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Abstract

This thesis is comprised of three articles in which we prove explicit es-
timates for different number theoretical problems.

In the first article we derive an explicit Riemann-von Mangoldt for-
mula for the Selberg class functions. Even though this kind results were
already known for some functions in the Selberg class, this is the first
explicit estimate which covers the whole Selberg class.

Then, in the second article, we study the 7-Li coefficients for a quite
general set of functions and their connections to zero-free regions. We
prove that non-negativity of certain 7-Li coefficients lead to certain zero-
free regions. Moreover, we also show that negativity of certain 7-Li
coefficients leads to existence of certain zeros. This is a continuation of
F. C. Brown’s and A. D. Droll’s work with similar type of problems.

Lastly, in the third article, we prove an explicit estimate for the num-
ber of primes in arithmetic progressions assuming the generalized Rie-
mann hypothesis. This sharpens and generalizes earlier results proved
without assuming the generalized Riemann hypothesis or which apply
only to some arithmetic progressions.






Sammanfattning

Den hidr avhandlingen bestar av tre artiklar i vilka vi bevisar explicita
uppskattningar for olika talteoretiska problem.

I den forsta artikeln hérleder vi en explicit Riemann-von Mangoldt-
formel for funktioner i Selbergklassen. Aven om sidana resultat varit
kdnda for nagra funktioner i Selbergklassen, dr vart resultat det forsta
som behandlar hela Selbergklassen.

I den andra artikeln undersoker vi 7-Li koefficienterna for en allméan
méangd och koefficienternas relationer till omrdden ddr det inte finns
nollstéllen. Vi bevisar att om vissa 7-Li koefficienter &dr icke-negativa,
sa da existerar vissa omraden utan nollstillen. Vi bevisar ocksa att om
vissa T-Li koefficienter dr negativa, sd da finns det minst ett nollstélle
som ligger i ett visst omrdde. Den hdr undersokningen dr en fortsat-
tning pa F. C. Browns och A. D. Drolls forskning pa liknande problem.

Slutligen, i den tredje artikeln, bevisar vi en explicit uppskattning
for antalet primtal i aritmetiska talféljder om vi antar den generalis-
erade Riemannhypotesen. Det hir resultatet skdrper och generaliserar
tidigare resultat som har bevisats utan att anta den generaliserade Rie-
mannhypotesen eller bara for ndgra aritmetiska talfoljder.
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Notation

Here we collect the common notation used in Chapters 1-4. Articles
[A], [B] and [C] have their own notations.

Letters

n,q  positive integers

p a prime number
T,t,x positive real numbers
€ a (small) positive real number
S,z complex numbers
0 a zero of a function
X a Dircihlet character modulo g

X0 a principal character modulo g

Some functions

I'(s) the gamma function
A(n)  the von Mangoldt function
{(s)  the Riemann zeta function
L(s,x) a Dirichlet L-function associated with a character x

Functions closely related to the number of primes

m(x) the number of primes up to x
n(x;q,a) = ¥ 1
p<x
p=amod q
P(x) =¥ An)
n<x
peox) = L x(mAn)
Po(x,x) = (p(x,x) — LA(x)x(x) if x is a prime power
’ (x, x) otherwise
w(x;q,a) = ¥ A
n<x
n=a mod q
0(x;q,a) = L logp
p<x
p=a mod q
3 X
Li(x) = %gttl d d
. ) e .
li(x) = eli>r51+ Ik @ + fl+e @

X



Asymptotics

f(x) < g(x)
f(x) <e g(x)
f(x) =€ (g(x))
f(x) = o0(g(x))
f(x) =Q(g(x))

xi

|f(x)|] < Cl|g(x)| for some C and all x large enough
f(x) < g(x) where the constant C depends on e
F(x) < g(x)

|f(x)] < e|g(x)| for every € > 0 and x large enough
f(x) > c|g(x)| for some c and all x large enough

Note. In some cases we have more than one variable when we are
using asymptotic notation. In these cases the variables depend on each
other and their dependence is clarified.

Number of the zeros

NE(t) = Hp:
Np(t) = [{p:
Ne(t) = [{p:
N{ (t1,t2) H{e
Np (t,t2) =
Ne(t,t2) = {
Abbreviations

VA VAN VAR VAN VAN VAN
s55555
222
VA VAR VAR VAN VAN AN

RH  the Riemann hypothesis
GRH the generalized Riemann hypothesis
PNT the prime number theorem



1 Introduction

We call an estimate explicit if there are no unknown constants in the error
term. In the contrast to non-explicit estimates, the explicit ones give
us actual numerical values which can be used in computations. Thus
they also reveal much more information than the non-explicit ones. For
example it is much more effective to say that the number of primes up
to 10000 is between 1087 and 1407 [76, Theorem 2] than that it is some
thousands.

In this thesis, we discuss explicit results for three different number
theoretical problems. In this section, we outline the basic ideas and con-
nections of the topics. More specific introductions to the topics can be
seen in Chapters 2—4.

The first problem (see Chapter 2, article [A]) is to estimate the num-
ber of the zeros in certain rectangular regions on the complex plane for
the functions in the so called Selberg class [69]. The class consists of func-
tions which have somehow similar properties with the very well-known
Riemann zeta function {(s). It is a function which is defined as

7(s) =Y . for R(s) >1

and can be extended to the whole complex plane.

The Riemann zeta function was already studied in the 18th century
by L. Euler (see e.g. English translations [26, 27]) and in the 19th cen-
tury G. F. B. Riemann [63] continued the work by extending Euler’s def-
inition to complex variables, establishing its relation to prime numbers
and studying many of its technical details. He also proposed so called
the Riemann hypothesis (RH). The hypothesis still remains unsolved and
states the following:

Conjecture 1.1 (Riemann Hypothesis) All zeros of the Riemann zeta func-
tion with 0 < R(s) < 1 lie on the line R(s) = 1.

Similar claims are also conjectured to hold for a more general set of
functions, called as Dirichlet L-functions (see [5, Section 6.2]). For R(s) >
1 they are defined as series

L(s,x) = ilxi?)

for R(s) >1,

where x (1) is a Dirichlet character, and the function can be extended to
the whole complex plane. Please notice that the Riemann zeta function

1



is also a Dirichlet L-function with x(n) = 1 for all n. Now the generalized
Riemann hypothesis (GRH) states the following;:

Conjecture 1.2 (Generalized Riemann Hypothesis) Assume that s is not
1

a negative real number. Then, if L(s, x) = 0, we have R(s) = 3.
Since the Riemann zeta function is also a Dirichlet L-function, if the gen-
eralized Riemann hypothesis holds, then also the Riemann hypothesis
holds.

As we have noticed, we do not know whether the Riemann hypoth-
esis or the generalized Riemann hypothesis holds or not. But, to make
the question a little bit simpler, could we instead make some conclu-
sions about zero-free regions for some functions? Or, could we at least
prove some criteria for them?

In the second problem (see Chapter 3, article [B]) we study one this
kind of criterion. We consider the functions whose number of zeros sat-
isfies similar formulas as we derived for the Selberg class to answer the
first problem. The idea is to apply these formulas and show that certain
values of so called 7-Li coefficients (see e.g. [28]) lead to certain zero-free
regions or zeros in certain regions. The 7-Li coefficients, generalized
from so called Li coefficients [41], consist of an infinite sequence of cer-
tain numbers. It is known [28] that if all of them are non-negative, then
the Riemann zeta function has no zeros with R(s) > 7/2. These kind of
results have also been proved for other functions.

The zero-free regions also lead us to the third problem (see Chapter 4,
article [C]). It is about the number of primes in arithmetic progressions
assuming the generalized Riemann hypothesis. Knowledge about the
zero-free regions for the Dirichlet L-functions or assuming the gener-
alized Riemann hypothesis give sharper estimates for the number of
primes in arithmetic progressions [14, Chapter 20].

Furthermore, this kind of property is also known for the Selberg class
—the class we considered in the first problem. Let us first underlay the
topic a little bit by saying a couple of words about the prime count-
ing function. The prime number theorem (PNT) tells that the number of
primes up to x is essentially about x/ log x [15, 30]. The result can be
derived by showing that the function ¢(x) = Y, A(n), where A(n) is
the von Mangoldt function, is essentially about a size x for large values
x. We know the following equivalence between this theorem and the
Riemann zeta function (see e.g. [49, Chapter 8]):

Theorem 1.3 PNT is equivalent to that {(1 + it) # 0 for all real numbers t.

