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English abstract

Syntactic analysis (parsing) is an important Natural Language Processing task that is re-
quired in many textual analysis methods in the biomedical domain. This thesis presents
the approach taken by me as a member of the TurkuNLP group in the CRAFT Struc-
tural Annotation 2019 shared task, a task on dependency parsing. The main system of
the approach is the Turku neural parser, a dependency parser originally developed by
the TurkuNLP group that achieved great results on previous dependency parsing tasks. I
considered and evaluated a variety of strategies to adopt the parser to the biological do-
main, including the incorporation of both pre-trained and newly made word embeddings,
a combination with the other in-domain textual corpora, a modified version of the co-
training technique, and taking advantage of information from named entity recognition.
In the end, the TurkuNLP team achieved the highest results on the test set of the CRAFT
shared task with a labeled attachment score of 89.695%. Future efforts could be focused
on fully converting the CRAFT data into universal dependency standard and integrating
contextual word representations into the parser to continue improvement upon the parser
performance.
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CHAPTER 1. INTRODUCTION Thang Ngo Minh

1 Introduction

The main topic of this thesis is syntactic analysis, also known as parsing, an important

Natural Language Processing (NLP) task, and more specifically, a type of parsing called

dependency parsing (the other type is constituency parsing). Computational parsing has

a very long research tradition, and while it is usually not seen as a stand-alone applica-

tion, it is an essential building block for many other NLP tasks, for example machine

translation (Galley and Manning, 2009) and dialogue system (Sugiyama et al., 2013). In

the biomedical domain, many methods working with biomedical text benefit greatly from

parsing, for instance information extraction techniques are frequently built on finding the

shortest syntactic path to determine the relationships between mentioned entities in the

text (Luo et al., 2016).

The CRAFT Structural Annotation (SA) Task 2019 is a shared task competition on

dependency parsing, using the biomedical CRAFT corpus as its textual source. The goal

is for the participating systems to parse the unannotated unseen test data as accurately as

possible. In the summer of 2019, I had the privilege of joining the TurkuNLP team based

in the University of Turku’s NLP group as a participant in the competition. Relying on the

Turku neural parser previously developed by the group, our team considered and evaluated

a number of strategies to best adopt the domain-agnostic parser into biomedical domain,

especially for this particular CRAFT corpus. After many experiments performed in a

relatively short development time, we finally came out victorious, as our three submitted

models achieved the highest results out of all of the competitors, which, in a sense, means
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CHAPTER 1. INTRODUCTION Thang Ngo Minh

accomplishing state-of-the-art performance. This thesis is an in-depth exploration into

the project, digging deep into the inner working of the Turku neural parser as well as

the various techniques employed, both failed and succeeded ones, along with an analysis

of the results. I hope that this thesis can be a part, however small, of the continuously

growing effort of applying deep learning techniques into NLP tasks.

The rest of the thesis is structured as follow. Chapter 2 provides the necessary back-

ground of the project: the definitions of dependency parsing, its research history both in

general language and in specialized biomedical domain, as well as an overview of the

CRAFT SA task. Chapter 3 dives into the theoretical framework behind the Turku neural

parser, our primary system, along with important machine learning concepts such as word

embedding and co-training. Chapter 4 presents and analyzes many of those same meth-

ods during the development phase, finished with an investigation of the final submitted

results. Chapter 5 discusses some of the less fruitful ideas that while they did not work out

very well for this project might still be useful for other related endeavours, together with

some predictions into the future. Finally, chapter 6 concludes the thesis by summarizing

the main findings and some recommendations as a call for action.

2
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2 Background

2.1 Dependency Parsing

A very important topic in Natural Language Processing(NLP) is parsing, also known as

syntax analysis or syntactic analysis. This refers to the process of finding the correct

syntactic structure of a string of symbols, for example a sentence, conforming to a given

formalism or given grammar. Two of the most popular formalisms are Phrase Structure

Grammar and Dependency Grammar.

2.1.1 Phrase Structure Grammar

While similar formalism and less formal notions of phrases had existed before (Bloom-

field and Hockett, 1933), Phrase Structure Grammar is usually thought to have been in-

troduced by Noam Chomsky (Chomsky (1957)), the influential American linguist who

is sometimes called ”The father of modern linguistics”. It is based on the constituency

relation instead of the dependency relation of the dependency grammar. Figure 2.1 shows

a parse tree based on phrase structure grammar.

The way constituency parsing works is that it breaks a sentence into its constituents

which are called phrases. Constituents are then themselves broken down into smaller con-

stituents, such as noun phrase, verb phrase, preposition phrase and so on. The recursive

nature of the phrasal structure makes it easy to embed long sentences, theoretically even

ones composed of infinitely long phrases.

3
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Figure 2.1: Constituency-based parse tree example

2.1.2 Dependency Grammar

.

A very distant type of grammar compared to phrasal structure grammar, dependency

grammar does acknowledge phrases, although it lacks phrasal nodes in its structure. In-

stead dependency grammar sees the verb as the center of the clause structure, and all other

syntactic units, or words, are either directly or indirectly connected to the verb via depen-

dencies, which are directed links. The theory of dependency grammar can be traced back

to the work of Lucien Tesnière, a prominent French linguist(Tesnière et al. (1959)).Figure

2.2 shows how a short sentence can be parsed based on dependency grammar:

The grammatical relations between individual linguistics units or words are the point

of interest in Dependency Grammar. The directed links point from the ”head” words (or

governors) to the words (or dependents) that modify those ”head” words. For example, in

figure 2.2, the arrow moving from is to hearing indicates that hearing modifies is, and the

label sbj, or subject assigned to the arrow describes the nature of this dependency, here

4
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Figure 2.2: Dependency-based parse tree example

hearing is the subject of the verb is.

The difference between dependency and phrase structure grammars comes largely

from the initial division of the sentence. Based on the analysis of clause structure from

the works of Noam Chomsky, the phrase structure parsing first splits the clause into a

subject noun phrase (NP) and a predicate verb phrase (VP). Lucien Tesnière, on the other

hand, puts the verb as the root of all clause structures. From his viewpoint, the subject-

predicate division comes from term logic, an outdated branch of logic originated from the

Greek philosopher Aristotle and thus should be excluded from linguistics (Tesnière et al.

(1959): 103-105). A pretty interesting philosophical point on how languages work can

be made here: if one accepts the view that all clauses can be divided syntactically into

subject-predicate, then one might prefer the phrase structure grammar, while if one rejects

this division, then one must consider the verb as the root of all clause structures(as every

clause needs to have a verb to be considered a clause), and one might go down the path of

dependency grammar.

For most of the history of NLP, phrase structure grammar was the more popular ap-

proach with a large proportion of work specifically on the Penn Treebank (Marcus et al.,

1993). In the contemporary NLP landscape though, parsing based on dependency gram-

5



CHAPTER 2. BACKGROUND Thang Ngo Minh

mar has been utilized more frequently. This usually stems from practical concerns: de-

pendency grammar is readily applicable to languages with free word order (like Russian,

Finnish) as shuffling words around does not change the sentence structure, and potentially

more readily used in downstream applications. Dependency parsing was chosen for the

CRAFT 2019 Structural Annotation Task and will be the focus of this thesis.

2.2 Related Work

2.2.1 Dependency Parsing For General Texts

Parsing has an enormously long history and has always been an important part of linguis-

tics even in the earliest days. As far back as the 5th year Before Common Era (BCE),

Pāini, an ancient Sanskrit philologist and grammarian considered ”the father of linguis-

tics”, tried to describe the grammatical structure of the Sanskrit language in his book

Aādhyāyı̄ (Pāini and Katre (1987)). Many of his syntactic rules look very similar to the

dependency relations of modern times. In the first millennium there were plenty of works

on Arabian grammars and dependency relation remained their basic approach. Ibn Madā,

the Arab Muslim polymath from Spain, is treated as the first linguist to address the term

dependency in a grammatical sense that we use today. For that reason arguably the de-

pendency grammar concept precedes the phrase structure grammar by centuries (Percival,

1990). The idea of context-free/constituency grammars is basically a modern invention,

dated back to Noam Chomsky’s work as mentioned before.

The first dependency parser was probably developed by David Hays, one of the founders

of computational linguistics in 1962 (Hays, 1962). From then, dependency parsing sys-

tems were increasingly being built to parse natural languages. However until the 1990s,

treebank, an indispensable component of contemporary parsing, was not widely used.

Through out those decades, people would write out explicit grammar rules, hand-build

the parsers based on the grammars, and then let them parse raw text. The idea was that

6
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having humans specify the rules beforehand that can theoretically speaking capture an in-

finitive number of possible phrases would prove to be efficient. However in practice this

idea did not turn out very well, and thus the rise of annotated treebanks. They completely

revolutionized computational linguistics as a whole and dependency parsing in particular.

At first, it seemed like building a treebank was much slower as it is a fairly menial

work and much less useful than building a high-level grammar. However a treebank gives

us many other benefits. First, treebanks are very reusable. Before treebanks, everyone

who tried to build a parser would invent their own notations of grammar rules, and those

became more and more complex as time went by to the point where they cannot be utilized

by other people’s parsers, therefore it was very difficult to share work between people. A

treebank can be reused for multiple purposes, not only for dependency parsing but also

for other tasks like part-of-speech tagging. In addition to that, linguists can also bene-

fit from treebanks, for instance they usually look for different language constructions in

their respective treebanks. Second, treebanks serve as valuable data if we want to apply

machine learning methods into parsing. Annotated data provides the frequencies, the dis-

tributional information and the context of the dependency relations, all are very valuable

in helping the machine learning systems learn the hidden patterns in the data. This is

especially powerful for ambiguous sentences, as they might have different interpretations

from different parsers. Having the right grammatical structures in context will help ma-

chine learning models learn those structures. Finally, treebanks provide an easy way to

evaluate parsing systems. The first large-scale treebank published is the Penn Treebank

(Marcus et al. (1993)), and its Wall Street Journal section was the focus of parsers for

many years.

There have been many methods of building a dependency parser and I will just try to

mention some of the most prominent ones.

Karlsson et al. (1995) advocates Constraint Grammar, an example of the eliminative

approach, where grammar is viewed as a set of constrains. Parsing is therefore a constraint

7
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satisfaction problem which can be solved by continuously eliminating constraint-violate

analyses until only valid analyses remain. Eisner (1996) proposes a dynamic program-

ming algorithm with complexity O(n3) for dependency parsing and 3 contrasting proba-

bilistic models based on it.

