
MULTI-PROJECT LOCALIZATION

TRANSLATION MEMORY SYSTEM

Chinedu Eze
Student number: 38186

Master of Science Thesis
Supervisor: Ivan Porres

Åbo Akademi University
Faculty of Science and Engineering

Embedded Systems Laboratory
May 2019

ABSTRACT

This thesis takes a general look at localization both as a concept and as a process. As
a concept, it tries to give a general description, including how it is seen from academic
sources and from companies that develop localized products.

As a process, this thesis suggests a way of conceptualizing it as a flow of smaller
sub-process, which can be duplicated, rearranged and made to run in parallel if needed.
This concept has the potential to make the entire process easier to understand and
reason about and easier to implement in practice.

Finally, this thesis gives a description for a translation memory system. Translation
is one of the most important sub-processes of localization. The translation memory
system is one of the many tools that are used to make it more time and cost efficient.
The system described in this thesis works for a situation that deals with multiple pro-
jects, both related and unrelated.

Keywords: localization, internationalization, translation, software process, translation
memory

i

CONTENTS

Abstract i

Contents ii

List of Figures v

1 Introduction 1

Glossary 1

2 Localization 2
2.1 Locale . 3
2.2 Why Localization . 4
2.3 Localization Approaches . 5

2.3.1 Compile Time: code + language texts 5
2.3.2 Link Time: code + language packs 7
2.3.3 Runtime: code + language runtime 8
2.3.4 Online Dynamic Translation 9

2.4 Localization Tools . 9
2.5 Localization Personnel . 10
2.6 Localization Vendors . 10
2.7 Localization Service Providers . 10

3 Internationalization 11
3.0.1 internationalization and localization 12
3.0.2 Internationalization and Translation 12

4 Localization and Translation 14
4.1 Translation outsourcing . 15

5 Localization as a Process 16
5.1 Generic Localization Workflow . 17

5.1.1 Basic Phases . 17
5.1.2 The freeze state . 19

ii

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

5.2 Putting it all together - a basic localization process 20
5.3 Advantages of Phase Reasoning Approach 21

5.3.1 It makes it easier to visualize the localization process 21
5.3.2 Makes it easier to assign individuals to tasks 21
5.3.3 Makes it easy to choose the right tools 22
5.3.4 Easier to identify bottlenecks in the entire process 22
5.3.5 Makes it easy to improve the entire localization process. . . . 22

6 Challenges with Localization 23
6.0.1 Cost . 23
6.0.2 Page Information Flow . 23
6.0.3 Text Sizes and Truncation 24

6.1 Challenges with Translation . 25
6.1.1 Accuracy . 25
6.1.2 Consistency Across Projects 26

6.2 Challenges with Internationalization 27
6.2.1 Numbers and how they affect words - singular and plural forms 27
6.2.2 Issues with Character Sets and Character Encoding 27
6.2.3 Issues with Dates and Time zones 27

6.3 Challenges with the Localization Process 28
6.4 Challenges with Localization Tools 28

6.4.1 Tools are expensive . 29
6.4.2 Difficulty in migrating to other tools 29
6.4.3 Difficulty in Developing Customized Tools 29
6.4.4 Some tools are too complicated for small projects 30
6.4.5 Choice of Tools is Difficult 30

7 Translation Memory 31
7.1 Translation Memory Workflow . 32
7.2 Advantages of Translation Memories 33

7.2.1 Increase efficiency . 33
7.2.2 Support Consistency Across Documents and Software 34
7.2.3 Reusability of translated texts 34
7.2.4 Reference tool . 34
7.2.5 Increase in translation accuracy 35
7.2.6 Decrease in translation costs 35

7.3 Translation Memory System Models 35
7.3.1 The Referencing Model . 35
7.3.2 The Database Model . 36

7.4 Files and Data Storage in Translation Memory Systems 37
7.5 File Formats . 38

7.5.1 XLIFF file format . 38
7.5.2 TMX file format . 39

iii

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

7.6 Choosing a Translation Memory Application 40

8 In-House Translation Memory System 42
8.1 Why in-house? . 42
8.2 System Description . 43
8.3 The Indexer . 44

8.3.1 Implementation Overview 44
8.3.2 The tmx file repository . 45
8.3.3 The Repository Checker System 46

8.4 The Search Api . 46
8.4.1 Implementation Overview 47

8.5 The User Interface Application . 48
8.5.1 The User Interface Components 49
8.5.2 Implementation Overview 50
8.5.3 It uses the vuestrap css framework 51
8.5.4 The UI is served directly by the Nginx server 51

8.6 Limitations of this System . 52

9 Future work and conclusions 53
9.1 Sources of information . 53
9.2 Localization Processes . 54

9.2.1 Future work on the proposed localization visualization 54
9.3 Localization Tools . 55

9.3.1 Future work on the translation memory system 55

Bibliography 56

iv

LIST OF FIGURES

5.1 A basic localization process workflow 21

7.1 The Referencing Model . 36
7.2 The Database Model . 37
7.3 A XLIFF translation unit example 39
7.4 A tmx file sample . 40

8.1 The Translation Memory System Diagram 44
8.2 A Mock-up Diagram of the User Interface 49

v

1 INTRODUCTION

Terms such as localization and internationalization are used interchangeably in busi-
ness literature, although they do not mean the same thing and organizations might use
different definitions [1]. This thesis attempts to give a clearer definition and explana-
tion of the concept, together with other important sub-concepts and process involved
in it.

This thesis also looks at localization as a process and how it is normally done
in general. It goes on to list some of the challenges affecting it and suggests some
solutions for them. One of the biggest problems facing localization as a process is
that in most companies the processes are obscured and mostly not well documented or
even documented at all. To mitigate this, a paradigm is suggested as a way to reason
about and visualize localization in order to make it easier to understand and document,
increase the speed of the process and make it easier to improve on.

Although localization also applies to other areas, such as documents and hardware,
this thesis focuses mainly on software localization. The broader localization presents
a scope too large for this thesis.

Finally, a setup for a translation memory system is proposed. The system has the
capacity to cater for situations with multiple projects, providing a way to access and
query for text segments from each one.

1

2 LOCALIZATION

The definition given by Localization Industry Standards Association (LISA) is

Localization involves the adaptation of any aspect of a product or service
that is needed for a product to be sold or used in another market. [2]

Although this is widely accepted as the standard definition, it is common to see differ-
ent definitions depending on the material and context.

Sometimes referred to as L10N due to the number of characters between the L and
N in the word, localization is also defined as the process of preparing and releasing a
piece of software for a specific locale [3, 4]. It involves making the software usable by
people of different environments and cultures - locales. It is a process with the goal of
making a piece of software linguistically and culturally appropriate for members of a
specific locale. It is the adaptation of a software product for a particular locale [1, 5]. It
involves implementing the adaptation of a localized software into different locales by
translation of texts, and applying region-specific configuration. It involves both trans-
lation and adaptation in order to make a piece of software conform to the language,
culture, and legal requirements of a specific locale [3].

Localization leads to products that can cross cultural and language barriers [6].
It has to do with tailoring a product to a specific local market. The overall localiza-
tion task comprises translation, project management and multimedia files adaptation.
The process plays an important role in choosing the appropriate software development
process for a software project.

Localization entails both a process and the accompanying technologies that make
it possible. As a process, localization involves other processes such as translation of
textual and non-textual materials into other languages, taking into account factors such
as the specifics of the locale of the target audiences and their various differences in
convections such as numeric values, colours, etc. The localization of a product is not
just about translating the texts in the user interfaces, although it is in fact a central part

2

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

of it. Beyond that, it also entails other important activities such as adapting texts and
visuals to the store listings, support channels, prices, payment methods, release notes,
videos, audios and other marketing materials [7].

2.1 Locale

Locale is a term that is used to refer to a specific combination of a variety or “flavour”
of a language together with a set of “cultural preferences” [1]. Although not stand-
ard, a locale is usually identified by a combination of the language and the name of
the country with a set of cultural preferences. These sets of preferences are normally
identified by the names of their country or location to form a unique identification for
the locale. For example, in operating systems such Microsoft Windows and Ubuntu,
the English language combines with various countries to form various English loc-
ales such as English (Australia), English (Canada), English (United States), English
(United Kingdom), etc.

It is a set of parameters that enables the identification of a user’s language, country
and the associated preferences [8]. A language and geographical region, together with
the cultural implications associated with them, combine to give an estimate of how the
user is able to interact with the intended system.

The “language + country name” combo is just for identification, as a locale goes
well beyond language and location. It identifies a group of people who share a lan-
guage, a system of writing and other properties. A locale may comprise any thing
from a region to an entire country [5]. While the name of a country plays a role in
identifying a locale, it is not tied to a particular location. For example, an American
who travels to Australia would prefer a user interface in the English (United States)
locale. If there happens to be a large enough group of people in that category, there
would be a need to produce software with a user interface that has the “English (United
States)” locale option available, even though they would be used in Australia. Another
fairly commons example is countries with foreign official languages. For example,
there are two official languages in Cameroun, English and French. Hence, the two
most common locales there are the various varieties of English and French locales.

Naturally, one may assume that having a locale, which comprises a language and
country code, means that the language is an official or at least a recognized language
in the territory or country referred to by the code. In reality, this is not always the case.

3

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

For example, there is a “en-IL” locale code, which represents the “English (Israel)”
locale. However, although English is spoken in that country and understood by a good
portion of the population, it is neither official nor even a recognized language [9, 10].

2.2 Why Localization

The international market is an important factor for most companies. Most software
products are built to target both local and international audiences. In fact, some believe
that many software manufacturers, in the U.S., for example, derive a large percentage
of their revenues from international sales. This is especially true for software compan-
ies, as their products mostly comprises localizable components. In order to make the
software accessible to its intended international audiences, it has to be localized [6, 4].

Generally, users prefer software products that are localized into a language in which
they are most comfortable. In most cases, this is the most spoken language in their
local community, which is often the mother tongue of most of its inhabitants. One
major reason for this preference is that it increases the chance that they understand the
product fully and will be more skilled in using it if they interact with it in a language
in which they are most skilful. It also leads to fewer mistakes than with a second
language. Companies not only want to have their products in the user’s language, they
want it in the particular dialect that each target user is used to [4, 1].

Users are also more comfortable and more likely to use a product if it’s been ad-
apted to their cultures. It makes it feel more like a local product even if it’s foreign.
Localization is therefore necessary, not only to make the software usable but also more
appealing to the users.

Nowadays, most companies maintain an online presence through websites. If a
company intends to reach a wider range of audiences with their product, localization is
a necessity. It is a requirement for a global market presence [4, 11]. A successful loc-
alization makes a software program familiar and popular among people from various
backgrounds just as it is in its home country. Localization takes the culture and dialect
of the target users into consideration [12].

It is however not always the case that a company has the same message for all
their target locales. There are situations where a company employs a different market
strategy for a particular country or locale. In such situation, a different message might
need to be presented to users in those locales. For example, as part of a campaign,

4

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

certain products may be on sale for the audience from a particular locale. The company
may therefore want to display a large localized banner on the front page for that locale
on their site, which would not be available on the same page for the other locales.

Another reason for localization is that sometimes it is necessary in order to fulfil
government imposed requirements or comply with local regulations. For example,
labelling instructions in an accepted local language is a requirement for selling certain
products in the EU countries [6, 12].

2.3 Localization Approaches

Over the years the way localization is done has evolved. Years ago companies carried
out localization by employing in-house teams and language engineers. The compan-
ies’ offices in other locations take care of the localization efforts for the local users in
those places [6].

There are a few approaches to carrying out localization depending on when the
translated texts are added to the software [4]. The choice of the appropriate approach
largely depends on the type of software being developed and the nature of the software
development process. The first approach, being the oldest, is most likely no longer
used in translation projects. The following is a brief explanations of the most common
approaches:

2.3.1 Compile Time: code + language texts

This is one of the oldest approaches used. In this approach, the text and other non-
textual materials to be translated, and the software source code are inseparable. Hence,
in order to produce an adaptation for a specific locale, the translated materials for
the target locale need to be added to the source code and a compilation carried out,
producing a localized version of the program. Microsoft and Oracle used to employ
this approach [6]. When the software is ready, the code is simply handed over to
the team that takes care of localization. Hence, translation can only begin after the
software development has ended, making it more suitable for software projects that
use the waterfall software development model.