Now we are ready to move on to the Selberg class connection. Let us
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define the generalized von Mangoldt function Ap(n) by
_F(s) _ o Ar(n)

s~ o

n=1

nS

and ¢r(x) = L,<, Ar(n), where the function F is a function in the Sel-
berg class. Please now notice that we can write

) &AW
{5~ 2w

and thus the definition of the function ¢ (x) coincides with the defini-
tion of the function (x) when F = . Further, it is conjectured, called as
the prime number theorem for the Selberg class, that pr(x) ~ kx, where k is
the order of the function F at s = 1. Keeping in mind the definitions of
the functions ¢ (x), (x) and the connection between the function ¢(x)
and the PNT, this is a very natural generalization of the PNT. Now, by
[36], we know the following connection between the PNT and the zeros
of a function F in the Selberg class:

Theorem 1.4 Let a function F be in the Selberg class. The PNT defined for
the Selberg class function F is true if and only if F(1 4 it) # O for all real
numbers t.

Theorem 1.4 is a generalization of Theorem 1.3. Thus we have seen
some very surprising connections between the number of primes and
the zeros of some functions.

As we see, the three problems under the consideration are beauti-
fully connected to each other. Using the formulas for the number of
the zeros, we can determine zero-free regions for the functions and es-
timate the number of (certain) primes. Furthermore, the knowledge
about the zero-free regions of the Riemann zeta function or the Dirichlet
L-functions also leads to better estimates for the number of primes and
the number of primes in arithmetic progressions.

For further reading, we suggest to take a look at the book [5] which
gives a comprehensive introduction to the world of the Riemann zeta
function and related problems. A reader may also enjoy A. W. Dudek’s
PhD thesis [18] in which he proves explicit estimates for problems con-
nected to prime numbers. Other references mentioned in this chapter
may be interesting but most of them require much stronger mathemati-
cal background than this introduction.

This thesis is organized as follows: Chapters 2, 3 and 4 correspond
to articles [A], [B] and [C] respectively. At the beginning of the each
chapter, there is an introduction to the topic. After that the main results
of the article are described followed by the sketches of the proofs. At
the end of the each chapter, we have a short discussion of the topic.



2 On the Selberg class and the number of the zeros

In article [A], we study an explicit Riemann-von Mangoldt formula for
the functions in the Selberg class. It estimates the number of the zeros
of the functions in the Selberg class. Thus we start with an introduction
to the Selberg class and the Riemann-von Mangoldt formula.

2.1 The Selberg class
The Selberg class S was introduced by A. Selberg [69] in 1989. It consists

of functions F(s) = Y- ¢ %ﬁl), where the terms a(n) are complex num-

bers and the series expansion is absolutely convergent for R(s) > 1, and
which satisfies the following four conditions:

(a) Ramanujan hypothesis: For any € > 0 we have a(n) < n°.
(b) Analytic continuation: There is an integer k > 0 such that
(s = 1)*F(s)
is an entire function of a finite order.

(c) Functional equation: We have

Pr(s) = wpp(l —3)

where
f
Pr(s) = F(S)QSHF(AJS + 1))
=
and
fii€eZ., QeR, AeRy, wpjdp,AeC
such that

f .
JEM S, dr=2Y"A, A=TIA", lwl=1, R(u)>0.
j=1

(d) Euler product: We have

where

1
with coefficients b(p') satisfying b(p') < p'® for some real number
0 < 3.
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One obvious example of the functions in the Selberg class is the Rie-
mann zeta function. The Dirichlet L-functions associated with primitive
characters are also contained in the Selberg class. It is expected, but not
known, that all functions F € S are automorphic L-functions.

Furthermore, it is worth noticing that the data coming from the func-
tional equation is not unique. Instead, it can be proved that the term dF,
called degree, is unique for the function F (see e.g. [50, p. 119]). This
also means that the error terms described in Theorems 2.3 and 2.5 and
Corollary 2.4 are not unique even though the main terms are and the
results are explicit.

Let us now move on from the axioms to the problems related to the
Selberg class. It turned out that there are many interesting problems in
relation the Selberg class. What degrees dr can the functions have? If
we select a certain degree dr, which functions have this degree? Even
though the parameters A; are not unique, is it always possible, no matter
which function is under the consideration, to find some certain kind of
terms Ajeg. A; = % for some j? What other invariants are there? Can
we prove that there exists an integer nr associated to F such that

2
) latp)I® =nrloglogx+ 0(1)?

p<x

Furthermore, knowing that the Riemann zeta function is in the Selberg
class, one may ask whether the functions satisfy the Riemann hypothe-
sis or not. Already Selberg [69] himself conjectured this:

Conjecture 2.1 Let F(s) € S. Then F(s) # 0if R(s) > 1.

It is not known whether the functions F € S satisfy Conjecture 2.1 or
not. Instead, there are several examples about functions violating some
of the axioms (a)-(d) and not satisfying Conjecture 2.1. For example,
without assuming the Euler product, we can consider the function

1—s - ( —1 ) -l
(1-2 )g@)_2; —
It clearly violates Conjecture 2.1 since it has a zero at s = 1 + 2771/ log 2.
For more examples, see [12].

Let us now take a closer look at the zeros of the function F € S.
According to the Euler product the function F € S does not have zeros p
with R(p) > 1. Thus and by the functional equation, the zeros #(p) < 0
are the poles of the factors I'(A;s + ;). Since the gamma function has
poles at non-positive integers, the zeros with non-positive real parts are
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m-+pu; ..
p = _Th where m = 0,1,2,.... These zeros are called trivial zeros.

They are well-known and hence we are interested in non-trivial zeros
meaning the zeros which do not come from the poles of the gamma
function and thus their real parts are in the interval [0,1]. Notice that
according to the definitions, the function may have a trivial and a non-
trivial zero at the same point.

In the next section, we continue with the non-trivial zeros of the Sel-
berg class functions. There we take a closer look at their number up to
some height T on the complex plane.

This introduction to the Selberg class is based on the previous refer-
ences and literature [34, 35, 59, 60]. Especially the latest references also
provide an interesting survey of the Selberg class.

2.2 The Riemann-von Mangoldt formula

The Riemann-von Mangoldt formula estimates the number of the non-
trivial zeros of the Riemann zeta function with imaginary parts at least
zero and at most T:

Theorem 2.2 (Riemann-von Mangoldt formula) Let T be a positive real
number and N(T) == |[{p: 0 < R(p) < 1,0 < I(p) < T}|. Then we have
T T

T
N(T) = Elogﬂ— E—I—ﬁ(logT).

Theorem 2.2 was conjectured by G. FE. B. Riemann [63] and proved by
H. von Mangoldt who also proved an explicit version of the formula
[78, 79]. The explicit formula has been improved several times (e.g. [1,
65, 74]). For the latest improvement, see [74].

Since the non-trivial zeros of the Riemann zeta function lie symmet-
rically with respect to the real axis [5, Theorem 2.6], the Riemann-von
Mangoldt formula also gives an estimate for the number of all non-
trivial zeros of the Riemann zeta function. Thus we know a quite sharp
estimate for (at least) one function in the Selberg class. Let us now take
a look at the whole Selberg class.

By J. Steuding [71] the number of the non-trivial zeros of the function
F € Sup to height T'is

dr

T T )
ETlog St log(AQ“) + & (logT). 2.1)

A little bit more precise version of this formula is given in [70]. In ad-
dition to the Riemann zeta function, there are also explicit results for
the number of the non-trivial zeros of the Dirichlet L-functions and the
Dedekind zeta function [46, 75]. Explicit results concerning the whole
Selberg class are described in the next section.
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2.3 Results

In article [A], we prove explicit formulas of type (2.1) for the Selberg
class. Due to the length of the results, we do not write the explicit con-
stants here in full length. Instead, we refer to article [A].