There was a big problem for parsers before the decade 2000s: the speed of the parsers

or to be more precise, their time complexity. In many parsers, after parsing each word, we

have to decide what to do next: for example whether to shift left-arc or right-arc. The ex-

haustive search of exploring every possible parse exponentially explodes the complexity

considerably. The dynamic programming approach reduced this to cubic time and could

explore most of the possibilities and therefore it was the mainstay in those decades. In

the decade 2000s, we see the application of machine learning into parsing, and this was a

breakthrough as it improved the complexity to linear time while sacrificing only a fraction

of accuracy. The machine learning classifiers will predict the next best action to take, and

in the simplest form, there is absolutely no searching. Yamada and Matsumoto (2003)

train a support vector machine for their deterministic bottom-up parser, meaning the algo-

rithm does not backtrack and it focuses on the small level details first before determining

the high level structure of a sentence. Nivre and Scholz (2004) uses a hybrid bottom-

up/top-down linear-time parsing algorithm guided by memory-based (or instance-based)

classifiers. McDonald et al. (2005) implement online large-margin multi-class training

(Crammer and Singer (2003)), a method where the classifier is updated after each single

data point instead of after training the whole batch, and it aims to maximize the margins or

the minimum distances from the data points to the decision boundary. This method is built

on top of a graph algorithm, where a Minimum Spanning Tree was created for each sen-

tence. Nivre et al. (2006) introduce Maltparser, a greedy discriminative transition-based

bottom-up parser also guided by machine learning classifiers (memory-based learning and

support vector machine mentioned above).

In October 2012, Krizhevsky et al. (2012) introduced a deep convolutional neural

8
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network (CNN) that won the big ImageNet competition by a large-margin compared to

traditional machine learning systems, signifying the beginning of the deep learning rev-

olution. Constituency parsing saw development in neural networks before dependency

parsing, with the earliest notable attempt was from 2004, (Henderson, 2004). Chen and

Manning (2014) was the first successful application of neural network into dependency

parsing. It was motivated by the 3 problems that the conventional feature representa-

tions suffer from: sparsity (the features, particularly lexicalized features are very sparse),

incompleteness (even with expert-involved handling, features still did not match every

useful word combination) and expensive computing (in their experiments, conventional

parsers spend up to 95% of their time generating indicator features). They built a neural

network directly on the stack and buffer configuration, then represent all words, POS tags

and dependency labels as dense vectors with a cube activation function.

After this, neural network approaches took the dependency parsing world by storm,

and like with most deep learning approaches, simply adding larger and deeper networks

with better tuned hyperparameters would do wonder for the results. In addition to that,

Weiss et al. (2015) reintroduced searching into the game with a beam search decoding to

learn the final neural layer. Beam seach is breadth-first search with the exception that at

each level only a predetermined number of best states, called beam depth, are stored and

expanded.

More recently, Dozat and Manning (2016) revived the graph-based dependency parser

in the neural world with a bidirectional long short term memory (LSTM) network com-

bined with deep biaffine classifiers. Dozat et al. (2017) adapted the system into the

CoNLL 2017 shared task on Universal Dependency parsing and achieved great results

(con, 2017). I will explore in detail their approach in Section 3. Methods as the Turku

neural parser was built based on it.

9
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2.2.2 Dependency Parsing For Biomedical Texts

With the rapid growth of biomedical literature, especially in PubMed1 (only the abstracts)

and PubMed Central2 (full text articles), the task of cataloging the essential research re-

sults requires sophisticated automation. Thus information extraction has become a key

focus in the biomedical NLP community. Many works in biomedical relation extrac-

tion emphasize the significant importance of syntactic information (Airola et al. (2008)),

Björne et al. (2011), Liu et al. (2013), Luo et al. (2017), Peng et al. (2017)).

The considerable differences between in-domain texts and general English texts nat-

urally lead to the idea that parsers’s performance is also domain-dependent. Miwa et al.

(2010) compares multiple parsers and shows that training on biomedical sources with syn-

tactic analysis is important to achieve state-of-the-art performance. A few annotated cor-

pora have been produced to support training and evaluating the NLP systems on biomed-

ical publications, for example GENIA (Kim et al. (2003)) and Penn BioIE (Kulick et al.

(2004)) which are constituency treebanks, and BioInfer (Pyysalo et al. (2007b)) which

follows the Link Grammar formalism. Link Grammar is similar to dependency grammar,

however its links do not need to have directions, thus link grammar doesn’t describe the

head-dependent relationships (Sleator and Temperley (1995)). Pyysalo et al. (2007a) later

converted the BioInfer corpus into the Stanford Dependency representation(de Marneffe

and Manning (2008)), making it the first dependency-based annotated biomedical corpus.

Verspoor et al. (2012a) introduced the Colorado Richly Annotated Full Text (CRAFT)

corpus, which will be elaborated in Section 2.3 as it is the object of interest in this thesis.

A number of native dependency parsers for biomedical domain were developed, for

example Pro3Gres (Schneider et al. (2004)), combining a hand-written dependency gram-

mar and a lexicalized probability model, and Gdep (Sagae and Tsujii (2007)) or Genia

dependency parser, a version of KSdep dependency parser trained on the GENIA tree-

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.ncbi.nlm.nih.gov/pmc/
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bank, which uses the LR algorithm (Knuth (1965)) alongside with ensemble techniques.

Many of these similar early efforts were analysed and compared in Miyao et al. (2008).

Howevertheir application was fairly limited, and basically before the deep learning revo-

lution, the main workhorse of biomedical dependency parsing was the approach described

in McClosky and Charniak (2008). They self-train the standard C/J parser (Charniak and

Johnson (2005)), a constituency-based parser to improve upon it. Self-train is a semi-

supervised learning approach where an existing model is used to soft-label some extra

data, then include this extra data into the training labeled data and train a second model,

this can be repeated. After self-training, the results would be combined with heuristic

conversions into dependency relations like the Stanford dependencies.

A popular used tool for biomedical parsing is the Stanford parser mentioned above,

which is domain-agnostic. Nevertheless, it can be applied directly into in-domain data

with great results (Agarwal and Yu (2010), Ananthakrishnan et al. (2013)). Little effort

has been spent on developing deep learning fueled dependency parsers exclusively for

biomedical domain, though some tried to extend the Stanford parser with specialist lexi-

cons (Wang et al. (2015)). Zhang et al. (2019) compares 4 neural dependency parsers on

clinical texts, including the Stanford parser, the Bist-parser (Kiperwasser and Goldberg

(2016a), the dependency-tf-parser (Kiperwasser and Goldberg (2016b)), and the jptdp

parser (Nguyen et al. (2017)) and concludes that: (1) all parsers are greatly improved

after retraining on large annotated clinical treebanks, signifying a need for sophisticated

in-domain corpora and (2) somewhat surprising, the word embeddings for initial features

generated from general texts can have the same performance with the ones created from

clinical texts.

11
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2.3 CRAFT 2019 Structural Annotation Task

2.3.1 Overview

The CRAFT Structural Annotation Task (SA) is one of the tasks offered as part of the

CRAFT Shared Tasks 2019 (ST)3. The tasks take advantage of the CRAFT corpus as the

data for all of the tasks. This corpus consists of 97 full text journal articles selected from

the Mouse Genome Informatics curation pipeline. The articles were manually annotated

for a wide variety of language phenomena, spanning structure, semantics, and corefer-

ence.

The CRAFT SA task requires the participants to develop an automatic-parsing system

that can generate dependency parses of sentences in full-length articles from the CRAFT

corpus. For the most part, CRAFT SA follows the conventions of the previously held

dependency parsing shared tasks in the Conference on Computational Natural Language

Learning (CoNLL) 2017 and 2018 (Zeman et al. (2017), Zeman et al. (2018)).

To stay as close to real-world scenarios as possible, these tasks provide only the plain

text articles as the test data instead of already tokenized and tagged text. In addition to

syntactic analysis, the participating systems also need to perform sentence segmentation,

tokenization, part-of-speech tagging, lemmatization, and morphological features identifi-

cation. What makes the CRAFT tasks different is the focus on biomedical domain texts

instead of the more general texts from the CoNLL. In addition, CRAFT is unique among

syntactically annotated biomedical corpora in that its texts are drawn from full-text ar-

ticles, rather than only article titles and abstracts. Its use of full-text articles makes the

CRAFT corpus much more valuable than many other syntactically annotated biomedical

corpora.

3https://sites.google.com/view/craft-shared-task-2019/home
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2.3.2 Data

The dependency structures that serve as development and evaluation data are not them-

selves manually curated. Instead they are directly translated from the manually curated

constituency parses. The modified Penn Treebank (PTB) formalism (Verspoor et al.

(2012b)) was used for the constituency parsing, and then the dependency parses were

automatically generated from the Penn treebank data with the help of the NLP4J library4.

The methodology of converting from treebank data to dependency structure is described in

Choi and Palmer (2012). Note that this step only transforms the source PTB data into the

CoNLL-X format (Buchholz and Marsi (2006)), which is an older format using the Stan-

ford Dependency (SD) representations. The CoNLL-X data would then be converted into

CoNLL-U5 format, a revived version of the CoNLL-X using the Universal Dependency

(UD) representations. Unfortunately, this final conversion addressed only the format, not

the representation especially the dependency representation - the most important part of

the data. This resulted in a data structure which did not follow the UD standards com-

pletely and led to some quite peculiar problems in my development process. This point

will be expanded on later.

The development data for this task consists of the publicly released dependency parses

of sentences in the 67 CRAFT articles. They are in the CoNLL-U format. The testing data

consists of dependency parses of sentences in 30 CRAFT articles that was only publicly

released after the final evaluation period. All of these 97 articles have been annotated in

exactly the same ways.

4https://emorynlp.github.io/nlp4j/

5https://universaldependencies.org/format.html
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2.3.3 The CoNLL-U Format

The segment below shows an example sentence with its dependency parses in the CoNLL-

U format.

# sent_id = 12607

text = These mice overexpress mutant APP from a vector that can be regulated by doxycycline.

