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Abstract

Plankton are at the base of the food chain, and identifying their drivers
is important for understanding how climate change will impact popu-
lations and communities. The main aim of my thesis was to quantify
the effects of environmental drivers on population dynamics of natural
phyto- and zooplankton populations (mainly species and genera) using
population dynamical modelling of time-series data. However, using
time-series data for modelling population dynamics presents multiple
challenges as data are never perfect. All data collection and observa-
tion processes contain multiple sources of uncertainty and in my thesis,
I make an effort to account for such sources, with more detailed consid-
eration of seasonality and wind.

In a case study investigating the spatio-temporal population dynam-
ics of six phytoplankton species, populations displayed a high level of
synchrony in their annual biomass dynamics across the northern Baltic
Sea, likely caused by the Moran effect. When I further investigated abi-
otic drivers in the Gulf of Finland, individual auto- and heterotrophic
plankton taxa were mainly driven by temperature, salinity and stratifi-
cation.

Identifying temperature effects on abundance can be challenging, as
temperature can also affect seasonal timing of populations. While there
were few direct effects of temperature on zooplankton abundances, there
were changes in their seasonal occurrence to earlier spring, likely con-
nected to warming.

I also investigated potential biotic interaction between zooplankton
and zoobenthos, as zooplankton can have resting eggs in the sediment.
The results indicate that biotic interactions were important on annual
scale within zoobenthos, but no interactions between zooplankton and
zoobenthos were apparent.

Based on the findings in my thesis, many of the identified environ-
mental effects on densities were large in relation to the environmental
variability. There is also a need to consider seasonality when investigat-
ing plankton populations, as ignoring changes in phenology can lead to
noisier estimates or to issues with interpreting temporal patterns.

Keywords: observation error, phenology, plankton, salinity, species
interactions, state-space model, stratification, temperature, time-series.






Sammanfattning

Plankton utgor en grundldggande komponent av fodovévar, och att
identifiera vilka variabler som &r viktiga for dem bidrar till var forstaelse
av hur klimatférandring kommer att paverka populationer och samhaéllen.
Maélet med min avhandling &r att undersdka effekterna av miljovari-
abler pa populationsdynamiken hos naturliga populationer av vaxt-och
djurplankton (framst arter och familjer), genom populationsdynamisk
modellering av tids-serier. Eftersom inget data &r perfekt 4r anvandnin-
gen av tids-serier for modellering av populationsdynamik sdllan utan
utmaningar. All datainsamling och alla observationsprocesser innehaller
flera kéllor av osdkerhet och i min avhandling stravar jag till att beakta
dessa killor, med en speciell betoning pa sasongsbundenhet och vind.

I en fallstudie undersokte jag tids- och rumsvariationen i popula-
tionsdynamiken hos sex vixtplankton arter. Jag visar att arterna up-
pvisar synkron biomassdynamik éver norra Ostersjon, vilket sannolikt
ar en foljd av Moran effekten. Da jag sedan undersokte effekten av abi-
otiska variabler pa drliga biomassan hos auto- och heterotrofa plankton
i Finska viken var temperatur, salinitet och skiktning de frimsta vari-
ablerna.

Att identifiera hur temperatur pdverkar abundans kan vara svart,
eftersom temperaturen ocksd kan paverka populationens sdsongsberoende.
Det fanns fa direkta temperatureffekter pa abundansen av djurplank-
ton, men deras forekomst har delvis tidigarestéllts om varen, vilket san-
nolikt dr kopplat till temperaturen.

Jag undersokte ocksa forekomsten av interaktioner mellan djurplank-
ton och bottenfauna, eftersom djurplankton kan ha vilodgg i sedimentet.
Resultaten visar att interaktioner pa arlig skala ar viktiga inom botten-
faunan, medan det inte gick att identifiera effekter mellan djurplankton
och bottenfauna.

Min avhandling visar att manga av de identifierade abiotiska vari-
ablerna hade stora effekter pa populationens densitet i férhdllande till
miljons variation. Det dr ocksa viktigt att beakta sdasongsberoende da
man undersoker plankton, och om det ignoreras kan det leda till brusi-
gare estimat eller forsvara tolkningen av temporala monster.

Nyckelord: fenologi, mellanarts-interaktioner, observationsfel, plank-
ton, salinitet, skiktning, temperatur, tidsserier, tillstdinds-modell.
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1 Introduction

1.1 Population dynamics

The dynamics of a species consist of fluctuations in abundances that are
determined by the combination of births, deaths, emigration and immi-
gration, all influenced by intrinsic (density) and extrinsic (environment)
drivers. Since extrinsic and intrinsic drivers act on the level of the indi-
vidual, large scale patterns in population fluctuations can be discerned
by ignoring individual variation in favour of simplification. The clas-
sical Ricker model for population growth can be linearised on the log
scale and the population process can be reformulated as a discrete-time
Gompertz model (Dennis and Taper 1994; Royama 1981), and to this one
can include additional environmental covariates, as

Tt =a+bri_1 + ucy + ws 1)

wy ~ N(0,q) 2)

Here, z; is the log density at time-step ¢ and is described as a function
of the log density at the previous time-step z_; modified by the density
dependence (b). Further, a is the intrinsic rate of population growth, the
scalar vector u describes the effect of the environment (¢;), and wy is
a random variable describing the unexplained variation, with mean 0
and variance ¢ (Equation 1 and 2). Depending on the investigation, the
density dependence can be a reflection on the intraspecific competition
in the population, or a merely technical reflection of the statistical return
tendency of the time-series, affected by a wealth of different processes.
In the statistical analysis of a log-transformed time-series of population
density =, this stochastic model may be referred to as a first order linear
autoregressive model with a covariate (an ARX(1) model). If one is not
interested in the average level of the time series, one may subtract the
mean from the logged time-series x; and leave out the intercept term (a)
from Equation 1.

In a multi-species system, species can influence each other through
competition for resources, predation, facilitation etc. This can be achieved
by extending Equation 1 and 2 to include multiple species. In Equation
3 and 4 I show a two species example where the matrix B describes
the inter- and intraspecific interactions. The diagonal of B describe the
intraspecific density dependence of each species and the off-diagonal
elements the interactions of species one on species two and vice versa
(see Ives et al. 2003 for more details).



x| | b b1l |m Ul trend Ul,env| |Ctrend w1
= + + 3)
T2, b2 b2 |z2], | |U2trend U2env] | Cenv |, |w2,

0 Qo q12
@)

These types of stochastic models, used to investigate interactions be-
tween species or populations and the effects of extrinsic variables using
multivariate time-series data with lag one, are known as multivariate-
or vector autoregressive models (MAR or VAR respectively). They have
been extensively applied in analyses of plankton time-series data to in-
vestigate interactions and extrinsic drivers, interactions between plank-
ton taxa (Barraquand et al. 2018; Griffiths et al. 2016; Hampton et al.
2006; Hampton and Schindler 2006; Scheef et al. 2013, 2012), and to de-
tect shifts in community interactions (Francis et al. 2012, 2014).

1.2 Plankton as a model system

Plankton consist of a diverse group of organisms unable to swim against
currents. Many, however, are capable of limited movement. The main
focus of my thesis will be on phyto- and zooplankton.

In a foreseeable future, anthropogenic change is predicted to be the
dominant factor modifying global marine food webs, acting by influ-
encing variables such as temperature and salinity, and processes such as
acidification (BACC II Author Team 2015; Cloern et al. 2016), by influ-
encing species distributions, species composition, food web functioning
and phenology patterns (Beaugrand et al. 2019; Edwards and Richard-
son 2004; Parmesan and Yohe 2003; Pontavice et al. 2020). Plankton are
affected by these anthropogenic changes both directly through effects
on their physiology and indirectly through changes in top-down and
bottom-up regulations, where e.g. an increase in temperature can lead
to higher grazing pressure and nutrient availability is influenced by pre-
vailing mixing conditions respectively (Bruno et al. 2015; Sommer and
Lewandowska 2011; Winder and Sommer 2012). Elevated temperatures
have led to large-scale changes in both phyto- and zooplankton in tem-
perate regions with earlier onset in spring emergence and a size-at-age
decrease (Daufresne et al. 2009; Hjerne et al. 2019). In the North Atlantic
shifts in species distributions are occurring, where temperate species,
such as Calanus finmarchicus, are gaining ground and moving northward
(Chust et al. 2014). Especially in marginal seas, such as the Baltic Sea,
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salinities have locally decreased in part due to increases in freshwater
run-off (Meier et al. 2012). The decrease in salinity have in combination
with eutrophication and warming contributed to changes in the distri-
bution of plankton and changes in their community composition in the
northern Baltic Sea (Hanninen et al. 2003; Kuosa et al. 2017, Makinen
et al. 2017).

Many plankton taxa are relatively small, fast reproducing and sen-
sitive to their environment, thus considered good indicators of climate
change (Andersson et al. 2015; McQuatters-Gollop et al. 2017). Changes
in plankton communities and species can have far reaching consequences,
as plankton affects biogeochemical cycling and as they constitute the
main link between bacteria and fish (Litchman et al. 2015; Tamelander
et al. 2017). Their short generation times and rapid response to the en-
vironment make plankton excellent candidates for investigating envi-
ronmental drivers using population dynamical modelling. However,
choosing the appropriate spatio-temporal scale for the investigation can
prove challenging and requires consideration (e.g. Hampton and Schindler
2006; Scheef et al. 2012; Wauchope et al. 2019).

Numerous studies have investigated physiological responses to en-
vironmental drivers such as temperature and salinity in both phyto- and
zooplankton species using experiments (e.g. Diekmann et al. 2012; Kre-
mer et al. 2017; Thomas et al. 2012 and references therein). In natural set-
tings, however, many studies focused on long-term changes use a coarse
taxonomical scale. This can be due to many reasons; the question can
be about large-scale trends aiming to capture general patterns between
environmental variables and plankton or to describe the community
composition. Researchers also need to consider quality of the data due
to sampling technique or taxonomical resolution (Zingone et al. 2015).
However, many taxa can have inherent traits that make the species-
level an interesting focus of study and traits can vary also within classes
(Litchman and Klausmeier 2008). Some taxa can be toxic and thereby
of economic importance for aquaculture and fisheries, while others are
excellent quality nutrition to the next trophic level (Litchman and Klaus-
meier 2008 and references therein). Many cyanobacterial taxa are toxic
and the mass-occurrences have been shown to globally increase in fre-
quency, magnitude and length (Huisman et al. 2018). Changes in zoo-
plankton species composition have been linked to declining trends in
Baltic herring sizes in the Gulf of Finland, as herring prefers larger ma-
rine copepods (Flinkman et al. 1998). If taxa are analysed as larger tax-
onomical groups, the estimated effects of environmental drivers can be
averaged out, particularly if the taxa are inversely affected by the same
driver, the effect varies temporally, or if one taxa has a low contribution
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to the biomass or abundance at the chosen scale of investigation (Grif-
fiths et al. 2016). Thus, knowledge of the species and how they affect
the functioning of the ecosystem under climate change are needed to
make sound management decisions (Andersson et al. 2015; McQuatters-
Gollop et al. 2017).

