
ÅBO AKADEMI

Optimizing the Critical

Rendering Path for Decreased

Website Loading Time

Gabriel Kivilohkare

Master of Science Thesis

Supervisors: Annamari Soini, Jan Westerholm

Department of Information Technologies

Faculty of Science and Engineering

Åbo Akademi University

May 5, 2020

Gabriel Kivilohkare i

Abstract

Users expect websites to load faster while websites are becoming larger and more

complex. Simultaneously, users prefer mobile devices that use networks with

high latencies. This thesis aims to evaluate different optimization strategies for

decreasing the website loading time. General optimization strategies and opti-

mization strategies for the above-the-fold content are presented and tested in this

thesis. Finally, tests are run with all the optimization strategies for a compound

effect. The conclusion is that even large websites can load the above-the-fold

content in a short time for good user experience.

Keywords: Critical rendering path, Website loading time, JavaScript, Cascading

style sheets, Critical CSS, Critical JavaScript

Gabriel Kivilohkare ii

List of Figures

2.1 HTTP request and response. 5

2.2 The construction of the Domain Object Model. 5

2.3 A graphical representation of the Domain Object Model. 7

2.4 Different website loading stages demonstrated [1]. 9

2.5 Average size per content type [2]. 13

3.1 Synchronous loading of JavaScript. 21

3.2 Asynchronous loading of JavaScript. 22

3.3 Loading JavaScript with the defer attribute. 22

4.1 Test website on different devices. 28

4.2 Mobile navigation bar. 30

4.3 Loading stages of the unoptimized sample website. 32

4.4 Loading stages of the optimized sample website. 46

5.1 Unoptimized image delivery. 49

5.2 Optimized image delivery. 49

Gabriel Kivilohkare iii

Contents

1 Introduction 1

1.1 Purpose . 2

1.2 Thesis Structure . 2

2 Background 4

2.1 Loading a Website . 4

2.1.1 Construction of the DOM 6

2.1.2 Construction of the CSSOM 7

2.1.3 Render Tree, Layout, and Paint 8

2.2 Above-the-fold Content . 8

2.3 Stages of Loaded Sites . 9

2.3.1 Time to First Paint . 10

2.3.2 Time to First Contentful Paint 10

2.3.3 Time to First Meaningful Paint 10

2.3.4 Time to Interactive . 10

2.4 Website Loading Time . 11

Gabriel Kivilohkare iv

2.4.1 Network Latency . 11

2.4.2 Connection . 12

2.4.3 The Data Size of the Website 12

2.4.4 Website Loading Order . 13

2.4.4.1 Render and Parser Blocking Resources 14

2.4.4.2 Synchronous and Asynchronous Resources 14

2.4.5 Webserver . 15

2.4.6 Client . 16

3 Optimization Methods 17

3.1 General Website Performance . 17

3.1.1 Reduction of Requests . 17

3.1.2 Minify Resources . 18

3.1.3 Compressing Resources . 19

3.1.4 Delivering Images . 19

3.1.5 Caching . 19

3.1.6 CSS Delivery . 20

3.1.7 JavaScript Delivery . 20

3.2 Above-the-fold Content Performance 22

3.2.1 Minimize the Number of Critical Resources 23

3.2.2 Minimize the Critical Path Length 23

3.2.3 Minimize the Number of Critical Bytes 23

3.2.3.1 Critical CSS . 23

3.2.3.2 Critical JavaScript 24

Gabriel Kivilohkare v

4 Experiments 25

4.1 Introduction . 25

4.1.1 Optimization Strategies Tested 25

4.2 Goal . 26

4.3 Experiment Design . 26

4.3.1 Experiment Environment 26

4.3.1.1 Webserver . 27

4.3.1.2 Client . 27

4.3.1.3 Connection . 27

4.3.2 Experiment Website . 28

4.3.2.1 Design . 28

4.3.2.2 Loading of Resources 29

4.3.2.3 HTML . 29

4.3.2.4 JavaScript . 29

4.3.2.5 CSS . 30

4.3.2.6 Images . 31

4.3.3 Loading Stages . 31

4.3.4 Limitations . 32

4.4 Implementation . 33

4.4.1 General Methods . 33

4.4.1.1 Minimizing CSS 33

4.4.1.2 Minimizing JavaScript 33

Gabriel Kivilohkare vi

4.4.1.3 Reducing the Number of Requests 33

4.4.1.4 Delivering Images 34

4.4.1.5 Compressing Resources 34

4.4.1.6 All General Optimizations Combined 34

4.4.2 Critical Rendering Path Specific Optimizations 35

4.4.2.1 Critical CSS . 35

4.4.2.2 Critical JavaScript 36

4.5 Experiments . 37

4.5.1 Unoptimized Website . 37

4.5.2 General Optimization Strategies 37

4.5.2.1 Minimizing CSS 37

4.5.2.2 Minimizing JavaScript 38

4.5.2.3 Reducing the Number of Requests 38

4.5.2.4 Delivering Images 39

4.5.2.5 Compressing Resources 40

4.5.2.6 General Strategies Combined 40

4.5.3 Critical Rendering Path Optimization Strategies 41

4.5.3.1 Critical CSS . 41

4.5.3.2 Critical JavaScript 42

4.5.3.3 All Optimization Methods Combined 42

4.6 Results . 43

4.6.1 General Optimization Methods 43

Gabriel Kivilohkare vii

4.6.2 Above-the-fold Optimization Methods 44

4.6.3 Optimized Website . 45

5 Discussion 47

5.1 General Optimization Methods 47

5.1.1 Compressing Resources . 47

5.1.2 Minimizing JavaScript . 47

5.1.3 Minimizing CSS . 48

5.1.4 Reducing the Number of Requests 48

5.1.5 Delivering Images . 49

5.1.6 Combining General Optimization Strategies 50

5.2 Critical Rendering Path . 51

5.2.1 Critical CSS . 51

5.2.2 Critical JavaScript . 51

5.3 Combining All Optimization Strategies 52

5.4 Further Optimizations . 53

6 Conclusion 54

Swedish Summary 59

Gabriel Kivilohkare 1

Chapter 1

Introduction

Low loading time is crucial for websites in several ways. Low loading time has

a major role in providing the end-user with a good user experience. Moreover,

website loading time has an immense impact on how the user behaves on a website.

Studies show that 53% of mobile users will abandon a website that loads for more

than three seconds [3]. Therefore website loading time is critical for conversions,

which is the activity that a business wants the user to do, e.g. a purchase in

e-commerce. Finally, the long loading time will have a negative influence on a

website’s search engine ranking.

Most businesses have an online presence and a large number of businesses rely on

the Internet. The loading time of a business’s website can have a vast economic

impact on the business. Slow-loading websites make users abandon websites,

which makes businesses directly lose potential customers.

The number of mobile users is continuously increasing, which poses challenges for

the loading speed of websites due to mobile networks with high latency and mobile

devices with less processing and memory capabilities than traditional computers.

Another challenge for website loading time is that websites tend to become more

complex with more functionalities. Simultaneously, users expect websites to load

faster.

Recent research shows that there are several ways to decrease the loading time of

websites, including back-end and front-end optimizations. This thesis focuses on

Gabriel Kivilohkare 2

optimizing the critical rendering path for a decreased loading time of the above-

the-fold content. The critical rendering path (CRP) can be defined as the steps

the browser needs to take to render a web site [4]. Above-the-fold content is the

content that is initially visible in the browser when the website first loads. Content

that appears after scrolling is called below-the-fold content. By optimizing the

critical rendering path for the above-the-fold content, meaningful content can be

shown rapidly to the user, while the website is not fully loaded. This gives the

user a sense of a high performing website.

1.1 Purpose

Traditionally website loading time has been considered the time from when the

user opens a website until the website is fully loaded. The goal of this thesis

is to find solutions for optimizing the critical rendering to decrease the loading

time of the above-the-fold content. A website is not necessarily completely loaded

once it is rendered, and certain resources can be loaded in the background while

prioritizing only the critical resources needed for the rendering of the website.

This thesis attempts to outline the following for each optimization strategy:

• How much does implementing this strategy impact website loading time?

• How much work is required to implement this strategy?

• Does this strategy cause any side effects?

1.2 Thesis Structure

The second chapter of this thesis is an introduction to what the browser does when

a website is loaded, how website loading time is measured, and which factors have

a main impact on the website loading time. The third chapter is an overview of

the different strategies for decreasing website loading time. These strategies are

divided into two categories: general optimization strategies and above-the-fold

content optimization strategies. In the fourth chapter, the optimization strategies

Gabriel Kivilohkare 3

are implemented, tested, and compared. The fifth chapter discusses the results

of the experiments and answers the research questions. In the last chapter, a

conclusion is reached and future work is discussed.

Gabriel Kivilohkare 4

Chapter 2

Background

This chapter introduces how websites are rendered and what key metrics can

be used for measuring website loading performance. The information in this

chapter is essential for understanding the research and discussions in the following

chapters.

2.1 Loading a Website

When a user types in a domain in the address bar of a browser and navigates to

a website, the browser needs to find the Domain Name System (DNS) record of

the domain. The DNS is a system for giving resources that are connected to the

internet a human friendly name, as in the case of websites, translating domains

to IP addresses [5]. The browser examines different caches in order to find the

DNS record. First, it examines its own cache and if the DNS record is not found,

it examines the operating system cache followed by the router cache and the ISP

(Internet Service Provider) cache. If the information is not found in any of the

caches, a recursive DNS query is initiated from the ISP’s DNS servers. Caching

significantly improves the performance of translating the domain to an IP address

[6].

Once the browser has found the IP address of the domain, either from cache or

through DNS query, the browser sends an HTTP, HTTPS, or HTTP2 request to

Gabriel Kivilohkare 5

the website host server. The host responds and sends back the requested HTML

as a response, as shown in the picture below.

Figure 2.1: HTTP request and response.

The browser processes the HTML markup and builds the Domain Object Model

(DOM) tree. A Cascading Style Sheets Object Model (CSSOM) is built from the

styles associated with the DOM. The DOM and the CSSOM are both individual

data structures, where the DOM represents the content of the processed HTML

and the CSSOM represents only the styling. The DOM and CSSOM are combined

into a render tree. Hereafter, a layout is generated and finally, the web page is

painted. We will cover all these steps in detail in the following sub-chapters, as

they are key elements in the loading process of a website. The critical rendering

path is the steps explained above, in other words, the steps the browser has to

take in order to show a website on a user’s screen.

Figure 2.2: The construction of the Domain Object Model.

Gabriel Kivilohkare 6

2.1.1 Construction of the DOM

For the browser to construct the DOM, the browser has to convert all the raw

HTML bytes to characters, followed by converting the character strings to tokens,

followed by converting tokens to objects, and finally building the DOM tree [7].

Figure 2.2 displays the relationships between each object. Each object has a

certain set of rules and a specific purpose.

Consider this very simple piece of HTML code, which represents a website with

a small text and a picture:

<!DOCTYPE html>

<html>

<head>

<title>Title</title>

</head>

<body>

<p>Hello world!</p>

<div></div>

</body>

</html>

The DOM shows how different objects are linked in a tree-like structure. Every

tag in the HTML is represented as an object in the DOM. A graphical represen-

tation of the DOM in the above example would look like this:

Gabriel Kivilohkare 7

Figure 2.3: A graphical representation of the Domain Object Model.

The construction of the DOM can be time-consuming if there is a large amount

of HTML.