There are a few obvious disadvantages to this approach. For example, in order to
make a correction or add an update to the software, the entire process has to be repeated
for every supported locale. Tests need to be carried out all over and locale tests may be

5

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

necessary to check for locale specific errors. A change in the user interface would also
effect a change in the source code and vice versa. Request for additional languages and
version management become increasingly complicated [6]. Of the three, this approach
is the most time and resource consuming.

Scalability is also a big issue with this approach. It is not possible to work on other
locales’ adaptation until the original version is ready. More so, work on translations
can not begin until the software code is ready.

Yet another disadvantage of this approach is the lack of separation of concern.
Since the translated texts are part of the source code, it means that the translators would
have to work with source codes and developers with translated texts. Hence, people
are made to handle things that are not in their areas of expertise. A repercussion for
such a system is that translators who are likely not familiar with how source code
and compilation work, are most likely to introduce bugs into the code base since the
translated texts are tightly coupled with the source.

According to [6], companies still manage to separate software development from
its localization by delegating the job of localization to their international offices. Of
course, this would be impossible if the company doesn’t have one. Earlier, localization
departments were part of big companies. These departments could grow so large that
they become too difficult to manage. Learning curves for new employees were also a
problem. In addition to their required linguistics skills, new employees needed to have
the technical skills required to understand the software code in order to make good
translations.

There are situations where software programs are developed with only one lan-
guage in mind. Having no intention to localize the program for other locales, the
developers hard-code its texts into the source files. Because such approaches do not
take localization into account they are not considered a compile time localization. A
compile time localized software does not necessarily mean that the texts to translate
are embedded in the actual source code files; though this may sometimes be the case.
In fact, texts for translation are mostly stored into separate files in formats such as
xml just like in other approaches. However, these files need to be present at compile
time. Otherwise the code may not compile successfully. Also, once the compilation
is done, a new localized version is produced and the translated texts or files can not
be changed after. Changing them leads to software failure. In fact, if the software
is compiled down into a single executable file format such as the exe file format, the

6

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

translated texts or files are embedded in that file. It’s normally impossible to extract
them without the use of specialized tools.

2.3.2 Link Time: code + language packs

In this approach the program is compiled apart from the locale specific materials such
as translated text, images, media files, etc. After compilation the software program
file produced is the same for every locale. A combination of the program and a locale-
specific set of materials makes a software package for that locale. That is, the compiled
program is the same for every target locale. The only differences are the locale-specific
resource files.

This approach is more appropriate for applications that require less frequent switch-
ing of their user interface language, as a restart is usually necessary in order to switch
from one locale to another. An example of a piece of software program for which this
approach applies is the Windows 7 Operating System. When a copy of the software is
installed, the default locale files are added as well. If in the future a different locale is
required, the resource files for that locale, such as translation files, sometimes known
as language packs, are downloaded and copied into the appropriate file system loca-
tions. To use the new locale, such programs require a restart, usually after selecting
the new language.

Such software programs are normally distributed already bundled with specific (de-
fault) locale translation files. After download and installation, the user can later change
the locale by downloading the files for another one. In most cases, the required files
are downloaded by the software automatically when a user selects a new language.
Sometimes, the program even restarts automatically when the locale files are ready.

In some cases, this approach is necessary. Language translations and localization
resource files are not the only components of a software program that change from one
locale to another. Sometimes, changing to a different locale may mean loading up or
changing a software module. An example of a possible module change is changing the
locale of a text editor with a spell checker feature. Since the spell checker module is a
software program and not just a locale resource file, the program may need to restart
in order to load and use the new module.

An obvious advantage of this approach is that the source code development and
the translation of texts can be done simultaneously. This easily translates to shorter
project execution time and an increased productivity. This also means that both the

7

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

software development and translation endeavours can be treated as different projects,
hence, they can both employ different processes and can be handled by different project
managers.

The approach makes it easy to outsource the localization project, allowing the soft-
ware company to concentrate only on the development of the source code of the ap-
plication [6].

2.3.3 Runtime: code + language runtime

It’s basically the same as the link time approach except that a restart is not required. It’s
the most suitable for situations that require a quick and easy switch between locales.
Due to enabling the ability to switch languages or locales without the need for a restart,
it’s the most popular approach used for the localization of web sites. In fact, most web
application frameworks incorporate an easy system, with accompanying libraries, for
making the runtime approach implementation possible. For example, the Django web
framework has the “Django translation package” from the Django utils library for this
purpose [13, 14, 15].

The main appeal of this approach to internet websites is that a user can easily
switch from one language to another without changing their location on the site. This
is sometimes necessary. For example, if a Spanish user receives a link to a help page.
On following the link, they discover that the page is in English. All they have to do
is change the language of the site. The page reloads and they are able to read the
instructions in their preferred language. If the page throws them to the home page after
switching language, then they would need to try to find the help page all over again.

With this approach, texts that need translation and localization are isolated and
separated out into locale-specific files called resource files, and replaced with place-
holders. At runtime, the correct language resource files are loaded by the browser,
replacing the appropriate placeholders [13]. This process takes place when the soft-
ware is loaded with the default language selected or when a different language is select
by the user. This is exactly how angular translate works [16]. It could also work in
such a way that the browser sends the required language parameter to the server. The
server puts together the components of the web page with the requested language and
sends back a response. This is how server side rendered applications frameworks like
nextjs accomplish localization [17].

Placeholders are not only for texts to be translated. They are also used for cultural

8

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

and locale-sensitive texts such as dates, time, numbers, e.t.c.
This approach and the previous one can not be done without the internationalization

step. The separation of the texts for translation is a crucial part of the internationaliza-
tion step prior to packaging the software.

2.3.4 Online Dynamic Translation

This approach employs the use of translation services, such as Google Website Trans-
lator, to dynamically translate the texts on a website when it’s loaded. It should be
noted, however, that according to the Google Translate website, this service is now
discontinued [18].

A plugin supplied by the translation service is installed in the website. The site
visitors are presented with a few language choices. When a user selects a language,
the plugin scans the page, extracting the appropriate texts for translation. These texts
are sent to the translation service. The service sends back a response with the translated
texts, replacing the original ones.

This approach has a few advantages. For example, it makes it easy to localize a
piece of software without prior planning. The translation service plugin automatically
extracts and translates the pages without additional efforts from the developers. It also
makes it possible to localize a site into multiple languages in minimal time span. The
previously mentioned Google Translator Service supports up to 90 languages [13].
Using the service, a website can be made accessible to multiple locales with relative
ease.

On the down side though, localization is not only about translating a user inter-
face. Using machine assisted methods could have some unintended consequences. For
example, a page could be translated to Spanish while the dates are left in American
English locale format. Users may find this unprofessional. Also, some texts that do
not need translation may end up translated. For example, if as part of their market-
ing strategy, a company has a product named “fly easy”, the translation plugin may
mindlessly translate it into the new language, which may not be intended.

2.4 Localization Tools

The process of internationalization and localization is inherently complicated and in-
volves repetitive tasks that, if done exclusive by humans, are very error prone. Hence,

9

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

the necessity of software tools [4, 19, 11]. These are tools developed in order to make
the translator’s job easier, faster and more efficient [20].

In the early days of software localization, companies had to create custom propri-
etary tools to support their localization efforts [6]. These ranged from tools that enable
easy extraction of texts from source code for translation, to tools that assisted trans-
lators in keeping track of translated texts. The tools are tailored to their codebase and
had unique file formats, mostly xml-based. These tools later gave rise to commercially
produced alternatives that were suited for a wider range of companies and their vari-
ous processes. They include tools for terminology management, translation memories,
machine translation, localization workflow, project management systems e.t.c.

Translation Memory (TM) is one of the most useful tools in the localization process
of most companies. In its simplest form, it’s a dictionary of translated texts, with
contexts from a vocabulary.

Software user interface localization tools also exist to make the extraction and
translation of user interfaces easier and automatic. There are also tools for testing
translated texts in user interfaces.

2.5 Localization Personnel

In order to ensure success in localization of big projects a few specialists are normally
involved. These include localization project managers, translators, programmers, loc-
alization engineers and quality assurance engineers [4].

2.6 Localization Vendors

Localization vendors are companies that specialize in services associated with localiz-
ation, such as translation services and translation project management.

2.7 Localization Service Providers

Companies have long realised that is it more profitable to outsource localization ef-
forts to companies that specialize in such services [6]. Localization companies take
care of various aspects of localization such as translation, localization engineering and
localization project management.

10

3 INTERNATIONALIZATION

Also referred to as “I18N” due to the number of characters between the ‘I’ and ‘N’
in its spelling, internationalization is the process of adapting a product to the cultural
identity of its users [3]. It is an engineering process that comes before localization.
Its main objective is to reduce the cost of localization and translation, and make it
more efficient and less error prone [1, 4]. Internationalization adapts and prepares
software in order to support or enable localization. This process has become a necessity
as the simultaneous release of all locale versions of software products has become a
requirement for most companies. It reduces the challenges involved in localization. In
order to be able to carry out localization, the software has be internationalized [6, 11].

The cost of localization could be so high it causes a company to narrow down
its target market [12]. Internationalization reduces this cost, increases efficiency and
reduces the time it takes to execute a localization project. The process of internation-
alization is done once, after which the product can easily be adapted to support other
languages and locales.

The underlying principle of internationalization is the separation of all culturally

and linguistically sensitive components from the core of the source code into special
files, with special formats, in a process referred to as “leveraging” [4, 3, 1]. Some
of the texts that need special treatments are Date and time formats, currency format,
language character code sets for texts display, names and titles, phone numbers, ad-
dresses, international post codes, weights and measures, e.t.c. For example, a double-
digit encoding standard like utf8 is used to encoding the translatable texts instead of
single-digit encoders such as ASCII. With this little but important change, the encoded
texts can be translated into large varieties of non-English languages including Oriental
languages such as Chinese [1].

Texts are not the only components that are linguistically and culturally sensitive.
Others include media files such as images, audios and videos. In some cases even
colours are to be taken into consideration [4].

11

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Internationalization efforts are normally mostly focused on the architecture and
design of a software product in order to make it easily adaptable to multiple languages
and locales without the need to redesign the entire program [1]. The end result is a
product that is in a form that can easily be adapted to other locales using special tools.
Apps and web sites that were not built with localization in mind are very difficult to
localize [7].

3.0.1 internationalization and localization

Together, internationalization and localization form a process of adapting a piece of
software for non-native users in a cost effective and efficient way.

Some see internationalization as the accessibility of a product to multiple countries
and cultures rather than as an engineering process [11]. Based on this view, a program
that is available in more than one language is an internationalized program. Localiza-
tion is therefore taking an internationalized software and adapting it to different regions
and languages.

3.0.2 Internationalization and Translation

Translation is a major influencer of the internationalization, and by extension the loc-
alization process. It is during internationalization that texts that need translation are
extracted and separated into language-specific files called resource files. Thus, inter-
nationalization prepares a software product for efficient localization [13, 5]. Common
formats for storing translation resource files include exe, Resx, WPF(Xaml, Baml,
dll/exe), json and csv.

Things to consider when implementing internationalization include date and time
formatting, currency handling, language verbosity, handling of non-English characters
such as Korean, Chinese and Japanese, character encoding, etc. Any type of content
that might change based on the locale, such as text, images or other media files, must be
externalized from the core application and put into external resource files. The process
is known as Content Externalization. No string should be hard coded. For a smooth
translation implementation experience, strings should be externalized into external files
which can be applied at runtime according to specific languages and locales.

