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Abstract

Simple market models typically include a constant rate of risk-free interest, sim-
plifying present value calculations and asset pricing significantly. In this thesis,
present value calculations with a stochastic rate of interest is treated for ran-
dom cash flows, annuities, and in particular, perpetuities. The literature on the
finiteness and central moments of the present value of a perpetual cash flow is
discussed and higher-order moment formulas are derived for several special cases,
in particular for a continuous finite or infinite constant cash flow subject to an
interest rate given by a Lévy process. The main part of the work is a long list of
cases, some being new, when the density of the present value of a perpetuity can
be found or a simple expression in terms of independent stochastic variables can
be derived. Applications to stock valuation, approximation methodology, and

risk theory are discussed briefly at the end.

Keywords: finance, perpetuities, probability



Swedish summary

Nuvardet av en perpetuitet med stokastisk diskon-

tering

I finansiell ekonomi dr nuwvdrdet ett centralt begrepp. Kort sagt dr nuvardet av
ett penningflode den summa pengar som skulle krivas i nuldget fér att kunna
bekosta det framtida penningflodet. Till exempel kan man ténka sig en annuitet
som, under N € N ar, arligen betalar en konstant penningsumma ¢ > 0, vilket

med en arlig rdntegrad pa r > 0 skulle ge upphov till nuvérdet

c(147r)7".

WE

Z(N) =

e
Il

1

Den foreliggande avhandlingen behandlar framst perpetuiteter, det vill séga en
variant av annuiteter vars regelbundna utbetalningar aldrig upphor. Den motsvarande
perpetuiteten har nuvirdet

o0

Z(00) = Zc(l +7r)7",

k=

—

Tack vare formeln for en geometrisk summa ar det latt att forenkla nuvirdena;
det giller saledes att

1—(1 -N
a-(1+7)
T

Z(N) = . Z(oo) = ;

Tyvérr ar det i den riktiga varlden ytterst sdllsynt att rintegraden bevaras fran
ar till ar. Av detta skil vore det gynnsamt att ha mojligheten att bruka matem-
atiska modeller dir rdntan dr stokastisk, eller till och med dér rédntan och utbe-

talningarna bigge ar stokastiska. Det stora problemet dr att det inte existerar
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nagon variant av formeln fér en geometrisk summa som giller for stokastiska
variabler. Lat oss betrakta nuvirdet av en perpetuitet vars utbetalningar och
riante- eller diskonteringsfaktorer ges av tva oberoende processer av stokastiska

variabler: .
Z(c0) =Y ][V
k=1  j=1

dar Cy, k = 1,2,... ar betalningsprocessen och Vi, k = 1,2,... &r diskonter-
ingsprocessen. Eftersom Z(oo) nu dr en stokastisk variabel, behovs en metod
for att berdkna dess fordelnings- eller frekvensfunktion. Man kan erhalla en grov
skattning genom att simulera perpetuiteten fram till nagot dndligt antal utbe-
talningar och upprepa simulationen ett par hundra ganger, men detta medf6r
ytterligare risker for fel som kunde undvikas om man kénde till en metod for att
analytiskt berdkna frekvensfunktionen for Z(oco). I avhandlingen visas att detta

ar mojligt atminstone i vissa specialfall.

Aven villkor for att nuvirdet dr sndligt behandlas. Med stod av tidigare forskning
— sérskilt W. Vervaats forskning — erhalls goda villkor som kan anvindas for att
besvara fragan dven i fall da nuvirdets fordelning ar okdnd. Dessutom hérleds
formler for nuvardets centrala origomoment av alla ordningar; dessa formler kan

brukas dven da nuvirdets fordelning ar okind.

Avhandlingens huvuddel behandlar de ovanstaende fragorna for perpetuiteter och
penningfléden i kontinuerlig tid. For nuvirdet dr den kontinuerliga motsvarigheten

till den odndliga summan en stokastisk integral,

Zoo = / e X:dY,,
0

dir X Aar processen som representerar rantegraden och Y representerar betal-
ningar. I det kontinuerliga fallet d4r mycket av teorin betydligt mer arbetsdryg,
men da X och Y dr oberoende Lévy processer kan dndlighetsvillkor och mo-
mentformler hirledas, och explicita férdelningar for nuvirdet kan hittas for flera
specialfall. Detta &dr sdrskilt gynnsamt eftersom det dr betydligt mera besvirligt

att simulera en kontinuerlig perpetuitet dn en diskret sadan.

I det kontinuerliga fallet presenteras visserligen villkor for nuvirdets dndlighet
relativt kortfattat, men momentformler behandlas utforligt i avsnitt [4.2] dér

bland annat tidigare forskning av professor P. Salminen och hans kollega I.

i
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Vostrikova presenteras. Det kanske huvudsakliga resultatet i detta stycke ér,
under antagandet att Y ar en deterministisk drift, alla ordningars momentformler

for Z.., och den motsvarande dndliga integralen

t
Zt:/ e Xeds,
0

varav det senare fallets formler &r motiverade med en ny hérledning.

Forskning rérande fordelningen av en kontinuerlig perpetuitets nuvarde inleddes

1990 da aktuarien D. Dufresne publicerade en ytterst innovativ hirledning av

o
/ e_vs_aw\“ds,
0

dar W ar en standard Brownsk rorelse. Dufresne bevisade att integralen foljer en

fordelningen for

invers gammafordelning och hans resultat aterges dven i denna avhandling, men
beviset som presenteras hiar anvinder en enklare metod som senare upptéicktes

av forskarna J. Bertoin och M. Yor.

Storre delen av de aterstaende fordelningarna som behandlas dr himtade ur en
artikel av H.K. Gjessing och J. Paulsen, men de flesta av hirledningarna &r nya.
Det visade sig for det forsta att Bertoin och Yors metod kunde utnyttjas for
nagra av Gjessing och Paulsens exempel, och for det andra dr en — till min
kinnedom — ny innovation i denna avhandling att identifiera integraler med
tidigare kiinda diskreta perpetuiteter. Saledes Gverfors manga av bevisena pa
utsagor som redan tidigare bevisats med enklare metoder, och genom denna

metod erhalls d&ven nagra nya resultat.

Avhandlingens sista kapitel behandlar nagra intressanta tillimpningar av mate-
rialet. En orealistisk, men intressant, stokastisk modell for aktiepriser demon-
streras i ett avsnitt, medan det foljande avsnittet dr en redogorelse for hur man
kan approximera ett kontinuerligt penningfléde med en diskret modell (eller vice
versa). Slutligen presenteras en av J. Paulsen upptéckt riskteoretisk ekvation som

relaterar sannolikheten for konkurs till nuvirdet av en kontinuerlig perpetuitet.

Denna avhandling utgor saledes en riatt utforlig blanding av litteraturdversikt,
ny forskning, och tillaimpningar. Presentationen &r till stor del inspirerad av
D. Dufresnes ar 1990 publicerade artikel, dir han behandlade en blandning av

konvergensresultat, momentformler, tillimpningar, och explicita férdelningar for

iii
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nuvardet. Dufresnes artikel dr dessutom en av de fa artiklar som behandlar bade
modeller med diskret och kontinuerlig tid, varfér man kunde se denna avhandling
som nagot av en uppfoljare till Dufresnes artikel. I sa fall har avhandlingen en

stor foregangare att leva upp till.

v
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Chapter 1
Introduction

In finance, an annuity is a contract giving its owner a sequence of payments
at regular intervals. In a financial portfolio the annuity payments will, as they
arrive, be invested in other assets, such as bonds or stocks. Of course, another
possibility is to buy an annuity with the intention of using the payments directly

to pay regular fees, like e.g. property taxes.

As a basic example, consider an annuity with payments ¢ > 0 arriving monthly,
for N € N months. As they arrive, the annuity payments start accruing monthly
interest from bonds, at the constant rate » > 0. Then the cash in the portfolio
at month n is
ve(l )kt if n < N,
sy = | Thaett+n .
SV (14 )N i > N,
Valuation of a financial asset relies on calculating its present value. The present
value is a concept from economics, defined as the cash amount of bonds you
would need if you had to pay all the future payments of the asset. The present

value at month zero of the above annuity is

1—(1+r)7
. .

ZIN)=) c(l+r)F=c

k=1

(1.2)

The factor (1+r)~! is also called the discount factor, while Z(N) may be called
a discounted cash flow. The justification for this is that you would need (1+7r)~*

now in order to have 1 next month.



CHAPTER 1. INTRODUCTION Jonas Lindblad

Pricing an annuity by its present value is also called rational pricing, because it
can easily be shown that any price deviating from the present value would lead
to a situation where either the seller or buyer could gain money with no risk — a
situation called arbitrage. The no-arbitrage principle is a cornerstone of financial

theory.

The present Master’s thesis mainly concerns the pricing of a financial asset called
a perpetuity — a variant of an annuity with payments continuing forever (or,
one might say, the payments continue in perpetuity). The above example is a
perpetuity if we let N = +o00, and the rational price of this perpetuity can be
found by taking the limit of Z(INV) as N — oo. As such,

Z(c0) = ; (1.3)

Of course, the deterministic case with constant payments is trivial. For this
reason we generalize and study a perpetuity with a random payment process

(Ck)ren and random discount process (Vi )ren. Thus,

Z(00) = ZOka/j. (1.4)

There is no counterpart to the geometric series formula in the stochastic case,
but we shall see that in some special cases Z(00) has a distribution with a well-
known density. In such cases putting a price on the perpetuity is as simple as
calculating the expected value of its distribution. Alternatively, a risk averse

trader may calculate the expected utility using any utility function of choice.

The bulk of the thesis is devoted perpetuities in a continuous-time setting, i.e.
a continuous cash flow subject to continuously varying discount factors. In this

case, the sum ((1.4) has an integral counterpart, namely

ZOO:/ e XtdY;, (1.5)
0

where X is a process representing the discount factors and Y is the cash flow. In
several cases, an explicit distribution for Z., is found. We shall also study cases

when the continuous cash flow is a diffusion type process.

Aside from finding explicit densities for Z_,, two other subjects are studied. First

of all, under which conditions can we even say that Z. is finite? Second, when
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possible, formulas for the moments of Z., are derived, as well as moments for
cash flows lasting only a finite time. A trader could potentially use the moments
to make purchasing decisions by relying on methods from Markowitz portfolio
theory. Both the moments and the question of finiteness are treated in discrete

and continuous time.

A secondary theme that is touched upon is financial modelling with jump pro-
cesses. For instance, compound Poisson processes belong to the class of Lévy
processes and have quite nice properties, allowing for several interesting results.
Despite these processes not being diffusions, we find several explicit distribu-
tions for the discounted perpetuity Z., as in (1.5, with X or Y having jump

components.

Although the primary application discussed in this thesis is valuation of perpetu-
ities, the mathematical content can easily turn out useful in other domains. For
example, the integral fOT e~ X:dY, has an obvious interpretation as the present
value of a portfolio, with dividends or fees arriving according to the process Y.
Varying discount factors can either be interpreted as a changing interest rate, or
a prediction of the varying time preference of the trader. We shall also see that

distributions of a perpetuity are necessarily solutions to a stochastic equation.

Moreover, stochastic processes with jumps are potentially a useful component in
fixing some alleged deficiencies in standard financial models. Traditional finan-
cial models cannot capture the market impact of a CEO getting caught smoking
a cannabis joint on a public podcast, or of a country unexpectedly voting to
leave the European Union. More mundanely, a left-wing government may sud-
denly cause an interest rate hike by beginning a major expansion of government
programs, or alternatively a right-wing government may contract government
spending, tanking interest rates in the process. Unexpected events occur when
there is a mismatch between common knowledge and reality, but predicting this
kind of mismatch remains difficult. This being the case, the prudent trader needs

to consider the risk of sudden shocks and plan accordingly.

The main part of the thesis is divided into two chapters — one dedicated to
the discrete-time setting and the other to continuous time. Preceding those is
chapter 2, a brief overview of theorems and definitions that are necessary in the

later chapters. Thus, chapters 3 and 4 treat the discrete and continuous-time
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settings, respectively. Finally, chapter 5 contains a short, partial overview of

applications related to the theory.

Despite the finance-oriented theme, this is still a Master’s thesis in mathematics.
Due to this, the reader is naturally expected to have prior familiarity with analy-
sis, probability theory, stochastic processes and stochastic calculus. Throughout
the text are a few novel proofs and results, but the bulk of the thesis does still
rely on the work of others, most importantly Dufresne |13} 12|, Yor [2], Vervaat
[33], Gjessing and Paulsen [15] and Salminen and Vostrikova [29]. Finally, I wish
the reader a good time while studying the contents and thank for any interest

shown.



Chapter 2

Preliminary theory

This chapter serves as a reference for theorems and definitions used in the later
chapters. First, some notation and conventions are introduced. Afterwards follow

sections on probability theory, stochastic processes, and finance.

If x € R, we use [z] as notation for the largest integer smaller than or equal to
x, i.e.

[z] =max{n € Z:n <z € R}.

If © = (x1,29,...) is a sequence in R, the notation #y(x) is used for the number

of elements in x that are equal to y € R, i.e.

#Hy(z) = ’{n eN:z, = y}’

The limit superior and inferior of sequences of sets are defined by

limsup A,, = ﬂ U A,

N0 E>1n>k
liminf A, = U ﬂ A,.
n—oo
k>1n>k

We adopt the convention of using X;  to denote the limit when s approaches
t > 0 from the left, i.e.
Xy = li?aXs7 t>0.
sTt
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2.1 Elementary probability and stochastics

Lemma 2.1 (Borel-Cantelli Lemma). If {4,, n = 1,2,...} is a sequence of

independent events in a giwen probability space, then

P <limsupAn) =1, ZP (Ay) = o0,

n—oo

n=1
P (1l A, ) =0, i P (A,) < cc.
( lin—igp ) if ; (A,) < o0

The second assertion also holds without the assumption of independence.
Proof. See [19]. O

A basic fact of probability is that the moment-generating function (when it exists)
uniquely determines the distribution of a random variable. In cases when it
is difficult to calculate the moment-generating function, it may be possible to
instead identify the distribution of a random variable by its positive integer

moments.

Theorem 2.2 (Billingsley [3]). Let X be a random variable on some probability
space and suppose o, = E(X™) is finite for every n € N. If the power series

o0
Oéka

s(r) = X

k=0

converges within some neighbourhood of zero, then it holds for every random
variable Y that

E(Y")=E(X") foreveryn € N= X2V
Proof. See Billingsley [3, Ch. 30]. ]

When the power series in Theorem [2.2]converges, it is said that the distribution is
determined by its (positive integer) moments. Note that if the moment-generating

function of X exists, then X is determined by its moments.

Definition 2.3. If x = (xg, 21, x9, . . . ) is areal sequence, then 0(x) = (x1, x5, x3, . . .
defines the shift operator 6. A set of sequences A is called shift-invariant, if
0(z) € A if and only if x € A.
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Definition 2.4 (Stationary process). Let X = (X;)cr be a stochastic process.

Then the process X is called stationary, if
d
(th,Xt2, . 7Xt") = (th-‘rT? Xt2+7—, Ce ,th+7), VT, tl, .. 7tn S ]R, Vn € N.

Definition 2.5 (Ergodic stationary process in discrete time). Let X = (X,,)nez
be a stationary stochastic process. Then it is ergodic, if every shift-invariant

event is trivial.

Theorem 2.6 (Birkhofl’s pointwise ergodic theorem). Let (X,,),>1 be stationary
and ergodic with E (| X1|) < oco. Then

AN
JE&E;X'“:E(XQ a.s.

Proof. See e.g. |21] O

2.2 Lévy processes

Definition 2.7. Let X = (X});>0 be a stochastic process on some probability

space. X is an additive process if it has independent increments.
An additive process is homogeneous if it has stationary increments.

A Lévy process is a stochastically continuous homogeneous additive process with
Xo=0 a.s.

Theorem 2.8. If X is a Lévy process, its characteristic function is for allt > 0
given by
E (eieXt) =0 g eR,

where U is the characteristic exponent of X, given by the Lévy-Khintchine for-
mula

1 .
U(9) = iab + S0 + / (1= &% + i1 211y (de),
R

where a,0 € R and 11 is a measure on R\ {0} satisfying

/ OOmin{l, |z|* 1 (dw) < oo.

o
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Proof. See e.g. [31]. O

It follows that every valid characteristic exponent ¥ uniquely determines a corre-
sponding Lévy process. The triple (a, 0?2 I1) is called the Lévy-Khintchine triplet
and can be used to uniquely characterise the characteristic exponent of a Lévy

process. We now state a few examples.

Example 2.9. (a) Let X be a Brownian motion with drift, i.e. X; =t + oW,

where W is a standard Brownian motion. The characteristic function of X, is

. o 70-292 45 262
E (ezeXt) —e iy0t— 75—t _ e t(iv0+75—)

Y

so X is a Lévy process with Lévy-Khintchine triplet (v, 02, II), where IT = 0.

(b) Let Y be a compound Poisson process with intensity A, i.e.