2.1.2 Construction of the CSSOM

During the DOM construction, the browser might encounter a reference to an

external Cascading Style Sheet (CSS).

<link href="example.css" rel="stylesheet">

Immediately after the browser encounters the CSS reference, it requests the re-

source and receives the content of the CSS file as a response. Similarly to the

DOM construction, the CSSOM is constructed by first converting the CSS bytes

to characters, hereafter characters are converted to tokens and lastly, tokens are

converted to nodes. Ultimately the nodes are linked to a tree-like structure con-

taining styling attributes, which is called CSSOM. The styles in the CSSOM

automatically override browser-specific default styles, so-called user-agent-styles.

Gabriel Kivilohkare 8

As an example, the following CSS would give the word ”world” the color red in

our previous example.

p span {

color: red;

}

Browsers read CSS from right to left. In our example, the browser would first

check for ”span” -objects, then check if those have ”p” -objects as parents. If the

criteria match, the styling will be applied to the object.

2.1.3 Render Tree, Layout, and Paint

As seen in Figure 2.2, the render tree is constructed by combining the DOM

and the CSSOM [8]. The final render tree contains only visible nodes and their

corresponding CSSOM rules. All of the visible content that is shown on the web

page is included in the render tree. Nodes that are hidden by a CSS display

property are not included in the render tree. Likewise, nodes in the DOM that

have no content are omitted from the render tree.

During the layout stage, the browser calculates the exact size and position for

each node in the render tree. This is a recursive process, beginning from the root

node and traversing the render tree. The browser has to run layout each time the

render tree is updated or the size of the viewport changes.

The final stage of website rendering is the paint stage. In this stage, the browser

paints the result from the layout stage on the screen.

2.2 Above-the-fold Content

The above-the-fold is the visible content that is seen on the web browser when

the website loads. Fast rendering of this content gives the user an impression

of an instant load, even though most of the resources might not have loaded.

Gabriel Kivilohkare 9

Considering the importance of loading time to the user experience, optimizing

the loading of the above-the-fold content could significantly improve the user

experience on heavy websites. This content can vary on different devices such as

computers and mobile devices.

Optimizing the above-the-fold content is a solution for two scenarios, loading

large web pages and loading any web page with a poor connection. The average

website is about 2 MB in size [2], and large web pages may be tens of megabytes

in size. In mobile networks, poor connections are often related to high latency.

By finding a solution for the two scenarios above, it is possible to determine the

optimal size of the critical rendering path.

2.3 Stages of Loaded Sites

Traditionally, website loading time has been considered as a single metric, that

is how long it takes for the website to load completely. Even though this is a real

and relevant metric, it does not give an accurate overview of the loading time

corresponding to the user experience. The user experience is different considering

the loading time of a fully-loaded site versus a partly loaded site. Different stages

serve different purposes, as explained in the following sections.

Figure 2.4: Different website loading stages demonstrated [1].

Gabriel Kivilohkare 10

2.3.1 Time to First Paint

The time to first paint is the time it takes for the browser to show the very first

pixels on the user’s screen after navigation. The first paint indicates that the

server has responded with an HTTP status code 200 and that the web page is

reachable and loading. The content could be e.g. a background color, and the

web page is not yet useful nor does it provide interesting content to the user at

this stage.

2.3.2 Time to First Contentful Paint

The time to first contentful paint is the time it takes for the browser to paint the

first elements from the domain object model. This is the first consumable content

that can bring value to the user. The content can be e.g. text, a canvas element,

or an image.

2.3.3 Time to First Meaningful Paint

The time to first meaningful paint is the time it takes for the browser to show

meaningful content that is useful for the user. This is a very critical metric as this

content is the most important part of the page. For example, in an e-commerce

product page, the first meaningful paint would include a picture and description of

the product, which is what the user came to look for. The definition of meaningful

content varies from site to site and there is no general specification that would

apply to all cases. At this stage, the browser cannot necessarily respond to user

interactions.

2.3.4 Time to Interactive

The time to interactive is the time it takes for the browser to render the web

page and become ready for user interaction. Asynchronous JavaScript may not

have loaded at this stage, but the JavaScript main thread is idle. All synchronous

Gabriel Kivilohkare 11

JavaScript has to be loaded, and often JavaScript is needed for user interaction

in modern websites. Therefore in some cases, not all JavaScript can be run

asynchronously.

2.4 Website Loading Time

Fiona Fui-Hoon Nah finds in her empirical study that a tolerable waiting time for

retrieving information is approximately two seconds [9]. She noted that after two

seconds, shifts in focus or interference with short-term memory occurred. This

is in line with research from the limits of short-term memory after two seconds

of waiting [10]. Also, as previously stated, most mobile users abandon a website

after three seconds of waiting. Therefore, a loading time of a maximum of two

seconds is a reasonable goal for any website.

The loading time of a website is affected by several factors. The main factors

include the website itself, the webserver that hosts the website, the network, and

the connection. These factors are presented in detail in the following subchapters.

2.4.1 Network Latency

Network latency has an impact on the loading time. The network latency is the

time it takes for the browser to receive a response to an HTTP request. In order

to show a website on a browser, at least one HTTP request is made by the browser

to receive the HTML from the host server. Each request is subject to latency and,

on average, a website that is loaded on mobile client causes 71 HTTP requests

[11].

Network latency is largely impacted by the physical distance between a user’s

device and the responding webservers. A content delivery network (CDN) reduces

network latency by storing content in multiple locations and serving users from

the closest locations. Additionally, the host server performance, including its

hardware, affects network latency.

Gabriel Kivilohkare 12

2.4.2 Connection

The internet connection of the device that loads a website plays a crucial role in

the loading time of a website. The global average mobile download speed is 30.46

Mbps and the global average fixed broadband download speed is 74.64 Mbps [12],

as demonstrated in the table below.

Table 2.1: Global averages per connection type [12]

Connection type Download speed Latency

Mobile 30.46 Mbps 42 ms

Fixed broadband 74.64 Mbps 24 ms

However, a problem that will likely persist is that the downloading speed and

latency will vary [13]. This is caused by, among other factors, network congestion

and traffic shaping.

As the average size of a website is 2 megabytes, which translates to 16 megabits,

the download speed is not a bottleneck in loading the average website. For larger

websites, however, optimizations need to be in place in order to reach a short

loading time on mobile devices. Mobile connections have higher latencies than

fixed broadband connections that cause further delays in the loading of a website.

2.4.3 The Data Size of the Website

The median data size of websites has increased steadily in the past years. The

larger a website is, the more bytes are downloaded, causing an increased loading

time. The average size of a website is 2 MB and the largest part is the images.

While the amount of JavaScript is constantly increasing, in an average website it

takes up 21.7% of the total size.

Gabriel Kivilohkare 13

Figure 2.5: Average size per content type [2].

In the picture above the distribution of the bytes per content type is visualized.

Other content types are mostly represented by videos and fonts.

Many optimization strategies for decreasing website loading time impact the size

of the website. As images account for 49.3% of the size of an average website, op-

timizing the delivery of images has the largest potential in decreasing the loading

time of a website.

2.4.4 Website Loading Order

The loading order of resources in a website has an impact on the loading time.

Resources that are fetched before the first pixels are painted on the screen increase

the loading time. Upon displaying a website, the webserver gives the HTML as

a response to the browser. The HTML typically contains links to scripts, style

sheets and images.

Optimization strategies that relate to the loading order of a website are presented

and tested in this thesis. These strategies separate the content of the resources

Gabriel Kivilohkare 14

into critical and non-critical content and download the respective contents in

different ways. The order of the website’s resources and way of downloading

them is explained further below.

2.4.4.1 Render and Parser Blocking Resources

As seen in Figure 2.2, CSS is render-blocking and JavaScript is parser-blocking.

When the browser encounters a style sheet, it requests the resource from the

server and the parser continues. Therefore, CSS is render-blocking but as the

parser continues, it is not parser-blocking. Once all CSS resources have been

loaded the browser can paint the result. The fetching of each resource causes a

round trip and therefore increases the loading time. CSS rules that are not part

of the above-the-fold content can be loaded at a later stage.

When the browser encounters a script tag, the parser has to wait until the resource

is fetched and executed before it can continue, making the JavaScript parser-

blocking. In addition to the round trip that the fetching of the resource causes,

the execution increases the loading time. The loading of JavaScript resources is

more challenging than loading CSS resources from a performance point of view.

2.4.4.2 Synchronous and Asynchronous Resources

Synchronous loading of resources for a web page means loading and executing

resources in the order they appear in the HTML. This might slow down the

loading of the web page, as the browser does not proceed with rendering the web

page before the resource is loaded and executed.

Asynchronous loading does not stop the rendering while loading the resource.

With asynchronous loading, multiple resources can be downloaded simultane-

ously. Loading resources asynchronously typically decreases the time to first

paint, but the resources are not available before they have been loaded. There-

fore, it is important to identify what resources can be loaded asynchronously.

Thus, in order to find out which resources shall be loaded asynchronously for de-

creased loading time and which resources shall be loaded synchronously for good

Gabriel Kivilohkare 15

user experience, these ways of loading will be examined in further detail in this

thesis.

2.4.5 Webserver

A webserver is, simply put, a software that can accept requests and returns replies

[14]. A webserver can contain one or several websites depending on its setup. A

webserver can be located on different types of hardware and can serve different

purposes. For example, a webserver can be located on a server computer in a data

center, on a laptop, or on a printer. Typically, websites are hosted on webservers

that are run from data centers.

A webserver can store and deliver websites and it uses HTTP communication in

order to show a website in a browser. It hosts typically static HTML, CSS, and

JavaScript files along with images. These resources are usually handled on the

client side in the browser. Depending on how the browser handles these resources,

they have an impact on the loading time of the website.

Most web servers support server-side scripting that enables code to be executed

on the webserver instead of the browser. Typically, advanced business logic and

retrieval of dynamic data are done on the server side. As an example, information

on whether a user is logged in to a web portal is ordinarily fetched through a

server-side script. Server-side scripts are processed by the processor and memory

of the webserver, while client-side scripts consume the resources av the user’s

device. Some server-side scripts, such as poorly written WordPress plugins, can

cause severe increases on the loading time of a website.

The most widely used webserver is the Apache HTTP server that serves 38.9% of

all websites [15]. Other popular webservers include Nginx and Cloudflare. The

Apache HTTP server is a free open-source webserver software that was launched

in 1995, while the second most popular webserver, Nginx, was launched in 2004.

Nginx and Apache HTTP server have different architectures and serve different

needs. When choosing a webserver it is important to understand the requirements

of the website. Nginx is suitable for high-traffic websites due to its event driven

Gabriel Kivilohkare 16

architecture, while Apache HTTP server gives the user more flexibility in terms

of modules.

The settings of a webserver can have an impact on the loading time. For example,

in the Apache HTTP server, it is possible to enable compression and caching

directly from the webserver settings. One of the most common optimization

strategies for decreased loading time of a website is gzip that is a method for

compressing resources. Gzip can be enabled directly in the Apache webserver

configurations and it is discussed in further detail in chapter 3.1.3.

2.4.6 Client

The client is a software that sends a request to the web server, commonly a web

browser. The browser uses the resources, such as the processor and memory, of

the computer, mobile phone, or other device it is used on. Client-side scripts are

run on the user’s device [16] and can, therefore, increase the loading time of a

website.

