Jesus Carabano Bravo

A Compiler Approach
to Map Algebra
for Raster Spatial ' Modeling

Turku CENTRE for COMPUTER SCIENCE

TUCS Dissertations

No 243, August 2019

A Compiler Approach
to Map Algebra
for Raster Spatial Modeling

Jesus Carabano Bravo

To be presented, with the permission of the Faculty of Science and
Engineering of Abo Akademi University, for public criticism in
Auditorium XX, the Agora building, on August 30th, 2019, at 13:00.

Abo Akademi University
Faculty of Science and Engineering
Agora, Vattenborgsvéigen 3
20500 Abo, Finland

2019

Supervisors

Jan Westerholm

Faculty of Science and Engineering
Abo Akademi University

Agora, Vattenborgsvigen 3, 20500 Abo
Finland

Mats Apsnés

Faculty of Science and Engineering
Abo Akademi University

Agora, Vattenborgsvigen 3, 20500 Abo
Finland

Reviewers

Oliver Schmitz

Department of Geosciences
University of Utrecht

PO Box 80.115, 3508 TC Utrecht
The Netherlands

William Spataro

Department of Mathematics and Computer Science
University of Calabria

Ponte Bucci, Cubo 30B Arcavacata di Rende, Cosenza
Italy

Opponent

Oliver Schmitz

Department of Geosciences
University of Utrecht

PO Box 80.115, 3508 TC Utrecht
The Netherlands

ISBN 978-952-12-3853-6
ISSN 1239-1883

Abstract

Modeling and simulation enables the study of spatial phenomena that are
otherwise impossible to reproduce in the physical world. On the one hand,
digital models replicate the shape and state of the Earth with bits and
bytes that we can store and manipulate. On the other, computer models
turn mathematical equations into instructions that computers can run to
simulate events of interest. Together, they provide a digital laboratory where
to virtually isolate and experiment with spatial phenomena.

Recently, advances in remote sensing technologies have brought unprece-
dented volumes of spatio-temporal data. Simultaneously, computer archi-
tectures have developed into parallel and heterogeneous designs. More data
enables better models, but also entails more calculations, which in turn re-
quires faster computers. Parallel computers promise higher performance,
but their complex programming impacts both productivity and portability.
This raises a conflict between the execution speed, ease of development and
portability of computer models. However, these three qualities are necessary
for an efficient practice of modeling and simulation.

In this thesis we propose a compiler approach to map algebra that pro-
vides a productive, performant and portable environment where to model
spatial phenomena and simulate their dynamics. Modelers write sequential
scripts in the map algebra formalism, a language for raster spatial analy-
sis. Then the compiler parses their scripts to generate parallel codes that
run efficiently on modern heterogeneous architectures. Moreover, scripts are
written once and automatically translated to the target computer architec-
ture, attaining portability.

To test our hypothesis, we build a prototype compiler and evaluate typi-
cal map algebra workloads. Our experiments produced three clear outcomes:
(1) the compiler approach can handle large volumes of data even when they
exceed the computer memory, (2) the performance is competitive as it pro-
vides large speed-ups over interpreted map algebras, and (3) the compilation
process is fully transparent to modelers and therefore user-friendly. In con-
clusion, a map algebra compiler meets the necessary qualities for a practical
modeling and simulation of spatial phenomena with raster data, and as a
result it becomes a valuable tool for modelers.

ii

Abstrakt

Modellering och simulering mdojliggoér studier av rumsliga fenomen som an-
nars inte kan reproduceras i den fysiska vérlden. A ena sidan representerar
digitala modeller jordens form och tillstand med bitar och byte som vi kan
lagra och manipulera. A andra sidan gér datormodellerna matematiska ek-
vationer till instruktioner som datorer kan utféra for att simulera hiandelser
av intresse. Tillsammans skapar de ett digitalt laboratorium dér man kan
virtuellt isolera och experimentera med rumsliga fenomen.

Nyligen har framsteg inom fjarranalysteknik gett upphov till mangdub-
blade volymer av spatio-temporala data. Samtidigt har datorarkitekturer
utvecklats till parallella och heterogena system. Mer data mojliggér battre
modeller, men medfoér ocksa fler berdkningar, vilket i sin tur kréver snab-
bare datorer. Parallella datorer utlovar hégre prestanda, men deras kom-
plexa programmering paverkar bade produktivitet och portabilitet. Detta
ger upphov till en konflikt mellan exekveringshastigheten, enkel utveckling
av och portabiliteten hos datormodeller. Dessa tre egenskaper &r emellertid
nodvandiga for en effektiv anvindning av modellering och simulering.

I denna avhandling foreslar vi en kompilatormetod for kartalgebra som
ger en produktiv och portabel programutvecklingsmiljo med hog prestanda
déar man kan modellera rumsliga fenomen och simulera deras dynamik. Mod-
ellerare skriver sekventiella skript i kartalgebraformalism, ett sprak for rum-
slig analys med raster. Kompilatorn analyserar sedan skripten for att gener-
era parallella koder som l6per effektivt pa moderna heterogena arkitekturer.
Noteras bor att skripten skrivs en gang och 6versitts automatiskt till malda-
torarkitekturen, genom vilket man uppnar portabilitet.

For att testa var hypotes bygger vi en prototypkompilator och utvarderar
typiska kartalgebraiska arbetsméngder. Vara experiment gav tre klara ut-
fall: (1) Kompilatormetoden kan hantera stora dataméngder dven nér dessa
overstiger datorminnet, (2) prestandan ar konkurrenskraftig eftersom kom-
pilatorn ger stor prestandadkning jamfoért med tolkad kartalgebra och (3)
kompileringsprocessen &r enkel for modellerare och dérfér anviandarvénlig.
Sammanfattningsvis uppfyller en kartalgebrakompilator de nédviandiga egen-
skaperna for en praktisk modellering och simulering av rumsfenomen med
rasterdata, och blir foljaktligen ett vardefullt verktyg fér modellerare.

iii

iv

Acknowledgements

This could only start by acknowledging Jan Westerholm, who casually found
Jests around the university, and now the rest is history. Jan provided me
with the hottest® GPUs on the market to support my master thesis, all
without asking a thing, or that I thought. Back then I was a carefree
exchange student and soon after, without really knowing how, I voluntarily
enrolled for a not-so-carefree PhD under Jan’s supervision. The PhD did
not ruin my life, well almost, but I finished it thanks to the support of
innumerable people, Jan foremost.

Literally a 350W-hot Nvidia GTX, which later caught fire...

I thank those who were technically involved in this thesis, from Tapani
Sarjakoski’s group (J Oksanen, J Kovanen, V Mékinen...) for providing the
Geographical side of this venture, to the Abo Akademi bunch for supporting
the Computer Science part: starting with Mats Aspnés and his enlightened
advices, with lots of former colleagues in the middle (V Timonen, E Yurte-
sen, D Eranen, F Robertsen...), and inevitably finishing —don’t ask why—
with Jani Sainio*.

This can’t be mentorship if you always get me in trouble...

Let’s not forget those colleagues involved in collateral® ways, from other
PhDs (M Kamali, J Wiik, S Kanur, W Lund, S Holmbacka, H Rexha, B By-
holm, T Ahmad, J Igbal, V Popescu...), to staff (M Barash, K Rénnholm...),
lecturers (J Ersfolk, S Lafond, J Lilius, M Neovius...) and fellows (A Domi,
J Martini, L. Nwaogo, A Morariu...). Most likely I still owe you a coffee.
Well, today wine and coffee are on me.

I was possibly detrimental to your work; collateral damages of this thesis.

Without revealing their secret identities —hidden by a hacker hoodie—
I shall also thank my industry colleagues, who unknowingly supported me
when the PhD got me to my knees. They provided some oxygen and a
break from academia, enough to stand up and give this thesis the final blow.
Equally important were my plants™, or probably much more important.

Forever in debt to Silo.Al, for watering my plants as well as my career.

To my dear international friends, who helped me balance work in life
and keep it together. I should not name one of you without naming you all,
but printing such long thesis would get expensive. In particular to those in
the ESN family: it’s true, “once erasmus, always erasmus”. Do pay me a
visit in the future, the PhD is over, I am finally free® and got time for you.

Be quick before work, family or adulthood imprison me!

Immense gratitude to my actual family back in Spain, who don’t see me
much and wondered all these years whether I would return. Sorry, I will
stay abroad some time more, but I will visit more often from now on. To
them, who missed me a lot, yet never turned their backs, I am grateful the
most™. If today I made it here, it is surely because of their support.

Their oil, wine and ham deliveries might have influenced this opinion.

Last but not least, to those I didn’t mention.
You know who you are, you were vital.
Muchas Gracias.

Abo, August 2019
Jesus Carabafio Bravo

vi

List of original publications

1. Carabano, J., Sarjakoski, T., and Westerholm, J. (2015). Efficient im-
plementation of a fast viewshed algorithm on simd architectures. In
Proceedings of the 23rd Euromicro International Conference on Par-
allel, Disturbed, and Network-Based Processing, pages 199-202. IEEE

2. Carabario, J. and Westerholm, J. (2017). From python scripting to
parallel spatial modeling: Cellular automata simulations of land use,
hydrology and pest dynamics. In Proceedings of the 25th Euromicro
International Conference on Parallel, Disturbed, and Network-Based

Processing, pages 511-518. IEEE

3. Carabano, J., Westerholm, J., and Sarjakoski, T. (2018). A compiler
approach to map algebra: automatic parallelization, locality optimiza-
tion, and gpu acceleration of raster spatial analysis. Geolnformatica,

22(2):211-235

4. Carabano, J. and Westerholm, J. (2019). A compiler and runtime
approach to parallel spatial modeling. Technical Report 1200, TUCS.

ISSN 1239-1891, No 1203

vii

viii

List of abbreviations

AES
AGU
ALU
AST

BMI

CFG

CISC
CPU

CcuU

DAG
DEM
DSL
DSP

FMA

GPL
GPU

HBM
HDD

1/0
ILP
ISA
ISP

LOS
LRU
LSU

NAS

Advanced Encryption Standard
Address Generator Unit
Arithmetic Logic Unit
Abstract Syntax Tree

Bit Manipulation Instruction

Control Flow Graph

Complex Instruction Set Computer
Central Processing Unit

Control Unit

Directed Acyclic Graph
Digital Elevation Model
Domain-Specific Language
Digital Signal Processor

Fused Multiply-Add

General-Purpose Language
Graphics Processing Unit

High-Bandwidth Memory
Hard Disk Drive

Input/Output
Instruction-Level Parallelism
Instruction Set Architecture
Image Signal Processor

Line-of-Sight
Least Recently Used
Load Store Unit

Network Attached Storage

ix

NINE
PPP

RAM
RISC

SAN
SCSI
SFC
SHA
SIMD
SMT

Non-Inclusive Non-Exclusive
Productivity Performance Portability

Random Access Memory
Reduced Instruction Set Computer

Storage Area Network

Small Computer System Interface
Space Filling Curve

Secure Hash Algorithm

Single Instruction Multiple Data
Simultaneous Multi-Threading

SQuaRE Software product Quality Requirements and Evaluation

SRTM
SSA
SSD

TCP

UAV
USACE

VPU

Shuttle Radar Topography Mission
Static-Single Assignment
Solid-State Drive

Transmission Control Protocol

Unmanned Aerial Vehicle
United States Army Corps of Engineers

Vision Compute Unit

Contents

1 Introduction
1.1 Context and Motivation
1.1.1 Computer Modeling and Simulation
1.1.2 Modeling Large Spatial Phenomena
1.1.3 Advances in Spatial Data Collection
1.1.4 Developments in Computer Architectures
1.2 Research Focus
1.2.1 Rationale,
1.2.2 Aims and Objectives
1.2.3 Methodology L.
1.3 This Thesis e
1.3.1 Thesis Contribution
1.3.2 Original Publications
1.3.3 Organization of the Thesis.

2 Background
2.1 Computer Architectures
2.1.1 Sequential Era 0oL
2.1.2 Parallel Era 0L
2.1.3 Heterogeneous Era
2.2 Computer Cartography
2.2.1 Geographic Information Science
2.2.2 Raster Spatial Analysis
2.2.3 Map Algebra
2.3 Programming Languages and Compilers
2.3.1 Language Theory
2.3.2 Compiler Theory
2.3.3 Design Tradeoffs

3 Methods: A Compiler Approach to Map Algebra
3.1 The Pitfall of Interpreters
3.2 Architecture of a Map Algebra Compiler

xi

21
21
22
25
27
29
30
32
34
36
36
38
40

3.2.1 Front-end: Python DSL 48

3.2.2 Middle-end: Graph IR 53

3.2.3 Back-end: Task Model 59

3.24 Runtime: Work Pool 61

3.3 Hierarchical Decomposition 65
3.4 Code Optimizations 68
3.4.1 Parallelization of the Work 69

3.4.2 Reordering for Data Locality 71

3.4.3 Specialization by Algorithmic Pattern 73

3.4.4 Sparsification of the Computation 76

4 Experiments 79
4.1 Workloads characterization 79
4.2 Viewshed Analysis oL 85
4.3 Urban Development 90

5 Conclusions 97
5.1 Summary and Discussion 97
5.2 Limitations and Further Work 98
Paper I 109
Paper 11 117
Paper 111 127
Paper IV 152

xii

Chapter 1

Introduction

Ordinary minds discuss people,

interesting minds discuss events,

but great minds... those discuss ideas,

and today we are here to discuss theories and ideas.

...paraphrasing ~ Eleanor Roosevelt

1.1 Context and Motivation

The world is a complicated place. Since we are born, we make sense of it by
observing, experiencing and learning. We conceptualize what we perceive to
understand the world out there. In our minds, we form ideas that model our
interpretation of the environment. We exercise those ideas to predict our
surroundings, and when they fail, we learn. We model the world to navigate
it, and at the same time we make of those models our world.

1.1.1 Computer Modeling and Simulation

What are models? 1f theories are abstractions that reduce phenomena to
their essentials, then models puts such abstractions into forms that we can
manipulate. Mental models are the most common and valuable models we
have. Our mind builds them to anticipate events and plan accordingly.
Thus, as we cross the street we know it is safe, because our mind predicts
the traffic. Mathematical, logical and physical models are other examples of
models. They are less intuitive, more formal and exist outside our minds. We
use them to predict the weather, design safe planes or explain the financial
crisis. With the invention of computers we have acquired new types of
models, the digital and computer models, on which this thesis focuses.

Model is a very overloaded word. Here we discuss the physical model, “a
three-dimensional representation of a person, thing or structure, typically on
a smaller scale than the original” , the mathematical model, “a simplified
description, i.e. a mathematical one, of a system or process, to assist cal-
culations and predictions” ; and their digital counterparts. Henceforth we
designate digital model as the digital version of the physical model, “a dig-
ital representation of a person, thing or structure” , and computer model
as the digital version of the mathematical model, “a digital description of
a system or process that can be simulated by a computer to assist calcula-
tions and predictions”. In cases where the semantic context determines the
meaning, we might use the substantive model alone.

Computers are revolutionizing the way we work. They enable us to
store, query, modify, visualize, analyze and simulate about anything we can
digitalize, and they do so drastically faster than anything known to man
before. For instance, it is now more convenient to design the prototype of a
vehicle as a digital model, than it is to actually build and rebuild consecutive
physical models of the prototype. Likewise, it is more efficient to simulate
the aerodynamics of such vehicle with a computer model, than it is to test
the physical prototype in a wind tunnel or in the actual roads. Besides
engineering, other fields that now rely on computers are finance (e.g. risk
modeling), meteorology (e.g. weather forecast), energy (e.g. consumption
analysis) and medicine (e.g. drug discovery), to name a few.

Computers are transforming the way we do research, too. Recall the sci-
entific method (Figure 1.1). Scientists observe the environment, question the
reasons behind some phenomena, formulate hypothesis that explain their as-
sumptions, perform experiments to prove or refute their hypothesis, analyze
the experimental results, and finally draw some conclusions. Of course, re-
search is rarely that straightforward. Often some obstacle stops the progress
and forces bifurcations and iterations on the method. This is where com-
puters stand out, as they help us bypass long-standing research obstacles,
such as the observation of unmeasurable events (i.e. nano-structures for-
mation, protein folding); the experimentation with uncontrollable processes
(i.e. plasma physics, nuclear reactions); or the analysis of unmanageable
volumes of data (i.e. human genome, satellite imagery).

A crucial obstacle that computers enable us to overcome is that of our
human limits in the experimentation. Physical experiments are necessary
reality checks: they synchronize our theories with the real world. However,
sometimes experimenting with the actual phenomena is not a viable op-
tion. For example, studying the lifecycle of galaxies and stars by observing
the night sky too slow; testing aerospatial materials and jet engines with
throwaway rockets is too expensive; developing nuclear weapons by trial
and error in the laboratory is too dangerous; or experimenting with living
human brains is too risky and possibly unethical.

2

e

Make an

servation J

Use your knowledge, experience
and the literature to identify a
phenomenon of interest.

Find a question with unknown
answer whose resolution would
benefit the community.

Ask a
Question

Speculate about the plausible
cause and effect relationships
governing the phenomenon.

——
Build a abstraction,)
Hypothesis aQOdey
. o=

Computer

Simulation

Design and perform a phyisical
experiment to test the validity
of the hypothesis.

Perform an
Experiment

,/

Analyze the
Result

Draw a
Conclusion

Were the results positive?
If not, reiterate to correct flaws in
the hypothesis or experiments.

. N
.w data analysis, \
uisualizaw

Conclude whether the question
was answered. Update your
knowledge and the literature.

Figure 1.1: The scientific method: an iterative process for discovery. Com-
puter simulations pose an alternative where physical experiments fail.

Simulation
Analysis 1 93
o9
D)
Q
Computation

&

:.3 3 Digital
. S o _________ N Modern . World ;
' Real E] Science

World < ‘

Experiment

Measurement

eleg
painses|\

Figure 1.2: Modeling and simulation is enabled by computation, a pillar of
moder science together with theory and experimentation [23].

Today, computers enable the study of phenomena that are otherwise
impractical to reproduce in the physical world. Computers have become the
digital laboratory where to perform rapid, cost-efficient and safe simulations.
As a result, modeling and simulation has turned into a fundamental tool
for the scientific method, and it is acknowledged as a third pillar of modern
science, together with theory and experimentation. Computers not only
allow us to test theories beyond our physical limitations, but are also useful
to narrow down the experimental configurations of most interest, and serve
as a validation tool for the experimental methodologies (Figure 1.2).

This thesis revolves around the modeling and simulation of large spatial
phenomena. Spatial phenomena are of our interest because of two trends:
the advances in data collection technologies, which have outpaced our capac-
ity to process new spatial data, and the developments in computer architec-
tures, which cannot deliver more performance without laborious parallelism.
The next subsections set the context and motivate the reasons behind the
research that makes up this thesis.

1.1.2 Modeling Large Spatial Phenomena

Space is an important factor in many natural and artificial events. Geogra-
phy, hydrography, ecology, meteorology and other so-called Earth sciences
all deal with natural events occurring across space. Commerce, transport,
communications, urban planning and other fields of human origin also tackle
events characterized by spatial relationships. Two examples are the evolu-
tion of geomorphological processes and the organization of human settle-
ments. These and other spatial events are phenomena of great interest that
science wishes to predict and explain. However, their large scale limits their
physical experimentation, which in turn complicates their research.

As an example, imagine a densely populated city in an area at risk of
1000-year floods . Suppose that, due to climate change and global warming,
the risk intensifies to become a 10-year flood. Because of the dangers it
entails for the population, soon governments call for scientists to tackle the
crisis. Scientists know that, given how limited control humans have over
the natural forces, little can be done beyond placing defensive hydraulic
constructions. Scientists and hydraulic engineers will then question whether
a levee system could prevent the flood. With the hypothesis that said system
would work, they simply need to perform an experiment. Unfortunately,
such a physical experiment is not that simple, if at all feasible.

How could they gather and manipulate the volumes of water that would
drown a large city? How could they consistently repeat this feat as the
hypothesis is refined and iterated? An approximated solution could be to
replicate the event at a much smaller scale. However, even if smaller, most of

' A 1000-year flood risk refers to a 0.1% chance of flooding occurring in any given year

4

the challenges are not eliminated, just scaled down. Large volumes of water
are still needed, as well as physical prototypes of the levee system. Hence
the experiment becomes expensive, slow and too impractical to iterate more
than a few times. This was at least the conclusion of the USACE?, who in
the 1950’s dared such experimentation with a small-scale Mississippi River
Basin model (Figure 1.3).

Figure 1.3: Mississippi River Basin Model, illustrated in an article in Popular
Science (April 1948 issue, page 115).

After the Great Mississippi Flood in 1927 [20], the USACE built an
extensive system of levees and floodways across the Mississippi basin to
prevent future floods. These measurements targeted single sites and were
planned locally, without considering the global river network. Years later
scientists discovered that the local measurements not only did not work as
expected, but they might even intensify future floods due to changes in the
water currents [58]. Hoping to better understand the issue, the USACE built
a hydraulic model of the Mississippi basin [12] where to physically simulate
the entire system at small scale. Constructing and operating the 1km? model
required the work of a thousand laborers and a hundred hydraulic engineers,
and although the physical model produced satisfactory results during its 20

2The USACE, or U.S. Army Corps of Engineers, is a federal and militar agency dedi-
cated to public engineering, design, and construction management.

)

years of operation, it was remarkably impractical. In 1971, the project
was decommissioned and substituted by more manageable, economical and
efficient computer models.

With the popularization of computing and the commercialization of mi-
croprocessors, it did not take long for the USACE to recognize the value of
computers for spatial modeling. They permit the study, planning and op-
timization of problems with economical, social and environmental interests.
Besides flooding, computer spatial models help us: understand complex eco-
logical processes, like the sustainability of ecosystems; analyze threatening
future scenarios, like climate change and global warming; estimate the dam-
ages of spontaneous natural hazards, like tropical cyclones; or optimize the
distribution of infrastructures, for example, in a city.

Nonetheless, a straightforward computer model is not enough to master
the complex dynamics of large spatial processes. To be valuable, computer
spatial models require:

e Carefully devised mathematical equations capable of reproducing the dy-
namics of complex phenomena. Often alternative formulations are available,
each with different tradeoffs in accuracy and computational cost.

e Methods to quantify the uncertainty of the model, which at best pro-
duces vague approximations of reality. Sensitivity analysis and the Monte Carlo
method are typical strategies to estimate the volatility of the output.

e Proper calibration with ground data to find the parameters that best con-
nect simulation with reality, because even the most accurate equations can be
meaningless if they are not backed by the right parameters.

e Independent validation with separate ground data from the calibration
data, otherwise the model might overfit the calibration data, creating a false
impression of accuracy.

e Continuous iteration of the design by testing, inspecting and adjusting until
the model works. Poorly designed models will not only err but, worse still, they
might misguide gullible decision-makers.

Concluding, computers enable the modeling and simulation of large spa-
tial phenomena that are otherwise too complicated, expensive and time-
consuming to experiment with. This causes a fundamental shift in the way
modeling is done, from field work to office work. Note that, although the
nature of the work changes for the better, the work does not disappear. Mod-
elers still require long hours so as to formulate, quantify, calibrate, validate
and iterate their models. However, because this is done with computers,
the cost is now dependent on the quality of the modeling software. Given
that modelers are not computer developers, their software should strive to
be simple and intuitive. Therefore, and as we discuss later, a fundamental
requirement of modeling software is productivity.

6

1.1.3 Advances in Spatial Data Collection

While the spatial phenomena occurring in the real world are continuous in
nature, computers can only work with discrete data made of bits and bytes.
The process by which we capture analog data into digital snapshots is called
sampling. Spatial sampling is thus the process of collecting observations in
a two-dimensional space. Temporal sampling, or just sampling, refers to the
discretization of data in the time dimension. When the sampling rates in
the different dimensions are high enough, this process results in reasonable
approximations of reality that we call digital models.

In the last decades, and as a result of the improvements in data collection
techniques, the sampling rate has rapidly multiplied in space, time and
spectrum, which has brought unprecedented volumes of spatial data. The
main contributors to this trend is the family of remote sensing technologies
[49], a variety of onboard sensors designed to capture the earth’s surface and
atmosphere. These sensors are typically mounted in spacecrafts, aircrafts or
UAVs (i.e. drones), from where they emit and measure radiation at multiple
electromagnetic wavelengths in order to produce digital images of different
spectra and resolutions [10]. The digital images then undergo a series of
preprocessing steps that finally result in digital models of the Earth.

A typical digital model of the Earth (or any other celestial body) are
Digital Elevation Models (DEM). DEMs are rectangular grids of cells, each
of which holds a single elevation measurement. Together, these cells approx-
imate a surface with varying accuracy depending on the spatial sampling.
Figure 1.4 displays a DEM whose cells have been tinted and shaded for bet-
ter visualization. This rectangular organization of the data is called raster
data format and it is used to store continuous spatial information, like
temperature or rainfall. Rasters, and particularly DEMs, are used exten-
sively in the experimental section of this thesis. An alternative format is
the vector data format, which is not covered in this thesis.

The number and size of grid cells determine the extension and resolution
of a raster model. More cells lead to larger extensions, while smaller cell
area imply higher spatial resolutions. The size of the smallest object that
can be resolved in the model is determined by the resolution. Therefore,
higher resolutions are preferable as they enable finer-grained simulations,
but excessive resolution will increase the computational requirements beyond
our capacity. Consider for example Finland, a northern European country
with a land area of 338.424 km?. A low-resolution DEM of the country
(i.e. km scale) only occupies few megabytes of data, whereas a very high-
resolution DEM (i.e. meter scale) increases that size to the terabytes.

One might question whether all that high-resolution spatial data being
produced by remote sensors is needed. In fact, sometimes it is not. Current
resolutions are sufficient to detect coarse-grained events such as deforesta-

7

Figure 1.4: Mt. Cotopaxi, Andes Mountains. Image by NASA Earth Ob-
servatory [59], generated from the DEM acquired by the SRTM [26]

tion, pollution, great wildfires, ice caps melting, or land-use change, to name
a few [60]. However, fine-grained models do require higher spatio-temporal
resolutions to better resolve their dynamics. For instance, hydrological mod-
els yield deficient results if the resolution cannot register small streams, or
if the extension of the area does not contain complete drainage basins. An-
other example are urban models, whose dynamics arises from a myriad of
interconnected components. Housing, transportation, energy or infrastruc-
ture, all interact in complex ways and need to be tackled jointly. Therefore
no single data source is sufficient and more spectrums, higher resolution
and extensive areas are necessary to better comprehend the behavior of
such complex systems.

Concluding, the increasing volumes of spatial data enable larger and
more accurate simulations than any time before. However, more data en-
tails more storage and calculations, and too many calculations become com-
putationally prohibitive. Quickly, the cost of simulations escalates from
tolerable minutes, to hours, to days, to unbearable weeks. At this point,
the main obstacle to modelers is not the productivity of their modeling soft-
ware anymore, but the time their laptop, workstation or cluster takes to
execute their models and output some answer. Given that modelers are
not computer developers, they have little knowledge on how to speed up
their simulations. Therefore, and as we discuss later, another fundamental
requirement of modeling software is performance.

