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Abstract

Simple market models typically include a constant rate of risk-free interest, sim-

plifying present value calculations and asset pricing signi�cantly. In this thesis,

present value calculations with a stochastic rate of interest is treated for ran-

dom cash �ows, annuities, and in particular, perpetuities. The literature on the

�niteness and central moments of the present value of a perpetual cash �ow is

discussed and higher-order moment formulas are derived for several special cases,

in particular for a continuous �nite or in�nite constant cash �ow subject to an

interest rate given by a Lévy process. The main part of the work is a long list of

cases, some being new, when the density of the present value of a perpetuity can

be found or a simple expression in terms of independent stochastic variables can

be derived. Applications to stock valuation, approximation methodology, and

risk theory are discussed brie�y at the end.

Keywords: �nance, perpetuities, probability



Swedish summary

Nuvärdet av en perpetuitet med stokastisk diskon-

tering

I �nansiell ekonomi är nuvärdet ett centralt begrepp. Kort sagt är nuvärdet av

ett penning�öde den summa pengar som skulle krävas i nuläget för att kunna

bekosta det framtida penning�ödet. Till exempel kan man tänka sig en annuitet

som, under N ∈ N år, årligen betalar en konstant penningsumma c > 0, vilket

med en årlig räntegrad på r > 0 skulle ge upphov till nuvärdet

Z(N) =
N∑︂
k=1

c(1 + r)−k.

Den föreliggande avhandlingen behandlar främst perpetuiteter, det vill säga en

variant av annuiteter vars regelbundna utbetalningar aldrig upphör. Den motsvarande

perpetuiteten har nuvärdet

Z(∞) =
∞∑︂
k=1

c(1 + r)−k.

Tack vare formeln för en geometrisk summa är det lätt att förenkla nuvärdena;

det gäller således att

Z(N) = c
1− (1 + r)−N

r
, Z(∞) =

c

r
.

Tyvärr är det i den riktiga världen ytterst sällsynt att räntegraden bevaras från

år till år. Av detta skäl vore det gynnsamt att ha möjligheten att bruka matem-

atiska modeller där räntan är stokastisk, eller till och med där räntan och utbe-

talningarna bägge är stokastiska. Det stora problemet är att det inte existerar
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någon variant av formeln för en geometrisk summa som gäller för stokastiska

variabler. Låt oss betrakta nuvärdet av en perpetuitet vars utbetalningar och

ränte- eller diskonteringsfaktorer ges av två oberoende processer av stokastiska

variabler:

Z(∞) =
∞∑︂
k=1

Ck

k∏︂
j=1

Vj,

där Ck, k = 1, 2, . . . är betalningsprocessen och Vk, k = 1, 2, . . . är diskonter-

ingsprocessen. Eftersom Z(∞) nu är en stokastisk variabel, behövs en metod

för att beräkna dess fördelnings- eller frekvensfunktion. Man kan erhålla en grov

skattning genom att simulera perpetuiteten fram till något ändligt antal utbe-

talningar och upprepa simulationen ett par hundra gånger, men detta medför

ytterligare risker för fel som kunde undvikas om man kände till en metod för att

analytiskt beräkna frekvensfunktionen för Z(∞). I avhandlingen visas att detta

är möjligt åtminstone i vissa specialfall.

Även villkor för att nuvärdet är ändligt behandlas. Med stöd av tidigare forskning

− särskilt W. Vervaats forskning − erhålls goda villkor som kan användas för att

besvara frågan även i fall då nuvärdets fördelning är okänd. Dessutom härleds

formler för nuvärdets centrala origomoment av alla ordningar; dessa formler kan

brukas även då nuvärdets fördelning är okänd.

Avhandlingens huvuddel behandlar de ovanstående frågorna för perpetuiteter och

penning�öden i kontinuerlig tid. För nuvärdet är den kontinuerliga motsvarigheten

till den oändliga summan en stokastisk integral,

Z∞ =

∫︂ ∞

0

e−XsdYs,

där X är processen som representerar räntegraden och Y representerar betal-

ningar. I det kontinuerliga fallet är mycket av teorin betydligt mer arbetsdryg,

men då X och Y är oberoende Lévy processer kan ändlighetsvillkor och mo-

mentformler härledas, och explicita fördelningar för nuvärdet kan hittas för �era

specialfall. Detta är särskilt gynnsamt eftersom det är betydligt mera besvärligt

att simulera en kontinuerlig perpetuitet än en diskret sådan.

I det kontinuerliga fallet presenteras visserligen villkor för nuvärdets ändlighet

relativt kortfattat, men momentformler behandlas utförligt i avsnitt 4.2, där

bland annat tidigare forskning av professor P. Salminen och hans kollega L.
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Vostrikova presenteras. Det kanske huvudsakliga resultatet i detta stycke är,

under antagandet att Y är en deterministisk drift, alla ordningars momentformler

för Z∞, och den motsvarande ändliga integralen

Zt =

∫︂ t

0

e−Xsds,

varav det senare fallets formler är motiverade med en ny härledning.

Forskning rörande fördelningen av en kontinuerlig perpetuitets nuvärde inleddes

1990 då aktuarien D. Dufresne publicerade en ytterst innovativ härledning av

fördelningen för ∫︂ ∞

0

e−γs−σWsds,

därW är en standard Brownsk rörelse. Dufresne bevisade att integralen följer en

invers gammafördelning och hans resultat återges även i denna avhandling, men

beviset som presenteras här använder en enklare metod som senare upptäcktes

av forskarna J. Bertoin och M. Yor.

Större delen av de återstående fördelningarna som behandlas är hämtade ur en

artikel av H.K. Gjessing och J. Paulsen, men de �esta av härledningarna är nya.

Det visade sig för det första att Bertoin och Yors metod kunde utnyttjas för

några av Gjessing och Paulsens exempel, och för det andra är en − till min

kännedom − ny innovation i denna avhandling att identi�era integraler med

tidigare kända diskreta perpetuiteter. Således överförs många av bevisena på

utsagor som redan tidigare bevisats med enklare metoder, och genom denna

metod erhålls även några nya resultat.

Avhandlingens sista kapitel behandlar några intressanta tillämpningar av mate-

rialet. En orealistisk, men intressant, stokastisk modell för aktiepriser demon-

streras i ett avsnitt, medan det följande avsnittet är en redogörelse för hur man

kan approximera ett kontinuerligt penning�öde med en diskret modell (eller vice

versa). Slutligen presenteras en av J. Paulsen upptäckt riskteoretisk ekvation som

relaterar sannolikheten för konkurs till nuvärdet av en kontinuerlig perpetuitet.

Denna avhandling utgör således en rätt utförlig blanding av litteraturöversikt,

ny forskning, och tillämpningar. Presentationen är till stor del inspirerad av

D. Dufresnes år 1990 publicerade artikel, där han behandlade en blandning av

konvergensresultat, momentformler, tillämpningar, och explicita fördelningar för
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nuvärdet. Dufresnes artikel är dessutom en av de få artiklar som behandlar både

modeller med diskret och kontinuerlig tid, varför man kunde se denna avhandling

som något av en uppföljare till Dufresnes artikel. I så fall har avhandlingen en

stor föregångare att leva upp till.
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Chapter 1

Introduction

In �nance, an annuity is a contract giving its owner a sequence of payments

at regular intervals. In a �nancial portfolio the annuity payments will, as they

arrive, be invested in other assets, such as bonds or stocks. Of course, another

possibility is to buy an annuity with the intention of using the payments directly

to pay regular fees, like e.g. property taxes.

As a basic example, consider an annuity with payments c > 0 arriving monthly,

for N ∈ N months. As they arrive, the annuity payments start accruing monthly

interest from bonds, at the constant rate r > 0. Then the cash in the portfolio

at month n is

S(n) =

⎧⎨⎩
∑︁n

k=1 c(1 + r)k−1, if n < N,∑︁N
k=1 c(1 + r)n−N+k−1, if n ≥ N.

(1.1)

Valuation of a �nancial asset relies on calculating its present value. The present

value is a concept from economics, de�ned as the cash amount of bonds you

would need if you had to pay all the future payments of the asset. The present

value at month zero of the above annuity is

Z(N) =
N∑︂
k=1

c(1 + r)−k = c
1− (1 + r)−N

r
. (1.2)

The factor (1+ r)−1 is also called the discount factor, while Z(N) may be called

a discounted cash �ow. The justi�cation for this is that you would need (1+r)−1

now in order to have 1 next month.

1
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Pricing an annuity by its present value is also called rational pricing, because it

can easily be shown that any price deviating from the present value would lead

to a situation where either the seller or buyer could gain money with no risk − a

situation called arbitrage. The no-arbitrage principle is a cornerstone of �nancial

theory.

The present Master's thesis mainly concerns the pricing of a �nancial asset called

a perpetuity − a variant of an annuity with payments continuing forever (or,

one might say, the payments continue in perpetuity). The above example is a

perpetuity if we let N = +∞, and the rational price of this perpetuity can be

found by taking the limit of Z(N) as N → ∞. As such,

Z(∞) =
c

r
. (1.3)

Of course, the deterministic case with constant payments is trivial. For this

reason we generalize and study a perpetuity with a random payment process

(Ck)k∈N and random discount process (Vk)k∈N. Thus,

Z(∞) =
∞∑︂
k=1

Ck

k∏︂
j=1

Vj. (1.4)

There is no counterpart to the geometric series formula in the stochastic case,

but we shall see that in some special cases Z(∞) has a distribution with a well-

known density. In such cases putting a price on the perpetuity is as simple as

calculating the expected value of its distribution. Alternatively, a risk averse

trader may calculate the expected utility using any utility function of choice.

The bulk of the thesis is devoted perpetuities in a continuous-time setting, i.e.

a continuous cash �ow subject to continuously varying discount factors. In this

case, the sum (1.4) has an integral counterpart, namely

Z∞ =

∫︂ ∞

0

e−XtdYt, (1.5)

where X is a process representing the discount factors and Y is the cash �ow. In

several cases, an explicit distribution for Z∞ is found. We shall also study cases

when the continuous cash �ow is a di�usion type process.

Aside from �nding explicit densities for Z∞, two other subjects are studied. First

of all, under which conditions can we even say that Z∞ is �nite? Second, when

2
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possible, formulas for the moments of Z∞ are derived, as well as moments for

cash �ows lasting only a �nite time. A trader could potentially use the moments

to make purchasing decisions by relying on methods from Markowitz portfolio

theory. Both the moments and the question of �niteness are treated in discrete

and continuous time.

A secondary theme that is touched upon is �nancial modelling with jump pro-

cesses. For instance, compound Poisson processes belong to the class of Lévy

processes and have quite nice properties, allowing for several interesting results.

Despite these processes not being di�usions, we �nd several explicit distribu-

tions for the discounted perpetuity Z∞ as in (1.5), with X or Y having jump

components.

Although the primary application discussed in this thesis is valuation of perpetu-

ities, the mathematical content can easily turn out useful in other domains. For

example, the integral
∫︁ T

0
e−XsdYs has an obvious interpretation as the present

value of a portfolio, with dividends or fees arriving according to the process Y.

Varying discount factors can either be interpreted as a changing interest rate, or

a prediction of the varying time preference of the trader. We shall also see that

distributions of a perpetuity are necessarily solutions to a stochastic equation.

Moreover, stochastic processes with jumps are potentially a useful component in

�xing some alleged de�ciencies in standard �nancial models. Traditional �nan-

cial models cannot capture the market impact of a CEO getting caught smoking

a cannabis joint on a public podcast, or of a country unexpectedly voting to

leave the European Union. More mundanely, a left-wing government may sud-

denly cause an interest rate hike by beginning a major expansion of government

programs, or alternatively a right-wing government may contract government

spending, tanking interest rates in the process. Unexpected events occur when

there is a mismatch between common knowledge and reality, but predicting this

kind of mismatch remains di�cult. This being the case, the prudent trader needs

to consider the risk of sudden shocks and plan accordingly.

The main part of the thesis is divided into two chapters − one dedicated to

the discrete-time setting and the other to continuous time. Preceding those is

chapter 2, a brief overview of theorems and de�nitions that are necessary in the

later chapters. Thus, chapters 3 and 4 treat the discrete and continuous-time

3
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settings, respectively. Finally, chapter 5 contains a short, partial overview of

applications related to the theory.

Despite the �nance-oriented theme, this is still a Master's thesis in mathematics.

Due to this, the reader is naturally expected to have prior familiarity with analy-

sis, probability theory, stochastic processes and stochastic calculus. Throughout

the text are a few novel proofs and results, but the bulk of the thesis does still

rely on the work of others, most importantly Dufresne [13, 12], Yor [2], Vervaat

[33], Gjessing and Paulsen [15] and Salminen and Vostrikova [29]. Finally, I wish

the reader a good time while studying the contents and thank for any interest

shown.

4



Chapter 2

Preliminary theory

This chapter serves as a reference for theorems and de�nitions used in the later

chapters. First, some notation and conventions are introduced. Afterwards follow

sections on probability theory, stochastic processes, and �nance.

If x ∈ R, we use [x] as notation for the largest integer smaller than or equal to

x, i.e.

[x] = max{n ∈ Z : n ≤ x ∈ R}.

If x = (x1, x2, . . . ) is a sequence in R, the notation #y(x) is used for the number

of elements in x that are equal to y ∈ R, i.e.

#y(x) =
⃓⃓⃓
{n ∈ N : xn = y}

⃓⃓⃓
.

The limit superior and inferior of sequences of sets are de�ned by

lim sup
n→∞

An =
⋂︂
k≥1

⋃︂
n≥k

An,

lim inf
n→∞

An =
⋃︂
k≥1

⋂︂
n≥k

An.

We adopt the convention of using Xt− to denote the limit when s approaches

t > 0 from the left, i.e.

Xt−
.

.= lim
s↑t

Xs, t > 0.

5
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2.1 Elementary probability and stochastics

Lemma 2.1 (Borel-Cantelli Lemma). If {An, n = 1, 2, . . . } is a sequence of

independent events in a given probability space, then

P

(︃
lim sup
n→∞

An

)︃
= 1, if

∞∑︂
n=1

P (An) = ∞,

P

(︃
lim sup
n→∞

An

)︃
= 0, if

∞∑︂
n=1

P (An) <∞.

The second assertion also holds without the assumption of independence.

Proof. See [19].

A basic fact of probability is that the moment-generating function (when it exists)

uniquely determines the distribution of a random variable. In cases when it

is di�cult to calculate the moment-generating function, it may be possible to

instead identify the distribution of a random variable by its positive integer

moments.

Theorem 2.2 (Billingsley [3]). Let X be a random variable on some probability

space and suppose αn = E (Xn) is �nite for every n ∈ N. If the power series

s(r) =
∞∑︂
k=0

αkr
k

k!

converges within some neighbourhood of zero, then it holds for every random

variable Y that

E (Y n) = E (Xn) for every n ∈ N ⇒ X
d
= Y.

Proof. See Billingsley [3, Ch. 30].

When the power series in Theorem 2.2 converges, it is said that the distribution is

determined by its (positive integer) moments. Note that if the moment-generating

function of X exists, then X is determined by its moments.

De�nition 2.3. If x = (x0, x1, x2, . . . ) is a real sequence, then θ(x) = (x1, x2, x3, . . . )

de�nes the shift operator θ. A set of sequences A is called shift-invariant, if

θ(x) ∈ A if and only if x ∈ A.

6
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De�nition 2.4 (Stationary process). Let X = (Xt)t∈R be a stochastic process.

Then the process X is called stationary, if

(Xt1 , Xt2 , . . . , Xtn)
d
= (Xt1+τ , Xt2+τ , . . . , Xtn+τ ), ∀τ, t1, . . . , tn ∈ R, ∀n ∈ N.

De�nition 2.5 (Ergodic stationary process in discrete time). Let X = (Xn)n∈Z

be a stationary stochastic process. Then it is ergodic, if every shift-invariant

event is trivial.

Theorem 2.6 (Birkho�'s pointwise ergodic theorem). Let (Xn)n≥1 be stationary

and ergodic with E (|X1|) <∞. Then

lim
n→∞

1

n

n∑︂
k=1

Xk = E (X1) a.s.

Proof. See e.g. [21]

2.2 Lévy processes

De�nition 2.7. Let X = (Xt)t≥0 be a stochastic process on some probability

space. X is an additive process if it has independent increments.

An additive process is homogeneous if it has stationary increments.

A Lévy process is a stochastically continuous homogeneous additive process with

X0 = 0 a.s.

Theorem 2.8. If X is a Lévy process, its characteristic function is for all t ≥ 0

given by

E
(︁
eiθXt

)︁
= e−tΨ(θ), θ ∈ R,

where Ψ is the characteristic exponent of X, given by the Lévy-Khintchine for-

mula

Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫︂
R
(1− eiθx + iθx1{|x|<1})Π(dx),

where a, σ ∈ R and Π is a measure on R \ {0} satisfying∫︂ +∞

−∞
min{1, |x|2}Π(dx) <∞.

7
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Proof. See e.g. [31].

It follows that every valid characteristic exponent Ψ uniquely determines a corre-

sponding Lévy process. The triple (a, σ2,Π) is called the Lévy-Khintchine triplet

and can be used to uniquely characterise the characteristic exponent of a Lévy

process. We now state a few examples.

Example 2.9. (a) Let X be a Brownian motion with drift, i.e. Xt = γt+ σWt,

where W is a standard Brownian motion. The characteristic function of Xt is

E
(︁
eiθXt

)︁
= e−iγθt−σ2θ2

2
t = e−t(iγθ+σ2θ2

2
),

so X is a Lévy process with Lévy-Khintchine triplet (γ, σ2,Π), where Π ≡ 0.

(b) Let Y be a compound Poisson process with intensity λ, i.e.

Yt =
Nt∑︂
k=1

Zk,

where Nt is a λ-intensity Poisson process and (Zk)k∈N is an i.i.d. sequence of

jumps with density fZ . The characteristic function of Yt is given by

ϕYt(θ) = eλt(ϕZ(θ)−1) = exp

{︃
−t
(︃
λ

(︃
1−

∫︂
R
eiθxfZ(x)dx

)︃)︃}︃
= exp

{︃
−t
(︃∫︂

R
λfZ(x)dx−

∫︂
R
eiθxλfZ(x)dx

)︃}︃
= exp

{︃
−t
(︃∫︂

R

(︁
1− eiθx

)︁
Π(dx)

)︃}︃
,

where Π(dx) = λfZ(x)dx and fZ is the density of Z. Then it is easy to see that

Y is a Lévy process with Lévy-Khintchine triplet(︃
−λ
∫︂
(−1,1)

xfZ(x)dx , 0 , λfZ(x)dx

)︃
.

(c) Let X be a jump-di�usion, i.e.

Xt = γt+ σWt +
Nt∑︂
k=1

Zk,

where W is a standard Brownian motion, N is a Poisson process with intensity

λ independent of W and (Zk)k∈N is a sequence of i.i.d. jumps. It follows from

(a) and (b) that X is a Lévy process with Lévy-Khintchine triplet(︃
γ − λ

∫︂
(−1,1)

xfZ(x)dx , σ2 , λfZ(x)dx

)︃
.

8
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2.3 Stochastic calculus

De�nition 2.10. Let (Ft)t≥0 be a �ltration on a given probability space (Ω,F ,P).

Then, L2(0, T ) is the space of stochastic processes G = (Gt)t≥0 such that G is

progressively measurable with respect to (Ft)t≥0 and

E

(︃∫︂ T

0

G2
sds

)︃
<∞

holds.

Similarly, L1(0, T ) is the space of stochastic processes F = (Ft)t≥0 such that F

is progressively measurable with respect to (Ft)t≥0 and⃓⃓⃓⃓
E

(︃∫︂ T

0

Fsds

)︃⃓⃓⃓⃓
<∞

holds.

If T = ∞ we shall write only L1 and L2.

De�nition 2.11 (Itô process). Let X be a stochastic process on the probabil-

ity space (Ω,F ,P) that is progressively measurable with respect to a �ltration

(Ft)t≥0. Then X is called an Itô process if X can be written in the form

Xt = X0 +

∫︂ t

0

Fsds+

∫︂ t

0

GsdWs,

where F ∈ L1, G ∈ L2.

Lemma 2.12 (Itô's formula). Let X be an Itô process with di�erential dXt =

Ftdt + GtdWt. Suppose f(t, x) ∈ C1,2(R+ × R) and that f(t,Xt) ∈ L2. Then

Yt = f(t,Xt) is also an Itô process, with di�erential

dYs =

(︃
∂f

∂t
(s,Xs) +

∂f

∂x
(s,Xs)Fs +

1

2

∂2f

∂x2
(s,Xs)G

2
s

)︃
ds+

∂f

∂x
(s,Xs)GsdWs.

Proof. See e.g. [20].

Lemma 2.13 (Itô's formula in multiple dimensions). Let W be a vector of d

independent standard Brownian motions. Let dXt = Ftdt + GtdWt, where the

vector F = (F1, . . . , Fd) and matrix G = (Gij)1≤i,j≤d have components in L1 and

9
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L2, respectively. Further, let f(t, x) ∈ C1,2(R+ × Rd). Then Yt = f(t,Xt) is also

an Itô process and

dYs =

(︄
∂f

∂t
(s,Xs) +

d∑︂
k=1

∂f

∂xk
(s,Xs)Fk,s +

d∑︂
k=1

1

2

∂2f

∂x2k
(s,Xs)G

2
kk,s

)︄
ds

+
d∑︂

n=1

d∑︂
k=1

∂f

∂xk
(s,Xs)Gkn,sdWn,s.

Proof. See e.g. [20].