The loading time of a website can be impacted by the web browser that is used

for displaying the website. There are major differences in how older and newer

browsers handle scripts, style sheets, and images. Older browser, such as Firefox

3.0 and Internet Explorer 6, are not capable of downloading resources in parallel

[17]. Therefore, it is not possible to download resources asynchronously with these

browsers. Most modern browsers, on the other hand, are capable of downloading

resources in parallel. Performance related issues are thus often caused by old

browsers. As modern browsers are not a bottleneck in loading websites, they

are not further examined in this thesis. Modern browsers that can download

resources in parallel, include Google Chrome 74, Safari 10, Firefox 70, Internet

Explorer 11, and newer versions of these browsers.

Different browsers support different CSS properties. Consequently, websites might

appear different when using different browsers. For example, the CSS property

text-orientation, which sets the orientation of text in a line, is not supported by

Internet Explorer 11 while is is supported by Google Chrome 74 and Firefox 70.

Hence, cross-browser testing is an important part of designing a website.

Gabriel Kivilohkare 17

Chapter 3

Optimization Methods

The optimization methods discussed in this thesis are divided into two sections.

In the first section, general methods are introduced. The second section focuses

on methods for optimizing the critical rendering path. However, the methods

introduced in the first section will have an impact on the critical rendering path

as well.

3.1 General Website Performance

There are several ways to decrease the loading time of a website and improve

its performance. The following principles are general and apply to any website.

These principles also decrease the loading time of the above-the-fold content.

3.1.1 Reduction of Requests

As Michael Butkiewicz found in his study, the number of requests has more impact

on the loading time than the number of bytes transferred [18]. The browser sends

an HTTP request each time the parser encounters a request for a new element.

Each request requires a round trip to a server, causing increased loading time.

The number of requests can be minimized by combining resources. Style sheets

and scripts can be combined into one CSS file and one script file respectively.

Gabriel Kivilohkare 18

However, this does not guarantee reduced loading time. Depending on the website

structure, asynchronous loading of specific resources will decrease loading time

while increasing HTTP requests.

Another technique for decreasing the number of HTTP requests is using CSS

sprites [19]. One CSS sprite is a collection of multiple images in one file. The

images within the sprite are separated by using coordinates in the desired CSS

properties.

3.1.2 Minify Resources

By minifying resources, we make them smaller in size and therefore the page

request becomes smaller. In practice, minifying is the removal of unnecessary

characters in a file. For example, when minifying a CSS file, all line breaks,

comments and unnecessary blank characters are removed. An example of an

unminified CSS snippet is presented below.

.example {

padding: 5px 10px 10px 5px;

}

.second {

border-radius: 5px;

}

The same CSS snippet is significantly shorter when minimized, as shown in the

code snippet below.

.example{padding:5px 10px 10px 5px;}.second{border-radius:5px;}

The readability of the files suffers when minifying, and the minified versions are

not intended to be used in development. Similarly to minifying CSS, JavaScript

minification reduces script size without modifying any essential processes [20].

Gabriel Kivilohkare 19

3.1.3 Compressing Resources

When a user navigates to a website, a request is made to a server and the browser

receives resources. The smaller these resources are, the faster the website will

load. The resources can be made significantly smaller by compressing them.

For plain text files, such as script, HTML, and CSS -files, a method called gzip

compression is effective. Gzip replaces repetitive strings in files with pointers

that use less space, which reduces file size [21]. This procedure is fairly similar to

minification, however, the two methods complement each other. Hereafter, gzip

compresses the file to a zip file, which the browser unzips. The compression takes

place directly on the server and it can be activated with a few lines of code on

most common web servers.

3.1.4 Delivering Images

Optimally, images shall be no larger than they appear on the end user’s screen.

Scaling down large images results in downloading unnecessary bytes, which in

turn results in longer loading time. For optimal performance, images shall be

optimized for different resolutions. A background image for a mobile device might

be several times smaller than one for a large screen. High-quality images are larger

in size than lower quality images. Removing meta-data and compressing images

will decrease the size of the images.

3.1.5 Caching

The browser can store resources in its cache memory, providing a significant

decrease in loading time. This will not impact the first page visit, but future

visits and visits to other pages that share the same resources will have a decreased

loading time. Different types of resources can be cached, commonly pictures,

CSS, and HTML. The two common caching methods are called expires header

and cache-control. The expires header is an HTTP date after which the specified

resource is stale. The cache-control uses a maximum age for the specified resource,

Gabriel Kivilohkare 20

which can be set in seconds. Cache-control gives more control over a website’s

caching compared to expires header.

3.1.6 CSS Delivery

CSS resources can be delivered in two ways: as external resources or in-lined in

the HTML. The external resources can be loaded either asynchronously or syn-

chronously. As discussed in 2.1.4, CSS is render blocking as when the browser

encounters an external style sheet it requests the resource while the parser con-

tinues.

While the asynchronous loading of these resources decreases the loading time,

asynchronicity must be applied with caution. Consider loading all style sheets

asynchronously, where no style sheets would be loaded on the initial page render.

Therefore, in this scenario, the initial page render would be unstyled. Once the

asynchronous parallel task of loading the style sheets is finished, the style sheet

would be applied to the website. This event is called flash of unstyled content

(FOUC), which causes the illusion of longer loading time and a poorly designed

website.

When loading CSS, using @import calls, which imports style sheets into other

style sheets, will increase loading time [19]. The preferred method is using link

tags, as using @import will add one more roundtrip to the page load. Moreover,

inlining CSS to HTML elements is considered a bad practice, as it will cause

repetition, a larger file size, and it will be hard to maintain.

3.1.7 JavaScript Delivery

Similarly to CSS, JavaScript can be delivered as external resources or in-lined in

the HTML. The external JavaScript can be loaded either asynchronously or syn-

chronously. Synchronous loading of JavaScript, which is the default way of load-

ing resources, is parser blocking. When loading these resources asynchronously,

however, they will not block DOM construction and will continue downloading

in parallel.

Gabriel Kivilohkare 21

Similarly to asynchronous loading of style sheets, asynchronous loading of scripts

might cause issues. In modern web pages, the amount of JavaScript has been

rapidly growing during the last years. Optimizing JavaScript delivery has become

increasingly important. While loading all JavaScript asynchronously would make

the web page load faster, the functionality that the JavaScript provides would

not be usable before it has loaded completely.

Asynchronous loading of all resources is not the optimal solution for user experi-

ence, but neither is waiting for all resources to load. Therefore, loading only the

critical resources during page render and asynchronously loading the non-critical

resources would optimize both loading time and user experience.

JavaScript resources can be loaded synchronously, asynchronously with the async

tag, and asynchronously with the defer tag. Synchronous loading in the head

section of the HTML is the least effective way of loading, as the browser pauses

the parsing of the HTML while fetching and executing the script, as illustrated

in the picture below. Synchronous loading of scripts should only be applied to

critical resources. JavaScript can be loaded later in the HTML as well, often right

before the closing body tag, allowing the browser to render the web page before

the resource is loaded.

Figure 3.1: Synchronous loading of JavaScript.

Asynchronous loading of scripts using the async tag allows the browser to continue

parsing the HTML while fetching the resource. However, when the resource is

fetched, the parsing is paused while the script is executed.

Gabriel Kivilohkare 22

Figure 3.2: Asynchronous loading of JavaScript.

Using the defer tag, the browser continues parsing the HTML while loading the re-

source and executes the script once the browser has finished parsing. This method

is optimal for performance. However, the same performance can be achieved by

placing the script with an async tag at the end of the HTML.

Figure 3.3: Loading JavaScript with the defer attribute.

3.2 Above-the-fold Content Performance

By prioritizing the loading of the above-the-fold content, any website can show

the user critical content in minimal time. This is an important factor from a

business perspective, as it is a best practice to show the unique selling point in

the above-the-fold content. The principles discussed in section 3.1 apply also to

the above-the-fold loading time. However, to optimize the loading time of the

above-the-fold content, the following methods make a significant difference:

1. Minimize the number of critical resources

2. Minimize the length of the critical path

3. Minimize the number of critical bytes

Gabriel Kivilohkare 23

3.2.1 Minimize the Number of Critical Resources

Critical resources can be defined as those scripts and style sheets that are required

for interactivity and styling of the above-the-fold content. For fast delivery of the

above-the-fold content, the number of critical resources has to be minimized. The

fewer resources the browser needs to fetch, the less work is needed to show the

content.

3.2.2 Minimize the Critical Path Length

The critical path length is the number of round trips between the browser and

the host server. The number of round trips between servers for the above-the-fold

content should optimally be zero when all the critical scripts and style sheets are

in-lined in the head section of the HTML. However, it is not feasible to inline

all critical resources in every case. In these situations, it is recommended that

critical resources are downloaded as early as possible.

3.2.3 Minimize the Number of Critical Bytes

Critical bytes is the number of bytes in the critical rendering path. For a de-

creased loading time, each critical resource must be compressed and minified, as

discussed in the previous chapter. The number of critical bytes can be optimized

by including only the relevant style sheets and scripts for the above-the-fold con-

tent.

3.2.3.1 Critical CSS

The critical CSS is formed from the classes and id’s in the HTML elements of

the above-the-fold content. Parsing the style definitions based on these classes

and id’s from all style sheets ultimately creates the critical CSS. The critical

CSS can be removed from the style sheets as it is in-lined in the HTML. Once the

critical CSS is parsed from the original style sheets, the style sheets can be loaded

Gabriel Kivilohkare 24

asynchronously. The above-the-fold content is different on different devices, which

must be taken into account when parsing the critical CSS from the style sheets.

3.2.3.2 Critical JavaScript

The critical JavaScript is the JavaScript that the browser requires for initializing a

web page. This JavaScript handles basic user interactions and adjusts the layout.

Typically the critical portions of JavaScript in a website includes functionality

relating to navigation or a sign-up form. For more complex user interactions

and functionality, the rest of the JavaScript is loaded asynchronously or deferred.

Similarly to the critical CSS, the critical portions of the JavaScript need to be

identified based on what portions are most important for the user experience.

Gabriel Kivilohkare 25

Chapter 4

Experiments

4.1 Introduction

The experiments in this chapter will use an unoptimized test website for testing

the optimization strategies introduced in chapter 3. First, goals and the setup

of the experiments are presented followed by implementation of the optimization

strategies. Finally, results from the experiments are presented.

4.1.1 Optimization Strategies Tested

The following general optimization strategies will be tested in the experiments:

minimizing CSS, minimizing JavaScript, reducing the number of requests, com-

pressing resources and delivering images. Caching will not be tested as it does not

affect the loading time of the first page visit. All general optimization strategies

will be applied to the test website.

For decreasing above-the-fold content loading time, two strategies will be tested.

First, optimization of critical CSS delivery will be tested followed by testing of

critical JavaScript optimizations. Finally, all optimization strategies presented

above will be tested together for evaluating the compound effect of the strategies.

Gabriel Kivilohkare 26

4.2 Goal

The goal of the experiments is to test the above presented optimization strategies

separately and to evaluate how much these impact the website loading time.

The second goal of the experiments is to evaluate the amount of work needed to

implement each optimization strategy. This will be evaluated based on the effort

required to implement each optimization strategy on the test website. Based on

this it can be evaluated whether an optimization strategy is worth implementing.

The third goal is to discover how much impact all the optimization strategies

presented in this thesis have combined. As the test website is larger than the

average website, combining the optimization strategies will give valuable insights

into whether large websites can be loaded in less than two seconds, which is, as

discussed in chapter 2.4, the maximum tolerable waiting time.

4.3 Experiment Design

For accuracy, each optimization is tested five times. The results are recorded

and the average loading time is calculated based on these results. Minimum and

maximum loading times are recorded for reference.