8

1.1.4 Developments in Computer Architectures

Computer architectures have evolved from sequential, to parallel and to
heterogeneous. The improvements in sequential processors, which had re-
mained uninterrupted for half a century, came to a sudden halt in beginning
of the 21st century because of three figurative walls. Due to the power wall,
processors could not keep up the increases in clock frequency, because higher
clocks generate more heat than standard cooling technologies can dissipate.
Due to the memory wall, data could not be brought any faster to the pro-
cessor, because higher bandwidth requires more pins than fit the chip and
lower latency necessitates faster signal propagation than electrons permits.
Due the ILP wall, processors could not execute more than a few instructions
per cycle, because pipelining, out-of-order and speculation techniques have
past their point of diminishing returns. Together, the three walls meant that
the rapid improvements in sequential processors would soon plateau.

In 1974, Dennard observed that power density stays constant as transis-
tors get smaller [3]. In other words, smaller transistors require quadratically
less power to implement the same circuitry, and as a result, reductions
in transistor lithography enable straightforward increases in frequency. By
2007 the trend known as Dennard scaling began to break down as transis-
tors shrank below 65 nm [40]. This event put an end to the steady frequency
increases (Fig. 1.5) and gave rise to the power wall. Hoping to return to the
performance pace formerly driven by the frequency increases, CPU makers
took an unconventional shift: from single-core to multi-core processors.

The idea was that heat would disrupt any 2.5 Ghz architecture if it was
clocked to 5 Ghz, but a pair of 2.5 Ghz cores could be placed together to
provide the performance of a 5Ghz core. Multiple cores would also aggregate
more memory bandwidth and instructions per cycle, and so, the parallel shift
would overcome the three walls, at least ideally. Unfortunately, parallelism
is not the ultimate pass through the walls, as it brings new challenges along;:
many codes are inherently sequential and for the most part cannot run in
parallel; even with plenty of parallelism, their parallel execution implies
extra communication costs; and parallel programming is remarkably more
complicated than writing sequential codes.

In 1965, Moore predicted that the transistor count on chips would double
every year, and later extended the prediction to two years, in what became
the most cited law of computing, Moore’s Law [55]. Moore’s Law is the
most important trend after Dennard scaling because it enables more parallel
circuitry. By 2012, as CPU makers struggled to push the transistor lithogra-
phy below 22 nm [27], it became obvious that the pace of advancement had
started to slow down in what could be the beginning of the end for Moore’s
law. In an attempt to return the advancements, CPU makers took another
architectural shift: from homogeneous to heterogeneous architectures.

9

42 Years of Microprocessor Trend Data

T T T T 2

107 | a7 i
‘ and Transistors

6 A oA 8 (thousands)

10" : : e : : : : &]
LY Yol ,

L3 I H N A ,,,1:“}:, | Single-Thread
10 TS oS’ ® | Performance
104k " A;‘&‘ 00d3 e | (SpecINT x 10%)

a3 o o Frequency (MHz
o | ‘ it 3 I'!*I-'H_i ge | Fred y (MHz)
[
a [] 3,00 Typical Power
102 L = A9 ’.- v vv; 24 'v'va"‘ vO‘ 1 (Watts)
: °® g Vv vy S
1 A o b 'vv‘ d YT L eaet * Number of
10 LA _— s i ® :‘t ‘e Logical Cores
i g E v v v vv .
10° ——; * R T RV SR YR N S e . .
| l | |
1970 1980 1990 2000 2010 2020

Year

Figure 1.5: Four decades of microprocessor trend data [70] that expose the
ILP and power walls, the shift toward parallelism, and the steady increase
in transistor count predicted by Moore’s Law.

The theory is that, as both power and transistor budgets become the
limiting factor, it gets increasingly profitable to tailor the architecture to
target critical workloads. Thus, if a specialized processor can run the critical
workloads more efficiently than a regular CPU, then pairing both would
lead to a more performant heterogeneous design, again, in the ideal case.
Unfortunately, the new shift is not a final solution either, and also brings
more problems: the devices require manual orchestration (e.g. memory
transfers, kernel invocations); the codes need to be strategically mapped
and scheduled to the different devices; and every architecture requires a
bespoke version of the code to be performant.

To sum up, computer architectures have become parallel and hetero-
geneous to secure continuous performance improvements, but in exchange
they have overwhelmed us with complexity. To make matters worse, not
every problem benefits of this change; only those workloads with abundant
parallelism, little need for communication and typical algorithmic structure
do. As it turns out, spatial phenomena meet such requirements. They are
inherently parallel, as they integrate numerous independent events dispersed
across large spaces. They communicate little, since most events develop lo-
cally or only interact with their immediate neighborhood. They resemble the
typical GPU workload, since the raster models are essentially images from
the Earth surface. Consequently, as long as the programming complexity is
dealt with, they have good prospect for performance.

10

Concluding, the nature of spatial models enables performance improve-
ments with which to offset the data escalation. However, because attain-
ing good performance out of modern architectures requires bespoke codes,
codes written for a dual-core laptop will not make the most of, say, an
octa-core workstation with GPUs. A productive development of computer
models requires codes that scale automatically to better machines, because
if new hardware requires new codes, the porting process becomes costly and
impractical. Given that modelers are not computer developers, they have
little knowledge on how to effectively port their codes. Therefore, and as
we discuss later, a last fundamental requirement of modeling software is
portability.

1.2 Research Focus

Throughout the previous section we have introduced the theme of com-
puter modeling and simulation, we have made the case for simulating large
spatial phenomena where physical experimentation fails, and we have dis-
cussed the trends and developments in spatial data collection and computer
architectures. In between the lines, three fundamental requirements of spa-
tial modeling software have been identified: productivity, performance and
portability. Our research revolves around these three qualities and how they
restrain the modeling of spatial phenomena. The next subsections state the
research problem, the research goals and the research methodology.

1.2.1 Rationale

Before going any further, it is necessary to define the meaning of productiv-
ity, performance and portability (hereafter PPP). PPP are umbrella terms.
They are clusters of desired software qualities. There are two types of soft-
ware qualities, functional and structural qualities. Functional qualities mea-
sure how well a software fits its purpose. They relate to what the software
does. Structural qualities refer to the remaining non-functional traits. They
describe how the software works. A widespread classification of software
qualities is the ISO/IEC 25010 [45], also known as SQuaRE (Fig. 1.6).

The classification used here is a tailored subset of the SQuaRE model,
with a focus on performance. We disregard the Functionality, Reliabil-
ity, Compatibility and Security groups of qualities, and only deal with the
Usability, Maintainability, Performance and Portability types of qualities.
Because these software qualities overlap and interact in complex ways, we
have clustered them in the three PPP concepts, as seen in Figure 1.6. The
Usability and Maintainability groups are merged into Productivity, while
the Portability group acquires performance-related qualities.

11

SQuaRE model

| Usability

Understandability

Functionality

Completeness

Security
Confidentiality

PPP model

Productivity

Learnability, Usability

Learnability Correctness ' 2grity Accessiblity, Modularity
Operability Suitability Non-repudiation Reusability, Extensibility
User error protection Accountability Debuggability, Testability
Interface aesthetics Reliability Authenticity Maintainability
Ii:cessibility _I Maturity B Performance
Availability Compatibility

| Maintainabilﬂ

Fault toler/ Ce

Co-existence

Responsiveness

Time behaviour

Modulari Recoveravilit Interoperabilit

ty v P v Resource utilization
Reusability
Analysability Performance —l Portability—l > | Po rtability
Modifiability Time behaviour Adaptability -

Platform portability
Testability I Resource utilization Installability +performance -
connotations Performance portability

I_Capacity I I—Replaceability

Figure 1.6: Software product Quality Requirements and Evaluation
(SQuaRE) model [45] to the left, and our subset model to the right, which
groups those qualities of interest into the PPP concepts.

Software scalability

Productivity is, in broad terms, the ability to rapidly develop and main-
tain computer models. If the modeling software is not productive, few mod-
els will be created and supported to begin with. Productive software presents
a gradual learning curve for the unexperienced user. It prioritizes usability,
while being flexible in the construction of solutions. It permits the compo-
sition of large solutions out of smaller, reusable modules. Because models
are complex to get right, productive software is also testable. It assists
the tracing of errors and facilitates their step-by-step debugging. Finally,
productive software makes it viable to extend and adapt existing solutions.

Performance is the capacity of the computer models to execute efficiently
in the underlying architecture. Performance is essential to handle large
volumes of data, and its absence restricts the functionality of models. For
instance, regional weather models need high resolution to reproduce fine
dynamics such as tropical cyclones. Performant software responds quickly
to the user commands and queries. It achieves as high throughput and as
low latency as the underlying hardware permits. Performant software is
time-efficient, since it minimizes the time users wait for a simulation. At
the same time, it does so without wasting unnecessary memory or other
hardware resources. Lastly, performant software is not only efficient to run,
but also to test and debug.

12

Portability is the ability of the computer models to seamlessly scale to
larger and newer hardware. Note that portability has performance connota-
tions here and goes beyond typical machine and platform portability. This
is a quality of increasing importance due to the shifts toward parallel and
heterogeneous architectures. Portable software is developed once but runs
anywhere. To achieve this, it abstracts away the low-level details of com-
puter architectures and execution models. Portable software can process
moderate workloads on a laptop, and scale to a workstation when the data
increases. It can be submitted to a cluster to execute a large workload, or
deployed to the cloud as part of a service. Finally, portable software enjoys
a long-life cycle, reducing expenses related to its deployment.

PPP are critical qualities that, when missing, hinder the development
of computer models. From the moment a computer model is envisioned
until it is put into operation, it goes through a development process that
hereinafter we call the modeling loop (Figure 1.7). This process is highly
iterative and is meant to derive the model pragmatically. It starts simply,
with straightforward equations that are extended gradually. The data, too,
should be clear at first before moving to larger, more detailed datasets.
This approach makes it easier to develop the model, correct its errors and
understand why it works.

The modeling loop is not a strict process, but rather a series of recurrent
steps (Figure 1.7). It starts with the conceptual design of the model (1),
which is translated to source code computers can run (2), that is then tested
and debugged until it is operative (3). Note how these steps are restrained
by the productivity of the modeling software, because they require constant
interaction and manipulation of the code.

Next the sensibility and uncertainty of the model are quantified (4), fol-
lowed by its calibration with historical data of relevance (5), and by the
model validation against a different set of data (6). These steps are con-
strained by the performance of the modeling software, because they all need
to run repeated executions of the model.

Once the model is functional for small inputs, it can be scaled to larger
datasets (7). When the increases in data undermines the performance, the
model is transferred to a faster machine. Note that, without portability,
this step might require a reimplementation of the code for the new machine.
Finally, the model is deployed for use in analysis and simulations (8).

Apart from being iterative, the modeling loop is also a very dynamic
process. The modeler could at any moment return to a previous step to
correct a flaw, and therefore the three bottlenecks may alternate during any
stage of the development. Consequently, the software should be designed to
always maximize the three qualities. However, there is a conflicting connec-
tion between the three, namely, a tradeoff (Figure 1.8).

13

dgs;gn >\ (1) Come up with an algorithmic design
S— to reproduce the phenomena.
_/
. N 2) Translate the design to source code =
<mp|er_nent.) @) that computers can run. ks
e 3
ﬁ o
L. X\ 3 Test and debug the code for errors a
G) until the design is functional.
4) Quantify the sensitivity of the model)
to small perturbances. 2
o
q lib h del with d £
. .) Calibrate the model with groun S
5 o
allbratlon >) data from the events of interest. E
o
1) Validate the calibration of the model
6
alldatlon > (6 with different ground data.
/7~ =~ Z
@ (7) Scalethe model to larger datasets =
— and possibly faster machines. -(%
ﬁ 5
e}
Distribute, install and configure the o
8 ’
Vdeploy (®) model in the user machines.

(9) Iterate, correct, revise, improve... until the model is satisfactory.

Figure 1.7: Modeling loop: a pragmatic process to develop models.

Early obsolescense

Long High
response develop.
times Portability cost

&

Figure 1.8: Due to the Productivity-Performance-Portability (PPP) trade-
off, approaching any of the qualities distances the others.

14

For example, productivity requires writing simple, sequential and generic
codes, but this contrasts with the parallel and heterogeneous architectural
shifts, decreasing the performance. Performance requires parallel programs
tuned for the architecture, but this implies writing low-level codes in machine-
dependent semantics, giving up the portability. Portability requires bespoke
codes for the different architectures, but this implies multiple designs, imple-
mentations and testing of the model, halving the productivity. Nonetheless,
the three qualities are important, and overlooking any one has important
consequences. This tradeoff between the PPP qualities, hereafter the PPP
tradeoft, is the basis of our work.

In conclusion, there is a problem: we need PPP, but they conflict
with each other. Thus, we have a clear research question: how can we
get PPP without major compromises?

1.2.2 Aims and Objectives

The research that makes up this thesis focuses on one general goal: to
solve the exposed PPP tradeoff in the context of raster spatial modeling.
This is important because spatial modeling is a valuable tool against the
problems of the developing world. More specifically, we aim to attain
productivity, performance and portability in the analysis and simulation of
large spatial phenomena with computer and digital models built upon raster
data. Although straightforward to comprehend, the PPP tradeoff is no
simple problem to solve. It raises multiple questions, requires complex so-
lutions and permits different approaches. Consequently, the research scope
has been narrowed in the following ways:
On the computing side, we...

+ Utilize shared-memory machines (e.g. laptops, workstations).

+ Focus on multi-core CPUs and many-core GPUs.
Omit distributed systems (e.g. clusters, supercomputers).
Omit other types of heterogeneity (e.g. big.LITTLE).
On the data side, we...

+ Target models built upon raster data (e.g. DEMs)
+ Test data sizes fitting into shared-memory, of up to the terabyte.

— Omit models based on vector data (e.g. TINs).
— Omit datasets requiring distributed-memory, beyond the terabyte.
On the modeling side, we...
+ Propose and prototype a solution to the PPP tradeoff.
+ Investigate and experiment quantitatively with performance.
— Ounly perform a qualitative evaluation of productivity.
— Do not evaluate and only discuss about portability.
For reasons that become apparent later, we will tackle the problem with
techniques from programming languages and compiler theory. On the one

15

hand, we will employ an intermediate representation (IR) like compilers do,
because this enables the translation from productive, high-level program-
ming abstractions to performant, low-level machine instructions. On the
other hand, we will target a subset of applications like domain-specific lan-
guages (DSL) do, because this narrows the optimization possibilities and
reduces the compilation complexity.

In particular, we will restrict the application domain to spatial models
built upon raster data. At the same time, we will adopt the map algebra
formalism, a DSL for raster spatial analysis. The idea is to integrate the
architecture and techniques of a compiler into map algebra, so that the ex-
ecution is decomposed into a front-end and a back-end connected by an IR.
In this way, only the front-end requires productivity, the back-end perfor-
mance and the IR portability. This breaks the cyclic tradeoff displayed
in Figure 1.8, and now each component can maximize one quality without
affecting the other two. We call this strategy a compiler approach to
map algebra.

Having introduced the approach that will be used to answer the research
question, the specific objectives of this research are:

o To design a map algebra compiler that brings productivity, performance
and portability to raster spatial modeling.

o To identify the performance bottlenecks of map algebra workloads and
determine code optimizations to relieve these bottlenecks.

e To collect experimental data from typical map algebra workloads and
analyze the effects of the optimizations in the performance.

e To develop a prototype implementation of the compiler approach that
can be used to evaluate the functionality of the design.

1.2.3 Methodology

A research methodology is a systematic process that guides the creation
of new knowledge. It is like an algorithm, made of well-defined steps and
transitions, but for scientists. Methodologies are meant to prevent the de-
generation of the research process, by which scientists get lost in the com-
plex research flow and lose direction. In this research we have followed a
mix between scientific method and engineering design process. The scien-
tific method involves observations, hypothesis and experiments (Fig. 1.1),
whereas the engineering process is concerned with designing, building and
testing solutions. The former discovers new knowledge, while the latter
applies that knowledge to solve problems.

This combination of scientific and engineering approaches obeys two rea-
sons. First, we are computer engineers, not spatial modelers. Our goal is to

16

provide solutions to their problems. This is what engineers do, they iden-
tify and solve problems. They ask: “who needs what because why?” In
our case: “spatial modelers need a map algebra compiler because of the
increasing volumes of spatial data.” Second, coming up with the compiler
architecture and the code optimizations is not straightforward. It requires
a more scientific approach, by which we hypothesize that organizing the ex-
ecution of map algebra scripts in a certain way brings higher performance,
and subsequently run experiments to verify the claim.

More specifically, the methodology employed in this research is an iter-
ative process that involves the following steps:

1. Rational / Observation.

Modeling and simulation of spatial phenomena is a useful tool. As the volumes
of data increase, this tool requires more performance. Computers are improving
too, but harnessing their power is unproductive and non-portable.

2. Problem / Question.
For spatial modeling software to be useful, we need productivity, performance
and portability. However, getting the three qualities poses a tradeoff.

3. Design solution / Hypothesis.

A map algebra compiler with certain architecture and optimizations might be
the solution. Architecture: productive front-end, portable IR, performant back-
end. Optimizations: parallelism, reordering, specialization, sparsity.

4. Build prototype / Experiment.

Implementation: Python interface, C/C++ back-end, OpenCL parallel code.
Benchmarks: representative map algebra workloads and spatial models.

5. Test prototype / Analyze results.

Benchmark the prototype and its different optimizations. Analyze the results
and identify possible improvements.

6. Iterate or Conclude.

Evaluate the state of affairs. If more improvements are possible (or necessary),
go to point 3. If the design solves the problem acceptably well, conclude.

Briefly, after the problem has been properly motivated and identified,
we continually design, build and test a prototype of the solution. Some
ideas will work while others will not, but this is not known in advance.
Therefore it is necessary to test a hypothesis and, if it yields bad results,
update the design. A cycle ends and makes way for the next iteration when
we have learnt enough to improve the design. These steps are repeated until
a satisfactory state is reached.

17

1.3 This Thesis

The previous section has presented the research problem (i.e. the PPP
tradeoff in raster spatial modeling), stated the research goal (i.e. to solve the
tradeoff with a map algebra compiler), and justified the research methodol-
ogy (i.e. a scientific-engineering method). This thesis is not a chronological
narrative of our research (except for subsection 1.3.2), but it presents the
—at the time— latest results achieved via the research methodology. The fol-
lowing subsections list the scientific contributions of the thesis, present the
original scientific publications, and outline the organization of the thesis.

1.3.1 Thesis Contribution
This thesis makes the following contributions to the body of knowledge:

First contribution. We combine the map algebra formalism with com-
piler techniques to achieve a productive, portable and performant software
for raster spatial modeling. Thereby, modelers simply write sequential map
algebra scripts that, when executed, get automatically translated into paral-
lel codes that run on modern computer architectures. The approach targets
shared-memory machines with multi-core CPUs and many-core GPUs, and
can deal with up to terabytes of raster data without running out of memory.

Second contribution. We device several code optimization techniques
for the map algebra compiler. After investigating the behavior of map al-
gebra workloads we find that memory, and not computation, is the major
bottleneck when processing large spatial datasets. This motivates the de-
velopment of four groups of optimizations targeting: the parallelism of the
spatial dimension, the reordering of the computation, the specialization of
algorithmic patterns, and the exploitation of the sparsity in data.

Third contribution. We analyze the effects of the optimization tech-
niques, individually and collectively, on different map algebra scripts with
varying combinations of spatial operations. This shows that memory is the
major bottleneck and that no single optimization excels all others, but their
efficiency depends on the configuration of the script and the given input
data. We first benchmark four simple workloads, and then make the case
for the map algebra compiler with two real-world problems, viewshed anal-
ysis and a cellular automaton for urban development.

Fourth contribution. Finally, to verify our claims we develop a proto-
type implementation of the compiler approach. We choose the Python lan-
guage for the front-end interface because of its simplicity and readability.

18

The IR is formulated as a directed graph where nodes represent operations
and edges represent data. We implement the back-end and runtime system
in C++ because of its high performance and low-overhead. The multi-core
CPUs and the many-core GPUs are instructed with the OpenCL kernel lan-
guage. This is moreover transparent to the users, who only interact with
the map algebra interface.

1.3.2 Original Publications

This subsection lists the scientific publications fruit of our research:

The first paper, with title “Efficient implementation of a fast viewshed
algorithm on SIMD architectures” [6], was devised as an exploration of the
affinity of map algebra operations for modern computer architectures. The
article focuses on viewshed analysis, a raster operation with complex par-
allelization. This paper provided valuable feedback that made some points
clear to us: that the spatial dimension in raster models is highly paralleliz-
able and a source of performance; that complex map algebra operations like
viewshed can be parallelized in quite a few ways; and that writing paral-
lel map algebra codes is nontrivial even for expert programmers. With this
work, our concerns about performance and parallelism were augmented with
questions about productivity. It became apparent that modelers should not
struggle with parallelism, but they needed transparent parallelism.

The second paper, titled “From python scripting to parallel spatial mod-
eling...” [7], investigates the use of map algebra for spatial modeling, with
a focus on cellular automata models. The article introduces a productive
Python interface with sequential semantics yet parallel execution. This work
is the inception of the compiler approach, where we realized that interpret-
ing scripts is inefficient. The evaluation of the performance in this work,
while simple, already shows high speed-up numbers. More importantly, it
reveals that for large datasets considerable time is spent just moving memory
around. During this work, our concerns about performance were extended
with the identification of the memory bottleneck.

The third paper, with title “A Compiler Approach to Map Algebra...”
[9], exposes the performance issues of interpreting map algebra scripts and
proposes the compiler approach. It shows that parallelism is not enough to
get high performance, but data locality is critical too. Consequently, multi-
core CPUs or GPUs bring no advantage unless the memory bottleneck is
dealt with. The article tests five map algebra scripts for which it achieves
speed-ups of one to two orders of magnitude. Compared to traditional map
algebras, the compiler approach is equally productive but considerably more

19

performant. Moreover, it supports multiple computer architectures, mean-
ing it is portable too.

The fourth paper, entitled “A compiler and runtime approach to parallel
spatial modeling” [8], is the first article to identify and discuss the productiv-
ity, performance, portability tradeoff. It also provides a clearer decoupling
of the compiler components and of the groups of optimizations. The pa-
per introduces control flow in the IR, permitting the use of branching and
loop structures. This enables richer map algebra scripts, particularly those
whose computation depends on the data. An example of this is a water basin
catchment simulation that keeps running until all water reaches a ground
state. The article also performs a more exhaustive evaluation of the code
optimizations and their interactions. It tests a cellular automata model for
urban development and shows that no single optimization is responsible for
most of the speed-up, but they all contribute to relieve the different bot-
tlenecks. After this work we concluded that the PPP tradeoff was indeed
solvable in the domain of raster spatial modeling.

1.3.3 Organization of the Thesis

This thesis is a compendium of peer-reviewed articles that consists of two
parts. Part I introduces and overviews the doctoral research in a concise
but detailed manner. Part II compiles the original publications described
in subsection 1.3.2. Part I is structured as follows.

Chapter 1 has introduced the context (raster spatial modeling) and
motivated the problem (PPP tradeoff). Chapter 2 presents the three back-
ground fields upon which the research builds (computer architectures, com-
puter cartography and programming languages). Chapter 3 describes the
solution to the problem (map algebra compiler), which is also the main con-
tribution. Chapter 4 tests a prototype implementation of the solution with
three experiments to verify its adequacy. Finally, Chapter 5 concludes this
thesis and discuss its limitations and future possibilities.

20

Chapter 2

Background

”

“If I have seen further is because I stand on the shoulders of giants

~ Isaac Newton

Three fields of knowledge are crucial to understand this thesis: computer
architectures for their hectic development during the last half of a century,
computer cartography for its enabling role in the modeling and simulation
of spatial phenomena, and programing languages and compilers for their
effect in the productivity and performance of programs. The next sections
describe these three topics in that order.

2.1 Computer Architectures

Primitive computers like Colossus and ENIAC had to be physically rewired
to perform different tasks, making the development of programs a tedious
and error-prone process [16]. These computers were also expensive, fragile,
power-hungry and needed trained manpower to be operated. The von Neu-
mann architecture made away with the programming-by-rewiring by storing
programs in memory. In the core of this design lays a control unit that de-
codes and dispatches instructions to arithmetic logic units. Although more
programmable, few organizations could afford the early von Neumann ma-
chines built with vacuum tubes. The invention of the transistor (1947),
followed by the integrated circuit (1959), gave born to modern computers.
A decade later, the Intel 4004 [25] became the first commercial micropro-
cessor, and many others followed. Since then, computer architectures have
developed into very advanced designs, while still maintaining the general
principles of the von Neumann architecture.

21

Computers have historically improved in two ways: via architectural
innovations and via developments in semiconductors [39]. The first micro-
processors were relatively simple, static in frequency, and executed scalar
instructions sequentially. Much of their early improvements came from the
advances in the manufacturing technologies, which brought steady increases
in transistor count and operating frequency for a few decades. With time,
it became remarkably harder to scale frequency (end of Dennard’s scaling),
and to shrink and pack more transistors (deceleration of Moore’s Law).
Thus, to continue the pace of development, most improvements had to
come now from the architectural innovations. As a result, architectures
transitioned toward more complex, dynamic, superscalar and parallel de-
signs. This evolution of architectures can be classified in three periods: the
sequential, parallel, and heterogeneous eras. The next subsections overview
these periods and the effects they brought onto the PPP qualities.

2.1.1 Sequential Era

The sequential or single-core era was driven by improvements in ILP' and
increases in frequency. Notably, pipelines went from scalar to superscalar
and their clock raised from kHz to GHz speeds. The fast pace of development
in this era made most codes double their performance by simply buying the
next generation microprocessor.

Hereafter we focus on the x86 ISA?, as this is the architecture of the
CPUs we employed. Basically, x86 is a register-based, CISC3, dynamically
scheduled and performance-oriented architecture: based on registers as op-
posed to stack-based architecture where data is pushed and pulled into a
stack; CISC and not RISC?, since the x86 ISA includes complex instruction
and diverse addressing modes; dynamically scheduled because the hardware,
and not the compiler, determines the execution order of the instructions; and
performance-oriented in contrast to energy-efficient architectures designed
for the mobile market, like ARM.

The x86 ISA, like any von Neumann architecture, requires a minimal
set of functional units to operate (Fig. 2.1). The control unit is in charge
of decoding the instructions that are fetched from memory. The arithmetic
logic unit reads operands from registers or memory, operate on them, and
write back the results. Few special purpose registers are also needed, like

nstruction-Level Parallelism (ILP) refers to the possibility to execute multiple in-
struction per clock cycle when said instructions present no dependencies.

