
Environmental damage assessment
based on satellite imagery using

machine learning

Luca Zelioli 1800293
Master of Science Thesis
Supervisors: Prof. Johan Lilius, Dr. Bogdan Iancu
Faculty of Science and Engineering
Åbo Akademi
2019



Vorrei dedicare questa tesi alla mia famiglia che in questi anni mi ha supportato. Un
particolare grazie alla mia compagna anche. Impossibile dimenticare la mia seconda

famiglia, gli amici di Santa Caterina Valfurva I miei piu fedeli compagni di avventure.

Luca



Abstract

The aim of this thesis is to provide a source of information about damage assessment in
forestry using deep learning. A large source of environmental information is provided by
satellites imagery. Orbital devices are equipped with sensors that read the frequency vari-
ations in the terrestrial electromagnetic field. The information obtained by these devices
is composed by collections of dots. Machine learning methodologies, however, have the
ability to transform raw data into human-understandable output.

Cloud and blur represent artefacts that need to be tackled to obtain high-quality imagery.
For instance, a deep learning neural network, a Generative Adversarial Neural Network,
can extrapolate the cloud compound from the image. Moreover, resampling techniques
are used to improve their resolution. In this way, it is possible to correct the overall quality
of satellite data.

The Finnish Kvarken Region, situated in the province of Vaasa, comprises a delicate
forestry zone. Climate changes and the rise of temperature are influencing the forest
quality negatively. Moreover, the public company in charge of the operational manage-
ment needs new tools in order to enhance the environment condition.

Plenty of satellite data analysis frameworks are available for the consumer. In particular,
SNAP, QGIS and ArcGIS offer capabilities to analyze environmental damage. Moreover,
Google Earth Engine uses powerful programming languages such as Python to elaborate
information from the Kvarken Region. It is also possible to study the historic forestry
change from the past years until today. Unsupervised and supervised machine learning
models are used to underline the difference between techniques. Deforested areas in the
Kvarken Region are mapped using state-of-the-art deep learning architectures for image
segmentation. The implementation is done using Python programming language and open
source libraries such as TensorFlow and Keras.

Keywords: forest assessment, satellite imagery, remote sensing.

3





Acknowledgement

First of all, I would like to thank the KvarkenSpaceEco Project that gave me the possibility
to study and increment my knowledge in computer vision, combining my passion for the
environment. I am deeply grateful to Professor Johan Lilius and Dr. Bogdan Iancu for
the excellent advices and support. Without the guidance and persistent help of all the
Professors, Docents and Personals, of the Åbo Akademi University my studies would
have been impossible.

5





Contents

1 INTRODUCTION 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 BACKGROUND 9
2.1 Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The Kvarken Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 RESOURCES 19
3.1 Google Earth Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Alternative framework for the analysis of spatial and geographical data . . 21

3.2.1 SNAP (Sentinel Application Platform) . . . . . . . . . . . . . . . 22

3.2.2 QGIS (Geographical Information System) . . . . . . . . . . . . . 23

3.3 ArcGIS Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 METHODS 29
4.1 UNSUPERVISED LEARNING IN SATELLITE IMAGERY ANALYSIS 31

4.1.1 K-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 PCA analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Self-organizing maps (SOMs) . . . . . . . . . . . . . . . . . . . 37

4.2 DEEP LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Deep convolutional neural network . . . . . . . . . . . . . . . . 41

4.2.2 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 IMPLEMENTATION AND RESULTS 47
5.1 EXPLORATORY ANALYSIS OF SATELLITE IMAGERY USING GOOGLE

EARTH ENGINE AND PYTHON . . . . . . . . . . . . . . . . . . . . . 47

5.2 UNSUPERVISED LEARNING . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 PCA analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7



5.2.3 Self-organizing maps (SOMs) . . . . . . . . . . . . . . . . . . . 66
5.3 DEEP LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Image Segmentation with TensorFlow . . . . . . . . . . . . . . . 69
5.3.2 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.3 SegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 CONCLUSION AND FUTURE WORK 81
6.1 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



INTRODUCTION

Computer vision aims to imitate the human vision by electronically understanding the
content of images [1]. Camera sensors are usually used to capture images, but during
the acquisition time, plenty of quality details are lost due to the incapacity of hardware to
perfectly replicate the reality. For example, the geometric properties of the captured scene
are re-built using mathematical models. The interpretation of images is a long process in
computer vision. Computers need a large amount of data in order to understand items
inside images, for humans only previous knowledge of it is necessary [1]. Moreover, one
can summarize the logic behind with the following formula:

Computer vision interpretation : image data −> model. (1.1)

There are multiple extra components that come within images [1]: the noise is present
at the moment of the frame acquisition but mathematical algorithms are able to tackle it.
Modern camera sensors capture data and before the image representation, pre-processing
algorithms digitalize the samples in order to remove the noise. This is attained by mul-
tiple phases, for example, capturing phase, processing phase or transmission. The noise
is identified by studying the constant power spectrum of the image, because it does not
change in intensity. Moreover, it is different than the signal noise because the frequency
remains constant. There are two special cases of noise, Gaussian noise and adaptive noise
[1]. Sometimes noise is also used for constructive purposes, for example it is possible to
detect faces of people and apply blur to them.

The edges of a picture can be enhanced to improve the quality. The process of image
creation requires plenty of processing and memory power. Image quality depends on
brightness because some objects reflect light and lower the final quality of the picture.
Edges are very important in computer vision, because they describe the change in inten-
sity of the neighbour’s pixels. Techniques such as optical flow combined with the study
of edges show the direction of an object in multiple images. Moreover, the combination
between edge and contours is used to extract objects.

1



Luca Zelioli 1800293

Colours are essential components of images. For humans the visible wavelength is from
380 nm to 740 nm [1], for computers it is larger. It is possible to convert the not visible
wavelength so that humans have the possibility to see it. They are represented in RGB
(red green and blue) format, expressed as a mixture of the primary colours vector. Fur-
thermore, it is very useful for cluster analysis in order to separate the image regions.

The data involved in the various steps of image processing is very different: in the low
level it is represented by large arrays of numbers, in the upper layer the content is filtered
and only the important features are extracted. However, this process does not follow a
specific path, as different operations involve particular algorithms.

Moreover, the computer vision approach attempts to create a relation between an input
frame and a pre-made model [1]. Machine vision uses algorithms to correlate the raw im-
age data and the interpretation. At the bottom level, computers have no knowledge about
the content, however, top-level Artificial Intelligence methods are used to understand the
content of the image [1]. For example, the segmentation process is used to divide the im-
age in different regions to extract features. The border analysis of every segment is used
to divide regions. Modern neural networks use this methodology in order to separate the
background from an object.

Classification is used for object identification. Machine vision needs previous human
knowledge in order to interpret images because at machine level, object identification
happens by comparing arrays from raw data and samples provided by humans.

Mathematical models are used to represent images, in 2D coordinates [1]. However, this
is the result of porting an image from the real-world scene that is a 3D space, through
a process called perspective projection [1]. Furthermore, other factors are archived with
an image: intensity of the light, surface reflectance and source of brightness. Fortunately,
these components are static [1] and they are removed by mathematical algorithms to make
clear the object detection. The image captured by a camera sensor is digitalized: this pro-
cess is divided into two parts, sampling and quantization. The first one refers to the
division of pixels representing the image in a grid divided by rows and columns. Raster-
ization defines the relationship between points in a grid [1]. Moreover, better sampling
means good quality of the image. Quantization assigns integer value to every continuous
sample of the image [1].



Luca Zelioli 1800293

1.1 Motivation

The WMO report on The Global Climate between 2015 and 2019 notifies a great accel-
eration in climate change with dangerous effect on the environment. Perennial glaciers
are becoming smaller, raising the level of water in seas and oceans. For example, the
Forni glacier, situated in Santa Caterina Valfurva, a small town in North Italy, and sit-
uated between 2600 and 3600 meters above sea level, is descending about 2 meters per
year, which confirms that global temperature is rising. This situation has also affected the
forest in the area. High temperatures, storms and humans are contributing to damaging
the forest, in Finland and around the world. About 75% of Finland is covered with forest,
with high contribution of oxygen for Northern Europe. For this reason, it is important to
discourage environmental damage to the forest ecosystem remarking how dangerous is
the actual climate situation.

It is important that the Global Community becomes more sensitive for the climate sit-
uation, because it affects human health. If the situation does not change, forest areas
around the world will be permanently damaged. However, Finland uses a method to pre-
serve the forest areas by removing old trees and planting new ones.

The aim of this thesis is to present machine learning models able to assess damage, fo-
cusing on deforestation. Moreover, the analysis focuses on damage caused by humans or
natural disasters. The work is concentrated to two different branches. In unsupervised
learning, algorithms like K-Means clustering, PCA analysis, Gaussian Mixed Models and
Self-Organizing Maps are used in remote-sensing applications. These models are able
to divide the input in clusters given only a few parameters. In the deep learning section,
three different models are described. For this kind of analysis, labels need to be provided
in order to make the analysis work. Two models are described in this section. The U-

Net is a very powerful model that is able to discover forestry damage, however, SegNet

is another good algorithm but does not guarantee satisfactory predictions. In the end, a
TensorFlow model with a framework called Pix2Pix is studied as well.

Furthermore, different datasets are tested in order to verify how the models perform. How-
ever, deeper studies are necessary in order to classify the damage caused by human or by
natural disasters. The inquiry focuses on the Kvarken Region. However, the solution is
applicable to other areas as well.



Luca Zelioli 1800293

1.2 Contribution

I was honoured to present preliminary results of this Master’s thesis to the "Finnish Satel-
lite Workshop 2020" with a poster: "Machine Learning methods for environmental dam-
age assessment from satellite imagery, a case of study: The Kvarken Region"



Luca Zelioli 1800293

Figure 1.1: Poster showed during the Finnish Satellite Workshop 2020



Luca Zelioli 1800293

1.3 Thesis structure

The thesis commences with a brief introduction about the current state-of-the-art in re-
mote sensing technology and essential concepts of computer vision.

In Chapter 2, Background, relevant information such as the definition of the electro-
magnetic spectrum is given, followed by a short description of the hardware used for
remote imagery. At this point, the process of image acquisition by cameras or sensors is
described. In the related work section, the Kvarken Region is introduced with valuable
information about the geographical conformation of the archipelago and forest distribu-
tion in the area. Examples from Sentinel-2 satellite images can be found there as well.

The Resources Chapter describes the current and already made applications of remote
sensing. In particular with SNAP, ArcGIS and QGIS software it is possible to conduct
analysis with a few clicks and settings. Moreover, the RGB analysis uses specialized
algorithms, one can detect from the input image the healthy vegetation of the Kvarken
Region. The Google Earth Engine plays an important role for this field because it in-
cludes a satisfactory archive of Sentinel, Landsat and Modis data where some of them are
updated daily.

The Method Chapter briefly describes the history of Artificial Intelligence followed by
a machine learning introduction. Mathematical concepts behind the various models used
in the field are described. In the Unsupervised learning section, a description for each
method used for the forestry damage assessment is reported: K-Means clustering, PCA

analysis and the Self-Organizing Maps. The following section is dedicated to the descrip-
tion of the deep learning methodologies: first a general description of them followed by an
extensive mathematical review of various activation functions and sensing methodologies.
One of the most used backbones for Neural Network, TensorFlow, is briefly described.

The Implementation Chapter starts with an analysis about the forestry situation of the
Kvarken Region, the process is done using Python programming language and a dataset
found in the Google Earth Engine archive. Moreover, various images, tables and one
graph illustrate how many trees are lost from the year 2000 to 2017. In the following
section, the workflow used to study deforestation is described. All the packages used to
gather results are summarized in tables exercise by exercise. The PCA analysis shows how
to extract the components with minimal covariance from a set of bands of the same im-
ages. This is used as pre-processing, removing noise from the images before process with



Luca Zelioli 1800293

other algorithms as the GMM or K-Means clustering. The results of the Self-Organizing
Maps algorithm, realized with MATLAB, are the next topic of the chapter. The following
section culminates in an extensive description of three examples, one TensorFlow anal-
ysis, implemented with a basic pre-trained SSD, enriched with the Pix2Pix frameworks.
U-Net, one of the most used Neural Networks for Remote Sensing, is described with the
help of graphs and resulted predicted masks output. The same output is reported also for
the SegNet model.

The work concludes with Conclusion and Future Work.



Luca Zelioli 1800293



BACKGROUND

In this chapter, the concept of remote sensing is briefly introduced, elaborating on the role
of the electromagnetic field in the study of satellite imagery. Two main types of sensors,
microwave and infrared sensors, are presented. The most popular machine learning tech-
niques used to analyse data from orbital devices are succinctly given. Another critical
issue in satellite imagery analysis is image quality enhancement, which is discussed at
the end of the chapter. The background culminates with a section describing the Kvarken
Region.

2.1 Remote Sensing

Modern technology allows scientists and researchers to inspect lands and oceans from
space using remote sensing. Features are detected without any direct interaction with the
object itself [2]. The earth and sun are natural emitters of radiation. Therefore, satellite
systems are equipped principally with sensors able to read and measure changes in the
field.

The electromagnetic field surrounds every object on Earth, travelling at light speed. Study-
ing different frequencies of the waves generated by the electromagnetic spectrum allows
observation of different phenomena from space. One principle is that every object reflects,
absorbs and transmits radiation. The electromagnetic energy is defined as follows:

E = h∗ c∗ f ,

where h is Planck’s constant (6.626 * 10-34 Joules-sec), c is a number that expresses the
speed of light (3 * 108 m/secs) and f is the wave frequency [2].

Satellite sensors fall into two categories: optical and microwave sensors. Furthermore,
the working principle is that optical sensors capture the light reflected by Earth objects
and, based on the light intensity, the objects can be identified. However, in dark condi-

9



Luca Zelioli 1800293

tions the resulted outcome is poor, because the natural light during night-time is diffuse
and cannot ensure good results. Therefore, modern satellites sense infrared rays from the
Earth, guaranteeing optimal results during night-time.

When the sensing phase is terminated, the data collected is composed by a series of dots.
Specifically, these dots represent the intensity of the image. Before the dots are combined
to engage a visual form, they are converted into binary numbers and stored in a matrix
[3].

Figure 2.1: Statistical analysis of Sentinel-2 Image. The image shows the frequency of
each type of pixels of the image’s channel

A typical process of image acquisition is divided into multiple steps. In the first step, the
monitoring phase, the vision system is activated in order to estimate the target structure
[2]. The data is transferred from the video system to a neural network during a process
called acquisition. At this point, the image is constructed joining all similar points col-
lected by the sensors. Moreover, between acquisition and the final output of the visual
image, it is possible to use a redundancy system to check if the data has been processed
without any problem. It is worth noting that some satellites use sensor calibration and
lens distortion alignment in order to achieve the best performance during the process of
sensing [4].

