
Personal annotation of sounds
using subjective tags

Andreas Näsman

Master’s thesis in computer engineering
Supervisor: Professor Johan Lilius
Faculty of Science and Engineering

Information Technologies
Åbo Akademi University

April 30, 2020

Andreas Näsman i

Abstract

Sound designers use extensive sound libraries together with associated metadata
management tools in their everyday life. However, there exists no standard
telling how to organize or how to label the audio files. The maintainers of the
libraries annotate the sounds with descriptive labels that specify the source of
the audio, the materials used, or some other physical property about the samples.
As this process is both an error-prone and a time-consuming task, research
has taken place, producing automatic sound identification and categorization
methods. An area far less covered is the consideration and application of
subjectivity in these systems.

This thesis explores a theoretical and practical solution of subjective audio
tagging in the form of a developed program, focusing on the individual. The
proposed system demonstrates an application capable of finding similar groups
of sound according to a specific user’s perception and automatic tagging of
these sounds. Continuous improvement applies to the system with the help of
unsupervised machine learning run recursively. Publicly available audio packs
simulate segregation of sound according to different persons, which help test
and evaluate the proposed solution with various example use cases.

Keywords: audio identification, audio classification, machine learning, meta-
data management, sound design, sound effects, tagging ontology, tagging recom-
mendation

Andreas Näsman ii

Acknowledgment

Firstly, I would like to thank Professor Johan Lilius for functioning as my
supervisor during the writing process and for suggesting the topic in the first
place. Secondly, I thank Adjunct Professor Marina Waldén for helping me with
administrative tasks and supplying deadlines for the project. Also, for providing
reference material and general help when the completion of this thesis seemed
far away. I would also like to thank Åbo Akademi University for providing
accommodation and maintaining an excellent environment for studying and
writing. Without those, I could not have found the focus to finish this project.
Lastly, I give a warm thank you and a hug to my girlfriend, Melissa, for always
being there and giving me emotional support ♥.

Andreas Näsman iii

Contents

List of Abbreviations v

List of Figures vi

List of Listings vii

List of Tables viii

1 Introduction 1
1.1 Motive . 1
1.2 Thesis outline . 2

2 Background 3
2.1 Problem description . 3
2.2 Related work . 4

3 Methods 6
3.1 Audio analysis . 6
3.2 Sound similarity estimation . 8
3.3 Machine learning . 10

4 Implementation 13
4.1 System architecture . 13
4.2 Overview . 14
4.3 Adding sounds . 15

4.3.1 Freesound samples . 16
4.3.2 Deleting sounds . 17

4.4 Sound similarity . 17
4.4.1 Mean shift . 18
4.4.2 K-means . 18
4.4.3 Usage . 19

4.5 Tagging . 19

Andreas Näsman iv

4.5.1 Verification . 20
4.6 Automatic tagging . 20

4.6.1 Tag renaming . 21
4.6.2 Modifying groups . 21

4.7 Additional sounds . 25

5 Evaluation 26
5.1 Subjectivity . 26
5.2 Measurement . 27
5.3 Case 1 – Rudimentary . 28
5.4 Case 2 – Divergence . 30
5.5 Case 3 – Scope . 32
5.6 Case 4 – Scalability . 34

6 Discussion 37

7 Conclusion 39
7.1 Further work . 40

Svensk sammanfattning 42

Bibliography 48

Appendix 53

Andreas Näsman v

List of Abbreviations

AI Artificial Intelligence

GUI Graphical User Interface

IoSR Institute Of Sound Recording

JSON JavaScript Object Notation

ML Machine Learning
MTG Music Technology Group

SFX Sound Effect

UI User Interface

Andreas Näsman vi

List of Figures

3.1 Audio graph of an example sound. 8
3.2 Example case were two users have categorized sounds differently. 9

4.1 UI of the application. 14
4.2 Tagging a sound. 19

5.1 Case 1 test data initially loaded into the application. 28
5.2 Case 1 test data finalized. 29
5.3 Case 2 test data loaded and initially tagged. 30
5.4 Case 2 finalized in one of several different ways. 31
5.5 Pack from Case 1 loaded separately into the application. 32
5.6 A single sound plus its modified clone loaded into the application. 32
5.7 An illustration of the Droste effect in the application. 33
5.8 Case 4 test data initially loaded into the application. 36
5.9 Case 4 finalized in one of several different ways. 36

7.1 Bild på det utvecklade programmet i användning. 44

Andreas Näsman vii

List of Listings

4.1 Function for processing (nested) sounds in a directory. 16
4.2 Function for processing Freesound samples. 17
4.3 Function for finding initial clusters. 18
4.4 Function for finding groups of sound. 19
4.5 Logic for initalizing and renaming a tag. 21
4.6 Logic for modifying groups. 22
4.7 Functions for adding and modifying groups. 23
4.8 Function for singularizing the number of tags per group. 24
4.9 Function for tagging incomplete sounds. 24

Andreas Näsman viii

List of Tables

3.1 Predicted timbral values for the same example sound. 8

5.1 Case 1 timbral characteristics max and min ranges 29
5.2 Case 2 timbral characteristics max and min ranges 31
5.3 Case 4 timbral characteristics max and min ranges 35

Andreas Näsman 1

1 Introduction

Sound plays a more vital role than ever in today’s media-influenced world.
Sound effects (SFX), jingles, and other snippets of sound bring out a devised
experience among listeners, either separately or together in forms of larger uni-
ties. Different applications may require distinct approaches and specializations
to achieve the desired sound landscape, but the methods used for developing
the needed sounds are mostly the same.

Sound design is the practice of bringing sounds to life intended for a specific
production [5, p. 1]. Many sound designers choose to utilize sound libraries
with predefined samples to speed up the work process. Since the size of the
sound libraries can be quite massive, various management tools are available to
improve the accessibility of the libraries, making it easier to organize and find
wanted sounds. However, both the libraries themselves and the accompanying
tools have flaws and drawbacks in the way they are structured and how they
function.

1.1 Motive

The purpose of this thesis is to suggest an improvement to the current manage-
ment tools for sound libraries. A shared shortcoming in all of the tools is the
lack of adaptability to different users’ understanding and judgment regarding
sound perception. The proposed solution is a flexible and self-improving system
empowering personal organization of sounds using subjective tags. To explain
the approach more clearly, the author of the thesis has implemented a prototype
application of the system that demonstrates a practical approach with minimal
manual tagging effort needed from the user. The program establishes a frame
of similar sounds according to a user’s perception and eases the tagging process
with automatic labeling. The solution forms around the hypothesis that the
comprehension of sound differs enough among people that a system like this is
feasible [19, p. 2]. Existing categorization systems and management tools can
hopefully adopt the program and embellish it, therefore improving the craft for
sound designers making use of them.

Andreas Näsman 2

1.2 Thesis outline

This thesis consists of three introductory chapters, including the current one.
The present chapter provides a brief background on the chosen subject, defines
the purpose of the thesis, and maps out the overall structure of the paper.
Chapter 2 extends on the background of the topic, describes relevant problems,
and reviews related work. Chapter 3 provides detailed information on the
methods applied to achieve the proposed solution.

Chapter 4 and chapter 5 explain the implemented application and how it
performs in different scenarios. The former illustrates the design of the program
and demonstrates the underlying code, and the latter specifies the evaluation
process and measures the system using four example use cases.

Lastly, two chapters wrap up the thesis in the form of a discussion about
the project in chapter 6 and a concluding summary, plus analysis on future
work, in chapter 7.

Andreas Näsman 3

2 Background

In the first part of this chapter, the content provides more background on
the topic and exhibits the current state of the subject. The second section
briefly presents associated literature and how it relates to the proposition in
this thesis.

2.1 Problem description

The art of sound design involves planning, creating, and acquiring sounds
destined for media productions or other purposes [5, p. 1]. Skillfully imple-
mented audio integrates so tightly with other content forms, such as video and
animation, that it often goes unnoticed [7, p. 1]. Sound is nevertheless a vital
part of audiovisual production – movies, games, television programs, and the
like – where up to 75 % of the SFX are part of the post-production stage [11,
p. 1].

In general terms, there are two ways of obtaining samples of sound. The
first approach is to reconstruct audio using objects that imitate the wanted
sound. The props used in this routine, called foley, can be anything able to
mimic the sonic properties of the desired sample [29, p. 1]. A sound designer
can also generate sounds electronically for specific purposes, where programs
can assist in the creation process [28]. These composition methods can be quite
tedious and expensive since the sound producer needs time and resources when
creating audio from scratch.

The second approach has the sound designer using sound libraries containing
various predefined example sounds. These SFX libraries can contain thousands
of sounds, often with variations of a particular sound through changes in
intensity, material, duration, or similar. By mixing the sounds, the designer is
also able to blend tracks to create new samples in endless combinations. This
possibility can be particularly useful to, e.g., increase the dramatic effect of a
sound. [7, p. 1] [5, p. 1]

Using sound libraries is not problem-free; it has challenges and complications.
One of the predominant issues is the lack of a standardized taxonomy and

Andreas Näsman 4

universally agreed on vocabulary. Constructing and cataloging the libraries is
also tiresome and error-prone [5, p. 1]. These disadvantages make it challenging
to develop navigation systems for managing the sounds, which the sound
designers need due to the sheer size of the data handled. Sound designers
are also more interested in the sonic properties of a sound than the physical
properties. Still, most of the categorization systems organize the sounds into
geographical or physical categories. [29, p. 1]

A common aspect neglected in the sound libraries themselves and the
supplementing tools is the absence of support for private annotation and
subjective queries. Humans often describe sound with personal and biased
words, which hints at the notion of a system adjustable for every individual being
beneficial [7, p. 8]. However, implementing subjective tags is a problematic task.
Subjectivity, by its nature, varies among people, making it impossible to create
collective terms acceptable by everyone. On the contrary, if a system focused
on each individual and adapted to the current operator and circumstances, it
could produce better results. This inquest is the centerpiece of this thesis and
what the author tries to solve with the proposed system.

2.2 Related work

The author has found no prior immediately similar or comparable work related to
the proposed solution outlined in section 1.1 and further discussed in this thesis.
Personal sound classification using subjective tags seems to be uncommon,
as most previous studies focus on the mass and commonality while trying to
establish universal audio categorization systems. Nonetheless, some related
topics that the suggested system resembles have inspired extensive research
and produced prominent content to a large extent.

Studies have concluded in the area of automatic sound identification and
annotation of audio in great detail. These researches cover both fully automatic
procedures by the computer alone, and semi-automatic methods were both
humans and machines operate in conjunction. [47] shows a fully automatic
approach to extract perceptual labels with reliable accuracy, and the more recent
study in [29] describes a taxonomy based solely on the sonic properties of audio
using feature selection, unsupervised learning, and hierarchical clustering. The
results in [16] and [15] prove that human input, together with the appropriate
algorithms, can be of great use to develop high-quality systems. Freesound and
Google have launched large scale projects where everyone can help to develop
automatic sound recognition by manually listening to and tagging sounds, thus
generating correctly labeled training data for machines to utilize [33, 58].

Andreas Näsman 5

Query methods in sound retrieval used for sound libraries are often text-
based solutions formed on an ontology. The procedure for finding relevant
sounds often searches for verbal descriptions associated with the sounds, e.g.,
the system developed in [13]. The textual verbs are usually definitions of sound
itself, the sounding situation, or the sound impression [61]. These solutions
inherit the imprecision and ambiguity problems of natural languages. This
issue means that things like polysemy – where a single word can refer to
multiple things – and synonymy pollute the systems [5, p. 2]. To remedy these
problems, presented solutions like [5], [14], and [6] adapt semantic networks,
say WordNet [57], to create relationships and connections between words, and
eliminate language-specific uncertainties. Newer studies examine the possibility
of including concepts such as domain-specific class definitions and relations [11],
as well as knowledge elicitation and sound design ontology engineering as
alternatives or extensions to the traditional text-based retrieval systems [7].

Typical for all of these systems is that they try to improve identification,
annotation, and categorization of sounds, often in the context of sound libraries.
People making use of sound libraries, e.g., sound designers, can take advantage
of and benefit from the advancements. These goals also hold for the proposed
system treated in this thesis, although the approach taken to achieve the
intention varies slightly.

Andreas Näsman 6

3 Methods

This chapter explains the methods needed for accomplishing the motives de-
scribed in section 1.1. Establishing a sound analysis strategy, finding similar
sounds, and predicting user categorization are some of the necessary compo-
nents for the proposed system. Each section clarifies the choice of a particular
procedure over comparable ones. As the author has no prior knowledge of the
subject, the decision process progressed mostly through research and planning,
with a great deal of trial and error involved.

3.1 Audio analysis

One objective required for the suggested system described in section 1.1 is
the possibility to handle digital audio files in a programming environment. In
order to interpret sounds programmatically, some form of conversion needs to
take place, processing sound files to data applicable for a computer. There
are different strategies for generating metadata from sounds, but the approach
favored in this thesis is an interpretation with timbral characteristics.

Generally, timbre is a word describing perceptual attributes of a sound,
excluding pitch and loudness, spatial and musicological descriptors, as well
as higher-level cognitive properties [35, p. 7]. In more general terms, timbre
is what enables humans – and probably other species – to distinguish one
sounding object from another, even though the pitch, loudness, and duration
remain constant. For example, if a violin and a piano play the same note
at equal volume for a fixed period, it is still possible to differentiate the two
instruments by their sound quality alone.