Theorem 2.3 (Article [A]) Let F € S and Ty, T be positive real numbers
which are large enough and explicitly given in Lemma 5.1 in article [A]. Then

d T T
NE(To, T) — ﬁTlog —- Elog()\Qz)
cr3(To)

< CF1 10gT+CF,2(T0)+ T

where the terms cg 1, cp;(To) (j = 2,3) are explicitly given in Theorem 5.2 in
article [A]. They depend on the function F and the terms cg(To) also on the
number Ty.

As we already mentioned in Section 2.1, the error terms in Theo-
rem 2.3 are not unique. Furthermore, Theorem 2.3 gives an estimate
for a large set of different functions and is not very sharp.

By formula (2.1) we can conclude that there exists only finitely many
zeros up to height Ty. Thus we can also conclude the following;:

Corollary 2.4 (Article [A]) Let F € S and Ty, T be positive real numbers
which are large enough and explicitly given in Lemma 5.1 in article [A]. Then

d T T
N#(T) - - Tlog T om log(AQ?)

27
cr3(To)
T

where the terms cg 1, cp3(To) are explicitly given in Theorem 5.2 and Cr o (Tp)
in Corollary 5.3 in article [A].

< CfF1 log T+ Cplz(Tg) -+

In addition to Theorem 2.3 and Corollary 2.4, the following bound is
also mentioned in article [A]:

Theorem 2.5 (Article [A]) Let F € S and T be a positive real number which
is large enough and explicitly given in Theorem 4.2 in article [A]. Then

dr T T

N#(T,2T) — 5 Tlog— — o log(AQ?)
< cllogT+cz+%3

where the terms c; are explicitly given in Remark 5.4 in article [A]. They
depend on the function F but do not depend on the term T.
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Theorem 2.5 allows us to consider the number of the zeros in certain
strips without the dependence of the term Ty which is needed in Theo-
rem 2.3 and Corollary 2.4. It is worth noticing that Theorem 2.3 does not
straightly follow from Theorem 2.5 as we will next see. When we com-
pute the number of the zeros with imaginary parts in (Tp, T|, we have
an error term

loga (1) logs ()
;) log (2"To) = ;) Q(n)=0Q ((log T)2> )

This is bigger than the wanted error term ¢'(log T).

In addition to Theorems 2.3 and 2.5 and Corollary 2.4, numerical ex-
amples of the constants cr1, crj(To) (j = 1,2), Cr2(To), and ¢; (j =
1,2,3) for L-functions associated with holomorphic newforms are pro-
vided at the end of article [A] (see Table 1).

2.4 Main steps of the proofs

Theorems 2.3 and 2.5 and Corollary 2.4 can be proved using the same
steps. Thus, in this section, we describe the steps only for the proof
of Theorem 2.3. The proof follows the same steps as the proof for the
asymptotic case described in article [71] and in book [72, Chapters 6,
7]. The main idea is to estimate the number of the zeros using certain
integrals and then estimate the integrals.

First we recognize that the functions F(3) and F(5) = ¥, “,(1':) have
the same zeros and thus we need to only consider the cases where
S(s) > 0. As a starting point, we apply Littlewood’s lemma (see [72,
Chapter 7.1] or Littlewood’s original paper [42]) which connects zeros

of a function to a contour integral:

Theorem 2.6 (Littlewood’s lemma) Let A and B be real numbers, A < B
and f(s) be an analytic function on the rectangle

H-={scC:A<o<B,|t<T}

Assume that the function f(s) does not vanish on the right edge o = B. Fur-
thermore, let ' be the rectangle % minus the union of horizontal cuts from the
zeros of the function f in X to the left edge of #, and choose a single-valued
branch of log (f(s)) in the interior of Z'. Denote by v(c, T) the number of
the zeros p = B + iy of the function f(s) inside the rectangle with p > o
including the zeros with v = T but not those with y = —T. Then

(B
/az log f(s)ds = —Zm/A v(o, T)do.
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By the assumption of the analytic continuation and the Euler prod-
uct, the only possible poles of the function are at s = 1 and the function
F(s) does not vanish for R(s) > 1. Thus we apply Littlewood’s lemma
for the function F(s) and a rectangle # with the vertices B + iTy, B+ iT,
A+ iT and A +iTy. Here the numbers B > 1, Ty > 1land T > T
are large enough and the number A < 0 small enough. More detailed
version of the selection of the constants is given in article [A].

Subtracting the formula containing A from the formula containing
A 41 we get to the following formula:

2iN{(To, T) +2 Y. 1+27 Y (R(p) — A)

To<S(p)<T To<S(p)<T
0>R(p)>A+1 A+1>R(p)>A

T
:/ (log |F(A + it)| — log |F(A +1+ it)|) dt
To

B B
- / arg F(o + iTo)do + / arg F(o +iTo)de  (22)
A A+1

B B
+/ argP((7+iT)dU—/ arg F(o +iT)do
A A+l

= Il(To, T,A) — Il(To, T,A + 1) — Iz(TO, A,B)
+ IZ(TO,A + l,B) + IZ(T,A,B) — IZ(T,A + l,B).

Since we know the locations of the non-trivial zeros, the last two terms
on the left-hand side of formula (2.2) can be estimated easily. Thus, it
is sufficient to estimate the integrals defined on the right-hand side of
formula (2.2).

First we look at the difference I;(Ty, T,A) — [1(Ty, T,A + 1). The
function F(s), and thus also the function log F(s), can be easily esti-
mated when R(s) > 1 is large enough by using the series expansion.
Applying the functional equation, we reach the case where it is suf-
ficient to estimate the integral of the difference of the terms log F(s),
where R(s) is large enough, and the terms which depend on certain
products related to the gamma function. The first difference is easily
estimated using the Taylor series expansion for the logarithm. For the
second difference, we apply the following estimate for the logarithm of
the gamma function (see [73, paragraph 9]):

Lemma 2.7 Let z be a complex number such that |arg(z)| < . Then we
have

1 2
logT(z) =zlogz —z+ Elog% + E(z2),

where E(z) is a holomorphic function satisfying

sec2 (arzgz> .

E <
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These estimates produce the main term %Tlog% + 1 log(AQ?) and
explicit error terms of sizes ¢'(log T) and &(1).

Now we estimate the integrals I; defined on the right-hand side of
formula (2.2). First, we recognize that if the term R (F(c +it)) has N

zeros with o € [a, b], then

/bargF(U—H’t)’ < (N+1)(b—a)m.

Thus the goal is to estimate the term N.

We would like to estimate the term N in such a way that it is con-
nected to the function F(s) and has some formula which can be (easily)
estimated. Thus, let

¢(z) = % (F(z +it) + F(Z + z’t))

and let n(r) denote the number of the zeros of the function g(z) with
|z —b| < r. For real numbers ¢ we have g(c) = R (F(c +it)). Thus
N < n(b —a). By Jensen’s formula [33] we have

2(b—a)
n(b—a)log2 < / n(rr)dr
0

— 1 o if
=5 || loglg(b+2(b —a)e) 0 — log|g(0)].

The term log|g(b)|, where the number b > 1 is large enough, can be
estimated using the series expansion for the term F(s).

The integral of the term log |g(b + 2(b — a)e')| is a little bit more
complicated to estimate since the real part R (b + 2(b — a)e'?) is not nec-
essarily big enough for making the trivial estimates. Thus we apply
the Phragmén-Lindelof principle for a strip [32, Theorem 5.53]. It tells
us an estimate for a function inside a strip if we can estimate the func-
tion on the left and right edges of the strip. Since by the functional
equation we can easily estimate the function F(s) with small and large
real parts of s, we obtain the wanted result by the Phragmén-Lindelof
principle. Thus we have estimated the term n(a — b) and hence also
the integrals I,. These estimates produce explicit error terms of sizes
O(logT), 0(1) and O0(1/T). Together with the estimates for the term
L(Ty, T,A) — I1(Ty, T, A+ 1), we have obtained the results described in
Section 2.3.

The main differences between the proof of Steuding’s asymptotic
result and the explicit results described here are that we refer to ex-
plicit results instead of the asymptotic ones and some steps are done
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more precisely. For example, instead of using the asymptotic version
of Stirling’s formula, we apply the explicit one mentioned in Lemma
2.7. Also, for instance, obtaining an explicit estimate for the integral of
the term log |¢(b + 2(b — a)e?) | needs a little bit more careful work and
more case by case work than the asymptotic one.