Resolution plays an important role in image analysis. Therefore, the image’s quality
makes the difference between discovering an object from kilometres of distance or less
than a metre (spatial resolution). Moreover, there are more factors to take into considera-



Luca Zelioli 1800293

tion during the image creation process, for example, the spectral resolution, summarized
as the capability of an electromagnetic sensor to capture wavelengths in a range between
short-wavelength (about 10−14 cycles per second) and long-wavelength (1024 cycles per
second). The radiometric resolution measures the quality of spectral waves and, with ma-
chine learning models, it is also possible to remove noise. Therefore, in modern satellites,
sensors are divided into arrays, where every compartment has different characteristics
and resolutions. The achievement of a good result is attained operating regular hardware
alignment [5]. However, various sensing devices use different scale ratios, computer vi-
sion techniques enable the combination of multiple outcomes. Using Gaussian Kernel,
for example, the images are intersected eliminating noises deriving from different sensing
data or sensors [5].

When satellites sense a particular zone, the data is processed by machine learning al-
gorithms to extract useful information. Moreover, mathematical and statistical algorithms
are able to use techniques such as classification and clustering to make a more accurate
interpretation of the image. More commonly, clustering is used to group pixels with same
characteristics together. In supervised learning, the algorithm needs input labelled data,
as input in order to achieve a plausible outcome. Therefore, the quality of training data
highly influences the output. Moreover, when the label matches an image’s region, the
algorithm provides output that is represented by the coordinates’ bounding box of the
detected object. Along with the bounding boxes, models provide an output number that
expresses the accuracy or confidence. In some algorithms, there is a third value, called
the mask, that shows the bounding box area.

Machine learning is used also for different types of tasks, for example sensor calibra-
tion and maintenance avoiding traditional human supervision. The main reason is to save
the huge costs of space missions. Furthermore, working in space is dangerous and also
not healthy in the long-term. For example, repair machinery from the space shuttle repre-
sents a constraint for the astronauts in the Geo-Stationary Orbits.[4].

The orbit environment creates an appropriate place to collect sensing data from satel-
lites thanks to the diversity of the earth’s atmosphere. Moreover, the difference stays in
the intensity of background light which in space is almost absent. However, when the
light from the stars illuminates our planet, it irradiates the space between the satellite’s
sensors and the atmosphere, resulting in poor image quality. In some cases, parts of the
images could be lost. In order to avoid this problem, perimeters of the instruments are
covered with a special foil that reflects back the sun light [4].



Luca Zelioli 1800293

The most popular techniques for achieving image clarity are Bagging-based and AdaBoost-
based. SVMs, Support Vector Machines, also proved to be efficient in this scope. [6].

The evolution of complexity in orbital devices imagery promotes the use of unsupervised
machine learning algorithms. Moreover, K-Means clustering, Fuzzy C-Means (FCM),
and Expectation Maximization (EM) algorithms are useful classification models for satel-
lite images [7]. K-Means divides the dataset into groups sharing the same characteristics.
Fuzzy C-Means clustering, one of the best algorithms used in remote sensing, is a clus-
tering neural network that produces an optimal number of clusters minimizing different
weights in the group. Expectation Maximization finds maximum likelihood parameters
where variables are complex. These three algorithms have the ability to distinguish be-
tween water, vegetation and land in satellite imagery. In section 4.1, unsupervised learn-
ing for satellite imagery is presented. [7].

In particular, the K-Means clustering algorithm is used to study pixels of one input im-
age. The model divides the image into zones with the same characteristics. The resulting
outcome is an image where similar zones are shown with the same colours. In the Prin-
cipal Component Analysis, multiple input images are studied together in order to find
uncorrelated patterns. Moreover, the pixels that are constantly repeated are eliminated.
The result is a component with maximum variance that is called Principal Component.
Self-Organizing Maps detect similarity in the image, removing uncorrelated data. At this
point, the pixels with the same number of hits are shown with a particular colour.

To determine the quality of the images, algorithms divide the input into regions assigning
to each segment a control point. The same operation is repeated for other images. At this
point, every region is compared checking the control point accuracy if it has good quality
or not [8]. Therefore, if the difference between two accuracy points in a region is high,
due to a lack of scaling or focus in two or more control points of the segment to compare,
the process should be repeated. This is used as quality control of the system. However,
this technique does not guarantee high-quality output. Machine learning algorithms pro-
duce false positives and negatives, distorting the final result.

Stockman proposes an approach by drawing lines between affine control points study-
ing how these intersects between regions. At this point, a parameter that describes the
ratio between the line that makes intersection and the one that does not, is used as control
point of the image. [8].



Luca Zelioli 1800293

This process is divided into four steps: gathering of control points, checking if the control
point of the segment corresponds, visitation of the point position in each region, and es-
timation of the image accuracy. Therefore, a specific dataset for satellite images benefits
from using unsupervised learning techniques. Clustering represents a solution to avoid
error or bad image labelling. Moreover, calculation of the correspondence between points
belonging to the same region of two images can be done using a mathematical approach.
However, every situation needs different treatment in order to solve the problem presented
[8]. Therefore, unsupervised learning is very powerful and effective because it is able to
study the pixel’s correlation of the region points with same characteristics.

When a correspondence between regions is distorted, the problem should be solved using
different techniques. Furthermore, an analysis of an exclusive point or the correlation
between adverse points needs to be conducted. [8]. For this process typically SVMs are
used. The accuracy calculation between two affine regions is obtained by checking if the
two centre points have the same vertex, verifying the resulted accuracy. For example,
clustering is used to divide the affine regions of the two images and calculate the variance
to check how good the samples are. Stockman uses the best centre region to calculate the
threshold for accuracy [8].

2.2 Related work

Scientists and researchers dedicated plenty of resources to find new ways to increase the
quality of satellite imagery analysis workflow. Thanks to modern technology, it is possible
to study in-depth data from orbital devices. The satellite output is fused with other sensor
data to execute a better analysis. Satellite images are often blurry — machine learning
methods help in compensating for poor image quality.

Deep learning is a good discipline for the study of satellite images. This is crucial because
the deployment cost of new devices is high. Therefore, researchers and data scientists put
plenty of effort into finding new ways to improve the state-of-the-art resolution of the cur-
rent satellite images [9]. Every orbital device has different hardware installed, meaning
that it collects data in different frequencies and resolutions. For example, the Landsat

satellite operates with a scaling between 640 and 670 nanometres. The Sentinel satellite
uses bands from 634 to 696 nanometres. The sensors installed make use of the non-unique
spectral resolution to capture the image. Different sensing instruments are used to obtain
various features. For example, Sentinel satellites use an array of sensors with about ten
spectral bands. These components can spot regions of interest which otherwise would not



Luca Zelioli 1800293

Figure 2.2: Pixels view from Sentinel 2 satellite of the Kvarken Region.

be visible with only one type of device.

However, when the data is not congruent with some parameters of the satellite’s hard-
ware, it is stored as garbage collection. Various analyses should be conducted to avoid the
problem. Moreover, using only techniques such as resolution resampling that increases
the pixels’ intensity does not produce acceptable results.

Generative Neural Networks study low-resolution images from satellites with enforce-
ment to improve their quality. Moreover, pixels saturation and clouds need to be consid-
ered as noise in image quality [9]. Using filters to eliminate these artefacts is a solution
that improves the image quality.

Multiple images are used to enhance the quality of the final one combining numerous
low-resolution images into one with a higher resolution through a technique called multi-

image super resolution (MISR). The logic behind is the workflow of an algorithm that
reorders the pixels of different low-resolution images, reassembling them in the right or-
der and position [10]. However, clouds and brightness changes are artefacts to take into
consideration before progressing with the analysis. Temporal resolution, defined as the
number of times that the satellite passes the same point capturing the same area, plays
an important role. Moreover, the number of low-resolution images acquired in a time
range is directly proportional to the final enhanced image. In other words, the more low-
resolution images are combined, the better high-resolution images are obtained.

New satellites, such as PROBA-V, use software that collects data in the usual satellite
resolution, but periodically. One or two times per week, a high-resolution image is ob-



Luca Zelioli 1800293

Figure 2.3: This figure shows how the Sentinel 2 image appears when bands are changed.

tained using the MISR technique. A Convolutional Neural Network takes as input mul-
tiple low-resolution images and a high-resolution one. The resulted output is resampled.
Furthermore, a super-sampled image is obtained in three stages. First, the input is re-
sampled to increase the resolution. At this point, the pixels from different images are
aligned. Finally, a process of fusion takes place, transforming the original input into a
super-sampled high-resolution image [10].

Different frameworks, such as OpenCV, the famous library used in computer vision, make
use of modern techniques of image enhancement. The combination of neural networks
and these frameworks are an essential starting point to arrange better imagery quality.



Luca Zelioli 1800293

2.3 The Kvarken Region

The forest coverage of Finland is about 75% of the total land, and it helps the diffusion
of oxygen in all the Arctic zones. However, the general rise of temperature could ac-
celerate the fall of plants because the soil does not freeze enough to bear the weight of
snow falling on the trees. It is essential to study the forestry situation to prevent damages
to the Finnish ecosystem. Moreover, satellite imagery is a beneficial system to analyze
the Finnish forestry status. Therefore, ecosystem protection is imperative to preserve the
planet and the future.

One interesting location in Finland is Kvarken Archipelago in the province of Ostroboth-
nia with geographical coordinates of 63.20 degrees for latitude and 21.47 degrees for
longitude. The area is mostly uninhabited. Moreover, the population count is about 2500
inhabitants, and it covers five municipalities: Korsholm, Korsnäs, Malax, Vasa, and Vörå
[12]. Of the land 94% is privately owned and of the water more than 50% [13]. The
Archipelago has unique geological characteristics: the landscape is very particular, and
the rise of land is the fastest in the world [13]. This region is rewarded with the title of
World Heritage Site. Finnish authority declared the area a National Park in the 1970s
[12]. Therefore, the protection under Finnish law guaranteed the conservation of old-
growth forests [13]. Due to the yearly elevation of the land, the trees that grow in the new
ground are the first ones ever. However, the conservation of this rarity is crucial.

From the sea point of view, the Kvarken Archipelago is called the kingdom of algae.
The ecosystem of underwater plants covers most of the archipelago. There are different
species of it with various colours. Therefore, deep and machine learning can be helpful
to study these plants. A K-Means clustering approach could be able to divide the plants
according to their colours. A deep learning system could be useful to reflect to which
zones different types of algae are concentrated.

Metsähallitus is the state-owned enterprise in charge of the Kvarken area preservation.
Land protection is guaranteed by regulation. Moreover, the intention is to conserve as
much as possible of the biological and geological value in the archipelago [13]. They col-
laborate with the local inhabitants to assure more extensive control over the forest zone
and water area. This is a difficult task. Therefore, access to satellite images from Sentinel
constellations is essential for the national company to check the zone status. Machine
learning promotes the detection state of water areas and tree zones.

Figure 2.4 shows the healthy vegetation status of the Kvarken Region. The image is ob-



Luca Zelioli 1800293

Figure 2.4: This image shows the vegetation status of the Kvarken Region. Trees cover
the zones highlighted in red.

Figure 2.5: This image summarizes the Kvarken Region viewed with different bands.

tained by resampling the raw data from the Sentinel-2 satellite using the Raster Geomet-

rical algorithm. The pixels are manipulated to highlight a piece of particular information.
In this case, the vegetation is manipulated. However, further algorithms should remove
the cloud compound to improve the image.

Figure 2.6 shows differences between the urban areas (upper image) and the vegetation
zones (lower image).



Luca Zelioli 1800293

Figure 2.6: Two images from Sentinel-2: The differences between the urban areas (upper
image) and the vegetation zones (lower image).



RESOURCES

In this chapter, the resources available for the study of satellite images are analyzed.
Google Earth Engine is a useful satellite imagery resource, because it is continuously
updated, almost every day. Three alternatives, SNAP, QGIS and ArcGIS, are studied as
general software packages. As second part the applicability of these frameworks into the
forest field is proposed.

3.1 Google Earth Engine

Google Earth Engine is a platform for remote sensing analysis implemented by Google
Inc. It is used in various fields of study, such as urbanization, forestry control, and climate
change. The simplistic user interface enhances the usage by technical users or amateurs
[14]. New technologies, such as parallel computing and cloud computing, make available
computer power that is used to analyze a large quantity of data. Moreover, archives of
satellite imagery from the US Government NASA, European ESA, and other national cor-
porations are available to the public for analysis. Unfortunately, merging different types
of sensing data is not a simple task, because it involves different frameworks and tech-
nologies. Therefore, many researchers are discouraged from using it. However, Google
Earth Engine combines different resources and sensing datasets automating algorithms
that produce and deploy new information and interactive applications [14].

Google Earth Engine owns a large amount of data organized as a catalogue, sourced from
different satellite platforms and sensing systems. Moreover, they are divided by common
characteristics. The catalogue includes images from Sentinel 1 and 2, and Landsat. The
archive is updated every day. Nearly 6000 images are managed [14]. Historical data is
stored, as well. A 40-year collection of Landsat data is available in the Google Earth
Engine repository [15]. Each image is associated with information such as location, ac-
quisition time, and which satellite sensed it. The images are tagged with different targets.
For example, they can be divided by the type of sensor used to obtain the raw data, or
they can be grouped by nation. Therefore, this technique provides a fast filtering capabil-

19



Luca Zelioli 1800293

ity where spatial, temporal, and sensing types are used as filter criteria [14].

The access time to Google Earth Engine resources is reduced thanks to high-performance
parallel system service. Algorithms auto-regulate access to the application via authenti-
cation servers. The web-based interactive development environment is available ready to
use [14]. As an alternative, it is possible to store authentication information into a device
and access the server database remotely, with a different IDE (Integrated Development
Environment) solution. The data exchange between a local computer and Google Earth
Engine is done via REST (Representational State Transfer) technology. This interface
is straightforward and uses an HTML request in order to achieve the data exchange ob-
jective. Moreover, it is possible to use Google Earth Engine with Google-Colab. It is a
web-based IDE where the access to data and information repository is simplified. The
analysis is automatically stored on Google Drive.