Many published methods are available that represent the timbre of a sound
in different data-oriented ways, often in the form of an object containing
metadata. The model used in [22] illustrates a way of analyzing sounds using
analog equipment. As most work transpires digitally today, this process has
advanced accordingly; [14] describes a computerized assembled counterpart.
Numerous tools and libraries built on these concepts are available for analyzing
and describing sounds. For instance, [25] presents a tool containing functions

Andreas Näsman 7

dedicated to the extraction of musical features from audio files, and [60]
exhibits a web-based tool that performs spectral and roughness analysis on
user-submitted sound files. A notable instance of an open-source library is
Essentia [34, 4] developed by Music Technology Group (MTG), competent in
audio analysis and audio-based music information retrieval to a high degree.
Another popular library is LibROSA [26, 27], used for audio and music signal
analysis. These systems are capable of much more than just producing timbral
metadata, as they can track the beat of a song, work out the tempo, along
with other features.

All of the described methods use one or more algorithms, either established
or custom-made ones, to manage sounds and produce an output. Some projects
keep the algorithms secret while others, like with Essentia, have them available
to the public. Defining various adjective-based descriptions that function as
dividers and designating each sound with a numeric value for every descriptor is
another typical pattern among the systems. Combining words like ‘roughness’,
‘sharpness’, or similar with a number is something found in many of the methods
for deriving timbral values. The studies in [49] and [35, p. 20] are examples of
studies that provide comprehensive lists of words describing timbre.

The selected method for analyzing audio in this thesis is the AudioCommons
Timbral Models package [21] developed by the Institute of Sound Recording
(IoSR) for the AudioCommons project funded by the European Union [1]. It is
part of the Audio Commons Audio Extractor, which Freesound, for instance,
has chosen to integrate into their service [2, 10]. Interestingly enough, the
implemented package is dependant on the previously mentioned Essentia and
LibROSA libraries for some of the calculations, but only provide a fraction of
the features that they have [36, p. 4][38, p. 5].

The timbral model package by IoSR can predict eight distinctive timbral
characteristics from audio files of multiple formats, using a separate model for
each characteristic. These eight models are all regression-based models, except
for the classification model used to predict reverb qualities. This project omits
the reverb model as it deviates from the other models’ output and obstructs
the sound similarity estimation method (see section 3.2).

One of the seven remaining used models produces a hardness value. The
attack time, attack gradient, and spectral centroid of attack for a sound serve
as parameters for a linear regression model, which generates said timbral
characteristic. The model responsible for depth works by analyzing the spectral
centroid, the energy proportion, and potentially the limit of lower frequencies
of input audio. A representation of brightness models on a sound’s spectral
centroid variant and a spectral energy ratio of high frequencies, while roughness

Andreas Näsman 8

models the interaction of similar amplitude and frequency peaks within the
frequency spectrum. The three remaining timbral values, warmth, sharpness,
and boominess, are all implementations on previous models, which the associated
papers describe and reference, but without any in-depth information. [36, 38]

The seven resolved characteristics produced by the timbral model conclu-
sively portray a sound timbrally in a metadata format. This procedure means
that every analyzed sound receives seven corresponding attributes represented
numeric values, ranging from 0 to 100. Figure 3.1 shows an audio graph of an
example sound, and table 3.1 shows the output of the same sound processed
by the package.

Figure 3.1: Audio graph of an example sound.

Table 3.1: Predicted timbral values for the same example sound.

hardness depth brightness roughness warmth sharpness boominess
67.71 3.41 88.3 54 31.16 100 5.07

The specified package is relatively straightforward to use, due to it being
rather concentrated with only a few available scripts, which is one of the
reasons for the author choosing to incorporate it into the developed system.
Furthermore, the created set of timbral attributes seems to be of high-quality
and covers a broad timbral spectrum. These aspects make it well suited as a
building block for constructing prototypes, in which category the developed
application falls, sequentially making it the chosen method for audio analysis
in this thesis.

3.2 Sound similarity estimation

The goals in section 1.1 oblige a strategy for understanding a user’s definition of
similar sounds. Different people may have a distinct threshold when segregating
sounds depending on their perception. A sound engineer could classify two

Andreas Näsman 9

closely resembled audio tracks as separate sounds, while a more inexperienced
listener puts them in the same category. There are no wrongs or rights, as it is
only a matter of taste and preference. By using the predicted timbral attributes
in section 3.1 as a foundation, it is possible to conceptualize a strategy that
materializes into a system that can distinguish sounds the same way as the
current user.

Since the seven characteristics described in section 3.1 represent sounds in
the proposed solution of this thesis, the similarity of two sounds is consequently
the difference between their predicted timbral values. Two sounds which merely
vary with 50 units of hardness, say if one sounds has a hardness value of 25 and
the other of 75, are equally dissimilar in portrayed timbre as if the difference
was with 50 units of depth. This formula builds on the axiom that all of the
seven calculated timbral values are of equal significance. The difference sums
of all timbral values between two sounds, like the hardness difference of 50 in
the previous example, collectively make up the distance between the sounds.
Even though all characteristics have equal influence, the tolerance of when two
similar sounds split into separate sounds could alter among the attributes. This
definition means that a user might perceive sounds differing with a value of
25 hardness as separate groups or classes, while only a difference of 15 depth
achieves the same effect; one could say the user is more sensitive to depth
changes. The suggested solution considers this with the support of multiple
dimensions when searching for similar sounds, effectively meaning that each
value corresponds to a point in a seven-dimensional coordinate system.

Figure 3.2: Example case were two users have categorized sounds differently.
The blue color signifies once group and the red another.

When comparing sounds as audio or timbrally calculated values, there
could be more deciding factors that affect a user’s decision process when

Andreas Näsman 10

perceiving sounds as equal or not. Alongside differences within the same
timbral characteristic, cross-characteristic discrepancies could also affect a
user’s judgment. In order to illustrate this scenario, the following examples
will consider only hardness, depth, and brightness, or three dimensions. If two
sounds have the same predicted values for hardness and depth, say 20 hardness
and 30 depth, but different values for brightness, e.g., 85 versus 90, a user could
still want to categorize them independently. Even though two sets of the same
timbral values are identical and the remaining two only differ with a modest
distance of 5, the cross-distance of hardness–brightness and depth–brightness
also contrasts when comparing the example sounds. This variance from one
characteristic to another could affect how a user segregates sounds.

In contrast, a user could perhaps say two sounds still belong to a single
group even when all the distances between the same timbral characteristics are
relatively large. This situation could perchance happen when the ratios are
constant, like if the values for one sound were 20 for every defined attribute
and 30 for the other sound. These kinds of variations are right to consider,
as audio perception and sound segregation are quite abstract and dynamic,
depending on the circumstances.

3.3 Machine learning

Part of the aimed for requirements outlined in section 1.1 demands a component
or subsystem intelligent enough to mimic and adapt to different definitions of
sound similarity. The threshold variance among users when segregating sounds
is what the desired component should try to learn as precisely as possible. The
discussed theories in section 3.2 set a foundation for such a subsystem, which
this section expands upon and substantiates using machine learning (ML).

Machine learning is the act of programming a computer so that it learns
from data without explicit instructions [12, p. 26]. In other words, the concept
of machine learning is to let the algorithms define and output the rules of a
problem when given the data and the answers as input [8, p. 28]. Many fields
of technology make use of ML today to accomplish complex tasks. Speech
recognition, spam filtering, and customizing web experiences are some areas
that utilize ML extensively [12, p. 13]. As each problem is unique with its
idiosyncrasies, no single algorithm can handle every task, often referred to as
the ‘No-Free-Lunch theorems’ originating in [62, p. 12]. Therefore, it is first
necessary to define the problem itself and all its challenges and quirks to know
what style of ML best fits the task at hand.

The goal of the asserted subsystem is to categorize sounds based on similarity

Andreas Näsman 11

into the same groups as a specific person would, without regulation or influence
from other users. With this intention specified, the problem falls into the
category of classification-based problems. The idea builds on the motive that
each user’s perception is unique enough that neglecting the element of a unified
definition for sound similarity based on shared assumptions is tolerable [19,
p. 2]. As identical classifications of sounds among different persons could be
quite common, this hypothesis is probably not entirely true. However, it is a
generalization made in this thesis in order to achieve a functional system.

The subsystem should ergo initially operate without any presumed instruc-
tions, which also means it lacks directions on the concluding sum and division
of classes. Evaluation for the component’s accuracy comes from the users
themselves when they interact with the proposed system planned in section 1.1.
This valuation transpires when the user verifies categorizations designated
by the ML algorithms in the developed program. With the adjustments, the
number of correct classifications grows, and the subsystem receives more and
more information and clues on how to segregate sounds according to the user’s
sound similarity definition. The continuous feedback from the user should
improve the component accordingly. Finally, the size of the data collection of
sounds to interpret can change, as the user can add more data to the developed
application at any time, which the ML procedure should take into consideration.

In ML terms, these specifications signify that data collection and data
preparation occur progressively and that all data is unlabeled, i.e., unprocessed,
in the beginning. More samples are converted to labeled data as the user
interacts with the system; in the end, when the user has verified every sample,
all data is labeled. When the user includes new unlabeled data, it should undergo
the same process until it is fully labeled. A single static ML algorithm is most
likely insufficient, as the solution needs to improve gradually.

A dominant challenge of the described task is that it at least partially fits
all the four major types of ML currently established [12, p. 30]:

• Supervised learning uses labeled data as a training set to discover the
mapping between a set of inputs and outputs [12, p. 30]. A typical task
solved with supervised learning is classification, which suits the problem
at hand. A hindrance is that no labeled data is available, at least initially.

• Unsupervised learning tries to find usable patterns hidden within data
without instructions, even when the input data is convoluted [12, p. 32].
These qualities make it suitable for the described task as unlabeled data
is present at practically all stages of the suggested system.

• Semi-supervised is a mix of supervised and unsupervised learning. This

Andreas Näsman 12

combination means that semi-supervised algorithms function with unla-
beled data, but require labeled data for training, although in a smaller
scale than supervised algorithms [12, p. 35]. Since labeled data is unavail-
able at many times, as described earlier, the semi-supervised style has
the same obstruction as the supervised type.

• Reinforcement learning deviates substantially from the other approaches,
as it learns by itself using a positive and negative feedback system,
an observer called ‘agent’, and a strategy, or ‘policy’, for scoring the
most rewards over time [12, p. 35]. This method falls short as the end
classification distribution is impossible to predict in advance, and due to
the lack of scores to give the algorithms.

There are no doubt multiple algorithms and sequences of algorithms that
manage to complete the outlined task. A combination of one or more unsuper-
vised algorithms with some supervised or semi-supervised ones could probably
work. One challenging bit, in that case, would be the interaction between the
styles and understand which outputs to use in what scenarios. Reinforcement
learning could also work if there were ways to construct the self-learning system
that the algorithms demand.

The method that the author chose to implement uses two unsupervised
learning algorithms: Mean shift and K-means clustering. The first creates
a starting point for categorizing sounds based on similarity, and the other
adjusts the estimation for every user interaction to better simulate the user’s
perception. The implemented application relies heavily on clustering, or the act
of detecting groups of elements with similar features, as it is the core concept
for finding related sounds. Section 4.4 in the following chapter explains the
two algorithms in more detail, how they synergy with each other, and how the
proposed system uses them in a programming context.

Andreas Näsman 13

4 Implementation

In order to present audio tagging with subjective labels in practice, the author
of this thesis has built an application that strives to minimize the manual
tagging effort needed by a user. Although simplistic, the application is a
functional demonstration of how these problems could be solved using existing
technologies, combining them into a solution. This chapter explains the design
of the program, presents an overview of how the logic works, and examines
implementation-specific problems.

4.1 System architecture

All of the codebase for the application uses Python [43], mostly due to it being
a widely-used programming language for scientific purposes [24], along with
having an extensive number of ML and artificial intelligence (AI) packages
accessible for use [63]. At the time of writing, version 3.8.1 is the latest stable
release, which is also the version used throughout the codebase.

Some additional packages assist with certain functionalities:

• AudioCommons Timbral Models [21] analyzes sound input, calculates
timbral attributes, and outputs the result to a usable data format.

• scikit-learn [52], along with NumPy [44], is used for the sound similarity
estimation part of the application.

• TinyDB [56] handles elements related to databases.

• pipenv [45] installs and manages packages used in the project in a virtual
environment.

• autopep8 [17], pylint [41], and rope [48] deal with formatting, linting, and
refactoring, respectively.

The straightforward, yet representative, user interface (UI) utilizes the tkin-
ter [42] package as its infrastructure. This package is included in most Python

Andreas Näsman 14

distributions by default and offers a decent toolkit to make graphical user
interfaces (GUIs).

Figure 4.1: UI of the application.

NB Although the UI is an essential and necessary part of an application,
the priority of it has been lowered in this project to allow more time spent
on calculation-heavy parts of the program.

4.2 Overview

By looking at fig. 4.1, one can see that the application consists of an upper
and a lower section. Clicking the buttons in the upper section adds sounds
to the application in one of two different ways, processing them accordingly
(described in section 4.3 and section 4.4). In the lower section, an info-panel
displays statistics about all sounds added, plus a delete-all button, and a table
underneath shows metadata for the sounds. Alongside the attributes shown,
each row also lists buttons used for updating a particular sound. In conjunction
with the possibility of listening to a sound by clicking its highlighted name,
these buttons allow for tagging and verifying of sounds (section 4.5). The user
can also choose to rename a tag or, after the program has assigned its tags,
discard a tag, and relabel a sound entirely (section 4.6). Finally, some additional
logic is required when adding more sounds to the application, but once done,
the user can repeat all of the previously mentioned steps (section 4.7).

Andreas Näsman 15

4.3 Adding sounds

The process of adding sounds to the application starts when the user clicks
the upper leftmost button in fig. 4.1 and chooses a directory that contains
audio files; the implementation supports many of the most commonly used
audio formats. However, before the sounds appear in the UI where they can be
tagged, they first have to be analyzed and converted to a usable format.