N
Y, = Z Zy,
k=1

where NV, is a A-intensity Poisson process and (Zy)gen is an ii.d. sequence of

jumps with density fz. The characteristic function of Y; is given by

oy, (0) = Xz — exp {—t ()\ (1 — /R el fz(x)dx)> }
= exp {—t (/R Mz (z)dw — /Rei"mfz(x)dx> }
= exp {—t (/R (1—€") H(d:z:)) } :

where II(dx) = Afz(z)dx and fz is the density of Z. Then it is easy to see that
Y is a Lévy process with Lévy-Khintchine triplet

( —)\/ vfz(x)dx , 0, Afz(z)dz ) )
(=1,1)

(c) Let X be a jump-diffusion, i.e.
N¢

Xy =at+oW,+ Y _ Z,
k=1

where W is a standard Brownian motion, N is a Poisson process with intensity
A independent of W and (Zy)ken is a sequence of i.i.d. jumps. It follows from

(a) and (b) that X is a Lévy process with Lévy-Khintchine triplet
(72 atoie. o Aataas ).
(71>1)

8
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2.3 Stochastic calculus

Definition 2.10. Let (F;):>o be a filtration on a given probability space (2, F, P).
Then, 1.2(0,7T) is the space of stochastic processes G = (Gy);>o such that G is

progressively measurable with respect to (F;);>0 and
T
E ( / Gids) < 00
0

Similarly, IL'(0,T') is the space of stochastic processes F' = (F});>o such that F

holds.

is progressively measurable with respect to (F;);>0 and
T
0

If T = oo we shall write only L' and L2

< 00

holds.

Definition 2.11 (Itd6 process). Let X be a stochastic process on the probabil-
ity space (£, F,P) that is progressively measurable with respect to a filtration

(Fi)t>0- Then X is called an Ito process if X can be written in the form

t t
Xt:Xo—i—/ Fsds—l—/ G dWy,
0 0
where F € L', G € L2

Lemma 2.12 (It0’s formula). Let X be an Ito process with differential dX, =
Fydt + GydW;. Suppose f(t,x) € CY*(R, x R) and that f(t,X;) € L? Then
Y, = f(t, Xy) is also an Itd process, with differential

_ (9 of 10%f 2 of
dYs = (61& (s, X) + o (s, Xs)Fs + 2 922 (s, Xs)G | ds + O (s, Xs)GsdW.
Proof. See e.g. [20]. O

Lemma 2.13 (It6’s formula in multiple dimensions). Let W be a wvector of d
independent standard Brownian motions. Let dX; = Fidt + GidW;, where the

vector F = (Fy,..., Fy) and matriz G = (Gyj)1<i j<a have components in L' and
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L2, respectively. Further, let f(t,r) € CY?(R, x R?Y). Then Y; = f(t, X;) is also

an Ito process and

d
dg:( Za—fSX st+2282 kks)ds

d d f
Zza_ S, X Gkndens
=1 k=1

Proof. See e.g. [20]. O

Definition 2.14 (Quadratic variation). Let X = (X;)cr be a stochastic pro-
cess on a probability space (2, F,P). The quadratic variation of X is a process
denoted by (X);, defined by

HPH oZ X = X'
=1

where P belongs to the set of partitions of the interval [0,¢] and
| P|| = max{(tx — tx_1); [tx—_1, tx] subinterval in P}.

Definition 2.15 (Cross-variation). Let there be two processes X and Y defined
on a probability space (2, F,P). The cross-variation of X and Y is a process
denoted by (X,Y); and is given by

(X, V)= ((X+Y), — (X =Y),).

| =

Note in particular that (X, X), = (X),.

Proposition 2.16. Let W = (W', W2, ..., W%),5q be a standard d-dimensional
Brownian motion adapted to the filtration (F;)i>o, let X, Y and Z be 1t6 processes
and let F € L', and G,G’" € L? be processes adapted to (F;)i>o. The cross-
variation, as defined in satisfies the following properties.

1. (X,Y), = (Y, X),.
2. (aX+Y, Z) = (X, Z)e + (Y, Z):.
3. ([, Feds, X); = 0.

10
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4o {Jo GodW;, [y GLdWi) =0, if i # j.
5. ([, GdWi, [o GLAW), = [o GGds.

Proposition 2.17 (It6 integration by parts formula). Let X and Y be two Ito
processes. Then
d(X:Y:) = XudY; + Yid Xy + d(X, Y),. (2.1)

Proof. See e.g. [23]. O

We shall now extend some of the above results for Poisson jump processes. For a

better exposition of stochastic calculus with jump processes, the reader is referred
to [7].

Let Y = (Y;)i>0 be a compound Poisson process, written as

N
Y, = Z Zy,
k=1

with N = (Ny):>0 a Poisson process with intensity A > 0, and (Zy)gen an i.i.d.
sequence of jump sizes. We denote the jump size at time ¢t > 0 by AY; :=Y;—Y,_,

which leads to a relation between the jump sizes of Y and N,
AY; = Zn, ANy, (2.2)

where AN; = N; — N;_ equals 1 only for the jump times 77,75, ... of N.

Based on the relation (2.2]), we define the stochastic integral with respect to Y,
which is in fact a Lebesgue-Stieltjes integral, by

t t Ny
X, = / G dY, = / GZy,dN, =Y Gr,Z. (2.3)
0 0 k=1

We also express the integral X; = fot G4dY, equivalently as
dXt = th}/t == GtZNtht-

We shall next present some formulas for stochastic integrals with respect to a
compound Poisson process, including a version of the It6 isometry and It6’s

formula. These formulas are also familiar from the theory of Poisson processes.

11
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Proposition 2.18 (Privault |28]). Let (Gi)i>0 be a stochastic process progres-
sively measurable with respect to the filtration generated by (Y:)i>0, a compound

Poisson process with intensity X and i.i.d. jumps Z. Then, if G € L,

E (/Ot GS_dYS) —E (/ﬂt GS_ZNSst> = AE(Z)E (/Ot Gsds) S (24)

If G €12,
t 2 t
E (/ Gs_(dYs — NE(Z) ds)) = \E (ZQ) E (/ Gids) . (2.5)
0 0
Proof. See [28]. O

Lemma 2.19 (It6’s Formula). Let X be a stochastic integral with respect to a
Jump-diffusion, i.e.
dXt - Ftdt + thWt + thYt;

with F, H € .}, G € 1.2, and where Y s a compound Poisson process,
N
Y't = Z Zk7
k=1
with N a Poisson process with intensity \, and (Zg)ren an i.i.d. sequence of

Jumps.

Suppose f(t,z) € CH?(Ry x R) and that f(t,X;) € L. Then, the process U, =

f(t, Xy) is also a stochastic integral with respect to a jump-diffusion, and in

particular
_(9F of 107 f ) of
dUt - (E(S’Xé’\) + %(S, XS)FS + 5@(87X3>G8 ds + 8_x<S’XS>GSdWs
+ (f(t, Xy) — f(t, Xi-)) ANy
Proof. See [28]. O

Furthermore, we note that several more properties of the cross-variation [2.15]
hold. In the following, let W = (W' W2 ... W%),> be astandard d-dimensional
Brownian motion and N = (N, N? ... N¥),5y be a vector of k independent
Poisson processes. The processes F, H, H' € ! and G € L? are adapted to the
filtration generated by (W, N);>o.

12
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6. ([, Fuds, [y H{dN); = 0.

7. (Jo GodWi, [ H{dN?), = 0.

8. (Jo HsdNy, [ HidN{)y = 0,if i # j.
9. (fy HydNY, [ HIANY), = [0 H,H.dN'.

Proposition 2.20. The Ité integration by parts formula (2.1) holds also for

stochastic integrals with respect to a jump-diffusion.

Proof. See [28]. O

13



Chapter 3
Discrete-time models

Consider a sequence of rates of return, Ry, constant over the time period [k—1, k),
and a sequence of random cash payments Cy, k = 1,2, ..., that are always made
at the beginning of time period [k, k + 1). We will call the initial capital held
So, and consider the accumulated capital sequence S = (Si)r>1 as well as the

present value sequence Z = (Zj)r>1 of payments up until ¢t = k.

A recursive equation for Sg, k£ > 1, is
Sy = UpSp—_1 + Ck, (31)

where U, := 1 4+ Rj. This equation is called the annuity equation because in
finance, an annuity is a finite sequence of payments made at regular intervals,

and so satisfy the annuity equation with initial value Sy = 0.

In finance, cash flows and annuities are priced using their present value Zj,
representing the present value of all payments made up to and including period
k. With Vj, :== U, the evolution through time can easily be derived from the

relation 7 = Si H?Zl Vj;, leading to the recursive equation

k
Zy = Zra + C [ [ V5 (3.2)

j=1

In particular, starting from Z, = .5y,

Zy = Zy+ Vi,

14
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and if we assume that

k—1 i
Ly = SOJFZCEHV},
=1 J

-

then insertion into (3.2|) yields

k—1 ) k
Zy = <SD+201-HVJ) +C Vi
i=1 j j=1

—

which simplifies to

k i
Zy=S+Y Ci ][V (3.3)
i=1 j=1

By induction it follows that (3.3 holds for all & € N.

The present value of a perpetuity can be defined as the limit of the present value
of an annuity, i.e. the limit Z,, = kh_)rrolo Zy, of , with Sy = 0 so that Z}, is
the present value of an annuity. Therefore, in the rest of the chapter we shall set
So =0 in (3.3)), so that

k 7
Zy =Y Ci][v (3.4)
i=1  j=1

We also define the corresponding infinite sum,

i=1 j=1

Due to the importance of the discounting factors, we also define
p=E (log[V1]),
when it exists.

Like annuities, the pricing of a perpetuity is carried out using its present value
Z. If the distributions of every Zj, are known, which is a very special case, it may
be possible to compute the distribution of Z,, by elementary methods. In other
cases the distribution has to be inferred from the distribution of (Cj, Vi)k>1, if

possible.

15
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3.1 Finiteness of perpetuities

3.1.1 Sufficient conditions in general setting

While studying the convergence criteria of the stochastic difference equation Y,, =
A,Y,_1 + B, Vervaat |33] and Brandt [4] also found some convergence criteria
for the perpetuity (Zx)r>1. Here we present a proof with Vervaat’s argument
applied to the conditions in Brandt’s paper. But before the theorem, one part

of Vervaat’s argument shall be presented as a separate lemma.
Lemma 3.1. Let (Cy, Vi.)r>1 be an i.i.d. sequence and assume that i = E (log|V1])

exists and is finite. Then,

(a) if E (log|Cy|") = oo, then limsup|C,,V; -+ V,|[V" = 00 a.s.

n—oo

(b) if E (log|C1|") < oo, then limsup|C,Vi -+ V[V < et as.

n—oo

The second assertion holds even if (Ck, Vi)k>1 is stationary and ergodic but not

necessarily i.i.d. It also holds if p = —oo (with the interpretation e = 0).

Proof. We take an arbitrary a > 1 and write
E (log|Cy[") :/ P ((log|C1|)* > z) dx
0

= loga/ P ((log|Cy|)* > zloga) da.
0

Define f(z) = P ((log|Ci|)" > zloga) and note that since f is bounded and

non-increasing,
Zf(n)<oo = / f(z)dx < oo,
n=1 0

by Cauchy’s integral test for series convergence (note that f need not be contin-
uous).
The number f(n) is now interpreted as the probability of the event

& = {w € Q: (log|C,|)" > nloga}.

The events are independent and so the Borel-Cantelli Lemma (Lemma im-
plies that

16
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(i) if E (10g|01|+) = 00, then P <1imsup§n) = 1.

n—oo

(i) if E (log|C1|") < oo, then P (lim sup fn) = 0.
n—oo
The event
limsup&, = {w € Q: (log|C,|)* > nlogai.o.}

n—o0

is clearly equivalent to

{w € Q:log <|C’n|1/"> > loga i.o.} :
In case (i), this implies that, since a > 1 was arbitrary,

Va>1: P (10g (]C’n|1/”) > loga i.o.) =1,

that is, limsup|C,|'/® > a a.s. for any a > 1. As such, with yx finite according to

n—o0
assumption and applying the Law of Large Numbers,

log|C,, 1 <
limsuplog|C’nV1V2...Vn|1/" = lim sup 08| Cal +limsupEZIOg|Vj|

n—00 n—00 n n—00 =1

1 n
= lim sup log (|Cn\1/"> + lim — E log|V}|
n—o00 N,
i=1

n—o0

= limsup log (|Cn\1/"> +

n—oo

>loga 4+ p, as. Va>1.

Thus,
lim sup|Cp,ViVa - - - V, |/ = o0.

n—oo

So case (i) implies the assertion (a) of the lemma.

In the case (ii), for a > 1 arbitrarily close to 1,

P (log (\Cn|1/n) > loga i.o.) =0,

1/n

which means |C,|"/" > 1 occurs only for a finite number of n € N, and so,

limsup|C,|"/™ < 1 a.s. An analogous argument to the one for case (i) leads to
n—oo

lim sup log <|CnV1V2 . Vn\l/") = limsup log (|C'n\1/n) +u < pu,

n—oo n—oo

17
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which implies that, almost surely,

lim sup|C, V1 Vy - - - Vn|1/” < et

n—o0

Finally, the argument in case (ii) does not rely on the independence of each
element in the sequence (Cy, Vi)r>1, since the second part of the Borel-Cantelli
Lemma does not require the events &, to be independent and the Law of Large
Numbers can be replaced by an application of the Birkhoff Ergodic Theorem
(Theorem [2.6|) if (Cy, Vi)k>1 is a stationary ergodic sequence.

. o . .. . 1 n -
Moreover, if 1 = —o0 in case (ii), then limsup 2 > %, log|V;| = —oo a.s. and so
n—o0

lim sup|C, V; - - - anl/" =0 a.s.

n—oo

]

Theorem 3.2. The sequence (Zy)k>1, where Zy, is defined as in (3.4), converges

absolutely almost surely, if one of the following holds:
(a) (Vi)k>1 is stationary and ergodic, and P (V3 = 0) > 0.

(b) (Cy, Vi)k>1 is stationary and ergodic, with

1< 0 and E (log|C1|") < oo.

Proof. Case (a). By the definition of ergodicity, for a stationary ergodic process
every shift-invariant event must be trivial (i.e. its probability is either 0 or 1).
Let

A={x=(zg,21,...) : x; € [0,00[, #0(z) = o0}.
It is easy to see that A is shift-invariant, so it must be trivial. Further observe

that due to stationarity, P (V, = 0) = P (V; = 0) > 0 for every k € N. Using this
fact, we prove that P ((Vi,V,,...) € A) > 0,

Assume there exists N € N such that P (V,, > 0, Vk > N) > 0. Since the set of
sequences such that every element after the N:th one is non-zero is also shift-
invariant, this probability must in fact be 1. Then the process cannot be station-

ary. In particular, from the definition of stationarity with 7 = N, we would get

18
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i 4 V.11, which is a contradiction since we have both P (Vi1 > 0) = 1 and

P (V4 =0) > 0. Hence, no such N can exist and we have
P((Vi,V,,...) e A) =1,

that is P (V;, = 0 infinitely often) = 1.

This clearly implies that, upon taking the limit klim Zy in (3.4)), with probability
— 00
1 the sum will only contain a finite number of terms before the first V, = 0

occurs. Clearly, Z, is a finite sum.

Case (b). The proof that Z, = lim Z; is well-defined and converges is by

k—o0

Cauchy’s root criterion. Given the conditions, case (b) of Lemma [3.1] says that

lim sup|C, V1 Vs - --Vn|1/” <et <1,

n—o0

since it was assumed that g < 0. This implies that that (Zx)r>o converges abso-

lutely almost surely. O

Naturally there is no guarantee that real-world time series will be stationary
and ergodic. However, a perpetuity may be finite even despite neither (V)i>1
nor (Cy)r>1 being stationary; all that is required is that the discounting factors

approach zero at a high enough rate. Consider the following example:

Example 3.3 (Dufresne [12]). Let (Ck)r>o and (log Vi)r>o be random walks,
defined by Cy =logVy =0 and for k > 1,
Cpr=c+Ci_1+ e
log Vi = a+1log Vi1 + fi,

where ¢ € R,a < 0, and (ex)r>1, (fr)r>1 are two ii.d. sequences of random

variables with mean zero.

First, assume ¢ # 0. Because a < 0, we have log V), — —oo a.s. as k — oo. Then,

k1 25:1 log V; — —oo0 a.s., which implies |V; - -+ Vi |Y* — 0 a.s.
If ¢ #0,

k
ck:—i—Zej

j=1

k™' log|Cy| =kt log
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=k 'log|ck| + k' log — 0 as.

1+ (ck)™! Z e;

J=1

Whereas if ¢ = 0, since the logarithm is concave,

k
kllogC, < k71 Zek —kt'=0 as.

j=1
As such, in both cases
lim sup|Cy Vi - - Vi V¥ < 1,
k—o00

and thus the perpetuity is finite a.s. Note that it was not assumed that the
processes (ex)r>1 and (fx)r>1 are mutually independent, and neither was it as-
sumed that they have finite variance. We can conclude that there are a.s. finite

perpetuities with Var (Cy) = oo and C} — oo a.s.

3.1.2 Payments and interest as i.i.d. process

It is often difficult or even impossible to explicitly compute the distribution of
Z- To this end, we make the restricting assumption of i.i.d. (Ck, Vi )g>1 in order
to use some known methods of computing the distribution of the perpetuity. Of
course Theorem still applies in the i.i.d. case. Here is an argument used by
Dufresne [12].