De�nition 2.14 (Quadratic variation). Let X = (Xt)t∈R be a stochastic pro-

cess on a probability space (Ω,F ,P). The quadratic variation of X is a process

denoted by ⟨X⟩t, de�ned by

⟨X⟩t = lim
∥P∥→0

n∑︂
k=1

(Xtk −Xtk−1
)2,

where P belongs to the set of partitions of the interval [0, t] and

∥P∥ = max{(tk − tk−1); [tk−1, tk] subinterval in P}.

De�nition 2.15 (Cross-variation). Let there be two processes X and Y de�ned

on a probability space (Ω,F ,P). The cross-variation of X and Y is a process

denoted by ⟨X, Y ⟩t and is given by

⟨X, Y ⟩t =
1

4
(⟨X + Y ⟩t − ⟨X − Y ⟩t) .

Note in particular that ⟨X,X⟩t = ⟨X⟩t.

Proposition 2.16. Let W = (W 1,W 2, . . . ,W d)t≥0 be a standard d-dimensional

Brownian motion adapted to the �ltration (Ft)t≥0, let X, Y and Z be Itô processes

and let F ∈ L1, and G,G′ ∈ L2 be processes adapted to (Ft)t≥0. The cross-

variation, as de�ned in 2.15, satis�es the following properties.

1. ⟨X, Y ⟩t = ⟨Y,X⟩t.

2. ⟨αX + Y, Z⟩t = α⟨X,Z⟩t + ⟨Y, Z⟩t.

3. ⟨
∫︁ ·
0
Fsds,X⟩t = 0.

10
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4. ⟨
∫︁ ·
0
GsdW

i
s ,
∫︁ ·
0
G′

sdW
j
s ⟩t = 0, if i ̸= j.

5. ⟨
∫︁ ·
0
GsdW

i
s ,
∫︁ ·
0
G′

sdW
i
s⟩t =

∫︁ t

0
GsG

′
sds.

Proposition 2.17 (Itô integration by parts formula). Let X and Y be two Itô

processes. Then

d(XtYt) = XtdYt + YtdXt + d⟨X, Y ⟩t. (2.1)

Proof. See e.g. [23].

We shall now extend some of the above results for Poisson jump processes. For a

better exposition of stochastic calculus with jump processes, the reader is referred

to [7].

Let Y = (Yt)t≥0 be a compound Poisson process, written as

Yt =
Nt∑︂
k=1

Zk,

with N = (Nt)t≥0 a Poisson process with intensity λ > 0, and (Zk)k∈N an i.i.d.

sequence of jump sizes. We denote the jump size at time t > 0 by ∆Yt .

.= Yt−Yt−,
which leads to a relation between the jump sizes of Y and N,

∆Yt = ZNt∆Nt, (2.2)

where ∆Nt = Nt −Nt− equals 1 only for the jump times T1, T2, . . . of N.

Based on the relation (2.2), we de�ne the stochastic integral with respect to Y,

which is in fact a Lebesgue-Stieltjes integral, by

Xt =

∫︂ t

0

GsdYs =

∫︂ t

0

GsZNsdNs
.

.=
Nt∑︂
k=1

GTk
Zk. (2.3)

We also express the integral Xt =
∫︁ t

0
GsdYs equivalently as

dXt = GtdYt = GtZNtdNt.

We shall next present some formulas for stochastic integrals with respect to a

compound Poisson process, including a version of the Itô isometry and Itô's

formula. These formulas are also familiar from the theory of Poisson processes.

11
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Proposition 2.18 (Privault [28]). Let (Gt)t≥0 be a stochastic process progres-

sively measurable with respect to the �ltration generated by (Yt)t≥0, a compound

Poisson process with intensity λ and i.i.d. jumps Z. Then, if G ∈ L1,

E

(︃∫︂ t

0

Gs−dYs

)︃
= E

(︃∫︂ t

0

Gs−ZNsdNs

)︃
= λE (Z)E

(︃∫︂ t

0

Gsds

)︃
. (2.4)

If G ∈ L2,

E

[︄(︃∫︂ t

0

Gs−(dYs − λE (Z) ds)

)︃2
]︄
= λE

(︁
Z2
)︁
E

(︃∫︂ t

0

G2
sds

)︃
. (2.5)

Proof. See [28].

Lemma 2.19 (Itô's Formula). Let X be a stochastic integral with respect to a

jump-di�usion, i.e.

dXt = Ftdt+GtdWt +HtdYt,

with F,H ∈ L1, G ∈ L2, and where Y is a compound Poisson process,

Yt =
Nt∑︂
k=1

Zk,

with N a Poisson process with intensity λ, and (Zk)k∈N an i.i.d. sequence of

jumps.

Suppose f(t, x) ∈ C1,2(R+ × R) and that f(t,Xt) ∈ L2. Then, the process Ut =

f(t,Xt) is also a stochastic integral with respect to a jump-di�usion, and in

particular

dUt =

(︃
∂f

∂t
(s,Xs) +

∂f

∂x
(s,Xs)Fs +

1

2

∂2f

∂x2
(s,Xs)G

2
s

)︃
ds+

∂f

∂x
(s,Xs)GsdWs

+ (f(t,Xt)− f(t,Xt−)) dNt.

Proof. See [28].

Furthermore, we note that several more properties of the cross-variation 2.15

hold. In the following, letW = (W 1,W 2, . . . ,W d)t≥0 be a standard d-dimensional

Brownian motion and N = (N1, N2, . . . , Nk)t≥0 be a vector of k independent

Poisson processes. The processes F,H,H ′ ∈ L1 and G ∈ L2 are adapted to the

�ltration generated by (W,N)t≥0.

12
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6. ⟨
∫︁ ·
0
Fsds,

∫︁ ·
0
HsdN

i
s⟩t = 0.

7. ⟨
∫︁ ·
0
GsdW

i
s ,
∫︁ ·
0
HsdN

j
s ⟩t = 0.

8. ⟨
∫︁ ·
0
HsdN

i
s,
∫︁ ·
0
H ′

sdN
j
s ⟩t = 0, if i ̸= j.

9. ⟨
∫︁ ·
0
HsdN

i
s,
∫︁ ·
0
H ′

sdN
i
s⟩t =

∫︁ t

0
HsH

′
sdN

i
s.

Proposition 2.20. The Itô integration by parts formula (2.1) holds also for

stochastic integrals with respect to a jump-di�usion.

Proof. See [28].

13



Chapter 3

Discrete-time models

Consider a sequence of rates of return, Rk, constant over the time period [k−1, k),

and a sequence of random cash payments Ck, k = 1, 2, . . . , that are always made

at the beginning of time period [k, k + 1). We will call the initial capital held

S0, and consider the accumulated capital sequence S = (Sk)k≥1 as well as the

present value sequence Z = (Zk)k≥1 of payments up until t = k.

A recursive equation for Sk, k ≥ 1, is

Sk = UkSk−1 + Ck, (3.1)

where Uk
.

.= 1 + Rk. This equation is called the annuity equation because in

�nance, an annuity is a �nite sequence of payments made at regular intervals,

and so satisfy the annuity equation with initial value S0 = 0.

In �nance, cash �ows and annuities are priced using their present value Zk,

representing the present value of all payments made up to and including period

k. With Vk .

.= U−1
k , the evolution through time can easily be derived from the

relation Zk = Sk

∏︁k
j=1 Vj, leading to the recursive equation

Zk = Zk−1 + Ck

k∏︂
j=1

Vj. (3.2)

In particular, starting from Z0 = S0,

Z1 = Z0 + V1C1,

14
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and if we assume that

Zk−1 = S0 +
k−1∑︂
i=1

Ci

i∏︂
j=1

Vj,

then insertion into (3.2) yields

Zk =

(︄
S0 +

k−1∑︂
i=1

Ci

i∏︂
j=1

Vj

)︄
+ Ck

k∏︂
j=1

Vj,

which simpli�es to

Zk = S0 +
k∑︂

i=1

Ci

i∏︂
j=1

Vj. (3.3)

By induction it follows that (3.3) holds for all k ∈ N.

The present value of a perpetuity can be de�ned as the limit of the present value

of an annuity, i.e. the limit Z∞ = lim
k→∞

Zk of (3.3), with S0 = 0 so that Zk is

the present value of an annuity. Therefore, in the rest of the chapter we shall set

S0 = 0 in (3.3), so that

Zk =
k∑︂

i=1

Ci

i∏︂
j=1

Vj. (3.4)

We also de�ne the corresponding in�nite sum,

Z∞
.

.=
∞∑︂
i=1

Ci

i∏︂
j=1

Vj.

Due to the importance of the discounting factors, we also de�ne

µ .

.= E (log|V1|) ,

when it exists.

Like annuities, the pricing of a perpetuity is carried out using its present value

Z∞. If the distributions of every Zk are known, which is a very special case, it may

be possible to compute the distribution of Z∞ by elementary methods. In other

cases the distribution has to be inferred from the distribution of (Ck, Vk)k≥1, if

possible.

15



CHAPTER 3. DISCRETE-TIME MODELS Jonas Lindblad

3.1 Finiteness of perpetuities

3.1.1 Su�cient conditions in general setting

While studying the convergence criteria of the stochastic di�erence equation Yn =

AnYn−1 + Bn, Vervaat [33] and Brandt [4] also found some convergence criteria

for the perpetuity (Zk)k≥1. Here we present a proof with Vervaat's argument

applied to the conditions in Brandt's paper. But before the theorem, one part

of Vervaat's argument shall be presented as a separate lemma.

Lemma 3.1. Let (Ck, Vk)k≥1 be an i.i.d. sequence and assume that µ = E (log|V1|)
exists and is �nite. Then,

(a) if E
(︁
log|C1|+

)︁
= ∞, then lim sup

n→∞
|CnV1 · · ·Vn|1/n = ∞ a.s.

(b) if E
(︁
log|C1|+

)︁
<∞, then lim sup

n→∞
|CnV1 · · ·Vn|1/n ≤ eµ a.s.

The second assertion holds even if (Ck, Vk)k≥1 is stationary and ergodic but not

necessarily i.i.d. It also holds if µ = −∞ (with the interpretation eµ = 0).

Proof. We take an arbitrary a > 1 and write

E
(︁
log|C1|+

)︁
=

∫︂ ∞

0

P
(︁
(log|C1|)+ > x

)︁
dx

= log a

∫︂ ∞

0

P
(︁
(log|C1|)+ > x log a

)︁
dx.

De�ne f(x) = P ((log|C1|)+ > x log a) and note that since f is bounded and

non-increasing,
∞∑︂
n=1

f(n) <∞ ⇐⇒
∫︂ ∞

0

f(x)dx <∞,

by Cauchy's integral test for series convergence (note that f need not be contin-

uous).

The number f(n) is now interpreted as the probability of the event

ξn =
{︁
ω ∈ Ω : (log|Cn|)+ > n log a

}︁
.

The events are independent and so the Borel-Cantelli Lemma (Lemma 2.1) im-

plies that
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(i) if E
(︁
log|C1|+

)︁
= ∞, then P

(︃
lim sup
n→∞

ξn

)︃
= 1.

(ii) if E
(︁
log|C1|+

)︁
<∞, then P

(︃
lim sup
n→∞

ξn

)︃
= 0.

The event

lim sup
n→∞

ξn =
{︁
ω ∈ Ω : (log|Cn|)+ > n log a i.o.

}︁
is clearly equivalent to{︂

ω ∈ Ω : log
(︂
|Cn|1/n

)︂
> log a i.o.

}︂
.

In case (i), this implies that, since a > 1 was arbitrary,

∀a > 1 : P
(︂
log
(︂
|Cn|1/n

)︂
> log a i.o.

)︂
= 1,

that is, lim sup
n→∞

|Cn|1/n > a a.s. for any a > 1. As such, with µ �nite according to

assumption and applying the Law of Large Numbers,

lim sup
n→∞

log|CnV1V2 · · ·Vn|1/n = lim sup
n→∞

log|Cn|
n

+ lim sup
n→∞

1

n

n∑︂
j=1

log|Vj|

= lim sup
n→∞

log
(︂
|Cn|1/n

)︂
+ lim

n→∞

1

n

n∑︂
j=1

log|Vj|

= lim sup
n→∞

log
(︂
|Cn|1/n

)︂
+ µ

> log a+ µ, a.s. ∀a > 1.

Thus,

lim sup
n→∞

|CnV1V2 · · ·Vn|1/n = ∞.

So case (i) implies the assertion (a) of the lemma.

In the case (ii), for a > 1 arbitrarily close to 1,

P
(︂
log
(︂
|Cn|1/n

)︂
> log a i.o.

)︂
= 0,

which means |Cn|1/n > 1 occurs only for a �nite number of n ∈ N, and so,

lim sup
n→∞

|Cn|1/n ≤ 1 a.s. An analogous argument to the one for case (i) leads to

lim sup
n→∞

log
(︂
|CnV1V2 · · ·Vn|1/n

)︂
= lim sup

n→∞
log
(︂
|Cn|1/n

)︂
+ µ ≤ µ,

17
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which implies that, almost surely,

lim sup
n→∞

|CnV1V2 · · ·Vn|1/n ≤ eµ.

Finally, the argument in case (ii) does not rely on the independence of each

element in the sequence (Ck, Vk)k≥1, since the second part of the Borel-Cantelli

Lemma does not require the events ξn to be independent and the Law of Large

Numbers can be replaced by an application of the Birkho� Ergodic Theorem

(Theorem 2.6) if (Ck, Vk)k≥1 is a stationary ergodic sequence.

Moreover, if µ = −∞ in case (ii), then lim sup
n→∞

1
n

∑︁n
j=1 log|Vj| = −∞ a.s. and so

lim sup
n→∞

|CnV1 · · ·Vn|1/n = 0 a.s.

Theorem 3.2. The sequence (Zk)k≥1, where Zk is de�ned as in (3.4), converges

absolutely almost surely, if one of the following holds:

(a) (Vk)k≥1 is stationary and ergodic, and P (V1 = 0) > 0.

(b) (Ck, Vk)k≥1 is stationary and ergodic, with

µ < 0 and E
(︁
log|C1|+

)︁
<∞.

Proof. Case (a). By the de�nition of ergodicity, for a stationary ergodic process

every shift-invariant event must be trivial (i.e. its probability is either 0 or 1).

Let

A = {x = (x0, x1, . . . ) : xj ∈ [0,∞[,#0(x) = ∞}.

It is easy to see that A is shift-invariant, so it must be trivial. Further observe

that due to stationarity, P (Vk = 0) = P (V1 = 0) > 0 for every k ∈ N. Using this
fact, we prove that P ((V1, V2, . . . ) ∈ A) > 0,

Assume there exists N ∈ N such that P (Vk > 0, ∀k > N) > 0. Since the set of

sequences such that every element after the N :th one is non-zero is also shift-

invariant, this probability must in fact be 1. Then the process cannot be station-

ary. In particular, from the de�nition of stationarity with τ = N, we would get
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V1
d
= VN+1, which is a contradiction since we have both P (VN+1 > 0) = 1 and

P (V1 = 0) > 0. Hence, no such N can exist and we have

P ((V1, V2, . . . ) ∈ A) = 1,

that is P (Vk = 0 in�nitely often) = 1.

This clearly implies that, upon taking the limit lim
k→∞

Zk in (3.4), with probability

1 the sum will only contain a �nite number of terms before the �rst Vk = 0

occurs. Clearly, Zk is a �nite sum.

Case (b). The proof that Z∞ = lim
k→∞

Zk is well-de�ned and converges is by

Cauchy's root criterion. Given the conditions, case (b) of Lemma 3.1 says that

lim sup
n→∞

|CnV1V2 · · ·Vn|1/n ≤ eµ < 1,

since it was assumed that µ < 0. This implies that that (Zk)k≥0 converges abso-

lutely almost surely.

Naturally there is no guarantee that real-world time series will be stationary

and ergodic. However, a perpetuity may be �nite even despite neither (Vk)k≥1

nor (Ck)k≥1 being stationary; all that is required is that the discounting factors

approach zero at a high enough rate. Consider the following example:

Example 3.3 (Dufresne [12]). Let (Ck)k≥0 and (log Vk)k≥0 be random walks,

de�ned by C0 = log V0 = 0 and for k ≥ 1,

Ck = c+ Ck−1 + ek

log Vk = a+ log Vk−1 + fk,

where c ∈ R, a < 0, and (ek)k≥1, (fk)k≥1 are two i.i.d. sequences of random

variables with mean zero.

First, assume c ̸= 0. Because a < 0, we have log Vk → −∞ a.s. as k → ∞. Then,

k−1
∑︁k

j=1 log Vj → −∞ a.s., which implies |V1 · · ·Vk|1/k → 0 a.s.

If c ̸= 0,

k−1 log|Ck| = k−1 log

⃓⃓⃓⃓
⃓ck +

k∑︂
j=1

ej

⃓⃓⃓⃓
⃓
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= k−1 log|ck|+ k−1 log

⃓⃓⃓⃓
⃓1 + (ck)−1

k∑︂
j=1

ej

⃓⃓⃓⃓
⃓→ 0 a.s.

Whereas if c = 0, since the logarithm is concave,

k−1 logCk ≤ k−1

k∑︂
j=1

ek − k−1 → 0 a.s.

As such, in both cases

lim sup
k→∞

|CkV1 · · ·Vk|1/k < 1,

and thus the perpetuity is �nite a.s. Note that it was not assumed that the

processes (ek)k≥1 and (fk)k≥1 are mutually independent, and neither was it as-

sumed that they have �nite variance. We can conclude that there are a.s. �nite

perpetuities with Var (Ck) = ∞ and Ck → ∞ a.s.

3.1.2 Payments and interest as i.i.d. process

It is often di�cult or even impossible to explicitly compute the distribution of

Z∞. To this end, we make the restricting assumption of i.i.d. (Ck, Vk)k≥1 in order

to use some known methods of computing the distribution of the perpetuity. Of

course Theorem 3.2 still applies in the i.i.d. case. Here is an argument used by

Dufresne [12].

We de�ned the process (Zk)k≥1 so that

Zk = C1V1 + C2V1V2 + · · ·+ CkV1V2 · · ·Vk.

If (Ck, Vk)k≥1 is an i.i.d. sequence of random pairs, we can reverse both the

payments and discounting factors without changing the distribution. That is, if

(Bk)k≥1 is a stochastic process such that

Bk = CkVk + Ck−1VkVk−1 + · · ·+ C1VkVk−1 · · ·V1,

then

Zk
d
= Bk
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holds for every k ∈ N. Note that this does not require (Ck)k≥1 and (Vk)k≥1 to be

mutually independent, only that, for any k ̸= n, (Ck, Vk) ⊥ (Cn, Vn). This means

that the stochastic equation

Zk
d
= Vk(Zk−1 + Ck) (3.5)

holds, so the distribution of Zk has the same structure as the annuity equation

studied by Brandt [4] and Vervaat [33], but only in the i.i.d. case. Because

Bk
d→ Z would imply that Zk

d→ Z also holds, this fact has the interesting

implication that we are able to apply much of Vervaat's research on the study of

discrete perpetuities.

Remark 3.4. Note the distinction between the processes (Zk)k≥1 and (Bk)k≥1;

it is only the case that Zk
d
= Bk, for every k ∈ N, and only in the case with

i.i.d. discounting and payments. The distinction between them is particularly

important when computing autocovariances Cov (Zk, Zk+m).

Vervaat's line of research is about the relationship between the Equation (3.5)

and the convergence of (Zk)k≥1 when (Ck, Vk)k≥1 is an i.i.d. sequence. We begin

our exposition of this research with an elementary lemma.

Lemma 3.5. If Zk
d→ Z, then the stochastic equation

Z
d
= V (Z + C), Z ⊥ (V,C) (3.6)

where V
d
= V1, C

d
= C1, holds.

Proof. Recall the stochastic equation (3.5), in which the left-hand side converges

in distribution to Z. For the right-hand side, (Zk−1, Vk, Ck)
d→ (Z, V, C), where

(V,C) is independent of Z because every (Vk, Ck) is independent of Zk−1. As

such, the right-hand side converges in distribution to V (Z+C) and the assertion

holds.

Since we are mainly interested in actuarial applications, we will typically be

working with discounting factors V = (1 + R)−1 with 0 < E (V ) < 1, which by

Jensen's inequality implies that µ = E (log|V |) < 0, although we will see that

merely assuming µ < 0 is often enough. A more thorough study without this
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assumption can be found in [16]. We will now show how an explicit distribution

can sometimes be derived given the assumption on µ. From Vervaat [33] we gain

the following result. The arguments presented below are original except for the

�rst part, which is due to Vervaat.

Lemma 3.6. Let −∞ < µ < 0. Suppose that, for some pair (V,C), Equation

(3.6) has a solution Z. Then the solution is unique in distribution and (Zk)k≥1

converges to it a.s.

Proof. The process (Bk)k≥1 has a recursive structure like that in (3.5). Moreover,

if Bk
d→ Z then also Zk

d→ Z must hold. We show the uniqueness in distribution

by showing that (Bk)k≥1 can only converge to one random variable, unique in

distribution.

We introduce an arbitrary initial variable B0, independent of every (Vk, Ck). Then

the sequence (Bn)n≥0 is given by

Bn(B0) = B0

n∏︂
k=1

Vk +
n∑︂

j=1

Cj

k∏︂
k=j

Vk.

If B0 = Z is a valid solution to (3.6), then B1 = V1(Z+C1)
d
= Z, and so Z1

d
= Z.

So then for every n ∈ N, Zn
d
= Z. Now, let B0 and B′

0 be two distinct random

variables, both independent of (Vk, Ck)k∈N. Then,

Bn(B0)−Bn(B
′
0) = (B0 −B′

0)
n∏︂

k=1

Vk.