AudioCommons Timbral Models is a package that processes sounds and
predicts eight timbral characteristics, which in turn helps managing sounds and
enables measuring and comparison between them. The ‘semantic annotation
of non-musical sound properties’ work package deliverables explain how these
characteristics were developed and describe the implementation of the models,
plus usage of the package in detail [35, 36, 37, 38, 39, 40]. Although developed
to aid with automatic tagging of sounds [40, p. 4], in this project, the calculated
attributes distinguish one sound from another regarding similarity.

The eight timbral characteristics are:

1. booming

2. brightness

3. depth

4. hardness

5. roughness

6. sharpness

7. warmth

8. reverberation

The seven first characteristics are all regression-based models. These models
produce a numerical output ranging from 0 to 100; the clip_output parameter
seen in listing 4.1 restrains the upper value, as it may otherwise exceed the
range. The last feature, reverberation, is a classification model, producing
a boolean value represented as 0 or 1. Since the output values serve as a
measurement for how similar sounds are – computed by ML algorithms – each
one of them is considered equally significant. However, as the reverberation
model produces a different ranging result, the prerequisite for a homologous
environment rules it out. Therefore, the program omits the reverberation value
(shortened to reverb in the function output) when processing added sounds.

Andreas Näsman 16

Listing 4.1: Function for processing (nested) sounds in a directory.

de f process_sounds (d i r e c t o r y) :
""" Proce s s e s sounds us ing AudioCommons Timbral Models . """
r e s u l t = []

paths = Path (d i r e c t o r y) . rg l ob ("∗")
f o r path in paths :

t ry :
path_str = s t r (path)
sound = t imbra l_extractor (path_str , c l ip_output=True)
de l sound [" reverb "]

sound [" id "] = uuid1 () . hex
sound ["name"] = Path (path_str) . r e s o l v e () . stem
sound ["pack_name"] = ""
sound ["path"] = path_str
sound [" tag "] = ""
sound [" type"] = Path (path_str) . s u f f i x . r ep l a c e (" . " , "")
sound [" v e r i f i e d "] = False

r e s u l t . append (sound)
except :

cont inue

re turn r e s u l t

4.3.1 Freesound samples

As seen from fig. 4.1, there are two buttons in the upper section for adding
sounds to the application. The alternative rightmost button accepts predefined
Freesound [31] metadata files, i.e., JavaScript Object Notation (JSON) files
with the timbral characteristics included. Because Freesound integrates with
the Audio Commons Audio Extractor [2] tool (which uses the same timbral
prediction as AudioCommons Timbral Models), almost all available sounds have
an associated metadata file containing the calculated timbral attributes [10].
To browse and download these files, one can use the Freesound API [30] or
the Audio Commons Extractor Web Demonstrator [3]. This feature makes it
possible to add sets of biased data, namely where the wanted result is defined;
the tests in the evaluation chapter (chapter 5) uses these constructed sets when
measuring results. It also speeds up the process of experimenting with different
sounds, as the analysis of sounds done by the AudioCommons Timbral Models
package can be slow at times, especially for larger audio files.

Andreas Näsman 17

Listing 4.2: Function for processing Freesound samples.

de f process_freesound_samples (d i r e c t o r y) :
""" Proce s s e s Freesound samples to a common format . """
r e s u l t = []
r e l evan t_prope r t i e s = [" ac_analys i s " , " id " , "name" , "pack_name" , " type"]

paths = Path (d i r e c t o r y) . rg l ob (" ∗ . j s on ")
f o r path in paths :

t ry :
with open (path , " r ") as reader :

metadata = loads (reader . read ())
converted_metadata = {

"path" : s t r (path) ,
" tag " : "" ,
" v e r i f i e d " : Fa l se

}

f o r rp in r e l evan t_prope r t i e s :
va lue = metadata [rp]

i f rp == " ac_analys i s " :
f o r tc in t imbra l_cha ra c t e r s t i c s :

converted_metadata [tc] = value ["ac_" + tc]
e l s e :

converted_metadata [rp] = value

r e s u l t . append (converted_metadata)
except :

cont inue

re turn r e s u l t

4.3.2 Deleting sounds

A possibility to delete sounds is available in the application by clicking the
pertinently named button displayed in fig. 4.1. This interaction opens a prompt
where the user confirms the choice to remove all sounds. If approved, all
databases purge their content, and the program returns to its initial state.

4.4 Sound similarity

The timbral characteristics described in section 4.3 estimates the similarity
of sounds in this project. When comparing two sounds, the more closely
resembling predicted timbral values there are between them, the more similar
the sounds are. The ML logic uses this estimation of closeness when finding
groups of sound, or clusters. All sounds in a cluster link to a single tag; multiple
clusters can have the same tag.

Andreas Näsman 18

4.4.1 Mean shift

Two different ML algorithms operate together in the application to find and
maintain groups of sound. Both of them come from the scikit-learn package.
The first algorithm searches for naturally occurring clusters in a set of data
using the Mean shift [51] procedure. It operates on the timbral coordinates for
all sounds, X, and produces an array of cluster centers, also called centroids.
Since the final sum of tags a user chooses to use throughout the application
is unknown, Mean shift works particularly well for creating a foundation of
how many groups of sound could be satisfactory. It independently decides on
the optimal number of centroids in a set of data, making it ideal for creating a
starting point.

Listing 4.3: Function for finding initial clusters.

de f in i t_groups (sounds , X) :
""" Searches f o r i n i t i a l groups o f sound us ing Mean s h i f t . """
ms = MeanShift () . f i t (X)
c en t r o i d s = ms . c lus te r_center s_ . t o l i s t ()
c en t r o i d s . s o r t ()

re turn f ind_groups (sounds , X, numpy . array (c en t r o i d s))

4.4.2 K-means

K-means [50] is the second ML algorithm used for calculating clusters among
sounds. This algorithm is the method used to separate the sounds into different
groups and marking them accordingly. It takes as input the current cluster
center coordinates, which are either produced by the preparatory Mean shift
procedure or by a previous iteration of the K-means clustering. These coordi-
nates guide the algorithm when deriving renewed concluding centroids. It also
needs a k value, which is the number of groups to split the data in, derived
from the number of centroids. Lastly, the n_init parameter tells the algorithm
to perform a single iterator on each seed, so the new cluster center coordinates
do not strive too far from the previously calculated ones. Like the Mean shift
algorithm, the K-means procedure operates on X, being coordinates for the
timbral characteristics of all sounds. As the number of tags and groups grows
with usage, this algorithm scales proportionately and, when executed, produces
the correct updated number of centroids.

Andreas Näsman 19

Listing 4.4: Function for finding groups of sound.

de f f ind_groups (sounds , X, c en t r o i d s) :
""" Finds groups o f sound us ing K means . """
k = len (c en t r o i d s)
km = KMeans(i n i t=cent ro id s , n_c lus te r s=k , n_init=1) . f i t (X)

updated_sounds = deepcopy (sounds)
f o r sound , group in z ip (updated_sounds , km. labe l s_) :

sound ["group"] = in t (group)

updated_centroids = km. c luster_center s_ . t o l i s t ()
updated_centroids . s o r t ()

re turn updated_sounds , updated_centroids

4.4.3 Usage

Each time the user adds a set of sounds to the application, both the Mean
shift and the K-means algorithm invokes in sequence. This step makes sure
that every sound added belongs to a group, and if applicable, tags additional
sounds with the existing group’s tag. Whenever there is a need for a new group
(described in section 4.6.2), the K-means algorithm is triggered separately.

4.5 Tagging

Figure 4.2: Tagging a sound.

Once sounds have been processed, designated to a group, and added to the
application, the user can start tagging them. To annotate a sound with a tag,
the user clicks the corresponding button in the table and fills in the subsequent
dialog, illustrated in fig. 4.2. The label the user chooses to enter in the dialog
can be the same as an existing tag or a new one. The sound’s tag property –

Andreas Näsman 20

which is declared empty in both listing 4.1 and listing 4.2 – stores this input
value. To decide what tag goes along with a sound, the user probably wants to
listen to the sound first. The sound names listed in the table shown in fig. 4.1
are links that trigger this action, opening the matching audio file in the system
default application.

NB The implementation limits tagging to allow only a single label per
sound; multiple groups can have the same tag. This restriction scales down
the logic and code needed for the application, especially in the ML parts.

4.5.1 Verification

For the user to be able to keep track of which sounds they have tagged, each
sound has a verified property. This attribute is a boolean flag initially set
to False for all sounds, established in listing 4.1 and listing 4.2. Whenever
the user tags a sound, the verified status remains or changes to True for that
sound, as opposed to the automatic tagging process by the program, which will
not affect the value of the property. When a sound has a tag – assigned either
manually or automatically – the user can choose to toggle the verified status
by clicking the corresponding button in the table (see fig. 4.1). The verified
property also determines how the automatic tagging behaves, judging the need
to create new groups or carry on with the ones already defined.

4.6 Automatic tagging

One of the core functionalities in the application is the inclusion of an automatic
tagging system. This procedure helps cut down the overall effort needed to label
sounds and is flexible enough to cover most use cases adequately. For every
sound manually tagged by the user, the program responds by automatically
tagging similar sounds. The logic consists of two different operations, where
the selection of the alternative to execute is dependent on the relevant sound’s
verified property. One option directly changes a group’s tag, or in other words,
performs a tag renaming. The other is slightly more complex, creating one or
more new groups and modifying existing tags and groups. Both alternatives
save the modifications to the application databases and repaint the screen with
the revised sounds once done.

Andreas Näsman 21

4.6.1 Tag renaming

The first and more straightforward of the two automatic tagging scenarios is a
renaming of a group’s tag where all ongoing groupings are kept intact. This
event triggers when a verified sound is tagged, or when the user tags a sound
belonging to a group where all sounds lack verification. The latter happens,
for instance, when the user tags a sound for the first time since all sounds
have their verified status initially set to False. In both cases, the tagged
sound’s verified status is kept or set to True by the code fragment responsible
for renaming.

Listing 4.5: Logic for initalizing and renaming a tag.

Keep cur rent groupings .
group_sounds = db . search (where ("group") == sound ["group"])
i f (sound [" v e r i f i e d "] or a l l ([not gs [" v e r i f i e d "] f o r gs in group_sounds

])) :
db . update ({ " tag " : input } , where ("group") == sound ["group"])
db . update ({ " v e r i f i e d " : True } , where (" id ") == sound [" id "])

4.6.2 Modifying groups

Occasionally, the user might be dissatisfied with tags allocated by the applica-
tion. By retagging a sound with the verified flag set to False, the user signals
to the program that the current tag is incorrect, which, consequently, means
supplementary groups are required. The only deviation from this is if all sounds
in a group are unverified, as then a tag renaming is sufficient to accomplish the
same outcome. It is important to note that the number of groups cannot exceed
the number of sounds, and this exception handling protects the application
from reaching that erroneous state.

Andreas Näsman 22

Listing 4.6: Logic for modifying groups.

e l s e : # Modify groups .
db . update (

{" tag " : input , " v e r i f i e d " : True } ,
where (" id ") == sound [" id "]

)
modified_sound = db . search (where (" id ") == sound [" id "]) [0]

db_sounds = db . a l l ()
X = ml . search (where (" id ") == "X") [0] ["data"]
c en t r o i d s = ml . search (where (" id ") == " c en t r o i d s ") [0] ["data"]

sounds , c en t r o i d s = modify_groups (
db_sounds ,
X,
c ent ro id s ,
modified_sound ,
input ,
db_sounds

)
sounds , X, c en t r o i d s = review_groups (sounds , X, c en t r o i d s)
sounds , X = tag_groups (sounds)
update_databases (sounds , c ent ro id s , X)

A retagging action by the user starts a series of events where groups are
created and modified until the arrangement meets specific criteria. The group
numbers displayed in fig. 4.1 show how the application internally connects a
sound to a group. The relationship between a specific number and a group
may change in the process of modifying sounds, which is acceptable, as it is
only a conceptual representation of the division between groups.

Partly what makes this scenario more intricate than the renaming one, is the
consideration of how reshaping groups affect sounds that are already verified.
If a sound is verified, it means the tag assigned to it is correct and should,
therefore, remain the same when groups are modified. This concern means
some part of the program needs to check that only unverified sounds – sounds
tagged by the application and untagged sounds – are altered. In other words,
some logic needs to be present to prevent a ping-pong effect where completed
sounds are ‘stolen’ between groups.

What orchestrates the adjustment of groups and solves accompanying
problems is the modify_groups core function, listed in listing 4.7. It is a
recursive method that keeps creating new groups as long as verified sounds
are incorrectly tagged. The situation of verified sounds temporarily becoming
mistagged is a side effect of the function’s implementation with an optimistic
pattern when reworking the clusters.