2An Instruction Set Architecture (ISA) is an abstract model of a computer, a logical
blueprint not tied to any specific implementation.

3Complex Instruction Set Computer (CISC) architectures employ large ISAs that in-
clude high-level non-primitive operations (e.g. substring search).

“Reduced Instruction Set Computer (RISC) architectures present small ISAs made of
basic instructions that map directly to hardware (e.g. register movement).

22

the program counter that points to the next instruction. The memory unit
mediates the load and store of data residing in the memory addresses re-
quested by the CPU. Finally, these units are not isolated but communicate
with the exterior via I/O ports connected to devices like disks.

Central Processing Unit

Input Control Unit

Device

Arithmetic Logic Unit

A 4

Registers (e.g. PC, AC)

A A 4
\4 Output
Memory Device

(data + instructions)

Figure 2.1: Abstract diagram of a von Neumann machine.

While Figure 2.1 is conceptually functional, x86 implementations were
more complex from the beginning. The Intel 8086, released in 1978 as the
first x86 model, could already overlap the fetch and execution of instruc-
tions. This mechanism, known as pipelining, was thoroughly extended to
overlap more stages in following x86 models. For instance, the Pentium
microprocessor (1993) could fetch an instruction, decode another, solve an
address, look up the cache, execute an instruction, and write back the result
of another, all in one clock cycle. This was the first x86 superscalar pipeline,
which could complete up to two instructions per cycle via two independent
ALUs. On the other hand, the Pentium pipeline worked in-order, meaning
instructions had to complete in the program order. Such design is highly af-
fected by pipelining hazards®, whereby the next instruction cannot execute
in the following cycle because its input is still being computed by a previous
instruction in the pipeline.

The average computer program is riddled with hazards that constantly
stall the execution of in-order pipelines. To circumvent this issue, the Pen-
tium PRO (1995) introduced the first out-of-order pipeline in the x86 fam-
ily. These pipelines are able to reorder the stream of instructions to elim-
inate many data and structural hazards. Data hazards are avoided by is-

5Three types of pipelining hazards can delay the execution: data hazards due to data
dependencies, structural hazards due to limited functional units, control hazards due
to branches making the next instruction unpredictable.

23

suing other instruction from the stream whose inputs are ready instead of
stalling, while functional hazards are minimized by replicating critical func-
tional units (e.g. ALUs, address generators). Control hazards, on the other
hand, are not preventable with these techniques alone, but require a more
aggressive class of ILP optimizations known as speculative execution.

Although the first Pentium had an in-order pipeline, it could already
execute instructions speculatively. To do so, it makes use of a branch pre-
diction unit that guesses the target branch based on the program history.
As long as the guess is right, this removes the control hazards and allows the
continuous pipelining of instructions. However, when the guess is wrong, the
execution needs to be retaken from the correct branch, incurring a penalty.
Speculation can also apply to data, for example, by prefetching memory
addresses that might be accessed in the future. Prefetching is common in
modern CPUs, which can deduce simple memory access patterns.

Another important ILP technique was the addition of single instruc-
tion multiple data features. The Pentium MMX (1993) was the first x86
model to include a 64-bit wide vector ALU that could operate on either
eight 8-bit integers, four 16-bit integers, two 32-bit integers, or one 64-bit
integer. These SIMD instructions targeted specific workloads (e.g. multi-
media, graphics, scientific codes) and required manual programming with
intrinsics®. Nonetheless, they were well received and progressively extended
in width (128b SSE, 256b AVX, 512b AVX-512) and functionalities.

Perhaps the most radical evolution of x86 was its internal reorganization
into a RISC microarchitecture (parch). CISC instructions are in general too
complex to achieve a highly clocked pipeline [39], but moving to a RISC
ISA was not an option since backward compatibility was a main selling
point. Since the P6 family, the x86 core was split into a stable CISC front-
end and a malleable RISC back-end connected by a decoder that turns the
x86 instructions into micro-operations. Thereby, the pipeline could pursuit
higher clocks and ILP without impacting the established x86 interface.

It goes without saying that many other improvements not mentioned
here were developed during that time. For example, simultaneous mul-
tithreading (SMT) was introduced with the Pentium 4 (NetBurst parch,
2000), and later parchs introduced the Bit Manipulation Instruction (BMI),
the Fused Multiply-Add (FMA), the Advanced Encryption Standard (AES)
and the Secure Hash Algorithm (SHA) instruction sets extensions. Nonethe-
less, while it is important to understand the origin and complexity of modern
computers, henceforth we only need to remember that this was an era of
increasing and uncompromising performance.

SIntrinsic functions provide direct access to advance instructions (e.g. SIMD), which
is necessary when compilers cannot generate these instructions on their own.

24

2.1.2 Parallel Era

The parallel or multi-core era started with the shift toward multi-core pro-
cessors’. As single cores would not get much faster, more cores had to be
used together. However, now only those codes designed with parallelism
would attain more performance when buying a new processor.

From the 8086 to the Pentium 4, x86 codes boasted effortless perfor-
mance from the increasing ILP and frequencies. Beginning of the 21st cen-
tury, Dennard scaling started to break down as transistors approached
the atomic level. Consequently, power would not continue to shrink lin-
early with transistors size, leading to the power wall [43]. At the same time,
most pipelining optimizations were bringing diminishing returns, prefacing
the ILP wall [89]. Lastly, memory bandwidth and latency suffered their own
limitations too, in what is called the memory wall [96]. The walls meant that
the free lunch was over [78] and performance would not come without ef-
fort. This began an architectural shift toward parallelism, not at instruction
level®, but at thread level.

In x86, the parallel shift manifested with the discontinuation of NetBurst
in favor of the Core parch?. NetBurst had a remarkably long pipeline in
an attempt to reach 10 GHz in future models, but the excessive power con-
sumption of such design impeded scaling its frequency beyond 4 GHz. The
new Core parch returned to the lower clock, high efficiency small pipeline
of the P6 parch. Most importantly, it divided the processor die into mul-
tiple cores connected by a unifying last-level cache. These independent but
interconnected cores would collaborate to run programs faster than a sin-
gle power-limited core. Thus, provided that x86 codes are parallelized, this
architectural shift set a new path for continued performance.

Figure 2.2 shows the die shot of a modern Intel x86 consumer architecture
(Coffee Lake, 2017). This is a symmetric multiprocessing design, where
cores share a main memory and the I/O devices. The x86 architecture
implements a strong memory model and is also cache coherent, therefore
caches are actively synchronized to provide all cores with an up-to-date
view of the shared memory. Maintaining this coherency for increasing core
numbers puts strong pressure in the internal topology, which evolved from
buses (e.g. Core) and crossbars (e.g. Nehalem) to rings (e.g. Sandy Bridge)
and meshes (e.g. server parts). Another development was the addition of
dynamic voltage and frequency scaling techniques'® to achieve a finer power

"The conventional definition of a multi-core CPU is such that it presents from two to
tens of cores, cache coherence and a shared memory system.

8Note that while the sequential era presented parallelism at instruction level, this was
oblivious to programmers who wrote sequential codes. However, the thread level paral-
lelism of this era implied the explicit parallelization of codes.

9 Although other multi-core processors were already in the market (e.g. Power 4, 2001),
it was the discontinuation of NetBurst what most strongly marked the multi-core shift.

25

management of the cores and optimize the power budget.

| Memeny Interface

. CPU «iCPU « CPU
Core 3 Corell'Core -

| ,Rl‘hg Vi ‘I,in‘ter,\cg‘n:r)

. CPU «iCPU « CPU .
" Core 2| Core I Core

Figure 2.2: Annotated die shot of Intel’s Coffee Lake architecture (2017)
with six cores and ring interconnection [91].

Unfortunately, programming these multi-core processors turned out to
be complex and laborious. Unlike instruction-level parallelism, which is au-
tomatically handled by the processor and compilers, thread-level parallelism
is a complex problem that requires manual intervention from the develop-
ers. This generates new programming issues for the developers, which in
turn impacts their productivity.

First, many algorithms are inherently sequential and for the most part
cannot run in parallel. This effect is characterized by Amdahl’s Law [1],
which states that even small fractions of sequential execution have large
impact on the speed-up of parallel codes. Examples are cryptographic algo-
rithms like Cypher Block Chaining or iterative solvers like Newton-Raphson,
where the computation of the next step cannot be started until the results
from the previous step are available.

Second, even if a problem displays plenty of parallelism, its parallel ex-
ecution may imply extra communication costs. This occurs because the
separate cores need to cooperate and synchronize data in order not to step
on each other’s work. Due to the Memory wall, communication becomes
a bottleneck that limits the scalability of any parallel codes. An exam-
ple are graph algorithms, for instance Dijkstra’s single-source shortest-path
algorithm, which permits the parallel exploration of unvisited edges, but
requires constant synchronization of the visited edges.

Third, parallel programming is remarkably more complicated than writ-

Dynamic frequency scaling reduces the clock speed of circuits with low workload, while
dynamic voltage scaling lowers the voltage when the frequency is low.

26

ing sequential codes. Parallel codes are more error-prone, harder to debug,
less maintainable and not very portable. Furthermore, an unsophisticated
parallelization is not enough, otherwise the speed-ups will be worthless. Pro-
grammers need to carefully design their codes to minimize synchronization,
split the work wisely, balance the load fairly, coordinate the parallel 1/O
and sort out a number of other parallel issues.

Lastly, writing parallel programs while ensuring their correctness adds
yet more complexity. Often, seemingly correct codes hide bugs that only
manifest under rare circumstances. Unlike with ILP, where the processor
(or compiler) takes care of the hazards, here it is the programmer who must
take responsibility for the coordination of the execution. Failing to do so
leads to race conditions, deadlocks and other concurrency issues.

Despite all these problems, multi-core processors are here to stay. Pro-
grammers have embraced parallelism when performance is a requirement,
as this is now the main source of performance in modern x86 chips. Nowa-
days, x86 consumer processors include up to eight cores (e.g. Intel Core),
x86 workstation/enthusiast processors have up to sixteen cores (e.g. AMD
Threadripper), and the x86 server processors comprise up to thirty-two cores
per socket (e.g. AMD Epyc). Additionally, the server parts are coupled into
multi-socket systems to double or quadruple their cores. Extending the
core number beyond this point requires distributed-memory solutions called
clusters, in which multi-socket systems are connected by a high-bandwidth
low-latency communication network. Although it is important to mention
these distributed-memory systems and their inter-chip parallelism, hereafter
we focus on the shared-memory architectures and intra-chip parallelism em-
ployed in this work.

2.1.3 Heterogeneous Era

The heterogeneous or many-core era commenced with the introduction of
specialized architectures, such as GPUs''. As semiconductors approach
physical limits, it becomes difficult to further shrink their size and increase
their numbers. In face of this growing shortage, specializing the circuitry
for typical workloads becomes a promising alternative.

Even though no one can confidently say Moore’s Law has ended, it has
clearly slowed down [40]. This puts unprecedented pressure on the transistor
budget, which like the power budget might soon reach a limit. As a result,
packing more symmetric cores into multi-core processors can only continue
so far, and now more than ever it becomes profitable to tailor the finite
circuitry toward selected workloads. This tailoring leads to what is called a

" Graphics Processing Units (GPUs) are many-core processors, i.e. with hundreds to
thousands of cores, primarily targeted at graphics workloads, but compatible with other
data-parallel domains, such as linear algebra and machine learning.

27

heterogeneous architecture, where the processors can be asymmetrical and
targeted at certain compute patterns.

Like the parallel era was consolidated with the transition from NetBurst
to Core, the heterogeneous shift was apparent with the evolution of GPUs
into general-purpose processor'?. GPUs became programmable first with
CUDA [62] and later with OpenCL [46], and since then much software has
being ported to heterogeneous systems combining GPUs and CPUs. An-
other prevalent example of heterogeneity is the ARM big. LITTLE architec-
ture, which pairs slower low-power cores (LITTLE) with faster power-hungry
cores (big) to maximize battery and performance.

Nowadays the heterogeneity is spreading where power or performance
are of great concern, such as in embedded systems, image processing, com-
puter vision, artificial intelligence or machine learning. For instance, modern
smartphone chipsets typically incorporate along their mobile CPU an Im-
age Signal Processors (ISP), a Digital Signal Processors (DSP) and a mobile
GPU. Another example is Nvidia’s Xavier System-on-Chip (SOC), shown
in Figure 2.3, which includes a Deep Learning Accelerator (DLA) and Pro-
grammable Vision Accelerator (PVA).

§
)
=)
=
=
B
i)
=l

. Volta GPU

‘CRU | CPU | CPU ||
' Coliell ECorel Collie

| TH I EE 5 |
LPDDR4 PHY | LPDDR4 PHY

Figure 2.3: Annotated die shot of Nvidia’s Tegra Xavier architecture (2018)
with a multi-core CPU, an integrated GPU and other accelerators [92].

Unfortunately, the heterogeneous shift comes with tradeoffs again. Com-
pilers, programming languages and libraries are not able to abstract away the

12Early heterogeneous processors like the Cell [28] entered and left the market with little
success, while the polyvalence of GPUs for graphics and compute allowed them to stay
relevant.

28

heterogeneous architectural details. This leads to new programming chal-
lenges that impact the productivity and the portability of high-performance
codes.

First, attaining peak performance requires code versions tailored to the
architecture. GPUs can run straightforward ports of CPU algorithms, but
that is often very inefficient. For example, ray tracing on CPUs is imple-
mented differently than on GPUs due to how they handle branches [68].

Second, heterogeneous architectures often lack coherency and a strong
memory model unlike x86. Consequently the management of memory is
exposed to the programmer, who needs to orchestrate it manually. For
instance, in CPU-GPU systems the CPU acts as a host that commands the
memory transfers for the GPU via API calls.

Third, heterogeneous processors need heterogeneous programming mod-
els and languages. For example, GPUs use kernel languages (e.g. CUDA,
OpenCL) while FPGAs employ hardware description languages (e.g. Ver-
ilog, VHDL). This can lead to a complex mix of languages and models within
a single high-performance program.

Lastly, programmers also face problems like the scheduling and mappings
of codes to architectures. For example, in big. LITTLE processors choosing
the big or the small cores brings performance or energy savings, while in
CPU-GPU systems it is the type of parallelism that will determine which
processors works best.

Despite these problems, heterogeneity is increasingly exploited where
performance is mandatory. A good example is the training and inference
of large neural network models. Attaining human-like accuracy in tasks
like image recognition, language translation or the game of Go [75] requires
supercomputing level of performance (i.e. beyond petaflops) sustained for
several days [19]. Lacking this level of performance would strongly con-
strain the development of these models, therefore the motivation to develop
the accelerator architectures mentioned above. After acknowledging the in-
creasing diversity in heterogeneous architectures, henceforth we focus on the
heterogeneous CPU-GPU systems employed in this work.

2.2 Computer Cartography

Cartography, the study and practice of making maps, has developed dra-
matically with the invention of computers. The first maps were carved
on stone, cut in wood, pigmented in animal skin and drawn in papyrus.
Though rudimentary, they were critical for commerce, sailing, war and the
development of civilizations overall. Their strategical value soon motivated
the advancement of the mapping, drawing and printing techniques. How-
ever, while the implementation of maps improved, their format essentially

29

remained physical and static. Recently, computers have enabled the virtual-
ization of maps, turning them from physical to digital models. At the same
time, remote sensing has accelerated the collection of spatial data around
the Earth. Together, these technologies have revolutionized every aspect of
cartography: from the creation, to the distribution, to the interaction with
maps [4].

Figure 2.4 illustrates an antique physical map to the top and a modern
digital counterpart to the bottom. The former map was produced more than
a century ago with technical drawing and craftmanship. It possibly required
earlier field work to obtain precise measurements of the urban geometries.
The latter map is less than a decade old and was designed with computers
and CAD (Computer-Aided Design) tools. Quite possibly, it only needed of-
fice work since the data can be conveniently derived from existing databases.
Moreover, it can be visualized at multiple levels of detail and can be edited
with precision. Most importantly, the digital format means that computers
can now manipulate and analyze the data, enabling the automated discov-
ery of new knowledge at a much faster pace that humans ever could. Next
we expand this topic, discuss the analysis of raster data, and introduce the
map algebra language.

2.2.1 Geographic Information Science

In a context where computers expand the boundaries of cartography emerges
Geographic Information Science (GIScience) [50]. GIScience sits at the in-
tersection of cartography, remote sensing, statistics and computer science,
and is enabled by suites of computer software known as Geographic Informa-
tion Systems (GIS). Information systems are designed to produce answers,
deduce knowledge and support decision making. GIS does precisely so, but
with a focus on Geography and other spatial-dependent sciences. It can
answer questions like: where is the most profitable place for opening a busi-
ness? Such questions are typically simple yet pose difficult analysis due to
the many factors influencing them. For instance, the demand for a busi-
ness depends on demographics, economy, accessibility, trends, marketing
and more.

In its most basic form, GIS serves as a computer cartography toolset
for the making of digital maps [64]. More advanced features include the
query of attributes, reclassification of data, reconstruction of topologies,
overlaying of datasets, or the connectivity analysis between points of interest
(e.g. flats, schools, hospitals). Over time, GIS has become a full-fledged
software for the storage, edition, analysis and presentation of spatial data,
and is nowadays used to track and uncover spatial patterns, trends and
relationships in numerous fields!'®>. Some applications are the tracking of
population growth, the study of traffic patterns, or the mapping of crime

30

Coordinate 1659,-754 %% Scale :496,452,906 ~ (g Magnifiel 69% > Romtior 0.0 I v Render @)EPSGi4326 @

Figure 2.4: Antique physical map (1912) and modern digital counterpart
(2006) of the city of Turku / Abo.

and diseases. At present, GIScience represents a very active area of research
and new usages and functionalities continue to emerge.

GIS employs two data formats to model the space, the raster and vec-
tor formats. In the literature, rasters and vectors are also called fields'* and
objects'® respectively [34]. Raster data is made of regular cells arranged as
a rectangular grid, while vector data consist of points, polylines and poly-
gons arranged in any order. Rasters are well suited for the continuous and
smooth data typically found in the natural environment, whereas vector
data is more appropriate for the discrete and pronounced features found in
artificial structures. Thus, raster models store elevations (i.e. DEMs), rain-
fall, chemical concentration or land-cover, while vector models store entities

13GIS extends to numerous fields, including earth sciences (e.g. agriculture, geology,
meteorology, hydrology), natural resources (e.g. oil, gas, forestry, mines), governmental
(e.g. defense, intelligence, national security), public safety (e.g. health care, emergency
planning, criminology), or urban development (e.g. land-use, real state, city planning).

31

like cities (as points), streets (as polylines) or regions (as polygons).

GIS is built on the principle of layering information. Datasets, of raster
or vector type, are partial layers of reality that are stacked on a spatial
basis. For that, datasets must be georeferenced!®, so that their features
have well defined spatial positions. Figure 2.5 depicts this principle, where
five layers compose a simple model of the real world. Say, for example, that
we want to determine the travel distance from a point A to a point B in the
model. Then we would need both the street and the elevation layers (since
sloping streets present longer distances). Finding the elevation of a street
after georeferencing is trivial, because the layers are spatially aligned. The
layering principle is therefore fundamental for the analysis of raster data.

@ CUSTOMERS

P

Figure 2.5: GIS layered model [4].

2.2.2 Raster Spatial Analysis

Spatial analysis predates GIScience and was first used in life sciences such as
ecology, geology and epidemiology. A notable example is the London Broad
Street cholera outbreak uncovered in 1854 by John Snow [52]. Though
valuable on its own, it was the emergence of GIScience that made spatial
analysis thrive, as GIS provides with the data infrastructure that is the
foundation for the analysis. Today the true power of GIS lies in its analysis
capability, which goes beyond its original cartographic role [50]. In this work

'Fields model natural, continuous attributes with varying values across space.

5Objects model man-made, size-limited features with concrete spatial coordinate.

16 Georeferencing is the process of assigning real-world coordinates to each pixel /feature
of a raster/vector dataset, so that they can be located.

32

we employ raster data, therefore we head the discussion toward raster-based
spatial analysis.

Raster spatial analysis is the process whereby spatial-dependent prob-
lems are modeled with raster data, which is then processed on a per cell basis
to derive new insights and understand spatial developments. For example,
comparing the present and past version of a dataset cell by cell can uncover
change. Inspecting the cells of a small neighborhood can reveal local cor-
relations, distributions or variance. Collecting statistics (e.g. mean, count,
frequency) of large regions of cells can expose underlying behaviors. More
complex mathematical methods can also serve to derive distances, optimal
routes or suitable locations. In general, spatial analysis covers any technique
aimed to describe, explore, explain or optimize spatial phenomena.

Progress in raster spatial analysis is driven by the success of its appli-
cations in solving real world problems. A popular application is suitability
analysis, in which multiple factors are overlaid to find optimal locations [51].
Examples are finding a highly accessible district for a hospital, or locating
profitable areas for a business. Another application is proximity analysis,
whereby geographical structures are evaluated to find well-connected areas,
shortest paths across surfaces or optimal corridors between two locations
[32]. Examples are the planning of transportation networks and the conser-
vation of natural habitats. A third application is terrain analysis, in which
topographic features are interpreted to explain the flow of water, infer the
visibility of an area, or discover convenient routes along a landscape [56].
Figure 2.6 exemplifies a visibility analysis, made possible by the digitaliza-
tion of Figure 2.4.

J

High altitude (buildings, hills)
Y
Visible areas

Low altitude (river, streets)

Non-visible areas

L

l

Figure 2.6: Standard two-dimensional viewshed

Previous applications describe what are called static or steady state mod-

33

els. Static models have no time component, because they describe the
state of a system in equilibrium. For example, terrain analysis employs
static models because the topology of the Earth remains constant!”. On
the other hand, problems where time plays a principal role require dynamic
or transient models. Dynamic models execute forward-in-time, where the
next state of the system is based on the state at the previous time step.
For instance, wildfire risk analysis [97] requires dynamic models because fire
changes rapidly with time.

Raster analysis techniques, while more often employed for static mod-
eling, can deal with dynamic models too. To do this, the techniques must
be combined with general programming constructs like loops, branches and
variables. Loops are needed to repeat the process equations and thereby
simulate the advance of time in small steps. Branches enable the equations
to express different behaviors depending on the runtime state of the pro-
cess. Intermediate variables hold the current outputs of the equations in
order to feed the inputs of the next iteration. Surprisingly, these additions
turn raster spatial analysis into more than just an analysis tool. It becomes
a powerful language for raster modeling and simulation.

2.2.3 Map Algebra

Map algebra was originally conceived as a mathematical formalism for car-
tographic modeling [81], and soon it became the standard language for
raster spatial analysis. Map algebra was innovative and well received by the
emerging GIScience community, who later developed analogous languages
(e.g. R.mapcalc [73], PCRaster [90], GeoAlgebra [79], MapScript [66]) These
packages extended map algebra with new features, most of them targeted at
the modeling of dynamic processes. Nonetheless, they all derived from Tom-
lin’s implementation [82] and followed similar algebraic principles. Eventu-
ally, the principles of map algebra became part of every GIS software [83]
and today they are extensively used to perform from basic postprocessing
to complex analysis.

Map algebra is a collection of raster primitives that are combined to
perform spatial analysis and modeling. Its building blocks can be classified
as objects (e.g. rasters, numbers, variables), operators (e.g. +,*,<,=), func-
tions (e.g. sin, sqrt, max, slope) and grammatical rules (language structure).
Objects store data that can be scalar or spatial, discrete or continuous. A
special value of data is null, used to indicate missing, non-categorizable, or
non-meaningful values. Operators cover the elementary assignment, arith-
metic, relational and logical operations. Functions cover less common oper-

"Note that while the physical geography appears invariant on human time scales (e.g.
days, years, decades), that is not the case on geological time scales (e.g. periods, eras,
eons) where the Earth surface is steadily changing.

34

ations like trigonometrics, as well as key spatial functions, like slope. Gram-
matical rules define what is a legal expression and how expressions are com-
bined together. See Figure 2.7 for one possible grammar proposed by Tomlin
in [84].

NEWLAYER = LocalFUNCTION of 1STLAYER NEWLAYER = FocalEXTENDED of 1STLAYER
[and NEXTLAYER] ETC. [at DISTANCE] ETC.
[by DIRECTION] ETC.
NEWLAYER = ZonalFUNCTION of 1STLAYER [spreading
[within 2NDLAYER] [in FRICTIONLAYER]
[on SURFACELAYER]
NEWLAYER = FocalFUNCTION of 1STLAYER [through NETWORKLAYER]]
[on SURFACELAYER] [radiating
[on SURFACELAYER]
Where LocalFUNCTION, ZonalFUNCTION and [from TRANSMISSIONLAYER]
FocalFUNCTION can take different forms [through OBSTRUCTIONLAYER]
according to the functionality they perform. [to RECEPTIONLAYER]]

Figure 2.7: Example of grammatical rules of a map algebra language [84]

Map algebra operations (i.e. operators and functions) are classified into
four types according to their spatial reach'®. Local operations apply a
function for each cell in the input raster to generate an output raster of
the same dimensions. This is done with spatial independence, meaning the
output cell only depends on the input cell in the same spatial location.
Focal operations compute output cells as a function of a neighborhood.
Each output cell depends on a localized area of regular shape and small
extent around its input cell. Zonal operations apply to large groups of
cells within a common zone, like a watershed or a district. They require
two input rasters, one defining the zones and other with the values to be
operated on. Global operations consider the entire input raster when
computing each individual cell of the output raster. They impose full spatial
dependence, are typically complex and present irregular execution patterns.

While the four types of operations are important, some are more common
than others. Local operations are pervasive across many domains, but es-
pecially abundant in optimization problems (e.g. suitability analysis), data
preprocessing (e.g. atmospheric correction), and time series analysis (e.g.
historical weather and rainfall). Focal operations are mostly used to find
spatial derivatives, for example in surface analysis (e.g. slope, curvature),
soil erosion estimation and wind direction analysis. Zonal operations almost
exclusively serve as statistical tools, for example to assemble regional statis-
tics in order to find outliers, underlying trends, frequency distributions et
cetera. Global operations are the most unique and typically characterize
the whole application, for example in proximity and cost-distance analysis,

18Spatial reach refers to the maximum spatial extent a map algebra operation might
reach in order to compute the value of a single output cell.

35

hydraulic analysis and visibility analysis.

Lastly, it shall be noted that the classification of map algebra opera-
tions is not definite or rigorous. Certain works exclude the Global class,
while others extended the Focal type beyond simple neighborhoods [84]. In
our research we incorporated the Radial class, used for example to im-
plement viewshed [9]. However, extending the classification could become
overwhelming because quite many algorithmic patterns can be identified.
As a result, the Global group is used as a miscellaneous class where to place
these recurrent algorithms. More details can be found in papers 3,4 and in
the literature [85].