We defined the process (Z)r>1 so that
Zy=C Vi + CoViVo+ -+ OV Vo - - - Vi

If (Ck,Vk)r>1 is an iid. sequence of random pairs, we can reverse both the
payments and discounting factors without changing the distribution. That is, if

(By)r>1 is a stochastic process such that
By =CiVi + CoeaViVieer +- - + C1Vi Vi - W1,

then
d
7, = By,
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holds for every k € N. Note that this does not require (Cy)r>1 and (Vj)g>1 to be
mutually independent, only that, for any k& # n, (Cy, Vi) L (Cy,V,,). This means

that the stochastic equation
Z L Vi(Zhor + Cy) (3.5)

holds, so the distribution of Z, has the same structure as the annuity equation
studied by Brandt [4] and Vervaat [33], but only in the i.i.d. case. Because
By, 7 would imply that Z L 7 also holds, this fact has the interesting
implication that we are able to apply much of Vervaat’s research on the study of

discrete perpetuities.

Remark 3.4. Note the distinction between the processes (Zx)r>1 and (By)g>1;
it is only the case that Z, 2 By, for every k € N, and only in the case with
i.i.d. discounting and payments. The distinction between them is particularly

important when computing autocovariances Cov (Zy, Zgim)-

Vervaat’s line of research is about the relationship between the Equation (3.5
and the convergence of (Zy)r>1 when (Ck, Vi)g>1 is an i.i.d. sequence. We begin

our exposition of this research with an elementary lemma.

Lemma 3.5. If Z, A Z, then the stochastic equation

3

ZLV(Z+C), Z L1 (V,0) (3.6)

where V < i,C 4 C1, holds.

Proof. Recall the stochastic equation , in which the left-hand side converges
in distribution to Z. For the right-hand side, (Zy_1, Vi, Ck) S (Z,V,C), where
(V,C) is independent of Z because every (V,Cy) is independent of Z;_;. As
such, the right-hand side converges in distribution to V(Z +C') and the assertion
holds. O

Since we are mainly interested in actuarial applications, we will typically be
working with discounting factors V' = (1 + R)™! with 0 < E (V) < 1, which by
Jensen’s inequality implies that 1 = E (log|V]) < 0, although we will see that

merely assuming p < 0 is often enough. A more thorough study without this
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assumption can be found in [16]. We will now show how an explicit distribution
can sometimes be derived given the assumption on u. From Vervaat [33]| we gain
the following result. The arguments presented below are original except for the

first part, which is due to Vervaat.

Lemma 3.6. Let —oo < pu < 0. Suppose that, for some pair (V,C), Equation
(3.6) has a solution Z. Then the solution is unique in distribution and (Zy)g>1

converges to it a.s.

Proof. The process (By)>1 has a recursive structure like that in (3.5). Moreover,
if By, 4 7 then also Zy, % 7 must hold. We show the uniqueness in distribution
by showing that (Bj)k>1 can only converge to one random variable, unique in

distribution.

We introduce an arbitrary initial variable By, independent of every (Vj, Cy). Then

the sequence (B,,),>o is given by

n n k
By) =By [[Vi+>_C [ Ve
k=1 j=1  k=j

If By = Z is a valid solution to (3.6), then B; = Vi(Z + C}) h 7, and so Z; <y
So then for every n € N, Z, L7 Now, let By and Bj be two distinct random
variables, both independent of (Vj, C)ren. Then,

B.(By) — B,(B)) = (By — B)) H .

However,
- By [[vi %0,
k=1
which follows from Lemma with constant payments C; = 1 for all j and
p < 0. As such, because B, (2) A Z, it must also be the case that B, (By) Ny

for all By, and so it must also hold that Z, % 7. Tn other words, the solution 7

is unique in distribution and Z,, converges in distribution to it.

Recall that (Cy, Vi)k>1 i.i.d. implies that it is also stationary and ergodic. We
prove that the convergence is actually a.s. by proving that the conditions in
Theorem [3.2] hold. This is done using proof by contradiction. Thus, we assume

the hypothesis E (log]C’\Jr) = oo and show that it leads to a contradiction.
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First, we pick an arbitrary ¢ such that 0 < § < % Then, we pick two real numbers
s >t such that

Now, pick large enough natural numbers Ni, Ny such that k& > max(Ny, Ny)
implies that |Fz(s) — Fz,(s)| < §/2 and |Fz(t) — Fz, (t)] < §/2, respectively

(recall that it was earlier shown that Zj KN Z). Then, for such numbers k,

1 )
§+5<§+§+|sz(s)—FZk(t)|, (3.7)

because by the triangle inequality,
[Fz(s) = Fz(t)| = [Fz(s) = Fz,(s) + Fz,(s) = Fz,(t) + Fz,(t) — Fz (1)
< |Fz(s) = Fz, (s)| + [Fz, (s) = Fz, (8)| + [Fz, (1) — Fz(t)].
So for any such k, from (3.7) it follows that

Fa(s) = F(0) > 5.

Also due to the convergence in distribution and the completeness of R, the se-
quence of Fy (t) must be a Cauchy sequence. As such, if we let € = 1/2, there
exists N3 € N such that for all m,n > N,

|F7, (s) — Fz,(s)| <e. (3.8)

Now, we define a stopping time 7 with respect to the filtration (F,)> ,, where

n=1:

F, is the o-algebra generated by (C,,V,,)>2;, by

n=1»

7:=min{n € N: n > max(Ny, Na, N3), |C, V1 --- V,,| > s —t}.

Recall that it was assumed that E (log|C|") = oc. Since we know —oo < p < 0,
by part (a) of Lemma [3.1]

limsup|C,V; -+ V| = 00 a.s.

Thus it is easy to see that the stopping time 7 is finite a.s. This fact makes
it possible to identify two disjoint cases based on the properties of the process

(Cky Vi)k>1- Two new stopping times, 7, and 7_ are defined by
7. =min{n e N:n>71,C,Vy---V, >s—1t},
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7_:=min{n e N:n>7,C,V;---V, <t—s}.

The idea is that in every case either 7, or 7_ is equal to 7, but we use an
alternative partition for the sake of simplicity. Since 7 < oo a.s. either (a)
T, < oo as. or (b) 7 =00 a.s. but 7 < oo a.s. Cases (a) and (b) are disjoint,

so we finish the proof separately for these two cases.

Recall from (3.2)) that
ZTJrl :ZT+CT‘/1‘/T

Due to how 7 is defined, we know from (3.8)) that

€>|Fz, ., (s) — Fz,(s)

Y

and this holds also for 7, and 7_ since they are larger than or equal to 7. Con-

sequently, in case (a):

FZT++1(S) :P(ZT+ +CT+‘/1'--‘/7_+ S 3)
=P (Z,, +C V- Vo <5,C Vi Vo > s—1)

<P(Z, <t)=Fz (1)
Thus,
=< ‘FZT+(3) — FZTJr(t)‘ = FZmr(S) — Fy (t)

T+

9

Fiue (8) = Fao i (5) = | Pz, (9) = Fizp L (9)

that is, a contradiction.

An analogous argument in case (b) leads to Fz_ ., (t) > Fz,_ (s). A consequence

18

% =€e< }FZT_ (s) — Fz, (t)‘ =Fy (s)—Fz (1)
= FZT—“(t) — Iz, (t) - ’FZT_+1(t) —Fy, (t) <€= %7

again a contradiction.

Since both case (a) and (b) lead to contradictions, the hypothesis must be false,
ie.
E (log|C|") < oo.
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Since the conditions of Theorem part (b) hold, it follows that the (Zj)g>1

must converge absolutely almost surely. O]

3.1.3 Main result

From the proof of Lemma [3.6] and Theorem we can summarize the main

convergence result as the theorem below.

Theorem 3.7. Let —oco < p < 0. Then Equation (3.6) has a solution Z, which

15 unique in distribution, if and only if
E (log|C|") < oo.

On the other hand, when p = —oo, E (log|C\+) < 00 18 only a sufficient condition
for the existence of a solution to Equation (3.6]). In both cases (Zy)i>1 converges

a.s. to the solution Z.

Proof. The proof of Lemma showed that a solution unique in distribution
exists and Zj, converges to it a.s. as long as yu < 0 and E (log|C’|+) < 00. The

proof of the converse fails only when y = —oo. m

The case when y = —oo is more difficult, and moreover, if one desires to model
rates of return with a Cauchy distribution, then p will not exist. Both cases
are solved by Goldie and Maller in [16], where a somewhat complicated integral

criterion is derived.

3.2 The moments of a cash flow

This section is concerned with formulas for moments of i.i.d. cash flows and
their present values. The accumulated value of i.i.d. payments Cy,Cs,...,C}
that earn i.i.d. returns Ry = Uy — 1, Ry, = Uy — 1,..., R, = Uy — 1, is governed
by the recursive formula (cf. (3.1), the annuity equation)

Sy = Uk(sk_1 + Ck;>
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In this section we also assume that (Ug)r>1 and (C)r>1 are mutually indepen-
dent.

As a separate case, we define a present value process
Zy = Vi(Zy—1 + Cy),

which has the same structure. As such, all formulas are applicable to both
discounted and non-discounted cash flows. Most of the credit for the work in
this section goes to Dufresne |13 [12], who has studied moments of annuities
extensively with difference equations. The coefficient calculations are my own,

however.

3.2.1 Difference equations for integer moments

Let u; = E(U7) and ¢; = E(C7). Then an application of the Binomial theorem
yields

E (S;Zn) = umE ((Sk—l + Ck)m) = Upm Z (m) Cm_jE (Sifl) . (39)

Equation (3.9) can be used to recursively compute the higher moments. Moving

on, we bring out the last term of the sum, getting a difference equation

E (S7") — unE (Sp,) = mZ( )cm SE(SL). (3.10)

This is an example of a non-homogeneous first-order difference equation satisfied

by E (S}"). The corresponding homogeneous equation is

E (S7") — u,E (S",) =0,

which is solved by E (S7") = K - u¥, where K is a constant. To characterise the
whole set of solutions to a non-homogeneous difference equation, one needs only
find a particular solution and then add the particular solution to the solution of
the corresponding homogeneous equation. For example, consider the case m = 1.
Then,

E (Sk) — w1 E(Sk-1) = wicq
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is the non-homogeneous equation. This equation can in fact be solved by a
constant if u; # 1, since © — uyz = uycy implies that x = uyc; /(1 — uq). In other
words, assuming that u; # 1, the general solution of the equation is

Uiy

E (Si) = Kiub + : ,

where K is a constant again. We can find the value of K; by applying the initial

condition Sy = 0, which leads to K; = —ujc1/(1 — uq) and so,

k+1
Uit — U C

is the full solution to the difference equation. For higher moments, the calcula-
tions and applying boundary conditions quickly becomes very difficult. However,
some information about the structure of solutions can still be gained. The solu-

tion to the m = 1 case can be written as,
E(Sk) == K() + Kl . ulf,

where K, K are constants. The case when u; = 1 has the solution E (Sy) = ke,

as is easy to see.

Now, consider the m = 2 case. Then the difference equation becomes,
E (S,f) — uzE5 (52—1) = 2usc1 E (Sk_1) + uscs.

However, we already have a full solution to the m = 1 case, so we insert that
into the right-hand side (assuming first that u; # 1), yielding
_ ok
B (S2) — wB (52,) = 2uscy (%) T uses
We try a solution of the form E (S?) = Ky + K; - uf. Then the left-hand side
evaluates to Ky — us Ko + Kq(ug — u2)u'f_1. For a while, we will assume u; # 1

and us # 1. Rearranging the right-hand side, we get

1-— 2 2
(1 —u9) Ko+ (ug — u2) Ky - ulf’l = (1 — up) {u202( uy) + u1u2011

(1 — UQ)(l — ul)
2u1u20% !
 (u —Uz)(l—ul)} '

This expression allows us to identify the values of the constants as

+(U1 — Ug)

UgCo(1 — uy) + 2ujuscs

(].-Ug)(l —Ul) ’

2
2uiugcy

Fo= (w1 —ug)(1 —wp)

Klz—
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The homogeneous equation’s solution added to this yields a solution
E (S}) = Ko + Kyuf + Kou§,

and to get the value of K5 one needs only apply the boundary condition Sy = 0
in order to get Ky = —(Ko + Kj).

On the other hand, if u; = 1 were the case, then the equation to solve would

have been
E (Si) - UQE (Si_l) = 2U201 (k’Cl) + U9Cy.

In this case it simplifies the solution method if one tries a particular solution
E (S?) = Ko+ K - (k+ 1). No calculations will be shown, but the particular

solution is ) )
U Cay 2cius 2cius

:1—u2_(1—u2)27 1_1—’&2.

From this the general solution can be found as usual. We will not elaborate on the

Ko

further special cases when us = 1 or us = uq, as they tend to be less interesting,
but the reader should keep these methods in mind. Dufresne formulates the

conditions
w #u;, 0<i<j<m, (3.11)

that guarantee that no complications arise (note that ug = 1 so none of the mo-
ments can be 1). "Normally” these conditions will hold, because if the very
standard conditions U > 0 and E(U) > 1 hold, then for m > 2 it holds
that E(U™) > E (U™ ). To see this, recall that || X]|, = (E (|X[?))** is non-

decreasing with respect to p. Then the fact follows from

3=

(EU™)= > (E (Um71)>’"%1 =EU™) > ((E (Umfl))l'*'ﬁ > E (Umfl) _

In general, the following theorem holds.

Proposition 3.8. Provided conditions (3.11)) hold up to m, then the m-moments

have the form

E(S7") =) dmyuf, (3.12)
=0

where the {dy;, 0 <j <m} are constant with respect to k and u; = E (U7).
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Proof. Tt has already been shown that the solution has the desired form when
m = 1,2. Moreover, the solution to the homogeneous difference equation is
always the part with u*. We only need to show that a particular solution has

the appropriate form, and this can be done inductively. As such, we assume that

m—1

B (S7) = 2 dm-as5.
=0
for all 1 < i < (m — 1). Then, clearly the right-hand side of (3.10) can be
rearranged to have the form z;":_ol K jug‘, while the left-hand side becomes
~1

(1= up) Ko+ > (w5 — ) Kjup ™
1

3

J
From there it is only a matter of trying a particular solution of the same form,

matching the expressions, and solving the system of equations. Then by adding

the solution to the homogeneous equation, the solution has the desired form. [J

Finally, Dufresne 12| has calculated a recursive formula for the constants d,,;
by taking formula (3.12) and inserting it into (3.10)). This yields the recursive

relation

m—1
dm]:i—mz (m)cmldw, OSJSm_L
i~ (3.13)

No more efficient formulas are currently known.

3.2.2 Moments of a discounted perpetuity

Now, some remarks about discounted cash flows and perpetuities. If (Cy, Vi)i>1
are i.i.d., then the discounted cash flow Z,, satisfies , and so the moments can
be calculated in the same way. However, particular care that conditions
hold must be taken, since a discounted cash flow implies that E (V') < 1.

On the other hand, if a discounted cash flow is a convergent perpetuity with C}, L
Vi, Vk € N, the calculation of the moments at infinity are simplified significantly.

29



CHAPTER 3. DISCRETE-TIME MODELS Jonas Lindblad

If the conditions in Theorem (3.7 hold, then the moments of the perpetual cash

flow must satisfy

B(Z2) =B B((Ze + O =0 3 (7 )ens B (22),

=0

where vy, = E (Vk) . This leads to a particularly simple equation of
m—1 m
E(Z2) ~ vnE (Z2) = v 3 ( .)cij (7).
- J
7=0

If conditions ({3.11]) hold, this can always be solved:

m—1

v m ,

my _ m ) J

E(Z%) == " Z (j)cm_jE (7). (3.14)
7=0

Equation (3.14)) is an excellent formula for recursive computation of higher mo-

ments for perpetuities. Despite this a general formula for direct computation

would be ideal, yet no such formula has, to my knowledge, been discovered.

3.3 The distribution of a perpetuity

This section is dedicated to examples where distributions for Z,, can be derived.
In the following the sequences (Ci)g>1, (Vk)k>1 are, unless otherwise specified,
assumed to be i.i.d. and mutually independent. Most of the examples are due
to Vervaat [33] and Dufresne [12].

3.3.1 Limit of characteristic functions

Example 3.9 (Compound geometric, Vervaat [33|, Dufresne [12]). Let C be
arbitrary and V' ~ Ber(p),q = 1 — p > 0. This models a situation where there
is some chance after every time period that all payments will stop, or that their
worth will become zero from that point forward. At time & = 1 this is a com-
pound Bernoulli probability, that is, Z; = (4 with probability p and Z; = 0
with probability ¢q. For Z,, it’s as a branch from 7, i.e. if Z; had value 0 then
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Zy = 0. On the other hand, if Z; = 4, then Z, = C; + Cy with probability p
and Zy, = ('} with probability ¢q. Generalizing,
>, Cj with probability p™g, for 0 <m <k—1

4, =
Z?Zl C, with probability p*  otherwise.

Let the characteristic function of C' be ¢(s) = E (eisc) . In terms of ¢, we have

k—1

E (eiszk) — Z [qme <ei523'n:1 Cj)] + pkE <ei5 E?Zl Cj)

Recall that for every s € R, |¢(s)] < 1, and so p*¢(s)* — 0 as k — oo. As such,

i8Z00) _ q
B = T

This is the characteristic function of a compound geometric distribution.