Andreas Näsman 23

Listing 4.7: Functions for adding and modifying groups.

de f add_group (sounds , X, c ent ro id s , modified_sound) :
"""Adds a new group o f sound . """
new_centroid = []
f o r tc in t imbra l_cha ra c t e r s t i c s :

new_centroid . append (modified_sound [tc])

new_centroids = deepcopy (c en t r o i d s)
new_centroids . append (new_centroid)
new_centroids . s o r t ()

re turn f ind_groups (sounds , X, numpy . array (new_centroids))

de f modify_groups (sounds , X, c ent ro id s , modified_sound , tag , db_sounds) :
""" Modi f i e s groups un t i l sounds have t h e i r a s s o c i a t ed tag . """
updated_sounds , updated_centroids = add_group (

sounds , X, c ent ro id s , modified_sound)

Finds the new group .
f o r updated_sound in updated_sounds :

i f updated_sound [" id "] == modified_sound [" id "] :
new_group = updated_sound ["group"]
break

Tags sounds in the new group .
f o r updated_sound in updated_sounds :

i f updated_sound ["group"] == new_group :
updated_sound [" tag "] = tag

Checks that a l l v e r i f i e d sounds kept t h e i r tag .
f o r db_sound , updated_sound in z ip (db_sounds , updated_sounds) :

i f (db_sound [" v e r i f i e d "] and
db_sound [" tag "] != updated_sound [" tag "] and

db_sound [" id "] != modified_sound [" id "]) :
r e turn modify_groups (updated_sounds , X, updated_centroids ,

db_sound , db_sound [" tag "] , db_sounds)

re turn updated_sounds , updated_centroids

First, the unverified sound tagged by the user serves as a reference point,
having a new group created around it. As a reaction to adding a group,
recalculating the position of current centroids is consequently necessary. This
development could lead to less or more significant adjustments in existing groups
depending on the situation. Calling the K-means algorithm (section 4.4.2) from
add_group calculates new cluster center coordinates using the incremented
number of groups. The newly formed groups are optimistic in the sense that the
sounds they include receive tags with no consideration towards their verification
status.

To remedy the possible alteration of verified sounds’ tag property, the
process of modifying groups repeats recursively. Each mistakenly changed
sound has its erroneous tag corrected by, in turn, running modify_groups with

Andreas Näsman 24

itself as the argument. The function, again, creates a new group around the
input sound plus revises present groups, tags sounds belonging to the newly
constructed group, and loops through the modified data to review the updated
tags. This procedure reruns until all verified sounds have their original correctly
associated tag property.

After the step of modifying groups, there might be a potential issue of
multiple tags per group, violating the enacted simplification of groups having
only a single tag (section 4.5). For that reason, narrowing down tags to a
single label per group takes place. As long as there are different contesting
tags in a group, the review_groups function seen in listing 4.8 keeps creating
new groups. This regulation splits groups into smaller subgroups – with the
centroids adjusted accordingly – until a single tag remains in the groups.

Listing 4.8: Function for singularizing the number of tags per group.

de f review_groups (sounds , X, c en t r o i d s) :
"""Makes sure that the re i s only one tag per group . """
updated_sounds , updated_X = sort_sounds (sounds)
updated_centroids = cen t r o i d s

f o r a , b in z ip (updated_sounds , updated_sounds [1 :]) :
i f (a ["group"] == b ["group"] and a [" tag "] != b [" tag "]

and a [" tag "] and b [" tag "]) :
updated_sounds , updated_centroids = add_group (

updated_sounds , updated_X , updated_centroids , b)
re turn review_groups (

updated_sounds , updated_X , updated_centroids)

re turn updated_sounds , X, updated_centroids

Lastly, the code in listing 4.9 assures that every tagless sound belonging to
a group with a tag is labeled accordingly. The tag_groups function sorts the
entries – placing untagged sounds together – and labels the incomplete sounds
with the group’s tag. In some cases, more than one tag might exist in a group,
and if so, the first tag found serves as the source.

Listing 4.9: Function for tagging incomplete sounds.

de f tag_groups (sounds) :
"""Tags sounds that are miss ing a group ’ s tag . """
updated_sounds , updated_X = sort_sounds (sounds)

f o r a , b in z ip (updated_sounds , updated_sounds [1 :]) :
i f a ["group"] == b ["group"] and a [" tag "] and not b [" tag "] :

b [" tag "] = a [" tag "]

r e turn updated_sounds , updated_X

In the end, the initially retagged sound is now verified and has a group of
its own associated with it. The sum of groups has grown by at least one, up

Andreas Näsman 25

to a maximum of the number of sounds. Group numberings are presumably
shuffled compared to what they were before, but each sound still links to a
group. Some sounds have a new tag, which remains for the user to accept or
neglect. Notably, all of the sounds that were already verified have remained
unchanged and preserved their validated tag value.

4.7 Additional sounds

Including additional sounds introduces new challenges of how to continue the
tagging progress made so far. When adding more sounds, the application
should be able to tag new sounds that fit inside the current group boundaries,
as well as identify outlying samples that belong to a group not yet established.
The part of the program in charge of achieving this also needs to be aware of
current group tags not to disrupt ongoing tagging advancement.

The method to expand the sound pool ultimately is the same as if all
sounds were added together at the start, with the user performing the same
interactions hitherto. Every time the user adds more sounds to the program,
the entire set of sounds, both newly and previously added ones, is processed
by the ML algorithms from scratch. The Mean shift algorithm (section 4.4.1)
finds preliminary groups and passes the output to the K-means procedure
(section 4.4.2) for further analysis. This computation disrupts the existing
structure of groups, where the resulting groups may contain multiple sounds
with different tags (violating the rule of a single label per group) and sounds
that are missing the group’s tag. These are the equivalent to the transpiring
issues in section 4.6.2 when modifying groups. Hence, similarity alike, utilizing
listing 4.8 neglects the former problem of multiple tags in a group, and listing 4.9
solves the latter issue of missing tags.

Depending on how the additional sounds correlate to the ones in the
application, the sum of groups formed varies. In most cases, the total grows
or stays the same. In some cases, however, the number of groups decreases.
Added sounds may occur between two identically tagged groups, effectively
joining them together, or ‘filling in the gap’ between the groups. This effect
could also be an outcome of retagging all sounds from the beginning. Although
the review logic theoretically replays tagging interactions by the user, it is not
a one-to-to simulation, and the difference may fluctuate the concluding result.

Andreas Näsman 26

5 Evaluation

This chapter explains the evaluation process of the developed application
described in chapter 4. Predefined examples measure the performance of the
program using sets of data with a determined solution and analyze the steps
needed to achieve said result. The examples simulate different types of use cases,
which, in effect, exposes the strengths and weaknesses of the implementation.

5.1 Subjectivity

As the application should be flexible enough to deal with varying levels of sound
perception, the evaluation process needs multiple examples to test how the
program performs in different situations. All of these test cases need a common
established standard of subjectivity to evaluate the application objectively.

The approach chosen in this project to form this specification of subjectivity
is to construct sets of data consisting of timbrally differentiating groups of
sound. Although distinction by timbre might be subjective in itself, user-
derived groups of sound from Freesound, together with the author choosing
the groups, will act as the judge in this case. Freesound supports sound pack
configurations defined by their users [32], which the test cases, in turn, take
advantage of as building blocks. The examples utilize various packs to either
model a more closely resembled sound landscape, with say similar-sounding
synthesizer sounds, or a more contrasting one, e.g., with drums and piano
sounds. Most of the packs have descriptive tags, meaning the labels of the
annotated sounds are what the sound represents: ‘gunshot’, ‘guitar sound’, or
similar. Even though the application’s primary goal is to deal with subjective
tags, the descriptive tags are applicable for test data, as they are, in a sense,
generally agreed upon subjective tags. Some sound waves classify as piano
sounds to humans while others do not, but the infinite amount of interlying
sounds keeps the separating border open to debate.

Andreas Näsman 27

5.2 Measurement

The unit used for grading in the evaluation will be the number of user inter-
actions needed to reconstruct the test data interpretation until each sample
resides in its appointed group. Such rearrangements occur every time the user
chooses to retag a sound, thus creating more groups and changing the structure
of existing ones (see section 4.6.2 for more details). This strategy implies that
the best-case scenario will be with zero corrections made by the user, which
occurs when the starting Mean Shift algorithm (section 4.4.1) finds the right
number of groups immediately. The more modifications needed from the user,
the worse the performance rating becomes, signifying that the clustering logic
only discovering a single group when the user wants each sound to be in its
group is the worst-case scenario.

When correcting sounds with erroneous tags, the order of which this is
performed matters. Similar to how a chess opening alters the course of the
game, the sound initially revised affects the rest of the modification process,
which may conclude in a path with fewer or more total adjustments needed.
Choosing to verify sounds as they become tagged or leaving them be also plays
a vital role in how the application functions further on. This variation makes
it difficult to measure all potential outcomes in complex use cases and settle
on a final score.

Andreas Näsman 28

5.3 Case 1 – Rudimentary

In this introductory example, sounds from two unconnected packs will make up
the test data. The first pack of sound, Box Drum [55], consists of 15 samples
produced by hitting a large metallic box under a bridge. Metal Guitar loops
Un trimmed 150BPM [46] is the second pack used and contains ten, as hinted
by the name, distorted guitar sounds all played at the same speed.

The goal in this example will be to have the sounds separated into two
groups, having the box drum sounds tagged as Box, and the metal guitar
sounds labeled with Guitar. Loading the test data into the application, one
can see that opening groupings done by the program coheres with the wanted
result; all the box sounds are in one group, and the guitar sounds in another.

Figure 5.1: Case 1 test data initially loaded into the application.

Worth noting for both packs is that the sound source remains constant
throughout all samples, hence the sounds being comparatively similar sounding
in themselves, mostly varying in rhythm, intensity, and placement. The calcu-
lated timbral characteristics reflect this auditory closeness, with the average
range between the maximum and minimum values shown in table 5.1 being a
relatively small value.

This example falls under the best-case scenario, as the user needs to make
no group modifications to give each sound its proper tag. Labeling one
sound from each pack with the corresponding tag correctly tags the remaining
sounds as well, via the program’s automatic tagging procedure.

Andreas Näsman 29

Table 5.1: Case 1 timbral characteristics maximum and minimum value ranges

Box Drum Metal Guitar loops Un trimmed 150BPM

boominess 10.11 9.74
brightness 4.12 6.63
depth 13.89 9.39
hardness 8.98 5.92
roughness 6.63 7.70
sharpness 6.66 4.96
warmth 10.51 6.81

Average 8.70 7.31

Figure 5.2: Case 1 test data finalized.

Andreas Näsman 30

5.4 Case 2 – Divergence

The test data in the next use case incorporates sounds from two related packs,
both having 15 sound snippets each played on a stringed instrument. The goal
will be the same as in the first example: tag the two packs according to the
object producing the sounds.

The first pack, Fretless Bass, has tracks that are all played on a Harley
Benton B-550FL fretless bass without any effects added, but with the selected
pickup altering. The Nylon Guitar Single Notes pack lacks a description, but
the sounds are what the title describes, and make up the second portion of the
sounds used in this example. Adding the sounds to the application categorizes
most sounds accurately, but some of the guitar sounds end up in the bass group.
Labeling the two groups with their relevant tag – Bass for the first pack and
Guitar for the latter – illustrates this divergence more clearly.

Figure 5.3: Case 2 test data loaded and initially tagged.

This unfinished distribution is a by-product of the groups’ correlation to
one another and how the sounds themselves are situated. By comparing the
ranges for the timbral characteristic values listed in table 5.2 with the ones
from table 5.1 in the first example, it is evident that the test data for the
current use case consists of sounds more spread out, at least according to how
the program distributes them.

Andreas Näsman 31

Table 5.2: Case 2 timbral characteristics maximum and minimum value ranges

Fretless Bass Nylon Guitar Single Notes

boominess 20.45 30.35
brightness 13.86 21.05
depth 24.36 48.13
hardness 14.35 34.45
roughness 11.46 22.73
sharpness 14.62 26.57
warmth 8.04 36.26

Average 15.31 31.36

Finishing this example can be done in several ways, but resolving an average
score involves trying every path available. Because the sound pool is quite small
in this example, it is possible to check each path individually. Coincidentally,
all alternatives take two corrections to achieve the goal of one tag per sound
pack.

Figure 5.4: Case 2 finalized in one of several different ways.

Andreas Näsman 32

5.5 Case 3 – Scope

An intriguing quality of the ML algorithms used to tag sounds automatically
in the application is how they execute differently depending on the scope of the
data points in a given input series. Stripping the sound pool in the first example
– where the application immediately groups the loaded samples correctly – to
a single pack, one could expect the program to identify that pack as a single
group.

That is not quite the case, as can be seen in fig. 5.5, where the Metal
Guitar loops Un trimmed 150BPM pack is inserted by itself. This perchance
unexpected event happens due to the nature of how the clustering algorithms
function when handling differently sized and spread out data sets. One way to
potentially regulate this action would be to fine-tune the precision at which
the application generates the sound groupings. The tolerance value is such a
calibration but, although publicly available for reconfiguration as a function
argument labeled tol [54, 53], remains untouched and set to its default behavior
in this implementation. Tweaking this attribute could help the program adjust
to certain situations better and possibly improve the performance for specific
cases; the further work segment (section 7.1) examines this proposal further.

Figure 5.5: Pack from Case 1 loaded separately into the application.

Expanding on this topic: when duplicating a single sound and adding both
the original and copied one to the application, the two sounds will end up
belonging to the same group. Furthermore, as accomplished in fig. 5.6 by
copying and modifying an individual Freesound metadata file, if two sounds
differ even in a single magnitude for one of the timbral attributes, the resulting
sum of groups will be two.

Figure 5.6: A single sound plus its modified clone loaded into the application.

Andreas Näsman 33

One can think of this concept as a ‘zoom effect’ in the dimensional space
where the resulting picture is the same whether the parameters are large or
small as long as the proportions remain constant. Reducing the dimensions of
predicted timbral characteristics from seven to two enables a relatively effective
visualization of this type of proportion-based groupings relative to the volume
of the sounds added to the program. In two dimensions, this means that the
size of the x and y values (for example, boominess and brightness) is redundant
when distributing the groups, and only the relative distance between the data
points on the coordinate axes is of importance. This phenomenon is also, in
some instances, comparable to the Droste effect, where a picture appears within
itself one or multiple times, as shown in fig. 5.7.

Figure 5.7: An illustration of the Droste effect in the application when changing
the scope for sounds added to the program. The green circles represent the
determined groups found by the application. Pack 2 has the same layout of
sounds in itself as it has with Pack 1, hence the groupings being the same when
processed together or Pack 2 by itself, even though the scale changes in the
two pictures.

