45] using a fine example of applied
martingale theory. In agreement with his notation, we will henceforth refer to this
particular strategy as Policy A. Here is included a sketch of the proof, without going
into all the details.

Forw, b € N, let V(w, b) be the expected number of black balls at absorption, given
that the process starts with w white and b black balls in the urn; that is,

V(w,b) = E(By|Wo = w, By = b),

where H is the absorption time. Correspondingly, let V4 (w, b) be the expected number
of black balls at absorption when the control strategy described above is applied
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throughout the process. From the description of Policy A it is clear that for any
w, b € N we have the following identities defining the value function V*:

(@) VA0,b)=b, VAw,0)=0,
(b) VAw,b) =VA(w-1,b), w>b>0,

() VAw,b) = 2 VAw+1,b-1)+-L2VAw-1,b+1), 0<w<b.

w+Db w+b

From the recursion in (c) together with the boundary conditions in (a) we can find
formulas for the value of V4(w, b) for any 0 < w < b, and using (b) this is then
extended to any w, b € N. These formulas are given in Proposition 3 in Article I, and
are therefore not repeated here. However, it can also be shown that equations (b) and
(c) combine into the following result.

Lemma 3.1. Forany w,b € Z*,

VAw,b) > VA(w —1,b), 8)
A W A _ Ar
VA (w, b) > w+bV (w+1,b 1)+w+bv (w—=1,b+1). 9)

The proof of the lemma is divided into a few separate cases depending on whether
w < borw > b and whether the total number of balls is even or odd. Note that
there is always an equality in either (8) or (9) due to equations (b) and (c). The rest is
shown based on the explicit formulas for V4 (w, b) and some algebraic manipulations.
The details of the proof are omitted here, since the calculations are tedious [41] and
an outline of the proof is already given by Williams [45, Section 15.4]. The result
in Lemma 3.1 is nonetheless essential for the optimality proof of Policy A, which is
discussed below.

Since w and b in the definition of V4(w, b) are the initial numbers of white and
black balls, respectively, the process VA(W,, B,) gives the expected final number
of black balls when Policy A is applied throughout the process starting after step
number 7. Assume first that Policy A is applied already from the very beginning of the
process, and let (F)en be the natural filtration generated by (Wy,, By )nen in this case.
Then, since the number of black balls at absorption is always finite, By < Wy + By < o,
it follows from Theorem 2.25 that V4(W,,, B,) is in fact a martingale with respect
to (7:;114 )n >0-

On the other hand, the implication of Lemma 3.1 is that at any given point the
value function for applying Policy A is never less than if Policy A were applied after
first removing one white ball (or, by iteration, any number of white balls) or letting
the process run for one step more. Thus, if (7, f)neN is the natural filtration generated
by (W, By)nen when an arbitrary strategy S is used throughout the process, then it
follows that VA(W,,, B,,) is instead a supermartingale with respect to (7",? )nen. Since it
is also non-negative, it follows from Theorem 2.26 that the process converges almost
surely to the limit V4 (W, B»), which by definition is the number of black balls at
absorption. Thus, for any strategy S,

E(By) = E(VA(Ww, Bw)) < VA(W,, Bo),
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since VA(W,, B,,) is a supermartingale. This means that the expected final number
of black balls using any possible strategy is never more than if Policy A is used
throughout, which proves the following desired result.

Theorem 3.2. Policy A is the optimal strategy for maximizing the expected final number of
black balls in the Mabinogion sheep problem.

Article I includes a section on some other control strategies in the Mabinogion
urn model. More precisely, the discussion is focused on control strategies where
the proportion of black balls in the urn is always kept above a given threshold 4.
Note that the special case g = 1/2 corresponds to Policy A. Simulations show that
Policy A is no longer optimal if a certain discount factor y > 0 is introduced, so that
the value function is e *¥ By and, thus, does not depend only on the final number of
black balls By but also on the absorption time H. When p grows, there are strategies
with other values of g that are better than Policy A, since the time to absorption is
significantly lower. Based on the simulations, the conjecture is that for any g there is
a certain value of u for which that particular strategy is optimal. However, further
research is needed to confirm whether this is correct or not.

3.2 Hitting times in the Mabinogion and Ehrenfest models

The focus in Article I is on the Mabinogion urn model, but not primarily on the final
number of black balls, but rather the expected time until an absorbing state is reached.
This expected time to absorption, when starting the process with w white and b black
balls, is defined as

T(w,b) = E(H|Wy = w, By = b).

By solving the recursion

T(w,b)=1+

bT(w—l,b+1), w,b >0,

with boundary conditions T(0, b) = T(w, 0) = 0 we obtain the explicit formula

w+b min{w,b}-1 w+b—-2—i w+b 1)
T(w,b) = ———— 1
0= wvb-1 L ]Z w+h 2 (10
and the special case
=
T(k, k) =k Y ST (11)
i=0

as given in Proposition 2 in Article I. One of the main objectives in the article is to
compare the expected absorption times in the ordinary Mabinogion model and in the
controlled version when Policy A is applied. Formulas for the expected absorption
time in the latter case are given in Proposition 4.