A common mistake with internationalization is to hard-code error messages in the
original (source) language such as English. This can lead to confusion and frustration

12

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

when the software, running in a different language throws out errors written partially
or entirely in a different language, rendering the messages useless to the user. To avoid
this type of situation all texts that user might see (including error messages) must
be separated out and subsequently translated. Also, care must be taken to avoid the
crashing of the application due to improper handling of translated resources. Certain
texts or variables like the system variables should therefore not be translated [21].

13

4 LOCALIZATION AND TRANSLATION

While localization basically means taking a product and “tailoring” it to specific local
markets, translation means converting a string of texts to its equivalent in another lan-
guage. It is an essential part of the overall localization process. The translation process
involves linguistics as well as cultural transfer, and the communication of intention or
function of target texts [1, 5].

A large portion of localization efforts is focused on the translation of software
interfaces and their accompanying documents [6]. Bad translation can do a heavy
damage to the reputation of a software company and its products [1, 11]. Effects range
from minor irritation, to making a product unusable. It is therefore essential to ensure
accurate transfer of translation texts from source to target languages. Users want to
browse a website or follow instructions for a piece of software in their own language.
They expect clear, unambiguous and easy to understand information. They also expect
to not be offended by the language, images, colours, and so on [5]. The quality of
translation is a representation of the image of the company. Good documentation is
seen by most users as a sign of quality. Further more, inaccuracies or ambiguity may
introduce legal liabilities [12].

An internal review process should be put in place to check translations for accuracy,
quality and appropriateness. The reviewers should include in-house native speakers
and professional representatives from the target country or locale [12].

Software components that need translation in a website include texts, pictures, and
multimedia files such as audios and videos. Others are document files, and in some
cases, dynamic contents such as posts on forums and chat messages [5]. Depending on
the need of the software or websites, not everything or every asset types are translated.

Many materials interchange the usage of localization and translation. However, the
Localization Industry Standards Association (LISA), gives a distinction between them.
According to LISA, the main difference is that while translation is mostly focused
on texts, localization goes beyond to include the adaptation of other aspects of the

14

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

software into not just the target language, but also their culture and norms - their locale.
These aspects include colours, icons, and even layouts [2, 22].

4.1 Translation outsourcing

Translation outsourcing is a way to outsource the responsibility for international sat-
isfaction [12]. Some companies that offer localization platforms and applications also
offer translation services as well, or maintain liaisons with translation companies and
with independent translators. Hence, they offer customers packages that include the
management of translation projects as well as the actual translation of their product
contents. An example of such company is Transifex [23].

Another approach to outsourcing translation is by crowdsourcing. Crowdsourced
translation is more common among free and open source projects such as Telegram,
but also used for commercial products by other companies, such as Netflix. Telegram
refers to their localization process as “community-driven”. As described on their loc-
alization platform site, the process is simple and straight forward. Any user of the app
can suggest a translation for any segment of texts on the user interface in any of their
apps. They provide users with a style guide and an online localization platform ac-
cessible through a web browser, with which the users manage their translation efforts.
Testing the translated texts to see how it works in real-life is done directly in the target
app. Users are also able to view translations suggested by other users and, vote for the
ones they feel is best. In the end, the final decision is reviewed by experts, who may
as well be from the community of users or hired directly by Telegram. Although any
user can translate any text, experts on the other hand have to apply for the position and
be recruited by the company [24, 25].

The approach of outsourcing translation is not always as successful as in the case
with Telegram. Netflix had to shut down their crowdsource translation project called
“Hermes”. They stated that the main reason for the shutdown was because they became
overwhelmed by the number of applicants. Now they rely on a few major localization
and translation companies world wide for their translation and subtitling projects [26,
27].

15

5 LOCALIZATION AS A PROCESS

As a process, localization is comprised of every action carried out in order to produce
localized versions of a software application. These actions range from designing the
software, the release of updates to its user interface and how the updates are applied.
The importance of established localization process is often over-looked leading to set-
backs such as delayed software releases. In order to avoid bugs, localization should not
be an afterthought but planned upfront from the beginning of the software project [7].

The absence of an official localization process in a software company can lead to
problems, such as missed delivery deadlines [12]. Also, a localization process that is
not properly designed could make the translation process a major bottleneck for the
entire project. One way to mitigate bottlenecks in a localization process is to make as
many phases of the process as possible parallel.

Managing translation done only by in-house translation is a daunting task. As is
often the case, translators may not be available when needed to make an update to the
software, as translation is normally not their primary jobs. This is one of the main
reasons why most translation jobs are outsourced. However, in bigger companies with
a huge number of projects, like Google or Microsoft, in-house translation is often a
better choice than outsourcing.

The first step in the development of a localization process is internationalization.
Sometimes a software program is only available in its original language, which, in
most cases is English. If the software is not previously internationalized, a rewrite may
be necessary. The main outcome of this step is an internationalized software, ready to
be localized into the various supported locales for the project.

In organizations where multiple dissimilar projects are developed, the localization
process may differ for each project. This is because the type of project or type of
software being developed has great influence on the localization process. Another
major influencer of the localization process is the overall software development process
itself. Localization is not an isolated process. It needs to be part of the bigger software

16

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

development process.
Multiple projects also generally means multiple teams. In modern software de-

velopment practice, each team determines the process it employs for its projects. In
situations where there is need for information or data transfer between teams, this can
pose a challenge. Localization tools often mitigate these problems.

5.1 Generic Localization Workflow

One good way to reason about the localization process as a whole is to visualize it
as comprising a set of individual phases. Some phases might be repeated and others
might be carried out in parallel. Although the localization process as a whole may
differ between teams and projects, they all generally contain these basic phases in one
form or another. The phases are just a way to visualize the localization process and to
reason about it.

Since localization processes are generally unique to each team and the software
they are developing, it is normally better to have the localization team create the local-
ization phases together with the development team. After its creation, each individual
phases should be be well reviewed and refined. After it is approved by all involved in
the project, it should be documented, along with a brief visualization of how everything
is connected. The documentation serves as a reference for everyone involved in the
project, and also for future team members.

Most software development teams have documentations for their development pro-
cess in general. In most cases, the localization process is only a part of the general
software development process. Although this approach might suffice in smaller pro-
jects, in bigger ones or in organizations with multiple projects, it is a good idea to have
a separate documentation for their localization process.

5.1.1 Basic Phases

Phase here refers to one or more activities that, together form a part of the localization
process.

17

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Text segments creation

This is the phase that leads to the addition of one or more new text segments into the
project. It mostly happens when a new feature is being developed. It can also take place
when a text segment is updated - corrected, changed or extended. For most projects,
this is a recurring process that takes place from the beginning of the project until after
deployment.

Most times, new text segments are added by developers, but this is not always
the case. For example, in order to improve the speed of software releases, Memrise
had to modify their process such that the texts are created by the team that does the
specifications [7]. This way, although the developers later add the new texts into the
source code, they have already been created and are already being translated by that
time. Also, although it is most times the case that new text segments are added to the
project through the source code, it is not always so. That is to say, adding texts to the
source code does not always signify the creation of new texts. Sometimes, new texts
are actually added directly into the translation memory system. The translators and
developers, take the texts from there.

Quality Assurance (QA) Approval

At this stage the QA team approves or disapproves added text segments. In most
teams, the project has to be put in a freeze state while the QA team performs tests on
the program. During a freeze state, new texts may not be added to the codebase. The
use of freeze stage could lead to bottlenecks in some projects. Bottleneck problems
are most eminent in projects that use the agile system of software development. This is
mostly because in agile workflows, new features are added relatively more frequently,
leading to a fast paced text creation. To mitigate this, it is common to accumulate the
new text segments and do a QA approval at certain designated stages of the process.
However, with this approach it is no longer an agile process, or at least, it loses some
of its advantages.

In most projects, the QA approval phase is usually not a single, one-time activity.
Two of the most common stages for this phase is after new texts are added to the project
and, when translations are available. Carrying out QA tests processes after new tests
are added to the project is more suitable for projects where the texts are first added
directly to the source codes. Translations are then carried out only after the added texts
have been approved by the QA team. A new QA testing procedure is also done after

18

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

translations are made available by the translators. In some projects, it is also possible
to at least do the first QA testing before they are added to the source code, or even
before any code is written. This is usually the case where new texts are not added
directly to the source code but first to the specification document or to a translation
memory system. In this scenario, at least one more QA approval is needed when the
texts, together with their translations, are added to the source code to produce the final
program.

One strategy to reduce the number of localization related QA testing that may be
necessary is to give the translators a means to deploy and test the new translations
themselves. An example of where this strategy is most useful is in cases where trans-
lators need to make sure the translated texts fit properly into their allotted space on the
user interface.

Translation of text segments

This is one of the most important steps in the entire localization process. During this
stage the new texts are translated by the various translators working on the project.
Usually the translation is outsourced to a translation or localization company. This is
yet another stage that is carried out after the texts of the project are put in a freeze
state. In some organizations, the translations are done in-house. After this phase, there
is usually a repeat of the quality assurance (QA) tests before the project is deemed
ready.

Integration of translated texts

This normally occurs after the translations are received from the translators. It is better
that the translations are vetted by the QA before their final integration into the project,
although this is not always the case. This stage is also sometimes done automatically.
Some translation platforms provide a means to give access to translated texts once they
are ready, for example through a web api.

5.1.2 The freeze state

This is a state in which no new texts are added to projects during software development.
It is a common strategy used in different situations. The most common is when texts
have been sent off to translators for translation. A good reason for doing this is to make

19

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

it easy to track texts for translation. If new texts are available they are normally added
to other branches of the source code repository and held there until the translations for
the previous ones are ready.

Another good reason for freezing projects during localization is to extract the texts
for translation manually. In some organizations the texts to be translated are normally
extracted manually with tools such as lingobit localizer [28]. The process is sometimes
time consuming and therefore needs to be done only at specific intervals during the
lifetime of the software development. Adding new texts would require a redo of the
process, hence the freeze. After the texts are extracted, copies are made and sent off to
the various translators working on the project.

Although useful, freezing often leads to delays in the software development pro-
cess, as during this stage no new texts could be added to the source. This does not
however mean that development stops altogether. It continues but mostly in another
branch of the git repository. Hence, by its very nature could lead to a merge nightmare
in the future. It is also possible to lose some texts during a git merge after a freeze state
is lifted [7]. Further, it is difficult to make corrections to the code during this stage. If
the new changes have texts that require translation, they have to be put on hold, or held
in another branch. It is possible to generate a tracking id manually through the use of
utility programs, such as the msbuild command line utility in CSharp projects.

A good strategy to mitigate the problems associated with the freeze stage is to
provide a means for the easy flow of data from translators to the source code and
vice versa. Some translation or localization companies provide tools that make this
possible.

5.2 Putting it all together - a basic localization process

The following is a description of a generic localization process. First, the texts are ad-
ded to the project through the source code, the translation memory or the specification
document. The texts to be translated are extracted and sent off to the translators. The
project is put on a text-freeze state. When translations are ready, they are integrated
into the project. A quality assurance test process is carried out on the project. If cor-
rections are needed, the translators are notified. If accepted, a version of the software
is packaged and released.

20

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Figure 5.1: A basic localization process workflow

5.3 Advantages of Phase Reasoning Approach

Below are some advantages for applying this approach to localization projects. It
should be noted that these advantages are not peculiar to the phase reasoning approach.

5.3.1 It makes it easier to visualize the localization process

The first obvious advantage of this approach is that it makes it easy to visualize the
entire localization process. In bigger, more complex projects it may be relatively dif-
ficult to reason about the activities that make up localization. It becomes difficult to
ascertain exactly when a project begins and ends. Thinking of it as a series of phases
serves to mitigate this problem, by giving a name and clarification to each sub process
that constitute the whole. Thus, it becomes easier to reason about it.

5.3.2 Makes it easier to assign individuals to tasks

Another important advantage of this approach is that it becomes easier to assign people
to tasks in the localization process. Different people could be put in charge of different
phases. For example, while the creation of new texts is mostly done by developers,
adding translated texts back into the source code is not an activity suited for developers.
Also, after the texts are translated, it is the QA team that is generally responsible for

21

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

its verification. The system makes it easy to see what areas of the process needs to be
outsourced to a localization company.