The architecture of Google Earth Engine fuses various already present Google technolo-
gies, such as Colossus, Google File System, Google Fusion Tables, and others. The data
is managed by computer clusters able to manage multiple tasks at the same time. About
800 functions are pre-written in order to make the development stage easier [14]. This
collection of libraries provides a multitude of pre-made machine learning functions. It
contains both supervised and unsupervised algorithms. Operations that require a high
computational cost are divided into tiles to take the advantages of parallel computation,
contrary to fast operations using virtual machine and just-in-time compiler [14].

Two programming languages provide the interaction between Google Earth Engine API
interface: JavaScript, a popular client-side programming language powerful for web
browser and Python, a multi-purpose programming language. Therefore, these procedu-
ral coding techniques can personalize any request to the Google Earth Engine. It supports
interactive exploration allowing the movement and zoom inside the analyzed image [14].
The script produced by Python or JavaScript is parsed before sending it to the compu-
tational server, and the redundant part is removed in order to speed up the calculation
process [14].

Google Earth Engine is used across a multitude of disciplines. Forestry change is one
of that. Landsat provides a time series of images about forestry. The Landsat Thematic

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) are two collections of his-
torical satellite images from the constellation of Landsat that was started in 1988 [16].
Various methodologies find their application in the change monitoring of these imagery



Luca Zelioli 1800293

collections over a given time series. Moreover, the woody vegetation lost detection can
be derived, making a comparison between the Foliage Projective Cover of different years
[16].

Classification and Regression Trees enhances the forestry prediction of a given training
dataset. For example, it is possible to predict the quantity of lost trees given the historic
images series as an input of a particular zone. Random Forests algorithm classifies dif-
ferent areas of forests using statistical approaches. However, these techniques produce
enough positive results when the training data is large [16]. It is a good practice to enrich
the model with a median filter in order to reduce the level of false-positives [16]. This is
translated into a reduction of the noise produced by the classification process allowing the
detection of more explicit samples.

The Global Forest Watch is using Google Earth Engine to create generic machine learning
models to predict the future trends of the forest [16]. Having at its disposal a powerful
engine like this, the time spent in the calculation is less, and the results are obtained in a
shorter time compared to other solutions, such as QGIS or SNAP [14].

3.2 Alternative framework for the analysis of spatial and
geographical data

In this section, alternative applications to Google Earth Engine are discussed. In particu-
lar, the European Space Agency, in collaboration with software architects, built a frame-
work package to access directly the archives of their constellation of the orbital system.
Moreover, QGIS and the new alternative SNAP have been developed with the aim to con-
sult these institutional archives.

Access to Copernicus data occurs via web-browser. The creation of an account is com-
pulsory. Information about the area of interest is retrieved by sending data as perimeter
points to the server calling back a series of results correlated to the request. Moreover,
there is the possibility to select additional options for precise research. Furthermore, it is
possible to use as parameters the amount of clouds and the type of band used by the satel-
lite before interrogating the image archive. However, with Google Earth Engine, one can
give different kinds of parameters for a proper specific search. The user interface used by
developers and programmers is not recommended for an audience without the associated
knowledge.



Luca Zelioli 1800293

QGIS and SNAP provide automatic systems to build the images from raw data down-
loaded from the ESA archive. When using the Google Earth Engine API, the parameters
that are used to built the image are more personalized.

QGIS and SNAP offer a machine learning section which can manipulate the data. For
example, Google Inc. offers the possibility to write a personalized code to do research.
SNAP and QGIS have pre-made algorithms that can be modified only by few parameters.
ArcGIS has a toolset that can be used within Python programming language.

However, SNAP and QGIS have interfaces that use pre-trained algorithms. Google Earth
Engine and ArcGIS use Python programming language, and they are suitable for more
extensive machine learning applications. In the next two subsections, SNAP and QGIS
analysis are examined.

3.2.1 SNAP (Sentinel Application Platform)

The Sentinel Application Platform, SNAP, is a new software package for the exploration
and consulting of Sentinel archive [17]. It is developed as an open-source package by
the European Space Agency. It plays an essential role in understanding the evolution of
Earth [18]. The archive is public, and it is available at the Copernicus Open Access Hub.
Moreover, the software can build high-resolution images of vast areas combining raw data
from the synthetic aperture radar images (SAR) during various days [19].

The framework contains an extensive collection of analysis tools and data display. Im-
ages are downloaded in the form of raw data represented by a matrix of points and lines.
Therefore, the core Generic EO data abstraction, memory management, and the graph

processing framework are responsible for building the final image. Algorithms included
in the toolbox cancel the image’s noise [17].

SNAP includes machine learning algorithms for supervised and unsupervised classifica-
tion. Moreover, the Cloud Exploration Platform Extension (CEP) decreases the noise pro-
duced by clouds in the image [17]. However, to obtain acceptable results, pre-processing
of the images is needed. Polarization and correct coordinates are essential elements to
control [20].

The Terrain Observation Progressive Scans plug-in is used to merge multiple images
in order to show more land coverage [18]. Therefore, this plug-in has optimal applica-
tion in the study of forest areas. However, forestry covers a wide terrain; a system called



Luca Zelioli 1800293

Digital Terrain Model package builds a topographic area of the zone that is analyzed by
downloading missing data [18]. The tool classifies the presence of flammable vegetation
in the forest to prevent disasters or creation of an ignition source. However, the better
resolution provided by SNAP does not provide optimal results in all cases [19].

(a) Image 1 (b) Image 2

Figure 3.1: Two different images of the same zone, the Kvarken Region. The images were
downloaded from the Sentinel 2 database. 1 represents the RGB image of the Kvarken
Region and 2 represents Kvarken Region masked with the tree-cover band

3.2.2 QGIS (Geographical Information System)

QGIS is an open-source software able to retrieve raw data from the archive of the Sentinel
constellation of satellites. It transforms the data into a cartographic image. It studies dif-
ferent natural resources, such as water, forest, and nature. The architecture used to build
the application is modular.

QGIS is the acronym for Geographical Information System Environmental Model, which
represents sites and locations. It displays the presence and quality of forestry resources
via simple API calls [21]. Moreover, this software helps to solve the conflict of the land’s
allocation. For example, by consulting the cartographic topology of a zone, it is possible
to establish an industrial site far from the forest in order to avoid environmental damages.
Forestry companies use the cartography provided by the QGIS system to define which
places are suitable to harvest wood, resulting in savings in cost and environment [21].

QGIS finds an application for regional analysis of the land. It collects information about
forestry space, that have well-defined boundaries. QGIS offers the opportunity to study
the status of the forestry area. However, it is a difficult task to deduce which of the areas
are suitable for maintenance to prevent damages. The solution is to pass these images to
a deep learning algorithm that detects which part of the forest needs maintenance.

The Geographical Information System can print cartography with a high precision grade.



Luca Zelioli 1800293

Machine learning is used in cartographic analysis [21]. Moreover, K-Means clustering
is a consistent method to classify and identify regions in the image. However, the study
of pixels requires plenty of time. It divides the image into regions that belong to affine
characteristics.

The supervised classification should be done by bounding the area within various fea-
tures, for example, agricultural fields and towns. Other types of analysis can be done to
prevent forestry disaster, such as wildfire, since forests prone to fire appear in different
colours. However, some areas are simple to classify. For example, the boundaries of
agricultural fields are easy to detect, and they are a good starting point to improve the
performance of the classification.

Multiple factors determine the state of a forestry area. For example, temperature, soil
type, and closeness to agricultural sites or irrigation system are some of these facts [21].
In order to obtain acceptable results, these factors should be taken into consideration.
Moreover, to make a fair comparison of various image features, unsupervised algorithms
need to be weighted [21]. The usage of mean and the correlation is an excellent solution
to adapt the algorithm to different types of situations. Alternatively, the QGIS software
uses a module called STRETCH. The users sets multiple parameters based on what they
want to search. Consequently, the system decides the suitable number of clusters to study
the images [21].

A pairwise matrix comparison is another method used to calculate the weight for an algo-
rithm in both unsupervised and supervised learning. The matrix can be used in the deep
learning frameworks, such as TensorFlow. Moreover, this process enables the algorithm
to be retrained with specific data to assess forestry status.

The QGIS software contains a framework called IDRISI that classifies the amount of
water inside a map, and a module named WEIGHT which is useful to automatize the pro-
cess of weighting the algorithm [2].

In the forestry analysis, good results are obtained with the multiplication between the
general image’s weights and the forest’s portion of that image. This process can be au-
tomatized using the QGIS module called MCE, multi-criteria evaluation [21].

QGIS contains CROSSTAB, a plug-in that identifies the correlation between forestry and
other types of land, such as urban zones or agricultural areas. Moreover, this relationship



Luca Zelioli 1800293

shows how pollution impacts the forest’s health [21]. However, it is not very easy to ver-
ify the correctness of the results.

QGIS is used to gain a complete view of the forestry status. The open-source software
captures and isolates natural resources from the images. The outcome data can be used as
input for clustering algorithms or in supervised learning [21].

Figure 3.2: Example of QGIS view. The image shows the Swedish and Finnish side of
the region.

3.3 ArcGIS Desktop

ArcGIS is a Geographic Information System developed by Environmental System Re-
search Institute, Inc. [45]. The company holds about 40% of the global GIS market.
The application engine, ArcView, uses a system called the shape f ile that converts data
that contains all the necessary features to conduct analysis. The shape f ile is similar to
the Google Earth Engine’s shape f ile that contains points, lines, and polygons. These
components are stored in the database of the system. Moreover, information such as ge-
ographic coordinates, land topology, are stored in the geo-database of the application.



Luca Zelioli 1800293

These storage units are grouped in a town unit or a nation unit.

The application was developed in 2001 [45]. The ArcView engine is the core that provides
instructions to the modern ArcGIS Desktop, providing an environment for the analysis, to
elaborate and to display geographical data. Moreover, the package also contains a set
of toolboxes and routines that manipulate the geographical data. It runs deep learning
models, as well. Another essential feature is the direct connection between ArcGIS and
Python programming language which provides the chance to develop personalized scripts
in order to create a reliable analysis. A set of functions is also available in the Python
sub-system to allow better interaction with ArcGIS.

The images provided by ArcGIS Desktop are of high quality. Compared to other sys-
tems, like Google Earth Engine, QGIS and SNAP, the satellite images from ArcGIS are
better, with a considerable zoom rate. In the other systems it is not possible to distinguish
deforested areas, which leads to a laborious process of labelling. Instead, with ArcGIS,
the quality is high, and it is possible to obtain zoomed images with a resolution of almost
10 thousand pixels in width and height. However, compared to the other platforms, there
is no temporal data.

Moreover, it is not very easy to understand when the images were recorded. Unfortu-
nately, the temporal data is one of the key aspects of the damage assessment. The process
of obtaining images after a storm is crucial to quantify damages.

There are multiple datasets tiled inside the ArcGIS software. When one of them is se-
lected, it overlays over the main map creating a new layer, such as the example in Figure
3.3. ESRI also offers a server where new data features can be downloaded from. In
particular, there are different types of servers available in the application. Moreover, a
map service [45] renders new layers as an overlay, and a feature service [45] makes new
traits available to the user as enrichment of the original map. One of the most interest-
ing services offered by ArcGIS is the imagery service, enabling access to a large amount
of satellite data from Landsat and Sentinel orbital devices. ESRI also shares from their
servers a system called geo-processing unit [45], a set of functions and packages to com-
pute sophisticated analysis.

The process of labelling the ArcGIS dataset, that is used for most analyses in this work,
has been conducted by verifying the deforested areas by overlapping the original map
with the tree-lost overlay layer taken from the ESRI database. The overlayers are very
helpful because they delimit the tree loss in forestry of the Kvarken Region, making the



Luca Zelioli 1800293

(a) The original map layer

(b) The labelled map layer with tree loss overlay

Figure 3.3: This image shows how ArcGIS overlaps multiple layers in order to highlight
the deforested areas.

label creation easier.



Luca Zelioli 1800293



METHODS

Due to an increased effort to boost computational resources, AI has found success in re-
cent years. The processing of large quantities of information has become crucial for the
success of companies and institutions. Today, the development of this field has made pos-
sible an increase in performance in machine automation [22], cancer classification [23],
face recognition [24], autonomous cars [25] and thousands of other operations. Machines
can structure and solve problems that are difficult for humans [26]. However, it was only
a few years ago that computers started to perform speech recognition and object detection
or tracking. Computers understand statements only if behind them there is a logical infer-
ence rule. This principle is known as the basic rule of Artificial Intelligence [26]. Behind
machines there are humans who implement logical inference rules to guide them. In the
past, these “rules” were hard-coded inside models. Today, thanks to machine learning
algorithms, these statements can be acquired by the machine itself. However, the data
used to train networks needs to be clear and without noise. Another problem that machine
learning tackles is called representation of the results. The machine needs to find a way
to solve the problem, but also to represent it in a manner that humans can understand [26].

Machine learning introduces new technologies, such as real-time object detection sys-
tems, natural language processing and computer assistance. Moreover, modern search
engines, such as chatbot assistants, are developed using these models. Algorithms can
also be applied to assist software developers in auto-generating code and making it more
reliable. [27]. The organization behind the input data often greatly influences the outcome
and the algorithm performance. The information used for the learning process should rep-
resent the specificity of the problem. This process is called feature finding. Contrarily, the
models can produce non-accurate information due to the generality of the data. There-
fore, one of the key points in developing machine learning models is dataset design. The
outcome of the learning process has to be comprehensible and simple.

A significant problem of machine learning is the variance of factors in the data [26].
An object of a particular colour can be seen as black during night-time. A shape of an

29



Luca Zelioli 1800293

object depends on the point of view that the image offers. Moreover, for a computer, it
is not straightforward to understand different light variations because the data analysis is
performed on the pixel level. The learning processes of most neural network algorithms
manage massive amounts of data, and they require large computational resources. How-
ever, if the data is badly trained, the neural network produces unexpected results with
poor learning ratio. For example, the portion of the dataset that is incomplete or unclear
should be eliminated. However, when the data is generic, the neural network is not able
to be trained correctly, producing overfitting. On the contrary, if the model is simpler
underfitting occurs. However, the data is also regularized in order to make it more con-
sistent. The model validity is checked with a simple methodology. The dataset is divided
into two parts: the training set, used to feed the model, and test set, used against the first
one to check the validity of the model. One way to quantify if the model has produced
acceptable results is the measurement of RMSE, Root Mean Square Error calculated as
follow. Given the hypothesis h:

RMSE(x,h) = 2

√
1
m

m

∑
i=0

(h(xi)− yi)2, (4.1)

where m is the number of dataset instances, xi represents the features and yi is the labelled
data [28]. Another example of performance measurement is the Mean Absolute Error
(MAE):

MAE(x,h) =
1
m

m

∑
i=1

∣∣h(xi)− yi∣∣ . (4.2)

In Deep Learning, the basic building blocks are combinations of diverse components.
Their primitives are called layers. Every layer is composed of a series of neurons, and
these layers are interconnected between each other. Different kinds of layers are described
in the following paragraphs.