Example 3.10 (Random geometric series). Consider a case where the discount-
ing factor V= v € (0,1) is constant. In most cases sums of random variables
are difficult to compute, but if C' is finite a.s. this is a convergent perpetuity.
For some particular choices of C' we can easily compute the distribution. For
example, let C' ~ N(p,0?). Then

k k
E (eisZk.) _E (eiszgzlujcj> _ H d(sv7) = H pisvIu—o?(vi5)?/2

7=1 7=1

k sk
= exp {isquj - %02 Z(UQ)J} :
j=1

7j=1
As k — 00, we use the geometric series formula and get

2,2 2
E(eisz""):exp{is el > ve },

1—v 21—22

20.2

5 )—distribution.

v

which corresponds to a N (%,

—
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In the above two examples, please note that since we know the examples are
perpetuities it constitutes proof that the convergence is actually almost sure (ex-
cept if C' has a distribution with infinite or non-existent mean, like e.g. Lévy or
Cauchy distributions). In general pointwise convergence of characteristic func-

tions can only be used as an argument for convergence in distribution.

3.3.2 Vervaat-class perpetuities

In some cases it’s possible to use Equation (3.6)) to derive a differential equation
for the characteristic function of Z. In this section a class of such perpetuities is

discussed.

Example 3.11 (Vervaat perpetuities, Vervaat [33|, Dufresne [12]). Let the dis-
counting factor V' be an exponential function of the rate of return R, which is
assumed to be exponentially distributed with parameter o > 0. Vervaat repre-
sents this by writing V = e % £ X1/ where X ~ U(0,1), which results in a
density
fv(x) = awo‘_ll[m} ().

Note that this is the density function of the S(«, 1) distribution defined on the
closed interval [0, 1]; the general 3(a,b) distribution has density

Il@a+b) b—1
— 0T et fy 1.
f(x) F(a)l“(b)m (1—z), for0<z<
It holds that —oo < pu < 0, so if also E (log|C|+) < oo we can use Equation (3.6)
to derive the distribution of Z. With n(s) :== E (¢"*?) and ¢(s) := E (¢*¢) , we

get

77(5) —E (eisV(Z+C’)) — / fv(x)E (eisaz(Z-i-C)) dr
1 1

= / az®'E (e""7) E (") da = / az® 'n(sx)¢(sv)dz,

0 0

where substituting v = sx yields

Multiplying both sides by s* and taking the derivative gives a differential equa-

tion

1

sy + as® I = as® ne.
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Dividing both sides by s®n and rearranging yields
n_/ = C(Sil(¢ - 1)7
n
which is easily recognized as an elementary differential equation with the solution

n(s) = exp {a/o Mdu} | (3.15)

u

This defines the Vervaat-class perpetuities. For some distributions of C' the in-
tegral in the characteristic function can be easy to calculate, as the next few

examples show.

Example 3.12 (Vervaat gamma, Vervaat [33], Dufresne [12]). Consider a Ver-
vaat perpetuity with C' ~ Fzp(\). Then ¢(s) = A\ — is)~!. With this, the
expression for 7(s) (3.15) becomes

exp {&/81 . wdu} — ealog(k)—alog(,\_is) _ < A . ) ‘
0o u A —iu N —is

This is the characteristic function of the I'(cr, \)-distribution.

Example 3.13 (Vervaat symmetric VG). This is a slight modification of the
above example, and to the author’s knowledge this approach provides a new
proof for this explicit solution to . Consider a Vervaat perpetuity with C ~
Laplace(0, A). The situation should be thought of as exponentially distributed
size of payments, but without knowledge of whether we will receive or pay the
amount. It is an infinite series of coin flips determining whether we pay or
get paid (in other words, not much unlike trading in securities). In this case
d(s) = A2(\? + s?)~1 and the expression for n(s) becomes

. 04/51 )\2—()\2+u2)du . a/s udu
X —_— = X —_ —_—
P 0o U A2 4 u? p 0 A2+ u?

o 9 9y O 9 A2 o/2
:exp{—glog(k +s )—f—Elog()\ )} = (m> :

This is the characteristic function of a symmetric Variance-gamma distribution,

or VG distribution for short, with mean zero, which arises among other places
as the distribution of the difference between two ii.d. y2-distributed random
variables, although it can also be defined as a generalization of the Laplace

distribution. Note that if & = 2 then Z would follow a Laplace(0, \) distribution.
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The variance-gamma distribution has four parameters in general. We show its
density below. If X ~ VG(m,a,b,\), with A > 0 and v = va? — b?> > 0, then

its density function is defined for any x € R and is given by

VA |z = mP V2K, jo(ala — m|)eb(x_m)
VAT () (2a)2 172 ’

where K denotes a function, given by

fx(z) =

I_o(z) — Io(2)

sin(am)

Kolr) =5

where

Ta(w) = ; kT (k j a+1) (g)ma '

The functions K, and I, are called modified Bessel functions of the first and
second kind, respectively. With the same parameters, the characteristic function

of a VG-distributed variable is given by
. , 21
E (") = ™ (”y/\/a2 —(b+ is)2> .

The next example will be the final Vervaat perpetuity brought up in this section
and unlike the prior examples, this is only expressed as a difference of two random
variables. Despite leading to difficulties for moment calculations, it is still a useful

expression for numerical computations.

Example 3.14. The idea in this example is to have C follow a distribution
that has a similar two-way exponential character as the Laplace distribution,

but skewed. Such a distribution can be constructed as follows. Let a,b > 0, and
b
C=XF—-(1-X)U, X~ Ber <?> , '~ Exp(a),U ~ Ezp(b), (3.16)
a

where F' | U and X is independent of F,U. Then the characteristic function ¢

of C' is easily calculated.

¢(S) —E (eiSC) —E (eis(XF—(l—X)U)) —
b a a b
. — + . —.
a+b a—is a-+b b+is

isF a —isU
a+bE(€ )+a+bE(e )
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Plugging this into the integral in (3.15) yields

5 -1 | b b b
R CCE PR Y TR 22
0 u 0
b s 2o

U a—l—b'a—z’s a+b.b—|—is_a—|—b
——1 a [fL -1
_ / a—iu du+ / +iu du
a+b J, u a+b J, u
b | a n a | b
= O (0] .
a+b & a—1is a+b & b+1is

As such, from (3.15) we get

_ab_ _aa
_ aI(s) _ a a+b b a+b
ns) =e <a—is) (b+is '

Let Gy ~T'(ab/(a +b),a) and Gy ~ I'(awa/(a + b),b), and G L G. Then,

n(s) = E (") - E (e77%2) = E (¢™(G1762))

Tt is now established that Z < G — Gs.

There is a slight modification of the Vervaat perpetuity technique that is easily

applied to finding solutions for the stochastic equation
7Lvz+ C, V,Z C independent.

Consider V as before, so that

n(s) = B () = B (7)) = B (¢'sC) E ("77) = 6(s) /0 az®~n(sz)dz

—ao(s)s [ u

leading to the equation
aT](S) /S a—1
s"——= =a | u* n(u)du.
o(s) 0
Taking the derivative and multiplying by s~%*¢(s)/n(s) yields the differential
equation
77/ o ¢/

gzg(ﬁb—l)*-g,

which has the solution
5 -1
n(s) = ¢(s) exp {a/o %du} : (3.17)

This form can be useful when a solution to (3.6)) is already known but a solution
to Z £ V7 + C is desired instead. We illustrate on the prior example, m
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Corollary 3.15. Let G, ~ I'(1+ab/(a+b),a) and Gy ~ I'(14+aa/(a+0b),b), and
G1 L Gy. Assume we have a Vervaat setting with V = e 1 where R ~ Exp(«a)
and that C' is as in Example|3.14, Then

Z =Gy — Gy
solves the stochastic equation

Z74vz 4 C, V,Z C independent.

Proof. In Example [3.14] we had a Vervaat perpetuity with

b a n a b
a+b a—is a+b b+is

ab aa
a O\ a+b b\ atb
nis) = (a—is) (b—l—is) '

Using the modification (3.17)) to get a solution to

¢(s) =

and

Z7ivz ¢ C, V,Z C independent,

we get

ab «a
- b a a b a atb b atb
E 182 — . 3
o <a~|—b a—is+a+b b—i—is) (a—is) <b+is>

b

b o[/ a \Em b Nar g [ b \'em /g \aw
_a—l—b(a—z’s) (b—l—is) +a+b(b+is) (a—z’s)

B a 355 b 435 b b+is n a a—1s
 \a—is b+ 1is a+b b a+b a

=E (eis(Glf@)) [b tista- Z.S} =E (eiS(Glsz)) :

a+b
where Gy ~ T'(1 4+ ab/(a +b),a) and Gy ~ T'(1 + aa/(a + b),b), and G; L Gs.

This proves the assertion. O
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3.3.3 Beta-gamma algebra

There are also methods for finding solutions to (3.6|) that rely on other stochastic
identities. A big interest of Daniel Dufresne [11} 9} 10] is properties of Gamma
and Beta distributions that lead to equations in distribution. We list some well-

known such properties without proofs.

X ~T(a,k),Y ~T(bk),X LY = X +Y ~(a+b,k) (3.18)
X ~T(a,1),Y ~T(h,1), X LY = X/(X +Y) ~ G(a,b) (3.19)
X1, Xy ~T(a,1),Y,Ys ~T'(b, 1), all independent
X d
= (Xe+Yy) = X, 3.20
() L X (320

Together with Theorem various distributions of perpetuities can be derived
from these properties. For example, immediately leads to a solution with
V ~ B(a,b),C ~ I'(b,1), and Z ~ I'(a,1). Checking, one easily sees that the
conditions in Theorem hold, so this is a convergent perpetuity with a known
distribution. In fact, this is a slight generalization of Example Moreover, if
every payment is multiplied by a constant k, then the perpetuity Z would also be
multiplied by that k. Since, with the parametrization of the Gamma distribution
we have used so far, kX ~ I'(a, 1/k) whenever X ~ T'(a, 1), it follows that when
C ~T(b,1/k) we have Z ~ I'(a,1/k).

In the following it will be useful to introduce an extra distribution, with density

~ T(a+0b)
/@) = T

This distribution is called a Beta distribution of the second kind and denoted by

2 N1+ 2) " g0y (x), a,b>0.

Pa(a,b). The Beta distribution of the second kind is of special interest since it
arises most naturally as a transformed Beta distribution where if X ~ (a,b),
then

Y = 2~ fa(ad)
Although it may look like a stochastic version of the geometric series formula,
this is not how the distribution arises. Here is an example where it arises as a

perpetuity.

Example 3.16 (Dufresne 12, 11]). Let a,b > 0, V ~ fy(a,a + b) and C =
1. Then Z ~ fy(a,b) is a solution to (3.6). This is most easily shown by an
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application of property (3.20). We introduce a variable B ~ ((a, b), and see that
it Z=B/(1— B), then

(Z+1)"'=(1~-B)~ B(b,a).

Introducing variables X ~ I'(a,1),Y ~ I'(b,1) such that B = X/(X +Y), we
get

(Z+1)=(X+Y)/Y.
But on the other hand, if V' = B’/(1 — B’) where B’ ~ fB(a,a + b) and B’ =
X'/(X' +Y") with X’ ~ D(a,1),Y" ~ [(a + b, 1), then
B XX 4Y) X
C1-B Y/(X'+Y) Y

V

Since X’ and Y’ are independent we can separate them and get

X X+Y
Z41) =2
A
and since Y’ = G, + G}, for some independent I'(a, 1), I'(b, 1) distributed random

variables, we can apply property (3.20) and get

/
d

V(Z + 1) == % ~ 52((1,76),

which is the same distribution as that of Z. In other words, Z solves Equation
. What remains to be seen is that V' satisfies the conditions of Theorem .
Consider

log|V] = log| X'| — log|Y”|.

In other words, E (log|V'|) < 0 if and only if E (log|X’|) < E (log|Y”|). It can be
shown that the logarithmic expectation of gamma distributions can be expressed

with the digamma function ¢. For X',

angX):w(a)—log(l):—WZ(%ﬂ_ kia)
:—’Y+Z((k;+1)(k+a))’

which is an (absolutely) convergent series since

i((k+1)1(k+a)) <§:%<oo_

k=0
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As such,

= 1 1
B (logV) = vie) (0 +0) =3 (g ) <°

since clearly a+b > a. Thus, p < 0 and by theorem [3.7] the solution Z is unique

in distribution and the value of the perpetuity converges to Z a.s.

Some more examples can be found in |11} 9} [10].
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Chapter 4
Continuous-time models

Consider first a discrete-time model (as in Chapter . A typical way of introduc-
ing continuous time is to write a discrete-time process (Sk)r>0 as a step function
S(t) == Sy, for t > 0. Taking it one step further, such models can be made more
precise by shortening the intervals, e.g. by setting S(t) := Spy for some n € N.
Then the number of discrete steps taken until time ¢t were multiplied by n, so the
terms of the model also need to be scaled appropriately. This procedure is well
represented by Dufresne [12], as a prerequisite for his convergence theorem (for
which we will present an alternative proof in Section . The bottom line is
that the discrete-time processes of Chapter |3l have continuous-time analogues as
integral processes and that this can be rigorously proven using techniques related
to weak convergence in Skorokhod space. This shall not be done here, however;

instead the interested reader is referred to Dufresne’s articles |13} 12|, but see
also section (.2

A continuous-time cash flow with random return on investment is
t
S, = / eXt=Xeqyy, (4.1)
0

where X is a return-on-investment generating process and Y is a payment gen-
erating process. In our case, we are most interested in the integral representing

the present value of a continuous cash flow,

t
Z, = e XtS, = / eiXSdYS, (4.2)
0
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and the present value of the corresponding perpetuity is thus
Zo = / e XY, (4.3)
0

For most of this chapter we shall use the assumption that X and Y are some
types of Lévy processes. Dufresne [12] restricts himself to Brownian motion with
drift, while also defining the processes S and Z differently so as to preserve

consistency with his chapter on discrete-time models.

The next proposition is one that Dufresne proves as a consequence of his weak
convergence of discrete-time models. The proof supplied here is instead by ele-

mentary stochastic calculus.

Proposition 4.1. Let X and Y be standard independent Brownian motions and
let

X, =t + o Xy,
~t v t (4.4)
Y: == pt + (Y,
where p,v,0,¢ € R.
Then the process S, defined by
t = 5 ~
S, = / et Xqy,, (4.5)
0
satisfies the SDE
dSt = (CYSt -+ ﬂ)dt + O'Stht + Cdn, (46)

where o = v + 02 /2.

Proof. The SDE (4.6) can be solved with integration by parts. First, recall that

~ 2 " X
d (6*Xt> B <_7 + %) e Ndt — e d X, (4.7)

according to the geometric Brownian motion equation. Then, by the Ito integra-

tion by parts formula of equation (2.1)
a(e%8)) = eSS, + S (%) + (e, ).
Using Proposition [2.16] we see that the cross-variation
d(e’X, S = —o2e X1 S,dt.
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We insert the cross-variation and equations (4.6) and (4.7) into the integration
by parts formula, yielding

d (e—f(t st) = (aS, + pe~Xtdt + oe X1 S,dX, + ce~XeaY,

2 i ~ .
+ (_7 + %) e X1 Sydt — oe” X1 S, d X, + d{e” ¥, S)y,
which simplifies to
a(e58,) = pe Xt + ¢ ¥eay,, (4.8)

Equivalently expressed,

~ t ~ t ~ t -
e_XtSt:M/ e—Xsds+g/ e X dY, :/ e X:dYs,
0 0 0

and so the solution to equation (4.6)) is
t = = ~
5= [ X,
0
which wraps up the proof. O
Remark 4.2 (Norberg [26]). The solution of Equation (4.6) can be rewritten as
a one-dimensional diffusion if one recognizes that
t
W, = / (S26% + ¢*)*(Ss0d X, + (dYy)
0
is a standard Brownian motion. It is justified by the fact that

(W, W), = </ (5262 + ¢*)"V28,0d X,

(S20% + 37V 2ssadxs>
0 0

t

a2 2 2\—1/2 a2 2 2\—1/2
s [t syicar, [ st )

0
t
= [t ()20 4 Pt =
0
and Theorem 6.1 in [6]. Thus, S is governed by the one-dimensional diffusion

equation
dS; = (aSy + p)dt + (S + ¢*)V2aw,, (4.9)

where o = v 4 02/2.

The next section treats convergence criteria for perpetuities, very similarly to
the conditions of Chapter
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4.1 Finiteness of perpetuities

4.1.1 A brief literature review

An overview of convergence criteria for perpetuities shall be presented below. In
this section we prove only what is necessary; other proofs, that would require
a significant amount of theory, are omitted for the sake of brevity. In all such

cases, the reader is instead referred to a source that proves the theorem.

t
Zt:/ e Xeds,
0

for all t > 0, and present equivalent characterizations of the a.s. finiteness of

As a preliminary, we let

Zoo = lim Z;.
t—o0

Theorem 4.3 (Bertoin and Yor [2]). Let X = (X;)i>0 be a Lévy process with
Lévy-Khintchine triplet (a,o?,11) and let

ZOO:/ e Xsds.
0

Then the following assertions are equivalent:

(i) Zoo < 00 a.s.

(ii) P (Zs < 00) > 0.

(111) tlirgo Xy = +00 a.s.

(iv) tlggo 71X, >0 as.

(v) [°P (X, <0)tdt < oo

(vi) FEither

/( )]x\l_[(dx) < oo and / zll(dz) > a,

—o00,~1

|z|>1
or

/(_007_1)‘1”1_[(@5) = /(1,00) zll(dz) = 0o and /100 1 (x)d (a:/J*(x)) < 00,

where for every x > 0

[I*(z) = H((z,00)), II" = ((—o00, —x)), J"(z) = /Ofb‘ I (y)dy.