Andreas Näsman 34

5.6 Case 4 – Scalability

The last example mimics a more realistic usage of the application, with six
different packs on a smaller scale, forming a total of 30 sounds. The test data
is made up of instrumental, electronic, and ambient sounds, stretching over a
broader sound domain than previous examples. As before, the goal is to give
every sound in each pack a descriptive group tag that corresponds to its sounds’
source.

The first pack, A Harpsicord Dream [64], consists of harp-like glissandos
played on a Roland XP-10 keyboard. The two next packs used, Basic Tech-
Trance [9] and Bass Bars 1 [20], have beats that would suit as a foundation for
loops in techno songs. Sharpening Knives [59] and Static and Radio Sounds [18]
contain samples of audio from everyday life. Tom-Tom Grooves [23] is the last
pack included in the test data and has short loop-friendly drum rhythms. It is
noticeable when examining the averages in table 5.3 that the estimated timbral
characteristics map some of the chosen packs as more compact and other as
more spread out.

When handing the test data to the application for analysis, it does a decent
job of organizing the sounds; fig. 5.8 displays this initial state. The number
of groups predicted is slightly modest, consequently mixing and joining some
packs together. Reaching a finalized state of fig. 5.9 takes an unfixed amount
of user interactions – explained in section 5.2. Because the number of revisions
has grown compared to other use cases, it is laborious to cover every alternative
and, therefore, difficult to work out an exact median value for the number of
alterations needed.

Andreas Näsman 35

Table 5.3: Case 4 timbral characteristics maximum and minimum value ranges

Instrumental
A Harpsicord Dream Tom-Tom Grooves

boominess 9.69 3.34
brightness 8.40 0.87
depth 11.64 2.06
hardness 18.10 3.19
roughness 2.27 2.27
sharpness 7.57 2.44
warmth 9.87 1.51

Average 9.65 2.24

Electronic
Basic Tech-Trance Bass Bars 1

boominess 11.63 9.13
brightness 32.19 10.78
depth 9.18 9.21
hardness 25.27 10.53
roughness 27.99 5.64
sharpness 29.00 7.38
warmth 26.97 3.68

Average 23.18 8.05

Ambient
Sharpening Knives Static and Radio Sounds

boominess 24.52 5.77
brightness 5.45 3.95
depth 18.77 17.58
hardness 13.96 15.38
roughness 10.40 6.76
sharpness 13.14 9.97
warmth 3.17 12.56

Average 12.77 10.28

Andreas Näsman 36

Figure 5.8: Case 4 test data initially loaded into the application.

Figure 5.9: Case 4 finalized in one of several different ways.

Andreas Näsman 37

6 Discussion

The developed application fulfills the goal of enabling subjective tagging of
sounds while minimizing the manual effort needed to do so, hence proving that
the proposed system is a viable and working solution. Since there exist no
prior comparable solutions, at least not found by the author, it is impossible to
measure the performance of the program to any previous values.

The end product is a standalone application capable of tagging sounds
according to different opinions and continuously improves with usage. The
solution is in itself quite simple and relatively easy to adapt. When narrowing
down the codebase to units responsible for actual calculations related to sound
similarity, tagging, and grouping, the result is only a couple of hundred lines of
code. Still, the intended purpose of the solution is to function as a complement
to other existing systems. This expansion could be in the form of a plugin, an
extension, or some other similar variation.

Many of the components in the implemented program are competent and
well-functioning. The sound similarity system and the automatic tagging
functionalities perform well in all of the use cases evaluated in chapter 5.
Regardless of how specific or generic the desired tag distribution might be, it
should always be possible to achieve the sought after result using the application
as a platform in its current form.

As described in the evaluation process, there are many ways of reaching
a finalized state where all sounds are correctly labeled, depending on what
order sounds are tagged. Each available path requires a specific amount of
corrections, meaning that some paths need more manual effort to complete
than others. Therefore, the course taken by the user might end up being the
most effortless one, the most tedious one, or something in between.

The application is deterministic in the sense that repeating the same actions
always result in the same outcome, which makes it stable and possibly easier
to integrate with other systems. However, the program is inconsistent with
tag distributions and groups, as the corresponding sum of groups and how
they encompass the sounds can vary in a fixed arrangement of labels. Tagging
multiple sounds in one way might conclude in a few groups, while in another,

Andreas Näsman 38

the number of groups could be doubling.
While developing and formulating the proposed solution, the author of this

thesis realized that many different kinds of elements play a role when forming a
subjective categorization and management system for sounds. The fundamental
dilemma concerning subjectivity is the most difficult to understand and define
fully. Because subjectivity is abstract and can change from situation to situation,
it is difficult to make assumptions around it and define rules. Subjectivity
is also presumptively exposed to peer pressure; if someone describes a sound
as, e.g., ‘sad’, someone else will probably perceive the sound the same way.
If the latter person heard the sound in isolation, they might have labeled
the sound differently, unaffected by the other person’s predefined description.
These kinds of human factors can make it challenging to pinpoint problems
when measuring the effectiveness of categorization and management systems for
sounds, as the user could have trouble understanding or describing the problem
themselves. When annotating sounds, adapting one’s perception to someone
else’s might work for some cases, but resisting this tendency and creating a
personal collection of labels instead will hypothetically be beneficial in the long
run.

Andreas Näsman 39

7 Conclusion

Designing sounds and building sound landscapes is a challenging yet inspiring
occupation. Dealing with large data sets and having numerous influencing
factors are some of the concerns making the situation more demanding. Uti-
lizing sound libraries containing SFX is one way to make the process more
approachable and productive. However, many aspects still need improvement
to make the means of working with the libraries more gratifying and compelling.
No standard exists for categorizing and classifying sounds, meaning that most
libraries have a custom labeling system, making it harder to develop programs
capable of handling all variations. The tools used for finding and managing
sounds among the libraries are also far from perfect.

Extensive research has taken place in automatic sound identification and
objective audio labeling, which could help classify sounds more accurately and
expressly. The research results and developed systems thereof could assist the
library creators in the tagging process, making related sounds across multiple
libraries labeled similarly. This procedure could aid in establishing a standard
of how to describe sounds concretely, such as the sound source of the audio.

Far less experimentation has ensued with systems aimed towards individual
sound annotation with personal descriptors, capable of adjusting to different
users’ perception. Humans often describe signals perceived through the senses
with subjective words, e.g., that something is scary. This impression holds for
audio as well: one person might interpret a sound as ‘happy’ when another
defines it as ‘smooth.’

The purpose of this thesis is to present and evaluate an approach capable of
categorizing sounds with subjective tags. The developed solution is a flexible
stand-application application, which continuously improves with usage and
minimizes the manual effort needed to label sounds utilizing a sound similarity
and automatic tagging system. Although the program functions well on its own,
the eventual intent is to have the system integrated with existing categorization
methods and management tools. This procedure could hopefully improve the
work process for sound designers using sound libraries and also spark ideas for
new programs or extensions to systems regarding the subject.

Andreas Näsman 40

7.1 Further work

There is plenty of room for improvement and optimization concerning the
application described in this thesis, as the program in its current stage only
ranks as a prototype. Many of these advancements relate to the performance
or usability aspects of the application, while others propose enhancements to
the underlying logic.

One of the main issues that prevent the present version of the design from
becoming a distributable application or integrated into existing systems is
the lack of functionality for multiple tags per sound. Multi-labeling coheres
substantially more with real-world use cases than only allowing individual tags,
as a single label is seldom enough to describe a sound fully incorporating all
its qualities. However, managing multiple tags require a different approach
capable of handling advanced situations, such as overlapping and intertwining
labels. Extending the described implementation to support this feature would
probably lead to a complete rewrite, possibly preserving some of the current
system design.

Another central subject needing further work is the sound analysis part of
the application regarding both performance and accuracy. The sound similarity
concept described in section 4.4 relies on its building blocks being accurate,
which are the seven predicted timbral characteristics used throughout the
program. The original purpose of the values is to assist in automatic labeling of
sounds, and adapting them to serve as subjectivity measurement variables could
lead to inconsistent and inadequate results. Also, the absence of dimensionality
reduction and other forms of optimization procedures means some of the
characteristics might be redundant.

Furthermore, when processing extensive data sets, the analysis step takes
a considerable amount of time to finish. As of now, the application processes
sounds one after the other, resulting in the operation taking longer for each
additional sound added to the pool of sounds to analyze. This issue is a
significant bottleneck performance problem preventing the system from scaling.
Some form of parallelization, changing the single-threaded sequence of events,
would cut down the execution time significantly. Massive data sets also slow
down the program considerably, preventing any form of testing when the
number of included sounds is high. This issue makes it difficult to check the
performance scalability of the implemented ML algorithms.

Both the ML algorithms used for grouping sounds accomplish their shared
goal of categorizing sounds satisfactory in their current form. Nevertheless,
as touched upon in section 5.5, the algorithms could benefit from revision,

Andreas Näsman 41

since the working configurations incidentally use the default values defined
in the package. One advantageous or disadvantageous outcome – depending
on the situation – of using the predefined versions of the algorithms is how
they directly adapt to changing the scale of how widespread added sounds
are. Adding numerous closely resembling sounds could result in the same
initial group predictions as a collection of more spread out sounds. Despite
its situational usefulness, this behavior is currently persistent at all times.
Having no control over this dynamical tolerance means that it activates for
situations where it is a hindrance, as well as instances where it is beneficial.
Tweaking and controlling the precision at which the algorithms draw their
group borders might improve the performance in many cases. The degree at
which this transpires and what the optimal tolerance comes out as is probably
dependant on each user’s sound perception.

How sounds are tagged and retagged might also be slightly confusing to the
user. The tagging process currently depends on the sounds’ verification status
and decides the appropriate choices accordingly on its own in encapsulation.
This implementation is a working solution in its own right but has its pros
and cons. The program takes responsibility for most of the choices concerning
tagging at the cost of the user having less control. Eliminating the verification
property and implementing separate functionalities for creating and modifying
tags could make the application more approachable. Some form of internal
verification system would still need to be present to keep track of the confirmed
tagged sounds. However, this means handling edge cases appropriately and
redesigning the UI accordingly. Regarding updating the visuals, this would
naturally occur when implementing the proposed solution into an existing
system. The design built with the tkinter package works fine for presenting the
prototype stage of the program but will need an overhaul to meet the industry
standard.

Andreas Näsman 42

Svensk sammanfattning
Subjektiva taggar vid personlig kategorisering av ljud

Inledning

Människor intar dagligen en stor dos av ljud i dagens värld. Större helheter
av ljud byggs upp med ljudeffekter, jinglar, loopar och andra ljudfragment.
Tillsammans används de för att skapa ljudlandskap avsedda för olika ändamål.
Skapandeprocessen och förfaringssättet bakom alla de här ljuden är mindre
påtagligt i vardagen och få är helt insatta i hur ljuden blir till.

Yrket som ljuddesigner innebär att skapa och hantera ljud avsedda för ett
visst ändamål eller en viss produkt. Arbetet förutsätter mycket kreativitet
och fantasi för att få fram de ljud som situationen kräver. Verktygen som
ljuddesigner använder sig av för att hantera ljud måste vara så lätta som
möjligt att förstå för att arbetsprocessen ska kännas inspirerande och effektiv.
Annars kan det uppstå frustrerande situationer där motivationen lätt försvinner.

I huvudsak finns det två olika tillvägagångssätt för att skapa ljud ämnade
för film, spel och andra medier. Det första alternativet är att skapa alla ljud från
grunden genom att spela in dem i en studio med lämplig utrustning. Man har
då möjlighet att utforma exakt sådana ljud man vill ha, men processen kan bli
både dyr och tidskrävande eftersom flera ljud ofta behövs för att tillsammans
kombineras till ett tillfredsställande resultat.

Den andra varianten, som är i fokus i den här avhandlingen, är att använda
sig av befintliga ljudbibliotek med färdigt inspelade och kategoriserade ljud.
Biblioteken kan innehålla ett fåtal eller flera tusen ljud, där likheten mellan
ljuden varierar. Problemet med det här alternativet är att det inte finns en
etablerad standard för hur ljuden ska indelas och klassificeras. Indelningarna
är vanligen gjorda manuellt med olika former av konkreta taggar som redogör
för ljudkällan, vad som händer i ljudklippet, eller liknande beskrivningar. En
rad sökverktyg finns tillgängliga för att hitta ljud bland ljudbiblioteken, men
på grund av variationen mellan de olika samlingarnas kategoriseringssystem

Andreas Näsman 43

blir sökningsresultatet ofta mediokert.
En genomgående brist i sökverktygen och ljudbibliotekens kategoriseringssy-

stem är att de inte tar subjektivitet i beaktande. Människor beskriver ofta ljud
i subjektiva ord, vilket tyder på att personliga taggar skulle kunna vara till stor
hjälp för att klassificera och hantera ljud. Problemet med att implementera
subjektiva taggar i ett kategoriseringssystem är att de är individuella; samma
ljud kan ha olika beskrivningar beroende på vem man frågar. Processen att förse
ljud med subjektiva beskrivningar borde således göras skilt för varje användare,
men att manuellt tagga ljud är både tidskrävande, arbetsdrygt och felbenäget.

Mål

Målet med den här avhandlingen är att ta fram ett lösningsförslag på hur
subjektivitet kan implementeras i sökverktyg ämnade för ljudbibliotek. Lös-
ningsförslaget som utvecklats är ett fungerande program, men tjänar mera
som ett utkast till hur kategorisering med subjektiva beskrivningar kan se ut.
Programmet ger användare möjligheten att med sina egna subjektiva ljudupp-
levelser kategorisera ljud genom att märka dem med subjektiva taggar. Varje
användare kan alltså klassificera ljud enligt eget tycke och smak. För att under-
lätta det manuella arbetet som krävs söks liknande ljud automatiskt upp med
hjälp av maskininlärning och taggas enligt en användares preferenser.