However,

(B0 −B′
0)

n∏︂
k=1

Vk
d→ 0,

which follows from Lemma 3.1 with constant payments Cj = 1 for all j and

µ < 0. As such, because Bn(Z)
d→ Z, it must also be the case that Bn(B0)

d→ Z

for all B0, and so it must also hold that Zn
d→ Z. In other words, the solution Z

is unique in distribution and Zn converges in distribution to it.

Recall that (Ck, Vk)k≥1 i.i.d. implies that it is also stationary and ergodic. We

prove that the convergence is actually a.s. by proving that the conditions in

Theorem 3.2 hold. This is done using proof by contradiction. Thus, we assume

the hypothesis E
(︁
log|C|+

)︁
= ∞ and show that it leads to a contradiction.
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First, we pick an arbitrary δ such that 0 < δ < 1
2
. Then, we pick two real numbers

s > t such that

FZ(s)− FZ(t) >
1

2
+ δ.

Now, pick large enough natural numbers N1, N2 such that k ≥ max(N1, N2)

implies that |FZ(s) − FZk
(s)| < δ/2 and |FZ(t) − FZk

(t)| < δ/2, respectively

(recall that it was earlier shown that Zk
d→ Z). Then, for such numbers k,

1

2
+ δ <

δ

2
+
δ

2
+ |FZk

(s)− FZk
(t)|, (3.7)

because by the triangle inequality,

|FZ(s)− FZ(t)| = |FZ(s)− FZk
(s) + FZk

(s)− FZk
(t) + FZk

(t)− FZ(t)|

≤ |FZ(s)− FZk
(s)|+ |FZk

(s)− FZk
(t)|+ |FZk

(t)− FZ(t)|.

So for any such k, from (3.7) it follows that

|FZk
(s)− FZk

(t)| > 1

2
.

Also due to the convergence in distribution and the completeness of R, the se-

quence of FZn(t) must be a Cauchy sequence. As such, if we let ϵ = 1/2, there

exists N3 ∈ N such that for all m,n ≥ N3,

|FZm(s)− FZn(s)| < ϵ. (3.8)

Now, we de�ne a stopping time τ with respect to the �ltration (Fn)
∞
n=1, where

Fn is the σ-algebra generated by (Cn, Vn)
∞
n=1, by

τ .

.= min{n ∈ N : n > max(N1, N2, N3), |CnV1 · · ·Vn| > s− t}.

Recall that it was assumed that E
(︁
log|C|+

)︁
= ∞. Since we know −∞ < µ < 0,

by part (a) of Lemma 3.1,

lim sup|CnV1 · · ·Vn| = ∞ a.s.

Thus it is easy to see that the stopping time τ is �nite a.s. This fact makes

it possible to identify two disjoint cases based on the properties of the process

(Ck, Vk)k≥1. Two new stopping times, τ+ and τ− are de�ned by

τ+ .

.= min {n ∈ N : n ≥ τ, CnV1 · · ·Vn > s− t} ,
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τ− .

.= min {n ∈ N : n ≥ τ, CnV1 · · ·Vn < t− s} .

The idea is that in every case either τ+ or τ− is equal to τ, but we use an

alternative partition for the sake of simplicity. Since τ < ∞ a.s. either (a)

τ+ <∞ a.s. or (b) τ+ = ∞ a.s. but τ− <∞ a.s. Cases (a) and (b) are disjoint,

so we �nish the proof separately for these two cases.

Recall from (3.2) that

Zτ+1 = Zτ + CτV1 · · ·Vτ .

Due to how τ is de�ned, we know from (3.8) that

ϵ >
⃓⃓
FZτ+1(s)− FZτ (s)

⃓⃓
,

and this holds also for τ+ and τ− since they are larger than or equal to τ. Con-

sequently, in case (a):

FZτ++1(s) = P
(︁
Zτ+ + Cτ+V1 · · ·Vτ+ ≤ s

)︁
= P

(︁
Zτ+ + Cτ+V1 · · ·Vτ+ ≤ s, Cτ+V1 · · ·Vτ+ > s− t

)︁
≤ P

(︁
Zτ+ ≤ t

)︁
= FZτ+

(t).

Thus,
1

2
= ϵ <

⃓⃓⃓
FZτ+

(s)− FZτ+
(t)
⃓⃓⃓
= FZτ+

(s)− FZτ+
(t)

≤ FZτ+
(s)− FZτ++1(s) =

⃓⃓⃓
FZτ+

(s)− FZτ++1(s)
⃓⃓⃓
,

but since τ+ > N3,

1

2
= ϵ <

⃓⃓⃓
FZτ+

(s)− FZτ++1(s)
⃓⃓⃓
< ϵ =

1

2
,

that is, a contradiction.

An analogous argument in case (b) leads to FZτ−+1(t) ≥ FZτ−
(s). A consequence

is
1

2
= ϵ <

⃓⃓⃓
FZτ−

(s)− FZτ−
(t)
⃓⃓⃓
= FZτ−

(s)− FZτ−
(t)

≤ FZτ−+1(t)− FZτ−
(t) =

⃓⃓⃓
FZτ−+1(t)− FZτ−

(t)
⃓⃓⃓
< ϵ =

1

2
,

again a contradiction.

Since both case (a) and (b) lead to contradictions, the hypothesis must be false,

i.e.

E
(︁
log|C|+

)︁
<∞.
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Since the conditions of Theorem 3.2 part (b) hold, it follows that the (Zk)k≥1

must converge absolutely almost surely.

3.1.3 Main result

From the proof of Lemma 3.6 and Theorem 3.2 we can summarize the main

convergence result as the theorem below.

Theorem 3.7. Let −∞ < µ < 0. Then Equation (3.6) has a solution Z, which

is unique in distribution, if and only if

E
(︁
log|C|+

)︁
<∞.

On the other hand, when µ = −∞, E
(︁
log|C|+

)︁
<∞ is only a su�cient condition

for the existence of a solution to Equation (3.6). In both cases (Zk)k≥1 converges

a.s. to the solution Z.

Proof. The proof of Lemma 3.6 showed that a solution unique in distribution

exists and Zk converges to it a.s. as long as µ < 0 and E
(︁
log|C|+

)︁
< ∞. The

proof of the converse fails only when µ = −∞.

The case when µ = −∞ is more di�cult, and moreover, if one desires to model

rates of return with a Cauchy distribution, then µ will not exist. Both cases

are solved by Goldie and Maller in [16], where a somewhat complicated integral

criterion is derived.

3.2 The moments of a cash �ow

This section is concerned with formulas for moments of i.i.d. cash �ows and

their present values. The accumulated value of i.i.d. payments C1, C2, . . . , Ck

that earn i.i.d. returns R1 = U1 − 1, R2 = U2 − 1, . . . , Rk = Uk − 1, is governed

by the recursive formula (cf. (3.1), the annuity equation)

Sk = Uk(Sk−1 + Ck).
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In this section we also assume that (Uk)k≥1 and (Ck)k≥1 are mutually indepen-

dent.

As a separate case, we de�ne a present value process

Zk = Vk(Zk−1 + Ck),

which has the same structure. As such, all formulas are applicable to both

discounted and non-discounted cash �ows. Most of the credit for the work in

this section goes to Dufresne [13, 12], who has studied moments of annuities

extensively with di�erence equations. The coe�cient calculations are my own,

however.

3.2.1 Di�erence equations for integer moments

Let uj = E (U j) and cj = E (Cj) . Then an application of the Binomial theorem

yields

E (Sm
k ) = umE ((Sk−1 + Ck)

m) = um

m∑︂
j=0

(︃
m

j

)︃
cm−jE

(︁
Sj
k−1

)︁
. (3.9)

Equation (3.9) can be used to recursively compute the higher moments. Moving

on, we bring out the last term of the sum, getting a di�erence equation

E (Sm
k )− umE

(︁
Sm
k−1

)︁
= um

m−1∑︂
j=0

(︃
m

j

)︃
cm−jE

(︁
Sj
k−1

)︁
. (3.10)

This is an example of a non-homogeneous �rst-order di�erence equation satis�ed

by E (Sm
k ) . The corresponding homogeneous equation is

E (Sm
k )− umE

(︁
Sm
k−1

)︁
= 0,

which is solved by E (Sm
k ) = K · ukm, where K is a constant. To characterise the

whole set of solutions to a non-homogeneous di�erence equation, one needs only

�nd a particular solution and then add the particular solution to the solution of

the corresponding homogeneous equation. For example, consider the case m = 1.

Then,

E (Sk)− u1E (Sk−1) = u1c1
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is the non-homogeneous equation. This equation can in fact be solved by a

constant if u1 ̸= 1, since x− u1x = u1c1 implies that x = u1c1/(1− u1). In other

words, assuming that u1 ̸= 1, the general solution of the equation is

E (Sk) = K1u
k
1 +

u1c1
1− u1

,

where K1 is a constant again. We can �nd the value of K1 by applying the initial

condition S0 = 0, which leads to K1 = −u1c1/(1− u1) and so,

E (Sk) =
u1c1 − uk+1

1 c1
1− u1

,

is the full solution to the di�erence equation. For higher moments, the calcula-

tions and applying boundary conditions quickly becomes very di�cult. However,

some information about the structure of solutions can still be gained. The solu-

tion to the m = 1 case can be written as,

E (Sk) = K0 +K1 · uk1,

where K0, K1 are constants. The case when u1 = 1 has the solution E (Sk) = kc1,

as is easy to see.

Now, consider the m = 2 case. Then the di�erence equation becomes,

E
(︁
S2
k

)︁
− u2E

(︁
S2
k−1

)︁
= 2u2c1E (Sk−1) + u2c2.

However, we already have a full solution to the m = 1 case, so we insert that

into the right-hand side (assuming �rst that u1 ̸= 1), yielding

E
(︁
S2
k

)︁
− u2E

(︁
S2
k−1

)︁
= 2u2c1

(︃
u1c1 − uk1c1

1− u1

)︃
+ u2c2.

We try a solution of the form E (S2
k) = K0 + K1 · uk1. Then the left-hand side

evaluates to K0 − u2K0 +K1(u1 − u2)u
k−1
1 . For a while, we will assume u1 ̸= 1

and u2 ̸= 1. Rearranging the right-hand side, we get

(1− u2)K0 + (u1 − u2)K1 · uk−1
1 = (1− u2)

[︃
u2c2(1− u1) + 2u1u2c

2
1

(1− u2)(1− u1)

]︃

+(u1 − u2)

[︃
− 2u1u2c

2
1

(u1 − u2)(1− u1)

]︃
· uk−1

1 .

This expression allows us to identify the values of the constants as

K0 =
u2c2(1− u1) + 2u1u2c

2
1

(1− u2)(1− u1)
, K1 = − 2u1u2c

2
1

(u1 − u2)(1− u1)
.
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The homogeneous equation's solution added to this yields a solution

E
(︁
S2
k

)︁
= K0 +K1u

k
1 +K2u

k
2,

and to get the value of K2 one needs only apply the boundary condition S0 = 0

in order to get K2 = −(K0 +K1).

On the other hand, if u1 = 1 were the case, then the equation to solve would

have been

E
(︁
S2
k

)︁
− u2E

(︁
S2
k−1

)︁
= 2u2c1 (kc1) + u2c2.

In this case it simpli�es the solution method if one tries a particular solution

E (S2
k) = K0 + K1 · (k + 1). No calculations will be shown, but the particular

solution is

K0 =
u2c2
1− u2

− 2c21u2
(1− u2)2

, K1 =
2c21u2
1− u2

.

From this the general solution can be found as usual. We will not elaborate on the

further special cases when u2 = 1 or u2 = u1, as they tend to be less interesting,

but the reader should keep these methods in mind. Dufresne formulates the

conditions

ui ̸= uj, 0 ≤ i < j ≤ m, (3.11)

that guarantee that no complications arise (note that u0 = 1 so none of the mo-

ments can be 1). �Normally� these conditions will hold, because if the very

standard conditions U ≥ 0 and E (U) > 1 hold, then for m ≥ 2 it holds

that E (Um) > E (Um−1) . To see this, recall that ∥X∥p = (E (|X|p))1/p is non-

decreasing with respect to p. Then the fact follows from

(E (Um))
1
m ≥ (E

(︁
Um−1

)︁
)

1
m−1 ⇒ E (Um) ≥ (E

(︁
Um−1

)︁
)1+

1
m−1 > E

(︁
Um−1

)︁
.

In general, the following theorem holds.

Proposition 3.8. Provided conditions (3.11) hold up to m, then the m-moments

have the form

E (Sm
k ) =

m∑︂
j=0

dmju
k
j , (3.12)

where the {dmj, 0 ≤ j ≤ m} are constant with respect to k and uj = E (U j) .
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Proof. It has already been shown that the solution has the desired form when

m = 1, 2. Moreover, the solution to the homogeneous di�erence equation is

always the part with ukm. We only need to show that a particular solution has

the appropriate form, and this can be done inductively. As such, we assume that

E
(︁
Sm−i
k

)︁
=

m−i∑︂
j=0

d(m−i)ju
k
j ,

for all 1 ≤ i ≤ (m − 1). Then, clearly the right-hand side of (3.10) can be

rearranged to have the form
∑︁m−1

j=0 Kju
k
j , while the left-hand side becomes

(1− um)K
′
0 +

m−1∑︂
j=1

(uj − um)K
′
ju

k−1
k .

From there it is only a matter of trying a particular solution of the same form,

matching the expressions, and solving the system of equations. Then by adding

the solution to the homogeneous equation, the solution has the desired form.

Finally, Dufresne [12] has calculated a recursive formula for the constants dmj

by taking formula (3.12) and inserting it into (3.10). This yields the recursive

relation

dmj =
um

uj − um

m−1∑︂
i=j

(︃
m

i

)︃
cm−idij, 0 ≤ j ≤ m− 1,

dmm = −
m−1∑︂
j=0

dmj.

(3.13)

No more e�cient formulas are currently known.

3.2.2 Moments of a discounted perpetuity

Now, some remarks about discounted cash �ows and perpetuities. If (Ck, Vk)k≥1

are i.i.d., then the discounted cash �ow Zk satis�es (3.6), and so the moments can

be calculated in the same way. However, particular care that conditions (3.11)

hold must be taken, since a discounted cash �ow implies that E (V ) < 1.

On the other hand, if a discounted cash �ow is a convergent perpetuity with Ck ⊥
Vk,∀k ∈ N, the calculation of the moments at in�nity are simpli�ed signi�cantly.
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If the conditions in Theorem (3.7) hold, then the moments of the perpetual cash

�ow must satisfy

E (Zm
∞) = E (V m)E ((Z∞ + C)m) = vm

m∑︂
j=0

(︃
m

j

)︃
cm−jE

(︁
Zj

∞
)︁
,

where vk = E
(︁
V k
)︁
. This leads to a particularly simple equation of

E (Zm
∞)− vmE (Zm

∞) = vm

m−1∑︂
j=0

(︃
m

j

)︃
cm−jE

(︁
Zj

∞
)︁
.

If conditions (3.11) hold, this can always be solved:

E (Zm
∞) =

vm
1− vm

m−1∑︂
j=0

(︃
m

j

)︃
cm−jE

(︁
Zj

∞
)︁
. (3.14)

Equation (3.14) is an excellent formula for recursive computation of higher mo-

ments for perpetuities. Despite this a general formula for direct computation

would be ideal, yet no such formula has, to my knowledge, been discovered.

3.3 The distribution of a perpetuity

This section is dedicated to examples where distributions for Z∞ can be derived.

In the following the sequences (Ck)k≥1, (Vk)k≥1 are, unless otherwise speci�ed,

assumed to be i.i.d. and mutually independent. Most of the examples are due

to Vervaat [33] and Dufresne [12].

3.3.1 Limit of characteristic functions

Example 3.9 (Compound geometric, Vervaat [33], Dufresne [12]). Let C be

arbitrary and V ∼ Ber(p), q = 1 − p > 0. This models a situation where there

is some chance after every time period that all payments will stop, or that their

worth will become zero from that point forward. At time k = 1 this is a com-

pound Bernoulli probability, that is, Z1 = C1 with probability p and Z1 = 0

with probability q. For Z2, it's as a branch from Z1, i.e. if Z1 had value 0 then
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Z2 = 0. On the other hand, if Z1 = C1, then Z2 = C1 + C2 with probability p

and Z2 = C1 with probability q. Generalizing,

Zk =

⎧⎨⎩
∑︁m

j=1Cj with probability pmq, for 0 ≤ m ≤ k − 1∑︁k
j=1Ck with probability pk otherwise.

Let the characteristic function of C be φ(s) = E
(︁
eisC

)︁
. In terms of φ, we have

E
(︁
eisZk

)︁
=

k−1∑︂
m=0

[︂
qpmE

(︂
eis

∑︁m
j=1 Cj

)︂]︂
+ pkE

(︂
eis

∑︁k
j=1 Cj

)︂
= q

k−1∑︂
m=0

[pmφ(s)m] + pkφ(s)k

= q
1− pkφ(s)k

1− pφ(s)
+ pkφ(s)k.

Recall that for every s ∈ R, |φ(s)| ≤ 1, and so pkφ(s)k → 0 as k → ∞. As such,

E
(︁
eisZ∞

)︁
=

q

1− pφ(s)
.

This is the characteristic function of a compound geometric distribution.

Example 3.10 (Random geometric series). Consider a case where the discount-

ing factor V = v ∈ (0, 1) is constant. In most cases sums of random variables

are di�cult to compute, but if C is �nite a.s. this is a convergent perpetuity.

For some particular choices of C we can easily compute the distribution. For

example, let C ∼ N(µ, σ2). Then

E
(︁
eisZk

)︁
= E

(︂
eis

∑︁k
j=1 v

jCj

)︂
=

k∏︂
j=1

φ(svj) =
k∏︂

j=1

eisv
jµ−σ2(vjs)2/2

= exp

{︄
isµ

k∑︂
j=1

vj − s2

2
σ2

k∑︂
j=1

(v2)j

}︄
.

As k → ∞, we use the geometric series formula and get

E
(︁
eisZ∞

)︁
= exp

{︃
is

vµ

1− v
− s2

2

v2σ2

1− v2

}︃
,

which corresponds to a N
(︂

vµ
1−v

, v2σ2

1−v2

)︂
-distribution.
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In the above two examples, please note that since we know the examples are

perpetuities it constitutes proof that the convergence is actually almost sure (ex-

cept if C has a distribution with in�nite or non-existent mean, like e.g. Lévy or

Cauchy distributions). In general pointwise convergence of characteristic func-

tions can only be used as an argument for convergence in distribution.

3.3.2 Vervaat-class perpetuities

In some cases it's possible to use Equation (3.6) to derive a di�erential equation

for the characteristic function of Z. In this section a class of such perpetuities is

discussed.

Example 3.11 (Vervaat perpetuities, Vervaat [33], Dufresne [12]). Let the dis-

counting factor V be an exponential function of the rate of return R, which is

assumed to be exponentially distributed with parameter α > 0. Vervaat repre-

sents this by writing V = e−R d
= X1/α, where X ∼ U(0, 1), which results in a

density

fV (x) = αxα−11[0,1](x).

Note that this is the density function of the β(α, 1) distribution de�ned on the

closed interval [0, 1]; the general β(a, b) distribution has density

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, for 0 < x < 1.

It holds that −∞ < µ < 0, so if also E
(︁
log|C|+

)︁
<∞ we can use Equation (3.6)

to derive the distribution of Z∞. With η(s) .

.= E
(︁
eisZ

)︁
and φ(s) .

.= E
(︁
eisC

)︁
, we

get

η(s) = E
(︁
eisV (Z+C)

)︁
=

∫︂ ∞

−∞
fV (x)E

(︁
eisx(Z+C)

)︁
dx

=

∫︂ 1

0

αxα−1E
(︁
eisxZ

)︁
E
(︁
eisxC

)︁
dx =

∫︂ 1

0

αxα−1η(sx)φ(sx)dx,

where substituting u = sx yields

η(s) = αs−α

∫︂ s

0

uα−1η(u)φ(u)du.

Multiplying both sides by sα and taking the derivative gives a di�erential equa-

tion

sαη′ + αsα−1η = αsα−1ηφ.
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Dividing both sides by sαη and rearranging yields

η′

η
= αs−1(φ− 1),

which is easily recognized as an elementary di�erential equation with the solution

η(s) = exp

{︃
α

∫︂ s

0

φ(u)− 1

u
du

}︃
. (3.15)

This de�nes the Vervaat-class perpetuities. For some distributions of C the in-

tegral in the characteristic function can be easy to calculate, as the next few

examples show.

Example 3.12 (Vervaat gamma, Vervaat [33], Dufresne [12]). Consider a Ver-

vaat perpetuity with C ∼ Exp(λ). Then φ(s) = λ(λ − is)−1. With this, the

expression for η(s) (3.15) becomes

exp

{︃
α

∫︂ s

0

1

u
· λ− (λ− iu)

λ− iu
du

}︃
= eα log(λ)−α log(λ−is) =

(︃
λ

λ− is

)︃α

.

This is the characteristic function of the Γ(α, λ)-distribution.

Example 3.13 (Vervaat symmetric VG). This is a slight modi�cation of the

above example, and to the author's knowledge this approach provides a new

proof for this explicit solution to (3.6). Consider a Vervaat perpetuity with C ∼
Laplace(0, λ). The situation should be thought of as exponentially distributed

size of payments, but without knowledge of whether we will receive or pay the

amount. It is an in�nite series of coin �ips determining whether we pay or

get paid (in other words, not much unlike trading in securities). In this case

φ(s) = λ2(λ2 + s2)−1 and the expression for η(s) (3.15) becomes

exp

{︃
α

∫︂ s

0

1

u
· λ

2 − (λ2 + u2)

λ2 + u2
du

}︃
= exp

{︃
−α
∫︂ s

0

u du

λ2 + u2

}︃

= exp
{︂
−α
2
log(λ2 + s2) +

α

2
log(λ2)

}︂
=

(︃
λ2

λ2 + s2

)︃α/2

.