A precise asymptotic limit is obtained for both the uncontrolled and the controlled
model (see Corollary 1 and Theorem 1, respectively), when the process starts with an
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equal number of white and black balls and this number tends to infinity. A comparison
of the results in this symmetric case leads to the conclusion that although the expected
time to absorption is greater in the uncontrolled process, that is, T(k, k) > TA(k, k),
the asymptotic growth is of the same order of magnitude,

klim T(k,k)/TA(k, k) = 1.

If the initial proportion of black balls is strictly greater than 1/2, then the expected
time to absorption is also of the same order of magnitude in both the controlled and
uncontrolled model, but the asymptotic growth is radically different. This result, given
in Proposition 5, is in part based on Flajolet and Huillet [11]. Some remarks are also
made on the uncontrolled process conditioned on the event that there are only black
balls left at the end; see Propositions 6 and 7.

The expected time to absorption in the (uncontrolled) Mabinogion process can be
compared to similar results for first hitting times in the related Ehrenfest urn model.
In fact, the distribution of the absorption time was obtained by Flajolet and Huillet [11,
Theorem 1] by applying a time-reversal transformation on the Ehrenfest urn model.
Here we concentrate on the first moment and derive a formula for the expected first
hitting time of a given state in the Ehrenfest urn, which is similar to (10).

The Ehrenfest urn has a reverse mechanism compared to the Mabinogion urn. The
process has no absorbing states, but instead of an absorption time we can find the
first hitting time of a given state, say, when there are & white balls in the urn. Let
Hy = min{n : W, = a} and let the expected value of this hitting time be

Ha(w, b) = E(Hy|Wo = w, By = b).

Assuming that 0 < @ < w + b so the state is attainable, this hitting time is almost surely
finite, according to Corollary 2.9, and can be found by solving the recursion

b w
Hy(w,b) =1+ w+bH“(w+1’b_1)+ erbHa(w—l,b+1),

for0 < w < a withboundary value H,(«, b) = 0 and the reflecting boundary condition
H.(0,b) =1+ Hy(1,b —1). The following lemma gives a general solution to such a
recursion (cf. Lemma 1 in Article I for recursions with two known boundary values).

Lemma 3.3. Assume that X(k), k € Z satisfies the following recursion for all a < k < b:
X(k) = p()X(k=1) + (1 = p(k)X(k +1) + r(k), (12)
where p(a) = 0 and p(k) € (0, 1) for all other k. Then, foranya < n < b,

b-1 i-a

X(n) = X(b)+zzlr(a+]) ]_[ 1p(“+m) (13)

Sg1-plat), pla+m)

The proof of the lemma is omitted here, but follows a similar method as in the proof
of Proposition 6 in Article I. Using this result it is easy to confirm that the expected
time until there are a white balls in the urn is given by the following formula.



26 CHAPTER 3

Proposition 3.4. Forany w,b,a e Nwithw < a <w +b,

a=1 j (wj%—b)
Ha(w, b) = Z e (14)
j=w i=0 ( j )
In particular, for any k € N,
k-1
1
H(0,2k) = k ; T (15)

Proof. The result follows from Lemma 3.3. Let X(k) = H,(k, N — k) where N = w + b.
Then (12) holds for all 0 < k < a with p(k) = k/N and r(k) = 1. Inserting this and
X(ar) = 0into (13) gives (14) after simplification. The special case when o =k, w =0
and b = 2k follows directly using the first identity in Lemma 2 in Article 1. ]

Remark 3.5. The formula in (14) holds when w < a, but if w > « we can use the symmetry
of the Ehrenfest urn to conclude that H,(w, b) = Hy4p-a (b, w), for which (14) applies.

The result in (14) was also found by Palacios [32]. The symmetric case was shown
by Blom [4] using an integral representation of H,(0, ). These results are now directly
connected through Lemma 2 in Article 1, or the more general identities presented
in Article II. Letting « = w + 1 in Proposition 3.4 immediately gives the expected
transition time to the state with one more white ball than initially,

Hy(w,b) = (w%_l) Z (w j b),

w i=0

which has been derived by Lathrop, Goldstein and Chen [28]. Note that they consider
a version of the Ehrenfest model where the colour change at each step is not definite
but has a fixed probability p, but this is easily included in (14) by multiplying the right
hand side by the factor 1/p.

Itis a very interesting fact that Hr(0, 2k) = T(k, k), as can be seen from equations (11)
and (15). In other words, the expected time to absorption in the Mabinogion urn
with 2k balls, when starting with an equal number of white and black balls, is equal
to the expected time to move from 0 to k white balls in the Ehrenfest urn with 2k
balls. An approximate similarity between these values could be expected, due to the
inverse nature of the urn models, but it is not immediately clear why these values are
precisely equal. For instance, consider that in this case the Mabinogion process can
fluctuate around the symmetric starting point before going off to either of the absorbing
states, whereas the Ehrenfest process is unlikely to fluctuate near the very asymmetric
starting point and is stopped as soon as it reaches the symmetric state. Note also
that the equality holds only in this special case; the expected time to absorption in
the Mabinogion urn starting with m white balls is namely not in general equal to the
expected time to move from 0 to m white balls in the Ehrenfest urn, except when this
m is precisely half the total number of balls.
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Occupation times

The occupation time on a set S is the amount of time that a stochastic process X
spends in S up to a given time ¢, which may be either a random or a deterministic time.
Applications are found in financial mathematics, e.g., in the form of occupation time
derivatives. These are contingent claims where the payoff depends both on the value
of the underlying asset and on an occupation time; see Jeanblanc et al. [18, Sect. 2.5.4].
In this chapter we focus on occupation times of some Markov processes.