1.3 The detection of environmental drivers
Granger causality

When investigating the effect of both biotic and abiotic variables on
population dynamics it is logical to assume that the cause should pre-
cede the effect, and to stipulate that a single environmental driver should
describe variation in addition to a mere temporal trend. One method
for identifying such environmental drivers of population densities is
including them as lagged candidate covariates into population mod-
els that alone can describe simple trends and autocorrelated temporal
structure (see Ives et al. 2003). The approach to identify effects of co-
variates, by including their lagged effects in autoregressive time-series
models is referred to as Granger causality in other contexts (Granger
1969).

Abiotic drivers

The role and detection of abiotic drivers depend on the scale of the in-
vestigation (e.¢. Rantajdrvi et al. 1998). Reliably linking covariates to
the dynamics of natural populations is essential for understanding the
drivers of abundance or biomass, even in cases when a species” ecolog-
ical requirements and optima are known from experimental studies. To
be relevant for population dynamics and to produce a detectable effect,
the abiotic driver is required to produce a detectable effect by influenc-
ing survival, reproduction or growth (Kremer et al. 2017; Portner and
Farrell 2008). Additionally, if the fluctuations of the variable are low in
nature, or if it varies within the optimal range of the species, it can be
irrelevant or undetectable for population dynamics in natural popula-
tions (see Portner and Farrell 2008; Thomas et al. 2016). The species’
tolerance to a physical environmental variable, such as temperature,
generally follows a curved pattern where the optimum is reached at
the top of the curve at some intermediate environmental values (Eppley
1972). When the variable moves away from the optimum the decrease in
fitness is generally steeper above the optimum than below (Diekmann
et al. 2012; Eppley 1972; Portner and Farrell 2008). As such, the variable



will have the greatest effect on population dynamics in areas where the
variable’s range also covers suboptimal conditions, where the species’
tolerance to the variable has a steep monotonic response.

Biotic drivers

Species can influence each other through biotic interactions and can
themselves also be influenced through intraspecific effects. The inter-
action effects can be negative through processes such as predation or
competition for resources, or positive through facilitation. Together
both long-term effects of abiotic variables and population- and commu-
nity level processes explain the functioning of communities (Salo et al.
2019). Properly identifying biotic interactions can be challenging in the
presence of environmental effects, especially if the important environ-
mental variables are autocorrelated. Thus, accounting for abiotic effects
is required to properly identify biotic interactions (Ripa and Ives 2003,
2007). Phytoplankton have been shown to have different biotic interac-
tions in an open and a coastal area (Griffiths et al. 2016), highlighting
the importance of also considering biotic interactions.

1.4 QObservation error

To reliably estimate the effect of extrinsic variables and density depen-
dence in population dynamical models, some considerations need to be
made if a large amount of observation error is present (Knape 2008),
which is suggested to be typical for marine data (Hampton et al. 2013;
Scheef et al. 2013). Otherwise, there is a risk that density dependence
(b in Equation 1) is biased toward zero, leading to spurious detection of
strong density dependence where there is none (i.e. when b = 1; Knape
and de Valpine 2012). In the presence of observation error, also the es-
timation of extrinsic effects and their uncertainties can be affected, es-
pecially when there is strong autocorrelation in the extrinsic variables
(Lindén and Knape 2009). Extending the simple AR or MAR model
to a multivariate state-space model (SSM) allows us to simultaneously
account for both observation and process error (Durbin and Koopman
2012).

The observation process can in itself be influenced by extrinsic vari-
ables, such as weather. Prevailing wind conditions can e.g. affect the
vertical and horizontal distribution of plankton (Kanoshina et al. 2003).
Hence, successful analysis of the large-scale dynamics require thorough
modelling and consideration of the sampling process.



1.5 Aims

Numerous experimental studies have demonstrated which physical con-
ditions have an impact on plankton populations. Additionally, long-
term monitoring data sets investigated through trend analyses and de-
scriptive multivariate analyses have documented changes in plankton
populations and communities, which are thought to be linked to changes
in environmental conditions (Makinen et al. 2017; Suikkanen et al. 2013;
Wasmund et al. 2011). However, few studies have used monitoring data
to explicitly link plankton population dynamics in the sea to physical
conditions using population dynamical models, while aiming for high
taxonomical resolution and accounting for a trend sensu Granger causal-
ity (cf. Barraquand et al. 2018). Hence, this thesis is an extension to the
existing vast literature on changes in plankton populations and com-
munities. Bridging the gap between patterns in observational data and
experiments, each of the four chapters is a step towards understanding
what drives natural plankton population dynamics.

I The main aim of my thesis is to quantify the large-scale effects
and impacts of key physical variables on the annual variation in
phyto- and zooplankton populations in the Baltic Sea. This in-
cludes examining the relative contribution of anthropogenic and
density-dependent factors in explaining population fluctuations,
while applying the logic of Granger causality for identifying ef-
fects of extrinsic variables.

I The second aim is to explicitly account for sources of observation
error by modelling the observation process, which should ulti-
mately support the aims outlined above by reducing various bi-
ases. As some physical processes also affect the small-scale dy-
namics of the organisms, such as vertical placement or phenology,
successful analysis of large-scale dynamics require thorough con-
sideration of the data and modelling of the observation process.
The exact definition of observation error in the present work is
applied loosely, and the definition is tied to the ecological ques-
tion, spatio-temporal scale of the investigated system and to the
available data. In general, each chapter is an example on how to
consider this issue.



2 Material and Methods

2.1 The Baltic Sea

The Baltic Sea is a semi-enclosed water basin in northern Europe. Due
to its brackish water nature and geologically young age, the area has
relatively few dominant taxa, and many taxa of marine and freshwa-
ter origin exist at the edge of their salinity tolerance (Johannesson and
André 2006; Reusch et al. 2018). The chapters of my thesis span three
spatial scales located in the northern Baltic Sea (Fig. 1). Chapter I inves-
tigates multiple spatial scales, spanning over the largest area including
areas from the Gotland Basin in the south to the Bothnian Bay in the
north. Chapter II investigates the Gulf of Finland, while chapter III and
IV focuses one extensively studied coastal station within that area.
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Figure 1: The stations used to gather the plankton and zoobenthic data
used in chapters I-IV. The legend shows the stations that were used in
each chapter.



The surface salinity in the whole investigated area ranges from ca. 3
to 7.5, while it is ca. 5.6 in the Gulf of Finland (Andersen et al. 2017).
All of the basins notoriously suffer from eutrophication (Andersen et al.
2017). Studies have indicated that the salinity has decreased and that
the temperature has increased since 1979 for some of the basins (Almén
et al. 2017; Suikkanen et al. 2013). Predictions for the Gulf of Finland
suggest that annual average temperatures could increase by 2—4°C and
that the salinity could decrease by 1-2 by the year 2100 (Meier et al.
2012).

2.2 Brief outline of the chapters

In all chapters, I analyse time-series data and focus on different aspects
of planktonic taxa and communities, moving from a simple model sys-
tem with six phytoplankton taxa (I) to a community model with mul-
tiple trophic levels, including both cladocerans and copepods and ben-
thic taxa (IV). Whereas all approaches in some way account for or ex-
plicitly model the observation process, chapters I, IT and IV specifically
implement uni- or multivariate autoregressive state-space modelling.
The outline of the statistical analyses included in each chapter and the
temporal scale are summarised in Table 1.

Chapter I considers the spatial scale of phytoplankton populations
and compares three spatial scales within the Baltic Sea (the entire in-
vestigated area, five sub-basins, and all stations individually) using six
model taxa from ten stations. The study also includes different struc-
tures of spatial environmental correlation, with three structures consid-
ered for the process error covariance matrix (Q in equation 3): com-
pound symmetry, autoregressive error structure and no process error
correlation (diagonal Q). Our main hypothesis was that the intermedi-
ate spatial scale would be the most supported alternative, and that syn-
chrony between the populations should decrease with increasing dis-
tance between the stations. The thought was that the hydrography and
the environmental conditions would be similar within the investigated
basins. The plankton biomass data were gathered annually between
July and the end of September as part of the national monitoring scheme
carried out by the Finnish Environment Institute. The data excludes the
spring bloom and captures only part of the seasonal occurrence of the
chosen taxa (Fig. 2).

Chapter II focuses on identifying extrinsic drivers of 30 taxa of auto-
and heterotrophic plankton and one ciliate species in the Gulf of Fin-
land. The study combines plankton data from two sampling sources
(ferrybox and integrated sampling) and creates time-series of annual



log-scaled mean plankton biomasses using an initial day-level observa-
tion model. The day-level observation model also accounts for potential
biases caused by wind and timing of the sampling. The resulting time-
series are further used for estimating the effects of extrinsic variables,
applying univariate SSMs. The data for chapter II partially overlaps
with that of chapter I, but includes also additional integrated and ferry-
box samples provided by the Estonian Marine Institute and the Marine
Systems Institute (Tallinn University of Technology). The aim was to
investigate which extrinsic variables influenced the taxa, particularly to
see if they affected the species and genera the same way within plank-
ton classes. I also wanted to see if the species and genus level results
corresponded to the results of previous trend and multivariate analyses
in the area using only a subset of the data (see Suikkanen et al. 2013).

Chapters III and IV focus on one coastal station in the Gulf of Fin-
land. Both chapters used the same zooplankton time-series gathered
and analysed by Tvarminne Zoological Station (University of Helsinki)
and Finnish Environment Institute (described in Viitasalo 1992b). Chap-
ter III uses Generalized Additive Models (GAM) to first model the phe-
nological and between-year patterns of abundance in five groups of zoo-
plankton. The fitted model was further used to calculate annual esti-
mates of the start and end of the season, the length of the season and
peak abundances (Fig 2c). Patterns in these derived variables were sub-
sequently investigated. As temperatures have increased in the area, we
expected to see a shift towards earlier occurrences of zooplankton as
temperatures affect hatching of resting eggs (Katajisto et al. 1998).