Each general optimization method is tested separately on the unoptimized test

website. Hereafter, all general optimizations are applied together and tested.

As the general optimization methods support the above-the-fold content perfor-

mance, the above-the-fold optimization methods are applied on top of the general

optimization methods.

4.3.1 Experiment Environment

The test environment is designed to have minimal interference from factors that

might affect the loading time of the test website. Therefore, the test website is

hosted locally on an Apache webserver on a Macbook Pro, and the client device

Gabriel Kivilohkare 27

is an emulated mobile device. The connection is limited with simulated network

throttling, as explained below.

4.3.1.1 Webserver

The experiment webserver is located on a 15-inch Macbook Pro 2018, which has

a 2.5-GHz Intel Core i7 processor and 16 GB 2400 MHz DDR4 RAM-memory.

The webserver that hosts the test website is an Apache/2.4.39 (Unix) HTTP

server. The webserver has a 64-bit architecture. As each DNS lookup increases

the loading time, in order to minimize the number of DNS lookups, all external

resources are loaded from the same webserver.

4.3.1.2 Client

The client device is an emulated Nexus 5X mobile device which simulates the

typical hardware that a user might have. The emulated device has an Android

6.0.1 operating system and uses Chrome Lighthouse as browser. As discussed

in chapter 2.4.6, modern browsers are capable of handling multiple resources in

parallel, which is the case for Chrome Lighthouse.

4.3.1.3 Connection

To limit the downloading speed, network throttling is simulated to provide realis-

tic loading times. Google’s Lighthouse v3 is used for testing the loading times. To

increase the accuracy of the experiments and to provide realistic loading times,

the downloading bandwidth was limited by simulating network throttling. The

network was limited to a 1,638.4 Kbps throughput which equals a poor 4G con-

nection. The main benefit of simulating the network throttling is low variance

between test runs.

A simulated fixed latency of 150 ms is used, which means that each HTTP request

has the same fixed latency. As presented in chapter 2.4.2, the network latency and

connection might vary. Therefore, in order to minimize variance, the experiment

downloading speed is constant and the latency is fixed.

Gabriel Kivilohkare 28

4.3.2 Experiment Website

For these experiments, an test website was created. This test website has no

optimizations in place and it was designed to have a high loading time. The

website is significantly larger than an average website.

4.3.2.1 Design

The test website is a simple website with 714 words of text and five images. It

starts with a banner section with a large image, text, and a button. This is

followed by several rows and columns of text, images, buttons, and links. At the

bottom of the page there is a footer section with links.

The design of the website is responsive and it scales to every device. The above-

the-fold content is different for different devices, as demonstrated in the picture

below.

Figure 4.1: Test website on different devices.

The unoptimized test website consists of the following resources:

Gabriel Kivilohkare 29

• One HTML file (size: 14 KB)

• Seven JavaScript files (total size: 8 MB)

• Six CSS files (total size: 7,8 MB)

• Five images (total size: 5,6 MB)

4.3.2.2 Loading of Resources

On the test website, all external resources are loaded synchronously in the head

section. All of the style sheets are loaded and all of the JavaScript files are fetched

and executed before the browser parses the body of the HTML. The banner image

is loaded in-lined in the HTML body, making it unavailable in the first contentful

paint, as illustrated in the picture above. As all the external resources are loaded

before the first contentful paint, the time from first contentful paint to interactive

is short.

4.3.2.3 HTML

The HTML file is unminified and uncompressed and it contains 347 lines of code.

The head section contains all the scripts and style sheets and the body section

contains all the visible content of the website. All external resources are located

on the same server and within the same folder as the HTML file. This makes the

retrieval of these files consistent with minimal dependencies.

4.3.2.4 JavaScript

The JavaScript files are loaded synchronously as external files in the head sec-

tion of the HTML. Each JavaScript file creates one HTTP request. These files

are loaded without any HTML attributes. The test website does not contain

any JavaScript in-lined in the HTML. The only user interaction that requires

JavaScript is the mobile navigation bar that opens up when clicking the logo, as

demonstrated in the picture below.

Gabriel Kivilohkare 30

Figure 4.2: Mobile navigation bar.

The rest of the JavaScript is not used on the website and is created for demon-

strating the effects of optimizing JavaScript delivery. Unused JavaScript causes

a longer loading time if fetched and executed without optimizations. Therefore,

unused JavaScript is a real problem in modern websites.

4.3.2.5 CSS

All style sheets are loaded as external resources in the head area of the HTML

file after the JavaScript files, as demonstrated in the code snippet below.

<head>

<title>Homepage</title>

<!-- JavaScript -->

<script src="jquery.min.js"></script>

<script src="javascript.js"></script>

<script src="javascript2.js"></script>

<script src="javascript3.js"></script>

<script src="javascript4.js"></script>

<script src="javascript5.js"></script>

Gabriel Kivilohkare 31

<script src="script.js"></script>

<!-- CSS -->

<link rel="stylesheet" type="text/css" href="stylesheet.css">

<link rel="stylesheet" type="text/css" href="stylesheet2.css">

<link rel="stylesheet" type="text/css" href="stylesheet3.css">

<link rel="stylesheet" type="text/css" href="stylesheet4.css">

<link rel="stylesheet" type="text/css" href="stylesheet5.css">

<link rel="stylesheet" type="text/css" href="styles.css">

</head>

The HTML of the test website contains one inlined CSS element, which is the

banner image. The rest of the CSS is loaded as external files.

4.3.2.6 Images

The banner image is loaded as part of the above-the-fold content. It is 6000

pixels in width and 400 pixels in height and is loaded as such on every device

without scaling to a device-specific size. Additionally, the test website contains

four identical pictures that are 363 KB each. These pictures include meta-data

and are downsized in the CSS. This means that the pictures are downloaded in

their original sizes and made smaller in the code, causing unnecessary bytes to

be downloaded. Depending on the device, one of these pictures is part of the

above-the-fold content.

4.3.3 Loading Stages

The test website has a notably high loading time with 80.1 seconds until the first

pixel is painted on the screen, as illustrated in the picture below.

Gabriel Kivilohkare 32

Figure 4.3: Loading stages of the unoptimized sample website.

The high loading time makes the website unusable in practice and most users

would likely abondon the site before it would have loaded. The time from the

first contentful paint to interactive is short due to the fact that most resources

are loaded synchronously before the first paint.

4.3.4 Limitations

The test website contains only static client-side content. It does not contain any

server-side code such as dynamic PHP content. No strategies for optimizing code

are implemented. Therefore, the execution time of the JavaScript code is not

examined. All the tests are run on a mobile device simulating a relatively poor

connection with a 1,638.4 Kbps throughput.

Gabriel Kivilohkare 33

4.4 Implementation

4.4.1 General Methods

The general optimization methods are implemented separately to the unoptimized

test website. The practical implementation for each general optimization strat-

egy is presented below. Finally, all general optimization strategies are applied

together on the unoptimized test website.

4.4.1.1 Minimizing CSS

All CSS resources were minified using an online tool called CSS Minifier [22]. The

tool removes all unnecessary characters, such as comments and unnecessary white

spaces, from the CSS files. Each CSS file was minified separately. The total size

of the CSS files was reduced from 7.8 MB to 6.4 MB.

4.4.1.2 Minimizing JavaScript

All JavaScript resources were minified using a open-source tool called Minify [23].

The tool minified the JavaScript files by removing all unecessary characters and

shortening patterns. Each JavaScript file was minified separately. The total size

of the JavaScript files was reduced from 8 MB to 3.1 MB resulting in a significant

decrease in bytes to be downloaded.

4.4.1.3 Reducing the Number of Requests

All external CSS files were merged into one CSS file. Similarly, all external

JavaScript files were merged into one JavaScript file. When merging the resources,

the order of the content was kept unchanged. The number of requests was reduced

from 13 requests to two requests. Each request causes one round-trip, which

increases the loading time. One CSS file and one JavaScript file is optimal in this

case.

Gabriel Kivilohkare 34

4.4.1.4 Delivering Images

As discussed in chapter 2.4.3, the median website consists to 49.3% of images.

Therefore, there is potential to decrease the amount of bytes the browser needs

to download. First, in order to apply this strategy, the images were scaled down

to their optimal size. The optimal size is based on what device and resolution the

page is loaded on. In this experiment, we optimize the images for a mobile device,

more specifically an emulated Nexus 5X. Hereafter, the image is compressed using

TinyPNG. TinyPNG reduces the file size by decreasing the number of colors in

the images and removing meta-data. The difference between the original image

and the compressed image is barely visible.

The sample website has five images. The main background image is loaded as

in-lined CSS in the HTML, while the other smaller images are loaded directly in

the HTML. All images cause one HTTP request.

4.4.1.5 Compressing Resources

In these experiments, gzip is used to compress resources. The following resources

are compressed: CSS files, HTML files, and JavaScript files. Gzip allows output

from the local server to be compressed before being sent to the client over the

network. The implementation of gzip on an Apache webserver is fast and easy.

It requires enabling the mod deflate module in the Apache configuration. Also,

compressible file types need to be added to the Apache configuration file. Once

the changes are made, the Apache webserver requires a restart.

4.4.1.6 All General Optimizations Combined

After applying all the above-mentioned general optimization methods to the test

website, the size of the website has decreased from 21.4 MB to 9.0 MB. The

number of requests decreased from 19 to 8. The optimizations work well together

and there were no issues in combining them. The CSS and JavaScript resources

were minified before they were merged.

Gabriel Kivilohkare 35

4.4.2 Critical Rendering Path Specific Optimizations

To optimize the loading time of the above-the-fold content, the number of critical

resources shall be minimized, the length of the critical path shall be minimized,

and the number of critical bytes shall be minimized. To do this, we need to deliver

CSS and JavaScript resources optimally.

4.4.2.1 Critical CSS

As presented in chapter 2.4.4.1, loading CSS blocks the rendering of the website.

Therefore it is important to identify what parts of the CSS are needed to style

the above-the-fold content and loading the rest of the CSS after the page render.

The critical CSS is extracted from all the CSS files and the HTML file using

Critical Path CSS Generator [24]. The external CSS was merged into one file and

minified in the general optimization strategies. The critical CSS is extracted and

inserted to the head section of the HTML. The rest of the CSS is placed in an

external CSS file which is loaded at the end of the HTML file, right before the

closing body tag. This allows the browser to render the page before loading the

rest of the CSS. Before the optimization, the stylesheet was loaded in the head,

as shown in the code snippet below.

<html>

<head>

<title>Title</title>

<script src="script.js"></script>

<link rel="stylesheet" type="text/css" href="styles.css">

</head>

<body>

<p>Hello world!</p>

</body>

</html>

The optimized delivery of the CSS is shown in the code snippet below. The

critical portions of the CSS can be removed from the external CSS file.

Gabriel Kivilohkare 36

<html>

<head>

<title>Title</title>

<script src="script.js"></script>

<style>/*CRITICAL CSS CONTENT*/ </style>

</head>

<body>

<p>Hello world!</p>

<link rel="stylesheet" type="text/css" href="styles.css">

</body>

</html>

4.4.2.2 Critical JavaScript

Finding the critical JavaScript is more challenging than finding the critical CSS.

For optimal performance, the critical parts of the JavaScript shall be identified

and in-lined in the head section of the HTML. Usually, the critical JavaScript

includes modules for interactivity in the above-the-fold content, such as function-

ality for navigation.