In a Fully Connected Neural Network, all input components are inter-connected to the
output. Each neuron is in charge of a part of the analysis. When a process is completed,
the outcome is merged and sent to the output node [27].

The Convolutional Neural Network is specialized in image analysis. Moreover, the in-
put is divided into slices and sent to the network. From a mathematical point of view,
they are matrices filled with pixels. The neural network studies the relationship between
these pixels. Good results are achieved when the dependence among the pixels is ex-



Luca Zelioli 1800293

ploited [27].

Table 4.1: Summary of different neural network layers

Neural Network Layer Symbol Speciality
Fully Connected Layer FCL General purpose
Convolutional Layer CL Image processing
Dropout Layer DL Increase accuracy
Zero padding Layer ZPL Add 0 in the image contours

4.1 UNSUPERVISED LEARNING IN SATELLITE IM-
AGERY ANALYSIS

Unsupervised learning has an essential place in the machine learning ecosystem. These
algorithms do not need labelled data for the learning process. Moreover, in the follow-
ing sections data filtering by variance, covariance and other methods are explained. The
quality of the model is measured through the error rate produced by the algorithm itself.
However, a model is beneficial when it works well and produces acceptable results based
on data that is different from the one used for training or testing. When algorithms be-
come complex, intermediate data is used to evaluate the overall achieved performance.

Unsupervised learning models need to run without pre-existing labels. Usually, in ma-
chine learning, when a parameter changes during different training sessions, the algorithm
produces spurious results. It is time-consuming to adjust the parameters of the model in
order to obtain acceptable results. Furthermore, modern machine learning models can
auto-understand if a rule has changed and act accordingly to preserve the final results.
However, unsupervised learning models are useful for discovering patterns and similari-
ties in datasets. Furthermore, unsupervised learning is beneficial when the ground-truth
labels are unavailable. On the contrary to supervised, where the output is limited only
to the labels provided by the user, the unsupervised model checks for solutions in all the
possible features discovered [29].

For example, in the case of satellite imagery study, if an extensive dataset is provided,
the model produces a satisfactory outcome. Contrary, if the input data is weak, the results
are inaccurate. In the case of supervised learning, performance is highly dependent on the
quality of the training dataset [29].



Luca Zelioli 1800293

Unsupervised methods such as Clustering, Self-Organizing Maps, or Principal Compo-

nent Analysis may perform well when the input variables contain features that continu-
ously change. Moreover, these models are called reducers because they are able to classify
the data with similar characteristics together. The main rule is to look into the variance of
clustering, or covariance in the PCA Analysis.

K-Means Clustering studies the change of the data, distributing it into groups through
affinity and similar characteristics. In other words, it can divide the image in different re-
gions, based on several colours’ tonality. However, unsupervised learning does not label
or identify objects, it infers optimal results by checking the similarity between the image’s
areas. Furthermore, these algorithm families are able to divide unclassified images into
groups [29] with similar patterns that can be used as dataset labels for supervised learning
models.

Data scientists use unsupervised models to make a preliminary study in order to find a
relationship between unlabelled data points. Eventually, this outcome is used to label
data for supervised models. This is possible by using cluster analysis to group data with
the same characteristics, giving to each cluster a label. Therefore, similar data points are
assigned the same label group [29].

Overfitting is a phenomenon where the algorithms extract too many features from the
dataset without taking out the noise, generating poor results. To overcome the problem,
the dataset needs a regularization. One way is the usage of unsupervised learning to re-
duce the complexity of the model, for example, with a process of noise cancellation [29].
This process is called feature extraction, where the algorithm reduces the data, capturing
only the interesting features. Moreover, from these extracted parts, it is possible to isolate
the most promising ones.

Unsupervised learning is effective in reducing the problem of curse dimensionality. This
phenomenon occurs when a large dataset is used to feed a supervised learning algorithm.
The result is a poor solution to the problem. The unsupervised model is able to extract
the most important features from a huge dataset, reducing time spent in computation, and
improving the final result of the calculation. That is why a vast number of data scien-
tists, with the help of feature engineering, preprocess data with unsupervised learning
algorithms in order to extrapolate the most salient features automatically from a generic
dataset. Autonomous models are effective when the data used to train the model statisti-



Luca Zelioli 1800293

cally differs from the prediction data [29]. The subset of unsupervised learning models
proposed is called Dimensionality reduction, which aims to filter the unnecessary features
and keeping the interesting ones. One approach is the Principal Component Analysis,
where the algorithm is able to identify similarity in the features. Moreover, looking at the
variance of the patterns, the algorithm reduces the dimension of the data. In the forestry
field, it is possible to use PCA analysis to extract the principal components. In this case,
they are the most occurrent features, from the various bands of the images sets. Further-
more, the final set of images is built with a single principal component. One can run a
clustering analysis with only the principal features to achieve better results.

Clustering is a robust unsupervised learning algorithm that groups similar patterns in a
dataset. There are several variations, but one of the most promising ones is K-Means

clustering. It takes the desired number of clusters as an initial parameter. Every instance
of the dataset is analyzed. The algorithm calculates the Euclidean distances between data
points. The algorithm regroups the patterns in partitions with the smallest possible varia-
tion [29]. This operation is achieved without the help of labels, and the model can make
a comparison of different samples by itself. However, the algorithm picks the starting
point of the analysis randomly. Clustering applications are various. For example, they
are useful in preventing the bank from fraudulent activities, or in the installation of spam
filters. For the satellite imagery, clustering occupies an important role. The algorithm is
able to segment images from an orbital device. At this point, the outcome of the analysis
is regions, separated into different clusters. For example, one region is the water, another
the forest, and so on. Using these auto-encoded labels, it is possible to feed supervised
models, for instance a neural network segmenter such as U-Net.

Autoencoders serve as the new frontier for neural networks, and they are able to gen-
erate features using a technique called recurrent learning. The detail of this particular
network is that it is divided into two sections: the encoder and the decoder, which have
the same number of layers [29]. Every layer of the model learns a new feature from the
previous one, and it tries to combine the patterns, studying the variance and covariance.
The outcome of the autoencoder is usually used as input for numerous supervised learn-
ing algorithms. Another modern technique is called unsupervised deep learning, where
the layers of the network try to create a representation of the problem [29]. To keep the
features together, this neural network tracks the weights of each iteration in a gradient
function [29].



Luca Zelioli 1800293

4.1.1 K-means clustering

The K-Means Clustering divides a set of observations into partitions. Every member of a
single group has similar characteristics, but groups are different from one another. Usu-
ally, the number of clusters is a parameter of the model. It is essential to feed the algorithm
with an initial parameter: the number of clusters, which delineates different regions in the
image. K-Means Clustering minimizes the variance in a cluster [29]. In the case of the
satellite image study, the analysis is concentrated on the differences between the spectral
bands. It is important to say that the algorithm can assign parts of the image into clus-
ters but, the identification of the region such as type of plants or field recognition, needs
human assessment. The outcome of the K-Means analysis could be assigned as ground
data for further supervised analysis. It is good practice to collect multiple results from the
K-Means analysis, and assign to each cluster a label in order to create a large dataset.

However, K-Means suffers from the same weakness as the other members of the clus-
tering algorithms family. Due to the random initialization, the results of two different
sessions of the system manifest a few variations in the outcome. However, it is possible
to fix it assigning a seed into the main script of the program [29]. In satellite imagery,
K-Means introduces some problems. The spectral properties of the image can often vary
due to the brightness of the sun. Linear objects like power lines and roads are hard to
distinguish when the resolution of the image is not perfect. Human effort is required in
order to identify the labels of the clustering results [3].

K-Means Clustering makes partitions of a dataset into M disjoint clusters and C1, ...,CM.
The K-Means Clustering Error criterion is summarized as follows:

E (m1,m2, ...,mM) =
N

∑
i=1

M

∑
k=1

I (xi ∈Ck)‖xi−mk‖2 ,

where xi is a part of the dataset:

Dataset = {x1,x2, ...,xN} ,

and mk is the centroid of the subset ck, which contains xi.

I (P) =

{
1 f or P = true

0 otherwise

The Euclidean distances is calculated with the following equation:



Luca Zelioli 1800293

‖xi−mk‖2 .

4.1.2 PCA analysis

Principal Component Analysis is a statistical method part of the linear reduction algo-
rithms family, aiming to single out uncorrelated data points. The method is able to dis-
cover the maximum variance in the data. The Principal Component [29] has the most
significant variance. With this value, it is possible to regenerate the original data with
only the salient features. The outcome of the analysis is smaller than the original dataset.
PCA is able to select features that for some other algorithms stay hidden. The process
of dimensionality reduction facilitates an increase in computational efficiency for further
analysis.

The dimensionality reduction algorithms are essential in terms of clustering because they
increase the accuracy of the final result, eliminating unnecessary artefact [3]. When it is
not possible to choose a high-quality dataset, running the PCA analysis is a good starting
point because it eliminates unnecessary data making the model effective. PCA achieves
good results in the detection of edges and corners. In general, it studies the differences
between various pixels [3]. In the case of forestry analysis, it is a good idea to use multiple
images from the same area in order to check the differences in the trends of the Principal
Components.

However, other various methodologies study differences in the satellite images. For ex-
ample, the Harris corner detection is used to distinguish between the different types of
terrains [3]. The Independent Component Analysis is another model that can segment
multispectral images where the pixels are very uncorrelated with one another [3].

In the case of the satellite imagery analysis, it is necessary to maximize the informa-
tion contained in each image, removing the non-necessary data, for example, the noise.
As said previously, a satellite image is composed of the aggregation of multiple bands that
are correlated with each other [31]. An image is summarized by a matrix as follows:

IMAGEb,n =


x1,1 · · · x1,n

... . . . ...
x8,1 · · · x8,n


where n is the number of pixels and b the band number. Every band from the IMAGE

matrix can be represented by a vector v:



Luca Zelioli 1800293

Bk =


x1
...

x8


where k is the band number. The uncorrelated components are calculated using the co-
variance σb, j between bands in the following equation:

σb, j =
1

N−1

N

∑
p=1

(
PNp,b−mb

)
∗ (PNp, j−m j),

where PNp,b is the pixel that belongs to the band b and PNp, j is the pixel that belongs to
the band j:

PNp,b ∈ bandb and PNp, j ∈ band j,

m is the mean calculated as follows:

m =
1
n

n

∑
i=1

xi,

the covariance σ is grouped in a matrix:

Cb =


σ1,1 · · · σ1,8

... . . . ...
σ8,1 · · · σ8,8


The eigenvalues ev, defined as the container of the original information of certain bands
[31], are calculated as the determinant of the resulting characteristic equation:

det (C− evl) = 0→ ev =
det(c)
det(I)

,

furthermore, the Principal component vector is expressed by:

PCA8 =


PCA1

...
PCA8

=


w1,1 · · · w1,8

... . . . ...
w8,1 · · · w8,8

∗


x1
...

x8


from the matrix PCA8 one can calculate the eigenvector w solving the following equation
[31]:

(C− evkI)∗wk = 0



Luca Zelioli 1800293

4.1.3 Self-organizing maps (SOMs)

Teuvo Kohonen is the inventor of the Kohonen’s map, or Self-Organizing Maps neural
network, that was introduced in 1980. It is able to structure the representation of essential
features in an input image. This unsupervised model detects features by removing the
noise part of the data [32]. It plays a vital role in satellite imagery for damage assessment
because it discovers differences between the image’s regions without losing time in the
fine-tuning of the model. The algorithm classifies the objects’ positions and the differ-
ences between the various areas of the map. The algorithm outcome is a series of data
that shows how every pixel of the input image is correlated within other inputs.

The neural network has a unique characteristic called dynamic weight. During a session
of training, the model can adjust the neuron’s weight [33]. Self-organizing Maps have a
simpler architecture concerning other neural networks. It uses only two layers, the input

layer and the output layer. The working principle is competitive learning [33]. During
the process, there is a competition where every neuron competes with others in discover-
ing different patterns, acting as separate decoder for the input [32]. From a mathematical
point of view, the Vector Quantization is the most suitable method to achieve results with
Self-Organizing Maps [32]. Neurons are grouped based on the best match. Each iteration
activates only one node, which is selected based on the similarity between the input and
the rest of the nodes. All input vectors have the same element number. The working prin-
ciple is that the model computes the Euclidean distance between the input vectors and all
the nodes in the input layer; the one with the lowest weight is the winner. However, the
neurons member of the SOMs has to communicate one with the others. Otherwise, the
competitive learning fails. In order to solve this problem, the components of the neural
network are grouped in logical subsets where similar weights are imposed [32]. The vec-
tor weight propagates the values to all neurons, and it receives updates every stage of the
learning process. At this point, the algorithm calculates the distance between each victor
neuron. At this point, another cycle of neighbour calculation starts, and the neuron with
minimal distance value is the winner.

The SOMs algorithm takes the input x at a time t, returning a winning node c at the
same time of the input t that is selected using the following formula [34]:

c(t) = arg mini (‖x(t)−wi (t)‖2) ,

where ‖x(t)−wi (t)‖2 is the the Euclidean distance between the input x and the weights
vector at the time t. Argmin is the argument of the minimum. The weights vectors are



Luca Zelioli 1800293

continuously updated using the following formula [34]:

wi (t +1) = wi (t)+∆wi (t) ,

where ∆wi (t) is deduced by the following equation:

∆wi (t) = α (t)hc,i (t)∗ [xi (t)−wi (t)] ,

hc,i is the scaling function of the winning node c. α is the learning rate at the time t. It
decreases according to the neighbourhood size until the fitting into the network becomes
impossible [34].

4.2 DEEP LEARNING

The first hints of deep learning occurred back in the 1940s. The concept might seem new
because during various decades the discipline’s name changed more than one time [26].

Table 4.2: Summary of different names of deep learning during the years

Cybernetics 1940s - 1960s
Connectionism 1980s - 1990s
Deep learning from 2006

Adaptive Linear Element was one the first neural networks, written as a code in the 1960s
by Widrow and Hoff. The task assigned was simple: prediction of numbers from a
dataset using the stochastic gradient descent. The first recall of image recognition is from
Fukushima in 1980, where connected layers and neurons were used to study pixels [26].