1 These these DET DT 2 det _ _

2 mice mouse NOUN NNS Number=Plur 3 nsubj _ _

3 overexpress overexpress VERB VBP Tense=PresIVerbForm=Fin 0 root _

4 mutant mutant NOUN NN Number=Sing 5 compound

5 APP app NOUN NN Number=Sing 3 dobj

6 from from ADP IN 3 prep _

7 a DET DT 8 det _

8 vector vector NOUN NN Number=Sing 6 pobj

9 that that DET WDT PronType=Int,Rel 12 dep 8.re

10 can can VERB MD VerbType=Mod 12 aUX _ _

11 be be VERB VB VerbForm=Inf 12 auxpass _ _

12 regulated regulate VERB VBN Aspect=PerflTense=PastIVerbForm=Part 8 relcl

13 by by ADP IN 12 agent _

14 doxycycline doxycycline NOUN NN Number=Sing 13 pobj _ SpaceAfter=No

15 PUNCT . PunctType=Peri 3 punct _

The first 2 comment lines store the sentence id (treebank-wide) and the full raw text of

the sentence. A sentence can consist of one or more word lines, each word lines contain

the following 10 fields (columns):

1. ID: The word index, an integer. Starting from 1 for each sentence

2. FORM: The word form itself or a punctuation symbol for a punctuation

3. LEMMA: The lemma or stem of the word,which is the base or dictionary form of

the word. For example: mouse is the lemma of mice

4. UPOS: The universal part-of-speech tag. For example: from has the tag ADP (ad-

position, a cover term for prepositions and postpositions)

5. XPOS: The language-specific part-of-speech tag. It is an underscore if not avail-

able. In the CRADT data they were taken from the Penn Treebank part-of-speech

tags. For example: mice has the tag NNS, meaning it is a plural noun
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6. FEATS: A list of the morphological features taken from the universal feature in-

ventory or from a defined language-specific extension. It is an underscore if not

available. For example, VerbForm=Inf means the word is an infinitive verb

7. HEAD: The head of the current word, which is either a value of ID (the governor

word that this word modifies) or zero (0) if it is the root. For example: can has its

HEAD = 12, thus its head is the 12 indexed word, regulated

8. DEPREL: The universal dependency relation to the HEAD (it is the root if HEAD

= 0) or a defined language-specific subtype of one. For example: can is the AUX

(auxiliary) of regulated

9. DEPS: The enhanced dependency graph in the form of a list of head-deprel pairs

10. MISC: Any other annotation

2.3.4 Evaluation Metrics

Following the CoNLL’18 shared task, the evaluation of the CRAFT SA task used the

same evaluation script6. The dependency parser performance would be evaluated on the

following 3 metrics Zeman et al. (2018):

LAS: Labeled attachment score The percentage of nodes that are correctly assigned

both the syntactic head and the dependency label (the HEAD and DEPREL fields). All

nodes are considered in the evaluation, including punctuations. The metric will take word

tokenization mismatches into account. Therefore a dependency is scored as correct only

if both nodes of the relation match existing gold-standard nodes.

MLAS: Morphology-aware labeled attachment score Similar to LAS, with addi-

tional requirements of having certain selected features predicted correctly. The metric is

6https://universaldependencies.org/conll18/evaluation.html
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evaluated only on content words, discarding function words and punctuation. The selected

features include certain morphological features, hence the name morphology-aware.

BLEX: Bi-lexical dependency score Similar to MLAS, it focuses on the relations

between content words. Howeverit brings lemmatization into the evaluation instead of

the morphological features. Therefore35e343 the parents must be aligned, the universal

parts of their relation types must be identical and must be listed as “content relations”

(same as in MLAS), and their lemmas must match.
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3 Methods

3.1 General concepts of neural networks

3.1.1 Artificial neural network

Artificial neural networks are machine learning models that are inspired by the structure

of the biological neural networks that form animal and human brains. The idea was first

proposed by McCulloch and Pitts (1943), and after decades of development, now in our

modern time with the increased computing power from distributed computing and graphic

processing units (GPU), large networks with complex architectures have become popular.

Because these networks usually have multiple layers, deep learning is the name for this

subfield of machine learning. Figure 3.1 shows the structure of a simple neural network.

Neural networks usually have the form of a weighted, directed graph. The nodes of

the networks are artificial neurons, which are simulated neurons. They are mathematical

functions that receive one or more weighted inputs, sum them up and then pass the sum

through an activation function to produce an output. The activation functions are usually

non-linear, for example the sigmoid function has a S-shaped curve and squashes the values

to between 0 and 1.

3.1.2 Recurrent neural network

Recurrent neural network (RNN) is a class of artificial neural network specifically de-

signed for sequence problems. The first RNN is thought to be the Hopfield network
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Figure 3.1: Structure of a simple neural network. Source: Vieira et al. (2017)

(Hopfield, 1982). The architecture of a simple RNN is shown in figure 3.2

Figure 3.2: A simple recurrent neural network and its unfolding architecture. U, V and

W are the weights of the hidden layer, the output layer and the hidden state, respectively.

Source: Bao et al. (2017)

A RNN can be conceived as a feed-forward neural network with the addition of loops.
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The neurons can not only pass their signal forward but also laterally. This enables each

neuron to produce its own hidden state that acts like a memory of the previous neuron,

thus the sequential information of the input can be retained. The hidden state is calculated

from the current input and the previous hidden state.

One big problem that larger RNNs meet is the vanishing gradient problem, defined

in Hochreiter’s diploma thesis (Hochreiter, 1991). Simply put, when backpropagation

moves from the last layer to the initial layer, the derivatives are multiplied down the

network by the chain rule. If the hidden layers use an activation function that squashes

a large input range into a small output range (like the sigmoid function), the produced

derivatives are small, and this makes our gradient greatly reduced the further we propagate

down the initial layers. As a consequence, the weights and biases of the initial layers will

not be updated efficiently in each training session, leads to the inaccuracy of the entire

network.

To address this problem, a special kind of RNN was invented.

3.1.3 Long short-term memory

LSTM was explicitly designed to learn long-term information, avoiding the vanishing

gradient problem. There are many variants of its architecture, in figure 3.3 is a typical

structure of a LSTM unit or memory cell. The gates regulate the information that goes

into the cell state, and their activation function is usually the sigmoid function, a ”S” shape

function that squashes everything into the range between 0 and 1. The forget gate decides

to what extent a certain value should be forgotten by the cell, the input gate controls what

new information will be added to the cell state, and finally the output gate handles how

much of the information in the cell state might be computed in the output activation of

the LSTM memory cell. The output activation function in RNN is commonly the tanh

function, which pushes the output values in the interval [-1, 1].
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Figure 3.3: A LSTM memory cell. Source: Sundermeyer et al. (2012)

3.1.4 Gated Recurrent Unit

GRU was introduced by Cho et al. (2014a), and, like its more complex predecessor long

short term memory (LSTM) (Hochreiter and Schmidhuber (1997)), its objective was to

solve the vanishing gradient problem that standard recurrent neural networks suffer from.

GRU networks utilize update gates to decide how much past information should be stored,

and forget gates to gauge how much should be filtered out, making it a very powerful

architecture. Figure 3.4 compares the architectures of standard RNN with GRU networks.

3.1.5 Bidirectional Recurrent Neural Network

Bidirectional RNN, invented in 1997 by Schuster and Paliwal (1997), splits the hidden

neurons in a standard RNN into 2 directions, forward and backward. This way the output

layer can receive input information from both the past and the future of the current time

frame. Figure 3.5 depicts the general structure of RNN and bidirectional RNN.
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Figure 3.4: Illustration of vanilla RNN and GRU units. Source: Zhao et al. (2018)

Figure 3.5: Illustration of vanilla RNN and bidirectional RNN. Source: Schuster and

Paliwal (1997)

3.1.6 Attention

The first type of attention mechanism, called addictive attention was developed by Bah-

danau et al. (2014) for their neural machine translation system. Their paper ”Neural

Machine Translation by Jointly Learning to Align and Translate” has become a seminal
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paper in the deep learning world as attention is basically omnipresent in most of the state-

of-the-art models in recent years. The basic structure of an attention model is the attention

of Figure 3.6.

Figure 3.6: The attention model in a RNN network architecture. Source: Galassi et al.

(2019)

Attention’s main function is to calculate a weight distribution of the input sequence in

order that more relevant elements have higher weights, and its output is called a context

vector, which is a weighted combination of all of the input states. In this way, for each

new unit, it can receive information not only from just the last unit’s state, but also the

most essential information from all of the input states.

3.1.7 Input-feeding Attention

Figure 3.7 shows how the input-feeding attention mechanism works.

Introduced in Luong et al. (2015), the input-feeding attention tries to address the limit

of word alignment in a normal attention mechanism, which is the task of identifying

which words are translation of which words between 2 texts. Basically, in Neural Machine
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Figure 3.7: The structure of the input-feeding attention model. Source: Luong et al.

(2015)

Translation (NMT), the alignment decision of the current time-step should bear in mind

the past alignment decisions. This is similar to how in a non-neural machine translation

or manual translation, a coverage set is needed to track the already translated words.

Howevernormal attention decisions are made independently. In their proposed approach,

the attentional vector or the output of the previous decoder will be fed as input into the

next decoder, instead of just being used in the attention calculating of that decoder. This

will provide information about past alignments to the model.

3.1.8 Encoder-Decoder

First introduced by Cho et al. (2014b) and made popular by Sutskever et al. (2014) at

Google, the encoder-decoder model’s power lies in its ability to map sequences of output

and input with different lengths, a very common problem in machine translation as differ-

ent languages use different number of words for the same sentence, or different number
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of characters for the same word. The encoder is a 2-layer bidirectional LSTM that re-

ceives as its input the token as a sequence of single characters along with that token’s

morphosyntactic features and produces encoding vectors. These encoding vectors, com-

bined with the input-feeding attention mechanism will help the decoder, which is a 2-layer

unidirectional LSTM, generates the sequence of output characters. Figure 3.8 illustrates

the general architecture of an encoder-decoder model.

Figure 3.8: The architecture of the encoder-decoder architecture. Source: Cho et al.

(2014b)

3.2 The Turku Neural Parser Pipeline

The Turku Neural Parser Pipeline1 (Kanerva et al. (2018)) is the main parser used to par-

ticipate in the CRAFT SA 2019 shared task. It is an end-to-end pipeline which comprises

4 main components: segmentizer, POS/morphological tagger, lemmatizer, and depen-

1https://turkunlp.org/Turku-neural-parser-pipeline/
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dency parser, The design goals of the parser are:

Easy to use Docker images are available to make the parser runable without installing

all of the dependencies. If installed manually along with the dependencies, a few com-

mand lines are enough to start training and parsing. The pipeline’s components and hy-

perparamters are available for modifying in configuration files.

Reusable All of the components are packed into a single software and are easily cus-

tomized. The parser can work with most natural languages, with pre-trained models for

more than 50 of them. It is also label agnostic, thus the treebanks do not need to adhere

to the UD guidelines.

High performance The parser should be able to achieve state-of-the-art or very close

to state-of-the-art results on all four tasks, for any language (even for languages with

low-resource treebanks). For this reason, the components for segmentation, tagging and

parsing were heavily relied on previously available works with modifications only when

it proves fruitful. However, as it was deemed that the performance of the previous lem-

matizer was undesirably weak, an original approach to lemmatization was created.