2.3 Programming Languages and Compilers

The human brain has evolved to be robust to ambiguity and efficient in the
reasoning of abstract concepts. Computers were designed to be rapid in the
handling of binary information, but cannot handle ambiguity. As a result,
humans talk flexible languages that developed naturally and evolved to be
practical, whereas computers talk formal languages constructed on purpose
and designed for programming simplicity. In a fraction of a second com-
puters can input, process, and output large series of structured digital data,
while humans take even seconds to decipher sounds or images, to reason at
symbolic level, and to react with voice or actions. These cognitive and lin-
guistic discrepancies pose a barrier to the conversion of human thoughts into
computer programs [86]. The field of programming languages and compilers
attempts to address such a communication gap.

Two pieces are necessary to bridge the gap (Figure 2.8): (1) program-
ming interfaces that are free from ambiguity yet comfortably operated by hu-
mans, and (2) program translators that convert human orders into machine
instructions. Programming languages address the first requirement. They
define formal interfaces where to express programs. Thus, in the human-
to-computer communication, languages are the medium while programs are
the message. Compilers (and interpreters) meet the second requirement.
They translate human orders into computer instructions. At the same time,
compilers report errors in the programs and attempt to optimize them to
execute faster. The next subsections outline these two subjects and the
tradeoffs involved in their design.

2.3.1 Language Theory

When the von Neumann architecture made away with programming-by-
rewiring, it sparked the development of programming languages [72]. The
first generation of programming languages were machine languages, where

36

/ -\, visual, text, visual,
human auditive auditive digital

senses input output responses
processing
o G
thinking

programming e
motor flexible, interface (1) formal, digital
\responses > ambiguous structured sensors

output input

Figure 2.8: Programming interfaces (i.e. languages) and program translators
(i.e. compilers) address the human-computer communication barrier.

instructions map directly to hardware. Machine codes are sequences of hex-
adecimal opcodes and data, and are remarkably arduous to read and write
for humans. The second generation, called assembly languages, raised the
level of abstraction and became more symbolic. Assembly codes abstract op-
codes and addresses with mnemonics and labels in order to simplify the pro-
gramming. The third generation, or high-level languages, brought machine
independence and structured programming [17]. They support expressions,
branches, loops, functions, and constructs to make the programming more
human-friendly. Examples of early high-level languages are Fortran, Algol
and Cobol, while more modern examples are C/C++, Java and Python.

In turn, the level of abstraction achieved by later generations enabled
new programming paradigms and execution models. Imperative languages
instruct the machine what to do and how. They dictate order, change state
and allow side-effects. Procedural languages, an imperative subtype, group
instructions into procedures to attain modularity and abstraction. Object-
oriented languages, another subtype, encapsulate state and procedures into
objects for further abstraction. On the contrary, declarative languages dic-
tate their intent, but not how to achieve it. They disallow state, shared
data and side-effects. Functional languages, a declarative subtype, state
their intent as a succession of mathematical functions. Dataflow languages,
a second subtype, declare programs as directed graphs where nodes produce
data that flows across edges. Note that these are just a few examples, and
we refer the interested reader to the literature [72].

Besides paradigms, another important distinction is that of general-
purpose and domain-specific languages. General-purpose languages target a
broad domain of applications, but are rarely the best tool for the job. They
are flexible, multi-paradigm, complete!®, and often extensively used. Ex-
amples are C/C++ (for systems programming), Java (for mobile and web)
and Python (for scripting and scientific codes). Conversely, domain-specific

37

languages are tailored to some domain, which they serve very well [88]. They
abstract the core concepts of the domain to bring closer the programming
and thinking processes (Fig. 2.8). Examples are MATLAB for matrix oper-
ations, SQL for database queries, and LaTeX for typesetting documents.

Regardless of domain, all programming languages are described by their
syntax (form) and semantics (meaning). The language syntaz is the set of
rules that specify the structure of a valid program. It defines what is a valid
keyword, variable name, expression form, function call, loop structure, etc.
As an analogy, the syntax of the English language defines the valid words
and the structure of well-formed sentences. The language semantics is a
second set of rules constraining the interpretation of well-formed programs.
It ensures that variables are declared, accessed from valid scopes and only
passed to compatible functions. Another English analogy is the sentence
“Colorless green ideas sleep furiously” [13], which is syntactically correct
but semantically absurd.

Before a high-level program can be executed it must be translated to
machine code. There are two main strategies to do so, and a gradient of
options in between. The whole program can be translated at once and later
run by the user, in what is called compilation and execution. Alternatively,
the program can be translated and executed statement by statement, in what
is labeled interpretation. One midway option is to compile the program into
bytecode, a portable intermediate form that is later interpreted. Another
alternative is to interpret the whole program but compile critical parts as the
code runs (i.e. just-in-time). The next subsection describes the compilation
process and the design of a typical compiler.

2.3.2 Compiler Theory

A compiler is a computer program that translates code from a source lan-
guage to a target language [15]. Note that this definition allows many in-
terpretations for what “source” and “target” languages could be?°. Here we
refer, respectively, to high-level (i.e. readable by humans) and low-level (i.e.
executable by computers) languages. Typical compilers are designed as a
translation pipeline consisting of front-end, middle-end and back-end. From
front to middle they analyze the source code, while from middle to back
they synthesize the target code. Figure 2.9 outlines this process, where each
end transforms the input and pass the output along the pipeline. Unlike
interpreters, compilers analyze the code to infer the big picture and uncover
possible optimizations. Analysis is a precondition for optimization, and code

19Computationally complete, or Turing-complete, languages can implement any algo-
rithm there is through the combination of their primitive constructs.

38

optimization is the essence of compilation.

Source Optimized
code IR IR

e Lexical ¢ IR analysis * Target-specific

e Syntactic (control and optimizations

data flows) * Target code
¢ Independent generation
optimizations

e Semantic
¢ IR generation

Figure 2.9: Compiler architecture, designed as a pipeline of transformations.

The front-end validates the input code according to the syntax and se-
mantics of the source language. First, the lexical analysis scans the text for
tokens (or words in the English analogy). This is done with regular expres-
sions and preserves the linear structure of the code. Then, the syntactic
analysis parses the tokens to build a syntax tree, where nodes represent lan-
guage constructs. This is done with context-free grammars, which at the
same time detect errors in the program form. Next, the semantic analysis
fills a symbol table with the declared variables, functions and types. The
table is then looked up to catch undeclared usages, incompatible types, ac-
cesses outside the scope, etc. Finally, the syntax tree is walked to generate
an intermediate representation of the code, the IR.

The middle-end splits the compilation pipeline in order to decouple the
source from the target language. Thereby, any source only needs to be
translated into IR, while any target only needs to be derived from IR. This
reduces the number of front-end and back-end implementations from N x
M to N+ M. The stage begins with the analysis of the IR. This step
depends greatly on the domain of the compiler, but typical analyses will
look into the IR’s control-flow, data-flow, dependences and aliases. The IR
also enables the refactorization of many target-independent optimizations
out of the back-end. Examples of optimizations are dead code elimination,
common subexpression elimination or loop-invariant motion. Importantly,
the transformations must not alter the semantics of the IR.

The back-end synthesizes and optimizes the output code that will later
execute on the target hardware. Synthesis and optimization can be done in
an intertwined manner, like the LLVM compiler does [48]. When not inter-
twined, it becomes fundamental to rewrite the synthesized instructions with
peephole optimizations. Important target-dependent optimizations applied

20Depending on the source and target languages, compilers are classified as source-to-
source, bytecode, just-in-time, assembler, disassembler, decompiler, rewriter...

39

now are instruction selection, to choose optimal instructions per IR state-
ment, instruction scheduling, to find optimal orders for those instructions,
and register allocation, to optimally bind variables to registers. The back-
end normally generates assembler, which is later translated to machine code
that processors understand. Additionally, the target code might need to be
accommodated to a runtime before its execution.

Fach and every programming language requires a runtime system to
support their execution model. This is because high-level abstractions have
no direct equivalent in the low-level instructions run by the machine, there-
fore it becomes necessary to maintain extra data structures that assist these
functionalities at execution time. For example, automatic memory manage-
ment requires a garbage collector to keep track of the allocated memory.
Runtime systems vary in form and responsibilities. They can be as simple
as in C/C++, where the compiler generates the runtime logic and integrates
it with the code. On the other extreme, they can constitute the entire ex-
ecution environment, like the Java virtual machine. Once the runtime is
settled the code can be finally run by the user.

2.3.3 Design Tradeoffs

Designing programming languages is all about tradeoffs. All-round lan-
guages are impractical because maximizing one quality tends to minimize
another. Productivity impacts performance, simplicity decreases versatil-
ity, safety impedes flexibility, writability reduces redability, extensibility
conflicts with compatibility, et cetera. Language design is therefore an engi-
neering problem. To maximize their overall purpose, languages must balance
a large array of qualities. However, this balance of tradeoffs is not straight-
forward and it affects every aspect of the language.

At the interface level, the design should strive for programming friend-
liness. To do so, a first tradeoff is to resolve the application domain. Con-
tained domains lessen the language complexity and allow more precise sym-
bolic abstractions, but too narrow domains have limited applicability and
could trap the software in a future dead-end. Another tradeoff is to choose
a matching paradigm. For instance, imperative languages are versatile at
expressing stateful algorithms, but functional languages are easier to opti-
mize and parallelize with compiler techniques. Next in the list is a suitable
execution model. Memory management, concurrency and exceptions all add
complexity, but might be essential to certain domains. Lastly, syntax and
semantics need proper balance too. Exotic features can provide good ab-
stractions, but very unusual constructs will confuse programmers.

Regarding the compiler design, the goal is to efficiently manipulate and
optimize codes. The foremost tradeoff in compilers is the design of the IR.
Depending on the language purpose, the IR should target different class and

40

semantic level. IRs can be structured as graphs or trees, attaining a repre-
sentation closer to the source program (e.g. Clang AST). IRs can also be
linear sequences of tuples, matching the assembly and machine code repre-
sentations (e.g. LLVM IR). IRs composed of stack operations lay somewhere
in the middle, providing conciseness and portability (e.g. Java bytecode).
Additionally, these classes of IRs can be designed at high, medium or low
semantic levels. At a high semantic level the operands work with abstract
data types objects, like arrays and structs. The medium level works with
registers and memory, while remaining independent from particular ma-
chines. At low semantic level the operands are very close to the target lan-
guage, almost like x86 instructions. Note that compilers are not restricted
to one single IR form. Combining multiple IRs along the pipeline facilitate
the discovery of optimizations, but at the same time increases the compiler
complexity considerably.

At the ecosystem level, the design should promote the diffusion of the
language. On the one hand, standalone languages employ their own compil-
er/interpreter and development toolchain. This provides maximum freedom,
but requires an active community backing their progress. If the community
is inactive or divided, the language loses momentum and lags behind its
competitors. On the other hand, small languages can be hosted into the
ecosystem of a standalone language. One way to do so is with a library
(although it is arguable whether to consider that a language). Libraries are
easily integrated across platforms, but are limited in syntax and control-
flow?!. Additionally, a middle ground option is to embed a DSL into a
powerful GPL with metaprogramming support??. Certain languages pro-
vide algebraic data types, first-order functions and even access to the ab-
stract syntax tree. Embedded languages can exploit these features to adapt
syntax, semantics and control-flow to their will.

A last important tradeoff, and a topic of increasing relevance, is paral-
lelism. In domains where performance is vital, languages must adopt designs
that interact graciously with parallelism. Again, there are multiple routes to
address the parallel issue: from low-level control, to abstracted constructs,
to automatic methods. System languages like C/C++ expose the parallel
hardware to the users and provide them with low-level access. While this
offers maximum control, it is remarkably difficult to write codes that are
parallel and correct. Modern languages like Go provide lightweight threads,
communication channels, concurrent actors and others parallel constructs.
These abstractions interface and facilitate the parallelism, while protecting

22Libraries are interfaced with functions, hence their syntax is restricted to sequences
of calls and cannot seamlessly employ control structures like branches or loops.

22Examples of metaprogramming languages are C++, for its templates, Python, for its
inspection features, and Haskell, for its algebraic data types and higher order functions
that enable the deep embedding of languages.

41

users from typical concurrency pitfalls. DSLs can augment their domain
abstractions with intrinsic parallelism in order to free programmers from
this effort. For example, a linear algebra library or DSL can run matrices
operations in parallel without users ever knowing.

42

Chapter 3

Methods: A Compiler Approach
to Map Algebra

2

“Trying to outsmart a compiler defeats much of the purpose of using one’

~ Kernighan and Plauger,
in The Elements of Programming Style

Chapter 2 overviewed the three background fields upon which the re-
search builds. This chapter presents the main contribution of the thesis: a
map algebra compiler that solves the PPP tradeoff for raster spatial mod-
eling. To that end, we first explain the limitation of interpreters for large
raster datasets, then introduce the compiler architecture and the roles of its
parts, next describe the spatio-functional decomposition of the execution,
and finally present the code optimizations at several hierarchical levels. The
following sections cover these four topics.

3.1 The Pitfall of Interpreters

Map algebra has become ubiquitous. Over the years, the map algebra func-
tionalities has been integrated across GIS software to the extent that its
borders have blurred and disappeared. This success derives from a design
conceived by and for modelers, which abstracts the spatial semantics to sim-
plify the programming. While productive, map algebra cannot be said to
be performant in face of the data escalation. As the resolution of spatial
data doubles, the number of cells to process multiplies by four. As new
spectrums are collected, more detailed equations requiring extra computa-
tion are possible. Consequently, the performance becomes insufficient to
quantify, calibrate and validate large spatial models.

43

With the shift toward parallel and heterogeneous computer architectures
(section 2.1), performance can mainly be obtained through parallel and spe-
cialized codes. Several works have attempted the parallelization of map
algebra in different parallel systems. For instance, some studies opted for
distributed systems via the message-passing interface (MPI) [44, 35, 11, 69].
Other works focused on shared-memory systems via OpenMP or other par-
allel abstractions [74, 69]. Lastly, some studies investigated heterogeneous
systems combining CPUs and GPUs [95, 76, 69]. However, despite multiple
attempts, the success of this line of research has been moderate.

Even if parallel, the unforeseen cost of moving data limits the perfor-
mance of raster operations. In some cases, the performance was constrained
by the I/O operations with disk [35]. In other cases, the communication
between processors played a limiting role [11]. In some works, the finite
memory bandwidth saturated the performance [95, 74]. Lastly, the data
transfers from CPU to GPU memory affected some approaches [76]. This
reinforces the hypothesis that parallelism is not enough. Performance is also
influenced by how far data has to travel, i.e., by data locality.

Traditional map algebras neglect data locality because they are imple-
mented as interpreters. They process scripts in order and execute op-
erations one by one. Thereby, they never start the next operation before
finishing the current one, and only attempt to optimize one operation at a
time, if they optimize at all. They also ensure that the result of every opera-
tion is immediately consistent on memory. For map algebra this means that
operations always load, manipulate and store the full rasters. Therefore, at
every step of the execution the data is constantly being moved in and out
from the storage. If the raster is too large to fit into memory, that storage
will be a slow disk or an even slower network storage.

Figure 3.1a.1 illustrates the interpreter approach. Note that to enable
the processing of datasets larger than the size of memory, rasters are decom-
posed into blocks. Thus, the interpretation of map algebra scripts consists
of a triple loop structure where operations, blocks, and cells are iterated in
sequential order. For every operation, input rasters are moved from disk to
main memory, on a block-by-block basis. For every block, cells are moved
from main memory to the processor registers and are operated on. At the
same time, the resulting output cells are moved into new blocks residing in
memory. Similarly, these blocks are moved down to disk, where the com-
plete output raster resides. Once the operation has finished, the interpreter
moves on to the next operation and repeats. As a result of this scheme,
most of the execution time is spent waiting for data to travel from disk, to
CPU/GPU memories, to registers, and back (Fig. 3.2).

Figure 3.1a.2 shows the addition of coarse-grain parallelism through the
use of multi-threading. This is common in the literature [35, 11, 69], as it
enables the processing of blocks in parallel. Now the blocks can be read, com-

44

M

2

3)

“)

®)

(6)

puted and written concurrently, bringing immediate performance benefits.
However, there is only a limited amount of disk’s bandwidth, which satu-
rates soon and stagnates the performance. Other works also employ GPUs
(95, 76, 69] to add fine-grain parallelism to the cells loop (Fig. 3.1a.3).
Unless the PCle transfers from CPU to GPU becomes a bottleneck, this
brings performance benefits too. However, the GPU memory bandwidth
saturates again and the GPU threads mostly wait idle. Although parallel,
both solutions are still interpreters that neglect the locality between raster
operations, since the data produced by one operation is often consumed by

for operation
for block
for cell

for operation
== par for block
for cell

for operation
for block
gpu for cell

Sequential interpretation.
Operation by operation, block after
block, and cell by cell, consecutively.

Parallel interpretation via threads.
Reads, operates and writes blocks
concurrently, but satures bandwidth.

Parallel interpretation via GPU.
Loads, manipulated and stores cells
in parallel, but satures GPU memory.

(a) Execution strategy of a map algebra interpreter.

for block
for cell
for operation

for block
for operation
for cell

par for block
gpu for cell
local, local

gpu for cell
focal, zonal
par for block
gpu for cell
local, local

Reordering at cell level with fusion.
Data is moved once to / from the
processor registers and reused there.

Reordering blocks with a scheduler.
Data is moved once to / from main
and GPU memory and reused there.

All optimizations combined.
Real scripts display more complex
orders than just three nested loops.

== High bandwidth saturation
Moderate " "' "

Reordering of execution

Reordering barriers due to
————————— spatial dependencies

(b) Execution strategy of a map algebra compiler.

Figure 3.1: Interpretation vs. compilation of map algebra workloads.

45

the next, ergo moving it is unnecessary.

Unlike interpreters, our map algebra compiler optimizes across raster
operations. For that, it gathers a global view of the whole script before
the execution. Knowing the operations and their interrelationships, it plans
an execution order with better data locality. In this way, most raster data
can be reused before being evicted from their memory level, leading to fewer
data movements throughout the hierarchy, hence requiring lower bandwidth.
Like the parallelism, this reordering technique can occur at cell and block
level, too. The first variant is called fusion, while the latter is achieved with
a locality-aware scheduler.

CPU GPU
~100 GigaFlops ~1 TeraFlops
7 10!
$EHE 100 Geys I
(" cachel3: 10mB) (GPU mem: 1~10GB) 102
) ooss soaws {111
Main Memory: 10~ 100 GB) 103
: T 1GB/s
[Solid State Drive: 0.1~1TB]) 104
100 MB/s (bandwidth)
[Hard Disk Drive: 1~10TB (capacity)] orders of magnitude

decreases in bandwidth
as the storage gets farther

Figure 3.2: Memory hierarchy and its bandwidth in a typical heterogeneous
system with a multi-core CPU and a many-core GPU.

Figures 3.1b.4 and 3.1b.5 show ideal situations where all operations can
be reordered by one single loop transformation. However, this is rarely the
case for real-life map algebra scripts. Mixing multiple operations together
with loops and branches restricts the possible orders in complex ways. This
result is an out-of-order execution that cannot be modeled with three loops
anymore. Figure 3.1b.6 shows the complexities of the reordering problem
for a slightly more complicated script. For example, focal operations present
small barriers in their input direction that can disable fusion, while zonal
operations create larger barriers in their output direction that also inhibit
the scheduler.

Fusion and the scheduler are important optimizations enabled by the
compiler approach, but not the only ones. Section 3.4 discusses the four
main groups of optimizations. The next section introduces the compiler
approach and details its architecture.

46

3.2 Architecture of a Map Algebra Compiler

Previous section has motivated the need of compilation (as opposed to inter-
pretation) in order to achieve a performant map algebra that mitigates the
memory bottleneck. Recall from subsection 1.2.1 that to maximize perfor-
mance we need to break the PPP tradeoff, otherwise attaining performance
reduces the portability, which diminishes the productivity, et cetera. This
is done with a compiler architecture that splits the programming interface
at the front-end from the program execution at the back-end via an inter-
mediate representation at the middle-end. Additionally, there is a runtime
system, related but decoupled from the back-end, that guides the execution.
The roles of these four components are summarized in Table 3.1 and illus-
trated in Figure 3.3. After a brief advance below, the four next subsections
describe these components in detail.

Front-end Middle-end Back-end Runtime
o Parallel Execution Model
Component User Optimization - -
. Programming Runtime
Function Interface Framework
Model System
Progr.a m Imperative Functional Parallel Concurrent
Paradigm
Linguistic Source Intermediate Target Executable
Level Language Language Language Language
Software .. - Static Dynamic
Quality Productivity Portability Performance Performance
Imple.me- Python DSL Graph IR Tasks, OpenCL ~ Work Pool
ntation

Table 3.1: Components of the compiler architecture.

The front-end acts as the user interface (Figure 3.3a). With it, modelers
write sequential map algebra scripts as Python code. The scripts follow the
imperative model, with variables and statements executed in order. The
interface is expressive and versatile, resembling tools like MATLAB and
NumPy. This first component provides a productive development environ-
ment.

The middle-end serves as a generic framework where to optimize the
scripts (Figure 3.3b). To get there, the map algebra operations are parsed
into a functional graph-based IR. The IR is independent from the scripts
while also lossless in their representation. Here the IR is transformed with
machine-independent and domain-specific optimizations. This second com-
ponent enables the portability of codes to different architectures.

47

The back-end is the entry point to a parallel execution model (Figure
3.3c). It exploits the task and data types of parallelism via the OpenCL and
a task programming models. For that, the IR is translated into executable
tasks and these are spatially decomposed into jobs. Jobs are specialized for
algorithmic patterns (e.g. map, reduce) and architectures (e.g. CPU, GPU).
This third component brings static performance, i.e. it makes decisions
ahead of execution for better performance.

The runtime is the active part of the parallel execution model (Figure
3.3d). It is in charge of orchestrating the jobs generated by the back-end, and
to do so it spawns worker threads that concurrently request jobs from a work
pool, resolve their data dependencies, acquire memory entries from a cache,
perform the necessary 1/0, issue kernels for execution, notify the dependent
jobs, and repeat. This last component brings dynamic performance, i.e. it
makes decisions at execution time for better performance.

3.2.1 Front-end: Python DSL

The first component of the map algebra compiler is the front-end. The front-
end consists of a productive interface through which users express their
programs. This is the only part of the four layers exposed to the users.
Therefore all configurations, equations, data and other commands are inputs
to the front-end. Similarly, the errors messages, simulation results, visuals
and other outcomes are output via the front-end. When users run their
models, the front-end first verifies the program for static errors, and only
when the program is semantically correct, it is translated into IR and passed
to the middle-end. The goal of the front-end is to support and stimulate
the early stages of the modeling loop (Fig. 1.7), where modelers iteratively
design, implement and test their models until they work.

In our prototype, the front-end is implemented as an imperative spa-
tial DSL embedded in Python (Fig. 3.3a). This design aims to:

— Focus on the modeling, abstract the implementation.

— Enable the structured, modular and hierarchical design of models.
— Maximize usability, so that modeling becomes intuitive and easy.

— Aid the integration of models into larger ecosystems and ensembles.

— Assist the testability of models by tracking and reporting errors.

Spatial semantics and modeling focus

The spatial DSL is founded on the map algebra formalism introduced in
subsection 2.2.3. This design facilitates the programming by abstracting
spatial concepts like the raster datatype. For instance, Local operation act
on full rasters without having to explicitly iterate the cells with a loop.

48

import map
x = read('input')
if LocalOp(x):

x = RadialOp(x)
while ZonalOp(x):
x = FocalOp(x)

Python DSL

@) Productive - front end
spatial, domain specific, stable,
imperative, sequential, procedural

write(x,'out')

User errors, configuration, script parsing...

Graph IR
(b) Portable — middle end

intermediate, symbolic, flexible,
functional, analysis, optimization

Optimizations, fusion, spatial decomposition...

Task Model

© Performant - back end
executable, specialized, asynchronous,
parallel, dataflow, spatially partitioned

Code generation, allocation, initialization...

Scheduler

7N

Notifi-
cations ¢ Blocks
‘ e Worker ° 1

in-mem
Kernel thread Cache

°
wn»demand
1/0

Work Pool

(d) Performant - runtime
C++, lightweigh, self-organized,
concurrent, cached, sparse

Figure 3.3: Architecture of a map algebra compiler.

Defining and accessing neighborhoods and spatial zones in Focal and Zonal
operations is also straightforward. Even complex algorithms that would take
dozens of lines of code are embedded into Global operations. Moreover, these
operations combine with each other without breaking the spatial semantics.

The interface is devised to be productive, not performant. Therefore it

hides all detail regarding parallelism (e.g. threads, intrinsics), architectural
features (e.g. memory hierarchy), abstract data types (e.g. graphs, queues)

49

or low-level logic (e.g. I/O, memory management). Instead, it provides
spatial objects (i.e. rasters), spatial operators (i.e. map algebra) and ba-
sic functionalities for composing models (i.e. read, write, loops, branches,
functions, import). This design narrows the domain and therefore reduces
the programming complexity. For example, the lack of parallel and hetero-
geneous semantics frees the user from the programming issues described in
subsections 2.1.2 and 2.1.3.

Imperative and structured programming

The DSL follows the imperative programming paradigm. Thereby, scripts
are composed of sequential statements that run separately, one after another.
Statements can be expressions, control flow, function definitions or data
I/0. Expressions assign the result of an operation or function to a raster
variable. Control flow permits branching, i.e. selection one of two code
paths, and iteration, i.e. returning to a previous point in the code. Functions
encapsulate multiple statements and need to be defined at some point before
their usage. I/O operations communicate with the external world to take
rasters in or let them out.

The imperative design endows map algebra with structure. For instance,
functions behave like modules that can be reused to compose large models in
short code spans. Doing this hierarchically, i.e. functions calling functions,
creates multiples levels of abstraction. An example is an urban development
model composed of smaller traffic, real estate and population modules. Each
of the small modules can later be reused in other models or extended into
a larger, standalone model. Moreover, the hierarchical structure permits to
quickly activate, deactivate or replace any of the modules. This imperative,
procedural and structured organization of the code facilitates its design,
development and maintenance.

Python interface and ecosystem

The first reason for Python is its philosophy: simple, concise and readable.
Python provides an intuitive interface that is easy to grasp for new and
hobbyist programmers. It is well documented, supported by a large online
community, and actively discussed in the forums. Being a dynamic lan-
guage, models can be compacted into concise scripts that require little more
than one file. This dynamism makes the language customizable too, as most
Python constructs can be redefined during execution. Its retrospection capa-
bilities provide powerful mechanisms to create expressive embedded DSLs.
For instance, Python can access, modify and execute the abstract syntax
tree of the currently running program.