5.3.3 Makes it easy to choose the right tools

The clear definition of a localization phase makes it easy to identify the appropriate
tools that are needed in order to complete it. Sometimes, it might be that a customized
in-house tool is needed. In that case, a good documentation for a localization phase
would serve as the main reference for creating its software requirement specification.
It also makes it easier to decide whether to develop an in-house tool or to acquire a
commercial product.

5.3.4 Easier to identify bottlenecks in the entire process

Breaking up the localization process into steps or phases makes it easy to identify
bottlenecks in the process. Once identified, the entire localization process can be im-
proved by making little improvements on the individual phases that caused the bottle-
necks. For example, the release of the software might be delayed due to late arrival of
translated texts. In such a situation, one possible solution might be to send the texts
for translation incrementally to the translators. Another possibility in such a scenario
is to split the entire bulk of texts into parts and assign them to multiple translators
simultaneously.

5.3.5 Makes it easy to improve the entire localization process.

The entire localization process is an aggregation of the phases it comprises. An im-
provement on any number of phases results in an overall improvement on the overall
process. Once the process is visualized as a series of phases, it becomes easy to see
which areas, when improved, would lead to an overall improvement on the entire pro-
cess. For example, switching tools used for keeping track of translated text segments
could make the process faster. Another way to improve the process is to carry out some
of the processes in parallel. It is also possible to effect an improvement by re-assigning
tasks in the project.

22

6 CHALLENGES WITH LOCALIZATION

Based on their nature, localization problems are generally of two types: technical and
process [7]. Technical challenges with localization are mostly those that involve tools
and how they are used to implement localization. Process challenges are those that
have to do with the sub-processes that make up localization and the entire localization
process as a whole.

This section discusses some of the challenges that face localization as a whole.
They are issues to consider when thinking about producing a software product in a
different locale than the original.

6.0.1 Cost

Cost is one of the biggest challenges to deal with. Issues with cost extend through
every area of localization including translation, tools, internationalization, etc. Com-
pounding the problem is the fact that it is not always easy to make the decision about
what platform to use and how to choose packages so as to minimize costs.

6.0.2 Page Information Flow

The flow of information, as in how components such as texts and images are laid out
on the pages of a user interface, is not always predictable. If working on only Latin
text-based languages such as English, this is not usually a problem, but with situations
that require handling of a larger language base, there is a new set of challenges to deal
with.

Texts are not the only problem to deal with. Some languages, such as Arabic, in
which texts flow from right to left also require user interfaces that reflect the same
pattern. This means that other aspects of the user interface pages have to be flipped
as well [22]. These include components such as the overall page layout, icons and
images that indicate direction. For example, a control panel which was on the left in

23

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

the English version of the application, might need to be moved to the right. Usually it
is not as straight forward as just flipping all user interface components such as panels,
images and icons. Care needs to be taken to not flip images that may not need to be
flipped. These include universally recognized images such as an image or icon for
a phone, indicating a phone number. Also affected are icons and images that have
inherent meanings in their default states, such as the play button of a media player.
These may loose their meanings or otherwise not make sense when flipped.

6.0.3 Text Sizes and Truncation

This is a very common problem that needs to be dealt with in localization. It has to
do with the size and number of characters that is needed to transfer the meaning in a
statement or phrase from one locale to another. As previously stated, most companies
strive for uniformity of the messages and ideas that they pass to their users. For ex-
ample, on the user interface of a program, the phrase "Delete Project" has to mean the
exact same thing irrespective of language. A misinterpretation could lead to uninten-
ded consequences. In such cases where this is very important, the size of the texts and
the space they occupy could become a problem.

Text sizes vary significantly from language to language. This can be a problem for
the user interface. It is known that an equivalent phrase in English would take as much
as twice or more spaces in some other languages, such as French or German [13].
Text is mainly affected by factors such as number of characters in translated text, the
language’s characters’ width and height. Such problems are normally manifested as
unintended truncation of texts or overflowing of texts into other areas and new lines.
The localization and development teams, together with the translators, have to look for
a way to solve the problem together.

Possible solutions could come from a combination of solutions from any of those
teams. From the development team, it is possible to program the way the texts are
truncated in such a way that they still carry their intended meanings. They could also
make the container interface more flexible so that it expands to show longer texts.
If texts are to be truncated, care should be taken to make sure that the meaning is
preserved and that the proper part of the texts is truncated, such as the middle or either
of the extremes.

The translators, with the help of a translation memory program, could look for
other fitting phrases that would convey a meaning that is close enough to the original.

24

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

The localization manager might decide that the user interface looks slightly different
from the original in order that it might accommodate more or less information.

6.1 Challenges with Translation

The distinction between localization, as seen by some, and translation is not always
clear. In this section the challenges discussed are mainly those that have to do with
the transfer of materials from source languages or locales to their equivalents in target
locales.

6.1.1 Accuracy

In terms of localization, the accuracy of translations depend on a few factors. One of
the most important factors is the message that the organisation intends to pass across
to their target audience. For a user interface label, for example, it means the clarity of
the function of the item. Basically, they have to be sure that a user understands what a
button does when they read its label.

Accuracy is sometimes difficult to achieve in software products. A typical prob-
lematic situation is when certain words are not available in the target language. For
example, if translated directly, the word for “websites” in German, “Web seiten” does
not mean the same thing [5].

The accuracy of a translation is also affected by the terminology of the community
of professionals in the target locality. While a translated text might convey the “correct
meaning” linguistically, there are times when that meaning is not quite acceptable
within the community of professionals. An example case is discussed in [12], where a
dental company translated a piece of dental equipment using a word considered crude
by the dental community of the target country.

Issues with Dialect

Issues with dialects play an important role in translation accuracy. The closer the lan-
guage of presentation is to the spoken dialect of the users the more confident they feel
about how well they understand it, and hence, the more likely they are to adopt it for
use. A good illustrative example is mentioned in [1]. The Spanish dialect spoken

25

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

in Spain and South America have important differences [12]. These differences, al-
though sometimes subtle and might seem unimportant, need to be taken care of by
way of proper localization. Failure to do so might lead to undesired consequences,
ranging from minor user inconvenience to total dislike from repulse. An example case
is discussed in [1]. A notification is displayed by an HP printer as “Estado civil: Act-
ivo” which suggests that the printer is in an active matrimonial relationship. This error
in translation is likely due to a direct translation of the the English phrase, “Status:
Active”, which means that the printing job in the queue is actively being printed at the
moment.

Uniformity and consistency of messages are not always a requirement for software
translation. Companies may have different goals and targets for different localized ver-
sions of their software products [5]. For example, if a US company just established in
Spain and has an ongoing sales campaign for that country, they may want to have that
information only for the Spanish locales of their website. This will affect their local-
ization effort. A company’s local market strategy also plays an important role in how
they localize their translations. For example, a company may try to project a message
like, “easy to use” for a local market and one of “feature complete” for another. Hence,
when translations are done, they would try to make it fit either direction depending on
the market the message is meant for.

6.1.2 Consistency Across Projects

When a company has multiple projects or applications, consistency across those pro-
jects become a necessity. As Telegram stated on their localization platform website,
“The same things need to have the same names everywhere.” Consistency also im-
plies that the same word means the same action across multiple applications and soft-
ware [24].

It could be confusing and sometimes catastrophic for users, if the same word or
phrase does not always mean the same thing in every part of an app or similar apps
from the same company. For example, if the phrase "Delete project" means that the
project is removed from the user’s file system, but the process can be reversed and
the project recovered later, the same phrase can not therefore be used in another part
of the same app to describe a variant situation where the project is lost without the
possibility to undo the action. Consistency could be very crucial in certain situations,
but depending on the number of projects this is not always easy to achieve.

26

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

6.2 Challenges with Internationalization

As previously stated, internationalization has to do with the preparation of a piece of
software in such a way that it can be localized into the various supported locales. This
creates problems that are not easy to solve, both for the target software and its design,
and also for the tools used for its development. This section discusses a few of such
problems and possible ways to handle them.

6.2.1 Numbers and how they affect words - singular and plural forms

In English language, the word, “tab” in singular becomes “tabs” in plural no matter the
number of tabs in question; be it 2 or a million. In some other languages, this is not
the case; the word takes different forms depending on the exact number of tabs [29].
For example in Czech, the word for tab, “panel” takes the form “panely” for 2, 3, or 4
tabs, and “panelů” for more. It becomes a challenge to make the software handle this
situation properly. The more languages to support the more complicated the problem
is.

6.2.2 Issues with Character Sets and Character Encoding

Character sets are groups of characters for specific purposes and character encodings
are a set of numbers that map to the characters. These numbers are used to locate the
appropriate glyph for displaying a character. If the character encoding of a page is
not appropriately set, people may not be able to read the contents of the page [30].
In addition, it could also make it difficult to find the page with search engines. This
is usually common with web applications and is fairly easy to fix. Using the “utf-
8” character encoding, which is the de facto for most situations, both for saving and
serving the documents with the appropriate headers over the network is usually enough
to solve this problem [31].

6.2.3 Issues with Dates and Time zones

This is one of the most difficult problems to solve in terms of internationalization of
software programs, especially user-facing applications. It gets more complicated when
some of the contents are produced by the users, e.g. forum comments. For example,

27

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

the way the date is stored may not align with how it’s displayed back to the users on
the forum pages.

There are many issues that have to be taken into consideration when dealing with
dates and time in software [32]. For example, not everyday in a year is 24 hours long,
the time zones and the rules they operate with change from time to time, dealing with
hours and seconds gain/loss, etc. Although not all these problems affect all software,
if the software deals heavily with dates and time, such as conference booking applica-
tions, then they have to be taken care of.

In simple cases, the UTC time is enough for saving dates and time [33]. To display
it back to any user, the saved time is simply converted to the user time zone. It gets even
more complicated when dealing with dates and time for future events. The time zone
from which the user made the request that saved the time to the database may differ
from the one it affects. For example, a user in London may book a conference room
in New York for a meeting in a future date. The system needs to send an invitation to
every user that would be in attendance of the meeting, all of whom may be in different
time zones. Moreover, there may be daylight saving changes occurring in at least one
of the locations of the affected users. This is a fairly typical situation for conference
booking software applications.

6.3 Challenges with the Localization Process

One of the main sources of problems with localization is the lack of a clearly doc-
umented localization process [7]. New employees do not have a written reference
material on how to deal with localization. In such cases, it is easy to do things wrong,
as there is no established correct way of doing things.

The software development process employed by the team also play a crucial role
in determining how the localization process is designed.

6.4 Challenges with Localization Tools

Modern localization is virtually impossible without the appropriate tools [34]. Al-
though localization tools are essential for the overall localization process of a company,
it is not a good idea to design the process around it. The tool may not be available in
the future, become unaffordable, or become defunct and no longer maintained. In such

28

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

cases, if the process was designed with the tool as the central component, it may be-
come difficult or even impossible to migrate to other tools. This is mainly because
most tools rely on proprietary programs and systems.

This section take a quick look at a few problems that come with the use of tools in
the process of localization.

6.4.1 Tools are expensive

There are so many tools for working with every aspects of the localization process;
from internationalization of the code, to managing the localization project as a whole.
One thing that is fairly common is that they are normally expensive. There are open
source programs but these are usually not regularly maintained or have too few fea-
tures.

6.4.2 Difficulty in migrating to other tools

Localization software tools are normally priced based on certain aspects of the pro-
jects, such as project size, number of translations, number of projects, etc. Sometimes
requirements change and there is need for an upgrade. It is not always financially pos-
sible to acquire an upgraded version of the tools. Sometimes it becomes necessary to
switch to other tools. This is not always possible. As is the case with most software
tools, the team may get locked in to a particular tool or set of tools that they are not
able to switch to others in good time.