4.1 Occupation times for one-dimensional diffusions

In this section, we will restrict ourselves to the topic of Article III, namely positive
occupation times of one-dimensional diffusions. For a diffusion X, the positive
occupation time A is defined as

t
A= [ 1) ds,

and, to ease the notation, we call this simply A; if the diffusion process X is implicit.
This is the time that the diffusion spends on the positive real numbers up to time ¢.
Note that the set S is sometimes taken to be (0, c0) instead, it being a matter of definition
whether the point 0 is included or not. However, there is a distinction only in the case
when the process has a so called sticky point at 0, which means that the time spent
at 0 has a positive value.

A famous example of an occupation time formula is Lévy’s arcsine law, which
states that the proportion of time that a standard Brownian motion W is positive
follows an arcsine distribution. In other words, it holds that

Al 2
Py -+ <x|= o arcsin(vx), x €[0,1]. (16)
This rather surprising result was proved by Lévy [29] and has since then been much

studied and also generalized for other processes. A particular example is skew Bessel
processes, that were first studied by Barlow, Pitman and Yor [2]. The probability

27
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density for the occupation time on [0, 1] for a skew Bessel process initiated at 0 was
given by Watanabe [43], based on Lamperti [27], and equals, for x € (0, 1),

Lsin(—vm)B(1 - p)(x(1 - x)™"7!
B2(1—x)"2" + (1 - B)2x2" + 2B(1 — B)(x(1 — x))~" cos(—vm)

flx) = 17)

Additionally, the Laplace transform of the moment generating function of A; is [43]

BA -+ 4 (1-pA]
BA+r)"+(1-B)A~Y

/ e ME(e ) dt =
0

It is easily confirmed that when v = —1/2 and 8 = 1/2 the expressions above are equal
to those for an arcsine distribution. The distribution in (17) is called a Lamperti-type
distribution. The moments of this distribution are difficult to compute from the density,
but they are derived recursively in Article III, which results in a surprisingly neat
formula in the form of a finite polynomial in the parameters § and v. As shown in
Theorem 4 therein, for any n > 1,

n-1 k

n (1
Eo(A7) :ZZ(n_l)v

k=0 ]:O

n
k+1

{’]‘ o }vkﬁf“, (18)

where [}] and {}} are Stirling numbers of the first and the second kind, respectively.

When considering path functionals for diffusions, including the positive occupation
time, the usual method is to use the Feynman—-Kac formula. This remarkable theorem
provides a link between stochastic differential equations (SDE) on one hand and
ordinary partial differential equations (PDE) on the other hand.

Theorem 4.1 (Feynman—Kac). Assume that a diffusion process (X;)i»o started at Xo = x
obeys the time-homogeneous stochastic differential equation

dX; = u(Xy)dt + o(X;) dW,

where W denotes a standard Brownian motion. Let u: R X [0, 00) — R be a function that
satisfies the partial differential equation

u 2 1)+ 2o B - P, - Vi Due =0, (@)
fort > 0and x € R, with initial condition
u(x,0) = g(x),

for some bounded functions V: R x [0,00) = Rand g: R — R. Then

u(x,t) = Ey (g(Xt) exp (— '/Ot V(Xs, t— s)ds)) . (20)
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Note that there are several different formulations of the Feynman-Kac formula.
In another commonly used version, the initial condition is replaced by the terminal
condition

u(x, T) = g(x),

with ¢t € (0, T) in the solution. Also, the formula can be stated in a more general form
with an additional function f(x, t) on the right hand side of (19) and with an SDE that
is not time-homogeneous, so that u and ¢ are also functions of ¢. For a proof of the
Feynman-Kac formula, see Karatzas and Shreve [21, p. 366] or Klebaner [25, p. 157].

As an illustration of how the Feynman-Kac formula can be applied, we give a
proof for the arcsine law for Brownian motion. Variations of the same proof are found
in, e.g., Morters and Peres [31], Schilling [39] and Steele [40].

Example 4.2. Let (W;);»o be a standard Brownian motion with Wy = 0. To prove the
arcsine law in (16), we equivalently show that the density of A; is equal to

d (2 . x\ 1
fa,(x) = P (; arcsin \/;) = n\/ﬁ, x € [0, t].

We use the Feynman—Kac formula to find the Laplace transform of Ay,

u(x,t) == Ex(e ") = E, (exp (—A /t IL[O,OO)(WS)dS)) .
0

Comparing this expression to (20), we identify the functions g(x) = 1 and V(x,t) =
AL[p,c0)(x). Note that the function u(x, t) is bounded in ¢. For a standard Brownian
motion the drift function is y(x) = 0 and the volatility function is o(x) = 1, so the PDE
in (19) becomes

“u(x, t)—%u(x, t)— Au(x,t) =0, x>0,

f—,fzu(x, t) = Zu(x,t)=0, x <0.