Deep learning is a subset of machine learning family, and it enables multi-steps extraction
of features from the input data using complex functions in order to outcome results.

Parallel programming techniques and computational resources achieve more ample and
complex operations that can be deployed efficiently. Moreover, the deeper the network is,
the more complex operations are executed. For example, a perceptron network, a neural
network with only one layer, detects only a few features inside the data. A more in-depth
system is able to discover extra features from the input data.

The damage assessment of forest area can be studied through historical sequences of
satellite data. It is possible to underline the differences in the forest regions by looking
into the data from different days. For example, the orbital devices can notice some gaps



Luca Zelioli 1800293

in the coverage of the trees in certain zones, and with other series of satellite images or
within the usage of different machines such as drones, quantify the damage impact.

A classical deep learning model divides the analysis of a satellite image into sub-tasks.
The network input-layer maps the image. At this point, it is sent to hidden layers in charge
of discovering features. Moreover, in the case of forestry assessment, neurons from the
layer study the forest, comparing differences in brightness of adjacent pixels [26], such as
corners, and contours, discovering the forestry perimeter. In the last layer, neurons com-
bine the outcome provided by the upper-layers, collecting the different regions found.
Figure 4.1 shows a schematic view of a typical neural network. However, clouds repre-
sent a problem. When some regions are covered by them, the deep learning model, if it is
well trained, can understand which part of the image is clean.

Figure 4.1: A schematic representation of a dense neural network.

Deep learning algorithm layers can be combined to produce accurate results. The prim-
itive components of the network, neurons, are connected, and they communicate with
each other to exchange information. Generally, by combining more neural network com-
ponents the performance of the model grows, increasing the algorithm’s deepness.

There are plenty of neural network architectures available to researchers and develop-
ers. Some of them are shown in the few following paragraphs.



Luca Zelioli 1800293

LeNet is one of the first architectures developed in the 1988s. However, the power re-
quired to accomplish a task was higher than the one available in the 80s. The GPU,

(Graphic Processing Unit), development made the calculation achievable for almost all
computers. They were able to parallelize computations, saving time.

Figure 4.2: Simplified schema of LeNet network

In the 2010s AlexNet was developed [27]. This neural network performed great outcome
in object recognition. However, a problem was found. When the network layers grew
deeper, the results produced by the algorithms were not precise due to a gradient reduc-
tion problem. To avoid this issue, in 2015, ResNet was developed, having higher object
recognition capabilities than other networks available at that time [27].

Figure 4.3: Simplified schema of AlexNet network

Google Inc. has developed a neural machine translator, used to translate documents. It
understands the sentence’s meaning. It helps in the achievement of better work. One-

shot learning model architecture was used. It is another excellent example of how new
technologies learn. This one, in particular, uses the same principles as humans during the
learning period [27].

The Generative Adversarial Network is based on two different neural networks where



Luca Zelioli 1800293

one competes with the other. It achieves good results in new image generation. The first
architecture, called the generator, generates the image. The second one, called the dis-

criminator, takes the real one, and it checks if there are some differences between the real
figure and the generated one [27].

One example of deep learning usage is the Deep Blue chess system, developed by IBM.
The neural network was designed to win a chess match against Kasparov, one of the best
chess players of all time. Furthermore, Deep Blue was able to understand all the possible
combinations of moves of the human player, consequently, it was able to solve the prob-
lem faster [26].

There are many software packages available online for deep learning. TensorFlow, for
instance, it uses the mathematical concepts of tensors to build a complex neural network.
However, this framework and the other packages are slow to operate. The activation and
expansion of the neural network require plenty of time.

Dataset plays an essential role in the development of the neural network. Thanks to the
digitalization era, nowadays a massive quantity of information can be used to build new
and specialized datasets. The study of large data requires computational power. More-
over, packages such as TensorFlow, use the power of GPU and CPU combined to reduce
the time spent during the calculation.

In conclusion, new forms of learning such as reinforcement learning, are engaging scien-
tists, researchers and programmers. This unique learning system uses trial and error to
understand the rules of learning route without any external intervention [26].

4.2.1 Deep convolutional neural network

The primary component of the neural network is neurons. They are organized in layers
exchanging information between them when certain conditions are verified. The most
common working principle is based on the Perceptron model:

f (x) =

{
1 wx+b > 0
0 in other cases

where x is a vector and w is the weights’ vectors and b is bias. The output is divided into
two parts: 1 if the condition is verified and contrary 0 [35].

A typical neural network is composed of multiple parts. The input layer is in charge



Luca Zelioli 1800293

of taking the input for the whole network. The hidden layers discovers relationships in
the data by finding common patterns in it. The numbers of neurons in a layer varies. For
example, in a Perceptron network, they are only two, but in complex models, such as
VGG16, there are multiple of it. They are called Deep Neural Networks. The output layer

is responsible for presenting the results. Usually, the number of neurons differs by the
type of operation that the neural network has to do. For example, in binary classification,
the output layer is just a neuron; in other cases, such as the multi labels classification, the
number is proportional to the expected output [36]. The following model gives the total
number of layers:

DCCN layers = hidden layers + out put layer.

The input layer is not considered when counting the dimension of the network. The work-
ing principle of a basic neural network is summarized as follows: the input layer prepares
the image to analyze. At the same time, the weights’ matrix and bias are randomly ini-
tialized. It is noticeable that the weights’ matrix is continuously updated by the neurons
when they discover new features. The process is repeated until the data arrive into the
output layer in charge to prepare the results.

The interaction between layers happens through the activation functions that establish
which neurons are activated and which are not into a layer. There are different types of
transfer functions; they are summarized in the following paragraphs.

The sigmoid function performs the activation when the values are in the range between 0
and 1 [36]:

f (x) =
1

1+ e−x ,

this function is useful for logistic regression.

The hyperbolic tangent or tanh, triggers itself when the values are between -1 and 1:

f (x) =
1− e−2x

1+ e−2x ,

the main difference between the two models, is that the tanh is quicker than the first one.

The Rectified Linear Unit function has the activation range between 0 and +∞ and it
is expressed by [36]:



Luca Zelioli 1800293

f (x) =

{
0 f or x < 0
x f or x≥ 0

where the activation value is 0 if x is less than 0 and if contrary, it become x. This func-
tion can be applied in several different cases [36], such as object recognition or feature
detection.

A subset of the model mentioned before is the leaky ReLU, where also the values less
than 0 are used for activation. The formula is [36]:

f (x) =

{
αx f or x < 0
x f or x≥ 0

where α is a constant and usually takes the value of 0.01.

The Exponential Linear Unit function, ELU , is similar to the leaky ReLU but instead
of having a straight ascension of x, it is smooth like a curve [36]:

f (x) =

{
α (ex−1) f or x < 0

x f or x≥ 0

Google Inc. has recently introduced the Swish, a non-monotonic function with better
performance than the ReLU [36]:

f (x) = 2xσ (βx) ,

it is noticeable that when the σ is 0 the activation becomes linear. Another important
activation function is so f tmax. It is common to use it as last activator, returning the
probability of success of each class analyzed by the neural network:

f (xi) =
exi

∑ j exi
,

where x is an element of the classes vector. Generally, the output is regularized with a loss
function that checks the performance of the neural network. The formula is generalized
as follow [36]:

loss =
1
n

n

∑
i=1

(yi− pi)
2 ,

where y is the actual output and p is the predicted output. The loss function also considers
the weights randomly initialized, discovering their optimal values with a technique named



Luca Zelioli 1800293

gradient descent. Moreover, the predictions are more accurate, and the loss function
spreads to the minimum [36]. They are calculated as follows:

new weights = old weights− learning rates∗ αJ
αW

,

where αJ
αW is the gradient descent of the loss function. Other important models are Adap-

tive Moment Estimation and Root Mean Squared Propagation [37].

A Convolutional Neural Network (CNN) is suitable as an image classifier. It can study
input images pixel by pixel, recognizing the beginning of edges and contours of objects.
Moreover, the network becomes deep, when plenty of hidden layers are inserted. In this
way, it recognizes more sophisticated objects such as the human body, forest in a de-
termined area, etc. However, plenty of computational power is required to exploit good
results. Typically, in a Deep Convolutional Neural Network (DCNN), there are various
types of layers. Two of the most important are the Convolutional layer and the Pooling

layer.

Convolutional layers have the characteristics of preservation of the spatial information
of the pixels [36]. Moreover, the input is divided into tiles. Each of that is sent to a par-
ticular neuron that preserves the local structure of the data. The dimension of the matrix
is called stride. It is a hyper-parameter that needs to be tuned by hand. It should be noted
that every convolutional layer in the network has to have the same weights and bias.

In a Pooling layer the network extracts the maximum activation from a matrix [36]. It
is also called Max-pooling layer.

Other important layers are the Flatten layer and Dense layer. The first one transforms
the matrix analyzed by previous layers into a vector. A set of dense layers, called Fully

Connected Network, is in charge of preparing the output.

However, adding a Droupout layer is an excellent practice to normalize and regularize
the output. Another important fine-tuning component is the Zero-padding layer added
between Convolutional layers, where zeros are added as contours of the matrix analyzed.
This process achieves better precision when the network discovers edges and shapes of
objects.



Luca Zelioli 1800293

(a) Sigmoid (b) Elu (c) Relu activation function

(d) Leaky Relu (e) Softmax (f) Swish

(g) Than

Figure 4.4: The most common activation function of neural network.

4.2.2 TensorFlow

TensorFlow is an open-source framework developed by Google, which became one of the
most used libraries for numerical computation. TensorFlow uses CPU, GPU, or both, to
parallelize the calculation making it faster. It works with almost all operating systems and
embedded devices. The Google package operates in symbiosis, acting as the backbone
for other systems such as Keras. TensorFlow is a declarative framework [27]. Moreover,
the operations to compute are added to a core called computational graph with the partic-
ularity that is just added and not executed. In order to perform the calculation, a session
object is created [27].

The TensorFlow’s core is based on the concept of tensor that is widely used in math-
ematics and physics. The tensor is defined as an array of numbers or a multiplication
between vector and real number. Moreover, it is possible to represent a satellite image as
a tensor. For example, one index on the vector is the height, another one is the width, and
the third one is colour. The process is called featurization, the representation of world



Luca Zelioli 1800293

objects as an entity, storing the properties in vectors [27].

For machine learning, it is critical to find the correct way to store data as tensor [27].
Furthermore, one of the basic operations that a neural network computes is vector multi-
plication. The rule behind is the same rule applied to the matrix multiplication. If A has
shape (m, n) where m are the rows and n the columns, it is possible to make a multiplica-
tion with a matrix B with the number of columns equal to n [27].

Tensort =

[
ax+by

cx+dy

]
=

[
a b

c d

]
∗

[
x

y

]
Machine Learning models use vast amounts of tensors with millions of parameters [27].



IMPLEMENTATION AND RESULTS

In this Chapter, I will elaborate on the practical implementation of the methods presented
in the Chapter 4.

5.1 EXPLORATORY ANALYSIS OF SATELLITE IM-
AGERY USING GOOGLE EARTH ENGINE AND
PYTHON

The first stage of the proposed analysis techniques is the exploratory forestry status of the
Kvarken Region. Over the years, the number of trees in the area has changed rapidly. This
analysis aims to study the number of tree loss and the ones replanted. The API chosen
is the Google Earth Engine, and the code is written using Python programming language
and Jupyter Notebook. The structure is simple, and it shows how to manipulate diverse
bands of the Landsat satellites. Moreover, the bands used in this work are summarized in
the Table 5.1.

Table 5.1: Summary of the Landsat satellites bands used for the forestry assessment. [38]

Name Wavelength Description
treecover2000 tree cover
loss tree loss
gain tree gain
first_b3 0.63 - 0.69 micrometre red band for year 2000
first_b4 0.77 - 0.90 micrometre NIR band for year 2000
first_b5 1.55 - 1.75 micrometre SWIR band for year 2000
first_b7 2.09 - 2.35 micrometre SWIR band for year 2000
last_b3 0.63 - 0.69 micrometre red band for year 2012
last_b4 0.77 - 0.90 micrometre NIR band for year 2012
last_b5 1.55 - 1.75 micrometre SWIR band for year 2012
last_b7 2.09 - 2.35 micrometre SWIR band for year 2012

The dataset is the Hansen Global Forest Change v1.6 from a time frame of 2000 to 2018.
The data collect information on the status of forestry. The constellation of satellites used

47



Luca Zelioli 1800293

is the Landsat. There are four spectral bands: band B3 band B4 band B5 and band B7,
divided into two groups as the Table 5.1 summarizes [38]. The images have a resolution
of 30 metres.

After the initialization of the Google Earth Engine API, the world map is loaded into
one object. The Kvarken geographical information is given through a parameter. It is a
list of five elements: the upper left point, upper right point, lower left point, and lower
right point and centre point. The output appears on the screen using the special function
Image. The first outcome is the infrared frame of the zone. The band used is B3 with
a wavelength between 0.63 and 0.69 micrometres [38]. However, this is not enough to
understand the gain and loss of the forest.

Figure 5.1: The Kvarken Region viewed selecting the band 3, "B3", with a wavelength
between 0.63 and 0.69 micrometres.

The next step is to verify how the particular band called treecover2000 works. It repre-
sents a percentage of trees in the selected areas. However, the output is not sharp because
it is in greyscale. The sea is masked as black. Here, the trees coverage has different
colours of greyscale. Instead, black pixels represent the area without trees.

Figure 5.2: The Kvarken Region viewed selecting the treecover2000 layer. Excluding the
sea (coloured in black outside the perimeter of the land, represented in grey), the black
points into the grey zones represent the most damaged forest areas.

Combining the various bands, such as the loss, the treecover2000, and the gain, the image



Luca Zelioli 1800293

is overlayed with different pixels, blue and orange. The green shows the land covered by
forest, the orange shows the tree loss and the blue underlines new trees. The working
principle is that the band contains an array with three different colours tonalities. These
numbers serve to highlight with assorted colours, a part of the images. The outcome
shows that many areas of the Kvarken Region has lost forestry. Looking at the result,
only a few zones obtain the same number of trees in addition to the gain zone.

Figure 5.3: This image shows the zones where loss of trees is detected (in orange), and
the areas where new trees are planted (in blue). The tree loss and tree gain layers date
back to 2017.

Changing the dataset version, into V1.5 of 2015 and adopting the same three bands as
before, the forestry situation is entirely different. Only a few zones are in orange, with
loss, and almost 70% of the map stays green, meaning that the terrain is covered by
forestry. The difference is due to an increase in agriculture in recent years.