To summarize, the segmentation is carried out by UDPipe (Straka and Straková (2017)),

the tagging and parsing is performed by a modified version of the graph-based parser by

(Dozat et al. (2017)), and finally, the lemmatization makes use of the OpenNMT neural

translation toolkit (Klein et al. (2017)). In the following subsections, I will describe each

of these units in detail. Because the parser and the tagger of Dozat et al. (2017) have

almost identical architecture, and the focus of this thesis is on dependency parsing, I will

provide descriptions for the inner working of the parser before the tagger, even if techni-

cally the tagger comes first in the pipeline, as the parser makes use of the POS tags - the

output of the tagger - as one of its features.
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3.2.1 Tokenizer

In NLP, a text has a multileveled structure: a document (a file, an article) comprises one

or multiple paragraphs, a paragraph is built from one or more sentences, and a sentence

is basically a sequence of tokens. Normally a token is a word. Sometimes a token can be

composed of multiple syntactic words, or it can be a punctuation character. For most of

the languages, the Turku neural parser simply performs these tasks (dividing a document

into separate sentences, each sentence a sequence of individual tokens) by adopting the

already excellent system of UDPipe. In a nutshell, sentence splitting and tokenization are

jointly predicted by a single-layer bidirectional gated recurrent unit (GRU) network.

The goal of the tokenizer in UDpipe is to divide an input segment into individual

sentences and tokens, this can be reformulated as a classification task: we need to classify

each input character into one of the three classes: token boundary follows (the end of a

token), sentence boundary follows (the end of a sentence), and no boundary. This is done

by running two GRU with reversed order on the same input segment (hence the name

bidirectional GRU), concatenate the forward and backward hidden states produced by the

two GRU. This concatenated one will then be put into a softmax function to normalize it

into a probability distribution in the interval (0, 1). The tokenizer is trained by an Adam

optimizer (Kingma and Ba (2014)).

3.2.2 Parser

Dozat et al. (2017) have a rather sophisticated word-embedding scheme that needs to be

explained separately first. The embedding of each token is a sum total element-wise of

three different representations. The first is a pre-trained word embedding, usually from

external sources, and can be easily plugged into the parser. The second is a ”trained”

embedding consisting of words that appear at least twice in the training dataset, called

”holistic frequent word embedding”. And finally, an embedding that is built up from

its sequence of the word’s characters. This character-level model is illustrated in Figure
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3.2.2.

Figure 3.9: The architecture of the character-level word embedding by Dozat et al. (2017)

. Source: Dozat et al. (2017)

Each character of a token is converted into a trainable vector, and all characters of this

token will become the input of an unidirectional LSTM network.

After feeding the sequence of character embeddings into the LSTM network, it pro-

duces a sequence of recurrent states, and these states need to be combined and converted

into one single embedding vector for the original token. Two approaches are considered,

and in the end both are combined together. First is to simply take just the last recurrent

state. In a a sequence-to-sequence (seq2seq) network like this, the final memory cell

would store all of the important information accumulated through all of the characters.

We just need to transform this into the desired dimensionality of the token embedding.

Second is a more complex approach using attention mechanisms proposed by Cao and

Rei (2016).

Their idea was to run an attention model on all of the hidden states generated by the

LSTM model, this should create a context vector which is a representation of the input

sequence. Dozat et al. (2017) combine this context vector with the last state as stated
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above, and perform a linear transformation to get the final character-level embedding of

the original token. Finally, they sum element-wise this character-level embedding with

the pre-trained embedding and the holistic frequent word embedding to get the final token

embedding of a given token.

These word embeddings will be furthermore concatenated with their corresponding

tag embeddings (from the tagger) to create the final input ready for dependency parsing.

We now turn our attention to the architecture of the parser of Dozat et al. (2017) itself.

Figure 3.2.2 is an overview graphical representation of this parser.

Figure 3.10: The architecture of the neural parser by Dozat et al. (2017)

. Source: Dozat et al. (2017)

The basic architecture was built off from the Bist-parser of Kiperwasser and Goldberg

(2016a), which was also developed from McDonald et al. (2005), one of the first graph-

based parser. Here is a walkthrough of the process of parsing by the parser:

Bidirectional LSTM The input to the model is a sequence of token embeddings and

their corresponding POS tags. These are fed through a bidirectional LSTM network,

where the network will learn to create context-aware token representations. For the next

block, only the hidden state or the output state of the final LSTM layer is kept, the cell

state is excluded.

ReLU layers Four separate ReLU (rectifier linear unit, which outputs only non-zero

input values) layers run through the context-aware token representations, creating four
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different vectors. The purpose of the 4 smaller ReLU layers is to reduce unnecessary

information for an individual decision. Basically, for each token, what we are trying to

predict are not just 1, but 4 different categories: its head, its dependents, the label of the

edge from the token to its head, and the labels of the edges from its dependents to the

tokens. The recurrent state or the token’s context-aware representations of course has to

store all of this information which would be very redundant when we try to compute just

one category, making the parser more prone to overfitting and slows the parser down.

Having 4 multilayer perceptron (MLP) ReLU reducing the dimensionality and applying

nonlinearity transformation can help us avoid these 2 troubles.

The first vector is for the token as a dependent looking for its head. Conversely, the

second vector is for the (same) token as a head looking for all of its dependents. The

third vector is for the (same) token as a dependent determining its label. And vice-versa,

the fourth vector is for the (same) token as a head determining all of the labels of its

dependents. Each original token will have their own version of these four vectors now,

and all of these are the input for the final block

Biaffine classifiers The 2 separate biaffine classifiers receive the four type of vectors

as input2. An affine transformation has the form of f(x) = Ax + b, if the bias b is a

zero vector then it is called a linear transformation. A biaffine transformation will be a

variation of applying an affine transformation twice, thus in the form of f(x) = HAx + b

The first classifier receives the first and second type of vector, produces a score for

each pair of tokens. For each token, the pair that has the highest score will be its most

likely head. The second classifier receives the third and fourth type of vector, produces

a score for each label of all of the pairs token-the token’s head. For each relation, the

label with the best score will be the most likely label of this relation. After this, the 2

2For the mathematical notations, I follow the following conventions: lowercase italic letters for scalars

and indices, lowercase bold letters for vectors, uppercase italic letters for matrices, and uppercase bold

letters for higher order tensors
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biaffine classifiers are again jointly trained with the goal of optimizing the sum of their

cross-entropy losses (A loss function that measures the performance of a classifier whose

output is a probability value between 0 and 1 like softmax).

Below is, again, the entire parsing structure put formally:

1. Token Embedding

Given as input a sequence of m character embeddings (vchar
1 , ..., vchar

m ), the LSTM

network with the initial state r0 will produce recurrent state ri. This recurrent state

consists of the hidden state hi and cell state ci and we need to extract them.

ri = LSTM(r0, (vchar
1 , ..., vchar

m )i) (3.1)

hi, ci = split(ri) (3.2)

The linear attention then run through the stack of all of the hidden states H.

a = softmax(Hw(attn)) (3.3)

h̃ = HTa (3.4)

Finally this will be concatenated with the final cell state cm

ṽ = W(h̃ ⊕ cm) (3.5)

The final token embedding v(word) is the sum element-wise of this character-level

vector ṽ, the pre-trained embedding v(pre) and the holistic frequent word embedding

v(hol)

v(word) = ṽ ⊕ v(pre) ⊕ v(hol) (3.6)

2. Bidirectional LSTM

The input is a sequence of n word embeddings (v(word)
1 , ..., v(word)

n ) and their n cor-

responding POS tags (v(tag)
1 , ..., v(tag)

n ). These pairs will be concatenated into one
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stack of n vectors (x1, ..., xn) and then fed into the BiLSTM with initial state r0

xi = v(word)
i ⊕ v(tag)

i (3.7)

ri = LSTM(r0, (x1, ..., xn) (3.8)

hi, ci = split(ri) (3.9)

3. ReLU Perceptron Layers

Using the four ReLU layers on each of the hidden state hi, four different vectors are

generated

h(arc−dep)
i = MLP(arc−dep)(hi) (3.10)

h(arc−head)
i = MLP(arc−head)(hi) (3.11)

h(rel−dep)
i = MLP(rel−dep)(hi) (3.12)

h(rel−head)
i = MLP(rel−head)(hi) (3.13)

4. Deep Biaffine Classifiers

The first biaffine classifier involves with the task of computing n score vectors s(arc)i

by applying biaffine transformation on the h(arc−head) and h(arc−dep) vectors.

s(arc)i = H(arc−head)W(arc)h(arc−dep)
i

+H(arc−head)bT (arc)

(3.14)

The most likely head word j of word i is predicted as the word j with the highest

score s(arc)ij

y/(arc)i = argmax
j

sij (3.15)

The traditional affine transformation has the form of Wh + b, here both W and b

are transformed by H(arc−head) first, hence the name biaffine. Equation 3.14 has 2

terms. H(arc−head)W(arc)h(arc−dep)
i describes the probability of word i having word

j as its head based on the information in both h(arc−head) and h(arc−dep) vectors.

While the second term, H(arc−head)bT (arc) describes the same probability based on

only the h(arc−dep) vector.
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The second biaffine classifier is responsible for putting a label to the dependency

from a dependent word i to its predicted head word y/(rel)i . This time, the score

vectors s(rep)i is computed by affine transform the h(rel−head) and h(rel−dep) vectors.

s(rep)i = hT (rel−head)

y/(arc)i

Urelh(rel−dep)
i

+W(rel)(h(rel−dep)
i ⊕ h(rel−head)

y/(arc)i

+brel

(3.16)

The most likely label j of the dependency from word i to its predicted head word

y/(arc)i is predicted as the label j with the highest score s(rel)ij

y/(arc)i = argmax
j

sij (3.17)

The equation 3.16 has 3 terms. The first term hT (rel−head)

y/(arc)i

Urelh(rel−dep)
i describes the

probability of discovering a label based on the information in both the h(rel−head)

and h(rel−dep) vectors. The second term W(rel)(h(rel−dep)
i describes the same proba-

bility based on either of the h(rel) vectors. And finally, the bias brel describes the

prior probability of discovering a label. The 2 biaffine classifiers are jointly trained

by minimizing the sum of their cross-entropy losses.

3.2.3 Tagger

POS tagging is the task of assigning to a word a particular POS tag, which describes gen-

erally the word’s grammatical role in the sentence. This task is of extreme importance as

its outputs, the UPOS, the XPOS tags (and in the Turku pipeline, also the morphological

tags) are essential inputs for the parser and the lemmatizer.

As mentioned above, the tagger in the Turku Neural Parser is a modified version of

the tagger of Dozat et al. (2017), and the architecture of the tagger is almost identical with

the parser’s structure. In brief, the tagger also receives as its input the triple embeddings

of the tokens, the pre-trained, the holistic word, and the character-level representations,
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has its first component as a Bidirectional LSTM network, and then 2 separate ReLU

classifiers to generate vectors for the 2 types of tag, the universal part-of-speech UPOS

and the language-specific part-of-speech XPOS. Then, 2 affine classifiers are also trained

jointly with the goal of optimizing their sum of cross-entropy losses, predicting the most

probable POS tag for the token.