Each of these PDEs can be converted to an ordinary differential equation (ODE) by
taking the Laplace transform with respect to f on both sides. Writing

w(x) :=/ e tu(x, t)dt,
0

and noting that

/0 e‘Vt%u(x, Hdi =yw(x) -1,
the resulting ODEs are

Lw”(x) = (y + Dw(x) = -1, x>0,

%w”(x) —-yw(x)=-1, x <0.
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Solving these two linear second order differential equations, we find the bounded
solution

y+A7

BeV2Ax 4 %, x < 0.

Ae V20 x 4 Ly >,
w(x) =
Since u(x, t) is a solution to (19), it has to be twice differentiable in x, from which
follows that both w(x) and w’(x) have to be continuous at the point x = 0. Equating

the left and right limits at 0 leads to
ORI S U DY
YA r+A yy+A) Y

Thus, we have found the general solution for w(x). However, since we are looking at
the positive occupation time when the Brownian motion starts at 0, we are really only
interested in knowing w(0), which is

1
Vo +1)

Recall that this function is actually a double Laplace transform of A;. By the uniqueness
of the Laplace transform, we can invert the transform to obtain the desired result.
From a table of inverse Laplace transforms [10, Eq. (5.3.34)] we find that

w(0) =

u(0,t) = e M2Jo(iAt/2),

where [, (z) is a Bessel function of the first kind. Using an integral representation for
Jo(z) [1, Eq. (9.1.21)], this becomes

u(0,t) = E/n/ze—“SmZQdG = /te—w—l dy
o o mfyt-y)

after the variable change y = t sin? 6. Since

t
lww=%wai£awmwm%

we see that the density of A; is precisely that of an arcsine distribution, and the proof
is complete.

The above example illustrates the method of using the Feynman-Kac formula to
find the distribution of the occupation time for a diffusion. Namely, this is done by
solving a parabolic differential equation and thereafter taking the inverse Laplace
transform of the result. The approach presented in Article III is instead to recursively
find the moments of the distribution of A; for a general diffusion. Rather than using
the Feynman-Kac formula, the central tool is Kac’s moment formula for additive
functionals [20].

One of the main results in Article III, given in Theorem 1, is a formula for the
moment generating function of Ay, where T is an exponentially distributed time
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independent of the diffusion X. The formula corresponds to known results in the
literature [34, 42, 43] but is of a different form, containing integrals of the Green kernel
rather than (scale) derivatives of the fundamental solutions.

The other main result, in Theorem 2, is a recursive formula for the Laplace
transforms of the moments Eo(A}), in case of a general diffusion. If the diffusion is
self-similar, meaning that for any a > 0 there exists b > 0 such that

(Xar)iz0 £ (bX1)rs0, 21)

the result simplifies into a recurrence directly for the moments of A;. The coefficients
in the recurrence are obtained as an integral expression, where the integrand is
determined by the Green kernel defined in (7). Let

)\”+1 00
U,(A) = — / e MEg(AY) dt
: 0

be the Laplace transform with respect to t of the nth moment of A; (with a suitable
factor). Theorem 2 states that the functions U, are given recursively by

(1) = A /1 G0, y)m(dy),
n—1

Un(A) = Ur(A) + ) (1= Uk D) De(Y), m=2,3,..., (22)
k=1

where the coefficients are

—A)k ~(k—
Di(A) = ﬁ /I G0, ) £V (y; Hym(dy).

Here I* = 1N [0, o), Ga(x, y) is the Green kernel as in (7) and
AP A) = () Ex(Hfe )

is the kth derivative of the Laplace transform of the first hitting time of 0 density. In
case the diffusion X is self-similar, so that (21) holds, it follows, for any A > 0, that

Un(A) = Eo(AY),

and the result simplifies into a recurrence for the moments of A;.

The method used to prove the result in Theorem 2 is to apply the strong Markov
property to restart the diffusion at the first hitting time of 0. Any transformed
moment of A; for a general (positive) starting point can then be expressed as a sum
involving transformed lower moments of A; with starting point 0, as well as a function
describing the first hitting time of 0. When this is inserted into Kac’s moment formula,
the resulting expression can be solved for the nth moment, which leads to the result.

The result in Theorem 2 is applied on a few one-dimensional diffusions. In
particular, this is done for skew Bessel processes, which are self-similar diffusions that
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contain (skew) Brownian motion as a special case. Since the Green kernel is known,
a recurrence for the moments of A; can be obtained using (22). Furthermore, the
recurrence is solved, yielding the explicit formula for the moments of A; given in (18).

The formula takes a yet simpler form for skew Brownian motion, when v = —-1/2,
namely
n-1 —k
n—-1+k\ p"
Eo(A7) = Z ( L )2n+k—1 . (23)
k=0

A corresponding result holds for oscillating Brownian motion and the process called
Brownian spider. Sticky Brownian motion is also discussed in Article III, being an
example of a diffusion that does not have self-similarity.