Avsikten med att inkorporera subjektivitet i sökverktygen är att underlätta
det dagliga arbetet som exempelvis en ljuddesigner gör genom att erbjuda ett
alternativt sätt att organisera och söka fram ljud. Inkorporeras lösningsförslaget
vidare och utvecklas till en färdig produkt kan helheter av ljud förhoppningsvis
byggas upp på ett bättre och smidigare sätt, vilket därmed också sparar tid
och pengar för de som anställer ljuddesigners.

Andreas Näsman 44

Tillämpning

Figur 7.1: Bild på det utvecklade programmet i användning.

Som lösningsförslag till de nämnda problemen med subjektivitet vid ljud-
klassificering beskrivs ett utvecklat program som är kapabelt att justera sig
enligt en användare. Programmet är gjort i Python och syftet är att demon-
strera hur man kan minska det manuella arbete som krävs för att kategorisera
ljud efter de preferenser och ljuduppfattningar varje enskild användare har.
Upplägget och designen kan ses i fig. 7.1. Valda ljud som läggs till i programmet
analyseras och grupperas, varefter de sparas i en databas och visas upp i en
tabell där användaren kan tagga och verifiera ljuden. Viktigt att notera är
att endast en beskrivning kan ges åt varje ljud. Ett ljud kan exempelvis inte
ha både taggen ”skrämmande” och ”lugnande”, men ljud i olika grupper kan
dela samma definition; två grupper av ljud kan alltså båda ha beskrivningen
”värmande”.

Kärnan i programmet som hjälper användaren med kategoriseringen är ett
automatiskt klassificeringssystem som utformats med hjälp av maskininlärning.
Systemet delar internt in liknande ljud i grupper baserat på deras klangfärg, eller
timbre, genom att analysera ljuden med biblioteket timbral_models. Ljuden
processeras och får sju stycken tillhörande numeriska värden utmärkta, som
varierar från 0 till 100. De här värdena används i sin tur när programmet söker
efter motsvarande ljud; ju fler värden som ligger nära varandra mellan två ljud,
desto mer påminner ljuden om varandra.

Andreas Näsman 45

Logiken som grupperar in ljuden enligt relevans är uppbyggd av två olika
maskininlärningsalgoritmer som sekventiellt får fram en inledande och en juster-
bar lösning. Båda algoritmerna är av typen icke-väglett lärande (unsupervised
learning) och är tagna ur scikit-learn-biblioteket. Den första metoden som
uppskattar hur många grupper det finns i en samling av ljud är gjord med
Mean shift-algoritmen. Den söker fram naturligt förekommande grupper av
data baserade på de attribut den får inmatade, i det här fallet de uträknade
värdena på klangfärg. Summan som det resulterar i och som produceras är en
estimerad utgångspunkt för hur många grupper det kommer att finnas i slutet
när användaren kategoriserat klart.

Den andra metoden är K-means-algoritmen som används för att kontinuerligt
uppdatera grupperingarna i enlighet med hur användaren använder programmet.
Till en början fungerar uppdelningarna som gjorts av Mean shift-algoritmen
som startpunkt, men allteftersom användaren gör flera kategoriseringar kan
det behövas nya indelningar och omorganisering i de existerande grupperna.
Antalet grupper med liknande ljud kan aldrig minska, endast öka i antal –
förutom när nya ljud läggs till. Den övre gränsen för antalet grupper är lika
många som det finns ljud i programmet. Om en användare vill ge en specifik
benämning till vart och ett av de inkluderade ljuden är det således möjligt.

När ljud blivit tillagda, analyserade och grupperade av maskininlärnings-
algoritmerna kan de bli tilldelade taggar – en singulär beskrivning per ljud
– definierade av antingen användaren själv eller automatiskt av programmet.
Kategoriseringar som görs av användaren antas alltid vara korrekta. Taggar
som programmet automatiskt tilldelar ljud förblir obekräftade till en början, då
de kan vara inkorrekta. Det här beror på att programmet inte kan vara säkert
på att klassificeringarna är rätt och är sålunda pessimistiskt i sitt handlingssätt.
För att hålla reda på de här två möjligheterna har varje ljud en associerad boo-
lesk datatyp, med benämningen verified, som klarlägger om den givna taggen
ett ljud har är korrekt eller inte. Programmatiskt taggade ljud kan verifieras av
användaren om hen anser att de är korrekta. Verifieringen kan också återställas
och ändras för vart och ett av de redan kategoriserade ljuden när som helst
under användning, vilket är behändigt om man av misstag verifierat ett ljud.

Verified-värdet bestämmer också hur programmet ska gå till väga när
motsvarande ljud ska taggas. Om ett ljud klassificeras när alla ljud i dess grupp
är overifierade – till exempel i början när inga ljud ännu har blivit kategoriserade
– eller om ett verifierat ljud taggas om, hålls de fastlagda grupperingarna intakta.
Då kommer alla ljud som tillhör samma grupp bli tilldelade den benämning
som gavs till det interagerade ljudet. Det här scenariot är i princip detsamma
som att döpa om taggen som hör ihop med gruppen.

Andreas Näsman 46

Det andra händelseförloppet inträffar när användaren väljer att kategorisera
om ljud som programmet redan taggat. Då bildas och modifieras grupper ända
tills ett resultat nåtts där grupperingarna överensstämmer med de kategorise-
ringar som användaren begär. Den tilldelade gruppen kan ändras för alla ljud,
med ljud som redan är verifierade kommer behålla sina taggar. Overifierade
ljud kan å andra sidan bli märkta med en ny potentiell benämning, även om
de tillhör en annan grupp än det korrigerade ljudet.

När ytterliga ljud läggs till i programmet behövs logik som ser till att de
framsteg användaren redan gjort i klassificeringar bibehålls. Eftersom de nya
ljuden kan befinna sig var som helst i relation till de som redan är inkluderade,
kommer all gruppering att göras om och programmet applicerar alla de defi-
nierade taggarna på nytt. I och med det här kan antalet grupper ändra, men
allt som användaren åstadkommit förblir oförändrat. De nyinlagda ljuden har
möjligen fått en automatiskt genererad tagg om de påminner om något av de
existerande ljuden.

Evaluering

För att evaluera det utvecklade programmet används fyra konstruerade exem-
pelfall som påvisar fungerande, men också bristfälliga utfall. Valda grupper av
ljud tagna från Freesound, som någon av deras användare skapat, utgör testdata
i de olika scenarierna. Målet i de olika fallen är att tagga alla ljud med samma
etikett i enlighet med de bestämda grupperna de tillhör. Kategoriseringarna är
objektiva benämningar på ljud enligt deras klangfärg, till exempel att trumpet-
ljud låter ”trumpetiga”. Även om det förekommer meningsskiljaktigheter om
indelning baserad på klangfärg kan den här typen av benämningar också ses
som gemensamt överenskomna subjektiva taggar, och fungerar också därför för
att bedöma programmet.

Enheten som mäts i testerna är antalet omorganiseringar, eller korrigeringar,
som behövs för att uppnå det bestämda målet. Utgående från resultatet i de
olika exemplen blir det tydligt att det behövs olika antal korrigering beroende
på hur nära besläktade grupperna av ljud är. Gitarr- och basljud blir lättare
ihopblandade och behöver rättas till än ljud av exempelvis trummor och
piano. Det blir också uppenbart att det finns flera olika sätt att nå fram till
slutresultatet och att olika alternativ kan kräva olika antal korrigeringar.

Andreas Näsman 47

Sammanfattning

Det behandlade lösningsförslaget i form av ett program visar möjligheten att
få fram ett mottagligt kategoriseringssystem med subjektiva taggar genom
att kombinera existerande metoder till en fungerande produkt. Programmet
minskar tidskrävande manuellt arbete, är flexibelt med avseende på olika använ-
dares uppfattningsförmåga och förbättras kontinuerligt ju mera det utnyttjas.
Lösningen är likväl ändå inte en färdig produkt; bland annat utseendet, pre-
standan och användarupplevelsen bör förbättras. Programmet i sig är inte
heller det väsentliga i den här avhandlingen, utan hur idén och upplägget
på lösningsförslaget kan utvecklas vidare. Genom att integrera systemet med
existerande sökverktyg kunde sökträffarna förbättras och sökningarna tillämpas
för att exempelvis i realtid hitta liknande ljud enligt en specifik användares
tolkning.

Andreas Näsman 48

Bibliography

[1] AudioCommons. Audio Commons. Accessed on April 23, 2020. url:
https://www.audiocommons.org/.

[2] AudioCommons. Audio Commons Audio Extractor. Accessed on Febru-
ary 13, 2020. url: https://github.com/AudioCommons/ac-audio-
extractor.

[3] AudioCommons. Audio Commons Audio Extractor Web Demonstrator.
Accessed on February 13, 2020. url: http://www.audiocommons.org/
ac-audio-extractor/web_demonstrator/.

[4] Dmitry Bogdanov et al. ESSENTIA: An Audio Analysis Library for
Music Information Retrieval. 2013.

[5] Pedro Cano et al. Knowledge and Content-Based Audio Retrieval Using
Wordnet. 2004.

[6] Pedro Cano et al. Nearest-Neighbor Automatic Sound Annotation with a
WordNet Taxonomy. 2005.

[7] Eugene Cherny et al. An Approach for Structuring Sound Sample Libraries
Using Ontology. 2016.

[8] François Chollet. Deep Learning with Python. Manning, 2018. url: https:
//livebook.manning.com/book/deep-learning-with-python/.

[9] ErrorCell. Freesound - pack: Basic Tech-Trance by ErrorCell. Accessed
on March 20, 2020. url: https://freesound.org/people/ErrorCell/
packs/1292/.

[10] Frederic Font. Audio Commons - Freesound. Accessed on February 13,
2020. url: https://www.audiocommons.org/2017/08/01/freesound.
html/.

[11] Frederic Font et al. Extending Tagging Ontologies with Domain Specific
Knowledge. 2014.

[12] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn & Ten-
sorFlow. O’Reilly, 2017.

https://www.audiocommons.org/
https://github.com/AudioCommons/ac-audio-extractor
https://github.com/AudioCommons/ac-audio-extractor
http://www.audiocommons.org/ac-audio-extractor/web_demonstrator/
http://www.audiocommons.org/ac-audio-extractor/web_demonstrator/
https://livebook.manning.com/book/deep-learning-with-python/
https://livebook.manning.com/book/deep-learning-with-python/
https://freesound.org/people/ErrorCell/packs/1292/
https://freesound.org/people/ErrorCell/packs/1292/
https://www.audiocommons.org/2017/08/01/freesound.html/
https://www.audiocommons.org/2017/08/01/freesound.html/

Andreas Näsman 49

[13] Yann Geslin, Pascal Mullon, and Max Jacob. Ecrins an audiocontent
description environment for sound samples. 2002.

[14] Thomas Grill. Constructing high-level perceptual audio descriptors for
textural sounds. 2012.

[15] Thomas Grill. On Automated Annotation of Acousmatic Music. 2012.

[16] Thomas Grill, Arthur Flexer, and Stuart Cunningham. Identification of
perceptual qualities in textural sounds using the repertory grid method.
2011.

[17] Hideo Hattori. A tool that automatically formats Python code to conform
to the PEP 8 style guide. Accessed on February 7, 2020. url: https:
//pypi.org/project/autopep8/.

[18] hello_flowers. Freesound - pack: Static and Radio Sounds by hello_flowers.
Accessed on March 20, 2020. url: https://freesound.org/people/
hello_flowers/packs/1867/.

[19] David M. Howard and Andy M. Tyrrell. Psychoacoustically informed
spectrography and timbre. 1997.

[20] Hypnosomnia. Freesound - pack: Bass Bars 1 by Hypnosomnia. Ac-
cessed on March 20, 2020. url: https://freesound.org/people/
Hypnosomnia/packs/1254/.

[21] Institute of Sound Recording (IoSR). Python scripts for modelling timbral
attributes. Accessed on February 6, 2020. url: https://github.com/
AudioCommons/timbral_models/.

[22] Kristoffer Jensen. “The Timbre Model”. Unpublished.

[23] jesuswaffle. Freesound - pack: Tom-Tom Grooves by jesuswaffle. Ac-
cessed on March 20, 2020. url: https://freesound.org/people/
jesuswaffle/packs/2918/.

[24] JetBrains. Python Developers Survey 2018 Results. Accessed on February
5, 2020. 2018. url: https://www.jetbrains.com/research/python-
developers-survey-2018/.

[25] Olivier Lartillot and Petri Toiviainen. A Matlab Toolbox For Musical
Feature Extraction From Audio. 2007.

[26] Brian McFee et al. LibROSA — librosa 0.7.2 documentation. Accessed
on April 23, 2020. url: https://librosa.github.io/.

[27] Brian McFee et al. librosa: Audio and Music Signal Analysis in Python.
2015.

https://pypi.org/project/autopep8/
https://pypi.org/project/autopep8/
https://freesound.org/people/hello_flowers/packs/1867/
https://freesound.org/people/hello_flowers/packs/1867/
https://freesound.org/people/Hypnosomnia/packs/1254/
https://freesound.org/people/Hypnosomnia/packs/1254/
https://github.com/AudioCommons/timbral_models/
https://github.com/AudioCommons/timbral_models/
https://freesound.org/people/jesuswaffle/packs/2918/
https://freesound.org/people/jesuswaffle/packs/2918/
https://www.jetbrains.com/research/python-developers-survey-2018/
https://www.jetbrains.com/research/python-developers-survey-2018/
https://librosa.github.io/

Andreas Näsman 50

[28] Eduardo Reck Miranda. Machine Learning and Sound Design. 1997.