The second reason for Python is its ecosystem, because computer mod-

50

els rarely work in vacuum. Usually they are integrated into larger software
suites, like a decision-making supporting tool. Python has become a uni-
versal language that runs almost everywhere, which eases the integration.
In addition, the most prevalent spatial packages already support Python,
like in the case of ArcGIS, QGIS, GRASS and other geographic information
systems. This enables a workflow where other tools generate inputs that
feed a map algebra script, and the other way around, where the results of a
script are passed to other spatial packages.

1 from map import * # "Parallel Map Algebra" package
2
3 def pitFill(dem,stream):
4 acti = stream or border(dem) # streams/ borders are active
5 init = con(acti, dem, +inf) # init = acti ? dem : +inf
6 ngbh = [[1,1,1],[1,0,1],[1,1,1]] # spatial neighborhood
7 orig = dem # original dem, not modified in the loop
8 ceil = init # minimum filling ceiling, updated in the loop
9
10 while zonal or(acti): # loops until done
11 minc = focal min(ceil,ngbh) # min. ceiling in the ngbh
12 maxc = local max(minc,orig) # never lower than original
13 acti = maxc < ceil # activate lowered cells
14 ceil = maxc # updates the ceiling
15 return ceil # returns the filled dem
16
17 dem = read('elevation.tif') # digital elevation model
18 stream = read('streams.tif') # water streams (e.g. rivers)
19 fill = pitFill(dem,stream) # calls 'pit filling' function
20 write(fill,'filled.tif") # writes the filled dem to disk

Figure 3.4: Sample map algebra script of a pit filling algorithm [65].

Sample map algebra script

Figure 3.4 lists the map algebra script of a pit filling algorithm based on
Planchon [65]. Pits are local minima elevation cells of natural or artificial
origin that are present in most DEMs. Pits trap the outflow of surface water,
preventing the application of common water flow algorithms. Pit filling
produces depressionless DEMs, where all cells belong to a monotonically
decreasing path. As a result, any surface water simulated on the DEM can
always flow toward some stream or border point.

Figure 3.5a shows a one-dimensional DEM with three exit points and
three pits in between them. Planchon’s algorithms proceeds inversely to
the flow of water, from exits to hills (Fig. 3.5b). As it advances, it keeps
a minimum ceiling elevation to which it raises all pits it finds (Fig. 3.5¢).
At the end, all pits are minimally filled so that water can flow toward its

o1

natural exit (Fig. 3.5d). We refer to paper 4 for an extended explanation
on how the script implements the algorithm.

pits trap the flow of water

pit pit exit (a) Initial DEM

(b) Filling pits

A\

keeps the minimum

ﬁ—:

outflow toward the exits

(c) Still filling

(d) Filled DEM

filled

filled

Figure 3.5: One-dimensional illustration of the pit filling algorithm.

Running the Python code

Running the Python code initiates the translation from Python code to
graph-based IR. Before the IR is handed to the middle-end, the code is
checked for errors. Syntactic errors, like incorrect calls to functions or use
of uninitialized variables, are handled by Python. Semantic errors, like
wrong type of arguments or incompatible raster dimensions, are captured
by the DSL. Some runtime errors, like reading or writing to protected files,
are detected before the actual execution. Other runtime errors, like out-of-
memory accesses, are not possible because of the language restrictions. The
remaining runtime errors will occur during execution and halt the process.

The map algebra models are translated by a combination of running
and parsing. To do this, the Python operators are overloaded to create and
connect IR nodes as they run. In this way, running the script simply accu-
mulates a computation graph (akin to a syntax tree) that gives the compilers

52

a big picture of the operations, variables and their connections. However,
when control flow is involved the non-taken branches will never execute.
Python introspection capabilities grant access to the bytecode and syntax
tree of the script, through which the problematic control flow structures can
be walked and parsed into IR nodes. Finally, when an I/O operation at-
tempts to output some variable to the external world, the front-end forwards
the accumulated graph to the middle-end to beginning the execution.

3.2.2 Middle-end: Graph IR

The second component of the compiler approach is the middle-end. The
middle-end provides a framework where to apply portable optimizations to
the scripts. The middle-end is the host of an intermediate representation, a
transitional language that connects the source language, i.e. Python script,
with the target language, i.e. parallel code. The IR must be well-defined and
agreed-upon, so that different front-ends can generate similar, unambiguous
IR. After the optimization, the IR is given to the back-end to generate
parallel code that the underlying machine can run. The goal of the middle-
end is to decouple the modeling interface from the actual implementation, so
that models become portable and the modeling loop is not disrupted when
moving to newer hardware.

In our prototype, the middle-end consists of a functional graph-based
intermediate representation (Fig. 3.3b). It is designed to be:
— Independent from source and target languages, to achieve decoupling.

— Accurate yet minimal in the representation of map algebra scripts.
— FEzxtensible to new functionalities, yet stable and backward compatible.
— Flexible to manipulate, while supporting rich transformations.

— Suitable for machine-independent, domain-specific optimizations.

Graph IR and dataflow model

The graph representation belongs to the high-level, structured type of IRs
(subsection 2.3.2). This type of IR is close to the source language and well-
suited for domain-specific optimizations. The graph is directed, meaning
that edges only flow in the forward direction. It is not acyclic, because
cycles are necessary to capture loops in the script. Nodes in the graph rep-
resent raster operations, while edges model the flow of raster data. Nodes
carry their class, type, metadata, statistics, spatial reach, parents, and de-
scendants. Edges need no tags, because their configuration is determined
by their unique source node. This IR is simple and easy to manipulate, yet
accurate in the representation of map algebra codes.

Unlike most compilers that model data flow with basic blocks' and con-
trol flow with CFGs?, we express both flows with a single flat graph, similar

53

to dataflow models. The flow of data is intrinsically captured by the shape
of the graph, whereas the flow of control is explicitly modeled with special
nodes. The Merge node combines two streams of data into one, the Switch
node reroutes a stream in one of two directions, and the Condition node
determines the direction of a Switch. Together, these three special nodes
serve to express branches and loops (Fig. 3.6).

Cond \ While Loop
Node —— Merge ——> Switch —— Node
(Node «<— Node)

(a) While Loop = Merge + Condition + Switch

Cond If-Else
\ /v Node \
Node —> Switch Merge — Node
\ Node / \V/

(b) If-Else = Condition + Switch + Merge

edge back edg; A Switch v Merge @ Condition

Figure 3.6: Switch, Merge and Condition nodes used to model control flow.

Functional SSA form

The graph IR is structured in SSA? form. Thereby nodes are defined once
and never modified. The SSA form combined with the dataflow style endows
the IR with functional proprieties. Nodes are pure functions (i.e. stateless,
side-effect free) that transform and forward data. Such a functional scheme
has no variables, sequential statements, or explicit order of execution. This
makes the IR very suitable for parallelization, reordering and other opti-
mizations.

LA basic block is a sequence of machine instructions with single input and output, so
that the sequential instructions always execute together.

2A control flow graph (CFG) is a representation of a program where nodes are basic
blocks and edges model all the possible directions of the flow during execution.

3Static Single Assignment (SSA) is a property of intermediate representations whereby
variables are assigned only once to remove ambiguity and simplify the analysis.

54

On the other hand, the functional paradigm of the IR contrasts with the
imperative style of the DSL. Variables in the script do not correspond to
nodes in the graph. Instead, they behave like tags. The map algebra oper-
ations create the nodes, while the assignment operator tags the node with
the variable name. If the variable is reassigned with a different expression,
the tag is moved to that new node. Note that the IR is hidden from users
by default, therefore this mismatch causes no confusion.

Sample intermediate graph

Figure 3.7a illustrates the IR after parsing the pit filling script in Figure 3.4.
In the figure, nodes are tagged with their line of code and type of operation
to their right. The special nodes have no line because they do not correspond
to operations in the script. Nodes found in at least one cyclic path between
a Switch and a Merge are called loop nodes. Edges flowing from a loop node
to a Merge node are called back edges. Only back edges can create cycles.
Every loop node needs a Switch and a Merge node connected to each other.
Every Switch links to the Condition. If a loop node has no father outside
the loop, an Empty node is created and connected to its Merge. Constant
variables, i.e. used but not updated in the loop, require an Identity node.
While the Condition node is true, the Switches feed the loop nodes through
their true side. When the condition fails, the loop stops and the Switches
feed the nodes in their false side.

Optimization framework

The IR provides a framework where to apply machine-independent and
domain-specific optimizations. Optimizations are transformations in the
graph that speed up the execution while preserving the results. The graph
is transformed with forward, backward or complex (i.e. no strict direction)
passes. Examples of machine-independent forward and backward passes are
presented in paper 4. Fusion, described in subsection 3.4.2, is the best ex-
ample of domain-specific complex pass. Fusion groups the IR into clusters
of nodes with compatible data dependencies. The clustering rules are de-
scribed in paper 3 and implemented in the code repository [5]. After fusion
the IR becomes two-level graph of clusters of nodes, and it is given as input
to the back-end.

3.2.3 Back-end: Task Model

The third component of the map algebra compiler is the back-end. The
back-end contains the programming model that serves as entry point to the
parallel execution model. The programming model abstracts the computer
architectures to ease the development of the parallel codes. The execution

55

Switches

|dentity

13: Greater

10: Zonal Or

20: Write DEM

(a) Intermediate Representation

11: Focal Min.

12: Local Max.

Cluster 1

(b) Clusters

Figure 3.7: Pit filling IR (a), merged into clusters (b) after fusion.

model defines traits like the unit of work, the order of execution, or the levels
of parallelism. As the back-end receives the IR from the middle-end, it first
decomposes the spatial domain, then generates target parallel code, and last
compiles the target to executable code that the runtime will run. The goal
of the back-end is to effectively map the operations to the architecture, so
that they execute fast and do not delay the quantification, calibration and

validation stages of the modeling loop (Fig. 1.7).

In our prototype, the back-end consists of a parallel task model over
OpenCL skeletons (Fig. 3.3c). It is designed to:

— Focus on the implementation, not on the modeling.

— Decompose the spatial domain to expose its parallelism.

— Identify and utilize the freedom in the order of execution.

— Exploit the multiple levels of parallelism in modern architectures.

— Employ the specialized architectural features of heterogeneous devices.

56

Parallel skeletons

Skeletons are code templates that encapsule classes of recurrent algorithms
with broad applicability [14]. Users simply need to configure the parameters
exposed by the skeleton, which then generates the algorithmic code. Paral-
lel skeletons are, therefore, templates that encapsulate classes of recurrent
parallel algorithms [33]. They avoid the coding of repetitive implementation
details and favor the parallel analysis of the problem. Parallel skeletons can
be parameterized by granularity, processors number, topology or other par-
allel criteria. For example, a finite difference® skeleton will generate code
out of some differential equations, and a parallel version of such skeleton
will also handle the communication between the parallel processors.

In this work, the classes of algorithms to skeletonize coincide with the
map algebra classes (subsection 2.2.3). Local operations follow the map
pattern, Focal operations are stencils, Zonal operations apply reductions,
Radial operations are 2-dim scans and Global operations exhibit their own
algorithmic patterns. Whereas the parallel analysis of non-Global operations
is straightforward, their parallel implementation is laborious. Depending on
the architecture, the sizes of data and memory, the different heterogeneous
devices and other details, the amount of boiler-plate code that needs to be
written can be drastically large for a rather simple functionality. It is for
this reason that skeletons are a good fit for a map algebra compiler.

OpenCL kernels

OpenCL is the open, royalty-free standard for cross-platform, parallel pro-
gramming of heterogeneous processors. It enables the portable program-
ming of a range of devices: CPUs, GPUs, FPGAs, DSPs, VPUs, IPUs and
other accelerators. Compute Kernels lay at the core of OpenCL. Kernels are
data-parallel routines intended for high-throughput processors. An OpenCL
kernel is a program based on extended-restricted C99 that is run by a multi-
dimensional grid of workers. Workers share an off-chip global memory and
execute a single stream of operations in parallel, with no particular order.
Workers cooperate in small blocks that share an on-chip local memory and
present limited synchronization capabilities.

OpenCL is not portable from the performance point of view. Conse-
quently, attaining high-performance often requires specialized codes for each
of the parallel devices. For instance, the OpenCL local memory maps to
on-chip scratchpad memory on GPUs but to the off-chip main memory on
CPUs. Because these memories have different profiles, optimizations that
improve performance for GPUs may reduce it on CPUs. In this work we test

4Finite difference is a method for the numerical solution of differential equations by
discretizing the domain into units that are approximated with derivatives.

o7

CPU-GPU systems, and thus require multiple skeletons to generate kernels
for both devices. Although OpenCL skeleton libraries exist [77], we designed
the skeletons ourselves for maximum control.

Implementation focus

The back-end is devised to be performant, not productive. Therefore it can
no longer rely on abstractions and must deal with the peculiarities of the
hardware. This means that all the details regarding parallelism, architec-
tural features or memory hierarchy, together with problems such as memory
management, deadlocks or race conditions, are now exposed in the back-end.
Note, however, that it is not the modelers that face these challenges, but
the developers of the map algebra compiler.

On the other hand, OpenCL provides a somewhat intermediate abstrac-
tion that relieves some work from the developers. It abstracts several low-
level APIs, like intrinsic instructions, OS threads or the GPU runtime driver.
Nonetheless, as OpenCL is not performance portable, skeletons still need to
be specialized for the devices and map algebra classes. For example, GPU
skeletons of Focal and Zonal operations should exploit the on-chip scratch-
pad memory, while CPU skeletons should utilize multiple code paths that
differentiate borders and inner cases. Specialization is a broad optimization
that we describe in section 3.2.

Compilation and tasks model

The kernels generated by the skeletons need to be compiled to obtain ma-
chine code the OpenCL devices can run. The compilation is entirely han-
dled by the OpenCL driver, thus developers have little control over this
process. For example, one cannot activate, deactivate or reorder the low-
level optimizations applied to the kernel. Nevertheless, the most important
optimization comes from generating large kernels, since this rises the ILP
and reduces the memory movements from the off-chip memories. That is
precisely the purpose of the fusion pass, which merges nodes into cluster to
attain larger kernels.

While the IR provided a generic framework where to apply machine
independent passes, the compiled code is specific and can only run on the
device it was compiled for. For every cluster of nodes, a task is created that
wraps its device code. Tasks are work entities that consume some inputs to
produce some outputs. They inherit the input dependencies of their clusters
and can only execute once those are met. Tasks follow a chained execution
where completed tasks activate further tasks until all have completed. Tasks
may execute in parallel if they do not depend on each other, commonly
known as task parallelism. Because tasks contain data-parallel kernels, they

58

combine both types of parallelism.

Spatial

Merge
Cond 3
Switch
LEPLLL
Local
N7
Zonal
XX
Focal
ffffffffffff Nz
@ Global
(a) Tasks (b) Jobs Legend

Figure 3.8: The spatial decomposition of tasks (a) generates standalone jobs
(b) that can execute as soon as their input dependencies are met.

Spatial decomposition, jobs and blocks

The advancements in remote sensing have brought unprecedented volumes
of spatial data (subsection 1.1.3). Data has become so large that nation-wide
raster models do not fit in the memory of a single computer anymore. To
go around this limitation, rasters are decomposed in their spatial dimension
and are processed in blocks. This technique will be described in section 3.3,
and is only mentioned now to support the narrative.

The spatial decomposition not only affects the data, but also the com-
putation. As a result, tasks are divided into smaller execution units, called
jobs. Jobs are spatial portions of tasks confined to the area of a block. They
are standalone executable units that only depend on their input blocks, and
once started, they execute until completion.

Jobs are the unit of scheduling, too. The order of execution of jobs is
restricted by the spatial extent of their input dependencies, which derives
from the number of non-Local nodes clustered into the parent task of the
job. Specifically, Focal operations create bounded dependencies according
to their neighborhood, Zonal operations create large dependencies according

59

to the extension of their zones, and Global operations potentially generate
full dependencies on whole rasters.

Continued example and dependency DAG

Figure 3.8 shows the spatial decomposition of Figure 3.7b. Applying spatial
decomposition unravels the two spatial dimensions contained by the tasks.
Visually, a job is a spatially independent portion of a task that depends on
previous jobs. The further their dependencies extend in the spatial dimen-
sion, the more they restrict the schedule. For example, in Figure 3.8 all
Zonal jobs must complete before advancing in the operation dimension.

The number of jobs depends on the size of the data, hence it could
become very large. Since jobs occupy memory, maintaining a large number of
them would deplete this resource. For that reason, jobs are not instantiated
until their inputs are ready, and are deleted soon after. In Figure 3.9, only
the first row is initially active as it depends on data readily available on disk.
When these jobs complete, their memory is released and the dependent jobs
are activated. Due to this gradual activation of jobs, the dependency graph
always remains acyclic. As the chores of the back-end are over, this directed
acyclic graph (DAG) becomes the input to the runtime.

S Inactive

\\\:‘_;_ @ ’/ /_.“_ _ Jobs state

R

Active

Running

Complete

N OO

Released

Dependen-
cies state

Standby

Ready

Done A

Figure 3.9: Directed acyclic graph of jobs that supports their scheduling.

60

3.2.4 Runtime: Work Pool

The fourth and last component of the compiler approach is the runtime. The
runtime is the active part of the parallel execution model that orchestrates
the execution. This component is in charge of the machine resources, such
as memory, cores and heterogeneous devices. The runtime runs a cyclic rou-
tine where it selects the work, finds the necessary data, acquires resources,
conducts I/O and memory transfers, issues the execution, notifies the com-
pletion, and gathers statistics. The runtime is not concerned about the
IR anymore, but about the parallel code generated by the back-end, and
together the two make up the parallel execution model. The goal of the
runtime is to efficiently orchestrate the work at execution time, so that the
resources are well utilized and the performance is satisfactory.

In our prototype, the runtime consist of a concurrent work pool writ-
ten in C++ (Fig 3.3d). It is designed to be:
— Lightweight, to steal little processing time from the actual work.
— Asynchronous, so it can handle other chores while waiting for 1/0.
— Concurrent, to manage multiple streams of work simultaneously.
— Runtime-aware, to apply optimizations only discovered at execution time.

— Scalable, so that it can effectively utilize large numbers of cores.

Work pool model

A work pool is a parallel execution model in which worker entities collab-
orate to tackle some large problem. This model is applicable when both
problem and solution can be expressed as a partitionable data structure.
Such data structure is shared by the worker entities and constitutes their
source of parallel work. Initially, the large problem is decomposed into
smaller problem pieces that are pushed into the work pool. Each problem
piece is to be solved by applying a procedure to it, which makes up a piece
of work. The procedure is run by the workers, who repeatedly take one work
piece, process it, and request another one. Thereby, the workers progress
toward a partitioned solution, which is completed once all work is finished.

The work pool is a flexible parallel model. For instance, the pool can
be shaped as a queue, list, hash table, tree or as a hybrid form. Another
parameter is the work generation strategy, which can be static or dynamic.
The former strategy has a fixed set of work, while the latter can generate
and add new work to the pool. The mapping of work can be dynamic
too, so that any process can perform any piece of work. Additionally, the
mapping can be centralized via a master entity, or decentralized with self-
organized workers. On the other hand, if the work is generated dynamically
and a decentralized mapping is used, then some termination detection logic
is required for the workers to discern the end of the process.

61

Continued example

In the pit filling example (Fig. 3.5), the problem to be solved is the input
DEM with pits, the solution is the depresionless DEM, and the partitioning
is achieved via spatial decomposition. Therefore the problem pieces are
the raster blocks, the procedures are the tasks generated by the back end,
and the work pieces are the jobs, which are handled one at a time by a
group of worker threads. The work generation must be dynamic because
the duration of the pit filling loop is only known at runtime. The mapping
could be centralized but that presents poor scalability, hence self-organized
workers are preferable. Thereby, the work pool creates a cyclic procedure
where jobs are generated and run until all pits are filled.

Life of a Worker

The central actor of the work pool model is the worker. Workers are CPU
threads that coordinate the execution of jobs, and their behavior is depicted
in Figure 3.10. From birth to death, workers continuously execute a proce-
dure that can be summarized as follows:

. request an active job from the pool,

exit if the halt condition is detected,

resolve and request the blocks of the job,

attempt to optimize away unnecessary work,

request available memory entries from the cache,

evict the dirty data stored in the memory entries,

load the input blocks into their memory entries,

run the task on the input blocks to produce the output blocks,

e A

retire the output blocks and add their entries to the cache

[t
=

update the statistics and other maintenance work,

—
—_

. return the memory entries to the cache,
. return the blocks of the jobs,
. notify the dependent jobs to activate and join the pool,

[
w DN

and loop back to step 1.

Before the work can take place, the runtime needs to set the stage for
the workers. For example, the tasks are initialized and their OpenCL code
compiled, the memory entries of the cache are allocated, the jobs free of
dependencies are added to the pool, and the threads hosting the workers
are instantiated. Likewise, the runtime needs to clean the stage after the
work. For example, the cached data is written to disk, the memory entries
are released, the workers are discharged, the C++ structures are released,
and the control is returned to the Python interface.

62

’@ [/> > > > <> KKKK\ m " O Work Queue

1

1 v

ENOING,

1 =
P
! s Active jobs pool
! ©
1 ©
! 3 Worker 0 Worker 1 Worker 2 Worker 3
L£ o ' '

T e Q) 250 £2O £
‘\

“\ ' '

‘\\ Completed jobs ' '

l Released jobs 2 |

1. Get an active job from the work pool

2. Exit if all jobs are done, else continue
Notifies about the completion .13

3. Request the in/out blocks of the job
Return the in/out blocks of the job .12

4. Forward scalars, statistics, entries
Return entries back to cache .11

5. Request memory entries for the blocks
Reductions, statistics, conditions .10

6. Evict dirty data in the entries before use
Retire and cache the output blocks .9

7. Load the blocks (from Disk, to RAM, to GPU)
8. Computation of the job in e.g. GPU

Figure 3.10: Work pool model, where workers concurrently process jobs.

Runtime optimization

While the back-end attains static performance, the runtime pursues dynamic
performance. It optimizes the program as it executes, by taking into account
all information that is known. For example, if a raster is full of zeros,
then adding it to another raster will not change the values. The runtime
can perform this type of optimizations because it keeps statistics of the
data, whereas the back-end lack such information and can only optimize for
constant factors like the hardware. On the other hand, the back-end has

more time to work ahead of execution, while the runtime must be quick in
its decisions to not bottleneck the execution.

63

The runtime optimizes the execution in multiple ways. It reorders the
execution of jobs to improve their data locality, as will be detailed in subsec-
tion 3.4.2. This is done by a scheduler that rearranges the jobs in the pool
according to a space-filling curve. The runtime also caches recently read
blocks to avoid reloading them in future requests, and likewise, it does not
immediately evict recently computed blocks in case of future uses. More
information on the cache is found in Paper 3. Additionally, the runtime
exploits the sparsity in data to avoid memory movements and computation,
as will be covered in subsection 3.4.4. For example, blocks whose content
is homogeneous can be compressed into a scalar value, and operations on
homogeneous blocks can sometimes be avoided altogether.

Concurrent and scalable C++

The runtime needs to track the active jobs, their blocks, dependencies and
associated resources during execution. However, very large datasets lead to
very many entities to keep track of, which may bottleneck the execution.
Consequently, the runtime demands a low-overhead language supporting
threading and concurrency, like C/C++. By executing workers in different
threads, they can overlap processes that would otherwise stall their advance.
For example, when one worker stops to perform some I/O it must wait for
milliseconds before it completes. This time is not wasted because the OS
sleeps the worker and wakes up another to perform its own work.

Note that using a low-level language like C++ is not enough. The code
needs to be carefully designed so that memory, data structures and algo-
rithms are efficient. For example, memory must be managed manually (i.e.
no garbage collector) and pre-allocated whenever possible. Failing to do
so destroys the concurrency of workers, as reallocating is an expensive and
non-scalable process. Data structures must provide quick access to recurrent
data, even when incurring high memory cost. Nodes, jobs, blocks and other
entities need to hold pointers to reach each other in one step. Algorithms
need to prioritize time over space, too. For example, the memory cache,
the fusion routine and most other functionalities should employ hash tables
extensively.

Finally, as the self-organized workers access shared data, they need to
watch out for typical concurrency problems. The pool, the cache, the blocks,
the tasks and other data structures accessed by workers need some type of
regulation. In our implementation, workers acquire a mutex before access-
ing shared resources and release it after. However, a straightforward locking
strategy is again insufficient to attain good performance. Congested sec-
tions like the cache require finer locking, since a single mutex would lead to
workers contention. There is a difficult balance to be found here between
the complexity and the efficiency of the locking strategy.

64

3.3 Hierarchical Decomposition

Computers are designed hierarchically. Their memory, for example, is com-
posed of multiple horizontal layers of different technologies. From closest
to farthest to the processor, some of the layers are: processor registers,
on-chip memories (i.e. cache, scratchpad), off-chip memories (i.e. RAM,
HBM), secondary storage (i.e. SSD, HDD) and network storage (i.e. NAS,
SAN). These layers vary in density, latency, bandwidth, power consump-
tion, volatility, resilience, price, etc. Registers are the smallest memory,
built into the processor core upon a few logical gates made of transistors.
On-chip memories lay close to the registers and often present a hierarchy on
their own (e.g. cache L1/L2/L3) Off-chip memories have their own package,
reside nearby the chip, and represent the main type of computer storage.
Secondary storage is external, removable, non-volatile and cannot be ac-
cessed directly by the processor. Network storage is decoupled from the
processor box and is accessed via network protocols (i.e. TCP, SCSI).

Computer’s processors, too, are built somewhat hierarchically. Whereas
the memory subsystem consists of connected but separate memory levels,
each processing level is made up of elements from the immediate previous
level. From smallest to largest in scale, these levels are: processing elements
(i.e. ALU, LSU, CU), compute units (i.e. CPU core), processors (i.e. GPU,
DSP), computer systems (whole computer) and networks of computers (i.e.
grid, clusters). The simplest processing circuitry in a typical von Neumann
architecture are the ALUs and CUs. These elements are coupled to form
compute cores that are Turing-complete and can run any program. Cores
are connected to compose versatile multi-core CPUs that are part of most
computing systems nowadays. CPUs are clustered into large computer net-
works that run the I'T and internet services of the world.

The above is the typical computer platform where raster spatial models
are run. Therefore, for a map algebra implementation to be performant,
it must comply with such hierarchical design. Our map algebra compiler
applies a hierarchical decomposition to both the spatial and the functional
dimensions. Thereby, spatial decomposition breaks the data from rasters to
blocks, to groups, to cells, while functional decomposition breaks the control
from programs to tasks, to sections, to instructions. Table 3.2 shows the
hierarchical levels resulting from this decomposition.