This is the characteristic function of a symmetric Variance-gamma distribution,

or VG distribution for short, with mean zero, which arises among other places

as the distribution of the di�erence between two i.i.d. χ2-distributed random

variables, although it can also be de�ned as a generalization of the Laplace

distribution. Note that if α = 2 then Z would follow a Laplace(0, λ) distribution.
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The variance-gamma distribution has four parameters in general. We show its

density below. If X ∼ V G(m, a, b, λ), with λ > 0 and γ =
√
a2 − b2 > 0, then

its density function is de�ned for any x ∈ R and is given by

fX(x) =
γ2λ|x−m|λ−1/2Kλ−1/2(a|x−m|)√

πΓ(λ)(2a)λ−1/2
eb(x−m),

where K denotes a function, given by

Kα(x) =
π

2
· I−α(x)− Iα(x)

sin(απ)
,

where

Iα(x) =
∞∑︂
k=0

1

k!Γ(k + α + 1)

(︂x
2

)︂2k+α

.

The functions Kα and Iα are called modi�ed Bessel functions of the �rst and

second kind, respectively. With the same parameters, the characteristic function

of a VG-distributed variable is given by

E
(︁
eisX

)︁
= emis

(︂
γ/
√︁
a2 − (b+ is)2

)︂2λ
.

The next example will be the �nal Vervaat perpetuity brought up in this section

and unlike the prior examples, this is only expressed as a di�erence of two random

variables. Despite leading to di�culties for moment calculations, it is still a useful

expression for numerical computations.

Example 3.14. The idea in this example is to have C follow a distribution

that has a similar two-way exponential character as the Laplace distribution,

but skewed. Such a distribution can be constructed as follows. Let a, b > 0, and

C = XF − (1−X)U, X ∼ Ber

(︃
b

a+ b

)︃
, F ∼ Exp(a), U ∼ Exp(b), (3.16)

where F ⊥ U and X is independent of F,U. Then the characteristic function φ

of C is easily calculated.

φ(s) = E
(︁
eisC

)︁
= E

(︁
eis(XF−(1−X)U)

)︁
=

b

a+ b
E
(︁
eisF

)︁
+

a

a+ b
E
(︁
e−isU

)︁
=

b

a+ b
· a

a− is
+

a

a+ b
· b

b+ is
.
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Plugging this into the integral in (3.15) yields

I(s) .

.=

∫︂ s

0

φ(u)− 1

u
du =

∫︂ s

0

1

u

[︃
b

a+ b
· a

a− is
+

a

a+ b
· b

b+ is
− a+ b

a+ b

]︃
du

=
b

a+ b

∫︂ s

0

a
a−iu

− 1

u
du+

a

a+ b

∫︂ s

0

b
b+iu

− 1

u
du

=
b

a+ b
log

(︃
a

a− is

)︃
+

a

a+ b
log

(︃
b

b+ is

)︃
.

As such, from (3.15) we get

η(s) = eαI(s) =

(︃
a

a− is

)︃ αb
a+b
(︃

b

b+ is

)︃ αa
a+b

.

Let G1 ∼ Γ(αb/(a+ b), a) and G2 ∼ Γ(αa/(a+ b), b), and G1 ⊥ G2. Then,

η(s) = E
(︁
eisG1

)︁
· E
(︁
e−isG2

)︁
= E

(︁
eis(G1−G2)

)︁
.

It is now established that Z
d
= G1 −G2.

There is a slight modi�cation of the Vervaat perpetuity technique that is easily

applied to �nding solutions for the stochastic equation

Z
d
= V Z + C, V, Z, C independent.

Consider V as before, so that

η(s) = E
(︁
eisZ

)︁
= E

(︁
eisV Z+isC

)︁
= E

(︁
eisC

)︁
E
(︁
eisV Z

)︁
= φ(s)

∫︂ 1

0

αxα−1η(sx)dx

= αφ(s)s−α

∫︂ s

0

uα−1η(u)du,

leading to the equation

sα
η(s)

φ(s)
= α

∫︂ s

0

uα−1η(u)du.

Taking the derivative and multiplying by s−αφ(s)/η(s) yields the di�erential

equation
η′

η
=
α

s
(φ− 1) +

φ′

φ
,

which has the solution

η(s) = φ(s) exp

{︃
α

∫︂ s

0

φ(u)− 1

u
du

}︃
. (3.17)

This form can be useful when a solution to (3.6) is already known but a solution

to Z
d
= V Z + C is desired instead. We illustrate on the prior example, 3.14.
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Corollary 3.15. Let G1 ∼ Γ(1+αb/(a+b), a) and G2 ∼ Γ(1+αa/(a+b), b), and

G1 ⊥ G2. Assume we have a Vervaat setting with V = e−R, where R ∼ Exp(α)

and that C is as in Example 3.14. Then

Z = G1 −G2

solves the stochastic equation

Z
d
= V Z + C, V, Z, C independent.

Proof. In Example 3.14, we had a Vervaat perpetuity with

φ(s) =
b

a+ b
· a

a− is
+

a

a+ b
· b

b+ is

and

η(s) =

(︃
a

a− is

)︃ αb
a+b
(︃

b

b+ is

)︃ αa
a+b

.

Using the modi�cation (3.17) to get a solution to

Z
d
= V Z + C, V, Z, C independent,

we get

E
(︁
eisZ

)︁
=

(︃
b

a+ b
· a

a− is
+

a

a+ b
· b

b+ is

)︃(︃
a

a− is

)︃ αb
a+b
(︃

b

b+ is

)︃ αa
a+b

=
b

a+ b

(︃
a

a− is

)︃1+ αb
a+b
(︃

b

b+ is

)︃ αa
a+b

+
a

a+ b

(︃
b

b+ is

)︃1+ αa
a+b
(︃

a

a− is

)︃ αb
a+b

=

(︃
a

a− is

)︃1+ αb
a+b
(︃

b

b+ is

)︃1+ αa
a+b
[︃

b

a+ b
· b+ is

b
+

a

a+ b
· a− is

a

]︃
= E

(︁
eis(G1−G2)

)︁ [︃b+ is+ a− is

a+ b

]︃
= E

(︁
eis(G1−G2)

)︁
,

where G1 ∼ Γ(1 + αb/(a + b), a) and G2 ∼ Γ(1 + αa/(a + b), b), and G1 ⊥ G2.

This proves the assertion.
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3.3.3 Beta-gamma algebra

There are also methods for �nding solutions to (3.6) that rely on other stochastic

identities. A big interest of Daniel Dufresne [11, 9, 10] is properties of Gamma

and Beta distributions that lead to equations in distribution. We list some well-

known such properties without proofs.

X ∼ Γ(a, k), Y ∼ Γ(b, k), X ⊥ Y ⇒ X + Y ∼ Γ(a+ b, k) (3.18)

X ∼ Γ(a, 1), Y ∼ Γ(b, 1), X ⊥ Y ⇒ X/(X + Y ) ∼ β(a, b) (3.19)

X1, X2 ∼ Γ(a, 1), Y1, Y2 ∼ Γ(b, 1), all independent

⇒ X1

X1 + Y1
· (X2 + Y2)

d
= X1. (3.20)

Together with Theorem 3.7, various distributions of perpetuities can be derived

from these properties. For example, (3.20) immediately leads to a solution with

V ∼ β(a, b), C ∼ Γ(b, 1), and Z ∼ Γ(a, 1). Checking, one easily sees that the

conditions in Theorem 3.7 hold, so this is a convergent perpetuity with a known

distribution. In fact, this is a slight generalization of Example 3.12. Moreover, if

every payment is multiplied by a constant k, then the perpetuity Z would also be

multiplied by that k. Since, with the parametrization of the Gamma distribution

we have used so far, kX ∼ Γ(a, 1/k) whenever X ∼ Γ(a, 1), it follows that when

C ∼ Γ(b, 1/k) we have Z ∼ Γ(a, 1/k).

In the following it will be useful to introduce an extra distribution, with density

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 + x)−a−b1(0,∞)(x), a, b > 0.

This distribution is called a Beta distribution of the second kind and denoted by

β2(a, b). The Beta distribution of the second kind is of special interest since it

arises most naturally as a transformed Beta distribution where if X ∼ β(a, b),

then

Y =
X

1−X
∼ β2(a, b).

Although it may look like a stochastic version of the geometric series formula,

this is not how the distribution arises. Here is an example where it arises as a

perpetuity.

Example 3.16 (Dufresne [12, 11]). Let a, b > 0, V ∼ β2(a, a + b) and C ≡
1. Then Z ∼ β2(a, b) is a solution to (3.6). This is most easily shown by an
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application of property (3.20). We introduce a variable B ∼ β(a, b), and see that

if Z = B/(1−B), then

(Z + 1)−1 = (1−B) ∼ β(b, a).

Introducing variables X ∼ Γ(a, 1), Y ∼ Γ(b, 1) such that B = X/(X + Y ), we

get

(Z + 1) = (X + Y )/Y.

But on the other hand, if V = B′/(1 − B′) where B′ ∼ β(a, a + b) and B′ =

X ′/(X ′ + Y ′) with X ′ ∼ Γ(a, 1), Y ′ ∼ Γ(a+ b, 1), then

V =
B′

1−B′ =
X ′/(X ′ + Y ′)

Y ′/(X ′ + Y ′)
=
X ′

Y ′ .

Since X ′ and Y ′ are independent we can separate them and get

V (Z + 1) =
X ′

Y ′ ·
X + Y

Y
,

and since Y ′ = Ga+Gb for some independent Γ(a, 1),Γ(b, 1) distributed random

variables, we can apply property (3.20) and get

V (Z + 1)
d
=
X ′

Y
∼ β2(a, b),

which is the same distribution as that of Z. In other words, Z solves Equation

(3.6). What remains to be seen is that V satis�es the conditions of Theorem 3.2.

Consider

log|V | = log|X ′| − log|Y ′|.

In other words, E (log|V |) < 0 if and only if E (log|X ′|) < E (log|Y ′|). It can be

shown that the logarithmic expectation of gamma distributions can be expressed

with the digamma function ψ. For X ′,

E (logX) = ψ(a)− log(1) = −γ +
∞∑︂
k=0

(︃
1

k + 1
− 1

k + a

)︃

= −γ +
∞∑︂
k=0

(︃
a− 1

(k + 1)(k + a)

)︃
,

which is an (absolutely) convergent series since

∞∑︂
k=0

(︃
1

(k + 1)(k + a)

)︃
<

∞∑︂
k=0

1

k2
<∞.
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As such,

E (log|V |) = ψ(a)− ψ(a+ b) =
∞∑︂
k=0

(︃
1

k + a+ b
− 1

k + a

)︃
< 0,

since clearly a+ b > a. Thus, µ < 0 and by theorem 3.7 the solution Z is unique

in distribution and the value of the perpetuity converges to Z a.s.

Some more examples can be found in [11, 9, 10].
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Chapter 4

Continuous-time models

Consider �rst a discrete-time model (as in Chapter 3). A typical way of introduc-

ing continuous time is to write a discrete-time process (Sk)k≥0 as a step function

S(t) .

.= S[t], for t ≥ 0. Taking it one step further, such models can be made more

precise by shortening the intervals, e.g. by setting S(t) .

.= S[tn] for some n ∈ N.
Then the number of discrete steps taken until time t were multiplied by n, so the

terms of the model also need to be scaled appropriately. This procedure is well

represented by Dufresne [12], as a prerequisite for his convergence theorem (for

which we will present an alternative proof in Section 4.3). The bottom line is

that the discrete-time processes of Chapter 3 have continuous-time analogues as

integral processes and that this can be rigorously proven using techniques related

to weak convergence in Skorokhod space. This shall not be done here, however;

instead the interested reader is referred to Dufresne's articles [13, 12], but see

also section 5.2.

A continuous-time cash �ow with random return on investment is

St =

∫︂ t

0

eXt−XsdYs, (4.1)

where X is a return-on-investment generating process and Y is a payment gen-

erating process. In our case, we are most interested in the integral representing

the present value of a continuous cash �ow,

Zt = e−XtSt =

∫︂ t

0

e−XsdYs, (4.2)
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and the present value of the corresponding perpetuity is thus

Z∞ =

∫︂ ∞

0

e−XsdYs. (4.3)

For most of this chapter we shall use the assumption that X and Y are some

types of Lévy processes. Dufresne [12] restricts himself to Brownian motion with

drift, while also de�ning the processes S and Z di�erently so as to preserve

consistency with his chapter on discrete-time models.

The next proposition is one that Dufresne proves as a consequence of his weak

convergence of discrete-time models. The proof supplied here is instead by ele-

mentary stochastic calculus.

Proposition 4.1. Let X and Y be standard independent Brownian motions and

let ˜︁Xt
.

.= γt+ σXt,˜︁Yt .

.= µt+ ζYt,
(4.4)

where µ, γ, σ, ζ ∈ R.

Then the process S, de�ned by

St =

∫︂ t

0

eX̃t−X̃sd˜︁Ys, (4.5)

satis�es the SDE

dSt = (αSt + µ)dt+ σStdXt + ζdYt, (4.6)

where α = γ + σ2/2.

Proof. The SDE (4.6) can be solved with integration by parts. First, recall that

d
(︂
e−X̃t

)︂
=

(︃
−γ +

σ2

2

)︃
e−X̃tdt− σe−X̃tdXt, (4.7)

according to the geometric Brownian motion equation. Then, by the Itô integra-

tion by parts formula of equation (2.1)

d
(︂
e−X̃tSt

)︂
= e−X̃tdSt + Std

(︂
e−X̃t

)︂
+ d⟨e−X̃ , S⟩t.

Using Proposition 2.16, we see that the cross-variation

d⟨e−X̃ , S⟩t = −σ2e−X̃tStdt.
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We insert the cross-variation and equations (4.6) and (4.7) into the integration

by parts formula, yielding

d
(︂
e−X̃tSt

)︂
= (αSt + µ)e−X̃tdt+ σe−X̃tStdXt + ζe−X̃tdYt

+

(︃
−γ +

σ2

2

)︃
e−X̃tStdt− σe−X̃tStdXt + d⟨e−X̃ , S⟩t,

which simpli�es to

d
(︂
e−X̃tSt

)︂
= µe−X̃tdt+ ζe−X̃tdYt. (4.8)

Equivalently expressed,

e−X̃tSt = µ

∫︂ t

0

e−X̃sds+ ζ

∫︂ t

0

e−X̃sdYs =

∫︂ t

0

e−X̃sd˜︁Ys,
and so the solution to equation (4.6) is

St =

∫︂ t

0

eX̃t−X̃sd˜︁Ys,
which wraps up the proof.

Remark 4.2 (Norberg [26]). The solution of Equation (4.6) can be rewritten as

a one-dimensional di�usion if one recognizes that

Wt
.

.=

∫︂ t

0

(S2
sσ

2 + ζ2)−1/2(SsσdXs + ζdYs)

is a standard Brownian motion. It is justi�ed by the fact that

⟨W,W ⟩t =
⟨︃∫︂ ·

0

(S2
sσ

2 + ζ2)−1/2SsσdXs,

∫︂ ·

0

(S2
sσ

2 + ζ2)−1/2SsσdXs

⟩︃
t

+

⟨︃∫︂ ·

0

(S2
sσ

2 + ζ2)−1/2ζdYs,

∫︂ ·

0

(S2
sσ

2 + ζ2)−1/2ζdYs

⟩︃
t

=

∫︂ t

0

(S2
sσ

2 + ζ2)−1(S2
sσ

2 + ζ2)dt = t

and Theorem 6.1 in [6]. Thus, S is governed by the one-dimensional di�usion

equation

dSt = (αSt + µ)dt+ (S2
t σ

2 + ζ2)1/2dWt, (4.9)

where α = γ + σ2/2.

The next section treats convergence criteria for perpetuities, very similarly to

the conditions of Chapter 3.
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4.1 Finiteness of perpetuities

4.1.1 A brief literature review

An overview of convergence criteria for perpetuities shall be presented below. In

this section we prove only what is necessary; other proofs, that would require

a signi�cant amount of theory, are omitted for the sake of brevity. In all such

cases, the reader is instead referred to a source that proves the theorem.

As a preliminary, we let

Zt =

∫︂ t

0

e−Xsds,

for all t > 0, and present equivalent characterizations of the a.s. �niteness of

Z∞ = lim
t→∞

Zt.

Theorem 4.3 (Bertoin and Yor [2]). Let X = (Xt)t≥0 be a Lévy process with

Lévy-Khintchine triplet (a, σ2,Π) and let

Z∞ =

∫︂ ∞

0

e−Xsds.

Then the following assertions are equivalent:

(i) Z∞ <∞ a.s.

(ii) P (Z∞ <∞) > 0.

(iii) lim
t→∞

Xt = +∞ a.s.

(iv) lim
t→∞

t−1Xt > 0 a.s.

(v)
∫︁∞
1

P (Xt ≤ 0) t−1dt <∞.

(vi) Either ∫︂
(−∞,−1)

|x|Π(dx) <∞ and

∫︂
|x|>1

xΠ(dx) > a,

or ∫︂
(−∞,−1)

|x|Π(dx) =
∫︂
(1,∞)

xΠ(dx) = ∞ and

∫︂ ∞

1

Π̄−(x)d
(︁
x/J+(x)

)︁
<∞,

where for every x > 0

Π̄+(x) = Π
(︁
(x,∞)

)︁
, Π̄− = Π((−∞,−x)) , J+(x) =

∫︂ x

0

Π̄+(y)dy.

Proof. See [2].
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Corollary 4.4. If Xt = γt + σWt, where W = (Wt)t≥0 is a standard Brownian

motion, then

Z∞ =

∫︂ ∞

0

e−Xsds <∞

if and only if γ > 0.

Proof. From Theorem 4.3, assertions (i) and (iii).

Consider the integral ∫︂ ∞

0

f(Xs)ds,

where X is a Lévy process as before. Some results in the literature give a simple

integral test for convergence of such an integral functional. The currently best

published characterization is due to Döring and Kyprianou [8], which we shall

not discuss further due to the restricted scope of this thesis.

In a forthcoming paper by Kolb and Savov [22], the integral test is improved upon

by �nding a criterion that extends to any Lévy process with lim
t→∞

Xt = +∞. A

similar integral test was also proved by Salminen and Yor [30] for Brownian

motion with drift, and by Erickson and Maller [14] when restricting f to non-

increasing functions. We state the integral test by Erickson and Maller.

Theorem 4.5 (Erickson and Maller [14]). Let X = (Xt)t≥0 be a Lévy process

with lim
t→∞

Xt = +∞, and let f be a positive and non-increasing function on R.
Then, ∫︂ ∞

0

f(Xs)ds <∞ ⇐⇒
∫︂ ∞

0

f(x)dx <∞.

Proof. See [14].

4.1.2 Two short propositions on convergence

For reference we state a part of Theorem 4.3. We only prove the implication in

one direction, but the argument is a simpler one than in [2].

Proposition 4.6. Let

Zt =

∫︂ t

0

e−Xsds,

where X is a Lévy process. Then, lim
t→∞

Zt <∞ a.s. if and only if lim
t→∞

Xt = +∞
a.s.
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Proof. (⇒) This direction relies on advanced theory. See [2] for the details.

(⇐) Assume lim
t→∞

Xt = +∞ a.s. If P
(︂
lim
t→∞

Xt

t
≤ 0
)︂
> 0, then it would immedi-

ately contradict the assumption. Thus, lim
t→∞

Xt

t
> 0 a.s.

This implies that there exists an a.s. �nite stopping time τ and an ϵ > 0 such

that for all t > τ(ω), Xt(ω)
t

> ϵ. As such, (cf. Dufresne [12, Prop. 4.4.1])

Z∞ =

∫︂ τ

0

e−Xsds+

∫︂ ∞

τ

e−Xsds,

where the �rst term clearly is �nite a.s. and the other,∫︂ ∞

τ

e−Xsds =

∫︂ ∞

τ

e−sXs
s ds <

∫︂ ∞

τ

e−sϵds <∞ a.s.

So Z∞ <∞ a.s. and thus the proof is complete.

Next we consider the case where we integrate not with respect to Yt = t, but

a process with a Brownian and a jump component, in addition to determinis-

tic drift. The previous proposition dealt with drift only, while among others

Dufresne [12] has proved convergence for the Brownian component. The inter-

esting part is the jump process, which we assume to be a compound Poisson

process. I have discovered an interesting proof that the integral with respect to

the compound Poisson process converges a.s. as t→ ∞.

Proposition 4.7. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be independent Lévy pro-

cesses. Assume Y is given by

Yt = µt+ σWt +
Nt∑︂
k=1

Kk,

where W is a standard Brownian motion, N is a Poisson point process, and

K1, K2, . . . , are i.i.d. random variables with E
(︁
log|K1|+

)︁
<∞.

Then

Z∞ =

∫︂ ∞

0

e−XsdYs

is �nite a.s., if lim
t→∞

Xt = +∞ a.s.

Proof. Separate the integral Zt into

Zt = µ

∫︂ t

0

e−Xsds+ σ

∫︂ t

0

e−XsdWs +

∫︂ t

0

e−Xsd

(︄
Ns∑︂
k=1

Kk

)︄
.
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The �rst term converges a.s. as t → ∞ according to Proposition 4.6. The same

holds for the second term according to Dufresne [12, Prop. 4.4.1]. That leaves

the third integral.