So, formally speaking, given a sequence of n tokens (v(word)
1 , ..., v(word)

n ), a BiLSTM

with initial state r0 runs through them and produces hidden state hi for each token.

ri = BiLSTM(r0, (vword
1 , ..., vword

n )i) (3.18)

hi, ci = split(ri) (3.19)

The ReLu will then runs through the hidden vectors hi to create 2 representations for 2

kinds of POS tag.

h(Upos)
i = MLP(Upos)(hi) (3.20)

h(Xpos)
i = MLP(Xpos)(hi) (3.21)

An affine classifier computes a score vector s(Upos)
i for each token i. The chosen tag will

have the highest score.

s(Upos)
i = W(Upos)h(Upos)

i + b(Upos) (3.22)

y/(Upos)
i = argmax

j
s(Upos)
ij (3.23)

Another distant affine classifier perform the same actions for the Upos tags.

s(Xpos)
i = W(Xpos)h(Xpos)

i + b(Xpos) (3.24)

y/(Xpos)
i = argmax

j
s(Xpos)
ij (3.25)

A modification to the tagger was made in the Turku Neural Parser: the tagger can now

predict not only the UPOS and XPOS tags but also the morphological features. A sim-

ple but ingenious trick is employed: on the annotated treebanks, at the training stage, the
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FEAT column is concatenated into the XPOS column, making them into one long strings,

and therefore forcing the tagger into learning and predicting these 2 fields together. There-

fore every unique combination of XPOS tags and morphological features will become a

single class to be learned, and after assigning a predicted class for a raw token, the class

will be split back into the original columns. This straightforward approach actually can

lead to great results, as explained in Kanerva et al. (2018), it not only outperformed the

Turku team’s original more complex method and achieved the 3rd rank in morphologi-

cal features, it also improved the LAS score as it seemed like the parser benefited from

learning the morphological features. Thus for the Turku parser, the tag embeddings v(tag)
i

consists of 2 elements, the UPOS vectors and the XPOS vectors, with the XPOS vectors

represent both the original XPOS tags and the morphological features.

3.2.4 Lemmatizer

Lemmatization is the task of inferring the base form or dictionary form called lemma

from a word form. They could be the same, for example the lemma of the is no other

than the, while the lemma of loves is love. Lemmatization is performed independently

from dependency parsing and also was not evaluated in the CRAFT SA 2019 shared task.

Lemmatization could still be evaluated using the evaluation script although it was not

taken into account when gauging the parser’s performance. Below I will briefly describe

the approach taken inside the Turku neural parser pipeline.

The lemmatizer in the Turku pipeline has a novel approach that promises to achieve

state-of-the-art performance for most of the languages covered by the UD treebanks. In

Kanerva et al. (2019), the authors argue that part-of-speech and morphosyntactic fea-

tures are enough to solve the lemmatization ambiguity problem so prevalent in the task.

Inspired by the top systems in the CoNLL-SIGMORPHON 2017 shared task (Cotterell

et al., 2017), which requires the participants to re-inflect or predict the inflected words

given their lemmas and morphosyntactic features, the authors cast lemmatization as a
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sequence-to-sequence rewrite task, where the model takes as its input the sequence of

characters of the word along with the sequence of its corresponding morphosyntactic fea-

tures (in our case, the UPOS, XPOS, and FEAT columns). Below, the word mice will

have the following input and desired output:

INPUT: m i c e NOUN NNS Number=Plur

OUTPUT: m o u s e

When represented like this, the lemmaization task can be understood as a translation

problem from the string of the inflected word + its morphosyntactic features to the string

of its lemma.Therefore any powerful sequence-to-sequence model could be utilized. The

OpenNMT: Open-Source Toolkit for Neural Machine Translation (Klein et al. (2017))

was adopted as the main model. Figure 3.11 depicts the full structure of the model.

Figure 3.11: The encoder-decoder model architecture of the lemmatizer. Source: Kanerva

et al. (2019)

In the Turku pipeline, the lemmatizier is put as the last component, after tagging and

parsing, as the tagger and parser do not need the lemmas as input, while the lemmatizier

requires the POS tags and morphological features predicted by the tagger as its input.
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Because the tagger reads the entire sentence at once, it can learn about the context of each

word, and the morphosyntactic tags it generates will have sufficient information to help

the lemmatizier with ambiguous words.

3.3 Word Vectors

As mentioned above, the parser receives as its input a triple representations of the tokens,

two of them, the holistic frequent word embeddings and the character-level embeddings,

are produced by the parser itself, while the third embedding, the pre-trained vectors, are

simply plugged in to initiate the training. A number of them were tested during the ex-

periments, as will be described in Section 4. Results. In this section, I will briefly detail

the theory behind word embeddings and some of the techniques that were used to induce

new word vectors for the parser.

3.3.1 Word Embeddings

To enable computers and later machine learning models to work with raw text, we need to

transform them into the only form they can understand, namely numbers. One of the tra-

ditional ways of representing word is one-hot encoding, where the vector representations

of words have only one element as 1, all the other elements are 0. They are sparse vectors

and the length of the vector is equal to the number of unique words in a corpus. Though

simple to understand and implement, there are 2 huge problems: we could not capture the

relationship between words as the distances between vectors, and the sparseness of the

vectors.

Word embedding is the efficient solution. Word embeddings are vector representations

of raw words, usually in the form of vectors of real numbers. Abstractly speaking, it can

be thought of as a mathematical embedding from a very high dimensional ”word” space

to a much lower dimensional vector space. It is the de facto approach to make raw text
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understandable and input-ready for NLP models.

The theory behind word embedding has its root in linguistic, mainly in the idea popu-

lated by Firth (Firth (1957)):

a word is characterized by the company it keeps!

Similar to people where we can get to know the personality of a person by getting to know

their social circle, words that are used in similar context will have similar meaning. This

is called the distributional hypothesis (Harris). Word embedding aims to capture this

by making similar words have similar representations, or minimizing the dot products of

their respective vectors in the vector space. There have been multiple methods of learning

word embeddings from text data, and for the CRAFT SA 2019 shared task, 2 main ones

were chosen: word2vec and fasttext.

3.3.2 word2vec

Developed by Mikolov et al. (2013) at Google in 2013, word2vec is a neural-network

based toolkit for efficient word embedding. Since then, it has become the standard for de-

veloping pre-trained word vectors, and many other approaches are just modified versions

of word2vec. Word2vec can employ either of the 2 learning models to produce the vector

representations: continuous bag-of-words (CBOW) or skip-gram. Figure 3.12 compares

these 2 model architectures.

CBOW The CBOW model tries to predict the current word based on its surrounding

words or context. Both history and future words are incorporated, thus the word target is

the middle one. The word order is not taken into account, hence it assumes a bag-of-word

characteristic (where a text is considered a multiset of words, disregarding word order).

For example, with a sentence ”He is a smart boy”, the CBOW model will read over the

4 words ”He”, ”is”, ”smart”, and ”boy” to predict the most likely word in the middle, in

this case ”a”.
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Figure 3.12: The CBOW vs skip-gram models. Source: Mikolov et al. (2013)

skip-gram The skip-gram model is quite similar to the CBOW model, except that it

reverses the input and output: it tries to predict the surrounding words based on only

the middle word. Again, the center word is utilized, both previous and forward words

are predicted. This mirrors a skip-gram analysis, and we can understand the output or

context words as a set of 1-skip-n-grams where n
2

is the window size. For example, with a

sentence ”I love a good course” and current word ”a”, a skip-gram model window size 1

will predict only ”love” and ”good”, while a skip-gram model window size 2 will predict

”I”, ”love”, ”good” and ”course”.

Both types of model focus on the usage context of words, and this context is a window

of neighboring words. The window size is a crucial hyperparameter for the models to

be chosen carefully as Chiu et al. (2016) shows that training high quality embeddings

demand not only good input corpora and model architectures, but also hyperparameter

tuning. Mikolov et al. (2013) claims that skip-gram performs better for rare words and

CBOW is faster, nevertheless in general their performance is quite similar.
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3.3.3 fasttext

Fasttext was proposed by Bojanowski et al. (2016), Joulin et al. (2016) at Facebook in

2016 as an extension of word2vec . Instead of representing a word as one vector, fasttext,

based on the skip-gram model, represents each word as a bag of character n-gram, each

of this character n-gram will be transformed into a vector, and the final embedding of

each word is the sum of its character n-gram vectors. The motivation was that, most

methods before fasttext including word2vec only represented the entire words as vectors,

not at the character-level, making it hard to have good representations for morphological

rich languages, for example Finnish is a highly inflecting language with 15 cases just

for nouns. Therefore the n-gram vectors will help the model learns the rules of word

formation and inflection. Rare words are also better represented as there is a high chance

that their n-gram subwords are in the corpora, and as such, learnt.

Like word2vec, fasttext can incorporate either skip-gram or CBOW as its learning

algorithm. Bojanowski et al. (2016) claims that fasttext is fast to train and outperform

other methods that do not take into account subword-level information.

3.4 Co-training

To further improve on the strong result of the combination between the Turku parser and a

good word embedding, multiple approaches were considered (will be expanded in section

5 and 6) and most of them did not bear fruit. A modified version of co-training was the

only method that pushed the performance further, even just a marginal score. This section

briefly summarizes the theory behind co-training. Figure 3.13 demonstrates the approach

visually.

In the classical co-training set up, the data is partitioned into two different views, each

view will have a different set of features. To ensure the best performance, the two views

should be conditionally independent, meaning given the label of an instance, the two
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Figure 3.13: The co-training approach

feature sets of this instance are conditionally independent (the likelihood of each feature

set provides no information about the likelihood of the other feature set). They should

also be sufficient by themselves to let the label of an instance be correctly predicted just

from one of the two views. Using the labeled training data, co-training will learn two

different classifiers for two views separately. We will then use these two widely different

but complementary learners to predict labels for some other unlabeled data. The most

confident predictions are then become extra labeled training data, and this step will be

iteratively performed.

In the modified version experimented for the CRAFT shared task, the approach was

slightly different from the classical co-training approach. There was no feature splitting,

the two learners, in this case the Turku parser and UDpipe parser, both learned from the

same training data from CRAFT. Another difference is that, in classical co-training ap-

proaches, we prefer to have independent classifiers, thus the two classifiers would predict

different labels for the same unlabeled instance, they would learn different signals and
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make different mistakes. Howeverin this project, the instances that have identical seg-

mentation and tokenization and syntactic structure were included as extra labeled training

data, giving us the confidence that they were labeled correctly. The result of this experi-

ment will be analyzed below.
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Train Test

Documents 67 30

Sentences 21 731 9 099

Tokens 561 032 232 619

Table 4.1: CRAFT Structural Annotation statistics

4 Results

In this section, I will present and analyze the important results of the many methods

theoretically explained in section 3 as well as the final results of the test set submissions

of the CRAFT SA shared task.