More detailed proofs can be found in article [A].

2.5 Discussion

In article [A], we derive an explicit Riemann-von Mangoldt type for-
mula for the Selberg class. The main steps of the proofs are described in
Section 2.4.

Since the results are quite general, the coefficients described in Theo-
rems 2.3-2.5 are probably not the most optimal ones. This can be already
seen by comparing the numerical results obtained from Theorems 2.3—-
2.5 to the known coefficients for the Riemann zeta function [74]. One
possible way to improve the results may be to apply the so called Back-
lund’s trick [1] which has been successfully applied for the Riemann
zeta function [1, 74], the Dedekind zeta functions and the Dirichlet L-
functions [75] and the Hecke-Landau zeta-function [29]. The idea of
the trick is to show that if there exist zeros of R (F(o +iT)V) with o €
[3, 1], then there exist zeros of R (F(c +iT)N) with o € [1 — oy, 3].

In addition to the Backlund’s trick, proving estimates for some spe-
cific functions in the Selberg class also leads to sharper results. In Sec-
tion 2.2 we already mentioned these kind of the results.

There are plenty of applications of the formula for the number of the
zeros. Already in Chapter 1 we mentioned connections between zero-
free regions and the number of the zeros in addition to their connections
to PNT. One example of the first connection is discussed in Chapter 3
and an example of the second one in Chapter 4.

Furthermore, the number of the zeros can also be used to determine
the locations of the zeros. Let us define S¢(T) = L arg F(1/2 4 iT). The
term Sp(T) is closely related to the number of the zeros since by [70,
page 838] we have an asymptotic formula

N dr T T )
Ni(T) = -—Tlog — + —1og(AQ") + C11og T + Sp(T) + O(1/T).
271 e 2m
Similarly as in the case of the Riemann zeta function (see e.g. [64, 65]),
we can determine the locations of the zeros using the term Sp(T). It
also plays an important part in Turing’s method [77] to determine the
zeros. Thus, proving good, explicit bounds for the term Sg(T) would be
an interesting research question. Moreover, it is known that assuming
the RH we obtain a sharper estimate for the term Sp(T) coming from
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the Riemann zeta function [42, 74]. Hence, it would be interesting to
investigate similar results for the Selberg class.



3 On explicit T-Li type criteria

In article [B], we study the 7-Li coefficients and their connections to
explicit zero-free regions. We start with an introduction to the Li and
the 7-Li coefficients.

3.1 OnLiand T-Li coefficients

In 1997 X.-J. Li [41] proved that the RH is equivalent to that each of the
terms

b s o -7 ()]

where 7 is a positive integer, is non-negative. This criterion is called Li’s
criterion and the terms A, are Li coefficients. It is worth noticing that the
same kind of constants were already introduced by ]. B. Keiper [37] in
1992. In addition to the Li’s criterion, Li also proved that the Li coeffi-
cients can be written as

An:2<1—<1—1>n), neZz,, (3.1)

0 P

where the sum runs over the non-trivial zeros of the Riemann zeta func-
tion.
The Li’s criterion raises a couple of questions:

1. Could we also prove similar results for the Li coefficients if the
terms R(p) satisfy other conditions than the condition R(p) =
1/2? E.g. could we look generally at the zeros p with R(p) > 1/2?

2. Are there generalizations for other functions?

3. What can be deduced considering only finitely many of the Li co-
efficients?

The first question was answered by P. Freitas [28]. He proved that
all zeros of the Riemann zeta function satisfy the condition £(s) < 7/2,
where T € [0.5,00), if and only if the numbers

i2<1—<pr>>, nez., (32)
p

are non-negative. Here the sum runs over the non-trivial zeros of the
Riemann zeta function and terms including zeros p and 1 — p are paired
together. In the case T = 1 formulas (3.2) and (3.1) are equal.

13
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Regarding the second question there are several generalizations to
different sets of complex numbers p and various functions. For exam-
ple, similar conditions to Li’s criterion have been proved for a general
multiset of complex numbers [4], automorphic L-functions [39], the Sel-
berg class [55, 56] and a certain subclass of the extended Selberg class
[70].

Furthermore, defining

t—o0 — T
IS (o)<t

Ar(n, T) = lim ; (1 — (pp>n> , nezZ,, (3.3)

where the sum runs over the non-trivial zeros p of the function F, sim-
ilar results as Freitas proved can be generalized to other functions. The
numbers Ap(n, T) are called 7-Li coefficients. For certain functions F all
(of the real parts) of the 7-Li coefficients are non-negative if and only
if all non-trivial zeros p satisfy the condition £(p) < 7/2. In addition
to the Riemann zeta function, this type of results have been proved,
for example, for certain subclasses of the extended Selberg class [9, 17],
Rankin-Selberg L-functions [8], a very broad class of L-functions [24]
and automorphic L-functions [45]. There are also different growth con-
ditions for the Li and the 7-Li coefficients (see e.g. [25, 39, 44, 54, 80]).

Now we are ready to move on to the third question. We consider
it for the Li and the 7-Li coefficients. F. C. Brown [7] investigated con-
nections between the Li coefficients and certain zero-free regions for a
certain set of functions including the Riemann zeta function. He was
able to prove [7, Theorem 3] that if a finite number of the Li coefficients
are non-negative, then the critical strip contains (certain) zero-free re-
gions. Brown also tried to prove [7, Theorem 2] that if there exist certain
zero-free regions, then certain Li coefficients are non-negative. Unfortu-
nately, his proof of Lemma 5 contains two errors which affect to Theo-
rem 2. A. D. Droll [17] was able to fix one of errors but not the another
one.

In article [B], we investigate the same type of questions as Brown
did. Furthermore, instead of considering only the Li coefficients, we
consider also the 7-Li coefficients. More detailed explanations can be
seen in the next sections and in article [B].

3.2 Results

In article [B], we work with similar problems related to the 7-Li coef-
ficients as Brown worked with in the theory of the Li coefficients. We
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investigate 7-Li coefficients, where T > e~1is a real number, defined as

Ap(n,) = lim ) (1— <pr) ) (3.4)
P
1S(p)|<t
0<R(p)<tT

With condition (i) definition (3.4) coincides with the classical definition
(3.3) of the 7-Li coefficient. Furthermore, we assume that a function F(s)
satisfies the following conditions:

(i) Location of the zeros, 1: The function F(s) does not have zeros p
with R(p) > .

(ii) Location of the zeros, 2: The function F(s) does not have a zero
p=T.
(iii) Number of the zeros: For some real numbers Ar > 0 and Bf

and for a real number Ty > 0 which is large enough, we have the
following two properties: First, we have

‘Np(T) — AFTIOgT — BFT|

Cr3(To) (3.5)
T 7

< CF,1(T0) log T+ Cplz(To) +

where T > T is a real number and the numbers Cr;(To) (j =
1,2,3) are non-negative real numbers which depend on the func-
tion F and the number Tj. Furthermore, we also have

|NF(T,2T) — ApTlog T — (A]: 10g4 + BF)T’
cr3( T (3.6)
< Cp/l(To) log T+ Cplz(To) + 1:'3,1(10),
where the terms ¢ ; (To) (j = 1,2,3) are non-negative real numbers
which depend on the function F and the number T.

(iv) Computation: The numbers Ap(n,T) can be computed without
knowing the zeros of the function F(s).

Condition (i) is not necessary for proving the results. We want that def-
inition (3.4) of the term Ap(n, T) coincides with classical definition (3.3)
and thus we assume condition (i). Furthermore, condition (iv) is not
needed for deriving the results but it is useful for applying the result
for considering the zero-free regions. Further, the assumption T > ¢!
is used because of technical, computational purposes i.e. mainly to be
able to estimate log (et) > 0.
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I~ DNIlA [~

R(p)

Figure 3.1: Region ‘p% < Ris in white.

It may be worth noticing that we do make any assumptions about
the order of the function F whereas Brown did. Furthermore, in general,
the assumptions are not too restrictive. For example, the Riemann zeta
function satisfies conditions (i)-(iv) [43, 78, 79].