Chapter IV used both a zooplanktonic and a zoobenthic time-series.
The zooplankton data were the same as in chapter III, but the data
were aggregated to only include calanoid copepods and cladocerans
(mainly Bosmina). The benthic time-series has previously been analysed
by Rousi et al. (2013) and Hewitt et al. (2016). The main aim of chapter
IV was to contrast different alternatives of benthic-pelagic species inter-
actions while simultaneously accounting for environmental variables.
We compared four alternative configurations for the community inter-
actions where alternatives included a) interactions within zoobenthos
and by zoobenthos on zooplankton, b) only zoobenthic taxa affecting
zooplankton, c) no benthic-pelagic interactions but interactions between
zoobenthic taxa allowed and finally d) no interactions. I expected that
the benthic species would affect the pelagic zooplankton through pre-
dation on their benthic resting eggs (Albertsson and Leonardsson 2001;
Viitasalo 2007).
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Table 1: Overview of the studies, their temporal scale, the taxa studied, response variables (y), extrinsic variables (x)

and statistical methods applied.

Ch. Taxa Years y Scale x Method
I Chrysochromulina, 19792015  Taxa puL~* Annual SSM,
Hemiselmis, Plagioselmis AICc
prolonga, Pseudopedinella
tricostata, Pyramimonas,
Teleaulax
24 phytoplankton taxa, Taxa pL ! Intra- Wind GAMM
II 6 phgterl())trophs and 1993-2016 g annual
Mesodinium rubrum Mean log Annual Temp, sal, SSM,
biomass strat, nutrients, AICc
ice
- Acartia spp., Eurytemora  1966-2006  Ind. m~* Annual temp., sal., GAM
affinis, Temora longicornis, strat.
cladocerans and rotifers  1967-2005  Peak Intra- Temp, ice GLS
abundance annual
(Ind. m~3) and
season length,
start and end
IV Cladocerans, copepods, 19662007 Ind m =3 and Annual Temp, sal, O, SSM,
amphipods, polychaetes, Ind. m ™2 AlCc

Marenzelleria, and
Limecola balthica




2.3 State-Space Models

All state-space models were fit using the MARSS package in R by Holmes
etal. (2018, 2012). More detailed descriptions on starting values, parametri-
sation, fitting procedures and model checking can be found in the rel-
evant chapters. The hypotheses in each study were investigated us-
ing model selection where candidate models were compared using the
Akaike information criterion for small sample size (AICc) (Burnham
and Anderson 2002). Model selection was applied for comparison of
multiple spatial scales and variance-covariance structure in the process
error (I), comparisons of multiple extrinsic variables (II, IV) and a com-
parison of four hypothesised configurations for the biotic interactions
(IV). Models were considered relevant if AICc was at least 2 units smaller,
and indicative if AICc was smaller at all compared to the null model in
chapter II. In chapters I and IV a difference of 2 AICc was used to dis-
tinguish the top model or models.

A density dependent process model, describing two underlying log
biomass states is described in the introduction (Equations 3 and 4). Be-
low Ilink it to an observation model (Equation 5), together with its ap-
purtenant error structure (Equation 6). The observation model (Equa-
tion 5 and 6) is written out in Equations 7 and 8 to correspond to a
scenario where the two states (x;) in Equation 3 are described with 2
replicated time-series each.

yt:Z:z:t +a+ v (5)
vy ~ N(0, R) (6)
Y1 10 0 U1
y2f (1 O] |7 0 U
Y3 o 0 1 |::L‘2]t + 0 + (O} (7)
Yal, 01 0 4],
0 rn 0 0 O
0 0O n 0 O
NIl 1o 0 om0 ®)
0 0 0 0 e

The underlying state variables (x;) in Equation 3 are linked to the
four mean zero standardised log scaled observation time-series (y) by
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using the Z matrix. The 2 x 4 vector a can be used to allow for differing
intercepts of the y observational time-series within one state variable
or set to 0 if the time-series are true replicates. The observation model
also includes its own error structure with zero mean and multivariate
normally distributed variance-covariance matrix R (4 x 4).

As the modelling of the observation process and accounting for ob-
servation error (v) was one of the main aims of the thesis its handling is
described in greater detail in the next section. In all studies, the struc-
ture of the observation error was diagonal, assuming no correlation in
the errors.

2.4 Observation error

An inherent challenge of state-space modelling is the partitioning be-
tween observation and process error variances. Even simple SSMs can
suffer from estimation problems (Auger-Méthé et al. 2016), especially
as the variance partitioning can be challenging in the absence of repli-
cates (Dennis et al. 2010; Humbert et al. 2009). To accommodate this
issue, we apply individual approaches for each chapter, depending on
the question and the data (I, II and IV). While the time-series in chap-
ter I was practically unreplicated, and the finest spatial scale considered
was station-specific, a few spatial replicates were used to facilitate the
partitioning of the process- and observation error (same location and
season, different day). The same logic was applied to a larger extent to
the zooplankton data in chapter IV by using data from three months and
scaling each month using the scaling vector a to account for phenologi-
cal change. Here, however, the observation error variances for the two
included zooplankton groups were fixed using data from a small field
campaign. As the benthic data were replicated, we estimated a separate
observation error term for each of the four benthic taxa. In the second
chapter, we used a day-level GAM to estimate annual mean log biomass
together with standard errors (SE). The squared SE were subsequently
included into the final univariate SSM as time-varying observation error
variances.

I mainly used the annual scale for all chapters, but as plankton are
short-lived and present seasonal succession, I needed to account for
intra-annual variability to achieve reasonable annual estimates for fur-
ther analysis of the extrinsic variables of interest (II-IV). To account
for the annual succession (phenology pattern), while estimating annual
biomass (II) or abundance (III), as well as cardinal dates (I and III), I
used generalised additive models (GAM) with differing assumptions in
both chapters II and III. In chapter II, I assumed that the phenology pat-
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terns were constant between years for a given taxon. The main interest
was to achieve a reasonable annual estimate for the plankton biomasses
and to investigate potential effects of daily wind on the observed plank-
ton biomasses (Fig. 2b). In chapter III, however, the main focus was
on cardinal dates such as the start, end and length of the season, sub-
sequently investigating these variables in a second step (Fig. 2c). Thus,
variation in the timing of the cardinal dates were of primary interest.
In both chapters, the GAM was fitted using a log-link with Tweedie er-
ror distribution using the mgcv package in R (Wood 2011, 2017; Wood
et al. 2016). In the pure SSM approach of chapter IV, seasonality was
accounted for using different intercepts (a in Equation 5) for different
months of zooplankton data included. The phenology was considered
to be a lesser issue in chapter I as the temporal window for the chosen
taxa had relatively flat phenology in their late summer biomass (Fig.
2a).
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Figure 2: Panel (a) shows the estimated annual phenology (black) to-
gether with 95% CI (grey) for Chrysochromulina spp. (2010 at station
LL7) using the day-level observation model in chapter II. The vertical
lines indicate the temporal window used in chapter I for capturing the
late summer biomass and the rug indicates the individual observations.
The lines in panel (b) correspond to the one in panel (a) but illustrate
how variation in annual biomass (years 2009-2011) was modelled ac-
counting for phenology. The horizontal lines illustrate how the time-
series of mean biomasses in chapter II were constructed using annual
intercepts. Panel (c) illustrates the annual phenology for Acartia spp.
copepodites for 1998 and the vertical lines from left to right correspond
to when the population reached 20% of the peak abundance, the peak
abundance and when the population declined below 20% of peak abun-
dance.
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2.5 Extrinsic variables

Extrinsic variables were investigated in all chapters, either directly or
by interpreting the correlation of the process error. In chapters II and
III, the extrinsic variables were included applying the Granger causality
principle, i.e.. the effect preceded the cause. In chapter II, the temper-
ature, salinity and stratification variables included in the annual scale
investigation were tailored to the timing of the most rapid population
increase 0-59 days prior to the day of the median biomass for each
taxon. In the intra-annual model in chapter III the temperature, salin-
ity and stratification considered were from 14 days prior to the sampling
event of the zooplankton. In chapter IV, I first used univariate SSMs and
model selection to choose the most relevant annually scaled anomalies
(from salinity, temperature and oxygen) to include in the full commu-
nity model.

All model fitting and data processing were done in R (R Core Team
2017). The packages used for the summary and the chapters include:
plyr (Hadley Wickham 2011), reshape2 (Hadley Wickham 2007), data.table
(Dowle and Srinivasan 2018), gamm4 (Wood and Scheipl 2017), oce
(Kelley and Richards 2018) and ggplot2 (Hadley Wickham 2016), zoo
(Zeileis and Gabor Grothendieck 2005), nlme (Pinheiro et al. 2018), rgdal
(Roger Bivand et al. 2019), optimx (Nash and Varadhan 2011).

3 Results and Discussion

3.1 The spatial scale of plankton population dynamics

The spatial scale, data quality and the ecological scale of the question all
affect the interpretation of ecological data. Phytoplankton display syn-
chrony over large geographical distances (Defriez and Reuman 2017),
and chapter I shows synchronous patterns of biomasses in six model
taxa in the Baltic Sea. When comparing models with multiple spatial
structures as well as structures for spatial correlation, the most parsimo-
nious models either included one state for the entire investigated area
or multiple states with very high spatial correlation (> 0.92). The spatial
correlation structure of the process error (Q) varied between compound
symmetry and the autoregressive structure, and the alternative without
spatial correlation got no support (Fig. 3).

Large scale synchrony can imply that all populations are part of the
same panmictic population, or can arise from dispersal between sub-
populations. Dispersal between the ten considered populations is not
very likely, considering the large spatial extent of the study and small
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size of the plankton (Fig. 1). But even isolated sub-populations can be
synchronised by correlated environmental forcing, known as the Moran
effect (Moran 1953). Large-scale synchrony can arise even if the density
dependence is not the same in all sub-populations and there is vari-
ation in the local environmental effects (Seether et al. 2007). The au-
toregressive coefficient (“density dependence””) was always judged as uni-
form across all sub-populations in the most parsimonious model; either
the coefficient was equal for all states, or the population was consid-
ered as panmictic. Defriez and Reuman (2017) observed global patterns
of synchrony in plankton using chlorophyll a data, attributed to mix-
ing processes described by temperature. The synchrony observed in
their study was higher in the open ocean compared to coastal zones. As
the basins included in chapter I are different in many of their physical
properties important for plankton, such as salinity and nutrient condi-
tions (Andersen et al. 2017) temperature and the related stratification
are likely synchronising variables. The idea of basin level synchrony
did not receive conclusive support in any taxa, but the five state option
was among the top models, together with the ten and one state option,
in Pseudopedinella tricostata and Teleaulax spp.