Spatial Decomposition

Raster data is spatially decomposed to match the hierarchy of computer
memory (Fig. 3.11). High resolution rasters are possibly larger than main
memory and might only fit in secondary or network storage. To be able to
process such rasters, the compiler splits them into blocks. Blocks must fit

65

Data: Raster Block Group Cell

Control : Program Task Section Instruction
User Model Script Function Scope Operation
Int diat
nterme |a.e Full Graph Cluster Section Node
Representation
Storage Off-chip On-chip .
Memory (Disk, NAS) (RAM, HBM) (Cache, Scratch) e8!Sters
Processor System Device Compute Unit Proc. Element
(host + devices) (CPU, GPU) (Core, SM) (ALU, LSU)
Work Actor Runtime Worker Work-group Work-item
Work Load - Job - -

Table 3.2: Hierarchical decomposition of data and control, and how this
relates to the hierarchy of memory, processors and other aspects.

into main memory and occupy from kilobytes to a few megabytes. During
execution, blocks are loaded from memory in small portions, called groups.
Groups must fit into on-chip memory and occupy from bytes to a few kilo-
bytes. Groups are made of cells, the basic spatial unit in raster data. Cells
must fit into the processor registers and occupy from one bit to a few bytes.
Once loaded to the registers, the processor can act on the input cells to
compute the output cells.

The spatial decomposition technique is static and regular: all blocks
from all rasters share the same size, which is kept constant throughout the
execution. Thereby, any two blocks can always be operated on (e.g. added)
without having to mix and match their size. This avoids overhead and
simplifies several parts of the runtime, like the in-memory cache. Groups
are more flexible and only share size within their block, not with groups
from other blocks. This permits the specialization of groups by algorith-
mic pattern, which is useful for Global classes. The block and group sizes
can vary within reasonable limits. However, too small a size leads to high
scheduling overhead, whereas too large a size diminishes the opportunities
for optimizations.

Functional Decomposition

Like data, the computer program is functionally decomposed following the
processing hierarchy. Instructions are the smallest unit of computation,
executed by the processing elements. Sections are series of instructions
executed by compute units and synchronized at group level. Tasks wrap

66

Raster

Digital model for storing spatial data,
shaped as a rectangular grid of cells
- Up to terabytes of data.

- Possibly larger than memory.

- Stored on disk or network storage

Block

Raster subdivision, group of groups

- From kilobytes to a few megabytes.

- Must fit in a single computer memory.

- Stored in off-chip memories.

Group

Block subdivision, group of cells

- From bytes to a few kilobytes.

- Stored in the on-chip memories.

Cell

Discrete unit of data in rasters
- From 1 bit to a few bytes.

- Stored in the processor registers.

Figure 3.11: Spatial decomposition of rasters into blocks, groups and cells.

kernels, which contain lists of sections executed by devices and synchronized
at block level. Lastly, the program is a graph of tasks executed by the system
and synchronized at raster level. Recall that the program derives from the
IR graph, which is parsed from the user script. These prior representations
of the program are somewhat hierarchical too, with the graph IR composed
of clusters, regions and nodes, whereas the script is formed by functions,
scopes, and operations.

The functional decomposition is dictated by the spatial reach of the
map algebra operations. Global operations with complex or unpredictable
spatial dependencies always split the graph into clusters. Focal and Zonal
operations with simpler dependencies fuse to a certain extent but require
separate sections. Operations with trivial spatial dependencies like Local

67

and I/0 fuse all the way into a single section. Typical scripts are composed
by a majority of I/O and Local, a few Focal and Zonal, and one or none
Global operations. Hence, typical programs can be exhaustively fused and
memory movements can largely be avoided.

3.4 Code Optimizations

Section 3.2 detailed the compiler architecture by which to achieve PPP. Pro-
ductivity comes from the map algebra interface, while portability is enabled
by the IR. Performance is more scattered and arises from multiple opti-
mizations across the back-end and runtime. This section focuses on such
code optimizations, which we classify in four groups: the parallelization, the
reordering, the specialization and the sparsity groups of optimizations.

The parallelization group is based on the data parallelism extracted
from the spatial dimension. To a lesser extent, it also exploits the task
parallelism from the functional dimension. The degree of parallelism is con-
strained by the algorithmic patterns of the map algebra classes.

The reordering group is enabled by the freedom of execution exposed
with the dataflow model. This freedom is inversely proportional to the
spatial dependencies of the map algebra operators. The main benefit is
data locality, which is critical to relieve the memory bottleneck.

The specialization group is founded on the heterogeneity of computer
architectures and map algebra classes. Each algorithmic pattern is imple-
mented with a bespoke code version. Furthermore, any complex algorithm
worth specializing can be encapsulated into its own Global class.

The sparsification group is intended to exploit the homogeneity in some
raster data. Large areas of cells with the same value can be packed together,
and their computation can be combined. Thereby these optimizations avoid
computing duplicated results and moving compressible data.

None of these groups guarantees consistent improvements as their effi-
ciencies depend on the script. For instance, some scripts display abundant
parallelism, while others present a high degree of sparsity. Note that for the
optimizations to be valid and beneficial, their computational cost must be
low, the execution must improve in speed or resources usage, and the output
must remain unchanged. Additionally, the optimizations occur across the
four hierarchical levels detailed in section 3.3. The next subsections detail
the groups of optimizations.

68

3.4.1 Parallelization of the Work

The parallelism in spatial modeling arises from two sources and can be
exploited at multiple hierarchical levels. It arises from the spatial dimension,
since one phenomenon can progress independently in two distant areas. It
arises from the functional dimension too, as two separate phenomena can
progress independently in one area. Moreover, the two dimensions intertwine
in multiple ways, leading to abundant but intricate parallelism.

The spatial dimension provides data parallelism. For example, the
runoff of stormwater is not concentrated to a unique area of a terrain, but
water flows freely in numerous directions toward several lakes and streams
(Fig. 3.5d). As a result, the waterflow equations can be run concurrently
for each of the cells of a DEM. Some spatial phenomena present more data
parallelism than others. Whereas modeling rainwater is perfectly parallel,
modeling a wildfire is partly sequential because fire does not emerge simul-
taneously everywhere, but it spreads slowly from one area to another. This
variation is captured by the map algebra classes, from perfectly parallel
Local operations to largely sequential Global operations.

After the spatial decomposition, the data parallelism can be exploited at
block, group and cell levels. Two blocks of a raster can be loaded, processed
and stored in parallel by two workers. Note that the workers do not directly
process the blocks, but they issue the kernels that will do so. Two groups of
a block can be loaded, processed and stored in parallel by two work-groups.
OpenCL kernels are executed by work-groups, which map to compute units
(e.g. CPU cores). Two cells in a group can be loaded, processed and stored
in parallel by two work-items. OpenCL work-groups are split into work-
items, which map to processing elements (e.g. ALUs).

The functional dimension provides task parallelism, also known as
control or functional parallelism. In urban modeling, the developments in
transportation and housing are synergistic but separate processes. The equa-
tions modeling one process depend on the past state of the other, but not
on the current state. Hence, the transportation and the housing equations
can be run concurrently for a given time step. Some compound phenomena
like urban development present plenty of task parallelism, whereas simpler
phenomena like waterflow only display data parallelism. This is directly re-
flected on the equations modeling the phenomena, which will present more
or less independent map algebra operations.

After the functional decomposition, the task parallelism can be exploited
at task, section and instruction levels. Two tasks of a program can have their
kernels executed in parallel by two OpenCL devices, or even in a single device
if it supports the concurrent execution of kernels. Two sections of a kernel
could potentially execute in parallel in two compute units, but the OpenCL
model does not contemplate this option. Two instructions of a section can

69

ﬂystem Input

: .
- Compute Unit Input

e 2. Lg = load groups GrOUpﬁ 1
5 yZ —

77 Processing Elem. . Input

Cell

3. Lc = Load cells

g 4.Pc=
w Process cells

Start Raster
I/— | /
|
I I / .
| JoevF | Device
| Joof |
| |
: : 1. Lb = Load blocks = v
| | M
| |
| |
| |
|)

N B N\t
\ Finish

\ \ 7. Sb = Store block

device
L

comptite unit

processing elem.

Job 1 Lb Lg Lc Pc Sc Sg SP
Job 2 Llb Llg Lc Pc Sc Sg Sb
Job 3 Lb Lg Lc Pc Sc Sg Sb
g :
2 Job4 Lb Lg Lc Pc Sc Sg
& |
Job 5 Lb Lg L‘c Pc Sc
Job6 Lb Lg Lc Pc
LR X
Job7 Lb Lg Lc

Store block

Job level parallelism

(b) Schematic execution of seven jobs in the pipeline.

Figure 3.12: Pipelined, replicated execution to exploit data, task parallelism.

execute in parallel in two processing elements. For this, the processor needs
to be superscalar, which is typical of modern CPUs.

The combination of data and task parallelism leads to a pipelined and

70

replicated execution. This design exploits the duplicated functional units
(e.g. cores) and the fact that they all work concurrently. Thereby, the
execution of a job can be seen as the succession of seven main stages: block
loading (Lb), group loading (Lg), cell loading (Lc), cell processing (Pc), cell
storing (Sc¢), group storing (Sg) and block storing (Sb). At any point in time,
different parts of different jobs are being partially executed in the pipeline.
This process is illustrated in Figure 3.12a, and more schematically in Figure
3.12b. In one direction, the same functional units are replicated to handle
the data parallelism, on the other, different functional units are pipelined to
exploit the task parallelism.

3.4.2 Reordering for Data Locality

As was motivated in section 3.1, parallelism is not enough to get perfor-
mance. Modern computer architectures present considerably higher parallel
throughput than memory bandwidth. Often, the memory subsystem cannot
keep up with the many parallel requests and the processors have to wait idle.
Avoiding this bottleneck requires data to reside as locally as possible to the
processors, because closer memory provides higher bandwidth (Fig. 3.2).
However, the higher the bandwidth the lower the capacity, which leads to
memory thrashing. Therefore, as memory cannot accommodate the whole
raster, blocks are constantly swapped in and out.

The reordering optimizations exploits the freedom in the order of ex-
ecution to maximize locality. This freedom arises from the lack of data
dependencies in the spatial and functional dimensions. Interpreters, which
can only see one operation at a time, fail to acknowledge and exploit this
freedom. They execute in a space-first order, whereby the full spatial di-
mension is iterated for every operation. Conversely, the compiler approach
analyzes the IR to find better execution orders. When possible, it imposes
a functional-first order that increases locality and diminishes the memory
thrashing. This reordering is done at block level with a scheduler, at group
level with sections and at cell level with fusion.

A scheduler reorders the active jobs in the work pool to save block
movements from storage to off-chip memory. To do this, the pool is shaped
as a priority queue that rearranges the jobs as they become active. The
priority is measured as the distance of a space filling curve, specifically the
Z-order curve [57]. More formally, the SFC maps the functional and spatial
dimensions to a single dimension where to rank the jobs. Figure 3.13a shows
how the X, Y spatial dimensions are projected to a contiguous Z-curve, while
Figure 3.13b also includes the functional dimension into this projection. At
the same time, the raster blocks are kept in an in-memory cache with LRU
and NINE? policies (Paper 3). The goal is to schedule together those jobs
sharing same inputs or with producer-consumer relationships, so that their

71

blocks are more likely to still reside in the cache and less block movements
are needed.

Spatial Y dimension

Spatial X dimension e— Starting point — Scheduling Order

(a) Radial operation scheduled with Z-curve order.

———
T——
c N N
2 [
5 5
£ a0
© =2
g 3
0 o
g A
=
=}
[
0 2,
Spat N d’\me“s\O“ T
atig| f 2 o\
X dlmensiOn 2 S\Qa&\a

(b) Scheduling of consecutive Focal operations.

Figure 3.13: Scheduling of jobs based on the Z-order SFC.

At group level the reordering is attained by structuring the kernels in
sections. Work-items in a section execute instructions in functional-first or-
der until they hit a barrier. OpenCL barriers synchronize the work-groups,
forcing them cover their spatial domain before continuing. This effectively
changes the execution order from functional to spatial and enables the reuse
of data. For example, now only one of multiple work-items has to load com-
mon input cells to the work-group, decreasing the memory traffic between

®Non-Inclusive Non-Exclusive (NINE) multi-level caches find balance somewhere in be-
tween inclusive policies (i.e. higher levels are fully contained by lower levels) and exclusive
policies (i.e. no overlap is allowed between cache levels).

72

the off-chip and on-chip memories. All map algebra operations with spatial
dependencies benefit in one way or another. Focal operations avoid common
memory loads in their neighborhood (Listing 3.2), while Zonal operations
avoid memory stores beyond the on-chip memories (Listing 3.3).

At cell level the reordering is achieved with fusion. Fusion merges IR
nodes into clusters, which later derive into tasks and into OpenCL kernels.
Work-items in a kernel execute in a functional-first order until a barrier is
found. Thereby, the intermediate results can be streamed at register level,
avoiding cell movements from on-chip memory. While this is the most bene-
ficial reordering optimization, it is also the most easily disrupted. Non-Local
map algebra operations with spatial dependencies will prevent or severely
impact fusion. For instance, Zonal operations might reduce a full raster and
involve the whole memory hierarchy doing so, forcing the following oper-
ations to wait for the reduction and thus blocking their fusion. For more
information on fusion and the reordering optimizations we refer to Paper 3.

3.4.3 Specialization by Algorithmic Pattern

Specialization refers to the design of exclusive codes to accelerate recur-
rent workloads. This is as opposed to generalization, namely, approaching
all workloads with generic codes. It turns out that a loop of Focal opera-
tions suffices to model most spatial phenomena [66]. However, this generic
approach is inefficient because it often performs more operations than are
needed. Attaining competing performance necessitates of specialized codes
for important recurrent workload. Specialization is based on the map alge-
bra classes and the device architectures, and is applied at block and group
levels via bespoke codes for tasks and skeletons.

At block level, the specialization is embedded in the task logic executed
by workers. Some tasks require more input blocks, employ supporting data
structures or run multiple kernels. For instance, Focal jobs require access to
the neighboring input blocks in a short radius. Zonal jobs perform partial
reductions that are temporarily accumulated in a supporting data structure.
Radial jobs employ specialized equations for each compass direction, leading
to eight different kernels. Global jobs might access very disperse input blocks
and require any non-trivial data structure and algorithmic logic.

At group level, the specialization is applied to the skeletons design. A
skeleton is designed for each combination of map algebra class and OpenCL
device. For example, Focal skeletons on GPUs make use of shared memory
for the neighborhood, while on CPUs they employ two separate code paths
for the border cells and for the central region. Zonal skeletons on GPUs
perform a parallel reduction that revisits the N cells NlogN times, whereas
on CPUs the reduction of groups is sequential and only visits the N cells N
times. On the other hand, trivial workloads like Local operations run well

73

19

without specialization.

The Listings below shows pseudocode versions of the OpenCL kernel
codes generated by these skeletons. Kernels are split in sections, which may
synchronize the work-group to alter the execution order. The Local kernel
in Listing 3.1 is simple enough to be used in both CPUs and GPUs. It by-
passes the on-chip memory, presents no barriers, and follows a functional-
first order. The Focal GPU kernel in Listing 3.2 receives additional blocks
from where to load the neighbor cells. It uses barriers to synchronize the
on-chip memory and makes the work-items access the neighboring cells.
The Zonal GPU kernel in Listing 3.3 reduces the result from on-chip to off-
chip memory with atomics. It also performs a complicated synchronization
within a loop, where it reduces the group by half per iteration.

While not done in this work, it is interesting to mention that Global
operations can take the specialization one step further. This is the case of
Figure 3.4, which reproduced pit filling by a loop of Local, Focal and Zonal
operations. Alternatively, the operations could be integrated into a “Pit-
Filling” class exclusively optimized for Planchon’s algorithm. For example,
Figure 3.5¢ shows how pits are to be filled with the minimum possible el-
evation. This means that any previous filling above the minimum will be
discarded (Figure 3.5b), and implies that, had the algorithm found the min-
ima first, it could stop trying to further fill the pits. As a result, scheduling
the jobs from lower to higher altitude can reduce the algorithm complexity.
At group level, the pit filling skeleton could also follow a sequential itera-
tion of cells ordered by altitude. This unique characteristic of Planchon’s
algorithm can only be exploited with a specialized Global class.

Listing 3.1: Local class OpenCL skeleton for CPU/GPU

kernel Local—Skel (
offchip input_ block,
offchip output_block,

)
{
{ // init section
g = () // cell id within block
}
{ // input section
in = load (input_block[g]) // load input cell
}
{ // local section
tmp = map_op(in) // local ops follow the map pattern
out = map_op(tmp) // another op, consuming the first
}
{ // output section
store (output__block[g],out) // store output cell
}
}

74

Listing 3.2: Focal class OpenCL skeleton for GPU

1 kernel Focal-GPU-Skel (
2 offchip input_block,

3 offchip neighbor_ block,
4
5

offchip output__block,

6 e)

T

8 { // init section

9 g = get_global id()

10 1 = get_local id() // cell id within group
11 onchip group [_group_size_ |
12}

13 { // input section

14 if border case :

15 in = load(neighbor_block[g])
16 else : // _central case__

17 in = load (input__block[g])

18 store (group[l],in)

19 barrier() // group—level synchronization
20}

21 { // focal section

22 acu = _neutral element

23 for ¢ in _ neighborhood__

24 cell = load (group][c])

25 tmp = map_op(cell , _mask)
26 acu = red_op(acu , tmp)
27 }

28 { // output section

29 store (output__block[g],acu)

30 }

31}

Listing 3.3: Zonal class OpenCL skeleton for GPU

1 kernel Zonal-GPU-Skel (

2 offchip input_block,

3 offchip output__block,

1)

5

6 { // init section

7 g = get_global id()

8 1 = get_local _id()

9 b = get group id() // id of group
10 onchip group [_group_size_ |
oy

12 { // load section

13 if (g < _data_size_)

14 group[l] = input_block[g]

15 else

16 group[l] = _neutral element
7

75

18
19
20
21
22
23
24
25
26
27
28
29
30

32
33

34
35

{ // zonal section
while group.size () >= 2 :
() // group—level synchronization
if (1 >= group.size()/2)
continue; // only half workers
left__group, right_group = split(group)
left__cell = load(left_group[1])
right__cell = load(right_group|[1])
tmp = red_op(left__cell , right_cell)
store (left_group[1],tmp)
group = left
}
{ // output section
if (1 = 0)
tmp = load (group[l])
atomic_red(output_block[b] , tmp)

3.4.4 Sparsification of the Computation

Raster data is organized as a rectangular grid of cells, with each cell hold-
ing an independent value. This type of dense format fits well those models
with continuously varying data, like DEMs. However, rasters are a wasteful
format when the concentration of data is low, like in road network models.
Another example is the stream layer in pit filling, where only few narrow
areas contain flowing water. Large portions of the stream raster are empty
and their cells all known to hold the same null value. As a result, memory
movements of such empty areas are redundant, because all they transfer are
the null values. Likewise, operations on the empty areas are redundant too,
since identical inputs produce identical outputs. The goal of the sparsifica-
tion is to avoid this unnecessary work all together.

The sparsity is exploited by actively summarizing the data and predicting
the computation. Rasters are summarized to obtain a series of statistics
for each of their blocks and groups (e.g. maximum, minimum, average and
deviation values). Thereby, blocks can be compressed into scalars when their
statistics show they hold redundant values (i.e. maximum equals minimum).
This avoids not only the movement of redundant memory, but also the costly
interaction with the cache. Additionally, the use of statistics sometimes
enables the prediction of the computation. For example, instead of operating
on two blocks whose cells are known to be uniform, it is enough to operate
on their statistics to avoid the redundant computation across cells.

Exploited wisely, the sparsification of the computation can remarkably
accelerate certain raster models. In a wildfire simulation it is the fire fronts
that change quickly, while the rest remains mostly unaltered. A sparsified
execution could conveniently ignore the stable areas and focus on the chang-

76

ing ones [21]. The pit filling algorithm presents a similar behavior, where
only a reduced front of cells change per iteration. These are the active cells
(Figure 3.4 lines 4,13), which propagate from lower to higher elevations.
Figure 3.14 illustrates this example for the same DEM previously showed in
Figure 3.5. Here, the sparsification saves a large portion of memory move-
ments and computation per iteration, since the active cells are considerably
fewer than the inactive, and they also diminish over time.

At block level, the sparsification is embedded into the workers logic.
In Figure 3.10, steps 4 and 10 in the worker chores handle the statistics
and prediction. Before the actual work is done, the worker attempts to
predict the job outputs by operating on the statistics. If an input block is
compressed into a scalar, the worker skips its loading in the 7th step. If an
output block is predicted to be uniform, the worker skips its storing in the
9th step. In both cases the 5th, 6th and 11th steps are unnecessary. Finally,
the worker skips the computation in step 8 if all output blocks are predicted.
As a result, jobs on sparse areas run almost instantly as their heavy chores
are skipped all together.

At group level, the sparsification is encoded in the kernel skeletons
and is directed by the work-groups. The kernel sections are equipped with
extra logic that checks whether groups are sparse and predictable. Strategic
if-else branches avoid the loading of sparse input groups and the storing of
predicted output groups. If all the outputs are predictable, the work-group
can promptly exit the kernel without working any further. The sparsification
is finer at group level and can therefore optimize areas not reachable at
block level. On the other hand, the overhead is also larger and can incur a
noticeable penalty in predominantly dense models.

Finally, it is important to note that a balance has to be found between ex-
haustive and superficial sparsification. Keeping updated statistics through-
out the execution is reasonably inexpensive, but not free, hence the data can
only be summarized every so often. Likewise, very complex sparsification
logics benefit sparse models, but put extra overhead on dense models.

7

AP0 iIP D IBIAIAIB B D IBID DA

(a) Initially only the exit cells are active (A).

o~

P B AIBIAID B BB AIB D AID D

(¢) Meanwhile the rest of the cells stay inactive (@).

PGP AIB P B B IO IBIAIAIBIB D

(d) Some active fronts dissapear as they merge with each other.

Figure 3.14: Sparsification of pit filling (Fig. 3.5), where only the active
cells need to perform computation and move memory.

78

Chapter 4

Experiments

“No amount of experimentation can ever prove me right;
yet a single experiment can prove me wrong

”

~ Albert Einstein

Chapter 3 reasoned the limitations of map algebra interpreters, proposed
a compiler approach to solve the PPP tradeoff, and detailed the hierarchical
decomposition and code optimizations of such compiler. In this chapter a
prototype implementation of the compiler is put to test with simple work-
loads that highlight the need for locality beyond parallelism, a viewshed
script that showcases and justifies the specialization techniques, and a more
complex urban development model that employs the sparsity optimizations.
The following sections present these experiments.

4.1 Workloads characterization

This section aims to demonstrate the compiler’s ability to mitigate the mem-
ory bottleneck. To that end, it tests four map algebra scripts (Table 4.1)
of increasing arithmetic intensity!. Thus, the first script is mostly memory-
bound while the last is largely compute-bound, with a progression in be-
tween. This sets a convenient scenario where to observe the effects of par-
allelism and locality on the performance. Besides the Python scripts, the
intermediate graphs are also presented with their clusters identified by col-
ors. The parallel kernel codes are not included due to space constrains, but
can be found in the code repository [5]. Lastly, the effect of the optimiza-
tions and the contribution of more powerful machines are analyzed.

! Arithmetic intensity refers to the ratio of the work to memory traffic [93].

79

Script Description Operations Type | Inputs| Outputs
W. Sum. Weighs and adds four rasters on a cell by cell basis 7 Local 4
Statistics | Computes statistical values: mean, max, min, std.dev...| 4 Zonal, 9 Local 1
Hillshade Generates a self-shadowing light effect on a DEM 2 Focal, 36 Local 1
Life (x16) Game of Life with random start and 16 iterations 16 Focal, 64 Local 0

Table 4.1: Tested scripts representing typical map algebra workloads.

The Weighted Summation script is the first and the most memory-bound
workload of the four. It consists of multiple input rasters whose values are
scaled and summed into a single output raster. This is done with computa-
tionally inexpensive Local operations, whose execution cost is virtually just
moving memory. Listing 4.1 shows the uncomplicated Python code, while
Figure 4.1 displays the resulting IR graph. The shared color of the nodes
implies that all the operations are merged into a single cluster. Although
simple, this is a common workload in multicriteria problems such as site
selection and suitability models [51].

Listing 4.1: Weighted summation

from map import * ## Map Algebra Compiler package

snow = read ('snow. tif’) * 0.4
rock = read(’'rock.tif’) * 0.1
soil = read(’'soil.tif’) * 0.3
sand = read(’sand. tif’) * 0.2 e\e a/e

wsum = snow + rock + soil 4+ sand /°
write (wsum, weighted sum. tif’ o\e °/°

Figure 4.1: Weighted summation graph IR, fused into one cluster.

The Statistics script computes typical summary values like the maxi-
mum, average and deviation. It comprises Zonal and Local operations that
perform reductions and simple arithmetic on the input raster. This script is
still memory-bound, even though it requires five time less I/O movements
than the previous one. Listing 4.2 shows the Python code and Figure 4.2
displays the IR graph. Since no zone is explicitly given as an argument,

80

1

0
1
1

19
20

the Zonal operations act on the whole input raster. As a result, their large
spatial reach causes fusion to split the graph into six clusters of different
color. This script is interesting because Zonal operations are a recurrent
primitive in spatial statistical analysis [54].

Listing 4.2: Statistics
from map import * ## Map Algebra Compiler package

raster = read('raster.tif”)
N = prod(raster.datasize())

maxv = zmax(raster)

minv = zmin(raster)

rang = maxv — minv

mean = zsum(raster) / N

geom = zprod(raster) ** (1.0 / N) | |

harm = N / zsum (1.0 / raster) © ©

quam = sqrt (zsum(raster ** 2) / N)

cubm = cbrt (zsum(raster ** 3) / N)

dev = (raster — mean) ** 2

var = zsum(dev) / N

std = sqrt(var)

norm = (dev — minv) / rang %
nstd = sqrt (zsum(norm) / N) ®

Figure 4.2: Statistics graph IR, fused into six clusters.

The Hillshade script generates a self-shadowing effect on an input DEM
to create a sense of topographic relief. The equations employed here are
based on Horn’s formulation [42], which builds upon the slope and aspect
functions. Both slope and aspect need to access the vertical and horizontal
neighboring cells by means of two Focal operations. Listing 4.3 shows these
operations, while Figure 4.3 displays the IR graph after several transfor-
mations. For example, each Focal operation (i.e. horizontal and vertical
convolutions) is executed twice in the script, but in the IR this repetition is
eliminated by the common subexpression elimination® routine. Additionally,
the transcendental and floating-point operations in the script increase its
arithmetic intensity considerably. This, together with the seamless fusion
into a single cluster, make the OpenCL kernel computationally intensive.
Focal operations are common to surface analysis, where topographic relief
influences the dynamics of e.g. runoff water [67].

2Common subexpression elimination is a frequent optimization that avoids duplicated
expressions by computing them once and reusing the result thereafter.