4.1 Data

4.1.1 CRAFT data

For the development of systems of the CRAFT SA shared task, the syntactically annotated

CRAFT articles provided by the shared task organizers are the main sources. Table 4.1

outlines an overview of the data

Only the 67 Train documents were released publicly for development purpose. The

goal was to predict correctly the syntactical structure of the unannotated 30 Test docu-

ments, and these 30 documents were only published near the submission deadline in the
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Train Devel Eval

Documents 47 10 10

Sentences 15 007 3 421 3 303

Tokens 387 473 91 306 82 253

Table 4.2: CRAFT Train data split for development

form of raw text. The annotation procedure of the Train and Test documents were iden-

tical. The gold (correct) annotations of the Test documents were only released after the

final submissions to help participants in error analysis.

As per the usual recommendations in machine learning projects (Ripley and Hjort

(1995), James et al. (2014), Abu-Mostafa et al. (2012)), I randomly split the 67 annotated

documents into three different subsets: train, devel and eval. Table 4.2 shows the statistics

of this data split.

Using a rough ratio of 70/15/15 percent, 47 train articles were used for training, 10

devel articles were used for regularization via early stopping, and 10 test articles were

used for an unbiased evaluation of the learned model. This set-up was kept unchanged for

the entire development process to make it easy to compare the performances of different

models.

Outside of the provided CRAFT corpus, external sources of data were also utilized,

most notable are the pre-trained word vectors (section 3.2), the annotated data for corpus

extension, and the unlabeled data used for two purposes: generating new word vectors

(section 3.2) and extra training data for co-training (section 3.3). The next sections will

be about those three different types of external data.
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4.1.2 Pre-trained word vectors

Some readily available high quality pre-trained word embeddings were incorporated into

the input of the parser. A reminder that the parser needs three different types of token

representations, the character-level embeddings and the holistic frequent embeddings can

be computed by the parser itself, the pre-trained embeddings come from outside.

The word embeddings generated by Ginter et al. (2017) were the general embeddings

playing the role of the baseline. In the multilingual shared tasks CoNLL 2017 (Zeman

et al. (2017)) and CoNLL 2018 (Zeman et al. (2018)), they were provided by the organiz-

ers for the participant’s English parsing systems. The raw source of English data trained

on were the texts gathered from Wikipedia’s articles and other sources on the Internet like

CommonCrawl, an open repository of free web crawl data 1. The learning method was

word2vec (section 3.2.2) with the following options: skip-gram model, lower-cased text,

window size 10 and 100 dimensions.

As noted in section 2.2.2, in-domain biomedical word embeddings usually perform

better than general English word vectors for a biomedical focused corpus like CRAFT.

Thus some of the previously introduced in-domain word vectors were also taken into

radar. Many of them were created by Pyysalo et al. (2013), for example:

Random Indexing word vectors Random indexing, originated from the work of Kan-

erva et al. (2000), is an approach of building semantic word vectors incrementally. Each

word will have an index vector, which is a sparse vector full of 0 values, except for a

handful of −1 and 1 at random locations. The context vector of a word is produced by

scanning through the corpus for all of its occurrences, all of its context windows, and then

sum all of the index vectors of its neighbor words. The word vectors were made by using

a modified version of an available tool named NADA (unfortunately it is not available

1https://commoncrawl.org/
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anymore. 2

word2vec vectors Explained in section 3.2.2, word2vec is an efficient neural-network

based method of computing word representations. The tool word2vec3 from Google was

utilized to make the new word vectors from unlabeled biomedical data (next section). The

following options were chosen: skip-gram model, 200-dimensional vectors and window

size 5.

4.1.3 External English data

A large amount of English data was needed to perform the two tasks: creating new word

embeddings, and becoming extra training data. Multiple sources were considered, both

annotated and unlabeled (raw text):

The Penn Treebank Wall Street Journal section As mentioned in section 2.2.1, the

Penn Treebank Marcus et al. (1993) was the first large scale annotated English corpus that

was widely used by the parsing community, especially its Wall Street Journal section. The

data can be accessed via this link: 4. They are in Penn Treebank format, with the extension

.mrg, denoting merged which is a merge or combination of the POS tags as well as the

syntactical parses. They consist of roughly more than a million tokenized English words.

The GENIA treebank Starting with the work of Kim et al. (2003), the GENIA cor-

pus is the result of a continued effort in providing a comprehensively annotated biomed-

ical corpus for the various tasks of NLP and information extraction (IE). The corpus

consists of article abstracts taken from the MEDLINE database of the US National Li-

brary of Medicine, which includes references to journal articles in biology focusing on

2http://www.nada.kth.se/xmartin/java

3https://code.google.com/p/word2vec/

4https://github.com/scookies/NLP-HW2/tree/master/out/production/

NLP-HW2/edu/berkeley/wsj
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biomedicine 5. The most recent version, version 3.0 has more than 2000 abstracts and

more than 400,000 tokens. For the purpose of this thesis I considered a subset of the cor-

pus which was syntactically annotated in the PTB scheme. The corpus in various format

can be found here: 6.

The English UD treebanks Like the name implied, Universal Dependencies (UD) 7

is an ongoing project to develop an universal grammatical annotation for all human lan-

guages. The UD includes not just syntactical dependencies but also part of speech tags

and morphological features. This open community endeavor so far has produced over 100

treebanks for more than 70 languages and they are invaluable resources for those working

on parsing technology. Its general annotation structures are based on the modified struc-

tures of the Stanford Dependency Representations (de Marneffe and Manning (2008)) (for

the syntactical dependencies), the Google part of speech tags (Petrov et al. (2012)) (for

the POS) and the Interset interlingua (Zeman (2008)) (for the morphosyntactic features).

Currently there are six English UD treebanks 8, for example UD English-EWT or English

Web Treebank 9 which contains more than 250,000 tokens.

Unannotated data from Pubmed and PMC Pubmed 10 is an online archive of cita-

tions (which include the titles, the abstracts and sometime the links to full-text articles)

for biomedical text collected from online books, biomedical journals, and MEDLINE.

Currently it has more than 30 millions said citations. PubMed Central (PMC) 11 on the

other hand, is a database that stores full text articles from life science and biomedical

5https://www.nlm.nih.gov/bsd/medline.html

6https://github.com/allenai/genia-dependency-trees

7https://universaldependencies.org/

8https://universaldependencies.org/en/index.html

9https://universaldependencies.org/treebanks/en-comparison.html

10https://www.ncbi.nlm.nih.gov/pubmed/

11https://www.ncbi.nlm.nih.gov/pmc/
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journals. Nearly 6 millions full articles can be accessed for free from the PMC archive.

Instead of using the latest version of these datasets, the 2017 version of the Pubmed

baseline distribution and the PMC Open Access dataset were used as the source for gen-

erating new word vectors and extra training data as they were readily available from the

previous work of my supervisor Sampo. The raw text would then be further processed in

the following manner: the GENIA sentence splitter 12 split the sentences, then the PTBto-

kenizer taken from the Stanford Core NLP tools (Manning et al. (2014)) tokenized the

sentences, and finally the tokenized sentences were randomly shuffled. In the end, the

texts consist of 500 million sentences, which carry 12.5 billion tokens. Now the texts are

ready to be incorporated as a source of unlabeled extra training data, or as a source to

produce new word embeddings.

To generate new word embeddings from those data sources, readily available tools

were utilized, with the 2 main ones are word2vec 13 (section 3.2.2) and fastText 14 (section

3.2.3). As introduced in those sections, the 2 different learning models, skip-gram and

continous bag-of-word (CBOW) are both very effective, thus they were both implemented

in the 2 tools. As mentioned above, Chiu et al. (2016) points out that the window size is a

crucial hyperparameter to the performance of the learning model, thus different values of

the window size were tested.

In the next section, I will present the results of some of the most important and suc-

cessful attempts during the development process when the final test dataset from the or-

ganizer was not available.

A note about the evaluation metrics as mentioned in section 2.3.4, the CRAFT shared

parsing task had 3 evaluation metrics: LAS, MLAS, AND BLEX. Between these three,

LAS (Labeled attachment score) is the most commonly practiced and the most well-

12http://www.nactem.ac.uk/y-matsu/geniass/

13https://github.com/tmikolov/word2vec

14https://fasttext.cc/
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established metric. Therefore, I also used LAS as the main goal to optimize during ex-

periments. For the results of the development set, I will report only in terms of their LAS

scores. For the final three test set submissions, I will provide not only all three of the

metrics but also additional metrics implemented in the CoNLL evaluation script.

4.2 Development Set Results

I experimented with and tested out multiple ideas during the development phase, trying to

keep the process in an iterative and incremental manner. Two main strategies proving to be

quite effective were the customization of biomedical word embeddings and augmentation

of training data.

4.2.1 Word embeddings

To initiate the parser, an external source of word embeddings is needed, and I considered

a wide range of them, both general English and in-domain biomedical ones, both pre-

trained vectors and newly induced vectors. The main parser used is the Turku parser, with

some additional experiments done on UDPipe to act as the baseline. Table 4.3 sums up

the most prominent embeddings and their LAS score.

The first notable thing here is that: the parsers can already achieve a very high base-

line LAS score of 89.27% (the Turku parser) and 84.66% (the UDPipe parser) utilizing

only the general English CoNLL word embeddings. Granted, this is a very high qual-

ity embeddings created by the organizers of the CoNLL 2018 shared tasks. After this,

the hope was to improve upon this already impressive result using in-domain biomedical

word vectors, both pre-made and freshly created. With a clear winner between the Turku

parser and UDPiper, I quickly focused on using the Turku parser as the main system, with

only a few more experiments performed on UDPipe.