Chrysochromulina spp. Hemiselmis spp.

ER =4.75 ER =104
—

00 02 04 06 08 10

P. prolonga P. tricostata
ER =129 ER =2.24

Akaike weight
0.0 02 04 06 08 10

Pyramimonas spp. Teleaulax spp.

ER =4.99 ER =1
—

00 02 04 06 08 10

DE cs cs AR

AR DE
Structure of Q

Figure 3: The summed Akaike weights for models with different co-
variance structure (matrix Q in Equation 4) of the process error: DE no
spatial correlation, CS compound symmetry, AR autoregressive. The re-
sults are based only on the models with five and ten states. The evidence
ratios (ER) for the best versus the second best option are displayed in the
upper right corners of the panels (Reproduced from chapter I: Forsblom
et al. 2019a).
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Investigating large scale effects using plankton data from multiple
stations could, depending on the ecological question, facilitate analysis,
especially in cases where replicates are lacking. In cases with longer
time-series, such as for Chrysochromulina spp., higher resolution pat-
terns were discernible, and the ten-state model option with high spatial
correlation was favoured (Fig. 3). However, if more noise was added to
the most parsimonious ten-state model, the one state panmictic model
became the most parsimonious one. In line with this finding, I applied
the logic of one population in chapter II, using only the Gulf of Finland.

3.2 Extrinsic drivers of plankton population dynamics
Intra-class differences

I detected environmental effects or tendencies in 16 of the 31 inves-
tigated plankton taxa in chapter II, and together these taxa represent
two thirds of the sampled summer community. Of the observed effects
the investigated chrysophytes, Dinobryon faculiferum and Pseudopedinella
spp. had opposite effects of salinity on mean biomass, positive and neg-
ative respectively (Fig. 4). Using a subset of the data analyses in chap-
ter II, Suikkanen et al. (2013) have previously shown that chrysophytes
have increased in the Gulf of Finland, and that they were negatively cor-
related with salinity. In their data, Pseudopedinella spp. made up the bulk
of the biomass of the chrysophytes, and our taxon level study does in-
deed confirm a negative salinity effect on the biomass of Pseudopedinella
spp. Aggregating the taxa to chrysophytes thus masks the salinity ef-
fects on D. faculiferum, as it coincidentally has lower biomass. Other
intra-class differences arouse within the cyanophytes, where the tem-
perature effects varied, with positive tendencies on the mean biomass
of Aphanizomenon spp. and Woronichinia spp. and a negative effect of
temperature on the mean biomass of Snowella spp. (Fig. 4). Addi-
tionally, the mean biomasses of both Snowella spp. and Woronichinia
spp. were influenced negatively by stratification. The colonial Snowella
and Woronichinia spp. are known to be more prevalent during turbulent
times of the season (Laamanen 1997).

Future changes in plankton biomass in the Gulf of Finland

The variability in annual salinity, temperature and stratification expe-
rienced by the plankton taxa during 0-59 days before reaching median
biomass was relatively low. As salinity has been projected to decrease
by 1-2 units and temperature to increase by 2-3°C (Meier et al. 2012), the
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D. faculiferum Eutreptiella P. bipes
year - year - year 1 —
temp 1
sal 4 —_— temp i sal 1 —
P. brevipes P. lauterbornii Pseudopedinella
year -_—
year —_— year
sal 4 -
Pyramimonas Snowella T. baltica
years year 1 ——
year 1 — temp .
strat{ ~—— ice 1 -
-1.5-0.75 0 0.75 15 -15-0.75 0 075 15 -1.5-0.75 0 0.75 15
Effect size

Figure 4: Estimated parameter effects of the z-scored environmental co-
variates on the annual mean biomasses in the most parsimonious mod-
els (black). Competing models are shown in grey. The error bars indi-
cate 95% confidence intervals. Covariates: temp = temperature, sal =
salinity, strat = stratification index, ice = number of days with ice cover.
All models also include a partial temporal trend (year) (Reproduced
from chapter II: Forsblom et al. 2019b).

changes for individual species can thus be substantial. These changes
are beyond the variability observed in chapter II and would correspond
to approximately a 3.9-7.8 SD decrease in salinity and a 2.3-3.4 SD rise
in temperature. In the light of the point estimate effects for the chrys-
ophyte D. faculiferum and the dinophyte Protoperidinium bipes, the pre-
dicted salinity decrease would correspond to ca. 84-98% decrease in
mean biomass. The expected increase in temperature would similarly
be beneficial for taxa, such as euglenophyte Eutreptiella spp. (Fig. 4).

There was also an indication of an ongoing temporal shift in the com-
munity possibly linked to salinity. The effects were not always signifi-
cant, but all taxa with a positive effect of salinity on mean biomass also
had negative partial trends, while the opposite was true for taxa with
positive effects of salinity. Studies in the Bothnian Bay and Bothnian
Sea areas have linked community changes in plankton to salinity (Ku-
osa et al. 2017), while Olli et al. (2011) showed that temporal change,
instead of salinity, better explained changes in community composition
in the northern Baltic.
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Figure 5: The effects of the environmental covariates on the intra-annual
zooplankton abundance estimates using GAM. The bars are 95% confi-
dence intervals.

Accounting for extrinsic effects in annual abundance estimates for
zooplankton

All salinity effects on abundance observed in zooplankton, both in chap-
ter Il and IV were negative, with the exception of Temora longicornis (III)
that is known to prefer higher salinities (Holste et al. 2009; Hanninen
et al. 2003) (Fig. 5). The salinity preferences of the zooplankton taxa in
the area using the first part of the time-series (> 1984) have been previ-
ously investigated in great detail by Viitasalo (1992b) and Viitasalo et al.
(1994, 1995). The studies highlight the importance of hydrographical
conditions in structuring the population and suggest that some of the
observed dynamics can be due to movements of the water layers (Vi-
itasalo et al. 1995). Zooplankton are generally known to form horizontal
patches and to migrate vertically, experiencing a wide range of physio-
chemical variables diurnally (Almén et al. 2014; Folt and Burns 1999),
and the present study only focuses on the upper 25 meters of the wa-
ter column. Thus, the effects of salinity in the abundance model likely
also reflects advection. The main aim of the abundance model, how-
ever, was to account for the environmental variables to achieve reliable
estimates of the abundance as the main interest lay with investigating
the phenology of the taxa investigated in the subsequent step.
Distinguishing temperature effects on zooplankton abundances (III)
also proved difficult and it seems the temperature effects were con-
founded by the seasonality pattern also included in the GAM. In addi-
tion, previous studies have indicated that both salinity and temperature
effects vary during the season in a non-linear fashion (Klais et al. 2017;
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Viitasalo et al. 1994), thus leading to a risk that potential effects are av-
eraged out. When I investigated the annual temperature effect on the
abundance of copepods with a narrower temporal window from June
to August (IV), the most parsimonious model included a positive effect
of temperature on abundance.

Accounting for wind effects on the observation process

In the same manner as zooplankton, also the horizontal and vertical dis-
tribution of phytoplankton can be influenced by physical forcing. Many
phytoplankton taxa are known to aggregate in specific layers of the wa-
ter column especially during low mixing (Klausmeier and Litchman
2001). For example, Nodularia spumigena aggregates at the surface dur-
ing calm conditions and can prove difficult to sample representatively
(Kanoshina et al. 2003). Mixing of the surface water can thus potentially
affect the sampled abundance by dispersing aggregates in the water col-
umn. There were 16 detected effects of mean daily wind speed on the
mean biomass of the investigated plankton taxa in the day-level obser-
vation model (II). There was no apparent common pattern in which taxa
were affected related to taxonomic rank, size or mobility. Whereas wind
indeed can affect plankton population dynamics on a short timescale,
e.g. by influencing nutrient availability (Rantajérvi et al. 1998), the day-
level effects in this study were viewed as noise as the main goal was the
abundance dynamics on annual scale.

Density dependence, or perhaps not?

The classical interpretation of density dependence assumes it reflects
intraspecific competition within a population (Royama 1992). The re-
sults in chapter I and II suggest density dependent dynamics in most
of the taxa, and previous studies have indeed identified density depen-
dence in plankton (Barraquand et al. 2018; Ohman and Hirche 2001).
However, as our temporal scale spans a year it is implausible that this
reflects anything else than a statistical property of the time-series. It
is more plausible that the density dependence detected for the benthic
taxa (IV) reflect real intraspecific competition (IV). Some of the inves-
tigated taxa can be long lived, such as Limecola balthica that can reach
an age of 30 years (Segerstrale 1960). The benthic community in the
area is dependent on sedimenting resources derived from primary pro-
duction that can be limiting (Ehrnsten et al. 2019). Species additionally
compete for space and studies have shown that the species settling first
after disturbance can be the main factor affecting subsequent dynamics
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(Eriksson Wiklund and Andersson 2014).

Biotic interactions

The most parsimonious model for the biotic interaction included only
the interactions within the benthic taxa and no biotic interactions be-
tween zoobenthos and zooplankton (the matrix B Equation 3). These
biotic interactions had a one-year lag, which likely was not ideal, espe-
cially for zooplankton. Cladocerans in lakes have been shown to con-
tribute to the resting egg standing stock mostly at the end of summer
when the environment becomes less favourable (Chen and Folt 1996).
In the investigated area zooplankton nauplii emergence and hatching
experiments suggest that the hatching number peaks in warm water in
autumn (Katajisto et al. 1998), and field data suggest that resting eggs
in the sediment contribute to copepod recruitment in spring (Viitasalo
1992a). Thus, how well potential predation on eggs is reflected in the
summer abundances the following year can be discussed.

Whereas no direct interactions were observed between zooplank-
ton and zoobenthos, the unexplained process error variance can give
clues of intra-annual correlations. The process error correlation between
the investigated taxa were positive between cladocerans and copepods
and within the benthos (with few exceptions), whereas the interactions
between pelagic and benthic taxa were generally negative (Table 2).
This can imply that the taxa are correlated due to similar environments
within the pelagic and the benthic systems. The negative correlation
between zooplankton and zoobenthos could indicate that zooplankters
influence the resource availability of zoobenthos by consuming the pri-
mary production before it has reached the sediment (Tamelander et al.
2017). The highest negative correlations are between copepods and am-
phipods, and Monoporeia affinis, in particular, is known to rely on newly
sedimented material (Eriksson Wiklund and Andersson 2014), and the
influx of organic matter from the pelagic zone has likely been finite in
the area in recent years (Ehrnsten et al. 2019). However, as all correla-
tions except for the one between copepods and cladocerans were weak,
this is speculation.
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Table 2: The correlation matrix for the most parsimonious model with-
out benthic-pelagic interaction (IV). The correlation matrix is calculated
using the variance-covariance matrix in the process error (¢ parameters
in Equation 4).