Figure 5.4: Same representation of the previous image, but in 2015.

The dataset contains six important bands: B3_first, B4_first, B5_first, B3_last, B4_last,
and B5_last. The first three describe the healthy vegetation status of the area in the 2000s.
Opposite, using the last three, the image shows the status of the trees twelve years later, in
the 2012s. As described before, the two images show the varied scale of green to highlight
the areas with more trees. The light-coloured zones identify housing or urban areas. For
example, there are big changes in the low right corner, that in the year 2000 had plenty of



Luca Zelioli 1800293

vegetation, and in the year 2012 the trees had disappeared because new agricultural fields
and new houses were built. See Figure 5.5.

(a) The Healthy vegetation in 2012 (b) The Healthy vegetation in 2000

Figure 5.5: These two images show the union of bands 3, 4 and 5. This combination
shows the status of healthy vegetation in the region.

Using the short wave infrared bands it is possible to see with different shades of purple,
the loss and gain plants in the 2012s. See Figure 5.6.

Figure 5.6: The Kvarken Region viewed with short infrared waves in 2012.

Furthermore, another good example is the usage of the B4 band. The process is the same
as before: looking at the differences in colours. In this case, the image is clearer, but
the zones of interest are with bright colouration. The blue pixels, which mean plant loss,
are barely visible. However, using B7 bands, the image is darker, but the zones with a
decrementation of forestry are more visible. See Figure 5.7.

Figure 5.7: The Kvarken Region viewed with short infrared waves in 2017.

Google Earth Engine also offers a numerical analysis of the dataset. One principle is the
selection of a band; in this case, loss and gain. The class in charge of the job is called



Luca Zelioli 1800293

Reducer. At a low level, the code can sum the same kind of pixels, grouping them with
affine properties. This set of functions makes it possible to aggregate trees loss and gain
in two variables, over time and space.

However, the choice of the correct band is essential for achieving satisfying numerical
results. The calculation of the total forestry loss is the result of the function called re-

duceRegion. The reducer sums all the orange pixels of the zone in the selected place. In
the case of the tree gains, the analysis sums the blue pixels. There is the opportunity to
feed the reducer functions with different parameters, for example, the mean or standard

deviance. The results are in the Table 5.2

Table 5.2: The table summarizes the gain and loss of trees in the Kvarken Region from
2000 to 2012.

Type Number
Trees loss 63579
Trees gain 18358
Mean loss 0.0063
Mean gain 0.0018
Dev. Std. loss 0.072
Dev. Std. gain 0.042

The lossyear member of the dataset analyzed in this Chapter contains vital information
regarding the area in square metres of trees. It is grouped by different year, from 2000
to 2017. These numbers are constructed within a ratio between the band of trees gained
and the one with the lost. A reducer selects the area with the geographical coordinates to
obtain precise results for the zone.
Table 5.3 shows that in 2000 the Kvarken Region appears to have not registered any tree
loss, but from 2001 onward the process of deforestation started. The data is also grouped
in Figure 5.8.



Luca Zelioli 1800293

Table 5.3: Forest loss in square metres of the Kvarken Region from 2000 to 2012.

Year Forest loss in square metres
2000 0
2001 2307335
2002 1152117
2003 2198331
2004 2747143
2005 3060944
2006 1328213
2007 2874593
2008 1757349
2009 1989698
2010 804306
2011 985641
2012 1681498
2013 1094693
2014 1185838
2015 824775
2016 1436848
2017 21466462

Figure 5.8: The graph shows the area in square metres of forestry loss. Every column
summarizes a year.

5.2 UNSUPERVISED LEARNING

5.2.1 K-Means Clustering

In the following pages, two different implementations of K-Means clustering are pro-
posed. The first analysis uses the famous image framework OpenCV. The second one



Luca Zelioli 1800293

uses the MATLAB Machine Learning package that provides various functions to conduct
different operations. The images used for these examples come from the Google Earth
Engine and ArcGIS, in order to check the differences between low-resolution and high-
resolution images. In addition, the dataset provided by Google Earth Engine contains
images from 2015 during the summer season in an interval between June and July. The
second dataset is downloaded with ArcGIS without any temporal references.

For the first part of the study, the programming language used is Python with the packages
listed in Table 5.4.

Table 5.4: Packages used for the OpenCV analysis.

Packages Purposes

OpenCV Image editor

Matplotlib Plot figure

Numpy Array management

The first step is to load the input image into a variable. The task is accomplished using the
image read function of OpenCV. The image is converted into a matrix. The data structure
is simple: rows and columns; and it is loaded using the RGB colours space. This format
is a good standard for images because it distinguishes well the light that is reflected by
objects. In terms of clustering, it is a good practice to convert the RGB format in HSV

format (Hue, Saturation, Value) because the algorithm can calculate the variance of every
single pixel and discover changes into the colours’ saturation. OpenCV can transform the
colour space with the cvtColor function. It takes as parameters the original image and the
expected colour schema. To better understand the differences in the two colours spaces,
the Figure 5.9 is beneficial.



Luca Zelioli 1800293

(a) RGB space colours. (b) HSV space colours.

Figure 5.9: The two graphs show the difference between RGB and HSV colour spaces.

In the original RGB image, the colours are grouped linearly from 0 to 250. However,
there are a few pixels that differ from the central pixels’ assemblies. In the HSV plot, the
image components are more dispersed. In a very few cases, their values except 200.

The input image is reshaped into a matrix of three columns, and the components inside
are converted into floating-point numbers to infer a more precise result. The OpenCV

K-Means cluster algorithm needs a setup to produce proper outcomes. Furthermore, after
the reshaping, the desired number of clusters and a special stopping parameter is prepared,
prompting the algorithm to stop and display the results, in case of a hit. The two essential
outputs for this analysis are the labels and the centroids. At this point, before the image
is regenerated, the algorithm groups every cluster centre based on their respective label.
The Figure 5.10 shows the measured outcomes with two clusters.

Figure 5.10: K-Means clustering analysis with two clusters.



Luca Zelioli 1800293

Figure 5.11: K-Means clustering analysis with four clusters.

Figure 5.12: K-Means clustering analysis with five clusters.



Luca Zelioli 1800293

Figure 5.13: K-Means clustering analysis with three clusters.

Figure 5.14: K-Means clustering analysis with five clusters.



Luca Zelioli 1800293

The K-Means clustering algorithm is tested with two, four, and five clusters. The differ-
ences between 2 and 4 clusters are noticeable in the low-definition images. After that, the
results only lightly change, showing that four clusters illustrate the consistent result. The
output is beneficial when the K-Means clustering studies the images provided by ArcGIS
(from Figure 5.10 to Figure 5.14). The two-cluster analysis shows that the model hits
the deforested zones and streets. The four-cluster model assures better results. The five-
cluster analysis is interesting because the deforested zones are accentuated. In conclusion,
four is a good cluster number because it underlines the sea, land, and forestry areas.

Another powerful clustering tool-set is provided by MATLAB. It is part of the Machine

Learning package. The point of effort here is the achievement of good results only using
few lines of code. The short-code is summarized in a function that takes two arguments:
the image and the desired clusters number. Furthermore, the algorithm, called kmeans,
returns the labels and centroids. At this point, the image is reshaped and sorted based
on its cluster centre and the corresponding label. The image is converted to RGB. This
model achieves clearer results than the OpenCV ones.

Two tests are reported, one has the number of clusters fixed to four and the other one
has six instead, see Figures 5.15 and 5.16.

Figure 5.15: K-Means clustering result with four clusters.

Figure 5.16: K-Means clustering result with six clusters.

The output is divided into three images: the first one shows the overall result of the K-



Luca Zelioli 1800293

Means cluster analysis, where the dark blue represents the sea, the yellow shows the dense
forestry, the light blue refers to the vegetation, and the red represents urban areas. The
second image, shows the status of the vegetation and the urban regions. The third image
is reserved for the cluster with more labels.

The low-resolution images are also experimented with MATLAB, concluding that: un-
til four clusters, it is possible to appreciate evident changes in the final segmentation. The
results are very good. Increasing the number of clusters, the differences in the various
outcomes are not noticeable. Using six clusters, MATLAB can underline the streets in the
image, and the different islands that are connected to the town.

Taking in consideration the high-quality image gathered from ArcGIS Desktop, the re-
sults are great. They are reported in Figure 5.17 and 5.18

Figure 5.17: K-Means clustering result with fours clusters executed with high-quality
image.

Figure 5.18: K-Means clustering result with eight clusters executed with high-quality
image.

OpenCV and MATLAB are suitable frameworks able to assess the status of the forestry.
Moreover, they analyze every pixel of the input image, discovering in which image’s por-
tion the trees are missing. However, the final comparison between the healthy forestry
areas and the faulty ones still needs to be done by a manual comparison. However, by
using the high-resolution images, the results become excellent.

Two more clustering algorithms achieve optimal results, showing more precisely the
vegetation quality: the K-Means image segmentation function and the Gaussian Mixture



Luca Zelioli 1800293

Model.

The KmeansClustering function can segment an image provided as input. The model
is tested with four and six clusters. It gives different final information than the traditional
K-Means clustering algorithm. It shows more detailed data. The analysis shows the re-
gion of the image where there is healthy vegetation, coloured in dark blue, and the status
of the loss of trees that is in light blue. However, the region with a high-density of trees
and housing are visualized with the same colour. This model is more specialized in the
density calculation of the pixels than the division of the image into clusters. The six clus-
ters analysis shows more clearly the forestry zones, but in some places, the output is full
of noise. It should be noted that the model with six clusters shows more precisely the
forestry status, concluding that it is an important tool to be considered for the forestry
damage assessment. The results of the KmeansClustering are shown in the Figures 5.19
and 5.20. Using the high-resolution images, the results are excellent, see the Figure 5.24.

Figure 5.19: K-means image segmentation with four clusters, using KmeansClustering
from MATLAB.

The Gaussian Mixture Model (GMM) function, assumes that the input image has a certain
amount of Gaussian distribution. MATLAB uses complex functions that quantify this
value. Moreover, it can segment the image and makes a comparison of their distribution.
The input parameters are the number of clusters and the input image. A series of three
images represent the resulted analysis, see the Figures 5.21 and the Figure 5.22. In the



Luca Zelioli 1800293

Figure 5.20: K-Means image segmentation with six clusters, using KmeansClustering
function outcome from MATLAB.

first one, the towns and the zones with plenty of vegetation are highlighted in red. The
second image shows a better view of the result. The zones with more interesting pixels are
marked clearly. However, the algorithm studies the pixels’ density better than the cluster
division of the image. GMM is another potent tool to detect anomalies in the vegetation
because it shows the difference between zones from a various image, such as the Figure
5.19 and the Figure 5.20. The Figure 5.23, shows the result for the high-quality image.

Figure 5.21: GMM segmentation result with with four clusters.



Luca Zelioli 1800293

Figure 5.22: GMM segmentation result with six clusters.

Figure 5.23: This image shows the GMM analysis executed with high-quality image

Figure 5.24: This image shows the result achieved using the tool K-means segmentation
of MATLAB.



Luca Zelioli 1800293

5.2.2 PCA analysis

In this subsection, a set of satellite images are taken. They have the same coordinates, ap-
proximately 63.23 degrees in latitude and 21.29 degrees in longitude. The repository used
is the Google Earth Engine Sentinel archive. I collected the total number of eight images.
Each one, has only one band. The idea is to extract the Principal Component from every
image, rebuild another one with only the salient features, eliminating the noise.

The analysis uses Python programming language. The following packages are installed
and reported into the Table 5.5.

Table 5.5: Packages used for the PCA analysis

Packages Purposes

OpenCV Image editor

Matplotlib Plot figure

Numpy Array management

Panda Data management

Seaborn Plot figure

The images are resized with the same width and height, (600 pixels x 600 pixels). The data
is loaded into a Numpy array and converted into greyscale reducing the images’ channels
to one. Moreover, each input data is an element of the array. The structure is a matrix,
where all pixels have defined positions located by n-rows and n-columns. The images
collected are presented in Figure 5.25.



Luca Zelioli 1800293

Figure 5.25: This image lists eight bands from the Sentinel-2 satellite of the Kvarken
Region.

Figure 5.25 illustrates that every band is different because the satellite used various pa-
rameters to capture the image. In the bands 1, 2, 3, 4 and 8 it is possible to distinguish the
snow. In the bands 6 and 7, there is a clear view of the forestry zones and the urban areas.
At this point, it is crucial to ensure the consistency of the images. An excellent way to do
so, is to transform the array in vector. Moreover, the real standardization is obtained by
calculating for each element the following value:

element[i] =
(element[i]− element.mean())

element.devStd()

With this standardization, the PCA model calculates the correlation between all compo-
nents and it checks which of them goes in a different direction. At this point, the Eigen-

values are calculated [39]. During the vector transformation, it is possible to represent
them by the number that helps the linear transformation of the vector itself:

new_vector = β × vector

where β is the Eigen-value. Fortunately, this complex set of values are an easy step to
set using Python and Numpy utilities. After the covariance calculation, the values are
obtained with the following Numpy function:

eigen_values, eigen_vectors = np.linalg.eig(np.cov(bands))

the resulted values are summarized in the following Table 5.6:



Luca Zelioli 1800293

Table 5.6: Summary of the Eigen value

Band Eigen-Value

1 3.158

2 1.298

3 0.282

4 0.838

5 0.75

6 0.509

7 0.607

8 0.558

These values are crucial because they show the direction of every variance into the vector.
The larger the Eigen-values is, the bigger the component significance is [39]. To better
understand the reductions algorithm, the graph in Figure 5.27 reports the variance of
each component. It is noticeable that from the first band, the variance of the components
decreases because the reduction operates by eliminating plenty of data. At this point, the
Principal Component is obtained, with the multiplication between the Eigen-vector and
the image matrix. One can see the differences between original bands and the principal
component in the following graphs in Figure (5.26a and 5.26b).

(a) The collection of graph
shows the covariance of the
pixels in the original bands

(b) The collection of graph
shows the covariance of the
pixels in the PC bands

Figure 5.26: This set of images shows information about the bands of the satellite image



Luca Zelioli 1800293

Figure 5.27: Histogram representing the variance of various bands

In conclusion, the eight bands can be exploited with PCA analysis, see Figure 5.28. There
are many differences between the first image and the last one because the reduction algo-
rithm has to operate by isolating the component with less variance respect to others. For
example, in image number four, the snow is visible and instead in the number eight, only
the forestry and housing can be seen.