6.4.3 Difficulty in Developing Customized Tools

Depending on the size and software development requirements of an organisation,
there may be need to develop in-house tools to aid in one or more aspects of the loc-
alization process. Tools may range from something as small as a simple script, or a
full fledged localization application. Most companies that carry out localization must
setup some in-house tools one way or another, even if only a tiny single-file script. At
Memrise for example, they make use of slack apps for various purposes to help with
the process. Slack helps with activities such as sending notifications when translations
are ready, triggering test builds by translators when they have made new translations
and publishing links for test deployments to the development and testing teams [7].

29

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

All of this is done even though they make use of a localization platform known as
PhraseApp.

6.4.4 Some tools are too complicated for small projects

Sometimes a project may start out small but over time become too large or complicated
to be managed as a small one. Some projects may be small but have a big localization
project. One reason for this is if the project, although small, supports multiple locales.
In such situations it becomes difficult to choose an appropriate localization platform to
manage it.

6.4.5 Choice of Tools is Difficult

There are a lot of localization tools and platforms available, that are relevant to one
or many aspects of the localization endeavour, such as project management, transla-
tion, localization personnel management, text segments extraction, file management,
etc. The commercial tools are generally very expensive and the open source tools are
usually complicated or not well supported to rely on.

30

7 TRANSLATION MEMORY

Also known as technical glossary or product glossary [19, 12], Translation Memory(TM)
technology is a major component of a modern localization process. In its basic form, it
is a database of text segments along with their translations [6, 20]. Translation memory
tools are normally the main tools in most localization tool sets.

It is a convergence of content management and knowledge management. Docu-
ments are split into chunks of text or bits of knowledge items for future reuse. Software
texts are not the only items, and user interfaces are not the only places where these are
needed. Translation memories are also useful in other components such as user manu-
als, online help documents, customer support files, websites, etc. [5]. Working with
a translation memory in all these areas leads to a uniformity of phrases and know-
ledge base throughout the various documents and user interfaces, and across projects
in organizations.

The translation memory is a very important tool for translators. It automatically
offers translations for text segments. The translator can then reuse the proposed trans-
lation, adapt it or create an entirely new translation. After a translation is verified, it is
stored in the database for future reuse. Apart from being able to extract translated text
segments from projects, users are able to add texts into the translation memory manu-
ally. Texts to be translated come from various sources in the project, such as graphic
user interfaces mark-up source files, items such as dialogs and information messages,
help files, documentation, etc.

More functionalities are being added to translation memory systems, for example
context aware pre-translation, machine translation and project management capabilit-
ies. Generally, the core functionalities of a translation memory are coupled with others
forming a localization software package. It is therefore generally not common to find
software programs that only have translation memory software functionality.

Most software companies endeavour to release their programs in all supported lan-
guages at once. To achieve this the localization process has to be started at the same

31

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

time with the software development. Also, after release, most software products are
updated at least once a year [6]. Most of these updates build on already established
bases, hence the importance of reusability of translated materials.

One of the main ideas behind translation memories is the breaking down of texts
into information elements, and storing them in a databases in the supported languages.
These elements can later be rearranged to form new elements with corresponding
meanings in the other languages, creating new information elements which are sub-
sequently added back to the database [1]. New texts are only added if they are not
already available in the database.

7.1 Translation Memory Workflow

Text segments comprise one or more words, forming single words, phrases, sentences
or even entire paragraphs [20]. When a new translation is made, some translation
memory software can automatically detect which text segments to store. They accom-
plish this by following a set of rules like breaking up a paragraph by full stops. The
translation memory uses these rules to determine what constitutes text segments.

During translation, the software also breaks down the new (input) texts to be trans-
lated following the same rules it used to input the texts for storage. Translation sugges-
tions are automatically offered for text segments with exact matches from the previ-
ously translated text data in the database. If no exact matches are found, a fuzzy search
is made and translations of similar text segments are offered. Some systems allow the
translator to set the percentage for the fuzzy search matches. The translators check to
make sure that the translation offered is a good fit and, if not, adjusts it accordingly or
replaces it entirely.

When a translation has been made and accepted, the new translated text segments
are fed into the translation memory to be stored for later reuse. This is mostly done
automatically by the translation memory system.

A very important feature of a localization process implementation is to foster reuse
of text fragments [1]. To achieve this, it must be easy to find texts and their equivalents
in the supported languages from the database.

There are companies that provide translation memories as services, mostly as part
of a localization package. However, being company property, ownership problems
might arise down the road in such situations, as pointed out by [12].

32

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

The translation memory database must be serviced over a long period of time [5].
This has to do with both technical maintenance, such as backups and software up-
dates, and non-technical maintenance, such as making sure that the terms and lan-
guages translations data still reflect the intended meanings. Meanings might change
over time and require updates to the data stored in the database. Updating the text
database is sometimes achieved automatically by the software when new items are
added.

7.2 Advantages of Translation Memories

Although translation memories are not essential for localization, they play a very useful
role in the long-term success of it for companies and organizations. Below are a few
of their advantages:

7.2.1 Increase efficiency

Translation memories increase the efficiency of translators. If a text has already been
translated, there is no need to look it up afresh. The translation is suggested and some-
times even added automatically, thereby increasing the efficiency of the translator. A
translation memory system also serves to provide contexts for texts that need transla-
tion. With contexts, translators are guided in the right direction when trying to pick
out the correct translation for texts with multiple equivalent texts in target languages.

Translation memories also serve to increase the efficiency of the entire translation
process and, by extension, the entire localization process as well. One of the prom-
inent ways it does this is by automating some parts of the translation process. For
example, when a new text is encountered, a translation memory software can automat-
ically provide, or at least suggest, a translation text for it in all supported languages.
However, not all translation memory software can do this automatically. Yet, even the
ones that do not could provide some assistance for the translator to do it manually.
This can dramatically increase the efficiency of the entire process, as translation texts
can even be drawn from across multiple projects belonging to the company, or beyond.
Basically, a new project has most of its translation texts already filled in from the start.

33

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

7.2.2 Support Consistency Across Documents and Software

One of the main problems that translation memories solve is supporting consistency
with terminologies and their translation [12]. Most times, companies want a text to
maintain its meanings across multiple documents and user interfaces. When translators
encounter a text that has multiple equivalent texts in a target language, they usually
check the translation memory to see if it has previously been translated. If it has, that’s
the translation that they choose. Thus texts take on consistent translations, not only
within a document or software, but also across multiple projects.

7.2.3 Reusability of translated texts

When a company that has a translation memory creates a new project, they do not
need to start from scratch with their translation endeavours. As soon as the project is
created, they automatically have access to a wealth of previously translated texts, that
have been refined and reused over the years.

There are times where a term is difficult for certain situations. Given certain con-
texts, it might be difficult to come up with an equivalent in a target language. Experts
may be invited in order to resolve the situation, which may be time consuming and
costly. With translation memories, this is done only once. Next time the same texts are
encountered in the project, there is no need to go through the process all over again.

By promoting reusability, translation memories increase consistency and reduce
translation times and overall costs. This has proven invaluable, not only with software
user interfaces, but also with their accompanying documents, such as project docu-
mentation, user instructions, e.t.c.

7.2.4 Reference tool

A translation memory acts as a reference tool for internal reviewers. The accuracy of
translated texts on a product is very important. One of the steps that companies have to
take in order to ensure the accuracy of texts from translators is to have them internally
reviewed. Translation memories are very useful tool for this purpose. Apart from a
general dictionary correctness, reviewers make sure that the new translations do not
deviate from previously accepted terms by the company.

34

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

7.2.5 Increase in translation accuracy

Translation memories improve accuracy. To some extent, a translation memory serves
as a dictionary, but more useful. In addition to the texts and their translations in various
languages, most translation memories also store the contexts for the translated texts.
Serving as guidelines, text contexts help increase the accuracy of future related trans-
lations.

7.2.6 Decrease in translation costs

A translation memory helps to decrease localization time and costs [12]. Most times,
translation firms charge less for translations that already exist in their translation memor-
ies, either in part or as a whole, thereby reducing localization costs. Further more, if
a company hosts their translation memory system internally or have direct access to
it, non-expert translators are able to fill in some basic translations using texts from the
system. In effect, this reduces the amount of texts that need to be sent out to external
translators. In some cases, the translation memory systems are able to detect new texts,
determine if exact translations are available in the database and, fill them in automatic-
ally without human intervention. Hence, only the missing ones are sent out, reducing
the overall costs.

7.3 Translation Memory System Models

Translation memory system models are a way to describe how the translation systems
store and access the texts that make up their databases. There are two systems com-
monly used by translation memories:

7.3.1 The Referencing Model

The first system uses a way to reference translated text segment data directly from
files in previously translated projects. The files and their contents are accessible to the
translation memory system in real time. This system mostly suited for projects with
frequently updated contents both from developers and translators. As soon as texts
are translated and saved to their source files, the translation memory software is able
to access and make them available for reuse immediately. A major advantage of this

35

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

approach is that text contexts are easily available, as not just the translated segments
are available but also the entire file content as well. This means that the translators
therefore have access to contexts to guide their translation. Since the source files are
accessed directly, the texts’ translations and their contexts can be edited live. Figure
7.1 by [20] shows a generic overview of a possible implementation of such a system.

Figure 7.1: The Referencing Model

On start up, the system loads the project with the old files and their translations.
Translations from new files are extracted and compared with existing ones. Sugges-
tions for missing translations are offered from existing ones. The suggested transla-
tions are either chosen or new replacements added to the files. When this is done, the
translations are extracted from the new files, forming new sets of data for future reuse.

It is relatively more difficult to implement. For example, multiple contributors
may be working on the same project, and therefore the same set of files. Mechanisms
have to be put in place to deal with clashes. Also, there has to be a steady, reliable
connection to the source of data. Otherwise, the system would need to be designed
to tolerate connection problems. A caching system can help to mitigate connection
problems.

7.3.2 The Database Model

The database model system makes use of a database to store every translated text seg-
ment pairs ever made. Sometimes the translation contexts are excluded. The exclusion
of text contexts, however, is a major disadvantage as they are normally needed by trans-
lators when dealing with similar text segments on other projects. Figure 7.2 by [20]
describes an overview of a possible implementation of such system.

The use of a database gives the advantage of using database indexes for working
with texts and performing searches. When a new file is encountered, the text segments

36

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Figure 7.2: The Database Model

are extracted and new translations suggested for missing ones. The contributor choses
the suggested translations or provides new ones. The new translation segments are
stored in the database automatically. This system is relatively easier to implement, as
the main component, which is the database, is a well understood technology and, there
are robust, well-tested implementations, ranging from lightweights such as SQLite [35]
to more feature-complete heavyweights, such as PostgreSQL [36] easily available for
free.

7.4 Files and Data Storage in Translation Memory Sys-
tems

When translation memories work with files from different projects, which are of dif-
ferent types, or with files of different formats, there is need to convert each file to
a generic format acceptable by the translation memory program. Some translation
memory systems support more than one file formats. The conversion is done either by
using the translation memory software itself or by the use of separate file conversion
tools. Using a separate tool to do the conversion can introduce a bottleneck into the
translation process. It is therefore carefully considered when deciding what software
to choose. Also, after translations are made, they would have to be converted back into
the original format to be re-inserted into the source project. The process could be time
consuming.

Most translation memory systems have functionalities to read in files automatically.
These raw data are converted into a form that is manageable by the system and allows
a way for missing translations to be added by translators.

Some translation memory systems need intermediary tools, such as Microsoft Word,

37

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

in order to connect and operate input files. This way, MS Word takes care of the
file conversion. This is especially useful in certain situations where, for example, the
translation memory system is not able to work with input files in certain formats. The
approach works as long as MS Word can work with the source format, and is able to
convert to yet another format, like xml, which the translation memory system supports.
MS Word converts the file to the required format, which is fed into the system. Better
yet, the translators may even work directly on the data using the input file. The inter-
mediary program, MS Word in this case, serves as a “What You See Is What You Get”
(WYSIWYG) environment for the translators.