By our assumptions, for every ϵ > 0, there exists an a.s. �nite random time τ

such that for all t > τ(ω), Xt(ω)
t

> ϵ. As such,∫︂ ∞

0

e−Xsd

(︄
Ns∑︂
k=1

Kk

)︄
≤
∫︂ τ

0

e−Xsd

(︄
Ns∑︂
k=1

Kk

)︄
+

∫︂ ∞

τ

e−sϵd

(︄
Ns∑︂
k=1

Kk

)︄
.

In a �nite interval a Poisson process has a Poisson-distributed number of jumps,

that is �nite a.s., so the integral up to τ is �nite a.s. For the latter integral,∫︂ ∞

τ

e−sϵd

(︄
Ns∑︂
k=1

Kk

)︄
=

∞∑︂
k=Nτ+1

e−ϵTkKk = e−ϵTNτ

∞∑︂
k=1

e−ϵTkKk <
∞∑︂
k=1

e−ϵTkKk,

where Tk, k = 1, 2, . . . is the sequence of jump times for N, and, recalling that

τ ⊥ N, the memoryless property of the Poisson process N was used. Recall that

for a Poisson process, for any k ∈ N,

Tk =
k∑︂

j=1

υj,

where υj ∼ Exp(λ) is an i.i.d. sequence of sojourn times. As such, de�ning

Vk .

.= e−ϵυk , we have ∫︂ ∞

τ

e−sϵd

(︄
Ns∑︂
k=1

Kk

)︄
<

∞∑︂
k=1

Kk

k∏︂
j=1

Vj,

that is a discrete-time perpetuity, which is �nite a.s. according to Theorem 3.7.

This completes the proof.

4.2 The moments of a continuous cash �ow

4.2.1 Interest and payments as Brownian motion with drift

Like in chapter 3, this section shows how to compute moments of the processes

(St)t≥0 and (Zt)t≥0, de�ned as

St =

∫︂ t

0

eX̃t−X̃sd˜︁Ys,
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and

Zt =

∫︂ t

0

e−X̃sd˜︁Ys,
where ˜︁X and ˜︁Y are two independent Brownian motions with drift, representing

the rate of return on investment and the stream of payments received, respec-

tively. For the sake of reference their de�nitions are

˜︁Xt
.

.= γt+ σXt,˜︁Yt .

.= µt+ ζYt.

Once again, much of the basic work is due to Dufresne [12, 13].

In order to derive moment formulas for the process S, the Itô formula with

f(t, x, y) = xm will be applied on the Itô SDE (4.6). Then,

∂f

∂t
= 0,

∂f

∂x
= mxm−1,

∂2f

∂x2
= m(m− 1)xm−2.

As such,

dSm
t =

(︃
mSm−1

t (αSt + µ) +
1

2
m(m− 1)Sm−2

t (σ2S2
t + ζ2)

)︃
dt

+mSm−1
t σStdXt +mSm−1

t ζdYt,

where (Xt)t≥0 and (Yt)t≥0 are two independent, standard Brownian motions.

We express this in integral form (as usual taking S0 = 0), while letting αm =

mγ +m2σ2/2, βm = mµ, and εm = m(m− 1)ζ2/2,

Sm
t =

∫︂ t

0

(︁
αmS

m
s + βmS

m−1
s + εmS

m−2
s

)︁
ds+mσ

∫︂ t

0

Sm
s dXs +mζ

∫︂ t

0

Sm−1
s dYs.

Recall that E
(︂∫︁ t

0
GsdWs

)︂
= 0 when the process G ∈ L2 and is progressively

measurable with respect to the �ltration generated by W. Thus, by taking the

expectation and applying the Fubini-Tonelli theorem to change order of integra-

tion,

E (Sm
t ) =

∫︂ t

0

(︁
αmE (Sm

s ) + βmE
(︁
Sm−1
s

)︁
+ εmE

(︁
Sm−2
s

)︁)︁
ds.

Then, taking the derivative yields the di�erential equation

d

dt
E (Sm

t ) = αmE (Sm
t ) + βmE

(︁
Sm−1
t

)︁
+ εmE

(︁
Sm−2
t

)︁
. (4.10)
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Compare to the approach in Section 3.2. Starting from m = 1, Equation (4.6)

leads to
d

dt
E (St) = α1E (St) + β1.

We note that α1 = 0 only in a few special cases better left for later, so we assume

α1 ̸= 0. Then,

E (St) =
β1
α1

(︁
eα1t − 1

)︁
is the general solution. For m = 2 we have the equation

d

dt
E
(︁
S2
t

)︁
= α2E

(︁
S2
t

)︁
+ β2E (St) + ε2

= α2E
(︁
S2
t

)︁
+
β1β2
α1

(︁
eα1t − 1

)︁
+ ε2.

This is also a linear �rst-order di�erential equation, which is easily solved e.g.

by taking the general solution to the homogeneous equation and then using the

method of variation of constants. When 0 ̸= α1 ̸= α2 ̸= 0 the general solution is

E
(︁
S2
t

)︁
= − β1β2

α1α2

eα2t +
ε2
α2

(︁
eα2t − 1

)︁
+

β1β2
α1(α1 − α2)

(︁
eα1t − 1

)︁
+
β1β2
α1α2

.

Note that for m = 1, 2 the moments have the form

E (Sm
t ) =

m∑︂
j=0

dmje
αjt, (4.11)

where dmj are constants. It turns out that there is a continuous analogue to

Proposition 3.8.

Proposition 4.8. Let m ∈ N. Provided that αi ̸= αj, for all 0 ≤ i < j ≤ m,

Equation (4.11) holds, for some constants {dmj, 0 ≤ j ≤ m}.

Proof. The assertion was shown above for the cases m = 1, 2. We take an arbi-

trary m > 2 and assume it holds for m− 1 and m− 2, using induction to prove

it holds in general. Inserting Equation (4.11) into Equation (4.10) gives

d

dt
E (Sm

t ) = αmE (Sm
t ) + βm

m−1∑︂
j=0

d(m−1)je
αjt + εm

m−2∑︂
j=0

d(m−2)je
αjt

= αmE (Sm
t ) +

m−2∑︂
j=0

(βmd(m−1)j + εmd(m−2)j)e
αjt + βmd(m−1)(m−1)e

αm−1t.

48



CHAPTER 4. CONTINUOUS-TIME MODELS Jonas Lindblad

This is a linear di�erential equation which can be solved by variation of constants.

First, notice that the general solution to the homogeneous equation

d

dt
E (Sm

t ) = αmE (Sm
t )

is

E (Sm
t ) = Keαmt.

Then a particular solution found by variation of constants is given by∫︂ t

0

g(s)eαm(t−s)ds,

where

g(s) =
m−2∑︂
j=0

(βmd(m−1)j + εmd(m−2)j)e
αjs + βmd(m−1)(m−1)e

αm−1s.

Computing the solution from this and adding the solution to the homogeneous

equation yields the general solution

E (Sm
t ) = Keαmt +

m−2∑︂
j=0

βmd(m−1)j + εmd(m−2)j

αj − αm

(︁
eαjt − eαmt

)︁
+
βmd(m−1)(m−1)

αm−1 − αm

(︁
eαm−1t − eαmt

)︁
,

(4.12)

which is clearly an expression that can be rearranged into form (4.11).

It is also possible to �nd a recursive formula for the constants dmj from Equation

(4.12). First consider that the initial condition S0 = 0 must hold, which leads to

K = 0. Thus,

dmj =
βmd(m−1)j + εmd(m−2)j

αj − αm

, 0 ≤ j ≤ m− 2,

dm(m−1) =
βmd(m−1)(m−1)

αm−1 − αm

, dmm = −
m−1∑︂
j=0

dmj.

(4.13)

Restriction to the case ˜︁Yt = t

In the special case where ζ = 0 (i.e. payments are constant) there is a general

formula for dmj. Dufresne [13] has derived the formula with a clever argument

based on interpolation theory; here we give an alternative proof relying on the

Fundamental Theorem of Algebra.
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Lemma 4.9. Suppose ai ̸= aj, whenever 0 ≤ i < j ≤ k holds. Then,

k∑︂
j=0

k∏︂
i=0
i ̸=j

(aj − ai)
−1 = 0.

Proof. We consider the expression as a function of ak, de�ning the function

f(x) =
k−1∑︂
j=0

(aj − x)−1

k−1∏︂
i=0
i ̸=j

(aj − ai)
−1 +

k−1∏︂
i=0

(x− ai)
−1.

Multiplying both sides by
∏︁k−1

i=0 (x−ai) gives a polynomial with extended domain

R,

p(x) = f(x)
k−1∏︂
i=0

(x− ai) = 1−
k−1∑︂
j=0

k−1∏︂
i=0
i ̸=j

x− ai
aj − ai

.

Then p has k roots, in the points a0, . . . , ak−1, but the degree of p is k − 1. By

the Fundamental Theorem of Algebra, p(x) = 0, for all x ∈ R. It then follows

directly that for x = ak such that ak ̸= ai for all i < k,

0 =
p(ak)∏︁k−1

i=0 (ak − ai)
=

k∑︂
j=0

k∏︂
i=0
i ̸=j

(aj − ai)
−1,

which proves the result.

Proposition 4.10. When ζ = 0 the constants in the recursive equations in

(4.13) are given by

dmj = µmm!
k∏︂

i=0
i ̸=j

(αj − αi)
−1. (4.14)

Proof. If ζ = 0, Equations (4.13) hold but with ε = 0. From earlier we know that

the assertion holds for m = 1 (recall that α0 = 0). What remains is to employ

induction over m. From (4.13), when j < m

dmj =
βm

αj − αm

µm−1(m− 1)!
m−1∏︂
i=0
i ̸=j

(αj − αi)
−1 = µmm!

m∏︂
i=0
i ̸=j

(αj − αi)
−1.

And for the last constant,

dmm = −µmm!
m−1∑︂
j=0

m∏︂
i=0
i ̸=j

(αj − αi)
−1
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= −µmm!
m∑︂
j=0

m∏︂
i=0
i ̸=j

(αj − αi)
−1 + µmm!

m∏︂
i=0
i ̸=m

(αj − αi)
−1 = µmm!

m∏︂
i=0
i ̸=m

(αj − αi)
−1,

where Lemma (4.9) has been used.

Remark 4.11. The solutions are slightly di�erent if αj = αm for some j < m.

When computing the particular solution for (4.12) there will be a point where

one computes the integral ∫︂ t

0

e(αj−αm)sds.

Thus, the solution will have a last term of the form K · teαmt, where K is a

constant. Due to the recursive structure successive higher moments will also

contain such a term.

Moments of a discounted cash �ow

Recall that

Zt =

∫︂ t

0

e−X̃sd˜︁Ys.
De�ne a new process (Bt)t∈R, by

Bt =

∫︂ t

0

e−(X̃t−X̃s)d˜︁Ys.
Recalling that X̃ has stationary increments, i.e. for all t ≥ s ≥ 0, X̃t−s

d
= X̃t−X̃s,

one sees that

Bt
d
=

∫︂ t

0

e−X̃t−sd˜︁Ys d
= −

∫︂ 0

t

e−X̃sd˜︁Ys = ∫︂ t

0

e−X̃sd˜︁Ys,
provided that ˜︁X and ˜︁Y are independent. In this case it follows that

Zt
d
= Bt, ∀t ≥ 0.

The moments of Zt can therefore be found from the process B, which has the

same structure as S. Essentially, B is a version of S where ˜︁Xt gets mapped to

− ˜︁Xt, or equivalently γ, σ get replaced by −γ,−σ. Thus the moments of Zt can

be computed from Equations (4.11) and (4.13) with only αm = mγ + m2σ2/2

replaced by αm = −mγ +m2σ2/2.

Dufresne [12] also makes this argument, and lists the constants dmj, 0 ≤ j ≤ m

when possible.
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4.2.2 Exponential functionals of a stochastic process

In this section moment formulas for the exponential functional of an additive

process are derived using recent results due to Salminen and Vostrikova [29].

Prior work such as [32] and [5] have derived moment formulas for exponential

functionals of subordinators or with an exponential stopping time. Lévy pro-

cesses satisfying their conditions is an important special case of Salminen and

Vostrikova's work.

Let (Xt)t≥0 be an additive process. De�ne

Zs,t
.

.=

∫︂ t

s

e−Xudu, 0 ≤ s < t ≤ ∞.

Assume

E
(︁
e−λXt

)︁
<∞ for all t ≥ 0, λ ≥ 0. (4.15)

Then Φ given by

Φ(t, λ) .

.= − logE
(︁
e−λXt

)︁
is well-de�ned, for t ≥ 0 and λ ≥ 0.

For 0 ≤ s ≤ t ≤ ∞ and α ≥ 0, de�ne

m
(α)
s,t

.

.= E
(︁
Zα

s,t

)︁
= E

(︃(︃∫︂ t

s

e−Xudu

)︃α)︃
, m

(α)
t

.

.= m
(α)
0,t .

Theorem 4.12 (Salminen and Vostrikova [29]). Let 0 ≤ s ≤ t <∞. Then, given

the assumption (4.15), it holds for α ≥ 1 that m
(α)
s,t <∞ and

m
(α)
s,t = α

∫︂ t

s

m
(α−1)
u,t e−(Φ(u,α)−Φ(u,α−1))du. (4.16)

Proof. When t > 0, Zs,t is continuous and decreasing in s in the interval [0, t].

As such, for α ≥ 1

Zα
s,t − Zα

0,t = α

∫︂ Zs,t

Z0,t

xα−1dx = α

∫︂ s

0

Zα−1
u,t dZu,t,

where the last integral is interpreted as a Riemann-Stieltjes integral for almost

all ω, and the variable substitution formula for Riemann-Stieltjes integrals has

been used (valid since Zs,t is continuous and monotonous in s, see Apostol [1,

Thm. 7.7]). Moving on, from the de�nition of Z it follows that

Zα
s,t − Zα

0,t = −α
∫︂ s

0

Zα−1
u,t e

−Xudu.
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Now de�ne ˆ︁Zs,t
.

.=

∫︂ t−s

0

e−(Xu+s−Xs)du.

Then, ˆ︁Zs,t = eXsZs,t = eXs

∫︂ t

s

e−Xudu.

As such,

Zα
s,t − Zα

0,t = −α
∫︂ s

0

ˆ︁Zα−1
u,t e

−αXudu. (4.17)

The independent increments property of X implies that, for α ≥ 0

E
(︂ ˆ︁Zα

u,t

)︂
= E

(︁
Zα

0,t

)︁
/E
(︁
e−αXu

)︁
. (4.18)

Now, let α ∈ [1, 2]. Taking the expectation in (4.17),

E
(︁
Zα

s,t − Zα
0,t

)︁
= −α

∫︂ s

0

E
(︂ ˆ︁Zα−1

u,t

)︂
E
(︁
e−αXu

)︁
du > −∞, (4.19)

with �niteness holding due to, with 0 ≤ p < 1, E
(︁
Zp

u,t

)︁
≤ E (Zu,t)

p , from

Jensen's inequality, and the assumption that E
(︁
e−λXu

)︁
< ∞ for every t ≥

0, λ ≥ 0. With these conditions, the monotone convergence theorem as s ↑ t can
be used on equation (4.19), yielding

E
(︁
Zα

0,t

)︁
= α

∫︂ t

0

E
(︂ ˆ︁Zα−1

u,t

)︂
E
(︁
e−αXu

)︁
du.

Now insert this back into (4.19) to get

E
(︁
Zα

s,t

)︁
= α

∫︂ t

s

E
(︂ ˆ︁Zα−1

u,t

)︂
E
(︁
e−αXu

)︁
du.

Now, since α ∈ [1, 2] (4.18) can be applied in order to get the desired formula,

m
(α)
s,t = α

∫︂ t

s

m
(α−1)
u,t e−(Φ(u,α)−Φ(u,α−1))du.

The formula also holds for α > 2 since (4.18) holds for any α ≥ 0. Finiteness is

preserved since the moments were �nite when α ∈ [1, 2].

A generalized formula holds also for t = ∞, although only for positive integer

moments. No more practical formulas that can be applied on perpetuities based

on an additive discounting process appear to be known currently.
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Theorem 4.13 (Salminen and Vostrikova [29]). For 0 ≤ s ≤ t ≤ ∞ and n ∈ N,

m
(n)
s,t = n!

∫︂ t

s

dt1

∫︂ t

t1

dt2 · · ·

· · ·
∫︂ t

tn−1

dtn exp

{︄
−

n∑︂
k=1

(Φ(tk, n− k + 1)− Φ(tk, n− k))

}︄
.

(4.20)

The moment of the perpetuity, m
(n)
s,∞, is �nite if and only if the integral is con-

vergent.

Proof. First, let t <∞. Then,

m
(n)
s,t = E

(︃(︃∫︂ t

s

e−Xudu

)︃n)︃
= E

(︃∫︂ t

s

· · ·
∫︂ t

s

e−(Xt1+···+Xtn )dt1 · · · dtn
)︃

= n!E

(︃∫︂ t

s

dt1e
−Xt1

∫︂ t

t1

dt2e
−Xt2 · · ·

∫︂ t

tn−1

dtne
−Xtn

)︃
= n!

∫︂ t

s

dt1

∫︂ t

t1

dt2 · · ·
∫︂ t

tn−1

dtnE
(︁
e−(Xt1+···+Xtn )

)︁
.

Note the use of a symmetry argument above: for a continuous function such that

g(x1, . . . , xi, xi+1, . . . , xn) = g(x1, . . . , xi+1, xi, . . . , xn) for every i, it holds that∫︂ b

a

· · ·
∫︂ b

a

g(x1, . . . , xn)dx1 · · · dxn = n!

∫︂ b

a

dx1

∫︂ b

x1

dx2 · · ·
∫︂ b

xn−1

dxng(x1, . . . , xn),

which is the claim used in the third step above.

Because X has independent increments,

E
(︁
e−αXt

)︁
= E

(︁
e−α(Xt−Xs)−αXs

)︁
= E

(︁
e−α(Xt−Xs)

)︁
E
(︁
e−αXs

)︁
.

As such,

E
(︁
e−α(Xt−Xs)

)︁
= E

(︁
e−αXt

)︁
/E
(︁
e−αXs

)︁
= e−(Φ(t,α)−Φ(s,α)).

Next we notice that (with t0 = 0)

Xt1 + · · ·+Xtn =
n∑︂

k=1

(n− k + 1)(Xtk −Xtk−1
).
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Using the equations above, we get

m
(n)
s,t = n!

∫︂ t

s

dt1

∫︂ t

t1

dt2 · · ·
∫︂ t

tn−1

dtnE
(︂
e−

∑︁n
k=1(n−k+1)(Xtk

−Xtk−1
)
)︂

= n!

∫︂ t

s

dt1

∫︂ t

t1

dt2 · · ·

· · ·
∫︂ t

tn−1

dtn exp

{︄
−

n∑︂
k=1

(Φ(tk, n− k + 1)− Φ(tk−1, n− k + 1))

}︄
.

Finally, recognize from the de�nition of Φ that Φ(0, λ) = Φ(t, 0) = 0. Then,

n∑︂
k=1

(Φ(tk, n− k + 1)−Φ(tk−1, n− k + 1)) =
n∑︂

k=1

(Φ(tk, n− k + 1)−Φ(tk, n− k)).

Therefore,

m
(n)
s,t = n!

∫︂ t

s

dt1

∫︂ t

t1

dt2 · · ·

· · ·
∫︂ t

tn−1

dtn exp

{︄
−

n∑︂
k=1

(Φ(tk, n− k + 1)− Φ(tk, n− k))

}︄
.

The formula is further proved for the t = +∞ case by taking the limit, using the

monotone convergence theorem to justify lim
t→∞

E
(︂
m

(n)
s,t

)︂
= E

(︂
m

(n)
s,∞

)︂
.

Exponential functionals of a Lévy process

The above results are well applied to the case where X is a Lévy process. The

assumption (4.15) is kept, but the Laplace exponent φ satis�es

E
(︁
e−λXt

)︁
= e−tφ(λ), for λ ≥ 0.

Theorem 4.14 (Salminen and Vostrikova [29]). Let X be a Lévy process satis-

fying (4.15). The moments of

Zt =

∫︂ t

0

e−Xudu

are given by the recursive formula

m
(α)
t = αe−tφ(α)

∫︂ t

0

m(α−1)
u euφ(α)du, (4.21)

for α ≥ 1.
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Proof. First, note that, with α ≥ 1,

m
(α−1)
u,t = e−uφ(α−1)m

(α−1)
t−u .

This is because, keeping in mind the stationary of increments property,

m
(α−1)
u,t = E

(︄(︃∫︂ t

u

e−Xvdv

)︃α−1
)︄

= E

(︄
e−(α−1)Xu

(︃∫︂ t

u

e−(Xv−Xu)dv

)︃α−1
)︄

= e−uφ(α−1)E

(︄(︃∫︂ t−u

0

e−(Xv+u−Xu)dv

)︃α−1
)︄

= e−uφ(α−1)E

(︄(︃∫︂ t−u

0

e−Xvdv

)︃α−1
)︄

= e−uφ(α−1)m
(α−1)
t−u ,

as it should be.

Applying Theorem 4.12 with s = 0 yields

m
(α)
t = α

∫︂ t

0

m
(α−1)
u,t e−u(φ(α)−φ(α−1))du.

Applying the prior equation here leads to

m
(α)
t = α

∫︂ t

0

e−uφ(α−1)m
(α−1)
t−u e−u(φ(α)−φ(α−1))du = α

∫︂ t

0

m
(α−1)
t−u e−uφ(α)du.