The first main result is of the same type as Brown’s Theorem 3 but it
is for the 7-Li coefficients:

Theorem 3.1 (Article [B]) Let R > 1 be a real number. If all real parts of the
T-Li coefficients of F are non-negative in a certain interval, which is given in

Theorem 3.1 in article [B], then all zeros p satisfy the condition ‘p% < R.

The interval mentioned in Theorem 3.1 depends on the numbers R and
T and the constants defined in formula (3.5). Notice also that we have
lo/(p— )| = 1if and only if R(p) = 7/2. The region |p/(p — 7)| < R
can be seen in Fig. 3.1. We investigate these kind of regions since we
use lower and upper bounds of the term |p/(p — T)| in our proofs and
Brown also considered similar regions.

The second main result is similar Brown’s Theorem 2, but again, it is
for the 7-Li coefficients:

Theorem 3.2 (Article [B]) Let R > 1 be a real number. If at least one of the
real parts of the T-Li coefficients of F is negative in a certain interval, which
is given in Theorem 3.2 in article [B], then there is at least one zero p with

‘P > R.

p—T| =
The interval mentioned in Theorem 3.2 depends on the numbers R and

T as well as the constants defined on formulas (3.5) and (3.6). It does not
necessarily overlap with the interval mentioned in Theorem 3.1.
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Combining the results from Theorems 3.1 and 3.2 it may be possi-
ble to make conclusions about the locations of the zeros. Indeed, if all
real parts of the coefficients defined in Theorem 3.1 are non-negative,
then all zeros lie in a certain region. Furthermore, if at least one of the
real parts of the 7-Li coefficients obtained from Theorem 3.2 is nega-
tive, we know that there exists at least one zero in a certain region. The
problematic case is when some of the real parts obtained from Theo-
rem 3.1 are negative but all real parts obtained from Theorem 3.2 are
non-negative. In this case, we cannot say whether there exist zeros p
with |o/(p —7)| > R or not with a given number R. On the other
hand, it is clear that in this case there must be at least one zero with
lp/(p — T)| > 1 since otherwise we can not obtain negative terms from
Theorem 3.1.

In addition to Theorems 3.1 and 3.2, the following equivalent condi-
tion is proved:

Theorem 3.3 (Article [B]) Let R > 1 be a real number. There exists exactly
one zero p with ‘p%r‘ > 1, and for it holds ‘p%T‘ > R, if and only if the

term |R(Ap(n, T))| of F is large enough for at least one integer n in a certain
interval. The interval and the lower bound for the term |R(Ap(n, T))| are given
in Theorem 4.1 in article [B].

The interval and the lower bound mentioned in the Theorem 3.3 depend
on the numbers R and T as well as the constants defined on formulas
(3.5) and (3.6).

The advantages of Theorem 3.3 compared to Theorems 3.1 and 3.2
are that Theorem 3.3 gives an equivalent condition and it allows us to
compute less 7-Li coefficients than Theorems 3.1 and 3.2 do. On the
other hand, with Theorem 3.3 we can consider only the existence of ex-
actly one zero inside certain regions.

At the end of paper [B] we also give some numerical examples of the
bounds obtained from Theorems 3.1-3.3. See Tables 1-3 and Corollaries
5.1,5.2 and 6.1 in article [B].

3.3 Main steps of the proofs

The proofs of Theorems 3.1-3.3 are straightforward. They are based on
considering contributions coming from the zeros with absolute values
large enough, small enough and possible exceptional zeros for the t-Li
coefficients. The reason behind this is that a single zero, whose imagi-
nary part has an absolute value large enough, contributes less to a 7-Li
coefficient than a zero with an absolute value small enough. Further-
more, the behavior of the terms p/(p — T) depends also on the real parts
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of the zeros. Thus it is also taken under consideration.

Let us start with the proof of Theorem 3.1. The main idea is to prove
that if there exists a zero p with |p/(p — T)| > R, then at least one of the
coefficients R(Ar(n, 7)) is negative when the integer n is on a certain
interval. First, we recognize that when the absolute values of the imag-
inary parts of the zeros are large enough, then by the binomial theorem

and the inequality (,;) < (%)Zk [13, inequality (2)], we obtain
c(t)n?

n (-G )= e

Here the number ¢(7) is a certain explicit real number which depends
on the constant 7. With formula (3.6), we can deduce that the contribu-
tion coming from the zeros with the absolute values of the imaginary
parts large enough is of size (nlogn) and we know an explicit version
of it.

The contribution coming from the zeros with the absolute values
of the imaginary parts small enough, follows from considering of two
cases. First, we consider the zeros with the absolute values of the imag-
inary parts up to a certain number N. All zeros p with [p/(p — T)| > R
are included in this case. To derive the contribution, we apply the fol-
lowing theorem proved in [48, Chapter 5, Theorem 11]:

(3.7)

Theorem 3.4 Let M > 1bean integer and let z1,z, . . ., zp be complex num-
bers which satisfy the condition max |z;| = 1. Then
]

M 1
n
max R( Yz > .
1<naim F 1Z] — 20

Applying the previous theorem, we bound the contribution

§R< ; <1—<pr>n>>< ; 1—%1{’? (3.8)

[S(p)|<N IS(0)|<N

Now we have estimated the contributions coming from the zeros with
the absolute values of the imaginary parts large and small enough. We
still have to estimate the contribution coming from the zeros with the
absolute values of the imaginary parts between the previous bounds.
This is our next step.

For the rest of the zeros we have |p/(p — T)| < R. Since we have

HEECE
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remembering that both 7 and |3(p)| lie in a certain interval, an explicit
upper bound for the term |® ((p/ (0 — 7))")| is obtained. Together with
formulas (3.8) and (3.5) we obtain that the contribution coming from the
zeros with quite small absolute values of the imaginary parts is

K1 (T)N?Her((log N)? — ;—ORN : (3.9)
Here the terms Kr1(7) and er(7) are explicit, positive constants which
depend on the function F and the number 7.

Remembering the upper bound of size &' (nlogn) for the contribu-
tion coming from the zeros with the absolute values of the imaginary
parts large enough, and that the number # lies in a certain interval, we
have obtained an explicit, type (3.9) upper bound for the term R(Ar(n, T)).
Since it is always negative when N is large enough, we have proved
Theorem 3.1.

Let us now take a look at the proof of Theorem 3.2. The idea is
to prove that if all zeros p satisfy the condition |p/(p — T)| < R, then
certain terms R(Ar(n, 7)) are non-negative. As before, we divide the
consideration to the two cases depending on the absolute values of the
imaginary parts of the zeros. When the absolute values are small enough,
we just use the inequality |p/(p — 7)| < R. By formula (3.5) these zeros
give a contribution which is greater than —Kr,(R" — 1) for some real
number Kr, > 0 which depends on the function F.

When the absolute values of the imaginary parts of the zeros are large
enough, we write

2 (55) ) = ()

n(n—1)7? 1
SR (o) ew

_;G)%«P;)])

The first term on the right-hand side of formula (3.10) is always non-
negative. Furthermore, we can easily prove that the second term is
at least c(t)n(n — 1)/|S(p)|>. Here the constant c(7) is a positive real
number which depends on the constant T and we know an explicit ver-
sion of it. The estimate for the third term on the right-hand side of for-
mula (3.10) follows from the observation

()G

T3n(n —1)(n—-2)
e ()P
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It is explicit and greater than —c(t)n(n —1)(n — 1)/|S(p)|* for some
constant ¢(7).

Combining the previous three estimates for the terms defined on the
right-hand side of equality (3.10), we find an explicit lower bound which
can be described as

R(1-(22)) = D e o

when the absolute values of the imaginary parts are large enough. Us-
ing formula (3.6), the contribution coming from the zeros with the ab-
solute values of the imaginary parts large enough, is of size ()(nlogn)
and given explicitly. Together with the contribution coming from the
zeros with the absolute values of the imaginary parts small enough, we
obtain

R(Ap(n, 7)) > —Kpp(R" —1) 4+ Kps(T)nlogn.

Here the number Kr3(7) is a positive real number which depends on
the function F and the constant 7. When the number R is close enough
to 1, we always find an integer n for which the right-hand side of the
previous inequality is greater than zero. This proves Theorem 3.2.