L. balthica Poly. ~Marenz. Amphi. Cope. Clado.

L. balthica 1 0.166  0.306 0.091 -0.114 -0.359
Polychaeta 0.166 1 0.255 0.431 -0.320 -0.050
Marenzelleria  0.306 0255 1 0.160 0.167 -0.115
Amphipoda 0.091 0.431 0.160 1 -0.419 -0.140
Copepoda -0.114 -0.320 0.167 -0.419 1 0.690
Cladocera -0.359 -0.050 -0.115 -0.140 0690 1

Variability in biotic interactions

It is important to remember that biotic interactions are not static through
time and can be subjected to change. Species interactions have been
suggested to vary due to environmental variables, such as periods of
high or low temperature and periods of high and low nutrient avail-
ability, as well as due to changes in species composition or succession
patterns (Francis et al. 2012, 2014). A change in the species” phenology
can lead to shifts in the strength of interaction as a result of increased
mismatch between species (Cushing 1990). Interactions can also occur
in abrupt non-linear ways leading to shifted communities (Beaugrand
et al. 2019). The interactions discussed and presented here are average
interactions spanning 1966 to 2007. Introduction of new species can also
lead to changes in interactions and in the early 1990s the study area was
colonised by Marenzelleria spp. (Kauppi et al. 2015), and specifically M.
arctia is thought to occur at the investigated station (Kauppi et al. 2018).
The taxon is considered to have invaded a free niche, and not compet-
ing for resources with other native taxa (Karlson et al. 2015). M. arctia
is suggested to be a welcome invader as it enhances oxygen conditions
in the sediment through bioturbation (Norkko et al. 2011). Changes in
biotic interactions over the investigated time are thus likely, and cannot
be ruled out; however, due to data limitations this was not within the
scope of chapter IV.

3.3 Phenology
Phenology changes in mesozooplankton
Many data sets lack observations from the winter months in temper-

ate regions. Sampling is generally more challenging in winter and a
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common view has been that the winter resets the community especially
in regions with ice-cover (see Hampton and Schindler 2006). This is a
simplification and with climate warming there have been signs of in-
creasing activity during winter and improved wintertime survival in
marine environments (Schliiter et al. 2010). On the other hand, warming
can also lead to increased respiration and negatively influence oxygen
availability (Panigrahi et al. 2013). Chapter III investigated the start of
the season for five taxa of zooplankton and demonstrates that Acartia
spp. copepodites became earlier in spring. The phenomenon of ear-
lier occurrence has been demonstrated widely in zooplankton (Mackas
et al. 2012 and references therein), as well as in other organisms in both
aquatic and terrestrial systems such as plants, birds and insects (Ed-
wards and Richardson 2004; Parmesan and Yohe 2003; Thackeray et al.
2016). Increased zooplankton grazing is seen in phytoplankton as a de-
crease in the sizes of individuals and a decrease in large sized species
(Sommer and Lewandowska 2011). As warming can increase the den-
sities of overwintering zooplankton this can also influence the phyto-
plankton community composition (Sommer and Lewandowska 2011).
In the investigated area recruitment in spring occurs both from resting
eggs and from overwintering individuals (Katajisto et al. 1998).

In recent years autumns have become warmer and we expected the
warm conditions to extend the seasonal occurrences of the investigated
zooplankton groups by enabling more generations. Contrary to our ex-
pectations, the season did not become longer over the whole investi-
gated period, with the exception of adult T. longicornis. The end was
negatively correlated with temperature in T. longicornis copepodites and
positively in cladocerans. It has been previously shown that high tem-
peratures can influence the resting egg production in autumn for clado-
cerans (Chen and Folt 1996). The peak abundances of adult T. longicornis
also declined over the investigated period. The observed shift in occur-
rence and abundance can potentially affect other trophic levels, as cope-
pods in the area are an important food source for planktivorous fish and
mysid shrimps (Flinkman et al. 1998). Mysid shrimps shift to feed on
zooplankton when they reach a certain size (Viherluoto et al. 2000), thus
changed timing of zooplankton peaks could affect their predator-prey
dynamics.

Accounting for phenology in the observation model

Warming has not only influenced the emergence of zooplankton, but
also influenced the spring bloom and phenology of phytoplankton species
(Edwards and Richardson 2004; Hjerne et al. 2019; Scharfe and Wilt-
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shire 2019). I did not explicitly investigate and account for changes in
timing of the annual biomass estimate in chapter II, but I did notice
that a phenology shift might have taken place based on patterns in the
residual diagnostics. An analysis of the most extreme positive residuals
revealed that, eight out of 31 investigated taxa showed a negative corre-
lation between Julian day and year (two taxa shown in Fig. 6). Hence,
in the beginning of the time-series outliers occurred more often late in
the season, and vice versa, suggesting earlier phenology. In contrast, the
correlations for Nodularia spp. were positive, suggesting a shift to later
timing of the peak. This is important to consider for monitoring if the
investigated period is short and coincides with a period of high vari-
ability in timing, e.g. during times of rapid increase during the spring
bloom.

4 Conclusions and future perspectives

The interpretation is tied to the scale of investigation (I-IV), whether
it is the spatial scale, or species level investigated. In my thesis I pri-
marily investigate drivers of plankton population dynamics using an-
nual timescale. While the coarse scale leaves something to be desired,
it was possible to quantify some extrinsic drivers influencing annual
biomasses of phytoplankton and heterotrophs in the Gulf of Finland
(IT), changes in seasonality of zooplankton (III), as well as the interac-
tions (or lack thereof) between zooplankton and zoobenthos (IV).
Especially when investigated on large spatial scale, phytoplankton
populations from the northern Baltic Sea display high levels of syn-
chrony and spatially correlated process error structure. A likely driver
of these synchronous patterns spanning a large spatial scale and par-
tially isolated populations is the Moran effect (I). Going further to in-
vestigate specific drivers in the Gulf of Finland population, the abiotic
drivers with most numerous effects detected were temperature, salinity
and stratification. These estimated environmental effects on the biomass
in chapter Il are substantial in relation to the variability of the drivers. In
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light of projected future changes in the area, potential effects can thus
be large. Knowing what happens to individual species and not only
classes of plankton is important as phytoplankton traits can differ and
also affect biogeochemical cycling (Litchman et al. 2015).

Identifying direct temperature effects proved challenging, as the suc-
cession patterns of many taxa overlap with the seasonal change in tem-
perature. There were especially few temperature effects on zooplank-
ton abundance in chapter III, while copepod abundances seem to be
positively influenced on annual scale when the temporal window was
restricted to three months (IV). All zooplankton taxa in the area were
influenced by salinity, however, all the observed environmental effects
were not necessarily direct effects influencing survival, growth or repro-
duction, but might also reflect physical forcing. In chapter II, I explicitly
accounted for wind effects and in chapter III some of the environmen-
tal effects are likely attributable to advection. The observation model
was crucial for handling phenology (II-IV) and for enabling flexible
modelling of the standardised biomass and abundance units using the
Tweedie distribution (II, III).

Changes in phenology were apparent or implied in both chapters II
and III, and a noteworthy issue is how this can influence the interpre-
tations of long-term trends. Many taxa have complicated seasonal pat-
terns with multiple peaks making inter-annual comparisons more chal-
lenging (Scharfe and Wiltshire 2019). Thus, in the best case, changes
in phenology only add noise to the investigation (II), but if the inves-
tigated temporal window is small it is possible to miss partial or entire
abundance peaks. In that case, changes in temporal patterns in species
densities can in the worst case only be a reflection of the changed timing.
While there was an indication of phenology shifts also in phytoplankton
(II), this needs to be explicitly confirmed and further investigated.

The final chapter on community interactions left some open ques-
tions and future opportunities of study, especially concerning the bi-
otic interactions within the benthic community and potential temporal
shifts in interactions. Studies on pelagic communities have shown that
interactions are variable in time and space (Francis et al. 2012; Griffiths
et al. 2016), and to fully understand the functioning of communities this
needs to be considered.

24



Acknowledgements

There are really no words to express my appreciation for all the sup-
port I have received along this journey. I'd like to start with expressing
my most sincere gratitude to my supervisors Andreas Lindén, Jonna
Engstrom-Ost and Kai Lindstrém. Andy, [ really feel that this would
not have been possible without your support. Jonna, your energy is an
inspiration and I am grateful for all the unconditional encouragement
I've received from you along the years. Thank you Kai for always being
there to answer all my questions and for all the advice you have given
me.

I would also like to thank my pre-examiners Frédéric Barraquand
and Harri Kuosa for taking the time to review my thesis and for the
helpful comments I received. I am also very grateful to all of my co-
authors Erik Bonsdorff, Sirpa Lehtinen, Maiju Lehtiniemi and Inga Lips.
Erik, you have not only been a co-author, but at times felt almost like a
bonus supervisor, thank you! Sirpa and Maiju, it has been great working
with both of you and the time during my PhD I spent at SYKE was
wonderful. A big thank you for that also goes to Jukka Seppild, for
welcoming me in his group and to all other colleagues and friends at
SYKE, thank you for many engaging discussions and much laughter.
I also feel very privileged to have met you Jacqueline, thank you for
all the support, all the wonderful debates and conversations and for
making me do sports!

A big thank you also goes to all my wonderful colleagues in Ekends.
I would especially like to thank you Olivier, Anna-Karin, Lauri, Anna ]
and Ella for all the zooplankton shenanigans over the years!

Thank you also to all my wonderful friends and colleagues in Bioc-
ity, from the very start each and everyone of you have made me feel at
home in Biocity and I have enjoyed my time there immensely. Thank
you, Christina, Johanna, Maité, Emmu, Lukas, Marie J., Heidi, Flori-
aan, Pierre, Viktor, Jean-Francois, Bertille, Jolle, Conny, Tiina, Kati, Tore,
Henna, Sonja, Christoffer, Martin, Susanne, Anna, Marie N., Mikael,
Markus, Krister, Tom, Giannina, Christian, Per, Jorgen and many oth-
ers. I would also like to thank you Karine for all the help and great
conversations over the years, you have from the start been an inspira-
tion to me.