In this case, the critical JavaScript is identified manually and inserted in the

head section of the HTML. The rest of the JavaScript is loaded using the defer

attribute, which, as explained in chapter 3.1.7, means that the external JavaScript

is fetched asynchronously and executed once HTML parsing is done. The code

snippet below demonstrates the HTML after in-lining the critical JavaScript and

deferring the non-critical JavaScript.

<html>

<head>

<title>Title</title>

<script>/*CRITICAL JAVASCRIPT CONTENT*/ </script>

<link rel="stylesheet" type="text/css" href="styles.css">

<script src="/script.js" defer></script>

</head>

Gabriel Kivilohkare 37

<body>

<p>Hello world!</p>

</body>

</html>

4.5 Experiments

4.5.1 Unoptimized Website

The unoptimized test website creates 19 requests and has a total size of 21.4 MB.

None of the optimizations presented in this thesis is applied to the website. The

table below displays the loading times of the unoptimized website.

Table 4.1: Loading times for the unoptimized test website

Loading Times - Unoptimized Website

Loading Stage Average Minimum Maximum

First Contentful Paint 80.1 s 80.0 s 80.2 s

First Meaningful Paint 80.2 s 80.2 s 80.1 s

Time to Interactive 80.4 s 80.4 s 80.4 s

The time to contentful paint is 80.1 seconds which is very high. This is mostly

because all external resources are fetched and executed before the browser starts

the rendering of the visible content.

4.5.2 General Optimization Strategies

4.5.2.1 Minimizing CSS

After minimizing the CSS, the website size of the website decreased from 21.4 MB

to 20.1 MB. The amount of requests remains the same as for the unoptimized

website. The table below displays the loading times after minimizing the CSS.

Gabriel Kivilohkare 38

Table 4.2: Loading times after minifying the CSS of the test website

Loading Times - CSS Minimized

Loading Stage Average Minimum Maximum

First Contentful Paint 73.3 s 73.3 s 73.3 s

First Meaningful Paint 73.4 s 73.4 s 73.4 s

Time to Interactive 73.7 s 73.6 s 73.8 s

As the browser has fewer bytes to download, the loading time of the website is

decreased. The differences between loading stages are insignificant as the exter-

nal JavaScript and CSS resources are render blocking and these are loaded and

executed before the first pixel is painted on the screen.

4.5.2.2 Minimizing JavaScript

After minimizing the JavaScript, the size of the website is decreased by 4.9 MB.

The size of the external JavaScript was reduced by 61%. The table below displays

the loading times after minimizing the JavaScript.

Table 4.3: Loading times after minifying the JavaScript of the test website

Loading Times - JavaScript Minimized

Loading Stage Average Minimum Maximum

First Contentful Paint 54.3 s 54.3 s 54.3 s

First Meaningful Paint 54.4 s 54.4 s 54.4 s

Time to Interactive 54.7 s 54.5 s 54.8 s

Unsurprisingly, the loading time of the website decreased significantly due to

fewer bytes to be downloaded.

4.5.2.3 Reducing the Number of Requests

After combining the external files into one CSS file and one JavaScript file, the

number of requests was decreased from 19 to 8. The size of the website remained

Gabriel Kivilohkare 39

the same. The table below displays the loading times after reducing the number

of requests.

Table 4.4: Loading times after reducing the number of requests on the test
website

Loading Times - Reduced Number of Requests

Loading Stage Average Minimum Maximum

First Contentful Paint 78.1 s 78.1 s 78.2 s

First Meaningful Paint 78.1 s 78.1 s 78.2 s

Time to Interactive 78.5 s 78.4 s 78.6 s

Reducing the number of requests resulted in minor decreases in loading time for

all the loading stages.

4.5.2.4 Delivering Images

After optimizing the images, the size of the website decreased from 21.4 MB to

15.3 MB. The total size of the images decreased from 5.6 MB to 199 KB. The

table below displays the loading times after optimizing the images.

Table 4.5: Loading times after optimizing images on the test website

Loading Times - Image Optimization

Loading Stage Average Minimum Maximum

First Contentful Paint 80.0 s 80.0 s 80.1 s

First Meaningful Paint 80.0 s 80.0 s 80.1 s

Time to Interactive 80.2 s 80.1 s 80.3 s

The decrease in the loading time is very insignificant despite the decrease in the

size of the website. This is due to the fact that the images are downloaded in

the body of the HTML. The browser still needs to fetch and execute the external

resources in the head section of the HTML before it can render the body.

Gabriel Kivilohkare 40

4.5.2.5 Compressing Resources

After compressing HTML, JavaScript, and CSS the number of requests is un-

changed. The browser fetches the compressed resources and unzips them. The

size of the compressed website is 7.6 MB while the size of the unzipped website is

21.4 MB. The table below displays the loading times after compressing resources.

Table 4.6: Loading times after compressing resources on the test website

Loading Times - Compressed Resources

Loading Stage Average Minimum Maximum

First Contentful Paint 14.6 s 14.5 s 14.7 s

First Meaningful Paint 14.7 s 14.6 s 14.8 s

Time to Interactive 14.7 s 14.7 s 14.7 s

The decreases in loading times for all the loading stages are very significant. The

differences between the loading stages are small as the browser performs most

actions before the first pixel is painted on the screen.

4.5.2.6 General Strategies Combined

After applying all the general optimization methods, the website creates eight

requests and has a size of 9.0 MB. The table below displays the loading times

after applying all of the optimization methods.

Table 4.7: Loading times after applying all the general optimization methods
on the test website

Loading Times - All General Optimizations

Loading Stage Average Minimum Maximum

First Contentful Paint 8.7 s 8.6 s 8.7 s

First Meaningful Paint 8.7 s 8.6 s 8.7 s

Time to Interactive 9.4 s 9.4 s 9.4 s

Applying all the general optimization methods results in a remarkable decrease

in loading time for all the loading stages. Despite the decrease in loading time,

Gabriel Kivilohkare 41

8.7 seconds time to first paint is not a good result, and most users would abandon

the website before it would be loaded.

4.5.3 Critical Rendering Path Optimization Strategies

The above-the-fold optimizations are applied to a version of the test website where

all the general optimizations are in place. The general optimization strategies

decrease the loading time of the above-the-fold content and partly overlap with

the critical rendering path optimization strategies.

4.5.3.1 Critical CSS

After inlining the critical CSS to the head section and moving the external CSS

to the closing body tag the size of the website grew from 9.0 MB to 9.1 MB since

the critical CSS was moved to the head section, while the external CSS file was

unmodified. This translates to 0.1 MB of critical CSS. The table below displays

the loading times after optimizing critical CSS delivery.

Table 4.8: Loading times after applying critical CSS optimizations on the
test website

Loading Times - Critical CSS

Loading Stage Average Minimum Maximum

First Contentful Paint 4.8 s 4.8 s 4.8 s

First Meaningful Paint 6.8 s 6.8 s 6.8 s

Time to Interactive 9.4 s 9.3 s 9.5 s

The time to first contentful paint is significantly shorter after applying this

method. The rendering time of the head section of the HTML is shorter be-

cause there are no external CSS resources. The JavaScript resources block the

parsing, resulting in a relatively high loading time.

Gabriel Kivilohkare 42

4.5.3.2 Critical JavaScript

After in-lining the critical JavaScript to the head section and loading the external

JavaScript with the defer attribute, the size of the website remains at 9.0 MB

and the number of requests at eight. The table below displays the loading times

after optimizing critical JavaScript delivery.

Table 4.9: Loading times after applying critical JavaScript optimizations on
the test website

Loading Times - Critical JavaScript

Loading Stage Average Minimum Maximum

First Contentful Paint 5.0 s 5.0 s 5.0 s

First Meaningful Paint 5.0 s 5.0 s 5.0 s

Time to Interactive 9.6 s 9.5 s 9.6 s

Applying the critical JavaScript optimization strategy decreases the website load-

ing time. The time to interactive is slightly longer after applying this strategy, as

the browser has more JavaScript to fetch and execute. The website is interactive

after 5.0 seconds as all critical JavaScript interactions are loaded before this. The

time to interactive measurement indicates when the asynchronous JavaScript is

fetched and executed, which is not needed for critical interactions on the test

website.

4.5.3.3 All Optimization Methods Combined

After applying all the optimization methods discussed in this chapter, the website

is 9.1 MB in size and creates eight requests. The table below displays the loading

times for the optimized website.

Gabriel Kivilohkare 43

Table 4.10: Loading times after applying all optimizations on the test website

Loading Times - All Optimization Methods Combined

Loading Stage Average Minimum Maximum

First Contentful Paint 0.6 s 0.6 s 0.6 s

First Meaningful Paint 0.6 s 0.6 s 0.6 s

Time to Interactive 9.7 s 9.6 s 9.8 s

The time to first contentful paint and the time to first meaningful paint are both

drastically shorter than on the unoptimized website. The time to interactive is

comparably high due to the fact that the amount of asynchronous JavaScript is

high.

4.6 Results

4.6.1 General Optimization Methods

By applying all the general optimization strategies introduced in this thesis, the

test website’s loading time decreased significantly. The first contentful paint was

reduced from 80.1 seconds to 8.7 seconds. The table below compares the loading

times for all the general optimization methods tested and discussed above.

Gabriel Kivilohkare 44

Table 4.11: Comparisons of loading times for the general optimization meth-
ods

General Optimization Comparison

Strategy First Contentful

Paint

First Meaningful

Paint

Time to Interac-

tive

Before Optimizations 80.1 s 80.2 s 80.4 s

Minimizing CSS 73.3 s 73.4 s 73.7 s

Minimizing JS 54.3 s 54.4 s 54.7 s

Delivering Images 80.0 s 80.0 s 80.2 s

Compressing Re-

sources

14.6 s 14.7 s 14.7 s

Reducing Requests 78.1 s 78.1 s 78.5 s

Combined 8.7 s 8.7 s 9.4 s

Optimizing image delivery caused an insignificant reduction in loading time, while

all the other strategies caused a significant decrease in loading time. Compressing

resources was the most effective general optimization strategy for the test website.

Minimizing JavaScript decreased the loading time more than minimizing CSS

because it reduced the size of the website by 4.9 MB while minimizing CSS

reduced the size only by 1.3 MB.

Reducing requests caused a two-second decrease in time to first paint. This is

fairly low because the resources are on the same server. Fetching resources from

other external servers would have likely increased the loading time.

4.6.2 Above-the-fold Optimization Methods

When optimizing the above-the-fold content performance, we see a large difference

in loading time between the different loading stages, as demonstrated in the table

below.

Gabriel Kivilohkare 45

Table 4.12: Comparisons of loading times for the above-the-fold optimization
methods

Above-the-fold Optimizations

Strategy First Contentful

Paint

First Meaningful

Paint

Time to Interac-

tive

Before Optimizations 8.7 s 8.7 s 9.4 s

Critical JS 5.0 s 5.0 s 9.6 s

Critical CSS 4.8 s 6.8 s 9.4 s

Combined 0.6 s 0.6 s 9.7 s

Optimizing critical CSS delivery decreased the loading time slightly more than

optimizing JavaScript delivery. The amount of critical JavaScript is significantly

lower than the amount of critical CSS. Combined, however, the compound effect

is impressive.

4.6.3 Optimized Website

By applying all the optimization methods described above to the sample website,

the first contentful paint loading time of the sample website is decreased from

80.2 seconds to 0.6 seconds. However, the time to interactive measurement had

a worse result after applying the above-the-fold content optimization strategies.