Finally, a variable substitution of v = t− u directly yields

m
(α)
t = αe−tφ(α)

∫︂ t

0

m(α−1)
v evφ(α)dv,

which proves the theorem.

Next, we present an explicit formula for positive integer moments of Zt.

Theorem 4.15. Let X be a Lévy process satisfying (4.15). If φ(i) ̸= φ(j),

whenever 0 ≤ i < j ≤ n, then the positive integer moments of

Zt =

∫︂ t

0

e−Xudu, t > 0

are given by the formula

E (Zn
t ) = n!

n−1∑︂
k=0

e−tφ(k) − e−tφ(n)∏︁n
i=0
i ̸=k

(φ(i)− φ(k))
, n ∈ N. (4.22)
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Proof. The proof is carried out by induction. For n = 1, recalling that φ(0) = 0,

compute the integral in (4.21),

m
(1)
t = e−tφ(1)

∫︂ t

0

euφ(1)du =
1− e−tφ(1)

φ(1)
,

which is consistent with (4.22).

Next, assume that formula (4.22) holds for some n ∈ N. We shall show that

this implies that it also holds for n+ 1. Again, consider formula (4.21) but with

α = n+ 1. Then, using the induction assumption,

m
(n+1)
t = (n+ 1)e−tφ(n+1)

∫︂ t

0

m(n)
u euφ(n+1)du

= (n+ 1)e−tφ(n+1)

∫︂ t

0

n!

⎡⎣n−1∑︂
k=0

e−uφ(k) − e−uφ(n)∏︁n
i=0
i ̸=k

(φ(i)− φ(k))

⎤⎦ euφ(n+1)du

= (n+ 1)!e−tφ(n+1)

n−1∑︂
k=0

⎡⎣∫︁ t

0
eu(φ(n+1)−φ(k))du−

∫︁ t

0
eu(φ(n+1)−φ(n))du∏︁n

i=0
i ̸=k

(φ(i)− φ(k))

⎤⎦ = (∗),

where we need to insert expressions for the integrals in the sum. For k ≤ n,∫︂ t

0

eu(φ(n+1)−φ(k))du =
et(φ(n+1)−φ(k)) − 1

φ(n+ 1)− φ(k)
.

Inserting this into (∗) yields

(∗) = (n+ 1)!
n−1∑︂
k=0

⎡⎣ e−tφ(k)−e−tφ(n+1)

φ(n+1)−φ(k)
− e−tφ(n)−e−tφ(n+1)

φ(n+1)−φ(n)∏︁n
i=0
i ̸=k

(φ(i)− φ(k))

⎤⎦
= (n+ 1)!

n−1∑︂
k=0

e−tφ(k) − e−tφ(n+1)∏︁n+1
i=0
i ̸=k

(φ(i)− φ(k))
− A,

where

A = (n+ 1)!
n−1∑︂
k=0

e−tφ(n) − e−tφ(n+1)

(φ(n+ 1)− φ(n))
∏︁n

i=0
i ̸=k

(φ(i)− φ(k))

= (n+ 1)!
e−tφ(n) − e−tφ(n+1)

φ(n+ 1)− φ(n)
·
n−1∑︂
k=0

1∏︁n
i=0
i ̸=k

(φ(i)− φ(k))
.

Now, applying Lemma 4.9 with aj = φ(j) yields the equation

n−1∑︂
k=0

1∏︁n
i=0
i ̸=k

(φ(i)− φ(k))
= − 1∏︁n

i=0
i ̸=n

(φ(i)− φ(n))
,
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so that

A = −(n+ 1)!
e−tφ(n) − e−tφ(n+1)∏︁n+1

i=0
i ̸=n

(φ(i)− φ(k))
.

It follows that

m
(n+1)
t = (n+ 1)!

n−1∑︂
k=0

e−tφ(k) − e−tφ(n+1)∏︁n+1
i=0
i ̸=k

(φ(i)− φ(k))
+ (n+ 1)!

e−tφ(n) − e−tφ(n+1)∏︁n+1
i=0
i ̸=n

(φ(i)− φ(k))

= (n+ 1)!
n∑︂

k=0

e−tφ(k) − e−tφ(n+1)∏︁n+1
i=0
i ̸=k

(φ(i)− φ(k))
,

which proves the assertion for the n + 1 case. By induction, the formula holds

for all n ∈ N.

The moments of Z∞ also have an explicit formula in terms of the Lévy exponent.

Theorem 4.16 (Salminen and Vostrikova [29]). Let X be a Lévy process with

Laplace exponent φ. De�ne N .

.= min{n ∈ N : φ(n) ≤ 0}. Then,

E (Zn
∞) =

⎧⎨⎩n!
∏︁n

k=1 φ(k)
−1, if n < N,

+∞, if n ≥ N.
(4.23)

Proof. We use the integral expressions in Theorem 4.13,

E (Zn
∞) = n!

∫︂ ∞

s

dt1

∫︂ ∞

t1

dt2 · · ·

· · ·
∫︂ ∞

tn−1

dtn exp

{︄
−tk

n∑︂
k=1

(φ(n− k + 1)− φ(n− k))

}︄
.

The innermost integral is evaluated for n > 1,∫︂ ∞

tn−1

e−tn(φ(1)−φ(0))dtn =
e−tn−1φ(1)

φ(1)
.

Thus, the next integral becomes∫︂ ∞

tn−2

e−tn−1(φ(2)−φ(1)) e
−tn−1φ(1)

φ(1)
dtn−1 =

e−tn−2φ(2)

φ(1)φ(2)
,

provided that N > 2. Proceeding by induction, take a k ∈ N, k < n, assume that

N > k and the k:th integral evaluates to e−tn−kφ(k)

φ(1)···φ(k) . Then the k + 1:th integral

evaluates to∫︂ ∞

tn−k−1

e−tn−k(φ(k+1)−φ(k)) e−tn−kφ(k)

φ(1) · · ·φ(k)
dtn−k =

e−tn−k−1φ(k+1)

φ(1) · · ·φ(k + 1)
,
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if N > k + 1. If N = k + 1 the integral diverges to +∞ either because, if

φ(k + 1) = 0 the integral becomes
∫︁∞
tn−k−1

1dtn−k or because if φ(k + 1) < 0 the

sign of the integral evaluates to positive.

The assertion then follows from the principle of induction, stopped at k = n

where the outermost integral is evaluated to

E (Zn
∞) =

⎧⎨⎩n!
∏︁n

k=1 φ(k)
−1, if n < N,

+∞, if n ≥ N.

In some cases all the integer moments of Z∞ exist. When this holds it may be

possible to �nd the distribution of Z∞ by computing its moment-generating func-

tion or identifying a distribution with identical integer moments. The following

proposition is an elementary consequence of the prior results of this section.

Proposition 4.17. Assume that N .

.= min{n ∈ N : φ(n) ≤ 0} = ∞. Further

assume there exist δ > 0 such that for all |s| < δ, it holds that

∞∑︂
k=0

sk

φ(1) · · ·φ(k)
<∞. (4.24)

Then the distribution of Z∞ is determined by its moments and Z∞ has a moment-

generating function, given by

MZ∞(s) =
∞∑︂
k=0

sk

φ(1) · · ·φ(k)
, for |s| < δ.

Proof. Assume t is such that (4.24) holds. Then, using Theorem 4.16,

∞∑︂
k=0

sk

φ(1) · · ·φ(k)
=

∞∑︂
k=0

sk

k!

k!

φ(1) · · ·φ(k)
=

∞∑︂
k=0

skE
(︁
Zk

∞
)︁

k!
=MZ∞(s).

The moment-generating function of Z∞ is thus de�ned for |s| < δ. The fact that

the distribution is determined by its moments follows immediately from Theorem

2.2.

The proposition also has a simple and useful corollary; a slight modi�cation of a

result in [5].
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Corollary 4.18. Assume that φ(n) > 0 for all n ∈ N and that φ(∞) .

.=

lim
n→∞

φ(n) ∈ R+ ∪ {+∞}. Then the distribution of Z∞ is determined by its mo-

ments and Z∞ has a moment-generating functionMZ∞(s) de�ned for |s| < φ(∞).

Proof. By the ratio test for series convergence,

lim
n→∞

⃓⃓⃓⃓
⃓

sn+1

φ(1)···φ(n+1)

sn

φ(1)···φ(n)

⃓⃓⃓⃓
⃓ = lim

n→∞

⃓⃓⃓⃓
s

φ(n+ 1)

⃓⃓⃓⃓
=

|s|
φ(∞)

,

which is smaller than 1 if and only if |s| < φ(∞). Then the series in Proposition

4.17 is convergent for such s, and the assertions follow.

Negative moments

We shall see that in certain cases the negative moments of the functional

Z∞ =

∫︂ ∞

0

e−Xsds

can be easily calculated and in fact determine its distribution. Note that the

assumptions on X made here shall di�er from those in the prior section. To this

end, let X be a Lévy process with a well-de�ned function ϕ determined by

E
(︁
eλXt

)︁
= etϕ(λ) <∞, for all t ≥ 0, λ ≥ 0. (4.25)

If Ψ is the characteristic exponent of X, then ϕ(λ) = −Ψ(−iλ) is an analytical

extension of the characteristic exponent (see [2] for details). We shall also assume

that X is such that Z∞ <∞ almost surely, i.e. by Proposition 4.6 that lim
t→∞

Xt =

+∞. This entails that

m = E (X1) = ϕ′(0+) ∈ (0,∞). (4.26)

Proposition 4.19 (Bertoin and Yor [2]). Assume conditions (4.25) and (4.26)

hold. Then, for all k ∈ N and t ∈ (0,+∞], we have E
(︁
Z−k

t

)︁
<∞. Furthermore,

E
(︁
Z−k

∞
)︁
= m

ϕ(1) · · ·ϕ(k − 1)

(k − 1)!
. (4.27)

If X has no positive jumps, then the distribution of Z∞ is determined by its

negative integer moments.
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Proof. Let a, λ > 0. Then it follows from the Markov inequality that

P (X1 ≥ a) = P
(︁
eλX1 ≥ eλa

)︁
≤

E
(︁
eλX1

)︁
eλa

= exp{ϕ(λ)− λa}.

Moreover, by the assumption that lim
t→∞

Xt = +∞, there exists a > 0 su�ciently

large that

P

(︃
inf

0≤t≤1
Xt < −a

)︃
≤ 1/2.

Thus, if we de�ne τy .

.= inf{t ∈ R+ : Xt > y},

P

(︃
sup
0≤t≤1

Xt ≥ 2a

)︃
= P

(︃
sup
0≤t≤1

Xt ≥ 2a,X1 < a

)︃
+P

(︃
sup
0≤t≤1

Xt ≥ 2a,X1 ≥ a

)︃
≤ P (τ2a < 1, X1 −Xτ2a < −a) +P

(︃
sup
0≤t≤1

Xt ≥ a,X1 ≥ a

)︃
≤ P

(︃
sup
0≤t≤1

Xt ≥ 2a

)︃
·P
(︃

inf
0≤t≤1

Xt < −a
)︃
+P (X1 ≥ a)

≤ 1

2
P

(︃
sup
0≤t≤1

Xt ≥ 2a

)︃
+P (X1 ≥ a) ,

where on the second line the Strong Markov Property was used. The resulting

inequality implies

P

(︃
sup
0≤t≤1

Xt ≥ 2a

)︃
≤ 2P (X1 ≥ a) ≤ 2 exp{ϕ(λ)− λa}.

This further implies that for all λ > 0 and 0 < ϵ < 1,

P
(︁
Z1 < ϵ2

)︁
≤ P

(︃∫︂ 1

0

exp{− sup
0≤t≤1

Xt}ds < ϵ2
)︃

= P

(︃
sup
0≤t≤1

Xt > 2 log(ϵ−1)

)︃
≤ 2eϕ(λ)ϵλ.

We note that P
(︁
Z−k

1 > ϵ−2k
)︁
= P (Z1 < ϵ2) and see that for k ∈ N,

E
(︁
Z−k

1

)︁
=

∫︂ ∞

0

P
(︁
Z−k

1 > x
)︁
dx = 2k

∫︂ ∞

0

y−2k−1P
(︁
Z−k

1 > y−2k
)︁
dy

≤ 2k

∫︂ 1

0

y−2k−12eϕ(λ)yλdy + 2k

∫︂ ∞

1

y−2k−1dy,

and as we can choose λ = 2k + 1, we get∫︂ 1

0

y−2k−12eϕ(λ)yλdy = 2

∫︂ 1

0

eϕ(2k+1)dy <∞,
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while clearly also ∫︂ ∞

1

y−2k−1dy <∞

holds. As such,

E
(︁
Z−k

1

)︁
<∞, ∀k ∈ N.

If 0 < t < 1, an analogous argument based on the fact that

P

(︃
sup
0≤s≤t

Xs ≥ 2a

)︃
≤ P

(︃
sup
0≤s≤1

Xs ≥ 2a

)︃
≤ exp{ϕ(λ)− λa},

leads to also E
(︁
Z−k

t

)︁
being �nite. On the other hand, for t > 1, Zt > Z1 implies

�niteness. Thus, for all t > 0,

E
(︁
Z−k

t

)︁
<∞, ∀k ∈ N.

Note that this includes the case when t = +∞, so the �rst part of the proposition

has been proven.

Now, we use the de�nition

Zs,∞ =

∫︂ ∞

s

e−Xudu.

As a function of s, Zs,∞ is monotonous and continuous, and so for r > 0 there is

the identity (cf. the proof of Theorem 4.12)

Z−r
t,∞ − Z−r

0,∞ = r

∫︂ t

0

e−XsZ−(r+1)
s,∞ ds. (4.28)

We also note that the properties of the Lévy process implies that

Zs,∞ = e−XsZ ′
∞,

where Z ′
∞

d
= Z∞ is independent of Xs. We insert this into (4.28) and take the

expected value, yielding

E
(︁
Z−r

∞
)︁ (︁
etϕ(r) − 1

)︁
= r

∫︂ t

0

esϕ(r)E
(︁
Z−(r+1)

∞
)︁
ds.

From this the recursive relation

E
(︁
Z−(r+1)

∞
)︁
=
ϕ(r)

r
E
(︁
Z−r

∞
)︁

(4.29)

62



CHAPTER 4. CONTINUOUS-TIME MODELS Jonas Lindblad

is derived. Keep in mind that for any r ∈ [0, 1), Z−r
∞ < Z−1

∞ , and so the dom-

inated convergence theorem can be used since it has already been established

that E (Z−1
∞ ) <∞. As such, letting r → 0+,

E
(︁
Z−1

∞
)︁
= lim

r→0+

ϕ(r)

r
= ϕ′(0+) = m.

Formula (4.27) is then acquired through induction.

Finally, if X lacks positive jumps, the measure Π is such that∫︂
R

(︁
1− eθx

)︁
Π(dx) =

∫︂
(−∞,0)

(︁
1− eθx

)︁
Π(dx),

which implies that ϕ(λ) ≤ aλ + 1
2
σ2λ2, for some a, σ ∈ R. In other words,

ϕ(k) = O(k2) as k → ∞. Then there exists a constant c > 0 such that for any

k ∈ N,

E
(︁
Z−k

∞
)︁
= m

ϕ(1) · · ·ϕ(k − 1)

(k − 1)!
≤ ckk!

Using this bound, take the series s from Theorem 2.2 and observe that

s

(︃
1

2c

)︃
=

∞∑︂
k=0

E
(︁
Z−k

∞
)︁
(1/2c)k

k!
≤

∞∑︂
k=0

1

2k
<∞.

As such, by Theorem 2.2 the distribution of Z−1
∞ is determined by its integer

moments. Consequently, Z∞ is determined by its negative integer moments.

4.3 The distribution of a perpetuity

This section contains a large number of examples of distributions of the random

variable Z∞. The high point is a short proof for Theorem 4.20 − the distribution

discovered by Dufresne [12] − while most subsequent examples are taken from

an article by Gjessing and Paulsen [15]. We complement their work by adding

some examples of our own and by providing alternative derivations for several of

their distributions.

The goal is to express the random value Z∞ either such that an explicit density is

known, or such that the value Z∞ can easily be simulated by taking samples from

other distributions. When these goals are achievable the value of the perpetuity

can easily be calculated.
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4.3.1 Dufresne's perpetuity

A search for explicit distributions of discounted perpetuities essentially started

with Dufresne's 1990 paper [12], and several examples have been found since. The

methods used for discovering new distributions vary; Dufresne originally used an

argument involving weak convergence from a discrete setting to continuous time,

others have used e.g. martingale theory or integro-di�erential equations. This

section is dedicated to presenting a large number of examples.

First, Dufresne's main result is presented with the argument for part (b) due to

Bertoin and Yor [2].

Theorem 4.20 (Dufresne's perpetuity). Let Z be de�ned by Zt =
∫︁ t

0
e−X̃sds,

where ˜︁Xt = γt+ σXt, with σ ̸= 0 and X a standard Brownian motion. Then:

(a) If γ ≤ 0 then Z∞ = ∞ a.s.

(b) If γ > 0 then Z−1
∞ ∼ Γ(2γ/σ2, 2/σ2).

Proof. (a) Follows from the fact that ˜︁Xt does not drift to +∞ and Proposition

4.6.

(b) Check that

E
(︂
eλX̃t

)︂
= eλγtE

(︁
eλσXt

)︁
= eλγt+tσ

2λ2

2 = e
t
(︂
γλ+σ2λ2

2

)︂
<∞ ∀t, λ ∈ R.

We de�ne ϕ(λ) = γλ+ σ2λ2

2
and use Proposition 4.19 to compute negative integer

moments for Z∞. The negative integer moments are given by

E
(︁
Z−k

∞
)︁
= E

(︂
X̃1

)︂ ϕ(1) · · ·ϕ(k − 1)

(k − 1)!
= γ

(︃
σ2

2

)︃k−1 k−1∏︂
j=1

(︃
2γ

σ2
+ j

)︃

=

(︃
σ2

2

)︃k k−1∏︂
j=0

(︃
2γ

σ2
+ j

)︃
=

(︃
σ2

2

)︃k Γ
(︁
k + 2γ

σ2

)︁
Γ
(︁
2γ
σ2

)︁ .

This is recognized as the k:th moment of a Γ(2γ/σ2, 2/σ2)-distribution. Since

the negative moments determine the distribution according to Proposition 4.19

the assertion has been proven.

Alternative proofs of the above theorem have been found by showing that the

expression is equivalent to the random last exit time of a Bessel process by M.

Yor in 1992 [34], and by means of martingale theory by Milevsky in 1997 [24].

There are also several other proofs which we do not refer to.
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4.3.2 Other perpetuities without jumps

Dufresne's result excludes some variants of his perpetuity, such as one with Brow-

nian payments instead of a constant continuous cash �ow. In this section other

possible settings that involve Brownian interest or payments, but no jump pro-

cesses. Unless otherwise speci�ed,X and Y are assumed to be standard Brownian

motions.

An especially simple method of �nding the distribution of a perpetuity is by

deriving it from another a priori known perpetuity. The following lemma provides

one such method.

Lemma 4.21 (Gjessing and Paulsen [15]). Let Z∞ =
∫︁∞
0
e−RtdWt, with W a

standard Brownian motion and let R be a Lévy process with lim
t→∞

Rt = +∞,

independent of W, and further let A =
∫︁∞
0
e−2Rtdt. Then

Z∞
d
= U

√
A,

where U ∼ N(0, 1), U ⊥ A.

Proof. Conditioning on R and using the Itô isometry, we get

E
(︁
Z2

∞|σ(R)
)︁
=

∫︂ ∞

0

e−2Rtdt = A.

By the assumptions on R we have that A is �nite a.s. As such, Z∞ ∼ N(0, A),

and so Z∞/
√
A ∼ N(0, 1). The random variable U = Z∞/

√
A is therefore inde-

pendent of R and so U ⊥ A.

Proposition 4.22 (Gjessing and Paulsen [15]). Let ˜︁Xt = γt + σXt, with γ > 0

and σ ̸= 0. Then ∫︂ ∞

0

e−X̃tdYt
d
=

1√
2γ
T,

where T ∼ T (2γ/σ2).

Proof. Consider that Dufresne's perpetuity (Theorem 4.20) has the distribution∫︂ ∞

0

e−2X̃tdt
d
=

1

G
, G ∼ Γ

(︃
γ

σ2
,

1

2σ2

)︃
.
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By using Lemma 4.21,∫︂ ∞

0

e−X̃tdYt
d
=

U√
G
, U ∼ N(0, 1), U ⊥ G.

Recall that
1

σ2
G ∼ Γ

(︃
γ

σ2
,
1

2

)︃
= χ2

(︃
2γ

σ2

)︃
,

and that

U

√︃
ν

V
∼ T (ν),

if V ∼ χ2(ν). Then,

U√
G

=
U/

√
σ2√︁

G/σ2

d
=

U/
√
σ2√︁

χ2(2γ/σ2)
=

U√
σ2

·

√︄
σ2

2γ
·

√︄
2γ/σ2

χ2(2γ/σ2)
d
=

1√
2γ
T.

Proposition 4.23 (Gjessing and Paulsen [15]). Let γ > 0 and let ˜︁Yt = µt+ ζYt.

Then, ∫︂ ∞

0

e−γtd˜︁Yt ∼ N

(︃
µ

γ
,
ζ2

2γ

)︃
.

Proof. This simple proof is omitted.