Proof. See [2]. O
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Corollary 4.4. If X; = vt + ocW,, where W = (W})>0 is a standard Brownian

motion, then

o
— / e Xeds < 00
0

if and only if v > 0.
Proof. From Theorem [4.3] assertions (i) and (iii). O

Consider the integral
| rxas
0

where X is a Lévy process as before. Some results in the literature give a simple
integral test for convergence of such an integral functional. The currently best
published characterization is due to Doéring and Kyprianou [8|, which we shall

not discuss further due to the restricted scope of this thesis.

In a forthcoming paper by Kolb and Savov [22], the integral test is improved upon
by finding a criterion that extends to any Lévy process with tlgglo X; = +o0. A
similar integral test was also proved by Salminen and Yor |30] for Brownian
motion with drift, and by Erickson and Maller [14] when restricting f to non-

increasing functions. We state the integral test by Erickson and Maller.

Theorem 4.5 (Erickson and Maller [14]). Let X = (X})i>0 be a Lévy process

with tlim Xy = 400, and let f be a positive and non-increasing function on R.
— 00

Then,

/Ooo f(Xy)ds < 00 <= /Ooo f(x)dx < 0.

Proof. See [14]. O

4.1.2 Two short propositions on convergence

For reference we state a part of Theorem [1.3] We only prove the implication in

one direction, but the argument is a simpler one than in [2].

t
Zt:/ e Xeds,
0

where X 1s a Lévy process. Then, tlim Zy < o0 a.s. if and only if tlim Xy =+
—00 —00

Proposition 4.6. Let

a.s.
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Proof. (=) This direction relies on advanced theory. See [2] for the details.

(«) Assume lim X, = +o0 as. If P (tlim X < o) > 0, then it would immedi-
—00 —00

ately contradict the assumption. Thus, tlim % > 0 a.s.
—00

This implies that there exists an a.s. finite stopping time 7 and an € > 0 such

that for all t > 7(w), thw) > €. As such, (cf. Dufresne [12, Prop. 4.4.1])

ZOO:/ e_Xsds+/ e Xsds,
0 T

where the first term clearly is finite a.s. and the other,

o0 o x o0
/ e Xods = / e %S ds < / e *ds < 0o a.s.
T T T

S0 Zy < o0 a.s. and thus the proof is complete. O

Next we consider the case where we integrate not with respect to Y, = ¢, but
a process with a Brownian and a jump component, in addition to determinis-
tic drift. The previous proposition dealt with drift only, while among others
Dufresne [12| has proved convergence for the Brownian component. The inter-
esting part is the jump process, which we assume to be a compound Poisson
process. I have discovered an interesting proof that the integral with respect to

the compound Poisson process converges a.s. as t — 00.

Proposition 4.7. Let X = (X;)i>0 and Y = (Y})i>0 be independent Lévy pro-
cesses. Assume'Y is given by

Ny
Y;Z/Lt‘i‘UWt—FZKk,

k=1
where W is a standard Brownian motion, N s a Poisson point process, and

Ki, Ky, ..., are i.i.d. random variables with E (10g]K1]+) < 00.

Zoo = / e~ X:dY,
0

s finite a.s., if lim X; = 400 a.s.
t—o0

Then

Proof. Separate the integral Z; into

t t t Ns
thu/ eXsds+a/ eXSdWs—i—/ e Xod (ZKk>.
0 0 0 —

45



CHAPTER 4. CONTINUOUS-TIME MODELS Jonas Lindblad

The first term converges a.s. as t — oo according to Proposition The same
holds for the second term according to Dufresne [12, Prop. 4.4.1]. That leaves
the third integral.

By our assumptions, for every € > 0, there exists an a.s. finite random time 7

such that for all ¢ > 7(w), @ > €. As such,

o0 Ns T Ns [e%e] Ns
/ e Xod (Z Kk> < / e Xod <Z Kk) 1 / e %d (Z Kk> .
0 k=1 0 k=1 T k=1

In a finite interval a Poisson process has a Poisson-distributed number of jumps,

that is finite a.s., so the integral up to 7 is finite a.s. For the latter integral,

oe] Ns oo oo [e ]
/ e *d (Z Kk> = Z e[, = TN Ze_ET’“Kk < Z e TR,
T k=1

k=N,+1 k=1 k=1
where Ty, k = 1,2, ... is the sequence of jump times for N, and, recalling that
7 L N, the memoryless property of the Poisson process N was used. Recall that

for a Poisson process, for any k£ € N,

k
Tk: E Vj,
=1

where v; ~ Exp()) is an iid. sequence of sojourn times. As such, defining

Vi := e % we have

) N, 00 k
/ e~*d (Z Kk) <> K. ][V
T k=1 k=1 =1

that is a discrete-time perpetuity, which is finite a.s. according to Theorem [3.7]
This completes the proof. O

4.2 The moments of a continuous cash flow

4.2.1 Interest and payments as Brownian motion with drift

Like in chapter [3] this section shows how to compute moments of the processes
(St)i>0 and (Z;)i>0, defined as

t ~ ~ ~
5= [ X
0
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and .
Zt = / €_XS di s
0

where X and Y are two independent Brownian motions with drift, representing
the rate of return on investment and the stream of payments received, respec-

tively. For the sake of reference their definitions are

)?t =yt + o Xy,
Y, == ut + (Y.

Once again, much of the basic work is due to Dufresne [12| [13].

In order to derive moment formulas for the process S, the It6 formula with
f(t,z,y) = 2™ will be applied on the It6 SDE (4.6). Then,

af o af _ m—1 a2f _ m—2
o =0 gy =M gy = mlm = e

As such,
1
dsm = (mStm_l(aSt + 1) + 5m(m — 1) 8705} + 42)) dt

+mSZnilO'Stht -+ mSZn*lCdY;;,

where (X¢)i>0 and (Yi)i>o are two independent, standard Brownian motions.
We express this in integral form (as usual taking Sy = 0), while letting «, =

my +m?0?/2, B, = mpu, and g, = m(m — 1)¢?/2,
t t t
Sm o= / (S + B S 4 €,50 %) ds + mo / S™AX, 4+ m( / Sy,
0 0 0

Recall that E (f(f GSdWS> = 0 when the process G € LL? and is progressively
measurable with respect to the filtration generated by W. Thus, by taking the
expectation and applying the Fubini-Tonelli theorem to change order of integra-
tion, )
E(S") = / (amE (S7) + BnE (S77") + enE (S77?)) ds.
0
Then, taking the derivative yields the differential equation

CB(ST) = anB (S7) 4 6B (S7) 4 5B (ST . (410
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Compare to the approach in Section Starting from m = 1, Equation (4.6))

leads to

%E (St) = O[lE (St) + /81.

We note that a; = 0 only in a few special cases better left for later, so we assume
a1 # 0. Then,
E (St> — & (ealt o 1)
Q

1
is the general solution. For m = 2 we have the equation

d
s (57) = a2E (S7) + BE (S) + &2
= E (SE) + % (ealt — 1) + &9.
1

This is also a linear first-order differential equation, which is easily solved e.g.
by taking the general solution to the homogeneous equation and then using the

method of variation of constants. When 0 # a3 # ay # 0 the general solution is

E (5152) = —61_6260421? —+ 2 (eazt _ 1) + ﬂ) (6a1t o 1) + 5162

Q10 &%) 041(041 — Qg 10

Note that for m = 1, 2 the moments have the form
E(S/") =) dpye™, (4.11)
j=0
where d,,; are constants. It turns out that there is a continuous analogue to
Proposition
Proposition 4.8. Let m € N. Provided that o; # «;j, for all 0 < i < j < m,

Equation (4.11)) holds, for some constants {d,;,0 < j < m}.

Proof. The assertion was shown above for the cases m = 1,2. We take an arbi-
trary m > 2 and assume it holds for m — 1 and m — 2, using induction to prove
it holds in general. Inserting Equation (4.11)) into Equation (4.10) gives

m—1 m—2
d m m o @
EE (St ) = OémE (St ) + Bm Z d(m—l)je it + Em Z d(m—Z)je it
j=0 j=0
m—2
= oamB (Stm) - Z(ﬁmd(m—l)j + gmd(m—Q)j>€ajt + 6md(m_1)(m_1)€am71t.
7=0
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This is a linear differential equation which can be solved by variation of constants.
First, notice that the general solution to the homogeneous equation

d

SE(S) = anB (S])

18
E(S") = Keomt,

Then a particular solution found by variation of constants is given by

t
/ g(s)em (=9 s,
0

where

[\

m—

= > (Brdim—1); + Emdim-2;)¢""" + Brndim-1)om-1)¢"" .
7=0

Computing the solution from this and adding the solution to the homogeneous

equation yields the general solution

Bm (m—1)j i+ 8md(m 2)j .
Sm _ amt ajt _ amt
d 3 ety ol o o
(4.12)
+ 6m (m—1)(m—1) (eam_pﬁ o eamt) ’
Op—1 — Qy
which is clearly an expression that can be rearranged into form (4.11]). O

It is also possible to find a recursive formula for the constants d,,,; from Equation
(4.12)). First consider that the initial condition Sy = 0 must hold, which leads to
K = 0. Thus,

_ Bmdm—-1)j + Emdm—2);
a; — Qpy

, 0<73<m—2,
m—1 (413)

J=0

Restriction to the case 57,5 =t

In the special case where ¢ = 0 (i.e. payments are constant) there is a general
formula for d,,;. Dufresne [13| has derived the formula with a clever argument
based on interpolation theory; here we give an alternative proof relying on the

Fundamental Theorem of Algebra.
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Lemma 4.9. Suppose a; # aj, whenever 0 <i < j < k holds. Then,

k—1 k—1
fle)=> (a; =) [ [(a; — @) 1+Hm—az

]:O =0

i#]

Multiplying both sides by Hi:ol (x—a;) gives a polynomial with extended domain
R

Y

P(x):f(»’ﬂf (r—a;)=1-

Then p has k roots, in the points ag, ..., ar_1, but the degree of p is k — 1. By
the Fundamental Theorem of Algebra, p(x) = 0, for all z € R. It then follows
directly that for x = aj such that ay # a; for all 1 < k,

ko k
0=
TS| O
i#]
which proves the result. O]

Proposition 4.10. When ( = 0 the constants in the recursive equations in

(4.13)) are given by

dnj = 1t m'H —a) (4.14)
Z#J

Proof. 1f ¢ = 0, Equations (4.13]) hold but with ¢ = 0. From earlier we know that
the assertion holds for m = 1 (recall that oy = 0). What remains is to employ
induction over m. From (4.13)), when 7 <m

-1

B e T _ 1T _

g = ="y = D [T (5 = 00) ™ = ! [Ty = )
=0
=

o —«
J m i=0
i#]

And for the last constant,

|_|

m—

d — _umm| ﬁ -1

=0 1=
T

S
N}
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:—Mmm!iﬁ( T m‘H =) 1—u m'H =) Y

:LL;éj z;ﬁm 'L;ﬁm
where Lemma (4.9)) has been used. O

Remark 4.11. The solutions are slightly different if o; = «,, for some j < m.

When computing the particular solution for (4.12)) there will be a point where

¢
/ elas—am)s g
0

Thus, the solution will have a last term of the form K - te®! where K is a

one computes the integral

constant. Due to the recursive structure successive higher moments will also
contain such a term.

Moments of a discounted cash flow

t bt ~
7, = / e~ X dyY,.
0

Define a new process (By):er, by

Recall that

t = 5 ~
B, — / e~ (X=X gy
0

g Xt_XSJ

Recalling that X has stationary increments, i.e. forallt > s > 0, X,_,

t _ 0 S t s~
B, < / e Xi-aqy, L _ / e XY, = / e dY,,
0 t 0

provided that X and Y are independent. In this case it follows that

one sees that

Z, L B, Vvt >0.

The moments of Z; can therefore be found from the process B, which has the
same structure as S. Essentially, B is a version of S where )?t gets mapped to

—)?t, or equivalently v, o get replaced by —~, —o. Thus the moments of Z; can

be computed from Equations (4 and (4.13) with only a,, = my + m?a?/2
replaced by a,, = —my +m 02/2

Dufresne [12]| also makes this argument, and lists the constants d,,;,0 < j <m

when possible.

51



CHAPTER 4. CONTINUOUS-TIME MODELS Jonas Lindblad

4.2.2 Exponential functionals of a stochastic process

In this section moment formulas for the exponential functional of an additive
process are derived using recent results due to Salminen and Vostrikova [29)].
Prior work such as [32] and [5] have derived moment formulas for exponential
functionals of subordinators or with an exponential stopping time. Lévy pro-
cesses satisfying their conditions is an important special case of Salminen and

Vostrikova’s work.
Let (X;):>0 be an additive process. Define
Lsy = /t e’X“du, 0<s<t<oo.
Assume
E (e’AXt) < oo forallt>0,A>0. (4.15)

Then @ given by
®(t,\) = —logE (e M)
is well-defined, for t > 0 and A\ > 0.

For 0 < s <t < oo and a > 0, define

t @
mg) =E(Z3) =E ((/ GX“CZU) ) ,om = m(()f?.

Theorem 4.12 (Salminen and Vostrikova [29]). Let 0 < s <t < co. Then, given
the assumption (4.15)), it holds for a > 1 that mg?? < o0 and

¢
mgi) = a/ mz(to,ét_l)e_@(“’a)_q)(u’a_l))du- (4.16)

Proof. When t > 0, Z,; is continuous and decreasing in s in the interval [0, ].
As such, for a > 1

Zs,t

S
Zey— 2oy = a/ v = a/ Zf};leu,t,
Zo,t 0

where the last integral is interpreted as a Riemann-Stieltjes integral for almost
all w, and the variable substitution formula for Riemann-Stieltjes integrals has
been used (valid since Z,; is continuous and monotonous in s, see Apostol |1}
Thm. 7.7]). Moving on, from the definition of Z it follows that

S
7% — 78 = —« / 7o e du.
0
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Now define .
—S
Zst ::/ e~ Kurs=Xs) gy,
0
Then,
t
Zsy = eXs st = eXs / e~ Xudu.
S
As such,

Z = 2oy = —« /S 237;16_“X“du. (4.17)
The independent increments property of OX implies that, for a > 0
E(Zs) =E(Z3) /B(e ). (4.18)
Now, let a € [1,2]. Taking the expectation in (4.17)),
E (2% - 25,) = —a / E (23;1> E (e*%) du > —oo, (4.19)
0

with finiteness holding due to, with 0 < p < 1, E (ij,t) < E(Z,,)", from

—)\Xu)

Jensen’s inequality, and the assumption that E (e < oo for every t >

0, A > 0. With these conditions, the monotone convergence theorem as s 7 ¢ can
be used on equation (4.19)), yielding

B () =a | B(Z) B () du
0
Now insert this back into to get
E(2%) =a / B (Zei') B (e du.
Now, since « € [1, 2] can be applied in order to get the desired formula,
mi?‘t) _ a/t mq(jétfl)e—(@(u,a)—@(u,a—l))du'

The formula also holds for a > 2 since (4.18]) holds for any « > 0. Finiteness is

preserved since the moments were finite when « € [1,2]. O
A generalized formula holds also for t = oo, although only for positive integer

moments. No more practical formulas that can be applied on perpetuities based

on an additive discounting process appear to be known currently.
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Theorem 4.13 (Salminen and Vostrikova [29]). For 0 < s <t < oo andn € N,

t t
S t1

t ) (4.20)
/ dtnexp{—Z(CI)(tk,n—k—i—l) —cb(tk,n—@)}-

k=1

The moment of the perpetuity, mﬁ"ﬁo, s finite if and only if the integral is con-

vergent.

Proof. First, let t < oo. Then,

t n
won([ )

—E (/ / = (X +- +Xt”)dt .. .dtn>

t
=nlE </ dt;e~xn / dtye Xtz .. / dtneX‘")
s tn—1
t t t
:n!/ dtl/ dtQ---/ dt, B (emXuttXm))
s t1 tn—1

Note the use of a symmetry argument above: for a continuous function such that

g(x1, .o T Tig, e xy) = g(T1, .., T, Ty . .., T,) for every 4 it holds that

b b b
/ / g(x1, ..., xp)dzy - n:n!/ dxl/ d[[’g"'/ dr,g(x1, ..., x,),
a T Tn—1

which is the claim used in the third step above.

Because X has independent increments,
E (e ") = E (e *XX)moXe) = (e XX B (e72%) .
As such,
E (e—a(Xt—Xs)) —E (e_aXt) /E (e—aXs) — o (B(ta)=®(s,0))

Next we notice that (with ¢y = 0)

n

X+ + Xy, = Z(n —k+ 1)(th - th—1)-

k=1
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Using the equations above, we get

t t t
nﬁ?_Tu/1ﬁ1/‘m2”./j de(g*Z%ﬂ”*+WX%‘“v0)
S tl tn—l

t t
s t1
t n

/ dtnexp{—z<@(tk,n—k+l)—(I)(tk—lan_k+1))}'

k=1

Finally, recognize from the definition of ® that ®(0,\) = ®(¢,0) = 0. Then,

S (@tn—k+1) = Ot n—k+1)) =Y (B(tg,n —k+1) = B(ty,n — k)).
k=1 k=1
Therefore,

t t
s t1
t

/ dtnexp{—i(@@k,n—k—i-l)—(I)(tk,n_k))}'

k=1
The formula is further proved for the ¢ = +o00 case by taking the limit, using the

monotone convergence theorem to justify tlim E (mg?) =E (mé"&) . O
—00 ’

Exponential functionals of a Lévy process

The above results are well applied to the case where X is a Lévy process. The

assumption (4.15)) is kept, but the Laplace exponent ¢ satisfies
E (e_AXt) =N for A > 0.