Checking to make sure texts fit properly into a given space in the graphic user
interface (GUI), is normally done with specialized software for that purpose, or by
the localization software tool suite. Sometimes the program is deployed to the target
environment just for testing. In such cases, a manual inspection is carried out either by
the translators or by the test team.

Translation memory software tools offer other functionalities, such as word count,
automatic pre-translation of new texts, search functionalities from a database of pre-
viously translated texts, terminology management, etc. Most tools have additional
specialized functionalities.

7.5 File Formats

Initially, translation memory systems use proprietary formats for the storage and ex-
change of data. This posed a restriction on the ability to transfer data between different
systems, since not all software tools would be able to implement every format possible.
To solve this problem, open standard formats were developed that would be universally
acceptable among translation tools. The most supported of these formats for storing
and exchanging translation memory data are Translation Memory eXchange (TMX)
and XML Localization Interchange File Format (XLIFF). TMX is mostly used for the
exchange of Translation Memory data between different tools [6, 2] while XLIFF is
mostly used by Sun Microsytems and Oracle.

7.5.1 XLIFF file format

XLIFF was first released in 2002. The current version is version 2. Compared to
TMX it is slightly more verbose. Although supported by many tools both commercial

38

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

and free, its use is still limited among translators. Its inclusion of features such as
the use of schemas and language categorizations make it difficult to use without fairly
sophisticated tools. Figure 7.3 show an example of a translation unit from a XLIFF
file [2].

Figure 7.3: A XLIFF translation unit example

7.5.2 TMX file format

At its core, a tmx file is a collection of translation units. In tmx terms, a translation
unit is an xml element represented with the <tu> tag, that represents a concept in
zero or more languages. Each language equivalent of the concept or term is held in a
Translation Unit Variant (TUV) element, represented with a <tuv> xml element. Each
<tuv> element contains one or more Segment element, represented with a <seg> xml
element. The only attribute requirement for a translation unit variant element is the
“lang” attribute. A text data is normally broken down into meaningful segments by
line breaks, paragraphs, etc. Each one is stored in <seg> element contained in a <tuv>
element. Figure 7.4 shows a minimal sample from Wikipedia [37].

All xml documents require only one root element. The root element for a tmx file
is the <tmx> element. All the translation unit elements are collected under a body
element, which is the second child element to the <tmx> element. The first is a header
element and is not required, although not stated in the specification. If included though,
it does have four mandatory attributes, which are creationtool, segtype, o-tmf and data-
type. Among the others is a prop element (<prop>), which can be a child element to
other elements, such as the header, the tu and the tuv elements. The main function of
this element it to include additional custom data in the file. It could be used for storing
project or software specific data, file version, etc. However it is also common for tools
to use the custom attributes of the elements as a way to store data such as id, creation

39

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Figure 7.4: A tmx file sample

data, file reference, etc.
The standard for the specification is maintained by Open Standards for Container/-

Content Allowing Re-use (OSCAR). The current version of the specification is version
1.4b [38, 39].

One of the main advantages of the tmx file format is its flexibility. Even the required
<xml> element from the xml specification is not required in the tmx file system [38].
This flexibility has given rise to three levels of compliance to the specification. The
first level of compliance is when only the texts are stored. This includes the minimum
of the <tuv> elements, together with their various accompanying segment elements. A
missing segment means that the translation is missing, and does not result in an error.

The second level of compliance is achieved when an implementation includes
formatting information for the text segments. According to the specification the seg-
ment element has no attributes, but it is not an error to include some.

The third compliance level includes everything else and more. This includes things
like tools-specific information, such as IDs for the various text segments, user IDs,
project names, user defined data information, etc. Most tools support level 1 and 2
compliance [20]. The specification does not impose a requirement on the level of
compliance a tool should have.

7.6 Choosing a Translation Memory Application

When choosing or developing a translation memory tool, it is necessary to consider file
support, among other things. At a minimum, there should be a level 1 TMX compliance

40

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

support, with or without the use of external tools. In modern translation scenarios, it
is necessary to have a level 3 compliance support. This level of compliance allows
for storing of extra information that other parts of the workflow might require. The
translation memory tool might go as far as to affect how the translations are entered
into the projects. For example, in some projects the translators do not work directly
with the project files. In such cases, the translation memory tools automatically extracts
the text segments to translate and the translators work with them using the tool. When
they are ready, it makes the new translations available to the affected project directly.

Translation memory tools are generally very expensive, hence cost is also a major
issue to consider when choosing one. Sometimes it is more cost effective to develop
an in-house translation tool that features a translation memory program among other
programs.

41

8 IN-HOUSE TRANSLATION MEMORY
SYSTEM

It is not always possible to do everything with commercially available tools for local-
ization and translation. Companies sometimes have the need to develop in-house tools
to facilitate the implementation of their localization processes. This need may arise
naturally due to unique requirements from the way the company operates, or as a way
to reduce localization costs.

Depending on their unique needs, in-house tools range from simple tools, such as,
small scripts to extract texts from source code repositories, to full blown localization
applications. One of such tools is a translation memory system or application. This
chapter discusses a proposal for the design and implementation of a basic translation
memory system.

8.1 Why in-house?

As discussed in chapter 6, one of the main challenges faced by companies with local-
ization is that of cost. Localization is an expensive process for software development.
As mentioned in chapter 3, localization could be so expensive it causes a company to
narrow down its target audience.

In a company with multiple applications, one of the main sources of expenses is
the repeated translation of the same, or similar texts and text segments. Although not
always obvious, in a sufficiently large project, there is usually no easy way to know if
a piece of text or part of it has previously been translated. The situation is even more
complicated in cases that deal with dissimilar projects, with different people work-
ing on each. For example, a new paragraph of text needed in an application may have
already been translated in the application’s documentation. Since the developers work-
ing on the application are most likely not the ones working on the documentation, they

42

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

may end up translating the same texts all over again for the application, incurring un-
necessary translation expenses. Obviously, visual examination by a user or developer
is not a good option, and is not efficient. The only way to guarantee that a previously
translated piece of text is not sent to translators again for translation, is to keep track
of texts and their corresponding translations. As described in chapter 7, this is one of
the main functions of a translation memory system.

8.2 System Description

The following is a simplified description of a simple translation memory system built
for a local company. The entire system uses NGINX, both as a reverse proxy and a load
balancer [40].

As a reverse proxy, NGINX directs traffic to the smaller apps that make up the sys-
tem, either the user interface or the api. With this setup the api and user interface only
run locally on designated ports on the server machine. The ports are not open to the
internet, hence, the applications are not accessible to users through the internet. Users’
browsers direct http requests to the nginx server via port 80, the default and, the only
open port. Nginx directs the requests appropriately. This makes it easy to implement
security for the apps, as security policies have to be enforced only on the base server
layer. For example, the nginx server can refuse a connection from a particular user, or
filter out certain requests before they even get to their intended application.

As a load balancer, nginx is able to run multiple instances of the user interface and
the api apps. Hence, it’s able to respond to higher demands on the system. Running
multiple instances of the api, when a request arrives, the server is able redirect it to the
instance with the least amount of load. This is a fairly common setup for systems that
use the nginx server.

There are 3 main standalone components that make up the system, each of which is
developed and deployed separately: the indexer, the api and the user interface, Figure
8.1.

43

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Figure 8.1: The Translation Memory System Diagram

8.3 The Indexer

The main functions of this system are to serve as a database for translated text segments
and, indexing and retrieving the segments later in response to user queries. The main
functional component of the system is an elasticsearch [41] software installation on
the server machine.

Each time the system indexes the data, the entire current index database is dropped
and a new one created, even if there is an existing one. This approach is necessary
as there is no way to track the text segments or translation units from the different
projects permanently with constant identifiers. This is a limitation imposed by the
fact that when the tmx files are created, the text identifier information are lost and
not available in the final combined file. Because of this limitation, the system always
performs a fresh re-indexing operation every time it is (re)started.

8.3.1 Implementation Overview

When started the indexer app searches the server file system for a tmx database file
that contains the translation data from all the projects. This file, which is located in a
specific location in the server secondary storage, is loaded into memory for processing.
Each translation unit element in the file contains at least two pieces of information that
are needed to correctly store it in the indexer database. These are the project identifier
and the translation unit identifier. These information are also necessary for perform-

44

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

ing searches on the indexer database. Other information, such as the language of the
translation unit are already available, and are needed for organizing and displaying the
search results on the user interface, when a search is performed.

If the tmx database file is not found, a specific language database git repository
8.3.2 is cloned. The file is “checked out” from the master branch of the repository.
After processing, the translation data items from the file are extracted and converted
into index entries. These entries are sent out to be indexed in the elastic search indexer
database.

After all the data items have been indexed, the indexer is sent into a ready/waiting
state. Before going into the ready state, a repository checker system 8.3.3 is activated.
The checker runs after a specific amount of time. It checks the translation tmx database
repository and if there is a new commit in the master branch, the indexer system is
triggered to re-index the search database. After the ready state is activated, a signal is
sent to the PM2 orchestrator.

8.3.2 The tmx file repository

A script is run at intervals to extract all the tmx data from each project, combining
them together and saving them into a single tmx file. This file is referred to as the tmx
database file and is composed of all the translated text segments from all the projects
combined into a single tmx file and committed into a specific repository.

A repository is set aside for storing it. It is a regular git repository. A git repository
is chosen for this purpose for the following reasons:

Easy to maintain

A git repository would be easier to maintain than a regular database for this purpose.
Creating a normal database solely for the purpose of storing the tmx data would be too
cumbersome to maintain.

Automatic version control

Sometimes there is the need to maintain the various versions of the translated texts.
Using a regular database or the file system for this purpose would require the develop-
ment of yet another system in order to keep track of the file history and states. A git
repository database already has this functionality by default.

45

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Secure way for the data builder system and the indexer to access the data

The file stored here would be accessed by at least two systems: the script that creates
the list and the api system. This is yet another functionality already available in a git
repository by default. It can also be achieved using a regular database system like
PostgreSql [36]. However, in order to use that, it will have to be setup specifically for
this purpose. Git on the other hand, already has this system in place.

Avoid re-inventing the wheel

The company already has a git repository and a few authorized bots with access. There
is no need to implement a new system to achieve the intended use. All that is needed
in this situation is to create a new repository, give one of the bots a read access and the
system is ready.

8.3.3 The Repository Checker System

This is a small sub system of the indexer that runs checks on the tmx database file
repository for new commits. By default, the system checks the master branch, although
a different branch can be specified. It achieves this using a tiny library wrapper over
the command line git program. On completion, a “callback function” is called with a
boolean flag that indicates whether a new commit is available; true for yes and false
for no.

By design the system does not perform checks at regular time intervals. It only
performs a check after a given amount of time after a previous callback completes. A
new check is scheduled only after the current one is done. The reason is so that the
program does not trigger overlapping checks, since there is no definite way to know
in advance how long a currently running callback function needs to complete its task.
Hence, a new check is only scheduled after the completion of the current one.

8.4 The Search Api

This is a small search api application that serves to send queries to the elastic search
indexer for available translated text segments. This component determines the nature
and structure of queries that are made against the search index.

46

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

The api only has one endpoint, which is the “/serve” endpoint. The endpoint re-
ceives search queries as post requests. It processes the requests and creates the ap-
propriate search request queries for the indexer. It is also responsible for processing
the returned response data from the search index, and converting them into result lists
appropriate for the user interface.

By serving as a mediator between the user interface and the search index, a sep-
aration of concern is achieved through abstraction. The search api abstracts away the
functionality of the search indexer, creating the separation of concern. As a result, the
version of the indexer or, even the entire indexer technology stack may change in the
future without having any effect on how the searches are perform and, by extension the
user interface.

Another important reason for the separation is the ability to easily cache search
results. This serves to make subsequent searches faster. The cache can also service
search requests in situations where the search api is busy.

8.4.1 Implementation Overview

The main technology that powers the search is a node.js server application built using
the express.js framework [42]. A node.js/express.js combination was chosen for the
following reasons:

The combination easy to set up

Setting up node.js on a Windows machine only requires the running of a single .exe
installation file and on a Linux machine, only a single command. Setting up a server
application requires only a minimum of one JavaScript source file.