Proposition 4.24 (Gjessing and Paulsen [15]). Let ˜︁Xt = γt+σXt, ˜︁Yt = µt+ζYt,

with γ > 0, σ ̸= 0, ζ ̸= 0. Then ∫︂ ∞

0

e−X̃td˜︁Yt
is �nite a.s. according to Proposition 4.7. It is a Pearson type IV distribution

with density given by

f(z) =
K

(σ2z2 + ζ2)1/2+γ/σ2 exp

{︃
2γ

σζ
arctan

(︃
σ

ζ
z

)︃}︃
,

where K is a normalizing constant.

Proof. Proved in [27] for γ > σ2 and in [26] when γ > 0.

We have already exhausted every possibility without jump processes in ˜︁X or ˜︁Y .
Let us therefore turn to the case with jump processes.
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4.3.3 Application of discrete perpetuities

Below, NX , NY shall denote independent Poisson processes, both also indepen-

dent of X and Y, with respective intensity parameters λX and λY . Unless oth-

erwise speci�ed, the jump sizes shall be i.i.d. copies of SX ∼ Exp(α) and

SY ∼ Exp(β).

First, original proofs for a few simple cases omitted from [15] shall be presented.

The idea is to identify the continuous-time perpetuity with the Vervaat-class

perpetuities of the discrete-time section.

Proposition 4.25. Let γ > 0 and ˜︁Yt =∑︁NY (t)
i=1 SY (i). Then,∫︂ ∞

0

e−γtd˜︁Yt ∼ Γ

(︃
λY
γ
, β

)︃
.

Proof. We have ∫︂ ∞

0

e−γtd˜︁Yt = ∞∑︂
k=1

SY (k)
k∏︂

j=1

e−γτj ,

where (τj)j∈N is the sequence of i.i.d. sojourn times, each τj ∼ Exp(λY ).We note

that γτj ∼ Exp(λY /γ). The proposition is now identi�ed with Example 3.12.

Proposition 4.26. Let γ > 0 and ˜︁Yt =
∑︁NY (t)

i=1 SY (i), with jump sizes SY ∼
Laplace(0, β). Then, ∫︂ ∞

0

e−γtd˜︁Yt ∼ V G

(︃
0, β, 0,

λY
2γ

)︃
.

Proof. Analogous to the above case, relying instead on Example 3.13.

Recall that the variance-gamma (VG) distribution was de�ned in Chapter 3 as

a part of Example 3.13.

Proposition 4.27. Let γ > 0 and ˜︁Yt = µt+ ζYt ±
∑︁NY (t)

i=1 SY (i). Then,∫︂ ∞

0

e−γtd˜︁Yt d
= N ±G,

where N ∼ N(µ/γ, ζ2/2γ) and G ∼ Γ(λY /γ, β) are independent.

Proof. Directly from Propositions 4.23 and 4.25.
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Moreover, if SY ∼ Laplace(0, β) in the above, then from Proposition 4.26 we get

that ∫︂ ∞

0

e−γtd˜︁Yt d
= N + V,

where V ∼ V G
(︂
0, β, 0, λY

2γ

)︂
is independent of N.

The next distribution is one due to Gjessing and Paulsen which we shall derive,

once again, by identifying it with a discrete perpetuity. The method used by

Gjessing and Paulsen is di�erent.

Proposition 4.28 (Gjessing and Paulsen [15]). Let ˜︁Xt =
∑︁NX(t)

i=1 SX(i), with˜︁Xt = 0 if NX(t) = 0. Then,∫︂ ∞

0

e−X̃tdt ∼ Γ(1 + α, λX).

Proof. Observe that∫︂ ∞

0

e−X̃tdt =

∫︂ T1

0

dt+
∞∑︂
k=1

∫︂ Tk+1

Tk

exp

{︄
−

k∑︂
j=1

SX(j)

}︄
dt,

where Tk, k = 1, 2, . . . is the sequence of jump times for NX . Then, if we denote

by τk the k:th sojourn time of NX , it follows that∫︂ ∞

0

e−X̃tdt = τ0 +
∞∑︂
k=1

τk

k∏︂
j=1

e−SX(j),

in which the sum can be identi�ed with the perpetuity in Example 3.12, since

the sojourn times (τk)∞k=0 is an i.i.d. sequence of Exp(λX)-distributed variables.

Thus,
∞∑︂
k=1

τk

k∏︂
j=1

e−SX(j) ∼ Γ(α, λX).

Recalling that τ0 ∼ Exp(λX) = Γ(1, λX), we get the conclusion∫︂ ∞

0

e−X̃tdt ∼ Γ(1 + α, λX).

The distribution given in Proposition 4.30 relies on a preliminary result. It is

due to Gjessing and Paulsen, but the presented method of proof is once again

di�erent from theirs.
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Lemma 4.29. Let τ ∼ Exp(λ), µ, σ > 0 and W be a standard Brownian motion.

Assume τ ⊥ W. Further, let

l1 =
k − µ

σ2
, l2 =

k + µ

σ2
,

and k =
√︁
µ2 + 2λσ2. Then,

µτ + σWτ
d
= XF − (1−X)U,

where F ∼ Exp(l1), U ∼ Exp(l2) and X ∼ Ber(l2/(l1 + l2)) and X,F, U are

independent.

Proof. Let C = XF − (1 − X)U. It is easy to compute the moment-generating

function of C,

MC(s) =
l1l2

l1l2 + (l1 − l2)s− s2
=

k2 − µ2

k2 − µ2 − 2µsσ2 − s2σ4

=
µ2 −+2λσ2 − µ2

µ2 + 2λσ2 − µ2 − 2µsσ2 − s2σ4
=

λ

λ− µs− σ2s2

2

, s < min(l1, l2).

We carry out the proof by computing the moment-generating function of µτ +

σWτ as well.

E
(︁
es(µτ+σWτ )

)︁
=

∫︂ ∞

0

λe−λtE
(︁
es(µt+σWt)

)︁
dt

=

∫︂ ∞

0

λe

(︂
sµ+σ2s2

2
−λ

)︂
t
dt =

λ

λ− µs− σ2s2

2

, s < λ/µ.

The two moment-generating functions are equal in a neighbourhood of zero, and

so the variables are equal in distribution.

Proposition 4.30 (Gjessing and Paulsen [15]). Let ˜︁Xt =
∑︁NX(t)

i=1 SX(i) and˜︁Yt = µt+ ζYt, with ζ ̸= 0. Then,

Z∞ =

∫︂ ∞

0

e−X̃td˜︁Yt d
= G1 −G2,

where G1 ∼ Γ(a, l1) and G2 ∼ Γ(b, l2) are independent and

a = 1 +
α

2
+
αµ

2k
, b = 1 +

α

2
− αµ

2k
,

l1 =
k − µ

ζ2
, l2 =

k + µ

ζ2
,

and k =
√︁
µ2 + 2γXζ2.
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Proof. Observe that

Z∞ =

∫︂ ∞

0

e−X̃td˜︁Yt = ∞∑︂
k=0

(µτk + ζYτk)
k∏︂

j=1

e−SX(j),

where the sequence (τj)
∞
j=0 are the i.i.d. Exp(λX)-distributed sojourn times of

NX . We write Vj = e−SX(j) and Cj = µτj + ζYτj , for j = 0, 1, 2, . . . . Then note

that Z∞ must satisfy

Z∞ = V Z∞ + C, where V,C, Z∞ all independent.

The proposition is now clearly a consequence of Lemma 4.29 and Corollary 3.15.

Remark 4.31 (Gjessing and Paulsen [15]). Proposition 4.30 with µ = 0 gives

a di�erent distribution than Lemma 4.21 for
∫︁∞
0
e−X̃tdYt. In fact, by applying

both one arrives at the stochastic identity

G1 −G2
d
= U

√
G,

where G1 ⊥ G2, G1, G2 ∼ Γ(1 + a, b), and G ∼ Γ(1 + a, b2/2).

4.3.4 Identifying the distribution by its moments

Recall the method of proof used by Bertoin and Yor to prove Theorem 4.20. In

this section we prove some further results using similar arguments. The �rst two

examples are due to Gjessing and Paulsen, but their method of proof di�ers.

Proposition 4.32 (Gjessing and Paulsen [15]). Let ˜︁Xt = γt +
∑︁NX(t)

i=1 SX(i),

with γ > 0. Then,

Z∞ =

∫︂ ∞

0

e−X̃tdt
d
=

1

γ
B,

where

B ∼ β(1 + α, λX/γ).

Proof. In this case

E
(︂
e−θX̃t

)︂
= e−θγtE

(︂
e−θ

∑︁NX (t)

k=1 SX(k)
)︂
= e−tθγeλX t( α

α+θ
−1)
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= exp

{︃
−t
(︃
γθ + λX

θ

α + θ

)︃}︃
.

As such, the Laplace exponent of X is

φ(θ) = γθ

(︃
1 +

λX
γ(α + θ)

)︃
.

It is easy to see that φ(n) > 0 for all n ∈ N. Moreover, φ(∞) = +∞, so by

Corollary 4.18 the distribution of the perpetuity is determined by its positive

integer moments. That being the case, we use Formula 4.23 and see that

E (Zn
∞) = n!

n∏︂
k=1

k−1γ−1

(︃
γ(α + k) + λX
γ(α + k)

)︃−1

= γ−n

n−1∏︂
k=0

α + 1 + k

α + 1 + λX

γ
+ k

.

The product is identi�ed as the moments of a β(α+1, λX/γ)-distribution, which

settles the proof.

The following is a simple consequence of the above.

Proposition 4.33 (Gjessing and Paulsen [15]). Let ˜︁Xt = γt +
∑︁NX(t)

i=1 SX(i),

with γ > 0. Then, ∫︂ ∞

0

e−X̃tdYt
d
= U

√︄
B

2γ
,

where

U ∼ N(0, 1), B ∼ β(1 + α, λX/2γ).

Proof. From Proposition 4.32 with a direct application of Lemma 4.21.

The next two distributions are new. The idea is to take a similar case to Propo-

sition 4.32, but with negative jumps. Consequently a lower bound for the drift

factor is needed for the discounted perpetuity to be �nite.

Proposition 4.34. Let ˜︁Xt = γt−
∑︁NX(t)

i=1 SX(i), with γ > λX/α. Then,

Z∞ =

∫︂ ∞

0

e−X̃tdt
d
=

1

γB
,

where

B ∼ β(α− λX/γ, λX/γ).
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Proof. The distribution will be identi�ed by its negative integer moments. To

this end, we verify that conditions (4.25) and (4.26) hold for ˜︁X. Observe that for
θ ≥ 0,

E
(︂
eθX̃t

)︂
= eθγtE

(︂
e−θ

∑︁NX (t)
j=1 SX(j)

)︂
= eθγteλX t( α

α+θ
−1) = eθγt−λX t θ

α+θ .

Thus, we have E
(︂
eθX̃t

)︂
= etϕ(θ), where ϕ is given by

ϕ(θ) = θ

(︃
γ − λX

α + θ

)︃
,

and E
(︂
eθX̃t

)︂
= etϕ(θ) < ∞ (conditions (4.25)) does indeed hold. Moreover, we

have

ϕ′(θ) = γ − λX
α + θ

+
λX

(α + θ)2
θ.

As θ ↓ 0, we get ϕ(θ) → γ − λX/α > 0. Thus, condition (4.26) holds and

m = ϕ′(0+) = γ − λX/α.

We have now checked that the conditions in Proposition 4.19 are hold. Thus,

Z∞ has negative moments of all orders and since ˜︁X lacks positive jumps, the

distribution of Z∞ is determined by the negative integer moments. By formula

(4.27),

E
(︁
Z−k

∞
)︁
=

(︃
γ − λX

α

)︃ ∏︁k−1
m=1m

(︁
γ − λX

α+m

)︁
(k − 1)!

=
k−1∏︂
m=0

(︃
γ − λX

α +m

)︃
= γk

k−1∏︂
m=0

α− λX

γ
+m

α +m
,

which is identi�ed as the k:th moment of the random variable γB, where

B ∼ β(α− λX/γ, λX/γ).

It follows that Z−1
∞

d
= γB, which proves the assertion.

Again, the next example is a direct consequence of the prior one.

Proposition 4.35. Let ˜︁Xt = γt−
∑︁NX(t)

i=1 SX(i), with γ > λX/α. Then,

Z∞ =

∫︂ ∞

0

e−X̃tdYt
d
=

U√
2γB

,

where

U ∼ N(0, 1), B ∼ β

(︃
α

2
− λX

2γ
,
λX
2γ

)︃
, U ⊥ B.
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Proof. From Proposition 4.34 and Lemma 4.21.

We have now provided alternative derivations for a large number of examples,

yet the list in [15] is not yet exhausted. Subsequent distributions are not easily

found by reliance on prior methods, but we include them in order to give the

reader an idea of the scope of the current knowledge in the research literature.

4.3.5 The Gjessing-Paulsen method

In this section, let X, Y be independent Brownian motions as before, and let ˜︁X
and ˜︁Y be given by

˜︁Xt = γt+ σXt +

NX(t)∑︂
k=1

SX(k),

˜︁Yt = µt+ ζYt −
NY (t)∑︂
k=1

SY (k),

where NX , NY are independent Poisson processes, both also independent of X

and Y. The sequences SX(k), SY (k), k = 1, 2, . . . , are i.i.d. random jump vari-

ables. We shall also make use of the Laplace exponent of ˜︁X, de�ned as the

function HL in E
(︂
e−κX̃t

)︂
= e−tHL(κ), for κ ≥ 0. We change notation here be-

cause we will consistently use its expression given below:

HL(κ) = γκ− σ2κ2

2
+ λX(1−mL(κ)), (4.30)

where mL(κ) = E
(︁
e−κSX

)︁
. We also need the characteristic exponent of ˜︁Y at

time t = 1, that is ηC(u) = log
[︂
E
(︂
eiuỸ1

)︂]︂
. Thus,

ηC(u) = µui− ζ2u2

2
− λX(1− ρC(−u)), (4.31)

where ρC(u) = E
(︁
eiuSY

)︁
.

Finally, with

Z∞ =

∫︂ ∞

0

e−X̃td˜︁Yt,
we will denote the characteristic function of Z∞ byΨC , that isΨC(u) = E

(︁
eiuZ∞

)︁
,

and its Laplace transform by ΨL, so that ΨL(u) = E
(︁
e−uZ∞

)︁
. The method of
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Gjessing and Paulsen consists of deriving di�erential equations satis�ed by ΨC ,

or ΨL, and �nding solutions to them. Their di�erential equations are given in

the following two lemmas.

Lemma 4.36 (Gjessing and Paulsen [15]). Let Z∞ and ΨC be as above and

let HL and ηC be as in (4.30) and (4.31). Suppose that HL(2) > 0 holds and

E (|SY |2) <∞. Then,

(a) ΨC is twice continuously di�erentiable and satis�es the di�erential equation

1

2
σ2u2Ψ′′

C(u)−
(︃
γ − 1

2
σ2

)︃
uΨ′

C(u)

+ ηC(u)ΨC(u) + λX

∫︂ +∞

−∞
(ΨC(ue

−s)−ΨC(u))dFSX
(s) = 0, (4.32)

with boundary conditions

ΨC(0) = 1, |ΨC(u)| ≤ 1, ∀u ∈ R.

(b) Suppose further that E (|SY |3) < ∞ and that SX ∼ Exp(α). Then, if also

HL(3) > 0 is con�rmed, ΨC is three times continuously di�erentiable and satis�es

the di�erential equation

1

2
σ2u2Ψ′′′

C(u) +

(︃
1

2
(α + 3)σ2 − γ

)︃
uΨ′′

C(u)

+

(︃
ηC(u)−

(︃
(1 + α)

(︃
γ − 1

2
σ2

)︃
+ λX

)︃)︃
Ψ′

C(u)

+

(︃
α
ηC(u)

u
− ζ2u− λY ρ

′
C(−u) + iµ

)︃
ΨC(u) = 0. (4.33)

Proof. The proof is based on the theory of integro-di�erential equations, which is

why the reader is instead referred to the source. See [15], but note that a partial

result is proved in [27].

There is a second equation in the case when ˜︁Y is non-decreasing in t, i.e. it is

given by

˜︁Yt = µt+

NY (t)∑︂
k=1

SY (k), (4.34)

where SY ≥ 0 almost surely. In this case the equation also holds given slightly

weaker conditions on SY .
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In this case, we use the Laplace transform of Z∞, de�ned as ΨL(u) = E
(︁
e−uZ∞

)︁
,

for u ≥ 0. We also use the Laplace exponent of ˜︁Y at time 1, i.e. ηL(u) =

− logE
(︂
e−uỸ1

)︂
. Using expression (4.34), this gives

ηL(u) = µu+ λY (1− ρL(u)), (4.35)

where ρL(u) = E
(︁
e−uSY

)︁
.We give the Gjessing-Paulsen di�erential equation for

ΨL in the lemma below.

Lemma 4.37 (Gjessing and Paulsen [15]). Let ˜︁Y be as in (4.34). Suppose the

conditions

E
(︂ ˜︁X1

)︂
> 0, E (|SY |) <∞, E

(︁
S4
X

)︁
<∞

hold. Then,

(a) ΨL is twice continuously di�erentiable on (0,∞) and satis�es the di�erential

equation
1

2
σ2u2Ψ′′

L(u)−
(︃
γ − 1

2
σ2

)︃
uΨ′

L(u)

− ηL(u)ΨL(u) + λX

∫︂ +∞

−∞
(ΨL(ue

−s)−ΨL(u))dFSX
(s) = 0, (4.36)

with boundary conditions

ΨL(0) = 1, lim
u→∞

ΨL(u) = 0.

(b) If also SX ∼ Exp(α), then ΨL is three times continuously di�erentiable and

satis�es the di�erential equation

1

2
σ2u2Ψ′′′

L (u) +

(︃
1

2
(α + 3)σ2 − γ

)︃
uΨ′′

L(u)

−
(︃
ηL(u) +

(︃
(1 + α)

(︃
γ − 1

2
σ2

)︃
+ λX

)︃)︃
Ψ′

L(u)

−
(︃
α
ηL(u)

u
− λY ρ

′
L(u) + µ

)︃
ΨL(u) = 0. (4.37)

Proof. Like Lemma 4.36, see [15].

Finding valid solutions to the di�erential equations of Lemmas 4.36 and 4.37,

with various assumptions on the parameters, directly leads to a characteristic

function (or Laplace transform) of Z∞. The following example is included in [15]

but only proved in [25].
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Proposition 4.38 (Nilsen and Paulsen [25]). Let ˜︁Xt = γt + σXt, and ˜︁Yt =∑︁NY (t)
i=1 SY (i). Then ∫︂ ∞

0

e−X̃td˜︁Yt d
=
G

B
,

where G ∼ Γ(b, β) and B ∼ β(a, 1 + b) are independent and

a =
2γ

σ2
, b =

1

σ2

(︂√︁
γ2 + 2λY σ2 − γ

)︂
.

Proof. In this case Equation (4.36) is applicable. Since 1−ρL(u) = u
β+u

, we have

ηL(u) =
λY u
β+u

and the equation has the form

1

2
σ2uΨ′′

L(u)− (γ − 1

2
σ2)Ψ′

L(u)−
λY u

β + u
Ψ(u) = 0.

Some manipulation and a variable transform of v = −u/β, with f(v) = ΨL(u),

gives the equation the form

v(1− v)f ′′(v) +

(︃
1− 2γ

σ2
− v

(︃
1− 2γ

σ2

)︃)︃
f ′(v) +

2λY β

σ2
f(v) = 0,

with boundary conditions of f(0) = 1 and lim
v→−∞

f(v) = 0. This is a hypergeomet-

ric di�erential equation, for which a general solution is known. The derivations

are somewhat technical, but one arrives at the solution (transformed back into

terms of u,ΨL)

ΨL(u) = K

∫︂ 1

0

ya+b−1(1− y)b(βy + u)−bdy,

where K is an arbitrary constant. See [25] for the details.

Furthermore, (βy+u)−b is the Laplace transform of a Γ(βy, b)-distributed random

variable, which is why

(βy + u)−b =

∫︂ ∞

0

1

Γ(b)
zb−1e−βyze−uzdz.

By applying this and changing the order of integration, one gets

ΨL(u) =

∫︂ ∞

0

K

[︃∫︂ 1

0

ya+b−1(1− y)be−βyzdy

]︃
zb−1e−uzdz,

in which the density fZ∞ can be identi�ed because of the uniqueness of the

Laplace transform. We get

fZ∞(z) = Kzb−1

∫︂ 1

0

ya+b−1(1− y)be−βyzdy.
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To see that this is the desired density, calculate the density fZ , where Z = G/B.

By the law of total probability,

fZ(z) =

∫︂ 1

0

yfG(yz)fB(y)dy =
Γ(a+ b+ 1)

Γ(a)Γ(b+ 1)

βb

Γ(b)
zb−1

∫︂ 1

0

ya+b−1(1− y)be−βzydy.

This is indeed the correct form, and allows identi�cation of the constant K.

The prior proof involved some technical details that were omitted for the sake of

brevity. Finding the next distribution similarly involves solving a hypergeometric

di�erential equation, and similarly we omit the details.

Proposition 4.39 (Gjessing and Paulsen [15]). Let ˜︁Xt = γt +
∑︁NX(t)

i=1 SX(i),

with −λX/α < γ < 0. Then ∫︂ ∞

0

e−X̃tdt
d
= −1

γ
B2,

where

B2 ∼ β2

(︃
1 + α,−α

γ

(︃
γ +

λX
α

)︃)︃
.

Proof. In this case ηL(u) = u and σ = 0, so (4.37) becomes

γuΨ′′
L(u) + (u+ (1 + α)γ + λX)Ψ

′
L(u) + (1 + α)ΨL(u) = 0.