[29] David Moffat, David Ronan, and Joshua D. Reiss. Unsupervised Taxonomy
of Sound Effects. 2017.

[30] MTG (UPF). Browseable Freesound APIv2. Accessed on February 13,
2020. url: https://freesound.org/apiv2/.

[31] MTG (UPF). Freesound - Freesound. Accessed on February 13, 2020.
url: https://freesound.org/.

[32] MTG (UPF). Freesound - Packs. Accessed on March 5, 2020. url:
https://freesound.org/browse/packs/.

[33] MTG (UPF). Freesound Annotator - Index. Accessed on April 27, 2020.
url: https://annotator.freesound.org/.

[34] MTG (UPF). Homepage — Essentia 2.1-beta6-dev documentation. Ac-
cessed on April 23, 2020. url: https://essentia.upf.edu/.

[35] Andy Pearce, Tim Brookes, and Russell Mason. D5.1: Hierarchical
ontology of timbral semantic descriptors. 2016.

[36] Andy Pearce, Tim Brookes, and Russell Mason. D5.2: First prototype
of timbral characterisation tools for semantically annotating non-musical
content. 2017.

[37] Andy Pearce, Tim Brookes, and Russell Mason. D5.3: Evaluation report
on the first prototypes of the timbral characterisation tools. 2017.

[38] Andy Pearce et al. D5.6: Second prototype of timbral characterisation
tools for semantically annotating non-musical content. 2018.

[39] Andy Pearce et al. D5.7: Evaluation report on the second prototypes of
the timbral characterisation tools. 2018.

[40] Andy Pearce et al. D5.8: Release of timbral characterisation tools for
semantically annotating non-musical content. 2019.

[41] Python Code Quality Authority. python code static checker. Accessed on
February 7, 2020. url: https://pypi.org/project/pylint/.

[42] Python Software Foundation. tkinter — Python interface to Tcl/Tk.
Accessed on February 7, 2020. url: https://docs.python.org/3.8/
library/tkinter.html.

[43] Python Software Foundation. Welcome to Python.org. Accessed on
February 6, 2020. url: https://www.python.org/.

[44] Kenneth Reitz. NumPy — NumPy. Accessed on February 6, 2020. url:
https://numpy.org/.

https://freesound.org/apiv2/
https://freesound.org/
https://freesound.org/browse/packs/
https://annotator.freesound.org/
https://essentia.upf.edu/
https://pypi.org/project/pylint/
https://docs.python.org/3.8/library/tkinter.html
https://docs.python.org/3.8/library/tkinter.html
https://www.python.org/
https://numpy.org/

Andreas Näsman 51

[45] Kenneth Reitz. Pipenv: Python Dev Workflow for Humans. Accessed on
February 4, 2020. url: https://pipenv.kennethreitz.org/.

[46] REVEREND.BLACK. Freesound - pack: Metal Guitar loops Un trimmed
150BPM by REVEREND.BLACK. Accessed on March 11, 2020. url:
https://freesound.org/people/REVEREND.BLACK/packs/19793/.

[47] Julien Ricard and Perfecto Herrera. Morphological sound description
computational model and usability evaluation. 2004.

[48] Ali Gholami Rudi. a python refactoring library... Accessed on February
7, 2020. url: https://pypi.org/project/rope/.

[49] Mihir Sarkar, Cyril Lan, and Joe Diaz. Words that Describe Timbre A
Study of Auditory Perception Through Language. 2009.

[50] scikit-learn developers. 2.3.2. K-means. Accessed on February 14, 2020.
url: https://scikit- learn.org/stable/modules/clustering.
html#k-means.

[51] scikit-learn developers. 2.3.4. Mean Shift. Accessed on February 14,
2020. url: https://scikit-learn.org/stable/modules/clustering.
html#mean-shift.

[52] scikit-learn developers. scikit-learn: machine learning in Python. Accessed
on February 4, 2020. url: https://scikit-learn.org/.

[53] scikit-learn developers. sklearn.cluster.KMeans. Accessed on March 19,
2020. url: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html#sklearn-cluster-kmeans.

[54] scikit-learn developers. sklearn.cluster.MeanShift. Accessed on March 19,
2020. url: https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.MeanShift.html#sklearn-cluster-meanshift.

[55] scuzzpuck. Freesound - pack: Box Drum by scuzzpuck. Accessed on March
11, 2020. url: https://freesound.org/people/scuzzpuck/packs/
1904/.

[56] Markus Siemens. Welcome to TinyDB! Accessed on February 6, 2020.
url: https://tinydb.readthedocs.io/.

[57] Dagobert Soergel. WordNet. An Electronic Lexical Database. 1998.

[58] Sound and Video Understanding teams at Google. AudioSet. Accessed
on April 27, 2020. url: https://research.google.com/audioset/.

[59] tim.kahn. Freesound - pack: Sharpening Knives by tim.kahn. Accessed
on March 20, 2020. url: https://freesound.org/people/tim.kahn/
packs/2280/.

https://pipenv.kennethreitz.org/
https://freesound.org/people/REVEREND.BLACK/packs/19793/
https://pypi.org/project/rope/
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#mean-shift
https://scikit-learn.org/stable/modules/clustering.html#mean-shift
https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn-cluster-kmeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn-cluster-kmeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn-cluster-meanshift
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn-cluster-meanshift
https://freesound.org/people/scuzzpuck/packs/1904/
https://freesound.org/people/scuzzpuck/packs/1904/
https://tinydb.readthedocs.io/
https://research.google.com/audioset/
https://freesound.org/people/tim.kahn/packs/2280/
https://freesound.org/people/tim.kahn/packs/2280/

Andreas Näsman 52

[60] Pantelis N. Vassilakis. SRA: A Web-based Research Tool for Spectral and
Roughness Analysis of Sound Signals. 2007.

[61] Sanae Wake and Toshiyuki Asahi. Sound Retrieval with Intuitive Verbal
Descriptions. 2001.

[62] David H. Wolpert. The Lack of A Priori Distinctions Between Learning
Algorithms. 1996.

[63] Nina Zakharenko. About Python. Accessed on February 6, 2020. 2019. url:
https://www.learnpython.dev/02-introduction-to-python/010-

best-practices/02-brief-history/.

[64] zerolagtime. Freesound - pack: A Harpsicord Dream by zerolagtime.
Accessed on March 20, 2020. url: https://freesound.org/people/
zerolagtime/packs/1793/.

https://www.learnpython.dev/02-introduction-to-python/010-best-practices/02-brief-history/
https://www.learnpython.dev/02-introduction-to-python/010-best-practices/02-brief-history/
https://freesound.org/people/zerolagtime/packs/1793/
https://freesound.org/people/zerolagtime/packs/1793/

Andreas Näsman 53

Appendix

Repository

https://github.com/AndreasNasman/masters-thesis/

Python source code

timbral_models.py

from json import loads
from path l ib import Path
from uuid import uuid1

from timbral_models import t imbra l_extractor

t imbra l_cha ra c t e r s t i c s = [
"boominess " ,
" b r i gh tne s s " ,
"depth" ,
" hardness " ,
" roughness " ,
" sharpness " ,
"warmth" ,

]

de f process_freesound_samples (d i r e c t o r y) :
""" Proce s s e s Freesound samples to a common format . """
r e s u l t = []
r e l evant_prope r t i e s = [" ac_analys i s " , " id " , "name" , "pack_name" , " type"]

paths = Path (d i r e c t o r y) . rg lob (" ∗ . j son ")
f o r path in paths :

t ry :
with open (path , " r ") as reader :

metadata = loads (reader . read ())
converted_metadata = {

"path" : s t r (path) ,
" tag " : "" ,
" v e r i f i e d " : Fa l se

}

f o r rp in r e l evant_prope r t i e s :
va lue = metadata [rp]

i f rp == " ac_analys i s " :
f o r tc in t imbra l_cha rac t e r s t i c s :

converted_metadata [tc] = value ["ac_" + tc]
e l s e :

converted_metadata [rp] = value

r e s u l t . append (converted_metadata)
except :

cont inue

https://github.com/AndreasNasman/masters-thesis/

Andreas Näsman 54

re turn r e s u l t

de f process_sounds (d i r e c t o r y) :
""" Proce s s e s sounds us ing AudioCommons Timbral Models . """
r e s u l t = []

paths = Path (d i r e c t o r y) . rg lob ("∗")
f o r path in paths :

t ry :
path_str = s t r (path)
sound = t imbra l_extractor (path_str , c l ip_output=True)
de l sound [" reverb "]

sound [" id "] = uuid1 () . hex
sound ["name"] = Path (path_str) . r e s o l v e () . stem
sound ["pack_name"] = ""
sound ["path"] = path_str
sound [" tag "] = ""
sound [" type"] = Path (path_str) . s u f f i x . r ep l a c e (" . " , "")
sound [" v e r i f i e d "] = False

r e s u l t . append (sound)
except :

cont inue

return r e s u l t

machine_learning.py

from copy import deepcopy

import numpy
from sk l ea rn . c l u s t e r import KMeans , MeanShift

from l o g i c . timbral_models import t imbra l_cha ra c t e r s t i c s

de f build_X (sounds) :
""" Bui lds X, i . e . c oo rd ina t e s f o r a l l samples ’ f e a t u r e s . """
X = []

f o r sound in sounds :
x = []
f o r tc in t imbra l_cha rac t e r s t i c s :

x . append (sound [tc])
X. append (x)

return X

def f ind_groups (sounds , X, c en t r o i d s) :
""" Finds groups o f sound us ing K means . """
k = len (c en t r o i d s)
km = KMeans(i n i t=cent ro ids , n_c luster s=k , n_init=1) . f i t (X)

updated_sounds = deepcopy (sounds)
f o r sound , group in z ip (updated_sounds , km. labe l s_) :

sound ["group"] = in t (group)

updated_centroids = km. c luster_centers_ . t o l i s t ()
updated_centroids . s o r t ()

re turn updated_sounds , updated_centroids

de f in i t_groups (sounds , X) :
""" Searches f o r i n i t i a l groups o f sound us ing Mean s h i f t . """
ms = MeanShift () . f i t (X)
c en t r o i d s = ms . c luster_centers_ . t o l i s t ()
c en t r o i d s . s o r t ()

re turn find_groups (sounds , X, numpy . array (c en t r o i d s))

de f add_group (sounds , X, cent ro id s , modified_sound) :

Andreas Näsman 55

"""Adds a new group o f sound . """
new_centroid = []
f o r tc in t imbra l_cha rac t e r s t i c s :

new_centroid . append (modified_sound [tc])

new_centroids = deepcopy (c en t r o i d s)
new_centroids . append (new_centroid)
new_centroids . s o r t ()

re turn find_groups (sounds , X, numpy . array (new_centroids))

de f modify_groups (sounds , X, cent ro id s , modified_sound , tag , db_sounds) :
"""Modi f i e s groups un t i l sounds have t h e i r a s s o c i a t ed tag . """
updated_sounds , updated_centroids = add_group (

sounds , X, cent ro id s , modified_sound)

Finds the new group .
f o r updated_sound in updated_sounds :

i f updated_sound [" id "] == modified_sound [" id "] :
new_group = updated_sound ["group"]
break

Tags sounds in the new group .
f o r updated_sound in updated_sounds :

i f updated_sound ["group"] == new_group :
updated_sound [" tag "] = tag

Checks that a l l v e r i f i e d sounds kept t h e i r tag .
f o r db_sound , updated_sound in z ip (db_sounds , updated_sounds) :

i f (db_sound [" v e r i f i e d "] and
db_sound [" tag "] != updated_sound [" tag "] and

db_sound [" id "] != modified_sound [" id "]) :
r e turn modify_groups (updated_sounds , X, updated_centroids ,

db_sound , db_sound [" tag "] , db_sounds)

re turn updated_sounds , updated_centroids

de f sort_sounds (sounds) :
"""Sounds need to be so r t ed f o r some o f the l o g i c to work c o r r e c t l y . """
updated_sounds = sor ted (sounds , key=lambda s : (s ["group"] , not s [" tag "]))
updated_X = build_X (updated_sounds)

re turn updated_sounds , updated_X

def review_groups (sounds , X, c en t r o i d s) :
"""Makes sure that there i s only one tag per group . """
updated_sounds , updated_X = sort_sounds (sounds)
updated_centroids = cen t r o i d s

f o r a , b in z ip (updated_sounds , updated_sounds [1 :]) :
i f (a ["group"] == b ["group"] and a [" tag "] != b [" tag "]

and a [" tag "] and b [" tag "]) :
updated_sounds , updated_centroids = add_group (

updated_sounds , updated_X , updated_centroids , b)
re turn review_groups (

updated_sounds , updated_X , updated_centroids)

re turn updated_sounds , X, updated_centroids

de f tag_groups (sounds) :
"""Tags sounds that are miss ing a group ’ s tag . """
updated_sounds , updated_X = sort_sounds (sounds)

f o r a , b in z ip (updated_sounds , updated_sounds [1 :]) :
i f a ["group"] == b ["group"] and a [" tag "] and not b [" tag "] :

b [" tag "] = a [" tag "]

re turn updated_sounds , updated_X

Andreas Näsman 56

main.py

from operator import i t emget t e r
from os import path
from path l ib import Path
from subprocess import run
from tk i n t e r import (HORIZONTAL, VERTICAL, Canvas , E, N, S , Tk , Toplevel , W,

f i l e d i a l o g , messagebox , t tk)

from tinydb import TinyDB , where

from l o g i c . machine_learning import (build_X , init_groups , modify_groups ,
review_groups , tag_groups)

from l o g i c . timbral_models import (process_freesound_samples , process_sounds ,
t imbra l_cha ra c t e r s t i c s)