This is due to the increased size of the website. The picture below illustrates the

different loading stages after applying all the optimization strategies presented

above on the sample website.

Gabriel Kivilohkare 46

Figure 4.4: Loading stages of the optimized sample website.

As we can see from the above picture, the website appears ready to use in 0.6

seconds despite the asynchronous resources being handled in the background. All

the interactions of the website, including the mobile navigation bar, are ready

after 0.6 seconds as these were part of the critical JavaScript.

Gabriel Kivilohkare 47

Chapter 5

Discussion

5.1 General Optimization Methods

5.1.1 Compressing Resources

Compressing resources was the most effective strategy for the experiment website,

causing a 65.5 second decrease in loading time. Because this strategy was very

fast and easy to implement on an Apache web server, it is highly recommended

to use this strategy. Compressing resources has no negative side effects and is

used by more than 80% of all websites [25].

5.1.2 Minimizing JavaScript

Minimizing JavaScript caused a 25.8 second decrease in first contentful paint

loading time on the experiment website. Applying this strategy is easy and fast

using widely available tools. As this strategy caused a 61% reduction in the size

of the JavaScript code, applying it is recommended for any website.

Minimizing JavaScript makes the scripts hard to read and edit. It is advisable

to combine and minify these resources automatically when creating a production

Gabriel Kivilohkare 48

build. Therefore, the potential side effect of decreased readability can be elimi-

nated. Also, when combining the JavaScript files it is necessary to keep the code

in correct order. Otherwise, there are no side effects to this optimization strategy.

5.1.3 Minimizing CSS

Minimizing CSS caused a 6.8 second decrease in first contentful paint loading time

on the experiment website. Applying this strategy is easy and fast using widely

available tools. Even though applying this strategy did not yield significant time

savings, it is advisable to apply this to any website as it reduces the size of the

website and is easy to apply.

Similarly to JavaScript, minimized CSS is hard to read and edit, and it is rec-

ommended that also CSS files are minified and combined automatically as part

of creating a production build of the website. Otherwise, this strategy has no

negative side effects.

5.1.4 Reducing the Number of Requests

Reducing the number of requests caused a two second decrease in time to first

contentful paint on the experiment website. This is rather insignificant, but

the reduction in loading time could be significant if the external files would have

been on different servers and would have had higher latencies. On the experiment

website, the external resources were all on the same server. If they would have

been on a different server, the loading time would have been affected by the

location and connection to the server. Therefore, having a minimal number of

resources and hosting them on the same server is recommended.

This strategy was easy to apply. When combining resources it is important to

keep the execution order of the code similar to the original loading order. No

negative side effects were identified.

Gabriel Kivilohkare 49

5.1.5 Delivering Images

Optimizing the delivery of the images caused a 0.1 second decrease in loading

time on the experiment website. This is a surprisingly poor result considering

that the total size of the website was reduced from 21.4 MB to 15.3 MB.

However, the background image loads faster and gives the impression of a fast

render, despite the insignificant decrease in loading time. Also, after the opti-

mization, the image fits the mobile screen well. These matters are demonstrated

in the pictures below.

Figure 5.1: Unoptimized image delivery.

Figure 5.2: Optimized image delivery.

Applying this strategy requires insignificant effort and has a positive effect on

the user experience. Even though applying this strategy yielded an insignificant

decrease in loading time on the experiment website, it is recommended to apply

this to any website due to improved user experience.

The delivery of images can be further optimized. After applying this strategy,

the images caused six HTTP requests. This can be decreased by combining the

Gabriel Kivilohkare 50

images into one image and using CSS sprites for displaying the images. There

are no negative side effects of optimizing image delivery.

5.1.6 Combining General Optimization Strategies

The combination of all the general optimization strategies caused a 71.4 second

decrease in the time to first paint on the experiment website, which resulted in 8.7

seconds in time to first paint. The size of the website decreased to 9.0 MB, which

is significantly larger than the average website of 2 MB. The decrease in loading

time is significant and improves the usability of the website radically. However,

a loading time of 8.7 seconds is not sufficient for good user experience.

In order to provide a good user experience on the experiment website with the ex-

periment setup, above-the-fold content optimization strategies need to be applied.

This applies also to websites that have large external style sheets and scripts.

As presented in chapter 2.4, a two-second loading time of a website is a reasonable

goal. Considering that the bandwidth throughput was 1,638.4 Kbps and the

latency was 150 ms on the experiment website, in order to achieve a time to first

paint of less than two seconds, the total size of resources that load before the

first pixel is painted on the screen can be at maximum 3,031.04 kilobits, which

translates to 378,88 kilobytes. This calculation does not take into account any

other factors such as DNS lookups, rendering, painting, or the execution time

of the critical JavaScript. This means that the actual number of critical bytes

should be less than 378,88 kilobytes on the experiment website in order to reach

a time to first paint in less than two seconds.

Combining the strategies required that each strategy had to be implemented

separately. All of these strategies work well together and no negative side effects

were identified.

Gabriel Kivilohkare 51

5.2 Critical Rendering Path

5.2.1 Critical CSS

Optimizing the delivery of CSS decreased the time to first paint by 3.9 seconds.

The time to first meaningful paint decreased by 1.9 seconds and the time to

interactive was unchanged.

As the critical CSS was extracted from the CSS file and in-lined in the HTML,

the critical portion of the CSS was loaded twice. Hence, the size of the website

was larger and the time to interactive measurement gives a worse result.

Applying this strategy manually requires significant effort for unoptimized web-

sites. However, there are tools available for extracting the critical CSS that makes

this strategy easy to apply. Applying this strategy is highly recommended for any

website.

Nevertheless, applying this strategy could cause some CSS to be loaded twice,

as in the experiments in this thesis. However, this can be avoided by identifying

and erasing the critical CSS from the CSS file.

5.2.2 Critical JavaScript

Optimizing the delivery of JavaScript resulted in a significant decrease in loading

time. This was expected, as the size of the critical JavaScript was 20 lines of

code, which is a very small amount. The external JavaScript was loaded with the

defer attribute, meaning it was fetched in parallel with the parsing of the HTML

and executed after the HTML was parsed. Therefore, only the critical JavaScript

was loaded when the first pixel was painted on the screen.

Applying this strategy requires a significant amount of work when done manually.

Extracting the JavaScript is a more complex task than extracting the CSS, but

there are tools available for this purpose.

Gabriel Kivilohkare 52

This strategy is worth implementing especially for websites with large amounts of

JavaScript. A negative side effect of this strategy is that some user interactions

may not be available before the JavaScript has loaded.

5.3 Combining All Optimization Strategies

Once all the optimization strategies were implemented on the experiment website,

the first meaningful paint loading time decreased from 80.2 seconds to 0.6 seconds.

Even though the time to interactive loading did not decrease after applying the

above-the-fold content optimization strategies, the result is phenomenal.

The time to first contentful paint and the time to first meaningful paint are impor-

tant metrics for user experience. Both metrics are 0.6 seconds for the optimized

experiment website. From a user’s perspective, the experiment website looks

ready to use after 0.6 seconds of loading although the browser is still working in

the background.

The time to interactive is 9.7 seconds for the optimized experiment website, which

is quite high. However, the critical JavaScript, which is loaded after 0.6 seconds,

contains the functionalities that allow the user to perform the critical interactions.

In this case, the only critical interaction for a user is the navigation bar that

uses JavaScript. Therefore, the experiment website is usable after 0.6 seconds of

loading.

The experiments were simulated with a poor 4G connection, an average web-

server, and an average client device. However, the loading time of the optimized

experiment would have been much faster with a better connection. The connec-

tion played a more crucial role in the experiments, as the webserver and user

device did not cause bottlenecks for the loading of the website.

The average size of a mobile website is 1.9 MB [11], while the size of the exper-

iment website was 9.1 MB after applying all the optimization strategies. There-

fore, an average website may have an even lower loading time after applying these

strategies, depending on the number of critical bytes the average website has.

Gabriel Kivilohkare 53

5.4 Further Optimizations

The loading time of the experiment website was reduced to a satisfactory level.

However, some optimizations could be added for further reduction in loading time.

Identifying and removing all unused JavaScript and CSS would have made the

experiment website smaller in size, causing fewer bytes to be downloaded. This

would have decreased the time to interactive loading time.

Implementing a cache solution would decrease the loading time for returning

visitors. Nevertheless, this would not affect the loading time for users visiting the

website for the first time.

This thesis did not take into account code optimizations and how they affect

the loading time of a website. Optimizing client-side and server-side code could

potentially decrease the loading time, depending on how the website is built. The

experiment website did not use any server-side code.

Gabriel Kivilohkare 54

Chapter 6

Conclusion

In this master’s thesis, seven strategies for decreasing the website loading time

were tested. These strategies were divided into two groups, general optimization

strategies and critical rendering path specific optimization strategies. The general

optimization strategies focus on the overall decrease in loading time, while the

critical rendering path specific strategies focus on delivering the above-the-fold

content as fast as possible.

The different strategies were tested using the metrics first contentful paint, first

meaningful paint, and time to interactive. These metrics provide an accurate

understanding of the loading process of websites.

The following general optimization strategies for decreasing website loading time

were tested: minimizing CSS, minimizing JavaScript, reducing the number of

requests, compressing resources, and delivering images.

All of the general optimization strategies tested in this thesis reduced the loading

time of the experiment website. Compressing resources had the greatest impact

on the loading time of the strategies tested. Finally, all these strategies were

implemented to the experiment website together. This resulted in a significant

reduction in loading time.

The following critical rendering path specific optimization strategies for decreas-

ing the loading time of the above-the-fold content were tested: critical CSS and

critical JavaScript

Gabriel Kivilohkare 55

The combination of the critical rendering path specific optimization strategies

resulted in a very significant reduction in loading time. The amount of work

required to implement these strategies was moderate on the test website but the

implementation can potentially be automated. The conclusion is that even a

large website can load the above-the-fold content remarkably fast and provide

an excellent user experience with the optimization strategies introduced in this

thesis.

Gabriel Kivilohkare 56

Bibliography

[1] Google LLC. Online. Accessed May 2018. No longer available.

URL https://developers.google.com/web/updates/2017/06/

user-centric-performance-metrics/.

[2] HTTP Archive. Page weight. Online. Accessed April 2020. URL https:

//httparchive.org/reports/page-weight?view=grid.

[3] Google LLC. Find out how you stack up to new industry

benchmarks for mobile page speed. Online. Accessed April

2020 . URL https://think.storage.googleapis.com/docs/

mobile-page-speed-new-industry-benchmarks.pdf.

[4] Pratiksha H. Shroff and Seema R. Chaudhary. Critical rendering path op-

timizations to reduce the web page loading time. 2017 2nd International

Conference for Convergence in Technology (I2CT), 2017.

[5] M. Jalalzai, W. Shahid, M. Iqbal. Dns security challenges and best practices

to deploy secure dns with digital signatures. Applied Sciences and Technology

(IBCAST) 2015 12th International Bhurban Conference on, pp. 280-285,

2015.

[6] Martin L. Abbott and Michael T. Fisher. Scalability Rules: 50 Principles for

Scaling Web Sites, 2nd Edition, Addison-Wesley Professional, August 2011.

[7] Ilya Grigorik. Online. Accessed April 2020. URL https:

//developers.google.com/web/fundamentals/performance/

critical-rendering-path/constructing-the-object-model.

https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics/
https://developers.google.com/web/updates/2017/06/user-centric-performance-metrics/
https://httparchive.org/reports/page-weight?view=grid
https://httparchive.org/reports/page-weight?view=grid
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model

Gabriel Kivilohkare 57

[8] Ilya Grigorik. Online. Accessed April 2020. URL https:

//developers.google.com/web/fundamentals/performance/

critical-rendering-path/render-tree-constructionl.