4.2 Occupation times for some discrete Markov processes

Simple random walk

Since standard Brownian motion can be seen as the weak convergence limit of a
symmetric random walk, it is perhaps not very surprising that the same result holds
also in this discrete case, when the number of steps tends to infinity. To be precise, let
S be a random walk starting from 0 where each step has zero mean and finite variance,
and define

Af = {ke{l,...,n}: S >0}

as the number of steps up to time 7 that the random walk has a positive value. Then,
for any x € [0, 1],

A+
lim P(—" < x) = %arcsin(\/;).

n—oo n

For a proof of this fact, see Morters and Peres [31, Remark 5.30].

Lamperti distribution

The arcsine law for a symmetric random walk was considerably generalized by
Lamperti [27], who found the corresponding limiting density of the proportional
occupation time for a large class of processes, including all recurrent random walks.
The assumption on the process (not necessarily a Markov process) is that the state
space is divided into two sets that share precisely one state, which is recurrent and
also is the initial state of the process. Then, with A, being the occupation time on one
of the two sets, under certain conditions the limit distribution

F(x) = nlgrt}o P(A, < xn)

exists and has the Lamperti-type density in (17).
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Mabinogion urn model

Let us for a moment go back to the Mabinogion urn model and consider the occupation
time of the Mabinogion process in a given set. Since the states are not recurrent, the
theorem by Lamperti does not apply in this case (although, for an infinite number of
steps, the result is reminiscent of some special cases mentioned in the theorem). As
the process is almost surely absorbed in a finite number of steps, we rather define the
limiting occupation time in this case as the number of steps spent in the set before the
process is absorbed.

Here we only consider the first moment of the distribution, i.e., the expected
occupation time. In this case the method used in Article I for the expected time to
absorption can readily be applied, leading to the new formulas presented in the rest of
this section. For matter of simplicity, we let the given set be {0, 1, ...,a} and define
the corresponding occupation time up to step n as the number of steps when there are
at most a black balls, that is,

Au(a) =|{k €{0,...,n}: By < a}|-

For instance, if a = | (w + b)/2] this corresponds to the number of steps up to time n
when By < Wi, meaning that the process is not in the optimal range regarding the
Mabinogion sheep problem, and thus should be controlled by removing some of the
white balls.

The expected value of the occupation time (before absorption) is the function

Ag(w, b) = E(Ag-1(a)lWo = w, Bo = b),

where H is the absorption time. This can be found in the same way as the expected
time to absorption, and we have the following new result.

Proposition 4.3. Forany w,b,a e Nwith0 <a <w +0b,

Aq(w, b) =

N (2 () Z” WIS 2

N-1 2N-1
where N = w + b.

Proof. The result is obtained by applying Lemma 1 in Article I. The difference in
the recursion compared to that of T(w, b) is simply that rather than having r(k) = 1
everywhere, the time is now increased only when k is within the suitable range, so

1, k<a,
r(k) =
®) {O, k>a.

With this change, but otherwise following the proof of Proposition 2 in Article I, the
result follows. O
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Note that the rightmost double sum in (24) disappears when b > a. These double
sum expressions with ratios of binomial coefficients are of a form given in (17) in
Theorem 2, Article II, and can thus be evaluated using a 3F>-hypergeometric function.
However, as we have seen earlier, the expression simplifies considerably when we
have a completely symmetric situation, in this casea = w = b = k forsome k € Z,.. In
other words, we start with an equal number of white and black balls and look for the
number of steps up to absorption when there are at least as many white balls as black
ones.

Corollary 4.4. Forany k € Z,,

222 il g
Ak(k'k)_(%(_k)+§;2i+l' (25)

Proof. The result follows from (24) and the second identity in Lemma 2 in Article I
(which corresponds to (25) in Corollary 6 in Article II). O

Comparing the result in (25) to (11), we see that except for the first term the result
is precisely half the expected time to absorption in this case. The first term can, in turn,
be connected to the time that is spent in the symmetric starting point. This can be seen
from the symmetry of the situation, but we can also find a more general expression for
the local time at a given level 4, defined through L,(a) := |{k €{0,...,n}: B = a}|.
The expected local time at a before absorption is

Lo(w, b) := E(Lg-1(a)|Wo = w, Bg = b),
for which the following result holds.
Proposition 4.5. Forany w,b,a e Nwith0 <a <w +b,

N 1 N-1 min{a,b}-1 N-1\(N -1
Lﬂ(w/b) = N -1 ' 2N_1(N—2) Z Z ( i )( ] )’ (26)

a-1/ i=max{a,b} j=0

where N = w + b. Furthermore, for any k € Z,,

22k—l
2ky
()

Proof. Applying Lemma 1 in Article I once more, this time with r(a) = 1 and r(k) = 0

elsewhere, the result in (26) follows after some algebra. It is then easy to confirm that
when a = w = b = k this simplifies into (27). O

Li(k, k) = (27)

Occupation times in the Mabinogion model, or other urn models, could be
investigated in more detail, and perhaps with more sophisticated methods. For
instance, a future consideration is to determine the distribution of the occupation time
in the Mabinogion model, rather than only the first moment. In particular, it would be
of interest to compare the occupation time with the absorption time, and see if the
ratio between them approaches something similar to a Lamperti distribution.
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Combinatorial identities

The main subject of the thesis is analysis of functionals of Markov processes in discrete
or continuous time, as has been described in Chapters 3 and 4. However, there is
another recurring theme that—although not intended to be of primary interest—also
is central here; namely that of combinatorial identities. Such identities, in particular
summations of binomial coefficients, has been a much studied subject, and there
are works that list a large number of known identities [7, 13, 14]. In this concluding
chapter, we first have a look at methods for proving identities using computer, and
then consider specifically the identities that are examined in Articles IT and IV.