Theorem 4.14 (Salminen and Vostrikova [29]). Let X be a Lévy process satis-
fying (4.15). The moments of

t
Zt:/ e X dy
0

are given by the recursive formula
t
mga) = ozew(a)/ m (@D eud@) dy, (4.21)
0
fora>1.
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Proof. First, note that, with a > 1,

mu,t =€ t—u

This is because, keeping in mind the stationary of increments property,

t a—1
mq(ft V-E ((/ e_X“dv) >
t a—1
—FE (6—(04—1))(“ (/ 6—(Xv—Xu)dv> )
t—u a—1
— ¢l lR (/ e_(X“+“_X“)dv>
0
t—u a-1
= ¢ Wl UR ((/ e_X”dv> )
0

= e—u¢(a—1)m£‘i;1) ,

as it should be.
Applying Theorem with s = 0 yields

t
m® = o / m{® e uol@)-6a-D) gy,
0

Applying the prior equation here leads to

t t
m® = o / e 190 1) 1 (0= —u(@e) 00D gy — o [ @D gmub@) gy
0 0

Finally, a variable substitution of v =t — u directly yields

m ) — qe” /mo‘lw

which proves the theorem. O]

Next, we present an explicit formula for positive integer moments of Z;.

Theorem 4.15. Let X be a Lévy process satisfying [A.15). If ¢(i) # ¢(j),

whenever 0 <1 < j < n, then the positive integer moments of
¢
Zy :/ e Xudu, t>0
0

are given by the formula

?; ) — oK)’

MH

n € N. (4.22)
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Proof. The proof is carried out by induction. For n = 1, recalling that ¢(0) = 0,
compute the integral in (4.21)),

t —tg(1
mgl) = 6_t¢(1)/ "M dy = ze ™7 . ),
0 ¢(1)

which is consistent with (4.22]).

Next, assume that formula (4.22) holds for some n € N. We shall show that
this implies that it also holds for n + 1. Again, consider formula (4.21]) but with

a =n + 1. Then, using the induction assumption,

t
m§n+1) = (n+ 1)et¢(n+1)/ m&n)euqﬁ(nJrl)du
0

t |zl uglk) _ g—ud(n)
= (n+ 1)e—t¢(n+1)/ n! . cU(n+1) 1y,
: ?%H;gmw—¢@»
n-! et(@(n+1)=¢(k) 1y — (! puld(nt1)=6(n) gy,
(TL+ ¢(n+1) Z - . fO - _ (*)7
= [TEg(0(0) — o(k)

where we need to insert expressions for the integrals in the sum. For k£ < n,
et(@(n+1)—o(k)) _ 1
on+1) = o(k)

t
/ ) -6(k)) gy, —
0

Inserting this into (x) yields

e—th(R) _o—td(n+tl)  o—td(n)_o—td(n+1)

n—1 _
= (n+1)! ¢(n+1)*ﬁ(’€) . (n+1)—a(n)
2 N | TGRSy

n-l e~ to(k) _ o—tp(n+1)
— (n+ 1) _ A,
( +1);%IY”% 50 = (k)

where
A '" ! e—td(n) _ o—td(n+1)
2 (ol + 1) = 9{n) T (6(0) — o(R)
—td(n) _ g—té(n+1) 11 1
_ ‘6 (& ) '
D S = ot 2 T = o0h)

Now, applying Lemma [£.9| with a; = ¢(j) yields the equation
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so that
eftgb(n) J— 67t¢(n+1)

A=—(n+1)! .
" VTG o)

It follows that

ol —to(k) _ p—td(n+1) —tp(n) _ ,—tdp(n+1)
mﬁ”“) (n+1)! Z o —|—(n—|—1)!€n+1 .6
S I (600) — 6(h) [T (6(0) — o(k)
n 7t¢( ) — e—té(n+1)

=(n+1)! Z

P 0H"“( (i) — o(k))’

which proves the assertion for the n + 1 case. By induction, the formula holds
for all n € N. O]

The moments of Z,, also have an explicit formula in terms of the Lévy exponent.
Theorem 4.16 (Salminen and Vostrikova [29]). Let X be a Lévy process with
Laplace exponent ¢. Define N := min{n € N : ¢(n) < 0}. Then,

n T, ¢(k)~t,  ifn <N,
400, ifn > N.

E(Z") = (4.23)

Proof. We use the integral expressions in Theorem [4.13]

Zn —n‘/ dtl/ dtg

/t dtnexp{ tkz on—k+1 ¢(n—k))}

The innermost integral is evaluated for n > 1,

0 7tn7 ¢ 1
/ et =0) gy & " v
tn—1 ¢(]‘)

Thus, the next integral becomes

S —tn—19(1 —tn—20(2
/ 67tn71(¢(2)7¢(1))6 —1 ( )dtn—l — —e : ( )7
s ¢(1) $(1)9(2)
provided that N > 2. Proceeding by induction, take a £ € N, k£ < n, assume that

e tn—k®(k) Then the k + 1:th 1ntegra1

N > k and the k:th integral evaluates to POEOR

evaluates to

/oo e—tn_k(¢(k+1)—¢(k))L‘Mdtn_k _ o—tnk-10(k+1) |
tnfkfl ¢(1)"'¢(k’) ¢(1) .,.¢(k+ 1)
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it N >k+ 1. If N = k+ 1 the integral diverges to 400 either because, if
¢(k + 1) = 0 the integral becomes ftoo,k,l 1dt,,—y or because if ¢(k + 1) < 0 the

sign of the integral evaluates to positive.

The assertion then follows from the principle of induction, stopped at £k = n

where the outermost integral is evaluated to

n T, é(k)~t  ifn <N,
~+00, if n> N.

E(Z%) =
O

In some cases all the integer moments of Z,, exist. When this holds it may be
possible to find the distribution of Z., by computing its moment-generating func-
tion or identifying a distribution with identical integer moments. The following

proposition is an elementary consequence of the prior results of this section.

Proposition 4.17. Assume that N := min{n € N : ¢(n) < 0} = oco. Further
assume there exist § > 0 such that for all |s| <6, it holds that

2 S e < 2

k=0

Then the distribution of Z. is determined by its moments and Z, has a moment-

generating function, given by

o k

My (s) = Z o) (k) for |s| < 6.

k=0

Proof. Assume ¢ is such that ([£.24) holds. Then, using Theorem [£.16]

o & S SE(ZE)
;¢ ,; OO —;—k! = Mz, (s).

The moment-generating function of Z., is thus defined for |s| < 0. The fact that

the distribution is determined by its moments follows immediately from Theorem

2.2 O

The proposition also has a simple and useful corollary; a slight modification of a

result in [5].
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Corollary 4.18. Assume that ¢(n) > 0 for all n € N and that ¢(o0) :=
lim ¢(n) € Ry U {+oo}. Then the distribution of Z is determined by its mo-
n—oo

ments and Zy, has a moment-generating function My_(s) defined for |s| < ¢(o0).

Proof. By the ratio test for series convergence,

8n+1
.| 3W-smrD : $ E
lim | ——%———| = hm‘ ' = ,
n—00 o) —o(n) n—00 ¢(n + 1) Cb(oo)

which is smaller than 1 if and only if |s| < ¢(00). Then the series in Proposition
is convergent for such s, and the assertions follow. O]

Negative moments

We shall see that in certain cases the negative moments of the functional

ZOO:/ e X ds
0

can be easily calculated and in fact determine its distribution. Note that the
assumptions on X made here shall differ from those in the prior section. To this

end, let X be a Lévy process with a well-defined function ¢ determined by
E (eAXt) = ¥ < oo, forallt>0,\>0. (4.25)

If U is the characteristic exponent of X, then ¢(\) = —¥(—i)\) is an analytical
extension of the characteristic exponent (see [2] for details). We shall also assume
that X is such that Z,, < oo almost surely, i.e. by Proposition that lim X; =

t—o0
+o00. This entails that

m=E(X;) = ¢ (0+) € (0,00). (4.26)

Proposition 4.19 (Bertoin and Yor [2]). Assume conditions (4.25) and (4.26)
hold. Then, for all k € N and t € (0, +o0], we have E (Z[k) < 00. Furthermore,

E(Z}) = m‘p(l)('k; '_‘pgl;_ b (4.27)

If X has no positive jumps, then the distribution of Z. s determined by its

negative integer moments.
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Proof. Let a, A > 0. Then it follows from the Markov inequality that
E e>\X1
P(X; >a) =P (M >eM) < # = exp{p(A) — Aa}.
e a
Moreover, by the assumption that tlim X; = 400, there exists a > 0 sufficiently
—00

large that
P ( inf X, < —a) <1/2.

0<t<1
Thus, if we define 7, := inf{t € R, : X; > y},

P(sup XtZQa) :P(sup Xt22a,X1<a>+P(sup Xt22a,X12a>

0<t<1 0<t<1 0<t<1

SP(TQa<1,X1—X72a<—a)+P(sup tha,Xlza)

0<t<1

§P(sup Xt22a)-P<inf Xt<—a)+P(X12a)

0<t<1 0<i<1

AN
—

—P(sup XtZZa)—i-P(XlZa),

— 2 \o<t<a
where on the second line the Strong Markov Property was used. The resulting

inequality implies

P (sup X, > Qa) < 2P (X; > a) < 2exp{p(N) — Aa}.

0<t<1

This further implies that for all A > 0 and 0 < e < 1,

1
P(Z;<e) <P (/ exp{— sup X;}ds < 62>
0

0<t<1

=P ( sup X; > 210g(61))
0<t<1
< 2PN,

We note that P (Z;" > ¢ %) = P (Z; < €?) and see that for k € N,

E (Zl_k) = /0 P (Zl_k > x) dr = Qk/o y_%—lp (Zl—k' > y—2k:) dy

1
< Qk/ y2k126<p()\)y)\dy+2k/ y72k71dy’
0 1

and as we can choose A = 2k + 1, we get

1 1
/ y—Qk—12€go()\)y)\dy _ 2/ 690(2k+1)dy < 00,
0 0
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while clearly also
/ y—2k—1dy < 00
1

holds. As such,
E(Z{*) <o, VkeN.

If 0 <t < 1, an analogous argument based on the fact that

P ( sup X > Qa) <P ( sup X > Qa) < exp{e(\) — Aa},

0<s<t 0<s<1

leads to also E (Zt’k) being finite. On the other hand, for t > 1, Z, > Z; implies
finiteness. Thus, for all £ > 0,

E(Z*) <o, VkeN.

Note that this includes the case when t = 400, so the first part of the proposition

has been proven.

Now, we use the definition

oo
Z&OO:/ e e du.
S

As a function of s, Z, o, is monotonous and continuous, and so for r > 0 there is
the identity (cf. the proof of Theorem [4.12)

t
Zpoo = Lome = r/ e’XSZ;(Eg“)ds. (4.28)
0
We also note that the properties of the Lévy process implies that
Zsoo =€ %70,

where Z!_ < ~ 1s independent of X,. We insert this into (4.28)) and take the
expected value, yielding

t

E(22) (%0 — 1) =1 / OB (ZZ0+Y) ds.

oo o
0
From this the recursive relation

E (Z ) = 2 g (2) (4.29)

r o0
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is derived. Keep in mind that for any r € [0,1), Z. < Z}', and so the dom-

oo )

inated convergence theorem can be used since it has already been established
that E (Z_') < co. As such, letting r — 0+,

E(z2) = tim 27— (04) = m

r—0+ 7

Formula (4.27)) is then acquired through induction.

Finally, if X lacks positive jumps, the measure II is such that

— b ) = — e x
/R(1 ) (dz) /(0070) (1— ™) T1(da),

which implies that ¢(X) < aX + 02\%, for some a,0 € R. In other words,
(k) = O(k?) as k — oo. Then there exists a constant ¢ > 0 such that for any
keN,

E(Z2F) = mga(l)@; '_*”Y;!_ D <

Using this bound, take the series s from Theorem [2.2] and observe that

o0

3(%):§:E< (1/2c)* Zik

k=0

As such, by Theorem the distribution of Z_! is determined by its integer

moments. Consequently, Z., is determined by its negative integer moments. []

4.3 The distribution of a perpetuity

This section contains a large number of examples of distributions of the random
variable Z.,. The high point is a short proof for Theorem — the distribution
discovered by Dufresne [12] — while most subsequent examples are taken from
an article by Gjessing and Paulsen [15]. We complement their work by adding
some examples of our own and by providing alternative derivations for several of

their distributions.

The goal is to express the random value Z, either such that an explicit density is
known, or such that the value Z, can easily be simulated by taking samples from
other distributions. When these goals are achievable the value of the perpetuity

can easily be calculated.
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4.3.1 Dufresne’s perpetuity

A search for explicit distributions of discounted perpetuities essentially started
with Dufresne’s 1990 paper [12], and several examples have been found since. The
methods used for discovering new distributions vary; Dufresne originally used an
argument involving weak convergence from a discrete setting to continuous time,
others have used e.g. martingale theory or integro-differential equations. This

section is dedicated to presenting a large number of examples.

First, Dufresne’s main result is presented with the argument for part (b) due to
Bertoin and Yor |2].

Theorem 4.20 (Dufresne’s perpetuity). Let Z be defined by Z, = f(f e~Xsds,
where )N(t =~ t+ o0Xy, with 0 # 0 and X a standard Brownian motion. Then:

(a) If v <0 then Z,, = o0 a.s.
(b) If v > 0 then Z ' ~T'(2v/02,2/0?).
Proof. (a) Follows from the fact that X, does not drift to +-00 and Proposition
4.0l
(b) Check that
E (e’\Xf) = ME (e’\"Xf) = e’\'yt*t# = et<7’\+#) < oo Vt, A € R.

We define p(\) = yA+ LQ’\Q and use Proposition to compute negative integer

moments for Z.,. The negative integer moments are given by

B () -5 (1) 2t (7)1 (B )

@i ()

j=0

This is recognized as the k:th moment of a I'(2y/0?,2/0?)-distribution. Since
the negative moments determine the distribution according to Proposition [4.19

the assertion has been proven. O]

Alternative proofs of the above theorem have been found by showing that the
expression is equivalent to the random last exit time of a Bessel process by M.
Yor in 1992 [34], and by means of martingale theory by Milevsky in 1997 [24].

There are also several other proofs which we do not refer to.
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4.3.2 Other perpetuities without jumps

Dufresne’s result excludes some variants of his perpetuity, such as one with Brow-
nian payments instead of a constant continuous cash flow. In this section other
possible settings that involve Brownian interest or payments, but no jump pro-
cesses. Unless otherwise specified, X and Y are assumed to be standard Brownian

motions.

An especially simple method of finding the distribution of a perpetuity is by
deriving it from another a priori known perpetuity. The following lemma provides

one such method.

Lemma 4.21 (Gjessing and Paulsen [15]). Let Zo, = [J° e fdW;, with W a

standard Brownian motion and let R be a Lévy process with tlim Ry = +o0,
—00
independent of W, and further let A = fooo e 2l dt. Then
Zy L UVA,

where U ~ N(0,1), U L A.

Proof. Conditioning on R and using the [td isometry, we get
E (Z2|0(R)) = / e 2t = A
0

By the assumptions on R we have that A is finite a.s. As such, Z,, ~ N(0, A),
and s0 Zo/v/A ~ N(0,1). The random variable U = Z,,/v/A is therefore inde-
pendent of R and so U L A. n

Proposition 4.22 (Gjessing and Paulsen [15]). Let X, = 7t + 0.X,, with v > 0

and o0 # 0. Then
<% 1
e Xy, £ ——T,
/0 Vv
where T ~ T (2v/0?).

Proof. Consider that Dufresne’s perpetuity (Theorem [4.20) has the distribution

ok g a1 v 1
L = aer (L)
/0 ‘ G’ (02’202)
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By using Lemma [4.21],

° U
e Xay, L —— U~ N(0,1),U_LG.
/0 Ve

1 v 1 2y
—G~T[L. )=y
02 (02’2> X ((72)’

U, /% ~T(v),
if V ~ x?(v). Then,

u U/Vo? d U/Vo? U a? 2v/0? a4 1 "
VG \/G/02 \/XQ(QV/JQ) Vo? 2y X2(2v/0?) 2y
Proposition 4.23 (Gjessing and Paulsen [15]). Let v > 0 and let Y, = pt +CY,.

Then,
[e’) - 2
/ e 1dY, ~ N (ﬁ, C—) .
0 v 2y

Proof. This simple proof is omitted. O

Recall that

and that

]

Proposition 4.24 (Gjessing and Paulsen [15]). Let X, = yt40X,,Y; = pt+CY;,
with v > 0,0 # 0, # 0. Then
/ e_X’/di}t
0

is finite a.s. according to Proposition [{.} It is a Pearson type IV distribution
with density given by

K 2
1) = Gy 0 (g o ()

where K 1s a normalizing constant.

Proof. Proved in [27] for v > 0% and in [26] when v > 0. O

We have already exhausted every possibility without jump processes in XorY.

Let us therefore turn to the case with jump processes.
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4.3.3 Application of discrete perpetuities

Below, Nx, Ny shall denote independent Poisson processes, both also indepen-
dent of X and Y, with respective intensity parameters Ay and \y. Unless oth-
erwise specified, the jump sizes shall be i.i.d. copies of Sy ~ Fxp(a) and
Sy ~ Exp(p).

First, original proofs for a few simple cases omitted from [15] shall be presented.
The idea is to identify the continuous-time perpetuity with the Vervaat-class

perpetuities of the discrete-time section.