It’s easily extendable

The express.js framework is built around a simple middleware pattern. To add a new
functionality, for example, only requires implementing a JavaScript middleware func-
tion and adding it into the appropriate place in the application. The express.js docu-
mentation gives very clear explanation as to when, and how a middleware is executed.
This makes it very easy for developers to implement a functionality that they need,
if it’s not already available in the framework. In most cases, these functionalities are

47

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

already implemented by other developers and are available as open source projects on
the internet.

It’s easy to work with

Both the node.js and the express.js frameworks have extensive and, very rich docu-
mentations accessible via the internet.

It has a very large userbase

The main benefit of using a framework with a large userbase, among others, is the
ability to easily find solutions to problems. When stuck on a problem, a quick search
query on a search engine reveals someone else who has had that same problem, what
they have tried and, possible fixes. Using a technology with a small userbase, on the
other hand, leaves the developer to solve common problems on his own.

Flexibility

Most web application frameworks such as Django, need a server in order to run. A
node.js application is itself a web server, while at the same time is able to run inside
another more advanced server. Hence it is up to the developer to choose whether to
run the application as part of another one on the same server or to run it on its own as
a standalone program. This also makes setting up a developer environment easier.

It should be noted, however, that these advantages are not peculiar to the node.js or
the express.js framework.

8.5 The User Interface Application

The user interface is a small web application that provides a means for users to query
the translation index. It is the only component of the system that the user can access.
It provides limited but vital use: a way for users to perform searches and display the
search results. Based on the user input, it prepares a query in a format acceptable by
the api backend, and formats the response in a presentable format to display to the user.
Figure 8.1 shows a mock-up of the user interface.

48

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

Figure 8.2: A Mock-up Diagram of the User Interface

8.5.1 The User Interface Components

The user interface application is a small one. Hence, it is composed of only a few user
interface components. These components are the bare minimum it needs in order to
perform its basic tasks.

Search Bar

The search bar component is used for entering queries and executing a search. It is
composed of a text input and a button. After typing in a text the user clicks the button
or presses the enter key on the keyboard to send a search request.

Search Mode Toggle Buttons

These are a set of two buttons for toggling between fuzzy and normal search. The
default is normal search. The normal search performs an exact match query while the
fuzzy mode performs a fuzzy search.

Project Filter

This is a user interface component composed of buttons for each supported project. Its
functionality is to help build a query that filters the search results by projects. This is

49

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

useful for situations where the user only wants to search the index for texts from only
one or more projects.

Info Display

This area shows the state of the application or the number of results received from the
api. For example, it displays the text, “loading...” while a query is being processed by
the backend api. The area also displays an error message if a search fails. One reason
could be that the api is down, unreachable or busy. After the query is processed and
the results retrieved, this area displays the number of hits for the search query. If there
are no results it shows a “There are no results for this query” message.

Result List

This component displays the results of a search to the user. It displays fifty (50) results
at a time on the page. The results are displayed in a tabular format, arranged by projects
and languages.

Pagination

Sometimes a search query has a large amount of response. While the results are dis-
played in order of relevance, there may be a need to see results from the less relevant
areas of the list. This is the purpose of the pagination component. It gives the user a
way to page through the result sets up to the end of the list.

8.5.2 Implementation Overview

The user interface is built using the Vue web application framework. It is a progressive
web application (PWA).

Progressive Web Apps (PWA)

Progressive web apps are web applications that are developed such that they incorpor-
ate the advantages of both web and native applications [43]. That is, they offer features
of both web apps, as well as some of native apps. Just like native applications, they can
be installed on user devices so that the next time the user wants to use the app, they do

50

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

not need to remember the web address. Instead, they can just launch it from the home
screen or desktop of the device.

The user interface components for the application are also cached in the storage
of the user’s device. This allows the app to load faster in the future. Progressive web
apps have a more extensive access to user device storage than normal web applications.
Hence, they are able to store a larger amount of data on the device, and for extended
periods. In most cases, this allows the application to run offline, without access to the
internet.

Just like a web application, users can share the app with other users via links. After
visiting the application on a web browser, the user is offered a possibility to install it
in their devices. If they choose to not install it, they can continue using it simply as a
web app. Also, being a web app offers yet another powerful advantage: it can be built
using web app technology and frameworks, which are nowadays ubiquitous.

8.5.3 It uses the vuestrap css framework

The vuestrap css framework was created by Yu Che [44] as a Bootstrap JavaScript
implementation using the vue.js web framework. The Bootstrap framework is one of
the most popular frameworks for developing user interfaces for websites. Normally,
to use the JavaScript functionalities it provides, it was necessary to include the jQuery
library, adding an extra dependency. With VueStrap, jQuery is not needed.

8.5.4 The UI is served directly by the Nginx server

The user interface resources are served directly from the server file system using the
Nginx server. The Nginx server already comes with everything needed to serve the
files. The application itself is actually run by the user browser. The server only needs
to send the appropriate files; a task the Nginx server does with great efficiency.

One of the main advantages of such a setup is scalability. Since the user interface
is just a set of files hosted on the webserver file system, it becomes easy to scale it
effortlessly. Nginx comes with such a functionality. It can seamlessly run multiple
instances of the app if user traffic increases.

51

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

8.6 Limitations of this System

One of the most important functionalities missing from this system is the lack of auto-
matic text insertion. Although it can suggest translations for new text segments, it is
not able to insert those into the intended project automatically.

Another limitation is that the system does not provide a way to estimate how trans-
lated texts would fit into the user interface. This is very useful feature, although it is
not strictly a feature of a translation memory system. Some modern translation tools
are able to give the user an estimate of how much space is needed for a text on the user
interface without having to actually run the user interface program.

This might seem like a trivial problem of counting the number of characters. On
closer examination, it is not. For example, what constitutes a single character might
vary widely from one language to another. Also, the length of characters alone might
not be relevant for determining if the texts fit a space on the user interface, as there
may exist a possibility for the texts to expand vertically as well as horizontally. The
easiest solution, in most situations, is to run the application and observe how the texts
turn out. Adjustments can be made later and the app rerun to see the result of the new
changes. However, this is time consuming. At Memrise, the problem of time con-
sumption is mitigated by giving the translators the ability to deploy and test a version
of the software without the involvement or help of the development team [7]. Hence,
they can see how their changes affect the system, and only submit their final work after
they reach a satisfying result.

One other very important feature that is missing is the ability to store and make use
of text contexts. Since text segments are stored along with their translations only, cases
arise when a word or phrase is repeated with different meanings for other languages. In
such a case, the context for the terms are needed in order to determine the source-target
pair that’s most suitable for a particular situation [29].

52

9 FUTURE WORK AND CONCLUSIONS

There are three broad areas of localization that were covered in this thesis: general
description of localization, localization as a process and a little about the tools used.
The thesis also gave a description of a translation memory system implementation for
a multi-project translation project. Following is a rundown of some of the conclusions
drawn and lessons learnt in the research for the thesis.

9.1 Sources of information

Sources of information about localization and all the tasks and procedures involved can
be broadly divided into three categories: academic research sources, localization tools
vendors’ sources and articles from companies describing how they actually implement
their localization processes.

The least reliable source of information about localization and its processes are
those from localization tools and software vendors. These sources are normally filled
with ads in the form of information that makes the task of sifting out useful information
much more difficult. Also, their definitions of important concepts are, in most cases,
tailored to fit their products. These sources also include terms that are mostly made
up for their products. However, there are advantages to these sources. For example,
they usually have up-to-date information about the latest problems faced by translators
and other personnel working with localization and how they are solved. Mostly, their
offered solutions depend on their products, making it difficult to tell if these are actual
problems or just means to showcase their products.

Sources from academia are usually the most accurate. Accuracy here refers to the
definition of terms and the distinctions between them. However, since localization is
not a very popular topic in the academic world, there are fewer academic studies than
in the other areas of software development. The real disadvantage of this category of
information sources is their applicability, that is, they are generally the least applicable

53

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

in real-life situations.
The most reliable category of sources of information in this area of endeavour are

articles from real-life companies that describe how they carry out localization and the
tools that they use. However, they are usually the least accurate as regards definition
of terms. Most often, there is no clear distinction between localization and translation,
but in terms of applicability, they are usually the best.

Indeed there are sources that have a mixture of two of those, such as [12], an
academic study which details how an actual American dental equipment manufacturer
company go about localization, including the challenges they face and how they are
handled. Such sources are usually also very reliable, as they combine the advantages
of academic sources and those of real-life companies.

9.2 Localization Processes

As so often in software development there are no standard procedures for localization.
Every organization has its own way of carrying it out. The main determining factors
for the localization processes of companies are the tools and particular software de-
velopment processes the team uses. Most companies build their localization processes
around the tools they use.

The localization process could be messy and difficult to manage or reason about.
This thesis suggests a system of reasoning about it. It employs a way to break down the
entire process into smaller tasks that can be used as a way to organize one’s thoughts
about it. Each task can be optimised individually.

9.2.1 Future work on the proposed localization visualization

There are many tools for visualizing processes. In the future, a simple system of flow-
charts can be used to give a visual representation of any company’s localization pro-
cess. A simple tool could be developed that allows modifying the system by a simple
drag and drop, and connecting the processes together. The tool could be used to give a
general time estimate of the entire system. Finally, the tool could automatically gener-
ate documentations for the entire process from its visual representation.

54

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

9.3 Localization Tools

There are many tools involved in the localization process, ranging from simple tools
such as slack bots to sophisticated localization management software tools. Most often
companies have to develop an in-house tool to aid in at least one area of the task. One
of such in-house tools is a translation memory system. A translation memory system
helps to store and index text segments that have already been translated and provides
a way to query them. When the texts are coming from multiple, possibly unrelated
projects, the task of building such a system becomes complicated. This thesis proposes
a simple design and implementation for such a system.

9.3.1 Future work on the translation memory system

Most companies and organizations use slack for communication [45]. Slack could
be used to trigger an immediate re-indexing of the text segments database instead of
waiting the designated timeout period. This could be done to make newly added text
immediately available for searching on the user interface. To trigger a re-index, a
user only needs to send a command message to a slack bot. This system is used at
Memrise [7]. It gives non-technical users the ability to perform technical tasks such as
triggering builds.

Another area where the system would benefit from a slack integration is in the
area of notifications. The system could be used to notify the localization personnel,
such as the localization managers or translators, of new texts segments that are not yet
translated. It could give a list of missing translation texts together with the projects
that they are from. Thus, not only the translation personnel are kept up to date with the
situations but also every other interested party including the development team.

55

BIBLIOGRAPHY

[1] Anthony Pym. Localization and linguistics. In SLE conference, 2001.

[2] Dimitra Anastasiou. Survey on the use of xliff in localisation industry and
academia. In Proceedings of Language Resource and Language Technology
Standards–State of the Art, Emerging Needs, and Future Developments Work-
shop, 7th International Conference on Language Resources and Evaluation
(LREC), Malta, pages 50–53, 2010.

[3] Transifex. Localization 101: A beginner’s guide to software localization. URL:
https://www.transifex.com/.

[4] Elvis Hau and Manuela Aparício. Software internationalization and localization
in web based erp. In Proceedings of the 26th annual ACM international confer-
ence on Design of communication, pages 175–180. ACM, 2008.

[5] Peter Sandrini. Website localization and translation. In EU-High-Level Scientific
Conference Series MuTra, pages 131–138, 2005.

[6] Bert Esselink. The evolution of localization. The Guide from Multilingual Com-
puting & Technology: Localization, 14(5):4–7, 2003.

[7] Memrise. Automating Localisation Workflows at Mem-
rise, 2017. URL: https://engineering.memrise.com/
automating-localisation-workflows-at-memrise-139743c32a42.

[8] Rosann Webb Collins. Software localization: Issues and methods. ECIS 2001
Proceedings, page 4, 2001.

[9] SS64. Windows locale id table. URL: https://ss64.com/locale.html.