Let us now move on to the proof of Theorem 3.3. For all zeros with
lo/(p—7)| < 1itholds

2(-(GE))|=2

Together with estimate (3.7) for the zeros with the absolute values of the
imaginary parts large enough and formulas (3.5), (3.6), this leads to an
explicit contribution of size ¢'(nlogn). Furthermore, for the zero p with
lo/(p — 7)| > R and n large enough, we have

n
o))
p1—T 20
Since R" grows faster than n log n, this completes Theorem 3.3.

3.4 Discussion

In Section 3.2, we provide some relations between the 7-Li coefficients
and the zero-free regions. The main steps of the proofs are described in
Section 3.3. Even though the methods of the proofs are quite elementary,
the results give interesting and useful connections between the 7-Li co-
efficients and certain zero-free regions for a very large set of functions.
Furthermore, they also generalize and correct some results proved by
Brown [7, Theorem 2, Theorem 3].
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Since very few assumptions are made for the functions under consid-
eration, the results may not be very sharp. Thus, it would be interesting
to prove similar results for specific functions, for example, Dirichlet L-
functions or for the Selberg class. For instance, the existence of certain
functional equations, complete functions etc. have been used for deter-
mining the Li and the 7-Li coefficients (see e.g. [7, 9, 25, 28, 54, 80]). Thus
more precise conditions may also be helpful. This way it may be pos-
sible to find equivalent conditions to hold instead of implications. Fur-
thermore, since many of the considerations seem to rely on the number
of the zeros [7, 9, 17], better bounds for them may also be useful.

One obvious application of the results is to actually determine zero-
free regions. Several computations for the Li and the 7-Li coefficients
have already been made (see e.g. [9, 11, 24, 25, 43, 52, 53]). Comparing
them to the results proved in article [B], it may be possible to make some
conclusions about the zero-free regions.

Furthermore, instead of considering similar regions as described in
Fig. 3.1, it may be interesting to assume that all zeros with real parts in
[0, T] up to height T satisfy the condition R(s) = 7/2 and then estimate
the behavior of the 7-Li coefficients. This kind of result has already
been published for the Riemann zeta function [57] but it, unfortunately,
contained errors [58].

In Theorem 3.3 we prove an equivalent condition between the 7-Li
coefficients and existence of a certain zero. In [7, Theorem 5] Brown
proves a similar, but stronger, result for the Li coefficients. He shows
that the non-negativity of the term Ap(2,1) for certain functions leads
to the non-existence of a Siegel zero. It would be interesting to prove a
similar result for a more general context and to the 7-Li coefficients.



4 On primes in arithmetic progressions under GRH

In article [C], we study an explicit bound for the number of primes in
arithmetic progressions assuming the GRH. First we take a look at the
number of primes and then at the number of primes in arithmetic pro-
gressions.

4.1 On the number of primes

In his famous paper [63], G. F. B. Riemann stated that the number of
primes up to x satisfies the condition

x
log x’

7t(x) 4.1)

The result was proved almost forty years later independently by J. Hadamard
[30] and C.-]. de la Vallée Poussin [15]. A couple of years later de la Val-

lée Poussin [16] also showed a more precise result. Namely, there exists

a real number ¢ > 0 such that

n(x) =Li(x) + 0 (xe_c\/@) .

Again, a couple of years later, H. Koch [38] improved the result showing
the RH is true if and only if the error term is &'(1/xlogx).

Thus, many useful asymptotic results were already known by the
beginning of the 20th century. But what do we know about explicit
estimates for the number of primes?

The explicit bounds can be divided to two different categories: To the
so called de la Vallée Poussin-type results, where the error term is signifi-
cantly smaller than the main term, and to the Chebyshev-type estimates,
where the error term is a small multiple of the main term. ]J. B. Rosser
and L. Schoenfeld [65, 66, 67, 68] started the work with the de la Val-
lée Poussin-type estimates. For the latest improvements for the de la
Vallée Poussin-type bounds, see [10, 22, 61, 76]. There are also several
Chebyshev-type bounds for the number of primes and some functions
related to it (see e.g. [22, 51, 67, 68]).

For further survey, see [14, 31]. In this text, we concentrate on the de
la Vallée Poussin-type bounds for the number of primes in arithmetic
progressions.

22
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4.2 On number of primes in arithmetic progressions

In 1896 de la Vallée Poussin [15] proved that the number of primes in an
arithmetic progression up to x is

X

mT(x;q,a) ~ ——.
(xig.4) ¢(q)logx

Keeping in mind formula (4.1) for the number of primes, this is a very
natural result since the number of primitive residue classes modulo g
is ¢(q). By A. Walfisz [81] the result can be improved to the following:
For all positive real numbers A there exists a positive real number C(A)
such that

_ Li(x) x
T80 =5y | < M log

when x > 3.

The constant C(A) is ineffective meaning that it is not possible to find
a numerical value for it going through the proof. As in the case of the
number of primes, assuming the GRH leads to a better error term for
the number of primes in arithmetic progressions. Indeed, then we have
(see e.g. [14, Chapter 20])

m(x;q,a) = o(0) + 0 (Vxlogx) . (4.2)

There are many Chebyshev-type explicit estimates for the number
of primes in arithmetic progressions (see e.g. [2, 46, 47, 62]) but de la
Vallée Poussin-type results are much more rare. The only de la Vallée
Poussin-type results without assuming the GRH have been proved by
P. Dusart [21], who considered the case 4 = 3, and by M. A. Bennett, G.
Martin, K. O’Bryant and A. Rechnitzer [3] who generalized the result for
all numbers g and various numbers x. They did not assume the GRH
and thus the error terms are of sizes ¢'(x/ logx). Furthermore, in his
PhD-thesis, P. Dusart derived [20, Theorem 3.7] sharp explicit estimates
for the term ¥(x; g, a) (see Notation) where x > 1010 and g < %logx or
g < 432. Even though this function is closely related to the number of
primes in arithmetic progressions (see e.g. Chapter 1, [14, Chapters 19,
20]), the result is not sufficient for estimating the number of primes in
arithmetic progressions up to some x.

In the next sections we describe the explicit result for the number of
primes in arithmetic progressions, assuming the GRH, proved in article
[C]. This gives an error term of the same size as the one described in
formula (4.2).
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4.3 Results

In article [C] we prove the following bound for the number of primes in
arithmetic progressions:

Theorem 4.1 (Article [C]) Assume the GRH. Then the number of primes in
an arithmetic progression 1t(x;q,a) for integers x > e, g > 3 and a satisfies
the bound

li(x) ( 1 1 )
t(x;q,a) — < + — ] Vxlogx — 75.306
‘ w00 = o) | = \srglg) T on &
1
+ ( 47.27010g? g + 1199.553 1o ++6808.840> V.
( &1 BT 4e(a)

Please notice that the coefficients in front of the term +/x can be slightly
sharpened using Lemma 9 instead of Corollary 10 from [C]. On the
other hand, this would lead to a longer error term. Furthermore, by [68,
Corollary 1], under the RH, the error term for the number of primes is
v/xlogx/ (87) when the number x is large enough. Thus it may be nat-
ural to assume that the main error term in Theorem 4.1 can be improved
to m. This topic is discussed more in Section 4.5.

In order to prove Theorem 4.1, we prove the following result which

is also interesting in itself:

Theorem 4.2 (Article [C]) Let x > 2, g > 3 and a be integers and the func-
tion Y(x; q,a) defined as in Notation. Assume the GRH for Dirichlet charac-
ters modulo q and for any modulo dividing q. We have

1 1
Y(x;q,a) — qucq) ‘ < <87T<p(q) + 67_[> Vx(log x)? + 1.363x%4% (log x)?

+ (0.3191og g + 15.931) y/x log x
+ (7.4331og q + 84.472)1/x + Ry (x)

where the term Rq(x) describes the contribution coming from the terms which
x0-423

are asymptotically at most € (@> The term Ri(x) is explicitly given in
Theorem 1 in [C].

In addition to the number x, the term R;(x) also depends on the number
g. Furthermore, as in Theorem 4.1, the coefficient in front of the term
v*(log x)? can most probably be sharpened.