Proposition 4.25. Let v > 0 and Y, = Zfiyl(t) Sy (i). Then,

/ e “’tdthF(AY ﬁ).
0 Y

0 —

where (7;) e is the sequence of i.i.d. sojourn times, each 7; ~ Exp(Ay). We note
that y7; ~ Exp(Ay /7). The proposition is now identified with Example O

Proof. We have

—~T
(& 7

J=1

Proposition 4.26. Let v > 0 and Y, = Zi]\fl(t) Sy (i), with jump sizes Sy ~

Laplace(0, B). Then,
0o P )\Y
ey, ~ VG (0,802 ).
0 2y

Proof. Analogous to the above case, relying instead on Example [3.13 O]

Recall that the variance-gamma (VG) distribution was defined in Chapter |3 as
a part of Example [3.13]

Proposition 4.27. Let v > 0 and Y; = put + (Y, + Zi]\iyl(t) Sy (7). Then,
/ e Y, £ N + G,
0
where N ~ N(p/7v,(?/27) and G ~ T'(\y /7, ) are independent.

Proof. Directly from Propositions and m
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Moreover, if Sy ~ Laplace(0, #) in the above, then from Proposition we get
that .
/ e dY, £ N + V,
0
where V ~ VG (O, 3,0, 3—‘“) is independent of N.
Y

The next distribution is one due to Gjessing and Paulsen which we shall derive,
once again, by identifying it with a discrete perpetuity. The method used by

Gjessing and Paulsen is different.

Proposition 4.28 (Gjessing and Paulsen [15]). Let X, = Zij\g(t) Sx (i), with
X, =0 if Nx(t) = 0. Then,

/ e Xdt ~ T(1 + a, Ay).
0

Proof. Observe that

00 _ T1 o P k
/ eXtdt:/ dt+Z/ exp —ZSX(j) dt
0 0 k=1 7Tk j=1

where Ty, k = 1,2, ... is the sequence of jump times for Nx. Then, if we denote

by 7 the k:th sojourn time of Ny, it follows that

00 B 9] k
/ 6_Xtdt:To+ZTkH€_SX(])
0 k=1  j=1

in which the sum can be identified with the perpetuity in Example |3.12] since
the sojourn times (75)7°, is an i.i.d. sequence of Exp(Ax)-distributed variables.
Thus,

g

k
He )~ D, Ax).

J=1

=1
Recalling that 75 ~ Exp(/\x) ['(1, Ax), we get the conclusion
/ e Xt ~ [(1+ a, \y).
0

]

The distribution given in Proposition relies on a preliminary result. It is
due to Gjessing and Paulsen, but the presented method of proof is once again

different from theirs.
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Lemma 4.29. Let 7 ~ Exp(\), p,0 > 0 and W be a standard Brownian motion.
Assume 7 L W. Further, let

k—p
o2’

llz

and k = \/pu? + 2 a2, Then,

pr+ oW, £ XF —(1- X)U,

where F' ~ Exp(ly), U ~ Exp(ly) and X ~ Ber(ls/(l1 + 13)) and X, F,U are

independent.

Proof. Let C = XF — (1 — X)U. It is easy to compute the moment-generating

function of C,

lllg k?2 — /LZ

- Ly + (I —ly)s — 82 k2 — p? — 2us0? — 5204

Mc(S)

2 — +2X02 — 112 A < min(lu8)
- - , s <min(ly,ly).
P2+ 2X0? — p? —2uso? — 20t N — s — 02252 1562

We carry out the proof by computing the moment-generating function of pur +

oW, as well.

E (es(,uTJrUWT)) — /OO )\efAtE (es(,utJrJWt)) dt
0

:/ Nl Ay ; s < A .
0 A= s — 5=

The two moment-generating functions are equal in a neighbourhood of zero, and

so the variables are equal in distribution. O

Proposition 4.30 (Gjessing and Paulsen [15]). Let X, = Zij\g(t) Sx (i) and
Y, = ut + CY,, with ¢ # 0. Then,

Zoo = / e*Xtdi i G1 - GQ,
0

where G1 ~ I'(a,l;) and Go ~ T'(b,ls) are independent and

o ap a ap
I T T I
a=1tgtor Ty T
k—p k+p
llz <-2 ) l2: CQ b

and k = /pu? + 2vx (2.
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Proof. Observe that

Zy = / e Xy, = Z(;ﬁk +(Y7,) He*SX(J’),
0 k=0 j=1

where the sequence (7;)22, are the i.i.d. Fap(Ax)-distributed sojourn times of
Nx. We write V; = e~5x0) and Cj = putj + (Yy, for j = 0,1,2,.... Then note
that Z,, must satisfy

Zow =V Z+C, whereV, C, Z, all independent.

The proposition is now clearly a consequence of Lemma and Corollary [3.15]
O

Remark 4.31 (Gjessing and Paulsen [15]). Proposition with g = 0 gives
a different distribution than Lemma for fooo e~ XtdY,. In fact, by applying

both one arrives at the stochastic identity
Gy — Gy L UVG,

where G; L Go, G1,Gy ~T(1 + a,b), and G ~ T'(1 + a,b*/2).

4.3.4 Identifying the distribution by its moments

Recall the method of proof used by Bertoin and Yor to prove Theorem In
this section we prove some further results using similar arguments. The first two

examples are due to Gjessing and Paulsen, but their method of proof differs.

Proposition 4.32 (Gjessing and Paulsen [15|). Let X, = 7t + Zij\g(t) Sx (i),
with v > 0. Then,

© 1
Ty = / e Xdt L 2B,
0 Y

where
B ~ 6(1 + Q,Ax/’}/).

Proof. In this case

N

E (6—9Xt> _ o OR (e_ezk:xl(t) SX(k)> — o0y x5 D)
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0
:exp{—t (79+)\Xa+0)}.

As such, the Laplace exponent of X is

$(0) = 0 (1+ﬁ) .

It is easy to see that ¢(n) > 0 for all n € N. Moreover, ¢(co) = +o0, so by
Corollary the distribution of the perpetuity is determined by its positive
integer moments. That being the case, we use Formula [£.23] and see that

Bz i (A2

n—1

a+1+Ek
5 )
poat T+ 4k

—-n

=7

The product is identified as the moments of a f(a+ 1, Ax /7)-distribution, which
settles the proof. O

The following is a simple consequence of the above.

Proposition 4.33 (Gjessing and Paulsen [15|). Let X, = 7t + Zi]i)i(t) Sx (i),

with v > 0. Then,
<5 B
/ e Xy, LU, [ =,
0 2y

where
Proof. From Proposition with a direct application of Lemma [4.21] m

The next two distributions are new. The idea is to take a similar case to Propo-
sition [4.32] but with negative jumps. Consequently a lower bound for the drift
factor is needed for the discounted perpetuity to be finite.

Proposition 4.34. Let X, = vt — Zij\g(t) Sx (), with v > Ax/a. Then,

RO 1
Lo = / e Xt L —,
0 vB

where

B~ Bla—Ax/7,Ax /7).
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Proof. The distribution will be identified by its negative integer moments. To
this end, we verify that conditions (£.25) and (%.26) hold for X. Observe that for
6 >0,

~ N . «
E (€9Xt> — MR (e*(’Zj:Xl“) gx(j)) — It rxt(G5-1) — Ort-Axtily

Thus, we have E <€0Xt) = ¢ where ¢ is given by

and E <€9Xt) = e® < o0 (conditions (4.25)) does indeed hold. Moreover, we

have \ \
/ o . X X
20 = a+9+(0z+9)20

As 010, we get () — v — Ax/a > 0. Thus, condition (4.26]) holds and

= QOI(O+) =7 — Ax/Oz.

We have now checked that the conditions in Proposition [£.19] are hold. Thus,
Z+ has negative moments of all orders and since X lacks positive jumps, the
distribution of Z,, is determined by the negative integer moments. By formula
(14.27)),

k—1 A
—k\ __ . )\_X Hm:lm(,y_oﬁ_xm)
B = (-7 =Ty
k—1 AX
B B Ax k +m
_m0<7 a+m) H a+m

which is identified as the k:th moment of the random variable vB, where

B~ Bla—Ax/v,Ax /7).

It follows that Z_! 4 ~vB, which proves the assertion. O

Again, the next example is a direct consequence of the prior one.

Proposition 4.35. Let X, = vt — Zij\g(t) Sx (i), with v > Ax/a. Then,

S U
7. = / e Xedy, £
0

278’
where o
o AX AX
~ N(0,1), B~ 1 B.
R -
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Proof. From Proposition and Lemma [4.21 O

We have now provided alternative derivations for a large number of examples,
vet the list in [15] is not yet exhausted. Subsequent distributions are not easily
found by reliance on prior methods, but we include them in order to give the

reader an idea of the scope of the current knowledge in the research literature.

4.3.5 The Gjessing-Paulsen method

In this section, let X,Y be independent Brownian motions as before, and let X
and Y be given by
Nx(t)

Xi=at+oX,+ Y Sx(k),
k=1

_ Ny (t)
Y =pt+CY,— Y Sy(k),
k=1

where Ny, Ny are independent Poisson processes, both also independent of X
and Y. The sequences Sx(k),Sy(k),k = 1,2,..., are i.i.d. random jump vari-
ables. We shall also make use of the Laplace exponent of X , defined as the
function H; in E (e"‘Xt> = e_tHL(“), for k > 0. We change notation here be-
cause we will consistently use its expression given below:

2,2

2

Hp(k) =Kk — + Ax (1 —mp(K)), (4.30)

where my (k) = E (e7*%) . We also need the characteristic exponent of Y at
time ¢ = 1, that is no(u) = log [E (e“‘i/l)} . Thus,

2u2

2

ne(u) = pui — — Ax(1 = pc(—u)), (4.31)
where po(u) = E (e™5).

Finally, with
Zoo :/ e_Xtd?;fa
0

we will denote the characteristic function of Z., by V¢, thatis Ve (u) = E (e“‘ZM) ,
and its Laplace transform by ¥y, so that ¥ (u) = E (e_“Z‘X’) . The method of
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Gjessing and Paulsen consists of deriving differential equations satisfied by W,
or ¥, and finding solutions to them. Their differential equations are given in

the following two lemmas.

Lemma 4.36 (Gjessing and Paulsen [15]). Let Z., and ¥¢ be as above and

let Hy, and nc be as in (4.30) and (4.31). Suppose that Hp(2) > 0 holds and
E (|Sy|?) < cco. Then,

(a) V¢ is twice continuously differentiable and satisfies the differential equation

%O'QUQ\I/g«(U) — ('y - %(72) uWe (u)
+ nc(u)\lfc(u) + )\X /_+OO(‘110(U63> — \Ifc(u))dFSX (S) = 0, (432)

with boundary conditions

Ve(0) =1, |To()| <1, VueR

(b) Suppose further that E(|Sy|?) < oo and that Sx ~ Exp(a). Then, if also
Hp(3) > 0 is confirmed, V¢ is three times continuously differentiable and satisfies

the differential equation

1 1
Lo22g ) + (§<& £ 3)0? v) W ()

2
# (e = (0+) (3= 50%) + 0 ) ) et

+ (oanT(u) — Cu— Ay pp(—u) + iu) Ve (u) = 0. (4.33)

Proof. The proof is based on the theory of integro-differential equations, which is
why the reader is instead referred to the source. See [15], but note that a partial

result is proved in [27]. O

There is a second equation in the case when Y is non-decreasing in ¢, i.e. it is

given by
Ny (t)

Yi=pt+ Y Sy(k), (4.34)

k=1
where Sy > 0 almost surely. In this case the equation also holds given slightly

weaker conditions on Sy.
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In this case, we use the Laplace transform of Z,, defined as Uy (u) = E (e‘“Z“’) ,

for u > 0. We also use the Laplace exponent of Y at time 1, i.e. np(u) =
—logE (e*“%) . Using expression (4.34)), this gives

() = pu+ Ay (1 = pr(u)), (4.35)

where pr(u) = E (e*“SY) . We give the Gjessing-Paulsen differential equation for

U in the lemma below.

Lemma 4.37 (Gjessing and Paulsen [15]). Let Y be as in (£.34). Suppose the
conditions

E ()?1) >0, E(|Sy]) <00, E(S%) <o
hold. Then,

(a) Uy is twice continuously differentiable on (0,00) and satisfies the differential

equation
%O'QUQ\I/,L/(U) - <7 — %a2> uW; (u)
—np () (u) + )\X/_ oo(\IJL(ue’s) — VU (u))dFs,(s) =0, (4.36)

with boundary conditions

U— 00

(b) If also Sx ~ Exp(a), then Y, is three times continuously differentiable and

satisfies the differential equation

oW () + (%(a L 3)0? - y) W (1)
- (mtwr+ (@+0) (3= 507) +2x) ) Wi
_ (a”ii“) — Ay gl (u) + u) Up(u) = 0. (4.37)
Proof. Like Lemma [I.36} see [T3]. O

Finding valid solutions to the differential equations of Lemmas [4.36] and [4.37],

with various assumptions on the parameters, directly leads to a characteristic

function (or Laplace transform) of Z.,. The following example is included in [15]

but only proved in [25].
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Proposition 4.38 (Nilsen and Paulsen [25]). Let X, = vt + 0X,, and Y, =
SO Sy (i), Then
00 %= d G
qy, L2
o

where G ~ T'(b, B) and B ~ B(a,1+b) are independent and

2 1
a=21 bz;(\/72+2)\y02—7).

)
0-2

Proof. In this case Equation (4.36)) is applicable. Since 1—pp(u) = F4u» We have

Avu

nr(u) = 35 and the equation has the form

1 1 )\y’U,
50wV (u) = (v = 50°) Wy () - I SU(w) =0.
Some manipulation and a variable transform of v = —u/3, with f(v) = U (u),

gives the equation the form

o(1 = v)f"(v) + (1 s B (1 - i—Z)) Fv) + Qz‘;ﬁf@) 0,

g

with boundary conditions of f(0) = 1 and lim f(v) = 0. This is a hypergeomet-
Vv—>—00

ric differential equation, for which a general solution is known. The derivations

are somewhat technical, but one arrives at the solution (transformed back into

terms of u, ¥p)

K/ N1 — )" (By + u) "dy,

where K is an arbitrary constant. See [25] for the details.

Furthermore, (8y+u)~" is the Laplace transform of a I'(By, b)-distributed random

variable, which is why
> 1
(By + u)fb = /0 _I(b) e Pyzemuz g,

By applying this and changing the order of integration, one gets

[e'e) 1
U (u) = / K {/ y“+b_1(1 — y)be_ﬂyzdy 2Ptevr
0 0

in which the density fz_ can be identified because of the uniqueness of the

Laplace transform. We get
1
ono<Z) — bi—l/ ya+b_1(1 . y)be—/jyzdy'
0
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To see that this is the desired density, calculate the density f7, where Z = G/B.
By the law of total probability,

fz(z) = /0 yfa(yz)fe(y)dy = 1{‘((3);([;: 11)) Fﬁ(b) Zb—1/0 L1 = )by,

This is indeed the correct form, and allows identification of the constant K. [J

The prior proof involved some technical details that were omitted for the sake of
brevity. Finding the next distribution similarly involves solving a hypergeometric

differential equation, and similarly we omit the details.

Proposition 4.39 (Gjessing and Paulsen [15|). Let X, = 7t + ENX(t)S (1),

with —Ax /o <y < 0. Then
<% 1
/ €7Xtdt i ——BQ,
0 v

A
By ~ s (14—%—% (’Y+—X)>-
0l «

Proof. In this case nz(u) = u and o = 0, so (4.37)) becomes

where

yu] (u) + (u+ (14 o)y + Ax)¥ (u) + (1 + )P (u) = 0.

With slight manipulation and a variable transform of v = —u/y and g(v) =

Uy (u), this changes into the confluent hypergeometric differential equation

vg"(0) + (1 + a+ %X —0)g'(w) — (1 + a)g(v) = 0.

This differential equation has a solution satisfying the boundary conditions (yet
see [15] for further details)

K/ “(1+ y ey,

where K is a constant. Now it is a simple matter to transform back, yielding

oo N N
= / Ky*(1+ y)TX_le?ydy =E (e_“(_%BQ)) ,
0

if
K — (1= Ax/v)
[+ a)l'(=5(v + Ax/a))
The uniqueness of the Laplace transform guarantees the result. O]

77



CHAPTER 4. CONTINUOUS-TIME MODELS Jonas Lindblad

Proposition 4.40 (Gjessing and Paulsen [15|). Let X, = 7t + Zj\g“) Sx (i),

with —Ax /o <y < 0. Then,
< 5 1
/ e XqY, LU\ |- =By,
0 2y

a A
U~N(@0,1) and By~ B (1+§,%)

where

are independent.
Proof. Application of Lemma to Proposition [4.39] m

The final two are mixture distributions between ['-variables.