Luca Zelioli 1800293

Figure 5.28: This image shows the Principal Component from different bands

5.2.3 Self-organizing maps (SOMs)

Here I propose a Self-Organizing Maps implementation using the MATLAB library Ma-
chine Learning. The code is organized as a function that takes two arguments, the input
image and the dimension of the neural network. In this case, these layers have dimension
of 8 x 8. The image is read and stored into a three columns array, that represents the
three colours channels (RGB). At this point, the software resizes the input with a ratio of
0.5 concerning the original input shape. It is crucial to organize the input image into two
variables called rows and cols that are equal to the dimensions of the image. They are also
necessary for the final reconstruction of the image.

Before processing with the SOMs analysis, the data needs management. This is achieved
by transforming the initial matrix into three different vectors, where each of them repre-
sents a colour channel. However, MATLAB uses the input number as double, so casting

(the conversion process of a data type to another) is necessary. The normalization stage
uses a straightforward methodology. It starts with a subtraction between the vector ele-
ment and the minimum of the vector. The result is divided again by the difference between
the maximum and the minimum of the vector. Moreover, the process is repeated for the
three RGB channels of the image. The formula is:

normalizedVectorChannel =
(vectorElement−min(vector))
(max(vector)−min(vector))

The neural network characteristics are summarized in the Figure 5.29.



Luca Zelioli 1800293

(a) The summary of the win-
ner neurons

(b) The SOMs Neighbour
weight distances

(c) The SOMs Neurons con-
nections

(d) The SOMs Neighbour
weight positions

Figure 5.30: Results of the SOMs analysis. The output shows the creation of four different
graphs. The first one shows the winning neuron in the final stage, the second one shows
the weights of neighbours neurons, and the third one indicates the connection of various
neurons, the last one shows the weight position.

Figure 5.29: Schematic representation of SOMs layers

At this point, the training of the network starts, and the output is presented. MATLAB
shows plenty of different figures, such as Figure 5.30. In the end, the pixels’ labels are
rebuilt with the following output, shown in Figure 5.31



Luca Zelioli 1800293

Figure 5.31: The resulted image summarizes the output of the SOMs. The clustering
algorithm delineates water, land, vegetation and urban areas, and so forth.

In conclusion, looking into the Figure 5.30a, the summary of the hit graph, shows the
most interesting pixels and their respective grade of connection with the others. In total,
there are 64 neurons involved in this analysis. In the Figure 5.30a, the hitting points in the
lower part of the graph assume significant values, between 17 thousand and 24 thousand.
Moreover, in this portion of the image, the neurons have discovered forestry because in
the input photos, there was the most common pattern. The same results come with the
Neighbour weight distance graph where there are a significant concentration of them in
the upper part of the graph. This connection becomes very strong underlining the green
area of the input image.

The connection graph shows the fully connected network with all the 64 element mem-
bers (Figure 5.30c). Figure 5.30d shows the scatter plot of the weight, which changes
every time a neuron hits a point. In the final reconstruction of the image (see Figure
5.31), the SOMs model summarizes the pixels’ density detecting zones with forestry, and
also the one with few trees. The outcome shows bridges, lakes, and so forth.



Luca Zelioli 1800293

5.3 DEEP LEARNING

5.3.1 Image Segmentation with TensorFlow

TensorFlow is an open-source framework for tensorial programming with vast capabilities
for image analysis. It can manage large scale of multidimensional arrays within a few
lines of code. For the purpose of this exercise the packages in Table 5.7 are used.

Table 5.7: Summary of the packages used

Package Purpose
OpenCV Image editor
TensorFlow Backbone for neural network
NumPy Array management
Pix2Pix Image to image translator
Matplotlib Plotting utility

The dataset is small, formed by seven satellite images, and their masks. The source of the
data is the Google Earth Engine archive. The masks are created by using MATLAB tool
called Image-Segmenter. The image’s sources are the Landsat and the Sentinel reposi-
tories. The input data is prepared, combining each image with each mask. Two Numpy

arrays hold the input. The images are normalized in order to achieve better results. The
input schema have four dimensions:

X_batch,Y _batch= [batch_number, image_counter, image_width, image_height, image_channel]

The Python script is formed by a class that groups the neural network builder and a set of
utilities. The model is pre-trained, and it called the Mobile Net Version 2. This network is
a member of the family SSD, Single Shot MultiBox detector. The training part occurs in a
network with only one hidden layer. Therefore, the execution speed is improved [40].

The Mobile Net is a light-weight model. It is computationally fast compared to other
networks specialized in semantic segmentation. The speed analysis has in average 30
milliseconds per frame, for example, the faster RCNN-NAS has a speed of about 1800
milliseconds.

The base model is loaded into the memory, it saves the weights for the further analysis
conduction. The neural network has two branches: the encoding layer and the decoding

layer. The first one is used to decompose the image to discover features. The building



Luca Zelioli 1800293

blocks use the Rectifier-Linear-Unit activation. The characteristics are summarized into
the Table 5.8.

Table 5.8: Summary of the encoder

Block Kernel Stride
Block 1 64x64
Block 2 32x32
Block 3 16x16
Block 4 8x8
Block 5 4x4

The second branch of the neural network has a stack that re-built the image, (the decoding
layer). Softmax is the final activator. The layer has characteristics summarized into the
Table 5.9.

Table 5.9: Summary of the decoder

Block Kernel Stride
Block 1 4x4 -> 8x8
Block 2 8x8 -> 16x16
Block 3 16x16 -> 32x32
Block 4 32x32 -> 64x64
Block softmax 64x64 -> 128x128

The stack layer uses a new TensorFlow utility called pix2pix. It is a mini conditional

GAN [41] where a generator and a discriminator are constructed with a Convolution Batch

Normalization architecture [41]. The union between the encoder and the decoder happens
with a Concatenate layer. The input layer is on the top of the encoding stack. At this
point, the model is created and compiled. The history is calculated with a batch size of 7
members and 200 epochs per batch. With so few images, the accuracy is not very incisive.
However, the prediction works very well, as shown in the Figure 5.32.
The predicted mask shows the most interesting points. In particular, the blue, the white
and the red pixels underline where the trees are absent. It is noticeable that the sea and
even the lake on the upper left corner are not been represented in the final mask, which
means that this model is a good starting point for the forestry analysis.



Luca Zelioli 1800293

Figure 5.32: This image shows the outcome of the pix2pix analysis of the Kvarken Re-
gion.

5.3.2 U-Net

In the following section, the U-Net neural network is implemented to detect forest zones
and subsequently to assess the damage. This model studies the satellite image at the pixel
level. When these pixels are regrouped, a label that describes the object is assigned. The
output of the U-Net usually is represented by a predicted mask where it is possible to find
the instances or objects.

U-net has many applications, for example, biological analysis [42], study of cancer [43]
and also remote sensing [44]. In the Geo-Sensing field, the model can classify the ele-
ments of a satellite image in different areas, such as urban zones, agricultural fields and
industrial areas.

The model is divided into two parts: an encoder and a decoder. The first one is com-
posed by a combination of a Convolutional layer and a Max-pooling layer. In between, in
order to increase the accuracy of the model, a Dropout layer regularizes the output before
sending it to the next layer. The number of filters start with 16 and scale-up until 256.
Moreover, the activation function is ELU , Exponential Linear Unit, explained in 4. The
kernel-size has three dimensions. At this point, a Transpose layer prepares the image for
the next branch, the decoder. The workflow is similar to the previous one, but the number
of neurons for each layer start from 256 and it decrease to 16. The input layer takes as
input the image with shape (128, 128, 3). However, it is not the only allowed input shape.
A normalization process needs to be done before starting the analysis. The output layer



Luca Zelioli 1800293

is activated when the neural network perceives the Sigmoid function. The outcome is a
predicted mask of the forestry zone assessed. The accuracy is used as the final metrics’
assessment.

For this example, the packages are summarized in Table 5.10.

Table 5.10: Summary of the packages used

Package Purpose
OpenCV Image editor
TensorFlow Backbone for neural network
NumPy Array management
Keras Neural network architecture API
Matplotlib Plotting utility

One of the weaknesses of this exercise is the dataset. The images used are in low-quality,
and the pixel study can be affected. Moreover, for encouraging better results, three dif-
ferent datasets are used. The first one contains 30 images for training, 10 for testing and
10 for validation. The second one is composed of 6 images for training, 2 for testing
ad 2 for validation. In the last one, it is possible to find 8 images for training, one for
testing and one for validation. However, there are no significant differences between the
three, because, in the second and third one, only the best images are taken and grouped by
similarity. Every dataset member has a mask associated. For two datasets the application
MATLAB image- Segmenter is used. In the third one Adobe Photoshop is used instead, in
order to increase the quality of the input feed.

The data-point of the dataset is loaded into two different batches. The first one contains
the images, and the second one the masks. Therefore, for each element of the X image, a
Y mask is associated:

Ximage[i] = Ymask[i]

Before delivering the image to the neural network, every member of the dataset is re-
sized, and the mask is converted into greyscale. The final input content has the following
characteristics:

Ximage[i] =
((

batchnumber, imagewidth, imageheight , imagechannel
)
,dtype = np. f loat32

)



Luca Zelioli 1800293

Ymask[i] =
((

batchnumber,maskwidth,maskheight ,maskchannel
)
,dtype = [0,1]

)
At this point, the model is ready for training, generating weights that are saved for every
dataset, in order to keep truthful results. The model assumes the structure summarized in
the Figure 5.33.

Figure 5.33: Description of the U-Net model

The prediction is performed through an utility function. After calling the method of the
Keras API, the predicted mask is saved into a variable holder, and it is printed on the
screen. In order to remove the noise and false positive from the outcome, a threshold that
eliminates the hits with lower accuracy is put in place. The coloured mask is converted
into black and white, where the first colour shows the background and the second displays
the predicted areas. At this point, to increase the visibility of the outcome, the software
draws bounding boxes overlaying the original image. This process does assessments by
using an algorithm provided by the OpenCV framework.

Moreover, the OpenCV algorithm can detect contours discovering edges and lines into
the mask, returning the possible coordinates of the bounding boxes. However, this pro-
cess is not very pleasant, producing plenty of false-positive hits. The results are in the
Figure 5.34.
The U-net is capable of detecting damage from the forestry. It is noticeable that the sea
around the Kvarken archipelago and the towns do not generate false positives, increasing
the reliability of this neural network. The model produces an accuracy in a range between
89% and 95% depending on the quality of the proposed data.



Luca Zelioli 1800293

Figure 5.34: Test image comprising deforested areas (mask is in white); (B) Mask predic-
tion of the deforested areas by U-net

In addition, 26 images are downloaded from the ArcGIS_Desktop package. These satel-
lite imagery data are in high-resolution with dimensions of 9984 pixels in width and
height. Moreover, the data appears more detailed and zoomed-in comparing to the pre-
vious sets. The elements are masked using MATLAB within the same process described
above. For every test, one image is taken away from the dataset in order to make accurate
predictions. It is not good practice to use the same image for prediction after it has been
used for testing or training. The dataset goes into two containers, one for the images and
one for the masks and it is split using Sklearn Python package as follow:

X_train,X_test,Y _train,Y _test = train_test_split (X_container,Y _container, test_size = 0.33)

where X_train, X_test, ,Y _train, Y _test are the batches that contain the actual
data, test_size is the split ratio and shu f f le is set to false in order to take the images
and the masks in the same order avoiding confusion.

The model produces accurate results. However, the evaluation always has accuracy be-
tween 80% and 86%. In order to show the detection zones, a function provided by
OpenCV framework is used. Moreover, it is able to draw contour using an algorithm that
calculates the distances between various points and edges of the predicted mask. Some
resulted samples are reported in Figure 5.35 to Figure 5.37.
In general, this model meets the expectation of an excellent instrument for remote sensing
and damage assessment. However, the usage of a more specialized dataset with many
high-resolution images and mask is crucial. The usage of a more accurate dataset can



Luca Zelioli 1800293

Figure 5.35: In the first sub-image, it is possible to discover the predicted contours of
the image. In this example, the areas without trees are obvious. However, this sample
is without plenty of water and houses. In the third image, there is the original predicted
mask.

Figure 5.36: This prediction is fascinating because a significant false positive is detected.
The system did not distinguish houses into the zone highlighted in red. The problem is
that near the houses there is a damaged area and the algorithm has merged them.

Figure 5.37: In this example, the algorithm did not detect the sea, making a very interest-
ing prediction of the damaged area.

increment the accuracy of the whole model and also the detection of the area of damage.



Luca Zelioli 1800293

Figure 5.38: In this graph are reported the values of accuracy in 5 runs.

Figure 5.39: In this graph are reported the values of loss in 5 runs.

Table 5.11: Values of accuracy and loss

Run Accuracy Loss
Run 1 0.9446 0.1421
Run 2 0.9443 0.1540
Run 3 0.9457 0.1430
Run 4 0.9496 0.1298
Run 5 0.9228 0.1996
Average 0.9414 0.1921

5.3.3 SegNet

In the following example, the usage of SegNet neural network is described. The model
has two different branches, the encoding layer and the decoding layer. Each of that has
four blocks. Into the encoder, there is the input layer; into the decoder, there is the output
layer. The architecture uses the sequential API of Keras framework. It achieves excellent
results in pixel-wise segmentation. The model synthesis is presented in the Figure 5.40.

The elements of the encoder block are formed by a Zero-padding layer followed by a
Convolutional layer, a Batch normalization and a Max pooling layer. The neurons activa-
tion occurs with the Rectifier Linear Unit. Moreover, the scope of the Zero-padding layer



Luca Zelioli 1800293

Figure 5.40: Description of the SegNet model.

is to add zeros right before the image’s contours helping the Convolutional layers to use
shared weights to discover features. The number of neurons increases from a minimum
of 56 to a maximum of 512.

However, from layer to layer, the discovered features become small (down-sampled) in
order to study neighbouring pixels. Opposite, in the decoder layer, the features’ map are
up-sampled and normalized. This process stops when the predicted mask assumes the
original input dimension. The outcome is provided by So f tmax activation returning the
predicted mask of the input image.

For the purpose of this example the packages named in Table 5.12 are used.

Table 5.12: Summary of the packages used for the SegNet implementation.