[10] Israel Ministry of Foreign Affairs. About israel. URL: https://mfa.gov.il/MFA/
AboutIsrael/Pages/default.aspx.

[11] R. Ramler and R. Hoschek. How to test in sixteen languages? automation support
for localization testing. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pages 542–543, March 2017. doi:
10.1109/ICST.2017.63.

56

https://www.transifex.com/
https://engineering.memrise.com/automating-localisation-workflows-at-memrise-139743c32a42
https://engineering.memrise.com/automating-localisation-workflows-at-memrise-139743c32a42
https://ss64.com/locale.html
https://mfa.gov.il/MFA/AboutIsrael/Pages/default.aspx
https://mfa.gov.il/MFA/AboutIsrael/Pages/default.aspx
http://dx.doi.org/10.1109/ICST.2017.63
http://dx.doi.org/10.1109/ICST.2017.63

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

[12] D. Ledet and R. A. Bailie. Following the road untraveled: from source lan-
guage to translation to localization. In IPCC 2005. Proceedings. Interna-
tional Professional Communication Conference, 2005., pages 32–39, July 2005.
doi:10.1109/IPCC.2005.1494157.

[13] Abdulmajeed Alameer, Sonal Mahajan, and William GJ Halfond. Detecting and
localizing internationalization presentation failures in web applications. In Soft-
ware Testing, Verification and Validation (ICST), 2016 IEEE International Con-
ference on, pages 202–212. IEEE, 2016.

[14] Django Framework. Django - the web framework for perfectionists with dead-
lines. URL: https://www.djangoproject.com/.

[15] Django Framework. Source code for django.utils.translation. URL: https://docs.
djangoproject.com/en/2.1/_modules/django/utils/translation/.

[16] Angular Translate Framework. Angular translate - i18n for your angular apps,
made easy. URL: https://angular-translate.github.io/.

[17] Zeit. Next.js. URL: https://nextjs.org/.

[18] Google Inc. Google website translator. URL: https://translate.google.com/intl/
en-GB/about/website/.

[19] Y. Achchuthan and K. Sarveswaran. Language localisation of tamil using stat-
istical machine translation. In 2015 Fifteenth International Conference on
Advances in ICT for Emerging Regions (ICTer), pages 125–129, Aug 2015.
doi:10.1109/ICTER.2015.7377677.

[20] Angelika Zerfass. Evaluating translation memory systems. LREC 2002: Lan-
guage Resources in Translation Work and Research, 28:49–52, 2002.

[21] J. Archana, S. R. Chermapandan, and S. Palanivel. Automation framework
for localizability testing of internationalized software. In 2013 International
Conference on Human Computer Interactions (ICHCI), pages 1–6, Aug 2013.
doi:10.1109/ICHCI-IEEE.2013.6887796.

[22] Tryggvi Gylfason Spotify Labs. (right to left (the mirror world, Apr 2019. URL:
https://labs.spotify.com/2019/04/15/right-to-left-the-mirror-world/.

[23] Transifex. A localization platform that moves as fast as you do. URL: https:
//www.transifex.com/.

[24] Telegram. Translating telegram. URL: https://translations.telegram.org/.

[25] Telegram. Telegram faq. URL: https://telegram.org/faq#
q-can-i-translate-telegram.

57

http://dx.doi.org/10.1109/IPCC.2005.1494157
https://www.djangoproject.com/
https://docs.djangoproject.com/en/2.1/_modules/django/utils/translation/
https://docs.djangoproject.com/en/2.1/_modules/django/utils/translation/
https://angular-translate.github.io/
https://nextjs.org/
https://translate.google.com/intl/en-GB/about/website/
https://translate.google.com/intl/en-GB/about/website/
http://dx.doi.org/10.1109/ICTER.2015.7377677
http://dx.doi.org/10.1109/ICHCI-IEEE.2013.6887796
https://labs.spotify.com/2019/04/15/right-to-left-the-mirror-world/
https://www.transifex.com/
https://www.transifex.com/
https://translations.telegram.org/
https://telegram.org/faq#q-can-i-translate-telegram
https://telegram.org/faq#q-can-i-translate-telegram

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

[26] Netflix. Netflix. URL: https://tests.hermes.nflx.io/.

[27] Slator Esther Bond. Why netflix shut down its transla-
tion portal hermes. URL: https://slator.com/demand-drivers/
why-netflix-shut-down-its-translation-portal-hermes/.

[28] Lingobit Technologies. Lingobit - localization on demand, May 2019. URL:
http://www.lingobit.com/.

[29] Stas Malolepszy mozilla hacks. Fluent 1.0: a localization system for natural-
sounding translations, Apr 2019. URL: https://hacks.mozilla.org/2019/04/
fluent-1-0-a-localization-system-for-natural-sounding-translations/.

[30] W3C. Richard Ishida. Character encodings for beginners, Apr 2015. URL: https:
//www.w3.org/International/questions/qa-what-is-encoding.

[31] W3C. Richard Ishida. Handling character encodings in html and css (tutorial),
Aug 2010. URL: https://www.w3.org/International/tutorials/tutorial-char-enc/.

[32] Lau Taarnskov. Falsehoods programmers believe about time and time
zones, Jan 2015. URL: http://www.creativedeletion.com/2015/01/28/
falsehoods-programmers-date-time-zones.html.

[33] Lau Taarnskov. How to save datetimes for future events - (when utc is not the
right answer), Mar 2015. URL: http://www.creativedeletion.com/2015/03/19/
persisting_future_datetimes.html.

[34] Peter Sandrini. Localization and translation. LSP Translation Scenarios, 2:167–
191, 2008.

[35] SQLite Consortium. Sqlite - small. fast. reliable. choose any three. URL: https:
//mfa.gov.il/MFA/AboutIsrael/Pages/default.aspx.

[36] PostgreSQL. Postgresql: The world’s most advanced open source relational data-
base. URL: https://www.postgresql.org/.

[37] The Wikipedia Foundation. Translation memory exchange. URL: https://en.
wikipedia.org/wiki/Translation_Memory_eXchange.

[38] OSCAR (Open Standards for Container/Content Allowing Re-use). Tmx format,
Nov 1997. URL: http://xml.coverpages.org/tmxSpec971212.html.

[39] LISA OSCAR Standards. Translation memory exchange (tmx). URL: https:
//www.gala-global.org/lisa-oscar-standards.

[40] NGINX. Nginx, Apr 2019. URL: https://www.nginx.com/.

58

https://tests.hermes.nflx.io/
https://slator.com/demand-drivers/why-netflix-shut-down-its-translation-portal-hermes/
https://slator.com/demand-drivers/why-netflix-shut-down-its-translation-portal-hermes/
http://www.lingobit.com/
https://hacks.mozilla.org/2019/04/fluent-1-0-a-localization-system-for-natural-sounding-translations/
https://hacks.mozilla.org/2019/04/fluent-1-0-a-localization-system-for-natural-sounding-translations/
https://www.w3.org/International/questions/qa-what-is-encoding
https://www.w3.org/International/questions/qa-what-is-encoding
https://www.w3.org/International/tutorials/tutorial-char-enc/
http://www.creativedeletion.com/2015/01/28/falsehoods-programmers-date-time-zones.html
http://www.creativedeletion.com/2015/01/28/falsehoods-programmers-date-time-zones.html
http://www.creativedeletion.com/2015/03/19/persisting_future_datetimes.html
http://www.creativedeletion.com/2015/03/19/persisting_future_datetimes.html
https://mfa.gov.il/MFA/AboutIsrael/Pages/default.aspx
https://mfa.gov.il/MFA/AboutIsrael/Pages/default.aspx
https://www.postgresql.org/
https://en.wikipedia.org/wiki/Translation_Memory_eXchange
https://en.wikipedia.org/wiki/Translation_Memory_eXchange
http://xml.coverpages.org/tmxSpec971212.html
https://www.gala-global.org/lisa-oscar-standards
https://www.gala-global.org/lisa-oscar-standards
https://www.nginx.com/

This document was created: Sunday 18th August, 2019 16:49 by Chinedu Eze

[41] Elasticsearch. Elasticsearch - the elastic stack. URL: https://www.elastic.co/
products/elasticsearch.

[42] Express.js. Express - fast, unopinionated, minimalist web framework for node.js.
URL: https://expressjs.com/.

[43] MDN web docs. What is a progressive web app?, Apr 2019. URL: https://
developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction.

[44] Yu Che. Vuestrap - bootstrap components built with vue.js., Apr 2019. URL:
https://yuche.github.io/vue-strap/.

[45] Slack. Slack - imagine what you’ll accomplish together. URL: https://slack.com.

59

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction
https://yuche.github.io/vue-strap/
https://slack.com

	Abstract
	Contents
	List of Figures
	Glossary
	1 Introduction
	2 Localization
	2.1 Locale
	2.2 Why Localization
	2.3 Localization Approaches
	2.3.1 Compile Time: code + language texts
	2.3.2 Link Time: code + language packs
	2.3.3 Runtime: code + language runtime
	2.3.4 Online Dynamic Translation

	2.4 Localization Tools
	2.5 Localization Personnel
	2.6 Localization Vendors
	2.7 Localization Service Providers

	3 Internationalization
	3.0.1 internationalization and localization
	3.0.2 Internationalization and Translation

	4 Localization and Translation
	4.1 Translation outsourcing

	5 Localization as a Process
	5.1 Generic Localization Workflow
	5.1.1 Basic Phases
	5.1.2 The freeze state

	5.2 Putting it all together - a basic localization process
	5.3 Advantages of Phase Reasoning Approach
	5.3.1 It makes it easier to visualize the localization process
	5.3.2 Makes it easier to assign individuals to tasks
	5.3.3 Makes it easy to choose the right tools
	5.3.4 Easier to identify bottlenecks in the entire process
	5.3.5 Makes it easy to improve the entire localization process.

	6 Challenges with Localization
	6.0.1 Cost
	6.0.2 Page Information Flow
	6.0.3 Text Sizes and Truncation

	6.1 Challenges with Translation
	6.1.1 Accuracy
	6.1.2 Consistency Across Projects

	6.2 Challenges with Internationalization
	6.2.1 Numbers and how they affect words - singular and plural forms
	6.2.2 Issues with Character Sets and Character Encoding
	6.2.3 Issues with Dates and Time zones

	6.3 Challenges with the Localization Process
	6.4 Challenges with Localization Tools
	6.4.1 Tools are expensive
	6.4.2 Difficulty in migrating to other tools
	6.4.3 Difficulty in Developing Customized Tools
	6.4.4 Some tools are too complicated for small projects
	6.4.5 Choice of Tools is Difficult

	7 Translation Memory
	7.1 Translation Memory Workflow
	7.2 Advantages of Translation Memories
	7.2.1 Increase efficiency
	7.2.2 Support Consistency Across Documents and Software
	7.2.3 Reusability of translated texts
	7.2.4 Reference tool
	7.2.5 Increase in translation accuracy
	7.2.6 Decrease in translation costs

	7.3 Translation Memory System Models
	7.3.1 The Referencing Model
	7.3.2 The Database Model

	7.4 Files and Data Storage in Translation Memory Systems
	7.5 File Formats
	7.5.1 XLIFF file format
	7.5.2 TMX file format

	7.6 Choosing a Translation Memory Application

	8 In-House Translation Memory System
	8.1 Why in-house?
	8.2 System Description
	8.3 The Indexer
	8.3.1 Implementation Overview
	8.3.2 The tmx file repository
	8.3.3 The Repository Checker System

	8.4 The Search Api
	8.4.1 Implementation Overview

	8.5 The User Interface Application
	8.5.1 The User Interface Components
	8.5.2 Implementation Overview
	8.5.3 It uses the vuestrap css framework
	8.5.4 The UI is served directly by the Nginx server

	8.6 Limitations of this System

	9 Future work and conclusions
	9.1 Sources of information
	9.2 Localization Processes
	9.2.1 Future work on the proposed localization visualization

	9.3 Localization Tools
	9.3.1 Future work on the translation memory system

	Bibliography