Proposition 4.41 (Gjessing and Paulsen [15]). Let X, = Zij\g(t) Sx (i) and
Y: = M Sy (t). Then,

/°° eXedY; ~ (1= K)D((1 + K)o + 1, kB) + KD((1 — K)a, kB),

i.e. a mizture distribution between two gamma-variables, with proportion k =

Ax
Ax+Ay”

Proof. We have v = pp =0 = ( = 0 and nz(u) = Ayu/(8 + u). With this, all of
the higher order terms are zero and (4.37) becomes

Ay u ; Ay Ay 8 _

Rearranging,

af+ B+ au
(8 +u) (kB +u)

v _ M(ovsh) ~(1—k)

Tew) (A +Ax) (u NR 5% 5)

Ax+Ay

Integrating, one arrives at

af + 0+ as
B+ s)(kB+ s)

By means of partial fraction decomposition, this gets simplified into

ds.

log Wy (u) = —(1— &) /0”(

o v af+B+as af + B+ as
log ¥y (u) =—(1 k)/o [_(1_k)5(5+3)+(1—l<:)ﬁ(k?5+3)
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— log (5;“) 4 (14 (1—k)a)log (kﬁkfu)

Thus, (
B /8 +u k’ﬁ 14+a(1-k)
Vel = ( B ) (kﬁ+u>
kﬁ 1+(1-k)a u kﬁ k’@ (1-k)a
(kﬁ ) *B(kmu) <k6+U) |
and since =1- we get

kﬁ—‘ru k:,B—i—u’

k 1+(1-k)a k (1-k)a
@L(u):(l—k)(kﬁiu) +k<wiu) .

Noting that a T'((1+ k)a + 1, k3)-distributed variable has the Laplace transform

k‘ﬁ 1+(1-k)a
>
(w n u) uz0

completes the proof. O

Proposition 4 42 (Gjessing and Paulsen [15]). Let X, = Zi]g(t) Sx (i) and
Y, = ut — Z ") Sy (t), with ju # 0. Then,

| eFanite-c.

0

where G1 ~ T'(a,ly) and Gy has the mizture distribution
Gy~ (1 =k)L(b, 1) + kL'(b — 1,15),

with

1 1 1
azéa(1+c)+1, bzaa(l—c)qu, llzﬂ(R—f—)\X—f—/\y—Mﬁ),

lQ Q,M(R )\X—)\y+uay) /{Z:lg/ﬂ, C:()\X—F/Lﬁ—)\y)/R

and

R=+/(Ax + Ay — uB)2 + 4urx .

Proof. With v =0 =( =0 and nc(u) = ipu — Z\JFYZZ, (4.33) takes the form

. ' / : ady BAv _
(mu— Bt )\X) Ve (u) +i ((1 +a)u— Brin (ﬁ+2u)2) Ue(u) =0.
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Similarly to the proof of Proposition 4.41] a solution involving partial fraction

decomposition can be found. We omit the details, but one gets

b\l \'pBtiu
)\ =
o(u) (l1 —iu) (l2+iu> up

which similarly to the proof of Proposition [£.41] can be rewritten as

Ue(u) = (11 l_lw)a [(1—k) (bfiu)b+k (ngiuyl] '

This is easily identified as the desired characteristic function of G; — Gs. O
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Chapter 5

Applications

In this chapter we briefly overview some applications of the concepts contained
within this thesis. We do not discuss applications that have already been treated
in the prior chapters (e.g. applications to stochastic equations or the application
of discrete perpetuities to finding the distribution of a continuous-time discounted
perpetuity); instead, this final chapter is included for the sake of discussion and
review. Most proofs are omitted and we shall often refer the reader to other

papers for arguments and examples.

5.1 Stock valuation

In this section I propose a new dividend discount model (DDM) for the price
of a dividend-paying stock. The model, which can essentially be described as
a stochastic DDM with a known probability distribution for the price of the
stock, is based on Example and the work on DDMs [18] due to Gordon and
Shapiro. We shall also see that the model can be used to statistically estimate

the cost of equity of a company.

Whereas DDM approaches to stock valuation are less popular than the capital
asset pricing model (CAPM), the discovery of a stochastic DDM with a known
density function for the stock price is interesting from an academic point of view.
Nearly all of the drawbacks of the DDM still apply to this stochastic DDM; the

only improvement is allowing the parameters of the model to be stochastic.
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5.1.1 Introduction to dividend discount models

This section explains the preliminary financial concepts necessary to understand
the proposed DDM. As such, this exposition relies heavily on the papers of
Gordon and Shapiro |18, [17].

Generally, when a firm requires capital it can do two things: 1) take on debt in
form of bonds or loans, or 2) sell shares of its equity. The cost of capital is rate
of return required for the investors or lenders in order to provide capital to the
firm (cf. risk-free interest rates). This return is provided in the form of interest
in the case of lending, while investors expect dividends or a growth in value of
the assets of the firm. The cost of capital when issuing shares is called the cost
of equity capital. While the cost depends on the market, it cannot be directly
observed and instead has to be estimated e.g. by using the CAPM equations.

Dividend discount models are based on the assumption that the price of the stock
is equal to the present value of all future dividend payments, discounted by the
cost of equity capital. Since dividends are typically paid out monthly or yearly,

a DDM always has a discrete-time setting.

The simplest DDM is the case where the cost of equity capital, r, and the dividend
growth rate, g, are both constant. This model, also known as the Gordon growth
model, was introduced by Gordon in his 1959 paper [17]. In this case the dividend
at time k is Dy = Dy(1 + g)*, where Dy is the dividend payment of the current
time period. Tt then follows that the price P of the stock is given by

p= }: +9" (5.1)

1+7“

where r, g > —1. Provided that g < r, a formula for the price can be calculated
with the power series formula, yielding
Dy(1+g)
r—g
Formula (5.2) can be used to put a price on a dividend-paying stock, but also

pP= (5.2)

has a second use. If one assumes that the known market price is P, the cost of
capital r can be solved for, yielding an estimate
Do(1+
r:g+—ﬂfiﬁ. (5.3)

Formula (5.3)) is in particular useful since the cost of capital is unobservable.
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5.1.2 Stochastic DDMs

Let G1,Ga, ..., be ii.d. random positive growth factors for the dividend pay-
ments and Ry, Ry, ..., be i.i.d. random positive growth factors for the cost of
equity capital. We assume that the processes (Gi)ren and (Ry)ren are indepen-
dent. Formula now takes the form

° GGy -Gy
P = Dy———~ 5.4
; "RiRy- - Ry (5:4)
which can be rewritten as
P=> DyViVy--- Vi, (5.5)
k=1

where ‘/j = Gj/Rj,j = ]_,27 e
It is easy to see that Equation (5.5) corresponds to a perpetuity with constant
cost Dy and i.i.d. discount factors Vi, V5, .... One needs only check that

= E (log 1)

exists and that g < 0, in order to see by Theorem [3.2] that the series (5.5)

converges a.s.

The next proposition presents the new model, which is based on an example from
Chapter [3]

Proposition 5.1. Let G; ~ T'(g,1) and R; ~ T'(r,1),i =1,2,..., wherer > g >
0, be independent i.i.d. random variables. Further, let V; := G;/R;,i = 1,2,....
Then,

P=> ViVh-- Vi ~ Ba(g,r — g).
k=1

Proof. Since for each i = 1,2,..., G; L R;, it holds that V; ~ (5(g,r) for all
t € N. Then Example [3.16] yields the result. O]

The model of Proposition is unlikely to have any practical significance. The
random variable P can be used to calculate the expected gain from holding a
dividend-paying stock, but the assumptions of identical and independent gamma-

distributed growth factors are very unrealistic. A trader willing to use such an
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approximation would, most likely, also be willing to use the simpler, deterministic
model and Formula (5.2).

Furthermore, the assumptions on the cost of equity capital can not be justified
by statistical methods, as the random variables Ry, Rs, ... are unobservable. A
potential work-around would be to calculate the CAPM estimate of the costs of
capital and treat the estimate for month k£ as an observation of the random vari-

able Ry, although that would introduce even larger uncertainty into the model.

5.1.3 Estimating the cost of equity capital

A potential use for the model of Proposition would be for using statistical
inference to calculate an estimator of r, yielding a probability distribution for

the monthly cost of equity capital, Ry, k =1,2,....

If one decides on using data from N months back, then monthly dividend pay-
ments dy,ds,...,dy can be used as data and an estimator g can be calculated.
If the monthly growth factors are assumed to be i.i.d. and independent, the
monthly prices pi1, po, ..., pn can also be treated as a sample from P. This allows

one to compute a statistical estimator for r.

This method is crude and relies on strong assumptions. For this reason it remains
unclear whether or not it yields better results than the Gordon growth model,
although having a probabilistic model of the cost of equity capital is highly
desirable for companies looking to sell shares. This is certainly the case for
companies that only wish to sell shares if the cost of equity capital is below some

threshold with a certain probability.

5.2 Approximating discrete-time models

In some special cases continuous-time models can provide for especially simple
analytic derivations, while in other cases a discrete-time formulation can be more
advantageous for analytic or numerical solutions. For this reason it can be useful
for many applications, including finance, biology, etc., to be able to pick a suitable

continuous approximation for a model with discrete time (or vice versa). A
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significant fraction of D. Dufresne’s work [13, [12] is devoted to this kind of
approximation. In this section, we review Dufresne’s approximation procedure

applied to cash flows.

5.2.1 Dufresne’s procedure

The idea is to approximate a discrete cash flow with a continuous one without
changing model statistics such as expected values and variances. The classical
example in finance is how continuously compounded interest is introduced as
a partitioning of discretely compounded interest into successively smaller time-
intervals, where the continuous interest function converges to an exponential

function.

Here, (S;)icr and (Z;)icr shall denote a continuous cash flow and its discounted
value process, respectively, while S,,(¢) and Z,(t) denote discrete-time counter-
parts where a unit of time has been partitioned n times. The goal is to construct
these processes such that the discrete-time processes converge to their continuous
counterparts as n — oo. Dufresne [12| presents the construction in the following

way.

For each n € N, define

[nt]—1
Sn(t) = Z Cn,jUn,j—i—l e Un,[nt} (56)
j=0
1]
Zn(t> = Z Cn,jvn,l te Vn,j (57)
j=1
where V,, ; = U, Jl and the following conditions are assumed for the random

variables C,, ;, Uy, ; :

a) For each n, (C,;);>0 and (U, ;);>1 are mutually independent iid. se-

quences.
b) Co1 = n~'E(Cy1) +n2(Cy1 — E(Cy1)), and Var (Cy1) < oo.
¢) The factors U, ; have

P (U;1 >0)=1,Var (U;;) < oo, Var (logU; 1) < o0,
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and their distribution is given by either

1) Un,l i 1 —|— n_lE (U171 — 1) + n_l/Z(ULl — E (U171)), or
i) log(Un1) < n~'E (log(Ur.1)) + n~2(log(Uy1) — E (log(Uy1))).

In the process (5.6)), the payments C,, ; are assumed to arrive in the beginning of
time period [%, ]%1), while in (5.7)) they arrive at the end of the period. These
processes are constructed such that with n = 1 they are equal to the processes
discussed in chapter [3] and for higher values of n they represent successive refine-

ments of the processes.

The assumptions are made to assure that the successive partitioning of the time
periods does not impact the fit of the model. Note in particular that the expected
value and variance of the payments during one unit of time remain the same.

This can be seen by observing that

Ciq)

E(Cn’l) _ E(n o Var (Cl,l)

s Var (le) =,

n

and so, due to independence,

E (Z ij) =E (Cl,l) s Var <Z ij) = Var (0171> .
j=1 j=1

One might say that they undergo a mean- and variance-preserving transforma-
tion. For the growth factors U, ; the same is done either such that the rates of
return R, ; = U, ; — 1 or the geometric rates of return log(U, ;) have their first

two moments preserved in a unit of time.

Next we present Dufresne’s example. Keep in mind that Dufresne’s work relies

on the concept of weak convergence, which has not been treated in this thesis.

Proposition 5.2 (Dufresne [12|). Let X and Y be independent standard Brow-

nian motions and let _
Xy =t + oXy,

Y, = pt + (Y,
where p =E (C11),¢* = Var (C11), and either

(5.8)

i) y=E (U, —1)—35Var(U,), o* = Var (Uy,), or
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i) v=E (logU, 1), 0? = Var (logUi,).

Then the sequence of processes (Sy)n>1 converges weakly to a process S satisfying
t S S ~
S, = / eXt=Xaqy;, (5.9)
0

Proposition 5.3 (Dufresne [12]). With the same notation and conditions, the

processes (Z,)n>1 converge weakly to a process Z satisfying
t = ~
7, = / e~ X=dy,. (5.10)
0
Proof of propositions. See the appendix to [12]. ]

Propositions in fact show that discrete cash flows with i.i.d. growth (or
discounting) factors and i.i.d. payments can be approximated by continuous cash
flows (or vice versa). Recall from Proposition [4.1]that the process (S¢)ier of
is a diffusion, satisfying the SDE

S, = (aS; + p)dt + 0SdX; + CdY;,

where o = v + 02 /2. Hence we have a method for approximating a discrete cash

flow with a diffusion.

5.2.2 Some examples

Example 5.4 (Moments of an annuity). Suppose an annuity pays a fixed amount
¢ > 0 for t € N time periods. Let Vi, V5, ..., V; be i.i.d. discounting factors for
the respective time periods and assume E (V) < 1. The present value of the

annuity is then
t ok
A =Y e[V
k=1 j=1

The moments of this present value can obviously be calculated by using the
formulas of chapter [3| By formula (3.12)) the m:th moment has the form

o= (a7
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where V is an independent copy of the variables Vi, V5, ..., V; and the constants
dmj have to be recursively calculated by formulas (3.13]).

Another possibility is to approximate the annuity with a continuous stream of
cash. If the time periods are sufficiently short, by using Proposition the

present value is well approximated by the random variable
3 -
Z(t) = c/ e Xeds,
0
where )Afs =vs+ 0X, and X is a standard Brownian motion, and
1
y=-1+E(\') - éVar (Vih), o®=Var (V). (5.11)

Knowing that X is a Brownian motion with drift, and so has a Laplace exponent
d(A) = =y — #, if v # 0 then we can apply formula (4.22)) and calculate the

m:th moment

2 2
%k) _ 6tm('yf‘%m)

m—1 €tk(’yi
E(Z(t)") = ¢ m!; Hgig«k—i)(w%(kﬂ)))' (5.12)

This approximation may not always perform well, but the moment calculations

avoid the use of recursive formulas.

In the case when t = oo, i.e. A is a perpetuity, the recursive moment formula
(3.14) can be used. If one desires to avoid the use of a recursive formula, the
same approximation can still be used and the formula (4.23)) is applicable.

Example 5.5. In [12] D. Dufresne uses a discrete-time approximation of the

process in (5.10) as a tool in carrying out the original proof of Theorem [4.20]

For more applications of the theory of weak convergence, see Dufresne’s earlier
article [13]. In [12, ch. 5] Dufresne also applies the concepts to risk theory as
a justification for an approximation of discrete risk processes with a diffusion.
There are also entire textbooks that discuss applications to mathematical finance

or simulation methods.

5.3 Risk theory

There is a connection between ruin probabilities and the distribution of a per-

petuity, as noted by R. Norberg, J. Paulsen, and H. Gjessing in their respective
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papers [26, 27, [15]. In particular, it may be possible to calculate certain ruin
probabilities from a-priori-known distributions of continuous perpetuities. We

summarize the idea, largely following the exposition of [15].

In the following, let the insurance company’s assets at time ¢ be denoted by
U, starting from Uy = u. Let X,Y be standard Brownian motions and Nx, Ny
Poisson processes having intensity parameters Ay, Ay, all independent. Let the

process generating insurance profit and losses for the company be
_ Ny (1)
Yi=pt+CY;— > Sy(k), t>0, (5.13)
k=1

where p, ¢ € R are constants and Sy (1), Sy(2),... are i.i.d. jump variables.

The company invests its assets and gets return given by the return-on-investment

generating process

N 1 Nx(t) .
X, = (y+§a2)t+JXt+ > Sx(k), t>0, (5.14)
k=1

where 7,0 € R are constants and the jump variables are given by

~

Sx(k)=e® 1 k=12,

where Sx(k),k = 1,2,..., are ii.d. variables. For example, if Sx(k) has an

exponential distribution, then S x (k) has a Pareto distribution.

We will also soon need the related process

Nx(t)
Xi=qt+oX,+ Y Sx(k), t>0, (5.15)

k=1

where all parameters and variables are as above.

At time t, the company has assets given by
~ t A
U, :u+Yt+/ U,_dX,. (5.16)
0
Paulsen [27] has solved equation ({5.16)), yielding the solution

U, =eX (u+2,), (5.17)

89



CHAPTER 5. APPLICATIONS Jonas Lindblad

where

t > ~
7, = / e~ Xedy,. (5.18)
0

It follows that the company is ruined at time ¢ if and only if Z; < —u, since

eXt is always positive. If we denote the time of ruin (when the initial assets are

Uy = u) by T, then T, is a stopping time and
T, :=inf{t: U; < 0} = inf{t : Z; < —u}. (5.19)
Paulsen [27| proves the following theorem.

Theorem 5.6 (Paulsen [27]). Assume Z,, < 00 a.s. and let F' be the distribution

function of Z. Then F' 1s continuous and the probability of eventual ruin s

F(—u)
E(F(-Uyp) | T, < o)

P (T, < o) = (5.20)

Proof. See [27]. O

Equation ((5.20) would be most useful if an explicit expression for F' were known,
which is unfortunately not often the case. Further approximations or numerical
methods may prove necessary in applications. Moreover, it is necessary to com-
pute the expected liabilities at time of ruin, Ur,, in order to use , which

may require further assumptions on the jump sizes Sy.

There is much more in [27] and in the later article by Gjessing and Paulsen [15]
as well as Norberg’s more general diffusion setting [26]. Dufresne [12] also treats

both discrete-time and continuous-time risk processes.
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