At first, some of the previously introduced word vectors (either created from the previ-
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Parser Word vectors LAS

Turku Bio, word2vec/CBOW (window 2) 89.86

Turku Bio (CRAFT tokens), word2vec/CBOW (default parameters) 89.78

Turku Bio (CRAFT tokens), word2vec/CBOW (win2) 89.69

Turku Bio, word2vec/CBOW (default parameters) 89.55

Turku Bio, word2vec/CBOW (window 20) 89.73

Turku Bio, FastText/CBOW (default parameters) 89.50

Turku Bio, word2vec/skipgram (default parameters) 89.63

Turku Bio, word2vec/skipgram (window 5) 89.34

Turku CoNLL 89.27

Turku RI 89.24

Turku vec-50 88.81

UDPipe Bio, word2vec/CBOW (window 2) 85.00

UDPipe CoNLL 84.66

UDPipe Bio, word2vec/CBOW (default parameters) 84.22

Table 4.3: Development set results with different word embeddings. CoNLL = baseline

CoNLL shared task word vectors, Bio = custom word vectors induced on PubMed and

PMC articles, CRAFT tokens = input text tokenized with model trained on CRAFT data,

RI = Random indexing vectors, vec-50 = 50-dimensional word embeddings from 16

ous works of my supervisor and his lab or freely available from the NLP community) not

only did not improve on the baseline LAS score but they were also lower the score. Two of

them are the random indexing vectors and the 50-dimensional vectors with 89.24% and

88.81% respectively. Only the Bio, word2vec/skipgram (window 5) vectors previously
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created from Pubmed article citations provided the first small improvement in quality:

89.34%.

From then on, the focus was on inducing new in-domain biomedical word embeddings

from the large source of raw unannotated text of PMC (full-text articles) and Pubmed

(only the abstracts) (seciton 4.1.3). Section 3.2.1 explains all of the details about word2vec,

Fasttext, their CBOW and skipgram models as well as their parameters. Different embed-

dings were created using different settings, and the better options would become narrower

based on empirical testing with the development data. Regarding word2vec or fasttext,

word2vec was found to be better performed in most of the cases, thus the former became

the predominant method of making new word vectors. For the other settings, experimen-

tal results indicated that CBOW is the better learning algorithm compared to the skipgram

model, where all of the highest scores were achieved with CBOW-induced embeddings.

And finally concerning the window parameter, smaller windows were observed to perform

better than either the default window or the larger window.

The best performing embeddings scored 89.86% which is a 0.6% higher in LAS ac-

curacy compared to the CoNLL baseline embeddings. This has the following settings:

tool word2vec, learning model CBOW, and window size 2. The runner-up embeddings

achieved a LAS score of 89.78%, created with the combination of tool word2vec, learning

model CBOW, default window size which is 5 for CBOW, and another addition: the raw

text was tokenized by a model trained on CRAFT data before becoming the source data

to train the word vectors. The idea was to develop a word embeddings that stay as close

to the vocabulary of the CRAFT data as possible, minimizing the out-of-vocabulary rate

of the vectors. In the final three submissions, two of them used the former embeddings,

while the other used the latter embeddings.
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4.2.2 Training data augmentation

Singling out the set of word embeddings that performed best on the development CRAFT

data was a great progress, after that it is all about enhancing the quality of the training

data. A technique called NER (named entity recognition) was considered, however it did

not provide any improvements on the data. Increasing the size of training data is another

approach, thus a few external source of annotated data were tested to be combined with

the original CRAFT data, however they were mostly failed attempts (section 5.1). Only

the modified co-training approach (section 3.3) showed a small margin of LAS score

increasing. Some selected results from this strategy can be seen in table 4.4.

Parser Word vectors Extra data (size, source) LAS

Turku Bio, word2vec/CBOW (window 2) 4k sentences, PMC 89.92

Turku Bio, word2vec/CBOW (window 2) 10k sentences, PMC and PubMed 89.87

Turku Bio, word2vec/CBOW (window 2) 10k sentences, PMC 89.84

Turku Bio, word2vec/CBOW (window 2) 6k sentences, PubMed 89.78

Turku Bio, word2vec/CBOW (window 2) 14k sentences, PMC 89.73

Turku Bio, word2vec/CBOW (window 2) 3k sentences, PMC 89.64

Turku Bio, word2vec/CBOW (window 2) 20k sentences, PMC 89.41

Table 4.4: Development set results with extra training data

Here is a detailed account of the strategy: The best parsing models of the Turku parser

and UDPipe parser from the previous experiments (trained and tested using only the orig-

inal CRAFT data) both do the syntactical parsing task on a large source of unannotated

data from Pubmed abstracts and PMC full-text articles. Having the parsed results from

both models, I compared them to find the sentences that were agreed upon by the two

models, both at the level of sentence splitting, tokenization (the sentences have exactly

the same words in both models) and at the level of syntax (the words in the sentences

51



CHAPTER 4. RESULTS Thang Ngo Minh

have identical heads and dependencies). I would then randomly sample these sentences

in order that they are out of order, varying from sources, different sentence length and so

on, making for a helpful source of extra annotated training data. Multiple sets up of this

data were combined together with the original CRAFT training data to become the new

training data for training new models.

There were some limited increases in the LAS score, with the most optimistic one

being the set up with four thousand sentences from PMC full-text articles. Its LAS score

89.92% was only a 0.06% margin higher than the model trained on only the CRAFT data.

A potential reason for why this strategy could not work better is that the Pubmed and PMC

data covers a wide range of biomedical subjects, while the CRAFT data only focuses on

a narrow topic, the Mouse Genome Informatics curation pipeline, making the vocabulary

compatibility not that high. Still, the improvement was there though not very substantial,

thus I included the best model here as the final submission alongside the 2 previously

mentioned CRAFT-data-only models.

4.3 Test Set Results

After the development, every participants could afford 3 of their best models to parse the

unannotated raw CRAFT text provided by the organizers near the deadline. They would

announce the results shortly after the deadline and also publish the gold data (the correctly

annotated test CRAFT data) for error analysis purpose. Table 4.5 summarizes the final

test LAS scores of the three runs that I submitted, along with their LAS score during

development.

As can be seen, the table actually shows four, not three runs, with an additional post-

mortem run. The reason behind this is that, right after I submitted the three runs to the

organizers, I realized a mistake that I had made: I did not use the full set of the CRAFT

development data for the final model training. As mentioned in section 4.1.1, I divided
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Parser Word vectors Extra data LAS(dev) LAS(test)

Turku Bio, word2vec/CBOW (window 2) post-mortem 89.859

Turku Bio, word2vec/CBOW (window 2) 4k sentences, 89.92 89.695

pmcoa articles

Turku Bio, word2vec/CBOW (window 2) No 89.86 89.650

Turku Bio (CRAFT tokens), word2vec/CBOW (defaults) No 89.78 89.536

Table 4.5: Final submission results on test data

the 67 CRAFT articles provided from the organizers into train-dev-eval sets as the normal

standard when developing machine learning systems. The 10 eval articles were very

carefully set aside, the trained systems never looked at those articles, preventing the risk

of data snooping and guarantee the most objective and non-bias evaluation of the trained

systems. However, after determining the best models I should have included those 10

eval articles into the training data and retrain an even more effective model on this larger

training data.

The post-mortem work that I have performed does indicate that the inclusion of the

10 eval articles into the training data would produce a model more powerful than all of

the three submitted runs with a LAS score of 89.859%. The good news is that, the three

submitted models were still the leading champions of the competition. The three runs

followed quite closely their development results, with the disparities only 0.3% between

the development and test results for all of them, displaying a high generalization degree.

While the two models trained only on CRAFT data were very competitive, the run that

incorporated the same word embeddings with additional training data from PMC full-text

articles proved still be the best, even by only 0.005% above the runner-up.

A more detailed evaluation of the three final submission and the post-mortem run are

shown in table 4.6. These are evaluation metrics implemented in the official evaluation
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script (seciton 2.3.4).

Metrics Run 1 Run 2 Run 3 Post-mortem

Tokens 99.593 99.555 99.593 99.592

Sentences 97.590 97.621 97.590 97.423

Words 99.593 99.555 99.593 99.592

UPOS 98.221 98.179 98.184 98.241

XPOS 97.806 97.758 97.789 97.830

UFeats 98.282 98.233 98.265 98.313

AllTags 97.752 97.718 97.729 97.771

Lemmas 98.999 98.981 99.048 99.035

UAS 90.942 90.882 90.794 91.088

LAS 89.695 89.650 89.536 89.859

CLAS 87.373 87.294 87.201 87.524

MLAS 85.549 85.441 85.318 85.688

BLEX 86.630 86.595 86.544 86.841

Table 4.6: Final submission test results for all metrics

The first three metrics concern the tasks of the tokenizer, and here all of the models

perform very well: the sentence splitting are over 97%, the token and word boundaries

identifiers are all over 99.5%. While English does have contractions which are words

made by shortening and combining two different words (for example don’t is a contraction

generated from do and not), in academic writing their usage is almost always discouraged,

thus in the CRAFT data there is no multi-word token, making the tokens and words results

identical for each of the model.

The next four metrics evaluate the performance of the tagger: the universal part-of-
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speech tags UPOS, the language-specific part-of-speech tags and the morphological fea-

tures UFeats. We can also see very high results (roughly 98%) for all of the categories.

The lemmatizier also performed very well, with approximately 99% of the word’s

lemmas predicted correctly, speaking to the effectiveness of the simple but ingenious

approach of Kanerva et al. (2019).

Now we come to the final five metrics which gauge the performance of the dependency

parsing model in various ways. In brief, the more important metrics are:

UAS how well does HEAD match, or how well just the head word was assigned

LAS how well does HEAD + DEPREL match, thus both the head word and the depen-

dence relation have to be correct

MLAS how well does HEAD + DEPREL + UPOS + UFEATS match, thus not only

dependency structure, but also the POS tags and the morphological feature tags need to

be correct

BLEX how well does HEAD + DEPREL + LEMMAS match, thus the dependency

structure plus the correctly predicted lemma

If we are talking about dependency parsing alone, LAS provides the clearest measure,

and here all models achieved over 89.5% accuracy, with the post-mortem model being

very near 90%. The UAS scores are higher than the LAS scores even if only by a very

small margin, suggesting that predicting the DEPREL labels was more challenging than

recovering the HEAD word, and this should be where we can find room to improve that

can lead to an increase in the overall parsing performance. It can also be observed that

BLEX scores are always higher than MLAS scores, this means that the lemmatizer also

did a better job than the tagger.

Increasing the size of the training data especially data that is very similar to the test

data is clearly a good approach to keep in mind, as the post-mortem model outdone the
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submitted three models in the majority of the metrics, especially the syntactical-analysis

related metrics. ]
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5 Discussion

In this chapter, I want to focus on discussing some of the ideas and approaches that were

not very successful at improving the system, along with some projections on the future of

dependency parsing.

5.1 What Did Not Work

In this section I present the ideas that, while definitely promising, did not seem to match

very seamlessly with the project during development. They were usually abandoned early

without any significant results worth reporting. However, I will still try to explain the

ideas and their reasons for failing as clear as possible.

5.1.1 Some pre-trained word embeddings

As mentioned in section 4.2.1, the CoNLL general English word embeddings already pro-

vided a strong baseline, and many attempts at using other pre-made freely available word

vectors were not very fruitful. The improvement only consistently came as a result of cre-

ating new biomedical word vectors trained on large sources of in-domain raw literature.