Besides Theorems 4.1 and 4.2, several other interesting explicit esti-
mates, obtained assuming the GRH, are proved in article [C]. For ex-
ample, in Lemma 7 there is an explicit upper bound for the term |b(y)|,
where the term comes from the Laurent series expansion of the term
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LL,((SS’;(‘)) — Lats = 0. Here L(s, x) is a Dirichlet L-function associated with
a primitive nonprincipal character modulo g. Furthermore, in Lemma
9 and Corollary 10, upper bounds for the terms |L'(0, x)/L(s, x)| with

x(—1) = —1 are mentioned.

4.4 Main steps of the proofs

By partial summation, we can write

. _ Y(x;q,a) *Y(tq,a)
n(x,q,a)—ilogx + 7t(logt)2dt
0(x;q,a) — ¢P(x;q,a) *0(t9,a) —¢(t;q,a)
log x + /2 t(logt)? at.

_|_

(4.3)
(To remember the definition of the function 6(x;g,a), please see Nota-
tion.) Thus itis sufficient to estimate the functions ¢(x; g, 4) and 6(x; g, a)
P(x;g,a). We follow the same steps as described in H. Davenport’s book
[14, Chapters 19, 20]. Furthermore, we also keep in mind that in order
to obtain the wanted main and error terms (see Theorem 4.1), we need
to get the main term x/¢(g) and the error terms to the size of at most
0 (+v/x(log x)?) for the terms y(x;q,a) and 0(x; g,a) — ¥(x;q,a).

First we derive an estimate for the difference 0(x;q,a) — ¢(x;q,4).
The estimate follows straightforwardly from the definitions of the func-
tions and the explicit estimate [66, Theorem 13] proved for the difference
P(x) — 0(x). It is explicit and of size (/x).

Now we are ready to move on to estimate the term ¢(x;g,a). This
case is a little bit more complicated than the previous one. First, using
the definition of the function ¥ (x; g,a) and some properties of character
sums, we can write

Xo(@)p(x, xo0) | 1 o
o(7) +<”<‘7)X;m%( (o x). (44

¥(x;q,0) =

Here xo is a principal character modulo q. The reason why we sepa-
rate the principal character from the sum is that later we are going to
apply the following formula (see [75, Theorem 1]) for the number of
non-trivial zeros of the Dirichlet L-functions and it is only proved for
primitive nonprincipal characters. More detailed explanations how the
formula for the number of the zeros is used can be seen in those parts of
this section where we actually use the following formula:

Theorem 4.3 Let T > 1 be a real number and x be a primitive nonprincipal
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character modulo q. Then

T  qT
N(T, x) ~ —log 2% < 0.317log(qT) + 6.401,

where N(T, x) counts the number of the zeros p of a function L(s, x) with
0<R(s) <land |S(p)| <T.

To prove the result, we need to estimate the contributions coming from
the principal and nonprincipal characters.

Next we estimate the contribution coming from the principal char-
acter in formula (4.4). The goal is to obtain the main term x/¢(q) and
error terms which are small enough. We keep in mind that we already
know how to estimate the function ¢(x) [68, Theorem 13] and thus the
goal is to use this information. Hence, we estimate the function ¥ (x, o)
with the function (x). Using the definitions of the functions ¢ (x, xo)
and (x), it follows that the difference |xo(a)¥(x, xo) — ¥(x)| is of size
0 '(log x) and we find an explicit upper bound of that size. Furthermore,
using [68, Theorem 13] and verifying the result also for the small num-
bers x, we obtain an explicit upper bound of size ¢'(\/x(log x)?) with
the leading coefficient 1/(87) for the difference |(x) — x|. Thus we
have obtained the wanted main term x/¢(q) for the function ¥ (x; g, a)
and are ready to move on.

Now we estimate the contribution coming from the nonprincipal
characters in formula (4.4). Since the function ¢(x, x) has discontinu-
ities when the number x is a prime power and we want to use some
properties of continuous functions later, we estimate the function ¥ (x, x)
with the function

¥(x,x) — 3A(x)x(x) if x is a prime power
P(x, x) otherwise.

Po(x, x) = {

This leads to an explicit error term of size ¢/(logx). Furthermore, as
we have already mentioned, we are going to apply such a formula for
the number of zeros which is only proved for primitive nonprincipal
characters. Thus we estimate the terms 1 (x, x) with the terms 9 (x, x*)
where x* is a primitive character which induces the character . This
is a very easy computation and leads to an explicit error term of size
O'(logx).

Because of the previous two paragraphs, it is sufficient to estimate
the term ¢ (x, x) for primitive nonprincipal characters. By [14, Section
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19, formulas (2) and (3)] we have

xf L0, x)
X, = — — —a
non-trivial (45)

00 xame

—(1—a)(logx+b(x))+ Z

m=1

2m —a’

where

_Jo o if x(-1)=1
Tl (=)= -1

and b(x) comes from the Laurent series of LL,((SS,?)) = % +b(x)+.... Thus
the term o (x, x) can be estimated by estimating the terms on the right-
hand side of formula (4.5) separately.

Let us start with the last term on the right-hand side of formula
(4.5). Writing this term as an integral and doing some trivial estimates,
we shortly obtain an explicit error term of a constant size.

Next we estimate the term b(x) and thus the third term on the right-
hand side of formula (4.5). First we want to derive such a formula for
it that we can (easily) handle. Since the function b() is related to the
function L'(s, x)/L(s, x), we consider this function. By the functional
equation for the Dirichlet L-functions and logarithmic differentiation
we have

L'(s,x) _ 1, q 1 11
Loy ~ 2'%n a7y TR0+ L (s_p+p>,(4-6)

non-trivial

where the term B()) is a constant which depends on the term ). Since
we want to avoid estimating the constant B(), we subtract formula
(4.6) with s = 2 from formula (4.6) with s. Furthermore, using formula

o E ()

n=1

(see [14, Section 12, formula (9)]) for the logarithmic derivative of the
gamma function, we obtain

_U@ex 2
M0=Ton~ L @

non-trivial

(4.7)

An explicit estimate for the last term on formula (4.7) follows easily
from assuming the GRH, applying Theorem 4.3 and using partial sum-
mation. It is of constant size. So we move on to estimate the first term
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on the right-hand side of formula (4.7). The idea is to derive the esti-
mate from an explicit estimate proved for the Riemann zeta function [6,
Lemma 2.2]:

Theorem 4.4 For o > 1 let

Then there exists a positive absolute constant co such that
—Cz((T— 1) < f(O') <0,

and c, can be taken to be > — 2+ where

N 2
1 =— lim (Zk’gm _ (logN) ) — —0.0723...

n=2 m 2
socy = 0.47789.. ..

Thus we can also estimate the Dirichlet L-functions at that point:

Corollary 4.5 (Article [C]) Lets =1+ @ +it, where y > 1and t are real
numbers. Then

‘L’(s,x)‘ o +’y+0'478
Lis,x) | =~ 89T T logy
Furthermore, if s = 2 + it, then ’ LL/((SS’;(C)) ’ < 0.570.

Using Corollary 4.5, the first term on the right-hand side of formula (4.7)
is estimated with an explicit upper bound of a constant size. This also
leads to an explicit upper bound of a constant size for the term b(y).

Next we estimate the second term on the right-hand side of for-
mula (4.5). First, according to the functional equation for the Dirich-
let L-functions, we can estimate the logarithmic derivative at the point
s = 1 instead of the point s = 0. By assuming the GRH, [3, Lemmas
6.4 and 6.5], [40, Theorem 1.5, Lemmas 2.3 and 2.5] and some numerical
computations, we can estimate the terms L'(1, x) and L(1, x). The total,
explicit error term in this case, is of constant size.

Now we estimate the first term on the right-hand side of formula
(4.5). This case is a little bit trickier than the previous ones. First of all,
we cannot use just the GRH, write |x”| = /x and straightforwardly
apply Theorem 4.3, since the sum does not converge. Thus we divide
the consideration to two cases: the absolute values of the imaginary
parts of the zeros p are 1) large and 2) small enough.