81

16

40

42

Listing 4.3: Hillshade

from map import * ## Map Algebra Compiler package

def hori(dem, dist):
h=1[[-1, 0, 1],

[725 0, 2]a
[_17 0, 1]]
return convolve (dem,h) / (8 * dist)
®
def vert(dem, dist):
v = [[-1,-2,-1], ® © ®
[0, 0, 0],
[1. 2, 1]] ©
return convolve (dem,v) / (8 * dist)
©L © © ©
def slope(dem, zf=1, dist=1):
x = hori(dem,dist) ® © © © ® ® 0 '©®
y = vert(dem,dist)
z = atan(zf * hypot(x,y))) ®© ® ™)
return z
def aspect(dem, dist=1): @ © © ®
x = hori(dem,dist)
y = vert(dem,dist) © ©
z1 = (x != 0) * atan2(y,—x) ©

z1 = z1 + (z1 < 0) * (pi * 2)
z0 = (x = 0) * ((y > 0) * (pi / 2)
+ (y<0) * (pi *2—pi/ 2)) ®© ©
© ©

return zl + z0

®—0 00

def hillshade (dem, zenith, azimuth):

©
zr = (90 — float (zenith)) / 180 * pi © ©
©

®©—©

ar = 360 — float (azimuth) + 90
ar = ar — 360 if (ar > 360) else ar
ar = ar / 180 * pi

hs = (cos(zr) * cos(slope(dem)) + ®
sin(zr) * sin(slope(dem)) *
cos(ar — aspect(dem)))

return hs

dem = read(’elevation. tif)
hill = hillshade (dem,45,315)
write(hill, "hillshade. tif ")

Figure 4.3: Hillshade graph IR, fused into one cluster.

The Life script computes the classic Game of Life [66], where cells live
or die according to their neighborhood. This is the most basic exam-
ple of dynamic phenomena that evolves through time in non-trivial, non-
deterministic ways. Thus, while real models are more complex, their cores

82

19
20
21

are always built around a similar loop of non-local operations. The Python
code in Listing 4.4 is tested for 16 iterations, but the IR graph in Figure
4.4 has been shorten to 2 iterations. Here the consecutive Focal operations
prevent fusion, leading to as many clusters as iterations in the loop. On
the other hand, the succession of Focal operations make this the most com-
putationally intense script of the four. This is amplified by the fact that
the script takes no input, but starts with a randomly generated raster. A
real-world example of dynamic model that builds on these same principles
would be a simulation of flood inundation [2].

Listing 4.4: Game of Life
from map import * ## Map Algebra Compiler package

ds = [1024,1024] # raster size
bs = [256,256] # block size
gs = [16,16] # group size
N =16 # iterations
def life (dem):
S=[[1,1,1],
1.01],
)]

return convolve (dem,S)

state = rand(seed=N,dtype=U8,ds,bs,gs)
state state > 128 # uint8 —> bool

for 1 in range(N):
nbh = life (state)
state = (nbh = 3) + (nbh = 2) * state

write (state, "life . tif ")

Figure 4.4: Game of Life graph IR, only displaying two iterations.

Table 4.2 lists the individual and collective speed-ups achieved by the
parallel and locality optimizations. These speed-ups are measured with re-
spect to the sequential interpreter approach in Figure 3.1a. The paralleliza-
tion is applied at block level with multiple CPU threads and at cell level
with a single GPU. The locality is attained at block level via the schedul-
ing of active jobs and at cell level with fusion. This experiment is meant
to demonstrate how locality outweighs parallelism in typical map algebra
workloads. The Par-GPU, Par-Fus and Par-Sch columns show this, with
fusion and the scheduler bringing larger speed-ups than GPUs. This result

83

validates the compiler approach, given that interpreters cannot optimize for
locality. A more detailed analysis can be found in paper 3.

Optimiza- Par Par Par
tion Par Par Par Fus GPU GPU All
Script Interp Par GPU Fus Sch Sch Fus Sch Opt.
W. Sum. 1 1.84 2.09 7.42 5.24 7.42 7.74 7.42 7.74
Statistics 1 2.00 2.67 8.00 4.27 8.00 16.00 14.22 18.29
Hillshade 1 1.92 2.26 18.19 8.21 26.17 45.57 29.70 69.56
Life (x16) 1 2.24 3.01 6.24 8.45 15.27 11.57 38.27 81.58
Avg. speed-up - 2.00 2.48 9.06 6.27 12.41 15.98 18.61 29.94

Interpreted Parallel multi-threaded GPU-accelerated — Fusion Scheduler — All Opt. = Par,GPU,Fus,Sch
CPU = Kaveri AMD A10-7850K w/ 13 GB memory ~ GPU = Spectre (integrated) 3 GB Disk = 256 GB SSD Raid0

Table 4.2: Speed-ups of the parallel and locality optimizations, separate
and combined. The reference map algebra interpreter uses no optimizations
(left), while the compiler approach employs them all (right).

Figure 4.3 shows the performance of five machines of increasing compu-
tational power but fixed memory bandwidth. The numbers are given as the
speed-up with respect to the Ivy-Ivy machine, which employs a quad-core
CPU but no GPU. All the optimizations from Table 4.2 are now active,
thus these results refer to the compiler approach. The machines are labeled
as Host,Device pairs following the OpenCL model, where a host manages
the devices. From left to right, the figure shows how higher compute power
brings higher speed-ups to the compute bound scripts. However, memory
bound script benefit from little to nothing (i.e. weighted sum) from the in-
creased compute power. More information about the machines and dataset
can be found in paper 3.

16.0
Kaveri,Spectre Kaveri, Hawaii ~ ™ |vy, Hawaii
é = (CPU +i-GPU) (CPU +d-GPU) (CPU +d-GPU)
L 80
Bl B Haswell, K20 Ivy-lvy
g g (CPU +d-GPU) (CPU only)
>0 4.0
2 24 25
£ g 19 20
£ 20 1
g5 11 12 13
5 ° 1.0 1.0 10 10
= -
wv
W. Sum. Statistics Hillshade Life (x16)

Table 4.3: Workloads performance under different machines of increasing
computational power but fixed memory bandiwdth.

84

4.2 Viewshed Analysis

This section presents a viewshed algorithm that showcases the role of the
specialization optimizations. A wviewshed is the area of a terrain visible to
an observer of certain position and altitude above the ground. To grasp
the idea, Figure 4.5 depicts the one-dimensional equivalent of a viewshed,
where an observer is capable of seeing those points which can be traced by
a line-of-sight (LOS). A normal viewshed works very much the same way,
just over a two-dimensional terrain typically encoded as a DEM. Figure 2.6
shows an example of normal viewshed in an urban environment. Viewsheds
are a versatile tool, often used in optimization problems related to visibility
and coverage. Examples are finding the min-cost max-coverage arrangement
of radio-transmission towers [31], optimizing the placement of wind turbines
for higher power generation and lower visual impact [47], or calculating the
shortest flying route for a 3D mapping UAV [18§].

Visible point O Highest accumulated LOS - ->
Non-visible point @ LOS to non-visible point - - > ‘-9% »Qipf‘,« el

0 Py P, Py Py
OO @ OernQn Qe Oy Oy @ Qe Qe Qs O @ @ @ Qs Qs O @ @ @ @ @ @ @ O @@

Figure 4.5: Illustrative one-dimensional viewshed

Several viewshed algorithms exist with varying tradeoffs in performance
and precision (see Paper 1). The simplest, most precise, but least performant
algorithm is R3 [30], presented in Listing 4.5. R3 consists of three nested
loops and little arithmetic, taking just about 30 lines of pseudo C/C++
code. In brief, the observer exhaustively projects a LOS for every target
cell of unknown visibility. A cell is denoted visible when no elevation in the
path of the LOS obstructs said LOS. This condition is verified by walking
the path, interpolating the elevation, and comparing to the LOS altitude.
Although simple, the code entails a complexity of O(N) per cell for an NxN
sized raster. Worse yet, it traverses memory in a non-contiguous fashion and
cannot benefit from cache memories. Together, these inefficiencies make the
algorithm impractical for large datasets.

The experiment undertaken here employs a faster but less precise view-
shed of O(1) complexity, called Xdraw [29]. Xdraw is better understood by
observing the one-dimensional case first, and then extrapolating to two di-
mensions. In Figure 4.5, a cell is known visible if its LOS presents a greater

85

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

slope than the previous highest LOS. Thereby, the point Ps is tagged non-
visible because the slope of LOS OP5 is lower that the slope of LOS OPF;.
Here the visibility can be tested in a single comparison because all the cells
lie in the same geometrical plane. However, in the two-dimensional case
most LOSs lie in different planes, as can be seen in Figure 4.6a. Xdraw
interpolates the LOS slopes to avoid walking each LOS like R3 did, thus
compromising accuracy for speed. As a result, Xdraw can build the visibil-
ity map in a single incremental pass by computing one cell at a time as it
moves from the observer toward the borders.

Listing 4.5: R3 algorithm in pseudo C/C++ code

dem = read(’dem. tif’) // digital elevation model

// ’ox’, ’oy’, ’oh’ are inputs arguments to the program
observer = {ox,0y}; // observer X and Y coordinates
obs_elev = dem.at (observer); // elevation at observer cell
altitude = oh + obs_elev; // total observer altitude

for (int x = 0; x < dem.width; x 4++) {
for (int y = 0; y < dem.height; y ++) {
target = {x,y};
abs_dif = abs(dif(obsever,target));
distance = hypot(abs_dif);
los_steps = max(abs_ dif);
los_slope = (dem.at(target) — altitude) / distance;
visible = true;

for (int z = 0; z < los_steps; z ++) {

coord = coord_in_los(observer,target,z);
dist = hypot(abs(dif(observer,coord)));
los_elev = dist * los_slope;
coord_elev = dem.at(coord); // interpolates
if (coord_elev >= los_elev) {
visible = false;
break;
}
}
view [target] = visible;

}
}

write (view, 'viewshed. tif ")

Xdraw is an interesting test case because of its predisposition for spe-
cialization. In Xdraw, the target cells follow different equations depending
on their relative position to the observer. This is reproduced by Listing 4.6,
where the calculation of the previous LOS slope is heavily branched. For
instance, while a cell in the north direction will only access the neighbor in
its south, a cell in the northeast-east sector will have to interpolate its two
preceding neighbors (Fig. 4.6b). These discrepancies lead to an irregular

86

CU W N =

10
11
12
13
14
15
16
17
18
19

NNW NNE

Y
%e

%

K S\NAZ” 7~
KN\ />

L L) 8N S NN
& AN
&£/ VTN NSO,
SV VTN N NN

=
NiHA
NN\ NHA AL~

LV NN

N4
S

y

SSwW SSE

(a) R3 traces the exact LOS from the ob- (b) Xdraw approximates the LOSs by in-
server toward all target cells in the raster. terpolating the steepest accumulated LOS.

Figure 4.6: Lines-of-sight (LOSs) from a central observer toward all cells in
two viewshed algorithms. R3 traverses each LOS for better accuracy (a),
while Xdraw interpolates the LOS slopes to conclude in one pass (b).

and divergent code that goes against the SIMD parallel model, preventing
the use of vector instructions on CPUs and severely impacting the perfor-
mance on GPUs. However, the obstacle can be avoided with a specialized
code path for each compass direction and sector, so that the code becomes
branchless and can be efficiently executed by a SIMD processor.

Listing 4.6: Generic slope calculation, with a branch per direction

def prior_slope(slope,obs):
ox, oy = obs
x = index (slope,D1)
y = index (slope,D2)
dx = abs(x — ox) # for the interpolation in X
dy = abs(y — oy) # for the interpolation in Y
wl=dy / dx * (dx — 1) — (dy — 1)
w2=dy / dx * (dx — 1) — (dy — 1)

if (x = ox) and (y < oy): # North vertical
return slope ([0,+1])

if (x = ox) and (y > oy): # South vertical
return slope ([0,—1])

if (x > ox) and (y = oy): # East horizonal
return slope ([—1,0])

if (x < ox) and (y = oy): # West horizonal
return slope ([+1,0])

87

ST SQEVCEINC I

O W W WK NNDNDDNDDNDDNDNDNDN
S W N O © 0O

(G2 QTSN

36
37
38
39
10
41

13
44

16
47

if (x < oy) and (y < oy) and (dx = dy): # NW diagonal
return slope ([+1,+1])

if (x > ox) and (y < oy) and (dx = dy): # NE diagonal
return slope ([—1,+1])

if (x > ox) and (y > oy) and (dx
return slope ([—-1,—-1])

if (x < ox) and (y > oy) and (dx = dy): # SW diagonal
return slope ([+1,—-1])

|
&
=

: # SE diagonal

if (x < ox) and (y < oy) and (dx > dy): # W\W sector
return wl*slope ([+1,0]) + (1—wl)*slope ([+1,+1])

if (x < ox) and (y < oy) and (dx < dy): # NNW sector
return w2%*slope ([0,+1]) + (1-w2)*slope ([+1,+1])

if (x > ox) and (y < oy) and (dx < dy): # NNE sector
return w2%*slope ([0,+1]) + (1—w2) *slope ([—1,+1])

if (x > ox) and (y < oy) and (dx > dy): # ENE sector
return wl*slope ([—1,0]) + (1—wl)*slope ([—1,+1])

if (x > ox) and (y > oy) and (dx > dy): # ESE sector
return wl*slope ([—1,0]) + (1—wl)*slope ([—1,—-1])

if (x > ox) and (y > oy) and (dx < dy): # SSE sector
return w2*slope ([0,—-1]) + (1-w2)*slope ([—1,—1])

if (x < ox) and (y > oy) and (dx < dy): # SSW sector
return w2*slope ([0,-1]) + (1—w2)*slope ([+1,—1])

if (x < ox) and (y > oy) and (dx > dy): # WSW sector
return wl*slope ([+1,0]) + (1—wl)*slope ([+1,—1])

While performance calls for specialization, writing multiple code versions
is obviously unproductive. The compiler approach is architected so that this
complexity is moved from the front-end into the back-end. Multiple codes
are still written, but this is done by the compiler developers, not by the
modelers. The specialization is attained with the creation of new IR nodes,
Global classes, task logics and skeleton versions. In particular, Xdraw is
specialized by the Radial class previously introduced in subsection 2.2.3.
Thus, a single Radial operation can substitute lines 15 to 19 in Listing 4.7
and Listing 4.6 all together. This not only drastically simplifies the Python
script, but also enables the generation of better code.

Table 4.4 shows the speed-ups obtained by the specialized code for in-
creasing raster sizes. For a small raster of 512 by 512 cells and 1 Mb of
storage the specialized Xdraw is only 50% faster than the generic version
(Listing 4.7). However, as the size increases the speed-up peaks at about
50x for a raster of a billion cells and 4 GB of space. Additionally, the table
also includes the R3 and SWEEP-LINE viewshed algorithms for compar-
ison. SWEEP-LINE is an O(logN) algorithm [37] with balanced accuracy
and cost between R3 and Xdraw. The tested SWEEP-LINE implementation
belongs to the GRASS GIS package [38], while we implemented the rest of

88

20

26

viewsheds algorithms as described by the Listings. Finally, the last column
shows how only the specialized Xdraw maintains competitive times (i.e. in
the scale of seconds) as the data sizes surpass the gigabyte mark.

Listing 4.7: Generic Xdraw

from map import * # ”"Parallel Map Algebra” package

def prior_slope(slope,obs):
defined in Listing 4.6

def epsilon(floating):
return floating * 10**—5

def xdraw(dem,obs,oh):
altit = oh + dem[obs] # total observer altitude

shift = dem — height # shifts so dem[obs]==0
dist = distance(dem,obs) # distances to observer
slope = shift / dist # slopes of all LOSs

width, height = slope.datasize() +# scan of max slopes
steps = max(width,height) # via loop of Focals
for s in range(steps):

prior = prior_slope(slope,obs) # generic but

slope = max2(slope,prior) # inefficient

los_elev = slope * distance
visible = los_elev — dem < epsilon (dem)
return con(visible, dem, zeros_like(dem))

dem = read(’dem. tif ") # reads elevation model
ox, oy, oh = 50, 70, 5 # observer x, y, z
view = xdraw (dem, [ox,0y],0h) # computes viewshed
write (view, view. tif ") # writes visibility map
storage 1MB 4 MB 16 MB 64 MB 256 MB 1GB 4GB
dimensions 5122 10242 2048 2 4096 2 81922 16384 2 32768 2
R3 1.2s 7.99s 59.6s 8m 10s 1 hour 1 day 1 week
SWEEP-LINE 0,21s 0,98s 4.,985s 17.6s 1m 46s 11m 11s 1 hour
Xdraw 0.006s 0.024s 0.138s 0.667s 2.97s 12.07s 49.11s
Special. Xdraw| 0.004s 0.006s 0.013s 0.03s 0.088s 0.312s 0.98s
speed-up 1.50 4.00 10.62 22.23 33.75 38.69 50.11

CPU = Haswell i7-4770k 3.5 Ghz quad-core ~ Memory =32 GB Disk = 256 GB SSD Raid0

Table 4.4: Execution time of different viewsheds for increasing raster sizes,
and speed-up of the specialized over the generic Xdraw version.

89

4.3 Urban Development

This section covers a dynamic cellular automata model for the analysis and
forecasting of urban development. Urban development has become an active
field of study as 50% of the world population now lives in urban areas. This
proportion, which was about 30% during 1950, is growing quickly and could
reach 66% by 2050 [63]. It is also estimated that cities already consume 75%
of the world’s natural resources in just about 5% of its surface. Such high
concentrations of human activity create opportunities for economic, cultural
and social development, but at the same time it raises risks of poverty,
environmental degradation and social inequality [61]. Today, modeling and
simulation enable us to identify, study and predict these urban challenges.
Urban cellular automata models are one attempt to do that.

A cellular automaton (CA) is classically defined as a lattice of cells whose
state evolves according to some fixed rule. Our interpretation is more gen-
eral: we employ multiple lattices (i.e. rasters) and multiple rules (i.e. map
algebra operations) that are not fixed (i.e. change with control flow) and can
be probabilistic (i.e. random numbers). Such relaxed formulation provides
a useful framework for the quantitative study of complex spatio-temporal
phenomena. This fact is well documented in the literature, with numerous
raster CA models simulating lava flow [24], wildfires [87], landslides [22],
and soil erosion [80] among many others. These works are motivated by the
ability of CAs to reproduce the self-organizing® nature of spatial phenom-
ena, while still being simple enough to fit in a short list of code. This is also
the reason behind the popularity of urban CAs, which gather hundreds of
citations in the literature [71].

In this experiment we test a model originally proposed by Wu [94] and
later parallelized by Guan [36]. The consensus in urban planning is that
cities develop as a combination of global and local factors. Examples of local
factors are the terrain elevation, slope, soil type and access by vehicles, while
important global factors are the distances to city centers, road networks
and public infrastructure. Wu’s model combines both types of factors for
more realistic results, while still being easy to grasp. The equations are
also probabilistic and will draw different outputs depending on the random
number generator. As a result, it becomes necessary to couple the model
with some type of sensibility analysis to assess its uncertainty. Regarding the
calibration and validation parts, these were tackled by the original authors
and are omitted here.

Listing 4.8 presents Wu’s urban CA model. Lines 3 to 11 define several
parameters and coefficients that control the simulation. Lines 13 to 19 read
the multiple input rasters employed by the model. Lines 23 to 28 reproduce

3Self-organization is a property of many natural and artificial systems whereby macro-
scopic behaviors emerge from the local interactions of microscopic parts.

90

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Wu’s equations for one year of urban simulation. The equations work as
follows. Line 23 computes a linear regression with the rasters and coefficients
defined above. Line 24 transform the regression result into a probability for
urbanization in the range [0,1]. Line 25 zeroes the probability of those
cells that are excluded, already urban or isolated. Line 26 translates the
probability to a power distribution according to the dispersion parameter.
Line 27 applies the annual limit, so that only the desired number of cells
becomes urban on average. Finally, line 28 turns into urban those cells whose
probability surpasses a random number between [0, 1]. More information is
given in paper 4 and in the literature [94, 36, 53].

Listing 4.8: Wu’s urban cellular automata model

from map import * ## Map Algebra Compiler package

a 6.4640 # Constant coefficient

bl = 43.5404 +# Elevation coefficient

b2 = 1.9150 # Slope coefficient

b3 41.3441 # Distance to city centers coefficients

b4 = 12.5878 +# Distance to transportations coefficient

b5 = [0,0,—9.865,-8.746,-9.268,-8.032,-9.169,—-8.942,-9.45]
{water,urban,barren,forest,shrub,woody,herb,crop,wetlad}

d =5 # dispersion parameter

q = 16000 # max cells to become urban per year

x1 = read(’dem’) # elevation layer

x2 = read('slope’) # slope layer

x3 = read(’center’) # distance to centers layer

x4 = read(’transp’) # distance to transportations layer
x5 = read(’landuse’) # land use layer

e = read(’excl’) # exclusion layer (e.g. water bodies)
s = read(’urban’) # initial state: urban / not—urban

N =50 # years of simulation i.e. time steps

for i in range(0,N) :
z = a + bl*x1 + b2*x2 + b3*x3 + b4*x4 + pick(x5,b5)
pg = exp(z) / (1 + exp(z))
pc = pg * le * Is * focalSum(s) / (3*3-1)
pd = pc * exp(—d * (1 — pc / max(pc)))
ps = q * pd / sum(pd)
s =s || ps > rand()

write (s, "output’)

The model was run with the statewide dataset of California provided by
the original authors [36, 53]. Figure 4.7 shows a small portion corresponding
to southern Marin County, 10 km north from San Francisco. The dataset
is composed of seven layers of 30m? resolution and 23851 x40460 cells each.
They store the elevation, slope, land use, excluded sites, distances to city
centers and distances to road networks. The seventh layer consists of the

91

present urban areas and is not included in Figure 4.7. The full dataset
occupies above 20 GB, which is larger than the 16 GB of memory on the
test machine. Note that although the full dataset cannot fit into memory,
the spatial decomposition guarantees that the individual blocks, groups and
cell will fit at the multiple levels of the memory hierarchy.

b LA

- -

-

Elevation

Exclusion Dist. Center Dist. Roads

Figure 4.7: California dataset input layers for Marin County

Figure 4.8 shows the outcomes of running Listing 4.8 for the area shown
in Figure 4.7. Note that the model needs to run for the whole state of Cal-
ifornia even though only the County of Marin is shown here. Figure 4.8a
represents a single 50-years simulation starting from the present urbanized
level. It shows those cells that, at some point during the 50 iterations, de-
velop into new urban areas. Such direct use of the model already gives useful
insights on the spatial phenomena, but it is not to be trusted. Urban devel-
opment is a complex and somewhat spontaneous event, which means perfect
predictions are not possible. Figure 4.8b couples the model with the Monte
Carlo method to expose the uncertainties in the model. This is basically

92

achieved by running multiple simulations with different random seeds and
averaging the output. Running 100 iterations returns the probability of ur-
banization and, while many cells still match side a), their development is not
certain anymore as extensive areas of low to medium probability surround
them now.

N TR el P T —o

(a) One single execution (b) 100 Monte Carlo iterations

Figure 4.8: Monte Carlo method provides a simple sensibility analysis to
assess the uncertainty of the model.

Back to the performance metrics, recall that this thesis does not seek
to justify the listed spatial models, but it strives to solve the PPP tradeoff
via the compiler approach with a focus on computer performance. In that
sense, the selected urban model is clearly not comprehensive enough to steer
urban planning. Nevertheless, its current form is sufficient to evaluate the
performance of the compiler optimizations. Table 4.5 shows the execution
times and speed-ups for this CA as the optimization are activated. It starts
with no optimizations, in what would be equivalent to a sequential map
algebra interpreter. Then it activates the parallel, locality and sparsity
optimizations one after another. The specialization optimizations are always
active because they are built into the map algebra patterns. Further details
are found in the legend at the bottom of the Table.

Following is a summary of the results in Table 4.5. First, the interpreter
is the reference version with the highest loading, computing and storing
costs. This column is obviously the slowest version as it suffers from the
memory bottleneck. Second, the parallel version overlaps I/O and computa-

93

tion by employing multiple worker threads. This does not reduce the number
of loaded blocks or computed jobs, but lessens their total cost. Third, the
GPU version relieves compute load by offloading the kernel codes to the ac-
celerator. This decreases the compute cost considerably thanks to the high
parallel throughput of GPUs. Fourth, fusion avoids intermediate memory
movements at cell level by generating larger kernels. This reduces the num-
ber of blocks and jobs, improving the performance at all levels. Fifth, the
scheduler prevents further memory movements at block level in collabora-
tion with the cache. This brings more moderate improvements compared to
fusion, and only on the I/O part. Sixth, the sparsity optimizations avoid
the computation of all those cells falling outside the state of California. This
nearly halves the number of blocks and jobs to be processed and roughly
doubles the performance. Finally, activating the -O2 optimization level in
the C4++ compiler brings the last speed-ups. This last column reveals that
the logic executed by the workers is also a bottleneck at runtime. Further
details can be found in paper 4.

94

‘pajearyoe A[8ursearour are uorjezrwiydo o) se Y weqan o) jo sdn-peads pue souwur} UOTINIAX G S[R],

aspauauy 1ybifs = A— 1uDISUO0I =

aspau2ap 1ybifs ‘101apoW ‘3|qpIaPISUOI =

tt

$)20/q PaJo3s fo 1aquinu (D10} = PaJOIS #

pIpp bUI01S JUadS Wi} UOIINIAIX3 = BulIols

uoDZIWIAO JUS1INI YIIM dWI3 UOIINIAXS / AW} UOINIAX3 1232idIa3ul = dn-paads anjosqy

Z0- J3)1dwod = zO- ++) ‘Alsipds piop syjojdxa = asipds

U3INPayds 1 aYowd = 43NPaYIs

‘sqof paandwod fo saquinu [p301 = paindwod #

‘s3ynsaJ buizndwiod Juads awiy uoiandaxa = bunndwod
‘uonpziWIIdo UaLINI YYM Wi} UOIINIAXI / UOIIDZIWIIAO SNOINSId WOLf 3w} UOIINIAXA = dn-paads anipjay

‘sapou $1a3snja = uoisnd ‘Ndo 10uado = NdD ‘Pappalyl-inw = |3jjbiod

‘sY20]q papooj Jo 1aquinu (D303 = PAPDO] #

‘p10p BulpDO| JUads Wi UoIINIAX3 = Bulppo|

QW3 Y20[2-||DM = Wi} UOIINIAXT

‘suoijpziwiido ou /m |pi3uaNbas = 423a1dia3u|

000'92C = 000'92T = 000°€9S = # 000°7SL 009'6ET‘E 009'6€ET‘E 009'6€ET‘E paJiols #
syjun 616'80€ 616'80€ 000795 » 000795 009'STS‘E 009'STS‘E 009'STS‘E pa1ndwod #
000'TVE = 0007vE = f 00079 = 4 SOT'EBST 0TT0€6'S 0TT0€6'S 0TT0€6'S papeo) #
A— CE'ST %9'8¢€ 86T %L'0C # TT'89 %S'6€ »wo.nmm %599 7'ELT'T %0°69 T'ECET %C'8S 6'6€E'T %6'ST 8uuols
Spuodas A— 80'TT %6'9T LTS %S'S 60°CT %00°L # 07T %E'E » 95°'SY %L'T # 08'STy %E'8T 6'67L'T %8'EE Sunndwod
A— 69°LT %6'9C 67'CT %T'ET # L6'TE %S'8T 99°L6 %E'ET 90°STT %L'CT # S6'VTT %S'6 9'/L8€E'T %8'9T Suipeo)
sawn 76'8L 9Y'T €TvS T8T TO0E E€¥T SETT SOV so€ vE'T 87'¢C 87'C awmosqy aAne|Ry dn-paads
Spu0das 89°59 85°56 S9°TLT 89'6TH TT°00L'T 9vLT'T TE€°€8T'S 3WI3} UOIINDAXT
(9) zo-++2 (5) @steds (v) 43Inpayds (€) uoisny (2) ndo (T) 1211edd (0) 4o32udsm3u; | suoneziwndo

95

96

Chapter 5

Conclusions

A good dissertation is a done dissertation. A great dissertation is a
published dissertation. A perfect dissertation is neither.