5.1 Computer-generated proofs of hypergeometric identities

An interesting development in the last decades is the use of computers in mathematics.
The computers steadily grow more powerful, and at the same time there has been a
tremendous improvement in software and algorithms available. Today, computers are
used not only for massive numerical calculations, but also for symbolic calculations,
and even for mathematical proofs.

One area that allows for computer-generated proofs is that of combinatorial
identities, or, to be more precise, identities with hypergeometric series. These include
summations of binomial coefficients, such as the ones considered in Article II. There
are rather powerful algorithms that essentially turn the proofs of hypergeometric
identities into mechanical calculations, which is precisely where computers shine.
Since these methods provide an alternative way of proving identities like the ones
that are presented in Article II, a brief description may be appropriate here. More
details and background information are given in the book by Petkovsek, Wilf and
Zeilberger [33].

35
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Hypergeometric functions

Definition 5.1. A series ), ¢y, is called hypergeometric if the first term is co = 1 and the
ratio of consecutive terms is a rational function with respect to the summation index n, that is,

Cn+1 _ P(?’l)
Cn B Q(l’l),

forall n > 0, where P(n) and Q(n) are polynomials.

The ordinary generating function for the sequence cy, 1, ... of terms in a hyperge-
ometric series is called a hypergeometric function. Writing the polynomials P and Q
in completely factored form, the ratio of two consecutive terms in the series is

Cnal (n+a1)(n+ax)---(n+ap)
. (m+b)m+by)(n+by)(n+1)"

where p and g are non-negative integers and d is a constant given by the ratio of the
leading term coefficients of P and Q. The factor (1 + 1) in the denominator is purely a
historical convention. If it is not already a factor in Q(n) a corresponding factor can
simply be added to the numerator, without loss of generality. Since the series is, by
definition, scaled so that ¢y = 1, it follows that the individual terms are of the form

o (@1)n(a2)n -+ (ap)n
" (b1)u(b2)n - (bg)un!

where the Pochhammer symbol (x), here denotes the rising factorial,

d}’l

x(x+1)(x+2)---(x+n-1), n=1,
() =
1, n=>0
When forming the generating function, the factor 4" can be absorbed into x” via the
rescaling z = xd, so the resulting hypergeometric function can be defined as follows.
Definition 5.2. A generalized hypergeometric function ,F, is a function

. Loy (a1)n(az)n - - (ap)n z"
pFa(ar, ..., ay; b1, by 2) = Z::g AR

where ay, ..., ap, by, ..., by are complex numbers and z is a complex variable.

The function , F; is well-defined when none of the lower parameters by, ..., b; is
a negative integer or zero. If any of the parameters a1, ..., a, is a negative integer
or zero, then the series has a finite number of terms and the function reduces to a
polynomial. In other cases, the series may or may not be convergent. If p < q + 1 then
it converges for all z. If p = g + 1 the series converges for |z| < 1 and diverges for
|z| > 1. If p > g + 1 the series is divergent for all z # 0.

The term “generalized” distinguishes the function ,F; defined above from the
special case »F1, which is especially prevalent and therefore often referred to simply as
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the hypergeometric function (or Gaussian hypergeometric function, which removes
the ambiguity).
Many well-known functions can be written in terms of a (generalized) hypergeo-
metric function. To name a few examples,
e’ =1h (11 x),
In(1+x) =x,F1(1,1,2;,—x),
(1+x)" =2F1(-a,1;1;x),

113
i = F (_1_1_1 2)/
arcsin(x) = x oFy 555X

_2x 1_3__ 2)

erf(x) = = 1F1(2,2, x°),
(x/2)" 2

I = F(1;1,v+1;x7/4),
v(x) o1 211, v+1;x7/4)

yn(x) =3F1(1,-n,n+1;1;-x/2),

where erf(x) is the error function, I, (x) is a modified Bessel function and y,(x) is a
Bessel polynomial. Another example, which is at the core of Article II, is that the sum
of the first k elements in a row of Pascal’s triangle can be written as a hypergeometric

function, namely
k
> (':) = %(2)21:1(1,11 +hn+1-k1).
The Wilf-Zeilberger method

Here follows a brief outline of the Wilf-Zeilberger (WZ) method, which can be used to
verify a hypergeometric identity of the form

> fn k) =r(n).

k=—0c0

If r(n) # 0, the identity is first divided by the right hand side, so that it becomes

[ee]

Z F(n, k) =1,

k=—00

where F(n,k) = f(n,k)/r(n). Otherwise, if r is zero, F(n,k) := f(n,k). Next, a
method known as Gosper’s algorithm is used to find, if possible, a hypergeometric
function G(n, k) such that

F(n+1,k)—F(n,k)=G(n,k+1)—-G(n,k). (28)
Such a pair of functions F and G is called a WZ pair. Under the assumption

lim G(n,k)=0,

k—+o0
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which holds for instance if the function G(n, k) has compact support in k for each n, it
follows, by summing both sides in (28) over all values of k, that >, F(n, k) is a constant
in n. Hence, in order to verify the original identity, we only need to check it for one
value of n (typically n = 0).