Database setup
db = TinyDB("db . j son ")
ml = TinyDB("ml . j son ")

de f update_databases (sounds , c ent ro id s , X=None) :
"""Updates databases with modi f ied data . """
f o r sound in sounds :

db . upser t (sound , where (" id ") == sound [" id "])

ml . upser t ({ "data" : cent ro id s , " id " : " c en t r o i d s " } ,
where (" id ") == " cen t r o i d s ")

i f X:
ml . upser t ({ "data" : X, " id " : "X"} , where (" id ") == "X")

de f purge_databases () :
""" Clears a l l data from the databases . """
i f not l en (db . a l l ()) :

messagebox . showerror (message="There␣ are ␣no␣ sounds␣ to ␣ d e l e t e ! ")
re turn

ok = messagebox . askokcance l (
message="This ␣ w i l l ␣remove␣ a l l ␣ cu r r en t l y ␣added␣ sounds . ")

i f ok :
db . purge ()
ml . purge ()
draw_table ()

de f check_database_occurrence (sounds) :
"""Checks i f new sounds are a l ready in the database . """
new_sounds = []

f o r sound in sounds :
db_sound = db . search (where (" id ") == sound [" id "])
i f not db_sound :

new_sounds . append (sound)

return new_sounds

de f choose_directory (mode=None) :
"""Loads f i l e s from a d i r e c t o r y and handles them appropr i a t e l y . """
d i r e c t o r y = f i l e d i a l o g . a skd i r e c t o ry (i n i t i a l d i r=Path . cwd ())
i f not d i r e c t o r y :

re turn

i f mode == " freesound " :
sounds = process_freesound_samples (d i r e c t o r y)
i f not sounds :

messagebox . showerror (
message=("No␣ va l i d ␣metadata␣ f i l e s ␣ (. j son) ␣" +

" found␣ in ␣ chosen ␣ d i r e c t o r y ! "))
re turn

e l s e :
sounds = process_sounds (d i r e c t o r y)
i f not sounds :

messagebox . showerror (
message=("No␣ supported ␣sound␣ f i l e s ␣ (. wav) ␣" +

" found␣ in ␣ chosen ␣ d i r e c t o r y ! "))

Andreas Näsman 57

re turn

Checks i f chosen sounds a l ready e x i s t in the database .
sounds = check_database_occurrence (sounds)
i f not sounds :

messagebox . showerror (
message="No␣new␣sounds␣ to ␣ analyze ␣ found␣ in ␣ chosen ␣ d i r e c t o r y ! ")

re turn

Finds i n i t i a l groups f o r a l l sounds .
sounds += db . a l l ()
X = build_X (sounds)
sounds , c en t r o i d s = init_groups (sounds , X)

Checks that a l l groups has a s i n g l e unique tag and
makes sure new sounds are tagged accord ing to the group they belong to .
sounds , X, c en t r o i d s = review_groups (sounds , X, c en t r o i d s)
sounds , X = tag_groups (sounds)

update_databases (sounds , c ent ro id s , X)
draw_table ()

de f tag (d ia log , input , sound) :
"""Tags a sound , p lus p o t e n t i a l l y r e l a t e d sounds . """
errorMessage = None

i f not input or input . i s s p a c e () :
errorMessage = " Input ␣ cannot␣be␣empty ! "

e l i f input == sound [" tag "] :
errorMessage = "The␣ input ␣ cannot␣be␣ the ␣same␣as ␣ the ␣ cur rent ␣ value ! "

i f errorMessage :
messagebox . showerror (message=errorMessage)
re turn

Keep cur rent groupings .
group_sounds = db . search (where ("group") == sound ["group"])
i f (sound [" v e r i f i e d "] or a l l ([not gs [" v e r i f i e d "] f o r gs in group_sounds])) :

db . update ({ " tag " : input } , where ("group") == sound ["group"])
db . update ({ " v e r i f i e d " : True } , where (" id ") == sound [" id "])

e l s e : # Modify groups .
db . update (

{" tag " : input , " v e r i f i e d " : True } ,
where (" id ") == sound [" id "]

)
modified_sound = db . search (where (" id ") == sound [" id "]) [0]

db_sounds = db . a l l ()
X = ml . search (where (" id ") == "X") [0] ["data"]
c en t r o i d s = ml . search (where (" id ") == " cen t r o i d s ") [0] ["data"]

sounds , c en t r o i d s = modify_groups (
db_sounds ,
X,
cent ro id s ,
modified_sound ,
input ,
db_sounds

)
sounds , X, c en t r o i d s = review_groups (sounds , X, c en t r o i d s)
sounds , X = tag_groups (sounds)
update_databases (sounds , c ent ro id s , X)

draw_table ()
d i a l og . des t roy ()

de f tag_dialog (sound) :
""" Dialog to ente r tag input . """
d i a l og = Topleve l ()
d i a l og . t i t l e ("Tag")

frame = ttk . Frame(d i a l og)
frame . g r id (column=0, row=0, s t i c ky=(N, W, E, S))

input = ttk . Entry (frame)
input . g r id (column=0, row=0)
input . f o cus ()

Andreas Näsman 58

button = ttk . Button (frame , t ext="Tag" , command=lambda d i a l og=dia log ,
input=input : tag (d ia log , input . get () . s t r i p () , sound))

button . g r id (column=0, row=1)

de f v e r i f y (sound) :
""" Toggles v e r i f i c a t i o n o f a sound . """
db . update ({ " v e r i f i e d " : not sound [" v e r i f i e d "] } , where (" id ") == sound [" id "])
draw_table ()

de f l i s t e n (event , sound) :
"""Opens a sound in the system de f au l t app l i c a t i on . """
sound_path = f "{path . s p l i t e x t (sound [’ path ’]) [0] } . { sound [’ type ’] } "
run (["open" , sound_path])

de f draw_table () :
""" (Re) draws the tab l e o f sounds . """
lower_frame = ttk . Frame(main_frame)
lower_frame . g r id (column=0, row=2, s t i c ky=(N, E, S , W))
lower_frame . co lumnconf igure (0 , weight=1)
lower_frame . rowconf igure (1 , weight=1)

In fo
info_frame = ttk . Frame(lower_frame , padding=(0 , 0 , 0 , 10))
info_frame . g r id (column=0, row=0, s t i c ky=(N, E, S , W))
info_frame . co lumnconf igure (0 , weight=1)
info_frame . co lumnconf igure (1 , weight=1)
info_frame . co lumnconf igure (2 , weight=1)

sounds = db . a l l ()
l a b e l = ttk . Label (info_frame , text=f "Number␣ o f ␣ sounds : ␣{ l en (sounds) }")
l a b e l . g r id (column=0, row=0)

try :
c en t r o i d s = ml . search (where (" id ") == " cen t r o i d s ") [0] ["data"]

except :
c en t r o i d s = []

l a b e l = ttk . Label (
info_frame , text=f "Number␣ o f ␣ groups : ␣{ l en (c en t r o i d s) }")

l a b e l . g r id (column=1, row=0)

button = ttk . Button (info_frame , command=purge_databases ,
t ext="Delete ␣ sounds")

button . g r id (column=2, row=0)

Sc r o l l b a r s
canvas = Canvas (lower_frame , bg="#e6e6e6 " , h i g h l i g h t t h i c kn e s s =0)
canvas . g r id (column=0, row=1, s t i c ky=(N, E, S , W))

sc ro l lbar_y = ttk . S c r o l l b a r (
lower_frame , o r i e n t=VERTICAL, command=canvas . yview , bg="#e6e6e6 ")

sc ro l lbar_y . g r id (column=1, row=1, s t i c ky=(N, E, S , W))

sc ro l lbar_x = ttk . S c r o l l b a r (
lower_frame , o r i e n t=HORIZONTAL, command=canvas . xview , bg="#e6e6e6 ")

sc ro l lbar_x . g r id (column=0, row=2, s t i c ky=(N, E, S , W))

s c ro l l ab l e_f rame = ttk . Frame(canvas , padding=(10 , 0))
s c ro l l ab l e_f rame . bind ("<Configure>" , lambda e : canvas . c on f i gu r e (

s c r o l l r e g i o n=canvas . bbox (" a l l ")))

canvas . create_window ((0 , 0) , window=scro l l ab l e_frame , anchor="nw")
canvas . c on f i gu r e (yscrollcommand=scro l lbar_y . s e t)
canvas . c on f i gu r e (xscrollcommand=scro l lbar_x . s e t)

Table
f i e l d s = ["name" , " type" , "group" , " tag " ,

" v e r i f i e d " , "pack_name"] + t imbra l_cha ra c t e r s t i c s
sounds = db . a l l ()
sounds . s o r t (key=i t emget t e r ("pack_name" , "name" , " id "))

f o r row , sound in enumerate (sounds , s t a r t =1) :
Headers
i f row == 1 :

f o r column , f i e l d in enumerate (f i e l d s , s t a r t =2) :
l a b e l = ttk . Label (sc ro l l ab l e_frame ,

Andreas Näsman 59

f ont="−weight ␣bold " , t ext=f i e l d)
l a b e l . g r id (column=column , row=0)
sc ro l l ab l e_f rame . co lumnconf igure (column , weight=1)

button = ttk . Button (sc ro l l ab l e_frame , command=lambda sound=sound :
tag_dialog (sound) , t ext="Tag")

button . g r id (column=0, row=row)

i f sound [" tag "] :
i f sound [" v e r i f i e d "] :

t ext = "Unver i fy "
e l s e :

t ext = "Ver i fy "
button = ttk . Button (sc ro l l ab l e_frame , command=lambda sound=sound :

v e r i f y (sound) , t ext=text)
button . g r id (column=1, row=row)

f o r column , f i e l d in enumerate (f i e l d s , s t a r t =2) :
l a b e l = ttk . Label (s c ro l l ab l e_f rame)
value = sound [f i e l d]

i f va lue == "" :
value = "−"

e l i f i s i n s t a n c e (value , bool) :
i f sound [" tag "] :

i f va lue :
value = "Yes"
l a b e l . c on f i gu r e (foreground="green ")

e l s e :
va lue = "No"
l a b e l . c on f i gu r e (foreground=" red ")

e l s e :
va lue = "−"

e l i f i s i n s t a n c e (value , f l o a t) :
va lue = round (value , 2)

l a b e l . c on f i gu r e (text=value)
l a b e l . g r id (column=column , row=row)

i f f i e l d == "name" :
l a b e l . bind ("<Button−1>" , lambda event ,

sound=sound : l i s t e n (event , sound))
l a b e l . c on f i gu r e (cur so r="hand2" , foreground="blue ")

Removes o ld render .
i f l en (main_frame . g r id_s laves ()) > 3 :

main_frame . g r id_s laves () [1] . des t roy ()

root . update ()
i f (s c ro l l ab l e_f rame . winfo_width () < canvas . winfo_width ()) :

canvas . i t emcon f i g (1 , width=canvas . winfo_width ())

Root
root = Tk()
root . t i t l e (" Sub j e c t i v e ␣Audio␣Tagging")
root . gr id_columnconf igure (0 , weight=1)
root . gr id_rowconf igure (0 , weight=1)
root . geometry (f "{ root . winfo_screenwidth () }x{ root . winfo_screenhe ight () }")

Main frame
main_frame = ttk . Frame(root)
main_frame . g r id (column=0, row=0, s t i c ky=(N, E, S , W))
main_frame . gr id_columnconf igure (0 , weight=1)
main_frame . gr id_rowconf igure (2 , weight=1)

Lower frame
upper_frame = ttk . Frame(main_frame , padding=10)
upper_frame . g r id (column=0, row=0, s t i c ky=(N, E, S , W))
upper_frame . co lumnconf igure (0 , weight=1)
upper_frame . co lumnconf igure (1 , weight=1)

l a b e l = ttk . Label (upper_frame , text="Add␣ sounds")
l a b e l . g r id (column=0, row=0)

button = ttk . Button (upper_frame , command=choose_directory ,
t ext="Choose␣ d i r e c t o r y ")

button . g r id (column=0, row=1)

Andreas Näsman 60

l a b e l = ttk . Label (upper_frame , text="Add␣Freesound␣ samples ")
l a b e l . g r id (column=1, row=0)

button = ttk . Button (upper_frame , command=lambda mode=" freesound " :
choose_directory (mode) , t ext="Choose␣ d i r e c t o r y ")

button . g r id (column=1, row=1)

Middle frame
middle_frame = ttk . Frame(main_frame , padding=10)
middle_frame . g r id (column=0, row=1, s t i c ky=(N, E, S , W))
middle_frame . co lumnconf igure (0 , weigh=1)

separa to r = ttk . Separator (middle_frame)
separa to r . g r id (column=0, row=0, s t i c ky=(N, E, S , W))

Lower frame
draw_table ()

Enter event loop
root . mainloop ()

	List of Abbreviations
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Motive
	Thesis outline

	Background
	Problem description
	Related work

	Methods
	Audio analysis
	Sound similarity estimation
	Machine learning

	Implementation
	System architecture
	Overview
	Adding sounds
	Freesound samples
	Deleting sounds

	Sound similarity
	Mean shift
	K-means
	Usage

	Tagging
	Verification

	Automatic tagging
	Tag renaming
	Modifying groups

	Additional sounds

	Evaluation
	Subjectivity
	Measurement
	Case 1 – Rudimentary
	Case 2 – Divergence
	Case 3 – Scope
	Case 4 – Scalability

	Discussion
	Conclusion
	Further work

	Svensk sammanfattning
	Bibliography
	Appendix