With slight manipulation and a variable transform of v = −u/γ and g(v) =

ΨL(u), this changes into the con�uent hypergeometric di�erential equation

vg′′(v) + (1 + α +
λX
γ

− v)g′(v)− (1 + α)g(v) = 0.

This di�erential equation has a solution satisfying the boundary conditions (yet

see [15] for further details)

g(v) = K

∫︂ ∞

0

yα(1 + y)
λX
γ

−1e−vydy,

where K is a constant. Now it is a simple matter to transform back, yielding

ΨL(u) =

∫︂ ∞

0

Kyα(1 + y)
λX
γ

−1e
u
γ
ydy = E

(︂
e−u(− 1

γ
B2)
)︂
,

if

K =
Γ(1− λX/γ)

Γ(1 + α)Γ(−α
γ
(γ + λX/α))

.

The uniqueness of the Laplace transform guarantees the result.
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Proposition 4.40 (Gjessing and Paulsen [15]). Let ˜︁Xt = γt +
∑︁NX(t)

i=1 SX(i),

with −λX/α < γ < 0. Then,∫︂ ∞

0

e−
˜︁XtdYt

d
= U

√︃
− 1

2γ
B2,

where

U ∼ N(0, 1) and B2 ∼ β2

(︃
1 +

α

2
,
λX
2γ

)︃
are independent.

Proof. Application of Lemma 4.21 to Proposition 4.39.

The �nal two are mixture distributions between Γ-variables.

Proposition 4.41 (Gjessing and Paulsen [15]). Let ˜︁Xt =
∑︁NX(t)

i=1 SX(i) and˜︁Yt =∑︁NY (t)
j=1 SY (t). Then,∫︂ ∞

0

e−X̃td˜︁Yt ∼ (1− k)Γ((1 + k)α + 1, kβ) + kΓ((1− k)α, kβ),

i.e. a mixture distribution between two gamma-variables, with proportion k =
λX

λX+λY
.

Proof. We have γ = µ = σ = ζ = 0 and ηL(u) = λY u/(β + u). With this, all of

the higher order terms are zero and (4.37) becomes(︃
λY u

β + u
+ λX

)︃
Ψ′

L(u) +

(︃
λY α

β + u
+

λY β

(β + u)2

)︃
ΨL(u) = 0.

Rearranging,

Ψ′
L(u)

ΨL(u)
= −

λY

(︂
α + β

β+u

)︂
(λY + λX)

(︂
u+ λX

λX+λY
β
)︂ = −(1− k)

αβ + β + αu

(β + u)(kβ + u)
.

Integrating, one arrives at

log ΨL(u) = −(1− k)

∫︂ u

0

αβ + β + αs

(β + s)(kβ + s)
ds.

By means of partial fraction decomposition, this gets simpli�ed into

log ΨL(u) = −(1− k)

∫︂ u

0

[︃
αβ + β + αs

−(1− k)β(β + s)
+

αβ + β + αs

(1− k)β(kβ + s)

]︃
ds
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= log

(︃
β + u

β

)︃
+ (1 + (1− k)α) log

(︃
kβ

kβ + u

)︃
.

Thus,

ΨL(u) =

(︃
β + u

β

)︃(︃
kβ

kβ + u

)︃1+α(1−k)

=

(︃
kβ

kβ + u

)︃1+(1−k)α

+
u

β

(︃
kβ

kβ + u

)︃(︃
kβ

kβ + u

)︃(1−k)α

,

and since u
kβ+u

= 1− kβ
kβ+u

, we get

ΨL(u) = (1− k)

(︃
kβ

kβ + u

)︃1+(1−k)α

+ k

(︃
kβ

kβ + u

)︃(1−k)α

.

Noting that a Γ((1+ k)α+1, kβ)-distributed variable has the Laplace transform(︃
kβ

kβ + u

)︃1+(1−k)α

, u ≥ 0

completes the proof.

Proposition 4.42 (Gjessing and Paulsen [15]). Let ˜︁Xt =
∑︁NX(t)

i=1 SX(i) and˜︁Yt = µt−
∑︁NY (t)

j=1 SY (t), with µ ̸= 0. Then,∫︂ ∞

0

e−X̃td˜︁Yt d
= G1 −G2,

where G1 ∼ Γ(a, l1) and G2 has the mixture distribution

G2 ∼ (1− k)Γ(b, l2) + kΓ(b− 1, l2),

with

a =
1

2
α(1 + c) + 1, b =

1

2
α(1− c) + 1, l1 =

1

2µ
(R + λX + λY − µβ),

l2 =
1

2µ
(R− λX − λY + µαY ), k = l2/β, c = (λX + µβ − λY )/R

and

R =
√︁

(λX + λY − µβ)2 + 4µλXβ.

Proof. With γ = σ = ζ = 0 and ηC(u) = iµu− iλY u
β+iu

, (4.33) takes the form(︃
iµu− iλY u

β + iu
− λX

)︃
Ψ′

C(u) + i

(︃
(1 + α)µ− αλY

β + iu
− βλY

(β + iu)2

)︃
ΨC(u) = 0.
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Similarly to the proof of Proposition 4.41, a solution involving partial fraction

decomposition can be found. We omit the details, but one gets

ΨC(u) =

(︃
l1

l1 − iu

)︃a(︃
l2

l2 + iu

)︃b
µβ + iu

µβ
,

which similarly to the proof of Proposition 4.41 can be rewritten as

ΨC(u) =

(︃
l1

l1 − iu

)︃a
[︄
(1− k)

(︃
l2

l2 + iu

)︃b

+ k

(︃
l2

l2 + iu

)︃b−1
]︄
.

This is easily identi�ed as the desired characteristic function of G1 −G2.
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Chapter 5

Applications

In this chapter we brie�y overview some applications of the concepts contained

within this thesis. We do not discuss applications that have already been treated

in the prior chapters (e.g. applications to stochastic equations or the application

of discrete perpetuities to �nding the distribution of a continuous-time discounted

perpetuity); instead, this �nal chapter is included for the sake of discussion and

review. Most proofs are omitted and we shall often refer the reader to other

papers for arguments and examples.

5.1 Stock valuation

In this section I propose a new dividend discount model (DDM) for the price

of a dividend-paying stock. The model, which can essentially be described as

a stochastic DDM with a known probability distribution for the price of the

stock, is based on Example 3.16 and the work on DDMs [18] due to Gordon and

Shapiro. We shall also see that the model can be used to statistically estimate

the cost of equity of a company.

Whereas DDM approaches to stock valuation are less popular than the capital

asset pricing model (CAPM), the discovery of a stochastic DDM with a known

density function for the stock price is interesting from an academic point of view.

Nearly all of the drawbacks of the DDM still apply to this stochastic DDM; the

only improvement is allowing the parameters of the model to be stochastic.
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5.1.1 Introduction to dividend discount models

This section explains the preliminary �nancial concepts necessary to understand

the proposed DDM. As such, this exposition relies heavily on the papers of

Gordon and Shapiro [18, 17].

Generally, when a �rm requires capital it can do two things: 1) take on debt in

form of bonds or loans, or 2) sell shares of its equity. The cost of capital is rate

of return required for the investors or lenders in order to provide capital to the

�rm (cf. risk-free interest rates). This return is provided in the form of interest

in the case of lending, while investors expect dividends or a growth in value of

the assets of the �rm. The cost of capital when issuing shares is called the cost

of equity capital. While the cost depends on the market, it cannot be directly

observed and instead has to be estimated e.g. by using the CAPM equations.

Dividend discount models are based on the assumption that the price of the stock

is equal to the present value of all future dividend payments, discounted by the

cost of equity capital. Since dividends are typically paid out monthly or yearly,

a DDM always has a discrete-time setting.

The simplest DDM is the case where the cost of equity capital, r, and the dividend

growth rate, g, are both constant. This model, also known as the Gordon growth

model, was introduced by Gordon in his 1959 paper [17]. In this case the dividend

at time k is Dk = D0(1 + g)k, where D0 is the dividend payment of the current

time period. It then follows that the price P of the stock is given by

P =
∞∑︂
k=1

D0
(1 + g)k

(1 + r)k
, (5.1)

where r, g > −1. Provided that g < r, a formula for the price can be calculated

with the power series formula, yielding

P =
D0(1 + g)

r − g
. (5.2)

Formula (5.2) can be used to put a price on a dividend-paying stock, but also

has a second use. If one assumes that the known market price is P, the cost of

capital r can be solved for, yielding an estimate

r = g +
D0(1 + g)

P
. (5.3)

Formula (5.3) is in particular useful since the cost of capital is unobservable.
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5.1.2 Stochastic DDMs

Let G1, G2, . . . , be i.i.d. random positive growth factors for the dividend pay-

ments and R1, R2, . . . , be i.i.d. random positive growth factors for the cost of

equity capital. We assume that the processes (Gk)k∈N and (Rk)k∈N are indepen-

dent. Formula (5.1) now takes the form

P =
∞∑︂
k=1

D0
G1G2 · · ·Gk

R1R2 · · ·Rk

, (5.4)

which can be rewritten as

P =
∞∑︂
k=1

D0V1V2 · · ·Vk, (5.5)

where Vj .

.= Gj/Rj, j = 1, 2, . . . .

It is easy to see that Equation (5.5) corresponds to a perpetuity with constant

cost D0 and i.i.d. discount factors V1, V2, . . . . One needs only check that

µ .

.= E (log V1)

exists and that µ < 0, in order to see by Theorem 3.2, that the series (5.5)

converges a.s.

The next proposition presents the new model, which is based on an example from

Chapter 3.

Proposition 5.1. Let Gi ∼ Γ(g, 1) and Ri ∼ Γ(r, 1), i = 1, 2, . . . , where r > g >

0, be independent i.i.d. random variables. Further, let Vi .

.= Gi/Ri, i = 1, 2, . . . .

Then,

P =
∞∑︂
k=1

V1V2 · · ·Vk ∼ β2(g, r − g).

Proof. Since for each i = 1, 2, . . . , Gi ⊥ Ri, it holds that Vi ∼ β2(g, r) for all

i ∈ N. Then Example 3.16 yields the result.

The model of Proposition 5.1 is unlikely to have any practical signi�cance. The

random variable P can be used to calculate the expected gain from holding a

dividend-paying stock, but the assumptions of identical and independent gamma-

distributed growth factors are very unrealistic. A trader willing to use such an
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approximation would, most likely, also be willing to use the simpler, deterministic

model and Formula (5.2).

Furthermore, the assumptions on the cost of equity capital can not be justi�ed

by statistical methods, as the random variables R1, R2, . . . are unobservable. A

potential work-around would be to calculate the CAPM estimate of the costs of

capital and treat the estimate for month k as an observation of the random vari-

able Rk, although that would introduce even larger uncertainty into the model.

5.1.3 Estimating the cost of equity capital

A potential use for the model of Proposition 5.1 would be for using statistical

inference to calculate an estimator of r, yielding a probability distribution for

the monthly cost of equity capital, Rk, k = 1, 2, . . . .

If one decides on using data from N months back, then monthly dividend pay-

ments d1, d2, . . . , dN can be used as data and an estimator ĝ can be calculated.

If the monthly growth factors are assumed to be i.i.d. and independent, the

monthly prices p1, p2, . . . , pN can also be treated as a sample from P. This allows

one to compute a statistical estimator for r.

This method is crude and relies on strong assumptions. For this reason it remains

unclear whether or not it yields better results than the Gordon growth model,

although having a probabilistic model of the cost of equity capital is highly

desirable for companies looking to sell shares. This is certainly the case for

companies that only wish to sell shares if the cost of equity capital is below some

threshold with a certain probability.

5.2 Approximating discrete-time models

In some special cases continuous-time models can provide for especially simple

analytic derivations, while in other cases a discrete-time formulation can be more

advantageous for analytic or numerical solutions. For this reason it can be useful

for many applications, including �nance, biology, etc., to be able to pick a suitable

continuous approximation for a model with discrete time (or vice versa). A
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signi�cant fraction of D. Dufresne's work [13, 12] is devoted to this kind of

approximation. In this section, we review Dufresne's approximation procedure

applied to cash �ows.

5.2.1 Dufresne's procedure

The idea is to approximate a discrete cash �ow with a continuous one without

changing model statistics such as expected values and variances. The classical

example in �nance is how continuously compounded interest is introduced as

a partitioning of discretely compounded interest into successively smaller time-

intervals, where the continuous interest function converges to an exponential

function.

Here, (St)t∈R and (Zt)t∈R shall denote a continuous cash �ow and its discounted

value process, respectively, while Sn(t) and Zn(t) denote discrete-time counter-

parts where a unit of time has been partitioned n times. The goal is to construct

these processes such that the discrete-time processes converge to their continuous

counterparts as n→ ∞. Dufresne [12] presents the construction in the following

way.

For each n ∈ N, de�ne

Sn(t) .

.=

[nt]−1∑︂
j=0

Cn,jUn,j+1 · · ·Un,[nt] (5.6)

Zn(t) .

.=

[nt]∑︂
j=1

Cn,jVn,1 · · ·Vn,j (5.7)

where Vn,j = U−1
n,j and the following conditions are assumed for the random

variables Cn,j, Un,j :

a) For each n, (Cn,j)j≥0 and (Un,j)j≥1 are mutually independent i.i.d. se-

quences.

b) Cn,1
d
= n−1E (C1,1) + n−1/2(C1,1 − E (C1,1)), and Var (C1,1) <∞.

c) The factors Un,j have

P (U1,1 > 0) = 1,Var (U1,1) <∞,Var (logU1,1) <∞,
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and their distribution is given by either

i) Un,1
d
= 1 + n−1E (U1,1 − 1) + n−1/2(U1,1 − E (U1,1)), or

ii) log(Un,1)
d
= n−1E (log(U1,1)) + n−1/2(log(U1,1)− E (log(U1,1))).

In the process (5.6), the payments Cn,j are assumed to arrive in the beginning of

time period
[︁
j
n
, j+1

n

)︁
, while in (5.7) they arrive at the end of the period. These

processes are constructed such that with n = 1 they are equal to the processes

discussed in chapter 3 and for higher values of n they represent successive re�ne-

ments of the processes.

The assumptions are made to assure that the successive partitioning of the time

periods does not impact the �t of the model. Note in particular that the expected

value and variance of the payments during one unit of time remain the same.

This can be seen by observing that

E (Cn,1) =
E (C1,1)

n
, Var (Cn,1) =

Var (C1,1)

n
,

and so, due to independence,

E

(︄
n∑︂

j=1

Cn,j

)︄
= E (C1,1) , Var

(︄
n∑︂

j=1

Cn,j

)︄
= Var (C1,1) .

One might say that they undergo a mean- and variance-preserving transforma-

tion. For the growth factors Un,j the same is done either such that the rates of

return Rn,j = Un,j − 1 or the geometric rates of return log(Un,j) have their �rst

two moments preserved in a unit of time.

Next we present Dufresne's example. Keep in mind that Dufresne's work relies

on the concept of weak convergence, which has not been treated in this thesis.

Proposition 5.2 (Dufresne [12]). Let X and Y be independent standard Brow-

nian motions and let ˜︁Xt
.

.= γt+ σXt,˜︁Yt .

.= µt+ ζYt,
(5.8)

where µ = E (C1,1) , ζ
2 = Var (C1,1) , and either

i) γ = E (U1,1 − 1)− 1
2
Var (U1,1) , σ

2 = Var (U1,1) , or
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ii) γ = E (logU1,1) , σ
2 = Var (logU1,1) .

Then the sequence of processes (Sn)n≥1 converges weakly to a process S satisfying

St =

∫︂ t

0

eX̃t−X̃sd˜︁Ys. (5.9)

Proposition 5.3 (Dufresne [12]). With the same notation and conditions, the

processes (Zn)n≥1 converge weakly to a process Z satisfying

Zt =

∫︂ t

0

e−X̃sd˜︁Ys. (5.10)

Proof of propositions. See the appendix to [12].

Propositions 5.2-5.3 in fact show that discrete cash �ows with i.i.d. growth (or

discounting) factors and i.i.d. payments can be approximated by continuous cash

�ows (or vice versa). Recall from Proposition 4.1 that the process (St)t∈R of (5.9)

is a di�usion, satisfying the SDE

dSt = (αSt + µ)dt+ σStdXt + ζdYt,

where α = γ + σ2/2. Hence we have a method for approximating a discrete cash

�ow with a di�usion.

5.2.2 Some examples

Example 5.4 (Moments of an annuity). Suppose an annuity pays a �xed amount

c > 0 for t ∈ N time periods. Let V1, V2, . . . , Vt be i.i.d. discounting factors for

the respective time periods and assume E (V1) < 1. The present value of the

annuity is then

A(t) =
t∑︂

k=1

c
k∏︂

j=1

Vj.

The moments of this present value can obviously be calculated by using the

formulas of chapter 3. By formula (3.12) the m:th moment has the form

E (A(t)m) = cm

(︄
m∑︂
j=0

dmj

[︁
E
(︁
V j
)︁]︁t)︄

,
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where V is an independent copy of the variables V1, V2, . . . , Vt and the constants

dmj have to be recursively calculated by formulas (3.13).

Another possibility is to approximate the annuity with a continuous stream of

cash. If the time periods are su�ciently short, by using Proposition 5.3, the

present value is well approximated by the random variable

Z(t) = c

∫︂ t

0

e−X̃sds,

where ˜︁Xs = γs+ σXs and X is a standard Brownian motion, and

γ = −1 + E
(︁
V −1
1

)︁
− 1

2
Var

(︁
V −1
1

)︁
, σ2 = Var

(︁
V −1
1

)︁
. (5.11)

Knowing that ˜︁X is a Brownian motion with drift, and so has a Laplace exponent

φ(λ) = −γλ− σ2λ2

2
, if γ ̸= 0 then we can apply formula (4.22) and calculate the

m:th moment

E (Z(t)m) = cmm!
m−1∑︂
k=0

etk(γ−
σ2

2
k) − etm(γ−σ2

2
m)∏︁m

i=0
i ̸=k

((k − i)(γ + σ2

2
(k + i)))

. (5.12)

This approximation may not always perform well, but the moment calculations

avoid the use of recursive formulas.

In the case when t = ∞, i.e. A is a perpetuity, the recursive moment formula

(3.14) can be used. If one desires to avoid the use of a recursive formula, the

same approximation can still be used and the formula (4.23) is applicable.

Example 5.5. In [12] D. Dufresne uses a discrete-time approximation of the

process in (5.10) as a tool in carrying out the original proof of Theorem 4.20.

For more applications of the theory of weak convergence, see Dufresne's earlier

article [13]. In [12, ch. 5] Dufresne also applies the concepts to risk theory as

a justi�cation for an approximation of discrete risk processes with a di�usion.

There are also entire textbooks that discuss applications to mathematical �nance

or simulation methods.

5.3 Risk theory

There is a connection between ruin probabilities and the distribution of a per-

petuity, as noted by R. Norberg, J. Paulsen, and H. Gjessing in their respective
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papers [26, 27, 15]. In particular, it may be possible to calculate certain ruin

probabilities from a-priori-known distributions of continuous perpetuities. We

summarize the idea, largely following the exposition of [15].

In the following, let the insurance company's assets at time t be denoted by

Ut, starting from U0 = u. Let X, Y be standard Brownian motions and NX , NY

Poisson processes having intensity parameters λX , λY , all independent. Let the

process generating insurance pro�t and losses for the company be

˜︁Yt = µt+ ζYt −
NY (t)∑︂
k=1

SY (k), t ≥ 0, (5.13)

where µ, ζ ∈ R are constants and SY (1), SY (2), . . . are i.i.d. jump variables.

The company invests its assets and gets return given by the return-on-investment

generating process

ˆ︁Xt =

(︃
γ +

1

2
σ2

)︃
t+ σXt +

NX(t)∑︂
k=1

ŜX(k), t ≥ 0, (5.14)

where γ, σ ∈ R are constants and the jump variables are given by

ŜX(k) = eSX(k) − 1, k = 1, 2, . . . ,

where SX(k), k = 1, 2, . . . , are i.i.d. variables. For example, if SX(k) has an

exponential distribution, then ŜX(k) has a Pareto distribution.

We will also soon need the related process

˜︁Xt = γt+ σXt +

NX(t)∑︂
k=1

SX(k), t ≥ 0, (5.15)

where all parameters and variables are as above.

At time t, the company has assets given by

Ut = u+ ˜︁Yt + ∫︂ t

0

Us−dX̂s. (5.16)

Paulsen [27] has solved equation (5.16), yielding the solution

Ut = eX̃t (u+ Zt) , (5.17)
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where

Zt =

∫︂ t

0

e−X̃sd˜︁Ys. (5.18)

It follows that the company is ruined at time t if and only if Zt < −u, since
eX̃t is always positive. If we denote the time of ruin (when the initial assets are

U0 = u) by Tu, then Tu is a stopping time and

Tu .

.= inf{t : Ut < 0} = inf{t : Zt < −u}. (5.19)

Paulsen [27] proves the following theorem.

Theorem 5.6 (Paulsen [27]). Assume Z∞ <∞ a.s. and let F be the distribution

function of Z∞. Then F is continuous and the probability of eventual ruin is

P (Tu <∞) =
F (−u)

E (F (−UTu) | Tu <∞)
. (5.20)

Proof. See [27].

Equation (5.20) would be most useful if an explicit expression for F were known,

which is unfortunately not often the case. Further approximations or numerical

methods may prove necessary in applications. Moreover, it is necessary to com-

pute the expected liabilities at time of ruin, UTu , in order to use (5.20), which

may require further assumptions on the jump sizes SY .

There is much more in [27] and in the later article by Gjessing and Paulsen [15]

as well as Norberg's more general di�usion setting [26]. Dufresne [12] also treats

both discrete-time and continuous-time risk processes.
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