The rational function

is called the proof certificate of the original hypergeometric identity. If Gosper’s
algorithm is able to find R(n, k), the identity can easily be verified by constructing
G(n, k) and thereafter checking that (28) holds. This means that the proof can be
summed up in the single rational function R(r, k), and hence it is named a certificate
of the proof.

Example 5.3. To illustrate the WZ method we consider one of the binomial identities
that is found in this thesis, namely

el n\(k n—a\ n
_ An-2a-1 -
Ll 2 () @

k=a

which is used in the proof of Theorem 2 in Article IV. We assume here that n > 2a > 0.
Note that the summand vanishes for any k < a or k > | 5], so we may take the sum
as being over all integers. First we divide the summand by the right hand side and
thereby get the function

onsre s

This is given as input to the WZ program in a suitable computer algebra system, e.g.,
Mathematica [33, Sec. 7.5]. The program immediately returns the proof certificate,

(k —a)(2k — 1)
T (m—a)(n-2k+1)

R(n, k) =

which tells us that }3;7 _ F(n, k) is constant in 1. If we want to verify this, we can define
the function G(n, k) := R(n, k)F(n, k) and check with a straightforward calculation
that (28) holds. The only thing that remains of the proof is to show that F(n, k) = 1 for
a single value of 7 in the range where F does not vanish, thatis,a <k < [4]. If n = 2a,
the only possible value for k is k = a4, and it is trivial to verify that indeed F(2a,a) = 1.
This proves the identity in (29).

Creative telescoping

The WZ method is useful for verifying hypergeometric identities where the right hand
side of the equation is known (or, at least, conjectured). If this is not the case, then the
more general Zeilberger’s algorithm, also called the method of creative telescoping, may
provide the answer.
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Definition 5.4. A function F(n, k) is called a proper hypergeometric term if it can be
written in the form
[T, (ain + bik + u;)! ok

F(n,k)=P(n,k
.10 =2 )nﬁil(cjnmjkw,-)!

where N,M € N and a;, b;,cj,d; € Z are constants, u;,vj,x,y € C and P(n, k) is a
polynomial.

Note that, for instance, every term in a , F;-hypergeometric function is a proper
hypergeometric term. Zeilberger’s algorithm is based on the following result [44].

Theorem 5.5. Let F(n, k) be a proper hypergeometric term. Then F satisfies a recurrence

D pimE(m +j,k) = Gn, k+1) = G(n, k), (30)
j=0

in which G(n, k)/F(n, k) is a rational function of n and k and p;(n) is a polynomial in n for
all j €{0,...,m}.

Assuming again that G(n, k) vanishes for sufficiently small and large k, when
both sides in (30) are summed over all k, the result is that the sum S(n) = >, F(n, k)
satisfies the recurrence

D pimSn +j) =o0. (31)
=0

Hence, solving this recurrence gives an expression for )}, F(n,k). A very special
instance was seen in the WZ method, namely (28) corresponds to m =1, po(n) = -1
and p1(n) = 1in (30). In some cases, the recurrence in (31) can be readily solved;
for instance, when all p;(n) are constants we have a linear recurrence relation with
constant coefficients. However, in some cases it might be that there is no closed form
solution, if we take closed form to mean a linear combination of a fixed number (i.e.,
independent of n) of hypergeometric terms. The question whether this is the case or
not is solved by another algorithm called Hyper, developed by Petkovsek [33, Ch. 8].
For any recurrence relation with polynomial coefficients, this algorithm is able to
either find the solution in closed form, or else verify that such a solution does not exist.
The combination of the creative telescoping method and the algorithm Hyper leads
to the remarkable fact that any sum where the summand is proper hypergeometric
can be determined in closed form — or else a closed form is proved not to exist — using
algorithms that are successfully carried out by a computer program.

5.2 Remarks on identities in the articles

Binomial double sums

Articles Il and IV both stem from results in the other two articles. In Chapter 3 we have
described the Mabinogion urn model, which is the topic of Article I. In the solution to
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the recurrence relation for the expected time to absorption, certain binomial double
sums appear. Article II contains a number of identities for such double sums involving
ratios of binomial coefficients. The identity at the core of the article is

no (2n+2)

Z (271;4—1)

=0 i=0

:(n+1)22k1+1. (32)
k=0

A generalized version of the identity above is presented in Theorem 1 in Article II, and
some special cases thereof are identified in Corollaries 5 and 6.

The computer algorithms outlined in the previous section provide helpful tools
when working with identities of hypergeometric nature. This does not, however, mean
that other proof methods are obsolete. For a mere verification, it suffices to run a
suitable computer program, but another proof may still give better understanding of
a certain identity. The deliberate choice in Article II is therefore to present a more
traditional proof method for the identities in question, especially since the method led
from (32) to more general identities.

The idea behind the proof is based on hypergeometric functions. The inner sum
can be written as a »Fi-function and, after a few modifications, the original double
sum is obtained as a single (infinite) sum. The difference between the expressions
for two consecutive arguments can then be simplified using some hypergeometric
transformations, and forming a telescoping sum of the result yields the desired identity.