Package Purpose
OpenCV Image editor
TensorFlow Backbone for neural network
NumPy Array management
Keras Neural Network architecture API
Matplotlib Plotting utility

The same low-resolution datasets from the previous section are used to feed this model.
However, with SegNet, the input data is sequential. The input function passes to the neu-
ral network only one combination of image and mask per time. In order to accomplish
this prerequisite, a special class from the Keras framework is used, the ImageDataGen-

erator. Moreover, this utility can read the input from various folders without using an
extra set of functions like OpenCV. Resizing and normalization are automatic. The image
generator can generate new images. The process is simple. The original image is flipped,



Luca Zelioli 1800293

rotated and shifted in order to augment the original dataset. However, this process is very
computationally expensive and requires plenty of computational power. The same process
using only CPU (Intel(R) Core(TM) i7-7700HQ 2.80 GHz) and 16 Gigabytes of RAM (
with a frequency of 2100 MHz) requires between two and three hours. When the model
is compiled SegNet requires a special function called f it_generator that takes as argu-
ment the train image generator and the validation generator, both created with the Keras
ImageDataGenerator, described above. The produced masks are summarized in Figure
5.41.

Figure 5.41: Results of the SegNet prediction masks. The upper photo shows the Kvarken
Region. In the lower-left image, the predicted mask of the region is shown. On the right
is displayed the predicted zones with a probability percentage greater than 0.5.

Using the dataset provided by ArcGIS Desktop the results are summarized in Figure



Luca Zelioli 1800293

5.42.

Figure 5.42: Results of the SegNet prediction masks. The first images shows the predicted
mask. The second one shows the contours of the prediction, and in the third one it is
possible to find the final results. The results show some improvements, but they are not
great.

Studying the results, the U-Net produces superior outcomes with better accuracy (about
96%), as well. The SegNet model captures some damaged area, but contrary to the U-net,
the significant zones detected are the sea and the land without underlining the interesting
forestry areas.



Luca Zelioli 1800293



CONCLUSION AND FUTURE WORK

6.1 Summary and conclusion

In this work, several machine learning methods are implemented, both supervised and un-
supervised. They constitute a suitable methodology to assess the environmental damage
of satellite images. The case study is the Kvarken Archipelago, Finland.

GIS systems, such as SNAP, ArcGIS and QGIS provide an important initial step for
assessing forestry area. They contain a set of tools and utilities for land classification.
Moreover, Google Earth Engine offers the same kind of analysis with more extensive
datasets that are updated almost every day. The SNAP RGB analysis makes possible to
gather the status of the healthy vegetation in the targeted areas within just a few clicks.
ArcGIS provides a very good set of high-resolutions images that are essential for the neu-
ral network.

The unsupervised models presented here show that the K-Means cluster algorithm can
highlight the damaged area giving only the number of clusters as the initial parameter.
K-Means achieved good results delineating water, land, urban areas, active and barren
vegetation. However, the method does not show brilliant capabilities when quantifying
the density of trees and their dispersion. Therefore, other sophisticated solutions need to
be considered. Self-Organizing Maps are handy for this purpose. The particularity of this
model is the study of pixels’ density in the image. The outcome shows that the algorithm
can segment the interested areas, highlighting the places with more trees, deforested ar-
eas, urban areas and water. In addition, using the high-resolution images, the outcome
shows more prominently roads and urban areas, suggesting further improvements of the
whole quality of the output.

The Principal Component Analysis, PCA, is very useful it can remove the noise in the
initial input. Eight bands are analyzed showing that is possible to rebuilt a clearer image
from a set of bands considering only its Principal Component. However, with low-quality

81



Luca Zelioli 1800293

input, the final output is not satisfying.

The deep learning models used here show that the input image resolution can bias the
outcome of the learning process. Also manually labelling deforested areas on space-borne
images is tedious. However, finding high-resolution images, the process of labelling be-
comes simpler, consequently, the results are improved.

I trained the SegNet architecture on the low-resolution dataset with unsatisfactory results.
Subsequently, I trained the U-Net on two different datasets collected from the Kvarken
Area. The simulation shows that the U-Net performs significantly better on the dataset
with high-resolution imagery, delineating deforested areas with good precision. A quality
assessment can be found in Figures 5.35, 5.36 and 5.37.

6.2 Future work

The improvement of the dataset is crucial in order to retrieve better information for all
the analysis proposed in Chapter 4. Moreover, incrementing the quality of the image and
dividing it in multiple tiles is another key point to obtain better performances. Further
research needs to be proposed. For example, a neural network that provides a trees census
of the area is good. It enriches the quantity of information that is used for further analy-
sis. This work is achieved, making a comparison between the trees in summer when they
all have leaves, and in autumn when they are bare. Therefore, it is possible to study the
forestry season by season underlining the differences. However, the creation of a tempo-
ral dataset which contains ground-truth is necessary.

Filtering data on days when bad weather has occurred is another important step to study.
Moreover, it is possible to create a script where the images are passed as input to the
Neural Network only when bad weather occurs by consulting, for example, the Finnish
weather archive.



References

[1] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vi-

sion. The MIT press Cambridge, Massachusetts, 2016, pp. 1–18.

[2] D. Kumar, “Basic concept of remote sensing,” 2014. [Online]. Available: https:
//nptel.ac.in/courses/105108077/ (visited on 10/07/2019).

[3] B. Surwekiha, R. T., and D. Nilanjan, Satellite Image Analysis: Clustering and

Classification. Springer, 2019, pp. 1–2.

[4] Z. Yong-Liang and L. Huan-Zhang, Vision system for satellite observation in close

quarters. 2008. [Online]. Available: https://ieeexplore.ieee.org/document/
4659919 (visited on 10/15/2019).

[5] M. Teke and T. A., “Multispectral satellite image registration using scale restricted
surf.,” 2010. [Online]. Available: https://ieeexplore.ieee.org/document/
5595974 (visited on 10/01/2019).

[6] A. Du, P. Liu, S. L. J., and C. L., Ensemble extreme learning machines for hyper-

spectral image classification, 2014. [Online]. Available: https://ieeexplore.
ieee.org/document/6732910 (visited on 10/07/2019).

[7] A. Bhaat, Automated change detection in satellite images using machine learning

algorithm for delhi, india. 2008. [Online]. Available: https : / / ieeexplore .
ieee.org/document/7326109 (visited on 10/09/2019).

[8] A. Goshtasby, C. Stockman, and V. Carl, A region-based approach to digital im-

age registration with subpixel accuracy. 1986. [Online]. Available: https : / /
ieeexplore.ieee.org/document/4072476 (visited on 10/15/2019).

[9] S. Fobi, “Blurry?! using deep learning to harmonize satellite imagery across res-
olutions.,” 2019. [Online]. Available: https://medium.com/descarteslabs-
team/blurry-no-more-using-deep-learning-to-harmonize-satellite-

imagery-across-resolutions-b1fe46c7f8cc (visited on 11/04/2019).

[10] D. Valsesia, “Enhancing satellite imagery with deep multi-temporal super-resolution.,”
2019. [Online]. Available: https://towardsdatascience.com/enhancing-
satellite- imagery- with- deep- multi- temporal- super- resolution-

24f08586ada0 (visited on 10/30/2019).

83



Luca Zelioli 1800293

[11] A. Ojala, Quaternary studies in the northern and arctic regions of finland. 2005.
[Online]. Available: http://tupa.gtk.fi/julkaisu/specialpaper/sp_040.
pdf (visited on 10/30/2019).

[12] K. Svels, World heritage, tourism and community involvement: A comparative

study of high coast (sweden) and kvarken archipelago (finland). 2015. [Online].
Available: https://www.tandfonline.com/doi/full/10.1080/15022250.
2015.1009708?src=recsys (visited on 10/30/2019).

[13] P. Berg, H. Syrjälä, and P. Laaksonen, Natural uniqueness and sustainable tourism

business. small tourism enterprises in the finnish kvarken archipelago world natu-

ral heritage site, 2014. [Online]. Available: https://www.cairn.info/revue-
management-et-avenir-2014-3-page-187.htm# (visited on 10/30/2019).

[14] N. Gorelick, M. Hancher, M. Dixon, S. Illyushenko, D. Thau, and R. Moore,
Google earth engine: Planetary-scale geospatial analysis for everyone, 2017. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S0034425717302900 (visited on 10/21/2019).

[15] N. Patel, E. Angiuli, P. Gamba, A. Gaughan, G. Lisini, F. Stevens, and A. T. G. Tri-
anni, Multitemporal settlement and population mapping from landsat using google

earth engine, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0303243414001998 (visited on 10/21/2019).

[16] K. Johansen, S. Phinn, and M. Taylor, Mapping woody vegetation clearing in

queensland, australia from landsat imagery using the google earth engine, 2015.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2352938515000051 (visited on 10/21/2019).

[17] L. Veci, J. Lu, M. Foumelis, and M. Engfdahl, Esa’s multi-mission sentinel-1 tool-

box, 2017. [Online]. Available: https : / / ui . adsabs . harvard . edu / abs /
2017EGUGA..1919398V/abstract (visited on 10/23/2019).

[18] M. Foumelis, J. Blasco, Y. Desnos, M. Endahl, D. Fernandez, L. Veci, and C. Wong,
Snap – stamps integrated processing for sentinel-1 persistent scattered interferom-

etry, 2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/8519545 (visited on 10/23/2019).

[19] C. Storie, Urban boundary mapping using sentinel-1a sar data, 2018. [Online].
Available: https://ieeexplore.ieee.org/document/8519051 (visited on
10/23/2019).



Luca Zelioli 1800293

[20] S. Ullo, A. C., L. Cicala, N. Fiscante, P. Addabbo, M. D. Rosso, and A. Se-
basttianelli, Sar interferometry with open sentinel-1 data for environmental mea-

surements: The case pf ischia earthquake, 2018. [Online]. Available: https://
ieeexplore.ieee.org/document/8385270 (visited on 10/23/2019).

[21] J. Manjarrez and L. Ross, Geographical information system (gis) environmen-

tal models for aquaculture development in sinaloa state, mexico. 1995. [Online].
Available: https://link.springer.com/article/10.1007/BF00117877
(visited on 10/25/2019).

[22] J. Kokina and T. H. Davenport, “The emergence of artificial intelligence: How au-
tomation is changing auditing,” Journal of Emerging Technologies in Accounting,
vol. 14, no. 1, pp. 115–122, 2017. [Online]. Available: https://www.nber.org/
papers/w24196.

[23] G. Litjens, C. I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C.
Hulsbergen-Van De Kaa, P. Bult, B. Van Ginneken, and J. Van Der Laak, “Deep
learning as a tool for increased accuracy and efficiency of histopathological di-
agnosis,” Scientific reports, vol. 6, p. 26 286, 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0957417415007101.

[24] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition with very
deep neural networks,” arXiv preprint arXiv:1502.00873, 2015. [Online]. Avail-
able: https://arxiv.org/abs/1502.00873.

[25] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-
network-driven autonomous cars,” in Proceedings of the 40th international con-

ference on software engineering, ACM, 2018, pp. 303–314. [Online]. Available:
https://dl.acm.org/doi/10.1145/3180155.3180220.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT press Cam-
bridge, Massachusetts, 2016, pp. 1–18.

[27] B. Ramsundar and R. Zadeh, TensorFlow for Deep Learning. O’ Reilly, 2018.

[28] G. Aurelien, Hands-On Machine Learning with Scikit-Learn and TensorFlow. O’Reilly,
2017, pp. 37–38.

[29] A. Pantel, Hands-On Unsupervised Learning Using Python. O’Reilly, 2019.

[30] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,”
Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0031320302000602.



Luca Zelioli 1800293

[31] J. Estornell, J. M. Martí-Gavliá, M. T. Sebastiá, and J. Mengual, “Principal com-
ponent analysis applied to remote sensing,” Modelling in Science Education and

Learning, vol. 6, pp. 83–89, 2013. [Online]. Available: https://polipapers.
upv.es/index.php/MSEL/article/view/1905.

[32] T. Kohonen, The self organizing maps, 1990. [Online]. Available: https://sci2s.
ugr.es/keel/pdf/algorithm/articulo/1990-Kohonen-PIEEE.pdf (visited
on 12/17/2019).

[33] A. Khazri, Self organizing maps, 2019. [Online]. Available: https://towardsdatascience.
com/self-organizing-maps-1b7d2a84e065 (visited on 12/17/2019).

[34] E. Berglund and J. Sitte, “The parameterless self-organizing map algorithm,” IEEE

Transactions on neural networks, vol. 17, no. 2, pp. 305–316, 2006. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/1603618.

[35] A. Gulli and S. Pal, Deep learning with Keras: implementing deep learning models

and neural network with python. Packt, 2017, pp. 1–106.

[36] S. Ravichandiran, Hands-On Deep Learning Algorithm with Python: Master Deep

Learning algorithms with extensive math by implementing them using tensorflow.
Packt, 2017, pp. 1–50.

[37] R. Atienza, Advanced Deep Learning with Keras. Packt, 2017.

[38] M. C. Hansen, P. V. Potapov, R. Moore, M. Hanchen, S. A. Turubanova, A. Tyukav-
ina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A.
Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend, High-resolution global

maps of 21st-century forest cover change. 2013. [Online]. Available: http://
earthenginepartners.appspot.com/science-2013-global-forest (vis-
ited on 11/2019).

[39] S. Kumar, Principal component analysis: In-depth understanding throught image

visualization, 2019. [Online]. Available: https://towardsdatascience.com/
principal- component- analysis- in- depth- understanding- through-

image-visualization-892922f77d9f (visited on 12/16/2019).

[40] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, S. Fu, and C. Berg, “Single
shot multibox detector,” Europena conferences in computer vision, vol. 17, no. 2,
pp. 21–37, 2016. [Online]. Available: https://arxiv.org/abs/1512.02325.

[41] P. Isola, J. Zhu, T. Zhou, and A. Efros, “Image to image translation with conditional
adversarial networks,” ArXiv, vol. 17, no. 2, pp. 1–17, 2018. [Online]. Available:
https://arxiv.org/pdf/1611.07004.pdf.



Luca Zelioli 1800293

[42] T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J.
Deubner, Z. Jäckel, K. Seiwald, et al., “U-net: Deep learning for cell counting,
detection, and morphometry,” Nature methods, vol. 16, no. 1, pp. 67–70, 2019.
[Online]. Available: https://www.nature.com/articles/s41592- 018-
0261-2.

[43] M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari, “Recurrent
residual convolutional neural network based on u-net (r2u-net) for medical im-
age segmentation,” arXiv preprint arXiv:1802.06955, 2018. [Online]. Available:
https://arxiv.org/abs/1802.06955.

[44] Y. Xu, L. Wu, Z. Xie, and Z. Chen, “Building extraction in very high resolution
remote sensing imagery using deep learning and guided filters,” Remote Sensing,
vol. 10, no. 1, p. 144, 2018.

[45] M. Price, Mastering ASrcGIS. Mc Graw Hill Education, 2019, pp. 43–57.