The main reason that this can be contributed to is:

Vocabulary mismatch A limitation of using word embeddings is that, because they are

the result of a machine learning model after being trained on a finite source of data, the

model will not produce the embedding of a new word that it has not seen in the training
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data. These are called OOV (out-of-vocabulary) words, and the higher the rate of OOV

words, the more new and less reliable embeddings there are when the parser initiates

. Table 5.1 shows the OOV rates of some of the vectors along with their development

results.

Word Embeddings OOV rate Dev LAS

vec-50 11.66% 88.81

CoNLL 3.23% 89.27

RI 1.76% 89.24

Bio (CRAFT tokens), word2vec/CBOW (window 2) 1.14% 89.78

Bio, FastText/CBOW (default parameters) 0.54% 89.50

Bio, word2vec/CBOW (window 2) 0.54% 89.86

Bio, word2vec/CBOW (window 20) 0.54% 89.73

Table 5.1: OOV rate of the word embeddings regarding the CRAFT training data

The best results were only achieved using the set of embeddings with only 0.54%

OOV rate. Thus it would be reasonable that the LAS score might be even higher if the

OOV rate reaches zero, however the probability that a set of word embeddings stores all

of the vocabulary in a new text is very low. The potential lies in how to handle OOV

words. The Turku parser has the ability to accumulate vocabulary from the data we are

parsing, make embeddings for previously unseen words and add these new embeddings

into the parsing model (Kanerva et al., 2017). Technically, this approach eliminates all

OOV words.

5.1.2 Corpora incompatibility

Extending the training data with high quality and similar samples is a very reliable way

of improving the model, especially in the era of deep learning models. Before utilizing
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the unannotated data in the co-training strategy that would eventually lead to real im-

provements, I did some experiments with available annotated treebanks. The CRAFT

dependency parses themselves were generated from the constituency-based treebank 1,

the idea was to try to combine the CRAFT data with similarly annotated converted data.

Some of them are the PTB Wall Street Journal section Marcus et al. (1993), the origi-

nal GENIA treebank data Kim et al. (2003) and a version of the GENIA treebank that

was already converted by the Stanford Dependency Converter. All experiments had dis-

appointing results as any combinations between these extra data and CRAFT data lead

to worse performance. Another idea was to combine CRAFT data with the Universal

Dependencies (UD)’s English corpora although this also did not work.

While this could be the result of the narrow nature of the topic of the CRAFT data

making it unsuitable for getting merged with other textual data, even other biomedical

sources, the main reason might lie in the incompatibility of the annotations. In short,

even though the CRAFT data is in the CoNLL-U format, which is supposed to be the UD

version of annotation, it does not fully follow the UD annotation conventions and actually

adopts some of the rules from the Stanford Dependencies (SD). Figure 5.1 illustrates some

of the differences between the two types of convention.

Figure 5.1: Illustration of Stanford Dependencies (top) and Universal Dependencies (bot-

tom) analyses for an example sentence (from PMCID:15207008). The CRAFT depen-

dency annotation arguably follows some type of a mixture between the two of them

This highly peculiar hybrid SD/UD annotation scheme significantly complicates the

1https://github.com/UCDenver-ccp/CRAFT/wiki/Dependency-parse-derivation-from-treebank-data
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possibility of combining the CRAFT data with other annotated sources. It would be of

great benefit for the bio NLP community if in the future the CRAFT data be converted

fully into the UD standards (which is the de facto for dependency parsing now) and there-

fore could be added into the UD repository 2, expanding the available biomedical sources.

5.1.3 Named Entity Recognition

A named entity is any object that has a proper name, for example Helsinki is a named

entity belongs to the category city, Collagen is a named entity belongs to the category

protein, etc. Named Entity Recognition (NER) is an information extraction task with the

goal of identifying named entities and labeling them into the correct pre-defined cate-

gories. Because the CRAFT shared tasks also included a concept annotation (CA) task 3,

which means the CRAFT CA training data provided by the organizers had the correct con-

cept annotation (or entity mention annotation), they can be incorporated into the parsing

process as extra features. The segment below shows an example of a concept annotated in

CRAFT. An object with the name (mention id) of CL basic 2014 02 21 Instance 10985

is classified into the category spermatogonia, a type of male germ cell

<annotations textSource=.17696610.txt.>

<annotation>

<mention id=.CL basic 2014 02 21 Instance_1098S. I>

<annotator id=.CL_basic_2014_02_21_Instance_10000.>Mike Bada, University •
f Colorado Anschutz Medical Campus</annotator>

<span start=.8989. end="9002" 1>

<spannedText>spermatogonia</spannedText>

</annotation>

<annotation>

<mention id=.CL basic 2014 02 21 Instance_10987. I>

<annotator id=.CL_basic_2014_02_21_Instance_10000.>Mike Bada, University •
f Colorado Anschutz Medical Campus</annotator>

<span start="12279" end=.12292. I>

<spannedText>spermatogonia</spannedText>

The hope was that this new information would help the parser parse these named

2https://universaldependencies.org/

3https://sites.google.com/view/craft-shared-task-2019/craft-ca
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entities more effectively. However the new models trained on the CRAFT data affixed

with these NER categories only decreased the performance, especially on the best model

without extra training data, as shown in table 5.2.

Word Embeddings NER affixed Dev LAS

Bio, word2vec/CBOW (window 2) No 89.86

Bio, word2vec/CBOW (window 2) Yes 89.66

Bio, word2vec/CBOW (window default) No 89.55

Bio, word2vec/CBOW (window default) Yes 89.53

Table 5.2: Development results of NER experiments

In this case, the NER tags might have become noise intruding into the learning of the

parsing model.

5.2 Future Work

In this section I will take a look at the current state of applying deep learning techniques

into dependency parsing in particular and natural language processing in general, as well

as some predictions about the near future.

5.2.1 More transformer-based models

Since its first introduction in Vaswani et al. (2017), transformer-based models have be-

come the most powerful and widely adopted architecture for all types of NLP tasks. In

2018, BERT, Devlin et al. (2018) an open source framework of Google, came out and

achieved state-of-the-art (for its time) in many NLP tasks, and now it is still possibly

the most popular transformer-based model in NLP. In 2019 we also see the releases of

state-of-the-art level performance models, for example Google Brain’s XLNET (Yang
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et al., 2019), Facebook’s RoBERTa (Liu et al., 2019b), Microsoft’s MT-DNN (Liu et al.,

2019a), and NVIDIA’s Megatron-LM (Shoeybi et al., 2019), are all transformer-based. I

expect this trend of proliferation of BERT-inspired models are not going to stop in the

near future.

5.2.2 More contextual models

In recent years, the biggest breakthrough that results in many new state-of-the-art results

in NLP (since the introduction of the transformer model in 2017) is the idea of contex-

tualized word representation (note that the use of contextual here is a very specific one).

In contrast to the context-free models such as the classic word2vec which produce only

one embedding for each word (for example book will have the same embedding in both I

bought a book yesterday and I gotta book a ticket early even if it has completely different

meanings!), contextual models create a context-based word based on its sentence, thus a

word might have multiple embeddings. Straka et al. (2019) extensively evaluate and com-

pare the three methods of contexual embeddings: ELMo (Peters et al., 2018), BERT (De-

vlin et al., 2018) (of Google, possibly the most popular transformer-based model in NLP

now), Flair (Akbik et al., 2019) in three familiar tasks: part-of-speech tagging, lemmatiza-

tion, and dependency parsing. Using the system of UDpipe, all three of them substantially

improved upon all three tasks in the CoNLL 2018 shared tasks.

I expect to see more contextual models coming in 2020. In the words of Jeff Dean,

the AI Chef of Google , ”We’d still like to be able to do much more contextual kinds of

models. Like right now BERT and other models work well on hundreds of words, but not

10,000 words as context. So that’s kind of [an] interesting direction.” 4

4https://venturebeat.com/2020/01/02/top-minds-in-machine-learning-predict-where-ai-is-going-in-2020/
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5.2.3 The future of dependency parsing

As mentioned in section 2.2, dependency parsing has a long history, and is a very im-

portant component in many NLP-related tasks with most NLP toolkits available having

the ability to do dependency parsing. However parsing is usually just a constituent (or

building block) that can help enhance the performance of downstream applications, for

example in question answering, in machine translation and many more.

In the era of ”going deeper” with the NLP scene completely dominated by deep neural

end-to-end models, dependency parsing can at best, be utilized as providing extra useful

information as a good parsing model will have been trained on a very large set of textual

data, and its learning goal, the grammar analysis, is fairly universal and easily generalized

across languages and tasks, or at worst, can be done without. Nevertheless, I still have

a hopeful vision about the future of parsing as a look at the number of academic papers

published mentioning dependency parsing since 2019 up until the very beginning of 2020

indicate, there are still many people out there doing research on this NLP task. I hope to

see more breakthroughs related to dependency parsing in the near future.
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6 Conclusions

In this thesis, I have presented my work as a member of the TurkuNLP team taking part

in the project of the CRAFT 2019 shared task in structural analysis. The majority of the

experiments was performed on the Turku neural parser, the main parsing system, with

some consideration to UDpipe. The Turku parser with its four components tokenizer, tag-

ger, lemmatizer and tagger, all have deep learning based architecture, provided a strong

baseline parsing performance already on the out-of-domain CoNLL English word embed-

dings, without any modification on the training data. A variety of strategies were adopted

to improve on this, many of them did not prove to be fruitful, nevertheless a few stood out

as particularly effective.

In-domain biomedical word embeddings can enhance the parsing model, providing

a great set of initiated word representations as one of the inputs of the parser. While

some previously pre-trained word embeddings failed to provide substantial improvement,

newly made custom word vectors trained on large sources of unannotated biomedical data

from PMC and Pubmed proved very effective.

A modified version of the co-training technique pushed the parser even further, using

the same sources of unannotated data. After multiple carefully supervised experiments,

the amount of extra training data needed reached its sweet spot at around 4 thousand

sentences from PMC full-text articles.

The incorporation of these two strategies into the already strong Turku parser helped

the TurkuNLP team achieve the highest results on the test set of the CRAFT shared task
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with a LAS score of 89.695%.

A few recommendations on future work were also discussed. A fully-converted into

universal dependencies standard version of the CRAFT data is in demand, as that would

prove invaluable for the bio NLP community. To continue improving upon the model

accuracy in terms of dependency parsing, contextual word representations should be taken

into account, as well as the employment of deeper transformer-based architectures. And

finally, I hope that dependency parsing itself would be utilized more in other NLP tasks,

such as machine translation and chat bots.
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