Thank you to Tvarminne Zoological Station for providing excellent
working facilities, sampling equipment and for your monitoring efforts.
Thanks also to the staff, researchers and students for pleasant company
during the field season.

This thesis would not have happened if not for the huge effort of

25



all the people involved in the biotic and abiotic data collection over the
years, thank you! Also, thank you Heidi Pettersson for help with the
abiotic data and to Jonas Knape for answering my statistics questions.

The thesis work would not have been possible without funding from
Onni Talaan S&atio and the Functional Marine Biodiversity network at
Abo Akademi, thank you. Thank you also Societas pro Fauna et Flora
Fennica.

I also want to thank all my friends for keeping me sane by listening
to my rants and thoroughly distracting me from work at times. Thank
you Kimmo and Kaisa for the wonderful company and dinners over
the years. Thank you Petra and Sara, you have been with me since the
“start”” of my studies in Helsinki and I hope our viliskumppa tradition
will keep going strong for many years still to come. Thank you Nicke
and co. for great company and fun game nights. Thank you Jeffi, Maria
and others for always being there.

I would never have started this journey if not for the support of my
family. Ett stort tack till er all!

Finally to Andreas, thank you for your unwavering support through
this, through everything. I love you <3

26



References

Albertsson, J. and Leonardsson,
K. (2001). Deposit-feeding am-
phipods (Monoporeia affnis) re-
duce the recruitment of copepod
nauplii from benthic resting eggs
in the northern Baltic Sea. Marine
Biology, 138:793-801.

Almén, A.-K., Glippa, O., Pet-
tersson, H., Alenius, P, and
Engstrém—@st, J. (2017). Changes
in wintertime pH and hydrogra-
phy of the Gulf of Finland (baltic
sea) with focus on depth layers.
Environmental Monitoring and As-
sessment, 189(4).

Almén, A.-K, Vehmaa, A,
Brutemark, A., and Engstrom-
Ost, J. (2014).  Coping with
climate change? Copepods expe-
rience drastic variations in their
physicochemical  environment
on a diurnal basis. Journal of
Experimental Marine Biology and
Ecology, 460:120-128.

Andersen, J. H., Carstensen,
J., Conley, D. J.,, Dromph, K,
Fleming-Lehtinen, V., Gustafs-
son, B. G., Josefson, A. B,
Norkko, A., Villnids, A., and Mur-
ray, C. (2017). Long-term tempo-
ral and spatial trends in eutroph-
ication status of the Baltic Sea:
Eutrophication in the Baltic Sea.
Biological Reviews, 92(1):135-149.

Andersson, A., Meier, H. E. M.,
Ripszam, M., Rowe, O., Wikner,
J., Haglund, P., Eilola, K,

27

Legrand, C., Figueroa, D,
Paczkowska, J., Lindehoff, E.,
Tysklind, M., and Elmgren, R.
(2015). Projected future climate
change and Baltic Sea ecosys-
tem management. AMBIO,
44(S3):345-356.

Auger-Méthé, M., Field, C., Al-
bertsen, C. M., Derocher, A. E.,
Lewis, M. A., Jonsen, 1. D,
and Mills Flemming, J. (2016).
State-space models’ dirty little
secrets: even simple linear Gaus-
sian models can have estimation
problems. Scientific Reports, 6(1).

BACC II Author Team (2015).
Second Assessment of Climate
Change for the Baltic Sea Basin.
Springer-Verlag, New York.

Barraquand, F, Picoche, C,
Maurer, D., Carassou, L., and
Auby, 1. (2018). Coastal phyto-
plankton community dynamics
and coexistence driven by in-
tragroup  density-dependence,
light and hydrodynamics. Oikos,
127(12):1834-1852.

Beaugrand, G., Conversi, A,
Atkinson, A., Cloern, ]J., Chiba,
S., Fonda-Umani, S., Kirby, R. R,,
Greene, C. H., Goberville, E.,
Otto, S. A., Reid, P. C., Stem-
mann, L. and Edwards, M.
(2019).  Prediction of unprece-
dented biological shifts in the
global ocean.  Nature Climate
Change, 9(3):237-243.



Bruno, J. E, Carr, L. A., and
O’Connor, M. L. (2015). Explor-
ing the role of temperature in the
ocean through metabolic scaling.
Ecology, 96(12):3126-3140.

Burnham, K. P and Anderson,
D. R. (2002).  Model selection
and multimodel inference: a prac-
tical information-theoretic approach.
Sringer, New York, 2 edition.

Chen, C. Y. and Folt, C. L. (1996).
Consequences of fall warming
for zooplankton over wintering

success. Limnology and Oceanog-
raphy, 41(5):1077-1086.

Chust, G., Castellani, C., Lican-
dro, P, Ibaibarriaga, L., Sagarmi-
naga, Y., and Irigoien, X. (2014).
Are Calanus spp. shifting pole-
ward in the North Atlantic?
A habitat modelling approach.
ICES Journal of Marine Science,
71(2):241-253.

Cloern, J. E., Abreu, P. C,
Carstensen, J., Chauvaud, L.,
Elmgren, R., Grall, J.,, Green-
ing, H., Johansson, J. O. R,
Kahru, M., Sherwood, E. T., Xu,
J., and Yin, K. (2016). Hu-
man activities and climate vari-
ability drive fast-paced change
across the world’s estuarine-
coastal ecosystems. Global Change
Biology, 22(2):513-529.

Cushing, D. (1990). Plank-
ton production and year-class
strength in fish populations: an
update of the match/mismatch
hypothesis. In Advances in Marine

28

Biology, volume 26, pages 249-
293. Elsevier.

Daufresne, M., Lengfellner, K.,
and Sommer, U. (2009). Global
warming benefits the small in
aquatic ecosystems. Proceedings
of the National Academy of Sciences,
106(31):12788-12793.

Defriez, E. J. and Reuman, D. C.
(2017). A global geography
of synchrony for marine phyto-
plankton. Global Ecology and Bio-
geography, 26(8):867-877.

Dennis, B., Ponciano, J. M., and
Taper, M. L. (2010). Repli-
cated sampling increases effi-
ciency in monitoring biological
populations. Ecology, 91(2):610—
620.

Dennis, B. and Taper, M. L.
(1994). Density dependence in
time series observations of natu-
ral populations: Estimation and
testing.  Ecological Monographs,
64(2):205-224.

Diekmann, A. B. S., Clemme-
sen, C., St. John, M. A., Paulsen,
M., and Peck, M. A. (2012).
Environmental cues and con-
straints affecting the seasonal-
ity of dominant calanoid cope-
pods in brackish, coastal waters:
a case study of acartia, temora
and eurytemora species in the
south-west Baltic. Marine Biology,
159(11):2399-2414.

Dowle, M. and Srinivasan, A.
(2018). data.table: Extension of



‘data.frame’.
1.11.4.

R package version

Durbin, J. and Koopman, S. ]J.
(2012). Time series analysis by state
space methods. Oxford university
press.

Edwards, M. and Richardson,
A.J. (2004). Impact of climate
change on marine pelagic phe-
nology and trophic mismatch.
Nature, 430(7002):881-884.

Ehrnsten, E., Norkko, A., Tim-
mermann, K., and Gustafsson,
B. G. (2019). Benthic-pelagic cou-
pling in coastal seas — Modelling
macrofaunal biomass and carbon
processing in response to organic
matter supply. Journal of Marine
Systems, 196:36—47.

Eppley, R. W. (1972). Tempera-
ture and phytoplankton growth
in the sea.  Fishery Bulletin,
70:1063-1085.

Eriksson Wiklund, A.-K. and An-
dersson, A. (2014). Benthic
competition and population dy-
namics of Monoporeia affinis and
Marenzelleria sp. in the northern
baltic sea. Estuarine, Coastal and
Shelf Science, 144:46-53.

Flinkman, J., Aro, E., Vuorinen,
I, and Viitasalo, M. (1998).
Changes in northern Baltic zoo-
plankton and herring nutrition
from 1980s to 1990s:top-down
and bottom-up processes at
work.  Marine Ecology Progress
Series, 165:127-136.

29

Folt, C. L. and Burns, C. W.
(1999). Biological drivers of zoo-
plankton patchiness. Trends in
Ecology & Evolution, 14(8):300-
305.

Francis, T. B., Scheuerell, M. D.,
Brodeur, R. D., Levin, P. S., Ruz-
icka, J.]., Tolimieri, N., and Peter-
son, W. T. (2012). Climate shifts
the interaction web of a ma-
rine plankton community. Global
Change Biology, 18(8):2498-2508.

Francis, T. B., Wolkovich, E. M.,
Scheuerell, M. D., Katz, S. L,,
Holmes, E. E., and Hampton,
S. E. (2014). Shifting regimes
and changing interactions in the
lake Washington, U.S.A., plank-
ton community from 1962-1994.
PLoS ONE, 9(10):e110363.

Granger, C. W. ]. (1969). Investi-
gating causal relations by econo-
metric models and cross-spectral
methods. Econometrica, 37:424—
438.

Griffiths, J. R., Hajdu, S., Down-
ing, A. S., Hjerne, O., Lars-
son, U., and Winder, M. (2016).
Phytoplankton community inter-
actions and environmental sen-
sitivity in coastal and offshore
habitats. Oikos, 125(8):1134-1143.

Hadley Wickham (2007). Re-
shaping Data with the reshape
Package. Journal of Statistical Soft-
ware, 21(12):1-20.

Hadley Wickham (2011). The
Split-Apply-Combine  Strategy



for Data Analysis.  Journal of
Statistical Software, 40(1):1-29.

Hadley Wickham (2016). ggplot2:
Elegant Graphics for Data Analysis.
Springer-Verlag, New York.

Hampton, S. E., Holmes, E. E.,
Scheef, L. P, Scheuerell, M. D.,
Katz, S. L., Pendleton, D. E.,,
and Ward, E. J. (2013). Quan-
tifying effects of abiotic and bi-
otic drivers on community dy-
namics with multivariate autore-
gressive (MAR) models. Ecology,
94(12):2663-2669.

Hampton, S. E., Scheuerell,
M. D., and Schindler, D. E.
(2006). Coalescence in the Lake
Washington story: Interaction
strengths in a planktonic food
web. Limnology and Oceanogra-
phy, 51(5):2042-2051.

Hampton, S. E. and Schindler,
D. E. (2006). Empirical evalua-
tion of observation scale effects
in community time series. Oikos,
113(3):424-439.

Hewitt, J. E., Norkko, J., Kauppi,
L., Villnds, A., and Norkko,
A. (2016). Species and func-
tional trait turnover in response
to broad-scale change and an in-
vasive species. Ecosphere, 7(3).