[9] Fiona Fui-Hoon Nah. A study on tolerable waiting time: how long are web

users willing to wait? 9th Americas Conference on Information Systems,

AMCIS 2003, Tampa, FL, USA, on, August 4-6, 2003.

[10] Robert B. Miller. Response time in man-computer conversational transac-

tions. AFIPS Conference Proceedings, 1968,33 (Pt. 1), 267–277, 1968.

[11] HTTP Archive. State of the web. Online. Accessed April 2020. URL https:

//httparchive.org/reports/state-of-the-web#pctHttps.

[12] Ookla LLC. Speedtest global index. Online. Accessed April 2020. URL

https://www.speedtest.net/global-index.

[13] Marshini Chetty, David Haslem, Andrew Baird, Ugochi Ofoha, Bethany

Sumner and Rebecca E. Grinter. Why is my internet slow?: Making network

speeds visible. International Conference on Human Factors in Computing

Systems, CHI 2011, Vancouver, BC, Canada, on, May 7-12, 2011.

[14] Patrick Killelea. Web Performance Tuning, 2nd Edition, O’Reilly Media

Inc., March 2002.

[15] W3 Techs. Usage statistics of web servers. Online. Accessed April 2020.

URL https://w3techs.com/technologies/overview/web_server.

[16] Rick Lehtinen, G. T. Gangemi. Computer Security Basics, O’Reilly Media,

June 2006.

[17] Steve Souders. Browser script loading roundup. Online. Accessed

April 2020. URL https://www.stevesouders.com/blog/2010/02/07/

browser-script-loading-roundup/.

[18] Vyas Sekar Butkiewicz Michael, V. Madhyastha Harsha. Characterizing web

page complexity and its impact. IEEE/Acm Transactions On Networking,

vol. 22, no. 3, June 2014.

https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-constructionl
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-constructionl
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-constructionl
https://httparchive.org/reports/state-of-the-web#pctHttps
https://httparchive.org/reports/state-of-the-web#pctHttps
https://www.speedtest.net/global-index
https://w3techs.com/technologies/overview/web_server
https://www.stevesouders.com/blog/2010/02/07/browser-script-loading-roundup/
https://www.stevesouders.com/blog/2010/02/07/browser-script-loading-roundup/

Gabriel Kivilohkare 58

[19] Steve Souders. High Performance Web Sites - Essential Knowledge for Fron-

tend Engineers, O’Reilly Media, December 2008.

[20] Yasutaka Sakamoto, Shinsuke Matsumoto, Seiki Tokunaga, Sachio

Saiki, Masahide Nakamura. Empirical study on effects of script minification

and http compression for traffic reduction. 2015 Third International Con-

ference on Digital Information, Networking, and Wireless Communications

(DINWC), 2015.

[21] Chris Coyier. Online. Accessed April 2020. URL https://css-tricks.com/

the-difference-between-minification-and-gzipping/.

[22] Andrew Chilton. Online. Accessed April 2020. URL https://cssminifier.

com/.

[23] Matthias Mullie. Online. Accessed April 2020. URL https://github.com/

matthiasmullie/minify.

[24] Jonas Ohlsson Aden. Online. Accessed April 2020. URL https://

jonassebastianohlsson.com/criticalpathcssgenerator/.

[25] W3 Techs. Usage statistics of gzip compression for websites. Online. Ac-

cessed April 2020. URL https://w3techs.com/technologies/details/

ce-gzipcompression/all/all.

https://css-tricks.com/the-difference-between-minification-and-gzipping/
https://css-tricks.com/the-difference-between-minification-and-gzipping/
https://cssminifier.com/
https://cssminifier.com/
https://github.com/matthiasmullie/minify
https://github.com/matthiasmullie/minify
https://jonassebastianohlsson.com/criticalpathcssgenerator/
https://jonassebastianohlsson.com/criticalpathcssgenerator/
https://w3techs.com/technologies/details/ce-gzipcompression/all/all
https://w3techs.com/technologies/details/ce-gzipcompression/all/all

Gabriel Kivilohkare 59

Swedish Summary

Introduktion

Snabb nedladdning av webbsidor är viktigt av flera orsaker. Nedladdningsti-

den p̊averkar hur slutanvändaren upplever webbsidan samt hur hen beter sig

p̊a webbsidan. Eftersom webbsidors roll är betydlig för allt flera företag, har

webbsidors nedladdningstid direkt p̊averkan p̊a affärsverksamheten. Dessutom

blir dagens webbsidor mer komplexa samtidigt som användarna kräver kortare

nedladdningstider. I denna avhandling fokuseras p̊a hur nedladdningstiden av

webbsidors kritiska inneh̊all kan minimeras. Kritiska inneh̊allet är det inneh̊all

som användaren ser när hen öppnar webbsidan innan skrollning.

Bakgrund

När en användare navigerar till en webbsida skickar webbläsaren en HTTP-,

HTTPS- eller HTTP2-begäran till servern där webbsidan ligger. Webbläsaren f̊ar

ett svar i HTML varifr̊an den bygger ett träd för domänobjektsmodellen (DOM)

samt ett träd för en stilmallsobjektmodell (CSSOM). DOM representerar webb-

sidans inneh̊all och CSSOM representerar webbsidans stil. Webbläsaren kom-

binerar DOM och CSSOM till ett renderingsträd som inneh̊aller endast de syn-

liga noderna fr̊an DOM:et och motsvarande stil fr̊an CSSOM [7]. Därefter räknar

webbläsaren storleken och positionen för varje nod i renderingsträdet. Slutligen

målar webbläsaren resultatet p̊a skärmen och webbsidan har laddats.

Gabriel Kivilohkare 60

Kort nedladdningstid för det kritiska inneh̊allet ger ett intryck av en omedelbar

nedladdning fastän webbsidan skulle fortsätta ladda resurser i bakgrunden. Op-

timering av det kritiska inneh̊allet är speciellt viktigt för stora webbsidor och

nedladdning av webbsidor med d̊alig anslutning. Det finns flera olika sätt att

mäta nedladdningstiden av webbsidor. I denna avhandling delas nedladdningsti-

den i fyra delar. Första delen är tiden fr̊an att webbläsaren skickar en HTTP-

begäran tills användaren ser första pixeln p̊a skärmen. Denna tid kallas tid till

första m̊alning (time to first paint). Den följande är tid till första inneh̊allsrika

målning (time to first contentful paint), när användaren ser n̊agot betydelsefullt

p̊a skärmen, s̊asom text eller en bild. Den tredje är tid till första meningsfulla

målning (time to first meaningful paint), där användaren ser n̊agot betydelsefullt

s̊asom en produktbeskrivning och produktbild i en webbutik. Den sista mätaren

kallas tid till interaktivitet (time to interactive), där webbsidan är användbar.

Flera faktorer p̊averkar nedladdningstiden av en webbsida. Nätverkslatens är

tiden som det tar för webbläsaren att f̊a HTTP-respons fr̊an webbservern. Varje

förfr̊agan dröjs av nätverkslatens. Distansen mellan klienten och servern är den

största orsaken till nätverkslatens. Klientens nätverksanslutning p̊averkar ocks̊a

nedladdningstiden. Genomsnittliga nätverksanslutningar orsakar ingen flaskhals

för laddandet av webbsidor av medelstorlek. Medelstorleken för en webbsida är

2 MB [2] medan genomsnittliga mobila nätverksanslutningen har hastigheten 30

Mbps [12]. HTML-filen som webbservern skickar som HTTP-respons för att visa

en webbsida p̊a browsern, inneh̊aller ofta externa Javascript- och CSS-filer. Ord-

ningen som dessa filer laddas i och p̊a vilket sätt dessa laddas p̊averkar ned-

laddningstiden. Externa filer kan laddas synkroniskt och asynkroniskt. Det

synkroniska laddandet är l̊angsammare än det asynkroniska eftersom koden hämtas

och körs innan browsern kan fortsätta parsningen. D̊a externa resurser lad-

das asynkroniskt, hämtas de parallellt med parsningen. Dock är inte resursen

användbar förrän den har laddats fullständigt. Webbservern där webbsidan lig-

ger spelar ocks̊a stor roll i nedladdningshastigheten. Apache HTTP-server är den

mest allmänna webbservern som används p̊a 38,9 % av alla webbsidor [15]. I

webbserverns konfigureringsfiler kan man ändra p̊a flera inställningar som gör att

en webbsidas nedladdningstid blir kortare.

Gabriel Kivilohkare 61

Optimeringsmetoder

I denna avhandling delas optimeringsmetoderna i tv̊a delar. Första delen är

allmänna optimeringsmetoder och andra delen fokusera p̊a optimeringsmetoder

för det kritiska inneh̊allet.

Varje HTTP-förfr̊agan som skickas fr̊an webbsidan ökar p̊a nedladdningstiden.

Minskandet av antalet HTTP-förfr̊agningar genom att kombinera resurser är en

effektiv allmän optimeringsmetod. Följande optimeringsmetod är minimering

av dessa resurser, där alla onödiga tecken tas bort ur resursen. För att göra

resurserna ännu mindre kan de komprimeras med en metod som kallas gzip, vilket

minskar signifikant p̊a filstorleken. Följande metod är optimerandet av bilder,

där bildstorleken optimeras för den skärm där webbsidan visas. Femte allmänna

optimeringsmetod är caching. Resurser kan sparas i webbläsarens cacheminne,

vilket minskar p̊a laddningstiden d̊a webbsidan besöks följande g̊ang. De tv̊a sista

allmänna optimeringsmetoder som behandlas i denna avhandling är CSS-leverans

och Javascript-leverans. B̊ade CSS och Javascript kan levereras som externa

filer eller direkt i HTML-koden. Asynkroniskt laddande av dessa filer minskar

ofta p̊a nedladdningstiden, men kan orsaka problem i och med att resurserna är

oanvändbara innan de har laddats ner.

De allmänna optimeringsmetoderna minskar ocks̊a p̊a nedladdningstiden av det

kritiska inneh̊allet. Följande optimeringsmetoder fokuserar enbart p̊a minskan-

det av nedladdningstiden av det kritiska inneh̊allet. Den första är minimering av

antalet kritiska resurser. Endast de resurser som det kritiska inneh̊allet kräver för

interaktivitet och stil ska nedladdas. Ju färre resurser webbläsaren behöver ladda,

desto kortare blir nedladdningstiden. Den andra optimeringsmetoden för det kri-

tiska inneh̊allet är minimering av antalet kritiska HTTP-förfr̊agningar. Optimalt

ska detta antal vara noll, d̊a all kritisk Javascript och CSS är i HTML-koden.

Den sista optimeringsmetoden för det kritiska inneh̊allet är tudelad, optimering av

kritiskt CSS och optimering av kritiskt Javascript. Det kritiska CSS:et identifieras

fr̊an CSS-filerna och tillsätts till HTML:et. Därefter laddas externa CSS-filer

asynkroniskt. P̊a samma sätt identifieras de kritiska delarna av Javascript-filerna

och resten av Javascript-koden laddas direkt i HTML:et.

Gabriel Kivilohkare 62

Experiment

Följande allmänna optimeringsmetoder testas p̊a en icke-optimerad experimen-

twebbsida: minimering av CSS, minimering av Javascript, minskandet av antalet

HTTP-förfr̊agningar, komprimering med gzip och optimering av bilder. Alla dessa

metoder testas enskilt p̊a experimentwebbsidan varefter de testas tillsammans.