29 CHAPTER 4. PRIMES IN ARITHMETIC PROGRESSIONS GRH

First we consider the contribution coming from the non-trivial ze-
ros with the absolute values of the imaginary parts large enough. The
idea is to estimate the whole term 1y (x, x) with the integral

1 c+iT(x) L'(s, x)\ x°
100 = 5 [ () e

Here T(x) is a large enough real number and it depends on the num-
ber x and we denote ¢ = 1 + logx. First we estimate the difference
Po(x, x) — J(x, T(x), x) and then the function J(x, T(x), x)-

Now we estimate the difference |y (x, x) — J(x, T(x), x)|. Apply-
ing [14, Section 17, formula (3)] and the definitions of the functions, we
obtain

o (x, x) — J(x, T(x), x)|
< ; A(n) (f) min {1, (T(x))~ ‘logz)l} +o(T(x)) A (x).

n
n#x

(4.8)
We divide the consideration to different cases depending on how close
the numbers 7 and x are to each other. By partial summation this leads
to an explicit error term of size & (x(logx)?/T(x)). Please notice that
the number T(x) depends on the number x and thus the previous asymp-
totic upper bound depends (only) on the variable x.

Next we estimate the term [(x, T(x), x). Again, we cannot just triv-
ially estimate |x°| = xe and |L'(s,x)/L(s, x)| = O(logx), since this
leads to a too large error term. Thus we apply an integral over a (modi-
tied) rectangle with vertices

c+iTy c+iTy, —U+iTy and —U+iTs.

Here U > 0is a real number and T; and T, are real numbers such that
there are no zeros with 3(p) € Ty, T; and we have |T(x) — Ty| < 1 and
| — T(x) — T,| < 1. The existence of the numbers T, T, follows from
Theorem 4.3. If a Dirichlet L-function has a zero at s = —U, then we
avoid it with a half circle which has a very small radius and whose cen-
tre is at (—U,0). The idea is to estimate the integral over the whole
rectangle, then remove integrals over horizontal lines and the left verti-
cal line and lastly remove or add necessary parts to obtain the integral
J(x, T(x), x)-

We start with estimating the error term which comes from adding
or removing necessary integrals to the right vertical line. The estimate
follows easily from using Corollary 4.5 and the definitions of the terms
Ty, Ta, c. We obtain an explicit error term of size ¢ (xlog x/T(x)).
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For obtaining the contribution coming from the horizontal lines, we
apply the functional equation for the Dirichlet L-functions, Corollary
4.5, partial summation and divide the consideration to different cases

depending on the real part of the number s. That way we obtain an

x(log T(X))2>
T(x)logx J°

Furthermore, by [14, Pages 116-117], the contribution coming from
the left line goes to zero as U goes to infinity. Thus, we let U go to
infinity and we have to only estimate the integral over the (modified)
rectangle.

Using residue calculus we almost obtain formula (4.5) as U goes to
infinity. The only exception is that instead of the first sum on the right-
hand side of formula (4.5), we look at the term

y *
T,<[S(p)| <1 P
non-trivial

explicit error term of size & <

Since the absolute values of the terms Ty, T, are at most T'(x) + 1, we can
estimate the previous formula with a sum running over the zeros with

absolute values of the imaginary parts at most T(x) + 1. This estimate

leads to an explicit error term of size at most & <%) .

Now it is sufficient to estimate the term
x—p. (4.9)
[3(p)<T(x)+1 P
non-trivial
By partial summation and using Theorem 4.3, this leads to an explicit
error term of size 0 (y/x(log T(x))?).

Now it is time to put everything together and choose the size of
the term T (x). We keep in mind that we want an error term which is at
most of size 0 (1/x(log x)?). According to the previous proofs, we find
an explicit upper bound of size & (x(logx)?/T(x)) for formula (4.8).
Thus, we have to select the number T(x) to be of size Q(1/x). Let us
write T(x) =~ x%°*€ where € > 0 is a real number and the term T(x) can
differ from the term x*°*¢ by a constant. Since we want the largest error
term to be as small as possible, we select € > 0. The larger the number
€ is, the smaller the contribution coming from formula (4.8) is.

Furthermore, by the previous proofs, we have mentioned that the
explicit upper bound for term (4.9) is of size ¢ (/x(log T(x))?). Hence,
the larger the number € is, the larger the coefficient of the largest term
coming from term (4.9) is. Furthermore, this coefficient actually comes

from the term (log (T(x) +1))* /(27). Since we have (0.5 + €)* > 0.25,
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the smallest positive integer k such that (log (T(x) +1))* < logx/k is
k = 3. Thus, using three decimals in our computations, we can select
€ = 0.577.

Using formula (4.3) and the results which are proved in the first two
paragraphs of this section, we obtain Theorem 4.1 from Theorem 4.2.

The main differences between the proofs described in [14, Chap-
ters 19, 20] and the explicit results described here are that we cite ex-
plicit results instead of the asymptotic ones and do everything more
precisely. For example, we use explicit estimates for the terms L(s, x)
and L'(s, x) instead of the asymptotic ones.

Sometimes proving a good explicit estimate requires a little bit more
careful work than an asymptotic one. For example, let us take a look at
the proof of the estimate for formula (4.8). In the asymptotic case [14,
page 107], the proof is divided into the three different cases depending
on how close the terms 7 and x are to each other. Even though we could
do the same in order to prove the explicit bound, it would yield a quite
big coefficient in front of the biggest error term. Thus we add two more
cases and obtain a little bit sharper result.

Furthermore, in Davenport’s book [14, page 127] the number T(x)
is selected to be y/x and the leading coefficient does not need to be op-
timized. Since we prove an explicit result, we select the number T (x)
differently and more carefully.

More detailed proofs can be seen in article [C].

4.5 Discussion

In Section 4.3, we give explicit estimates for the functions 7t(x;q,a) and
P(x; g, a) assuming the GRH. The main steps of the proofs are described
in Section 4.4. Please also notice that our results generalize and improve
the results for the function ¢ (x; g, a) proved by Dusart [20, Theorem 3.7].

As we already mentioned in Section 4.3, the coefficients of the lead-
ing error terms in Theorems 4.1 and 4.2 are probably not the most op-
timal ones. The problematic coefficient 1/(671) comes from term (4.9).
Assuming the GRH we have |x?| = \/x and by Theorem 4.3 the num-
ber of the non-trivial zeros up to T(x) is asymptotically equivalent to
T(x)log (T(x)) /. Thus, in order to obtain better upper bounds than
0 (v/x(log x)?), we need to have cancellations inside the sum or select
the number T(x) to be at most of size o(x¢) for all € > 0. In order to
have cancellations inside the sum, we may need to know something
about the locations of the zeros and thus the first problem is difficult to
solve. Furthermore, the later case causes problems with formula (4.8)
since there, using the methods described in Section 4.4, the term T(x)
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should be of size Q(1/x). Hence, in order to prove the better estimates,
we probably need to find a somehow different approach to this part.

Now we move on from improving the coefficient of the largest er-
ror term to the other topics of this discussion. It should also be noted
that, even though we do not need the assumption of the GRH in all of
the proofs, the assumption is used in the most parts of the proofs and
especially in deriving the largest error term.

Furthermore, in Section 4.4 we applied a formula for the number of
the non-trivial zeros of the Dirichlet L-functions. Obviously sharper re-
sults for the error term would improve Theorems 4.1 and 4.2. On the
other hand, these improvements would not affect the coefficient of the
largest error terms in Theorems 4.1 and 4.2 since they come from esti-
mating the function ¥(x) with the term x, from the main term for the
number of the non-trivial zeros and from the formulas which are not
that closely related to the number of the zeros. Please also notice that
for T(x) > 10, where the number T(x) is defined as in Section 4.4, we
already know some slight improvements by [75, Table 1].

In addition to assuming the GRH, there are some results for the num-
ber of primes and related functions assuming the GRH up to some height
[3, 62, 19]. It would be interesting to see if the results could be general-
ized or improved using same methods as described in Section 4.4.

Furthermore, the motivation of paper [C] came from A.-M. Ernvall-
Hytonen’s, T. Matala-aho’s and L. Seppéld’s work [23] with p-adic eval-
uations of Euler’s divergent series. Theorem 4.1 may be used to improve
Lemma 1 and the proof of Theorem 5 in Ernvall-Hytonen’s, Matala-
aho’s and Seppild’s article. In addition to this problem, Theorem 4.1
may be beneficial for other problems related to the number of primes in
arithmetic progressions assuming the GRH. For example, recent work
with finding explicit intervals containing primes which are in certain
arithmetic progressions [19, 20] may benefit from Theorem 4.1.
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