Hjerne, O., Hajdu, S., Lars-
son, U.,, Downing, A. S., and
Winder, M. (2019). Climate
driven changes in timing, com-
position and magnitude of the
Baltic Sea phytoplankton spring

30

bloom. Frontiers in Marine Sci-
ence, 6:482.

Holmes, E., Ward, E. and
Scheuerell, M. (2018). Analysis
of multivariate time-series us-
ing the marss package version
3.4. NOAA Fisheries, Northwest
Fisheries Science Center.

Holmes, E. E., Ward, E. ],
and Wills, K. (2012). MARSS:
multivariate autoregressive

state-space models for analyzing
time-series data. The R Journal,
4:11-19.

Holste, L., St. John, M. A., and
Peck, M. A. (2009). The ef-
fects of temperature and salin-
ity on reproductive success of
Temora longicornis in the Baltic
Sea: a copepod coping with a
tough situation. Marine Biology,
156(4):527-540.

Huisman, J., Codd, G. A., Paerl,
H. W.,, Ibelings, B. W., Verspagen,
J. M. H., and Visser, P. M. (2018).
Cyanobacterial blooms. Nature
Reviews Microbiology, 16(8):471-
483.

Humbert, J.-Y., Scott Mills, L.,
Horne, J. S.,, and Dennis, B.
(2009). A better way to esti-
mate population trends. Oikos,
118(12):1940-1946.

Hanninen, J., Vuorinen, 1., and
Kornilovs, G. (2003). Atlantic
climatic factors control decadal
dynamics of a baltic sea cope-



pod temora longicornis. Ecography,
26(5):672-678.

Ives, A. R., Dennis, B., Cotting-
ham, K. L., and Carpenter, S. R.
(2003).  Estimating community
stability and ecological interac-
tions from time-series data. Eco-
logical Monographs, 73(2):301-330.

Johannesson, K. and André, C.
(2006). Life on the margin: ge-
netic isolation and diversity loss
in a peripheral marine ecosys-
tem, the Baltic Sea. Molecular
Ecology, 15(8):2013-2029.

Kanoshina, I., Lips, U., and Lep-
pédnen, J.-M. (2003). The influ-
ence of weather conditions (tem-
perature and wind) on cyanobac-
terial bloom development in the
Gulf of Finland (baltic sea).
Harmful Algae, 2(1):29-41.

Karlson, A. M. L., Gorokhova,
E., and Elmgren, R. (2015). Do
deposit-feeders compete?  Iso-
topic niche analysis of an inva-
sion in a species-poor system.
Scientific Reports, 5(9715).

Katajisto, T., Viitasalo, M., and
Koski, M. (1998). Seasonal occur-
rence and hatching of calanoid
eggs in sediments of the northern
baltic sea. Marine Ecology Progress
Series, 163:133-143.

Kauppi, L., Norkko, A., and
Norkko, J. (2015). Large-scale
species invasion into a low-
diversity system: spatial and

31

temporal distribution of the in-
vasive polychaetes Marenzelleria
spp. in the Baltic Sea. Biological
Invasions, 17(7):2055-2074.

Kauppi, L., Norkko, A., and
Norkko, J. (2018). Seasonal
population dynamics of the in-
vasive polychaete genus Maren-
zelleria spp. in contrasting soft-
sediment habitats. Journal of Sea
Research, 131:46-60.

Kelley, D. and Richards, C.
(2018). oce: Analysis of Oceano-
graphic Data. R package version
0.9-23.

Klais, R., Otto, S. A., Teder,
M., Simm, M., and Ojaveer, H.
(2017). Winter—spring climate ef-
fects on small-sized copepods in
the coastal Baltic Sea. ICES Jour-
nal of Marine Science, 74(7):1855—
1864.

Klausmeier, C. A. and Litchman,
E. (2001). Algal games: The
vertical distribution of phyto-
plankton in poorly mixed water
columns. Limnology and Oceanog-
raphy, 46(8):1998-2007.

Knape, J. (2008). Estimability
of density dependence in mod-
els of time series data. Ecology,
89(11):2994-3000.

Knape, J. and de Valpine, P.
(2012).  Are patterns of den-
sity dependence in the Global
Population Dynamics Database
driven by uncertainty about pop-
ulation abundance?: Density de-



pendence in the GPDD. Ecology
Letters, 15(1):17-23.

Kremer, C. T., Thomas, M. K,
and Litchman, E. (2017).
Temperature- and size-scaling
of phytoplankton population
growth rates: Reconciling the
Eppley curve and the metabolic
theory of ecology. Limnology and
Oceanography, 62(4):1658-1670.

Kuosa, H., Fleming-Lehtinen, V.,
Lehtinen, S., Lehtiniemi, M.,
Nygard, H., Raateoja, M., Rai-
taniemi, J., Tuimala, J., Uusitalo,
L., and Suikkanen, S. (2017). A
retrospective view of the devel-
opment of the Gulf of Bothnia
ecosystem. Journal of Marine Sys-
tems, 167:78-92.

Laamanen, M. J. (1997). Environ-
mental factors affecting the oc-
currence of different morpholog-
ical forms of cyanoprokaryotes in
the northern Baltic Sea. Journal
of Plankton Research, 19(10):1385-
1403.

Lindén, A. and Knape, J. (2009).
Estimating environmental effects
on population dynamics: con-
sequences of observation error.
Oikos, 118(5):675-680.

Litchman, E., de Tezanos Pinto,
P.,, Edwards, K. F.,, Klausmeier,
C. A, Kremer, C. T., and Thomas,
M. K. (2015). Global biogeochem-
ical impacts of phytoplankton: a
trait-based perspective. Journal of
Ecology, 103(6):1384-1396.

32

Litchman, E. and Klausmeier,
C. A. (2008). Trait-based com-
munity ecology of phytoplank-
ton. Annual Review of Ecology,
Evolution, and Systematics, 3:615—
639.

Mackas, D., Greve, W., Edwards,
M., Chiba, S., Tadokoro, K.,
Eloire, D., Mazzocchi, M., Bat-
ten, S., Richardson, A., John-
son, C., Head, E., Conversi, A.,
and Peluso, T. (2012). Chang-
ing zooplankton seasonality in
a changing ocean: Comparing
time series of zooplankton phe-
nology. Progress in Oceanography,
97-100:31-62.

McQuatters-Gollop, A., Johns,
D. G., Bresnan, E., Skinner, J.,
Rombouts, 1., Stern, R., Aubert,
A., Johansen, M., Bedford, J., and
Knights, A. (2017). From micro-
scope to management: The crit-
ical value of plankton taxonomy
to marine policy and biodiversity
conservation. Marine Policy, 83:1-
10.

Meier, H. E. M., Andersson,
H. C., Arheimer, B., Blenckner,
T., Chubarenko, B., Donnelly,
C., Eilola, K., Gustafsson, B. G.,
Hansson, A., Havenhand, ]J.,
Hoglund, A., Kuznetsov, I,
MacKenzie, B. R.,, Miller-
Karulis, B., Neumann, T,
Niiranen, S., Piwowarczyk, J.,
Raudsepp, U., Reckermann,
M., Ruoho-Airola, T., Savchuk,
O. P, Schenk, E., Schimanke, S.,
Vili, G., Weslawski, J.-M., and



Zorita, E. (2012). Comparing re-
constructed past variations and
future projections of the Baltic
Sea ecosystem—first results from
multi-model ensemble simula-
tions.  Environmental Research
Letters, 7(3):034005.

Moran, P. A. (1953). The statisti-
cal analysis of the canadian lynx
cycle. Australian Journal of Zool-
ogy, 1(3):291-298.

Mikinen, K., Vuorinen, 1., and
Héanninen, J. (2017). Climate-
induced hydrography change
favours small-bodied zooplank-
ton in a coastal ecosystem.
Hydrobiologia, 792(1):83-96.

Nash, J. C. and Varadhan, R.
(2011).  Unifying Optimization
Algorithms to Aid Software Sys-
tem Users: optimx for R. Journal
of Statistical Software, 43(9):1-14.

Norkko, J., Reed, D. C., Timmer-
mann, K., Norkko, A., Gustafs-
son, B. G., Bonsdorff, E., Slomp,
C. P, Carstensen, J., and Con-
ley, D. J. (2011). A welcome can
of worms? Hypoxia mitigation
by an invasive species. Global
Change Biology, 18(2):422-434.

Ohman, M. D. and Hirche, H.-].
(2001). Density-dependent mor-
tality in an oceanic copepod pop-
ulation. Nature, 412(6847):638—
641.

Olli, K, Klais, R., Tamminen,
T., Ptacnik, R., and Andersen,
T. (2011). Long term changes

33

in the Baltic Sea phytoplankton
community. Boreal Environment
Research, 16:3-14.

Panigrahi, S., Nydahl, A., Anton,
P., and Wikner, J. (2013). Strong
seasonal effect of moderate ex-
perimental warming on plankton
respiration in a temperate estu-
arine plankton community. Es-
tuarine, Coastal and Shelf Science,
135:269-279.

Parmesan, C. and Yohe, G.
(2003). A globally coherent fin-
gerprint of climate change im-
pacts across natural systems. Na-
ture, 421(6918):37—42.

Pinheiro, J., Bates, D., DebRoy, S.,
Sarkar, D., and (2018), R. C. T.
(2018). nlme: Linear and Nonlin-
ear Mixed Effects Models. R pack-
age version 3.1-137.

Pontavice, H., Gascuel, D., Rey-
gondeau, G., Maureaud, A., and
Cheung, W. W. L. (2020). Climate
change undermines the global
functioning of marine food webs.
Global Change Biology.

Portner, H. O. and Farrell, A. P.
(2008). Physiology and Climate
Change. Science, 322:4.

R Core Team (2017). R: A lan-
guage and environment for sta-
tistical computing. R Foundation
for Statistical Computing, Vienna
Austria.

Rantajarvi, E., Olsonen, R,
Hallfors, S., Leppénen, ].-M.,



and Raateoja, M. (1998).  Ef-
fect of sampling frequency on
detection of natural variability
in phytoplankton: unattended
high-frequency = measurements
on board ferries in the Baltic Sea.
ICES Journal of Marine Science,
55(4):697—704.