Optimeringsmetoderna för det kritiska inneh̊allet, det vill säga optimering av

kritiskt Javascript och optimering av kritiskt CSS, testas p̊a en version av experi-

mentwebbsidan som har alla ovannämnda allmänna optimeringar. Slutligen testas

optimeringsmetoderna tillsammans för en sammansatt effekt. Experimenten körs

fem g̊anger p̊a experimentwebbsidan.

Experimenten har följande mål: evaluera hurdan p̊averkan varje optimeringsme-

tod har p̊a nedladdningstiden, evaluera hur mycket arbete implementeringen av

varje optimeringsmetod kräver och evaluera hurdan p̊averkan alla optimeringsme-

toder har tillsammans p̊a nedladdningstiden.

Experimenten körs p̊a en Apache/2.4.39 webbserver som ligger p̊a en Macbook

Pro 2018. Google Lighthouse används för att köra testerna med simulerad nätverksstryp-

ning som motsvarar en d̊alig mobil 4G-förbindelse. En icke-optimerad experimen-

twebbsida skapades för dessa experiment. Webbsidan saknar alla optimeringar

och har en väldigt l̊ang nedladdningstid p̊a över 80 sekunder. Webbsidan best̊ar

av en HTML-fil, sju stora Javascript-filer, sex stora CSS-filer och fem bilder.

Den totala storleken p̊a webbsidan är 21,4 MB vilket motsvarar en relativt stor

webbsida, d̊a medelstorleken p̊a en webbsida är endast 2 MB.

Resultat

Alla allmänna optimeringsmetoder minskade p̊a nedladdningstiden. Metoden

komprimering av resurser gav bästa resultat av dessa optimeringsmetoder.

Gabriel Kivilohkare 63

Table 6.1: Jämförelse av olika optimeringsmetoders inverkan p̊a ned-
laddningstiden

Allmänna optimeringsmetoder

Strategi FCP FMP TTI

Före optimeringar 80,1 s 80,2 s 80,4 s

Minimering av CSS 73,3 s 73,4 s 73,7 s

Minimering av JS 54,3 s 54,4 s 54,7 s

Optimering av bilder 80,0 s 80,0 s 80,2 s

Komprimering av resurser 14,6 s 14,7 s 14,7 s

Minimering av antalet förfr̊agan 78,1 s 78,1 s 78,5 s

Sammansatt 8,7 s 8,7 s 9,4 s

Den sammansatta effekten av alla de ovannämnda optimeringsmetoderna är väldigt

bra. Nedladdningstiden minskade fr̊an 80,1 sekunder till 8,7 sekunder. Storleken

p̊a webbsidan minskade fr̊an 21,4 MB till 9,1 MB och antalet HTTP-förfr̊agningar

minskade fr̊an 20 till 8.

Optimeringsmetoderna för det kritiska inneh̊allet implementerades ovanp̊a de

ovannämnda allmänna optimeringsmetoderna. Resultaten visas i tabellen nedan.

Table 6.2: Jämförelse av optimeringsmetoder för det kritiska inneh̊allet

Optimeringsmetoder för det kritiska inneh̊allet

Strategi FCP FMP TTI

Före optimeringar 8,7 s 8,7 s 9,4 s

Kritisk JS 5,0 s 5,0 s 9,6 s

Kritisk CSS 4,8 s 6,8 s 9,4 s

Sammansatt 0,6 s 0,6 s 9,7 s

B̊ada optimeringsmetoderna för det kritiska inneh̊allet gav goda resultat. Den

sammansatta effekten av optimeringsmetoderna var väldigt bra, d̊a nedladdningsti-

den minskade till 0,6 sekunder.

Gabriel Kivilohkare 64

Diskussion

Komprimering av resurser orsakade största minskningen av nedladdningstiden av

experimentwebbsidan. Nedladdningstiden minskade med 65,5 sekunder. Imple-

menteringen av denna metod var väldig enkel och gjordes i Apache-webbserverns

konfigurationsfil. Metoden saknar negativa sidoeffekter och den används av över

75% av alla världens webbsidor.

Minimering av Javascript orsakade att storleken av Javascript-filerna minskade

med 61%. Nedladdningstiden minskade med 25,8 sekunder vilket är betydligt.

Att implementera denna metod är lätt med allmänt tillgängliga verktyg. Min-

imering gör koden i praktiken oläslig och därför rekommenderas det att minimer-

ing automatiseras och utförs först när produkten är klar för leverans.

Minimering av CSS förkortade nedladdningstiden med 6,8 sekunder. Imple-

menteringen av denna metod var enkel med allmänt tillgängliga verktyg. Eftersom

denna metod minskar p̊a filstorleken och p̊a nedladdningstiden, är implementering

av metoden att rekommendera. Metoden saknar negativa sidoeffekter.

Minimering av antalet förfr̊agningar förkortade nedladdningstiden med endast

tv̊a sekunder. De externa resurserna laddades ned fr̊an samma webbserver vilket

gjorde metoden mindre effektiv. Ifall resurserna hade laddats fr̊an en annan server

skulle nätverkslatensen ha varit större och s̊aledes skulle optimeringsmetoden ha

minskat nedladdningstiden mer. Metoden är lätt att implementera och har inga

negativa sidoeffekter.

Optimering av bilder förminskade storleken av webbsidan fr̊an 21,4 MB till 15,4

MB. Trots detta blev nedladdningstiden bara 0,1 sekunder kortare. Bilderna

laddades efter att de externa resurserna hade hämtats och exekverats. Imple-

menterandet av metoden förbättrade p̊a användarupplevelsen i och med att hela

banner-bilden laddades vid första meningsfulla målningen. Eftersom metoden

förbättrar användarupplevelsen är det att rekommendera att implementera denna

metod. Metoden har inga negativa sidoeffekter.

Optimering av kritiskt CSS förkortade p̊a nedladdningstiden fr̊an 8,7 sekunder

till 4,8 sekunder. D̊a metoden implementeras manuellt krävs det mycket arbete

Gabriel Kivilohkare 65

men det finns verktyg för implementeringen. Ifall de kritiska CSS-reglerna inte

raderas fr̊an de externa CSS-filerna laddas kritiska CSS:et tv̊a g̊anger. Metoden

saknar andra nackdelar.

Optimering av kritiskt Javascript förkortade nedladdningstiden till 5,0 sekunder.

Som vid optimering av kritiskt CSS, kräver implementeringen av denna metod

mycket manuellt arbete ifall ett verktyg inte används.

Genom att kombinera optimeringsmetoderna minskade nedladdningstiden fr̊an

80,1 sekunder till 0,6 sekunder. Tiden till interaktivitet blev 9,7 sekunder vilket

är en relativt l̊angt tid. Trots detta var webbsidan användbar efter 0,6 sekunder.

Slutsats

I denna avhandling behandlades sju olika metoder för optimering av nedladdningsti-

den p̊a webbsidor. Dessa metoder delades i tv̊a delar: allmänna optimeringsme-

toder och optimeringsmetoder för det kritiska inneh̊allet. Alla de allmänna op-

timeringsmetoderna implementerades enskilt p̊a en experimentwebbsida. Opti-

meringsmetoderna för det kritiska inneh̊allet implementerades p̊a en version av

experimentwebbsidan där de allmänna optimeringsmetoderna var implementer-

ade.

Slutligen implementerades alla optimeringsmetoder för en optimerad webbsida.

Resultatet var en väldigt signifikant förkortning av nedladdningstiden. Den slut-

sats som kan dras av dessa experiment är att det kritiska inneh̊allet även p̊a stora

webbsidor kan laddas p̊a en kort tid för god användbarhet.

	1 Introduction
	1.1 Purpose
	1.2 Thesis Structure

	2 Background
	2.1 Loading a Website
	2.1.1 Construction of the DOM
	2.1.2 Construction of the CSSOM
	2.1.3 Render Tree, Layout, and Paint

	2.2 Above-the-fold Content
	2.3 Stages of Loaded Sites
	2.3.1 Time to First Paint
	2.3.2 Time to First Contentful Paint
	2.3.3 Time to First Meaningful Paint
	2.3.4 Time to Interactive

	2.4 Website Loading Time
	2.4.1 Network Latency
	2.4.2 Connection
	2.4.3 The Data Size of the Website
	2.4.4 Website Loading Order
	2.4.4.1 Render and Parser Blocking Resources
	2.4.4.2 Synchronous and Asynchronous Resources

	2.4.5 Webserver
	2.4.6 Client

	3 Optimization Methods
	3.1 General Website Performance
	3.1.1 Reduction of Requests
	3.1.2 Minify Resources
	3.1.3 Compressing Resources
	3.1.4 Delivering Images
	3.1.5 Caching
	3.1.6 CSS Delivery
	3.1.7 JavaScript Delivery

	3.2 Above-the-fold Content Performance
	3.2.1 Minimize the Number of Critical Resources
	3.2.2 Minimize the Critical Path Length
	3.2.3 Minimize the Number of Critical Bytes
	3.2.3.1 Critical CSS
	3.2.3.2 Critical JavaScript

	4 Experiments
	4.1 Introduction
	4.1.1 Optimization Strategies Tested

	4.2 Goal
	4.3 Experiment Design
	4.3.1 Experiment Environment
	4.3.1.1 Webserver
	4.3.1.2 Client
	4.3.1.3 Connection

	4.3.2 Experiment Website
	4.3.2.1 Design
	4.3.2.2 Loading of Resources
	4.3.2.3 HTML
	4.3.2.4 JavaScript
	4.3.2.5 CSS
	4.3.2.6 Images

	4.3.3 Loading Stages
	4.3.4 Limitations

	4.4 Implementation
	4.4.1 General Methods
	4.4.1.1 Minimizing CSS
	4.4.1.2 Minimizing JavaScript
	4.4.1.3 Reducing the Number of Requests
	4.4.1.4 Delivering Images
	4.4.1.5 Compressing Resources
	4.4.1.6 All General Optimizations Combined

	4.4.2 Critical Rendering Path Specific Optimizations
	4.4.2.1 Critical CSS
	4.4.2.2 Critical JavaScript

	4.5 Experiments
	4.5.1 Unoptimized Website
	4.5.2 General Optimization Strategies
	4.5.2.1 Minimizing CSS
	4.5.2.2 Minimizing JavaScript
	4.5.2.3 Reducing the Number of Requests
	4.5.2.4 Delivering Images
	4.5.2.5 Compressing Resources
	4.5.2.6 General Strategies Combined

	4.5.3 Critical Rendering Path Optimization Strategies
	4.5.3.1 Critical CSS
	4.5.3.2 Critical JavaScript
	4.5.3.3 All Optimization Methods Combined

	4.6 Results
	4.6.1 General Optimization Methods
	4.6.2 Above-the-fold Optimization Methods
	4.6.3 Optimized Website

	5 Discussion
	5.1 General Optimization Methods
	5.1.1 Compressing Resources
	5.1.2 Minimizing JavaScript
	5.1.3 Minimizing CSS
	5.1.4 Reducing the Number of Requests
	5.1.5 Delivering Images
	5.1.6 Combining General Optimization Strategies

	5.2 Critical Rendering Path
	5.2.1 Critical CSS
	5.2.2 Critical JavaScript

	5.3 Combining All Optimization Strategies
	5.4 Further Optimizations

	6 Conclusion
	Swedish Summary