In Theorem 2 are formulas for when the upper index of the binomial coefficients
have 7 rather than 27 and the summand contains an additional factor c~/. In these
cases the double sum is given in terms of hypergeometric functions, but a couple of
neat special cases are part of Corollary 5. The general form of the double sums treated
in the article can be given as

n

()

=]
L4 L4 () ©
j=0 i=0 j
where n € N and f1, f» are functions of n. Provided that ¢ € C\ {-1,0} and f>(n) > n,
this sum can be expressed using hypergeometric functions; see Theorem 2 and
Remark 3. When ¢ = —1 the sum is alternating, and some such cases are considered at

the end of Section 4, which contains a discussion of a few special cases of interest.

Stirling number identities

Stirling numbers are two kinds of special numbers that appear in various situations,
particularly in combinatorics. The unsigned Stirling number of the first kind [}] is the
number of permutations of n objects which contain exactly k cycles. These numbers
can also be seen as coefficients of the rising factorial,

(%) :x(x+1)---(x+n—1)=zn: [Z]xk.
k=0
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The Stirling number of the second kind {}} is the number of ways to partition a set of
n elements into k nonempty subsets. Both kinds of Stirling numbers appear in the
summation identities treated in Article IV.

The motivation behind the article comes directly from the moment formulas
obtained in Article III for the positive occupation time of skew Bessel processes and
skew Brownian motion. A comparison of the coefficients in the polynomial expressions
in (18) and (23) leads to the identity

o n i n—i _
> [i]{k}(—z) = b(n, k), (33)

i=k

where b(n, k) are signed Bessel numbers of the first kind. Leaving the framework of
occupation times for skew Bessel processes, where the parameter v is restricted to
values in (-1, 0), the same method can be used to prove similar identities for other
values of v as well.

A few identities involving sums of both kinds of Stirling numbers are proved in
Article IV. Although the results are known from literature, the proof method is new,
being based on a particular recurrence relation. In fact, this is the recurrence for
moments of the positive occupation time for a skew Bessel process, as obtained in
Article III. For some fixed values of one of the parameters, the recurrence equation is
solved in two different ways, and equating the coefficients in the resulting polynomial
expressions leads to an identity similar to (33). One identity proved this way connects
a sum of Stirling numbers to Bessel numbers of the second kind, and a couple of other
examples are also included in the article.

Some general remarks

The occurrence of (discrete) combinatorial identities is rather natural when considering
the Mabinogion urn model. On the other hand, their presence is somewhat more
remarkable when deriving a moment formula for the positive occupation time of skew
Bessel processes. The most astonishing part is perhaps that an integral of the Green
kernel and a higher-order derivative of the Laplace transform of the first hitting time
of zero (see (30) in Article III), both containing modified Bessel functions, simplifies
into a single binomial coefficient (see (45) in the same article). This fact also makes
the resulting recurrence relation sufficiently simple to allow the solution to be first
conjectured and then proved by induction.

Binomial expressions are frequently encountered in the work, and the extensive list
of identities compiled by Gould [13] has become a familiar reference while working
on the thesis. In particular, terms of the form

i 1 (2n
Prn= 2\

show up on several occasions. This number can be interpreted as the probability
that a symmetric random walk attains its starting value after 2n steps. This provides
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a superficial connection to the Mabinogion and Ehrenfest urn models, since both
these processes are similar to random walks, although the transition probabilities are
spatially non-homogeneous, so the individual steps are not identically distributed.
However, due to asymmetry in these processes, the probability of returning after 2n
steps will almost always be different from p,. In fact, in the Mabinogion model this
probability is always less than p,,, regardless of the choice of starting point and the
value of n.

In the Mabinogion process, terms of the form p,, instead occur in expressions for
the expected final number of black balls and the expected time to absorption when
using Policy A and starting from a symmetric initial state; see Propositions 3 and 4
in Article I. Also, the numbers p, are present in reciprocal form in the symmetric
cases of the formulas for occupation time and local time given in Corollary 4.4 and
Proposition 4.5, respectively.

Curiously enough, the number p,, is also equal to the nth moment of an arcsine
distribution, which explains why these numbers turn up also in the setting of positive
occupation times for diffusions. From the results in Article III, the number p,, can be
seen as a special value of the polynomial

”j(n_nk) xnk
n+k-1"
pard k 2
which, in turn, is a special case of the nth moment of the Lamperti distribution, given

by
Zk: ((;;1_)]1j)!| {k N 1}xj+lzk'

k=0 j=0 j+1

n-1
n

k+1

The numbers p,, are not in themselves of particular significance here, but they serve as
a small example of how certain elements may be found in seemingly very different
areas of probability theory, illustrating that the areas are, in fact, rather intertwined.
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Hitting times in urn models and occupation
times in one-dimensional diffusion models

The main subject of this thesis is certain functionals of Markov processes. The first
category is hitting times in discrete urn models, and the expected time to absorption
in the Mabinogion model in particular. The other category is occupation times of
continuous one-dimensional diffusions. One of the results is a recursive formula for
the moments of the occupation time on the positive real line. In addition, there are
some results on combinatorial summation identities that are related to the subject.
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