Reusch, T. B. H., Dierking, J.,
Andersson, H. C., Bonsdorff, E.,
Carstensen, J., Casini, M., Cza-
jkowski, M., Hasler, B., Hinsby,
K., Hyytidinen, K., Johannesson,
K., Jomaa, S., Jormalainen, V.,
Kuosa, H., Kurland, S., Laikre,
L., MacKenzie, B. R., Margon-
ski, P.,, Melzner, F., Oesterwind,
D., Ojaveer, H., Refsgaard, J. C.,
Sandstrom, A., Schwarz, G., Ton-
derski, K., Winder, M., and Zan-
dersen, M. (2018). The Baltic Sea
as a time machine for the future
coastal ocean. Science Advances,
4:eaar8195.

Ripa, J. and Ives, A. R. (2003).
Food web dynamics in corre-
lated and autocorrelated envi-
ronments. Theoretical Population
Biology, 64(3):369-384.

Ripa, J. and Ives, A. R. (2007).
Interaction assessments in cor-
related and autocorrelated envi-
ronments. In The impact of envi-
ronmental variability on ecological
systems., pages 111-131. Springer,
Dordrecht.

Roger Bivand, Tim Keitt, and
Barry Rowlingson (2019). rgdal:
Bindings for the ’‘Geospatial’

34

Data Abstraction Library. R pack-
age version 1.4-4.

Rousi, H., Laine, A. O., Peltonen,
H., Kangas, P., Andersin, A.-B.,
Rissanen, ]., Sandberg-Kilpi, E.,
and Bonsdorff, E. (2013). Long-
term changes in coastal zooben-
thos in the northern Baltic Sea:
the role of abiotic environmental
factors. ICES Journal of Marine
Science, 70(2):440-451.

Royama, T. (1981). Fundamental
concepts and methodology for
the analysis of animal population
dynamics, with particular refer-
ence to univoltine species. Eco-
logical Monographs, 51(4):473—-493.

Royama, T. (1992). Analytical pop-
ulation dynamics. Springer Sci-
ence & Business Media.

Salo, T., Mattila, J., and Ek-
16f, J. (2019). Long-term warm-
ing affects ecosystem functioning
through species turnover and in-
traspecific trait variation. Oikos.

Scharfe, M. and Wiltshire, K. H.
(2019). Modeling of intra-annual
abundance distributions: Con-
stancy and variation in the phe-
nology of marine phytoplankton
species over five decades at Hel-
goland Roads (North sea). Eco-
logical Modelling, 404:46—60.

Scheef, L. P, Hampton, S. E,,
and Izmest'eva, L. R. (2013).
Inferring plankton community
structure from marine and



freshwater long-term data us-
ing multivariate autoregressive
models: Freshwater and marine
data MAR models. Limnology
and  Oceanography: Methods,
11(9):475-484.

Scheef, L. P, Pendleton, D. E.,
Hampton, S. E.,, Katz, S. L,
Holmes, E. E., Scheuerell, M. D.,
and Johns, D. G. (2012). As-
sessing marine plankton com-
munity structure from long-term
monitoring data with multivari-
ate autoregressive (MAR) mod-
els: a comparison of fixed station
versus spatially distributed sam-
pling data: Point versus spatial
data MAR models. Limnology and
Oceanography: Methods, 10(1):54—
64.

Schliiter, M. H., Merico, A., Regi-
natto, M., Boersma, M., Wilt-
shire, K. H., and Greve, W. (2010).
Phenological shifts of three inter-
acting zooplankton groups in re-
lation to climate change. Global
Change Biology, 16:3144-3153.

Segerstrale, S. (1960). Investiga-
tions on Baltic populations of the
bivalve Macoma Baltica (L): part 1;
introduction; studies on recruit-
ment and its relation to depth
in Finnsih coastal waters during
the period 1922-1959; age and
growth. Societas scientiarum Fen-
nica.

Sommer, U. and Lewandowska,
A. (2011). Climate change and
the phytoplankton spring bloom:

35

warming and overwintering zoo-
plankton have similar effects on
phytoplankton. Global Change Bi-
ology, 17(1):154-162.

Suikkanen, S., Pulina, S,
Engstrom-Ost, J., Lehtiniemi,
M., Lehtinen, S., and Brutemark,
A. (2013). Climate change and
eutrophication induced shifts
in northern summer plank-
ton communities. PLoS ONE,
8(6):e66475.

Seether, B.-E., Engen, S., Gre-
tan, V., Fiedler, W., Matthy-
sen, E., Visser, M. E., Wright,
]J., Mgller, A. P., Adriaensen, F,,
Van Balen, H., Balmer, D., Main-
waring, M. C., Mccleery, R. H.,
Pampus, M., and Winkel, W.
(2007). The extended Moran ef-
fect and large-scale synchronous
fluctuations in the size of great tit
and blue tit populations. Journal
of Animal Ecology, 76(2):315-325.

Tamelander, T., Spilling, K., and
Winder, M. (2017). Organic mat-
ter export to the seafloor in the
baltic sea: Drivers of change
and future projections. Ambio,
46(8):842-851.

Thackeray, S. J., Henrys, P. A,
Hemming, D., Bell, ]. R., Botham,
M. S., Burthe, S., Helaouet, P,
Johns, D. G., Jones, 1. D., Leech,
D. I, Mackay, E. B., Massimino,
D., Atkinson, S., Bacon, P. J.,
Brereton, T. M., Carvalho, L.,
Clutton-Brock, T. H., Duck, C,,
Edwards, M., Elliott, J. M., Hall,



S. J. G., Harrington, R., Pearce-
Higgins, J. W., Heye, T. T,
Kruuk, L. E. B., Pemberton, ]J. M.,
Sparks, T. H., Thompson, P. M.,
White, 1., Winfield, I. J., and
Wanless, S. (2016). Phenologi-
cal sensitivity to climate across
taxa and trophic levels. Nature,
535(7611):241-245.

Thomas, M. K., Kremer, C. T,
Klausmeier, C. A., and Litch-
man, E. (2012). A global pat-
tern of thermal adaptation in

marine phytoplankton. Science,
338(6110):1085-1088.

Thomas, M. K., Kremer, C. T,
and Litchman, E. (2016). En-
vironment and evolutionary
history determine the global
biogeography of phytoplankton
temperature traits: Phyto-
plankton  temperature  trait
biogeography. Global Ecology and
Biogeography, 25(1):75-86.

Viherluoto, M., Kuosa, H.,,
Flinkman, J., and Viitasalo,
M. (2000). Food utilisation of

pelagic mysids, Mysis mixta and
M. relicta, during their growing
season in the northern Baltic Sea.
Marine Biology, 136(3):553-559.

Viitasalo, M. (1992a). Calanoid
resting eggs in the Baltic Sea:
implications for the popula-
tion dynamics of Acartia bifilosa
(Copepoda). Marine Biology,
114(3):397-405.

Viitasalo, M. (1992b). Mesozoo-
plankton of the Gulf of Finland

36

and northern baltic Proper a re-
view of monitoring data. Ophelia,
35(2):147-168.

Viitasalo, M., Katajisto, T., and
Vuorinen, I. (1994). Seasonal
dynamics of Acartia bifilosa and
Eurytemora affinis (Copepoda:
Calanoida) in relation to abiotic
factors in the northern baltic sea.
Hydrobiologia, 292 /293:415-422.

Viitasalo, M., Vuorinen, 1., and
Saesmaa, S. (1995). Mesozoo-
plankton dynamics in the north-
ern Baltic Sea: implications of
variations in hydrography and
climate. Journal of Plankton Re-
search, 17(10):1857-1878.

Viitasalo, S. (2007). Effects of bio-
turbation by three macrozooben-
thic species and predation by
necto-benthic mysids on clado-
ceran benthic eggs. Marine Ecol-
ogy Progress Series, 336:131-140.

Wasmund, N., Tuimala, ],
Suikkanen, S., Vandepitte, L.,
and Kraberg, A. (2011). Long-
term trends in phytoplankton
composition in the western and
central Baltic Sea.  Journal of
Marine Systems, 87(2):145-159.

Wauchope, H. S., Amano, T,
Sutherland, W. J., and Johnston,
A. (2019). When can we trust
population trends? A method
for quantifying the effects of
sampling interval and duration.
Methods in Ecology and Evolution,
10(12):2067-2078.



Winder, M. and Sommer, U.
(2012). Phytoplankton response
to a changing climate. Hydrobi-
ologia, 698(1):5-16.

Wood, S. and Scheipl, E (2017).
gamm4: Generalized Additive
Mixed Models using ‘mgcv’ and
Ime4’. R package version 0.2-5.

Wood, S. N. (2011). Fast stable
restricted maximum likelihood
and marginal likelihood estima-
tion of semiparametric general-
ized linear models. Journal of the
Royal Statistical Society: Series B
(Statistical Methodology), 73(1):3—
36.

Wood, S. N. (2017). Generalized
additive models: an introduction
with R. Chapman and Hall/CRC.

37

Wood, S. N, Pya, N., and Sifken,
B. (2016). Smoothing parame-
ter and model selection for gen-
eral smooth models. Journal of
the American Statistical Associa-
tion, 111(516):1548-1563.

Zeileis, A. and Gabor
Grothendieck (2005). Z0O:
S3 Infrastructure for Regular and
Irregular Time Series. Journal of
Statistical Software, 14(6):1-27.

Zingone, A., Harrison, P. ],
Kraberg, A., Lehtinen, S,
McQuatters-Gollop, A., O’Brien,
T., Sun, J., and Jakobsen, H. H.
(2015).  Increasing the quality,
comparability and accessibil-
ity of phytoplankton species
composition time-series data. Es-
tuarine, Coastal and Shelf Science,
162:151-160.



ISBN 978-952-12-3943-4



	Abstract
	Sammanfattning
	Table of contents
	List of chapters
	1 Introduction
	1.1 Population dynamics
	1.2 Plankton as a model system
	1.3 The detection of environmental drivers
	1.4 Observation error
	1.5 Aims

	2 Material and Methods
	2.1 The Baltic Sea
	2.2 Brief outline of the chapters
	2.3 State-Space Models
	2.4 Observation error
	2.5 Extrinsic variables

	3 Results and Discussion
	3.1 The spatial scale of plankton population dynamics
	3.2 Extrinsic drivers of plankton population dynamics
	3.3 Phenology

	4 Conclusions and future perspectives
	Acknowledgements
	References


 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: before current page
     Number of pages: 2
     Page size: same as page 1
      

        
     Blanks
     0
     Always
     118
     2
     /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
     1
            
       D:20200406135050
       765.3543
       Blank
       21.2598
          

     LAST-1
     Tall
     1289
     415
    
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     BeforeCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0k
     Quite Imposing Plus 3
     1
      

   1
  

 HistoryList_V1
 qi2base