~ wise supervisor to frustrated doktorand

In this last chapter we recap the problem, why it matters and how we
addressed it. We also discuss how the research goals where met, and whether
new questions arose. Naturally, the time spent on this thesis was limited and
many interesting possibilities had to be ignored. Therefore we also mention
the limitations of the approach and some possible further work.

5.1 Summary and Discussion

This thesis has focused on the modeling and simulation of spatial phenom-
ena via digital and computer models. The selected digital models are raster
data, for example a digital elevation model of the Earth. The computer mod-
els are expressed with map algebra, a scripting language for raster spatial
analysis. The topic matters because, in the face of a growing world, mod-
eling and simulation provides valuable tools to study, plan and optimize
many spatial problems with far-reaching societal impact. An example is to
employ topographical and elevation models to determine the most optimal
layout of a new highway.

The problem addressed by our research is the need for productivity, per-
formance and portability. Traditional map algebras are not able to cope
with the increasing volumes of spatial data and with the parallel evolution
of computer architectures without compromising one of the three qualities.
However, the three are necessary for the gradual development of computer
models (Figure 1.7): without productivity, the development (e.g. design,

97

implementation, testing) becomes lengthy and expensive; without perfor-
mance, the assessment (e.g. uncertainty, calibration, validation) takes too
long to execute; and without portability, the operation (e.g. scaling, deploy-
ment) would not be possible across different machines.

The proposed solution is a compiler approach to map algebra that breaks
the PPP tradeoff. Thereby, productivity, performance and portability can
be addressed independently of each other. Productivity derives from a sim-
ple Python interface adapted to the modeler’s ability and domain. Perfor-
mance comes from the compiler optimizations and code generation targeting
modern architectures. Portability is achieved with an IR which splits inter-
face from execution, while preserving the semantics.

With said hypotheses we built a prototype of a map algebra compiler
[5] to experiment with. We first tested simple map algebra workloads that
resemble building blocks of typical spatial models. This confirmed our sus-
picion that memory, and not computation, is the performance bottleneck
in most workloads. We then tested more complex scripts dealing with spa-
tial phenomena of direct interest to modelers. They served to evaluate the
multiple performance optimizations incorporated in the compiler.

The experiments confirmed the performance quality of the solution from
a quantitative point of view. We also included the Python scripts to show
that, qualitatively, the productivity of map algebra remained intact. The
portability aspect was scarcely evaluated, since only multi-core CPUs and
many-core GPUs where employed. In retrospective, the objectives where
met because our research goals were narrowed toward performance. How-
ever, many interesting issues were left untouched and new questions also
came up during the research. Surely, the problem at hand requires more
ideas, more experiments, more analyses and further developments.

5.2 Limitations and Further Work

First, it is important to note that our approach is confined to map algebra
and raster data. Vector data is not covered and, although not a fatal limita-
tion, many users would request such feature. An initial step in this direction
could be the addition of vector-to-raster conversion operations. While sim-
ple, this would raise precision problems due to the way rasterization works!.
The right approach is to treat vectors as primitive data and enhance the
compiler and its IR to that end. This, however, requires such endeavor that
would become not just another thesis, but a whole research venture.
Second, while the prototype served our research well, this work would
still benefit from many additions: from more scripts for different spatial

'Rasterization is the process by which geometrical shapes (i.e. vector data) are con-
verted into pixels (i.e. raster cells) that form a bitmap image (i.e. raster data).

98

phenomena, to new programming constructs for productivity, to better op-
timizations for performance, to more supported architectures for portability.

Although our tested scripts were selected to cover typical workloads,
they are not complete. Real-life computer models are considerably more
complicated and have dozens of parameters that need tuning. Furthermore,
the execution of dynamic models is affected by the input data, therefore
those models should also be evaluated with atypical data.

Productivity is hard to assess since all programmers have their own work-
flow and preferences. As a result, evaluating the productivity requires a large
community with people of diverse backgrounds. Moreover, we have not cov-
ered topics like debugging and testing, very necessary to efficiently find bugs,
solve errors and resume the development.

Performance can still be improved with more compiler optimizations,
better code generation and more scalable runtime. The fusion and schedul-
ing optimizations are complex problems that would benefit from better
search algorithms. LLVM [48] would be a better fit than OpenCL, because it
opens new optimization possibilities for the kernels. The runtime is a com-
plex concurrent system that could probably be optimized with wait/lock-free
algorithms [41].

Portability is not hard to improve, but it is the most time consuming of
the qualities in this heterogeneous era where computer architectures continue
to evolve and differentiate. Besides CPUs and GPUs, it would be interesting
to test distributed systems such as clusters and supercomputers.

Regardless of the limitations and much future possibilities, this work
has already delivered what it promised. We found and solved an important
problem in a field of increasing relevance and large social impact. Our
compiler approach to map algebra establishes a basis for future successful
raster spatial modeling.

99

100

Bibliography

[1] Amdahl, G. M. (1967). Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the April
18-20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring),
pages 483-485. ACM.

[2] Bates, P. D. and De Roo, A. (2000). A simple raster-based model for
flood inundation simulation. Journal of hydrology, 236(1-2):54-77.

[3] Bohr, M. (2007). A 30 year retrospective on dennard’s mosfet scaling
paper. IEEE Solid-State Circuits Society Newsletter, 12(1):11-13.

[4] Campbell, J. and Shin, M. (2015). Geographic information system basics.
The Saylor Foundation. Accessed: 2018-12-09.

[5] Carabano, J. (2018). Code repository of a prototype implementation
of the map algebra compiler. https://www.github.com/jcaraban/map.
Accessed: 2019-25-01.

[6] Carabatio, J., Sarjakoski, T., and Westerholm, J. (2015). Efficient im-
plementation of a fast viewshed algorithm on simd architectures. In Pro-
ceedings of the 23rd Euromicro International Conference on Parallel, Dis-
turbed, and Network-Based Processing, pages 199-202. IEEE.

[7] Carabatio, J. and Westerholm, J. (2017). From python scripting to paral-
lel spatial modeling: Cellular automata simulations of land use, hydrology
and pest dynamics. In Proceedings of the 25th Euromicro International
Conference on Parallel, Disturbed, and Network-Based Processing, pages
511-518. IEEE.

[8] Carabanio, J. and Westerholm, J. (2019). A compiler and runtime ap-
proach to parallel spatial modeling. Technical Report 1200, TUCS. ISSN
1239-1891, No 1203.

[9] Carabartio, J., Westerholm, J., and Sarjakoski, T. (2018). A compiler
approach to map algebra: automatic parallelization, locality optimization,

101

and gpu acceleration of raster spatial analysis. Geolnformatica, 22(2):211-
235.

[10] Centre for Remote Imaging, Sensing and Processing CRISP (1997).
Principles of remote sensing. https://crisp.nus.edu.sg/~research /tutorial /
rsmain.htm. Accessed: 2018-12-08.

[11] Cheng, G., Liu, L., Jing, N., Chen, L., and Xiong, W. (2012). General-
purpose optimization methods for parallelization of digital terrain analysis
based on cellular automata. Computers € Geosciences, 45:57-67.

[12] Cheramie, K. D. (2011). The scale of nature: Modeling the mississippi
river. Places Journal. Available at https://doi.org/10.22269/110321. Ac-
cessed: 2018-12-08.

[13] Chomsky, N. and Lightfoot, D. W. (2002). Syntactic structures. Walter
de Gruyter.

[14] Cole, M. 1. (1989). Algorithmic skeletons: structured management of
parallel computation. Pitman London.

[15] Cooper, K. and Torczon, L. (2011). Engineering a compiler. Elsevier.

[16] Copeland, J. (2006). Colossus and the rise of the modern computer.
In Copeland, J., editor, Colossus: The Secrets of Bletchley Park’s Code-
breaking Computers. Oxford University Press, Oxford.

[17] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. (1972). Structured
programming. Academic Press Ltd.

[18] De Filippis, L., Guglieri, G., and Quagliotti, F. (2012). Path planning
strategies for uavs in 3d environments. Journal of Intelligent & Robotic
Systems, 65(1-4):247-264.

[19] Dean, J., Patterson, D., and Young, C. (2018). A new golden age
in computer architecture: Empowering the machine-learning revolution.
IEEE Micro, 38(2):21-29.

[20] Department of Defense, Department of the Army, Office of the Chief
Signal Officer (1927). Great Mississippi Flood of 1927. https://archive.
org/details/mississippi_ flood_ 1927. Accessed: 2018-12-08.

[21] Di Gregorio, S., Filippone, G., Spataro, W., and Trunfio, G. A. (2013).

Accelerating wildfire susceptibility mapping through gpgpu. Journal of
Parallel and Distributed Computing, 73(8):1183-1194.

102

[22] Di Gregorio, S., Kongo, R., Siciliano, C., Sorriso-Valvo, M., and
Spataro, W. (1999). Mount ontake landslide simulation by the cellu-

lar automata model sciddica-3. Physics and Chemistry of the Farth, Part
A: Solid Earth and Geodesy, 24(2):131-137.

[23] Downey, A. B. (2017). Modeling and Simulation in Python. Green Tea
Press. Available at http://greenteapress.com/wp/modsimpy.

[24] D’Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., and Trunfio,
G. A. (2012). Cellular automata and gpgpu: an application to lava flow

modeling. International Journal of Grid and High Performance Comput-
ing (IJGHPC), 4(3):30-47.

[25] Faggin, F., Hoff, M. E., Mazor, S., and Shima, M. (1996). The history
of the 4004. IEEE Micro, 16(6):10-20.

[26] Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley,
S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., et al. (2007). The
shuttle radar topography mission. Reviews of geophysics, 45(2).

[27] Financial Times (2015). Intel chief raises doubts over moore’s law.
https://www.ft.com/content/36b722bc-2b49-11e5-8613-e7aedbb7bdb7.
Accessed: 2018-12-08.

[28] Flachs, B., Gschwind, M., Yamazaki, T., Hopkins, M., Hofstee, H. P.,
and Watanabe, Y. (2006). Synergistic processing in cell’s multicore archi-
tecture. IEEE Micro, 26:10-24.

[29] Franklin, W. and Ray, C. (1994). Higher isn’t necessarily better: Vis-
ibility algorithms and experiments. Advances in GIS research: sixth in-
ternational symposium on spatial data handling, 2:1-22.

[30] Franklin, W., Ray, C., and Mehta, S. (1994). Geometric algorithms for
siting of air defense missile batteries. Technical Report 2756, US Army
Research Office Scientific Services Program.

[31] Franklin, W. R. (2002). Siting observers on terrain. In Advances in
Spatial Data Handling, pages 109-120. Springer Berlin Heidelberg.

[32] Fuglsang, M., Hansen, H. S., and Miinier, B. (2011). Accessibility anal-
ysis and modelling in public transport networks—a raster based approach.
In International Conference on Computational Science and Its Applica-
tions, pages 207-224. Springer.

[33] Gonzéalez-Vélez, H. and Leyton, M. (2010). A survey of algorith-
mic skeleton frameworks: high-level structured parallel programming en-
ablers. Software: Practice and Ezperience, 40(12):1135-1160.

103

[34] Goodchild, M. F. (1992). Geographical information science. Interna-
tional journal of geographical information systems, 6(1):31-45.

[35] Guan, Q. and Clarke, K. C. (2010). A general-purpose parallel raster
processing programming library test application using a geographic cellu-
lar automata model. International Journal of Geographical Information
Science, 24(5):695-722.

[36] Guan, Q., Shi, X., Huang, M., and Lai, C. (2016). A hybrid paral-
lel cellular automata model for urban growth simulation over gpu/cpu
heterogeneous architectures. International Journal of Geographical Infor-
mation Science, 30(3):494-514.

[37] Haverkort, H., Toma, L., and Zhuang, Y. (2009a). Computing visibility
on terrains in external memory. Journal of Experimental Algorithmics
(JEA), 13:5.

[38] Haverkort, H., Toma, L., and Zhuang, Y. (2009b). r.viewshed module
from grass gis 7.0. http://grass.osgeo.org/grass70/manuals/r.viewshed.
html. Accessed: 2019-25-01.

[39] Hennessy, J. L. and Patterson, D. A. (2011). Computer architecture: a
quantitative approach. Elsevier.

[40] Hennessy, J. L. and Patterson, D. A. (2019). A new golden age for
computer architecture. Communications of the ACM, 62(2):48-60.

[41] Herlihy, M. (1991). Wait-free synchronization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 13(1):124-149.

[42] Horn, B. K. (1981). Hill shading and the reflectance map. Proceedings
of the IEEE, 69(1):14-47.

[43] Horowitz, M., Alon, E., Patil, D., Naffziger, S., Kumar, R., and Bern-
stein, K. (2005). Scaling, power, and the future of cmos. In FElectron De-
vices Meeting, 2005. IEDM Technical Digest. IEEE International, pages
7-pp. IEEE.

[44] Hutchinson, D., Lanthier, M., Maheshwari, A., Nussbaum, D., Royten-
berg, D., and Sack, J.-R. (1996). Parallel neighbourhood modelling. In
Proceedings of the fourth ACM workshop on Advances in geographic in-
formation systems - GIS ’96, pages 25-34. ACM Press.

[45] International Organization for Standardization ISO (2016). ISO/IEC
25022:2016, Systems and software Quality Requirements and Evaluation
(SQuaRE). https://is025000.com/index.php/en/iso-25000-standards/
is0-25010. Accessed: 2018-12-09.

104

[46] Khronos Group (2008). Open computing language. https://www.
khronos.org/opencl. Accessed: 2018-12-09.

[47] Ladenburg, J., Termansen, M., and Hasler, B. (2013). Assessing ac-
ceptability of two onshore wind power development schemes: A test of
viewshed effects and the cumulative effects of wind turbines. Energy,
54:45-54.

[48] Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for
lifelong program analysis and transformation. In CGO, pages 75-88, San
Jose, CA, USA.

[49] Lillesand, T., Kiefer, R. W., and Chipman, J. (2014). Remote sensing
and image interpretation. John Wiley & Sons.

[50] Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W.
(2005). Geographic information systems and science. John Wiley & Sons.

[51] Malczewski, J. (2004). Gis-based land-use suitability analysis: a critical
overview. Progress in planning, 62(1):3-65.

[52] McLeod, K. S. (2000). Our sense of snow: the myth of john snow in
medical geography. Social science & medicine, 50(7-8):923-935.

[53] Miao, J., Guan, Q., and Hu, S. (2017). prpl+ pgtiol: The marriage of
a parallel processing library and a parallel i/o library for big raster data.
Environmental modelling € software, 96:347-360.

[54] Mitchell, A. (2005). The ESRI Guide to GIS Analysis: Volume 2:
Spatial Measurements € Statistics, volume 2. ESRI press Redlands, CA.

[55] Moore, G. E. (2006). Cramming more components onto integrated
circuits, reprinted from electronics, volume 38, number 8, april 19, 1965,
pp.114 ff. IEEFE Solid-State Circuits Society Newsletter, 11(3):33-35.

[56] Moore, I. D., Gessler, P., Nielsen, G., and Peterson, G. (1993). Soil
attribute prediction using terrain analysis. Soil Science Society of America
Journal, 57(2):443-452.

[57] Morton, G. M. (1966). A computer oriented geodetic data base and a
new technique in file sequencing. Technical report, IBM.

[58] Munoz, S. E., Giosan, L., Therrell, M. D.,; Remo, J. W. F., Shen, Z.,
Sullivan, R. M., Wiman, C., O’'Donnell, M., and Donnelly, J. P. (2018).
Climatic control of mississippi river flood hazard amplified by river engi-
neering. Nature, 556:95 EP —.

105

[59] NASA Earth Observatory (2000). Moderate Solution Imaging Spectro-
radiometer MODIS. https://www.nasa.gov/multimedia/imagegallery/
image_ feature_ 300.html. Accessed: 2018-12-08.

[60] National Aeronautics and Space Administration NASA (2018). Images
of Change. https://climate.nasa.gov/images-of-change. Accessed: 2019-
25-01.

[61] Netzband, M., Stefanov, W. L., and Redman, C. (2007). Applied re-
mote sensing for urban planning, governance and sustainability. Springer
Science & Business Media.

[62] Nvidia (2007). Cuda programming guide. https://docs.nvidia.com/
cuda. Accessed: 2018-12-09.

[63] Organization, W. H. and UN-Habitat (2016). Global report on urban
health. Technical report, World Health Organization.

[64] O’sullivan, D. and Unwin, D. (2014). Geographic information analysis.
John Wiley & Sons.

[65] Planchon, O. and Darboux, F. (2002). A fast, simple and versatile
algorithm to fill the depressions of digital elevation models. Catena, 46(2-
3):159-176.

[66] Pullar, D. (2001). Mapscript: A map algebra programming language
incorporating neighborhood analysis. Geolnformatica, 5(2):145-163.

[67] Pullar, D. (2003). Simulation modelling applied to runoff modelling
using mapscript. Transactions in GIS, 7(2):267-283.

[68] Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. (2005). Ray
tracing on programmable graphics hardware. In ACM SIGGRAPH 2005
Courses, page 268. ACM.

[69] Qin, C.-Z., Zhan, L.-J., Zhu, A.-X., and Zhou, C.-H. (2014). A strat-
egy for raster-based geocomputation under different parallel computing
platforms. International Journal of Geographical Information Science,
28(11):2127-2144.

[70] Rupp, K. (2018). Years of microprocessor trend data. https://github.
com/karlrupp/microprocessor-trend-data. Accessed: 2018-12-08.

[71] Santé, 1., Garcia, A. M., Miranda, D., and Crecente, R. (2010). Cellular
automata models for the simulation of real-world urban processes: A
review and analysis. Landscape and Urban Planning, 96(2):108-122.

[72] Sebesta, R. W. (2015). Concepts of programming languages. Pearson.

106

[73] Shapiro, M. and Westervelt, J. (1994). r. mapcalc: An algebra for
gis and image processing. Technical report, Construction Engineering
Research Lab (ARMY) Champaign IL.

[74] Shook, E., Hodgson, M. E., Wang, S., Behzad, B., Soltani, K., His-
cox, A., and Ajayakumar, J. (2016). Parallel cartographic modeling: a
methodology for parallelizing spatial data processing. International Jour-
nal of Geographical Information Science, 30(12):2355-2376.

[75] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mas-
tering the game of go without human knowledge. Nature, 550(7676):354.

[76] Steinbach, M. and Hemmerling, R. (2012). Accelerating batch process-
ing of spatial raster analysis using gpu. Computers & Geosciences, 45:212
- 220.

[77] Steuwer, M., Kegel, P., and Gorlatch, S. (2011). Skelcl-a portable skele-
ton library for high-level gpu programming. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, pages 1176-1182. IEEE.

[78] Sutter, H. (2005). The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobb’s journal, 30(3):202-210.

[79] Takeyama, M. and Couclelis, H. (1997). Map dynamics: integrating
cellular automata and gis through geo-algebra. International Journal of
Geographical Information Science, 11(1):73-91.

[80] Ting, M., Cheng-Hu, Z., and Qiang-Guo, C. (2009). Modeling of hill-
slope runoff and soil erosion at rainfall events using cellular automata
approach. Pedosphere, 19(6):711-718.

[81] Tomlin, C. and Berry, J. (1979). Mathematical structure for carto-
graphic modeling in environmental analysis. In Proceedings of the Amer-
ican Congress on Surveying and Mapping annual meeting.

[82] Tomlin, C. D. (1980). The map analysis package. Yale University School
of Forestry.

[83] Tomlin, C. D. (1994). Map algebra: one perspective. Landscape and
Urban Planning, 30(1-2):3-12.

[84] Tomlin, C. D. (2013). GIS and cartographic modeling, volume 380. Esri
Press Redlands, CA.

[85] Tomlin, C. D. (2017). Cartographic modeling. International Encyclo-
pedia of Geography, pages 1-6.

107

[86] Tracz, W. J. (1979). Computer programming and the human thought
process. Software: Practice and Experience, 9(2):127-137.

[87] Trunfio, G. A., D’Ambrosio, D., Rongo, R., Spataro, W., and Di Gre-
gorio, S. (2011). A new algorithm for simulating wildfire spread through

cellular automata. ACM Transactions on Modeling and Computer Simu-
lation (TOMACS), 22(1):6.

[88] Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific
languages: An annotated bibliography. ACM Sigplan Notices, 35(6):26—
36.

[89] Wall, D. W. (1991). Limits of instruction-level parallelism. In Pro-
ceedings of the Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS IV, pages
176-188, New York, NY, USA. ACM.

[90] Wesselung, C. G., KARSSENBERG, D.-J., Burrough, P. A.; and van
Deursen, W. P. (1996). Integrating dynamic environmental models in gis:
the development of a dynamic modelling language. Transactions in GIS,
1(1):40-48.

[91] WikiChip (2017). Intel’s coffee lake microarchitecture. https://en.
wikichip.org/wiki/intel /microarchitectures/coffee lake. Accessed: 2018-
12-09.

[92] WikiChip (2018). Nvidias’s tegra xavier system-on-chip. https://en.
wikichip.org/wiki/nvidia/tegra/xavier. Accessed: 2018-12-09.

[93] Williams, S., Waterman, A., and Patterson, D. (2009). Roofline:
An insightful visual performance model for floating-point programs and

multicore architectures. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States).

[94] Wu, F. (2002). Calibration of stochastic cellular automata: the applica-
tion to rural-urban land conversions. International Journal of Geograph-
ical Information Science, 16(8):795-818.

[95] Wu, Y., Ge, Y., Yan, W., and Li, X. (2007). Improving the perfor-
mance of spatial raster analysis in gis using gpu. In Geoinformatics 2007:
Geospatial Information Technology and Applications, volume 6754, page
67540P. International Society for Optics and Photonics.

[96] Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall: im-
plications of the obvious. ACM SIGARCH computer architecture news,
23(1):20-24.

108

[97] Yuan, M. (1994). Wildfire conceptual modeling for building gis space-
time models. In proceedings of GIS/LIS, volume 94, pages 860-869.

109

110

NouhuwhN =

o ®©

12,
13.
14.
15.
16.

17.
18.
19.
20.

21.

22,

23.

24.
25.

26.

27.

28.
29.
30.
31.
32.
33.

34.
35.
36.
37.
38.
39.

40.

Turku Centre for Computer Science
TUCS Dissertations

Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
Timo Kakola, Dual Information Systems in Hyperknowledge Organizations
Ville Leppénen, Studies on the Realization of PRAM

Cunsheng Ding, Cryptographic Counter Generators

Sami Viitanen, Some New Global Optimization Algorithms

Tapio Salakoski, Representative Classification of Protein Structures

Thomas Langbacka, An Interactive Environment Supporting the Development of
Formally Correct Programs

Thomas Finne, A Decision Support System for Improving Information Security
Valeria Mihalache, Cooperation, Communication, Control. Investigations on
Grammar Systems.

Marina Waldén, Formal Reasoning About Distributed Algorithms

Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is
Known

Lucian Ilie, Decision Problems on Orders of Words

Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning

Jouni Jarvinen, Knowledge Representation and Rough Sets

Tomi Pasanen, In-Place Algorithms for Sorting Problems

Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit
Board Assembly

Mats Aspnds, Multiprocessor Architecture and Programming: The Hathi-2 System
Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
Vesa Torvinen, Construction and Evaluation of the Labour Game Method
Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to
Protein Structures

Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus
Flexibility

Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in
Vector Quantization

Gabor Magyar, On Solution Approaches for Some Industrially Motivated
Combinatorial Optimization Problems

Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
Shuhua Liu, Improving Executive Support in Strategic Scanning with Software
Agent Systems

Jaakko Jarvi, New Techniques in Generic Programming - C++ is more Intentional
than Intended

Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical
Data

Martin Biichi, Safe Language Mechanisms for Modularization and Concurrency
Elena Troubitsyna, Stepwise Development of Dependable Systems

Janne Nappi, Computer-Assisted Diagnosis of Breast Calcifications

Jianming Liang, Dynamic Chest Images Analysis

Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits

Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System
in Sleep-Disordered Breathing

Ivan Porres, Modeling and Analyzing Software Behavior in UML

Mauno Rdnkkd, Stepwise Development of Hybrid Systems

Jouni Smed, Production Planning in Printed Circuit Board Assembly

Vesa Halava, The Post Correspondence Problem for Market Morphisms

Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
Vladimir Kvassov, Information Technology and the Productivity of Managerial
Work

Frank Tétard, Managers, Fragmentation of Working Time, and Information
Systems

41.
42,
43.
44.
45.

46.

47.
48.
49.
50.
51.

52.
53.
54.

55.

56.
57.

58.
59.

60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.
71.
72.

73.
74.

75.

76.
77.

78.

79.

80.

81.
82.

83.

84.
85.

Jan Manuch, Defect Theorems and Infinite Words

Kalle Ranto, Z,-Goethals Codes, Decoding and Designs

Arto Lepistd, On Relations Between Local and Global Periodicity

Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
Pentti Virtanen, Measuring and Improving Component-Based Software
Development

Adekunle Okunoye, Knowledge Management and Global Diversity — A Framework
to Support Organisations in Developing Countries

Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
Juha Kivijarvi, Optimization Methods for Clustering

Rimvydas Ruksénas, Formal Development of Concurrent Components

Dirk Nowotka, Periodicity and Unbordered Factors of Words

Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative
Attributes

Petteri Kaitovaara, Packaging of IT Services — Conceptual and Empirical Studies
Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision
Support

Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol
Processors

Tomas Eklund, The Self-Organizing Map in Financial Benchmarking

Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial
Real Investments

Dag Bjorklund, A Kernel Language for Unified Code Synthesis

Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on
Physicians in Finland

Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
Joonas Lehtinen, Coding of Wavelet-Transformed Images

Tommi Meskanen, On the NTRU Cryptosystem

Saeed Salehi, Varieties of Tree Languages

Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible
Manufacturing Systems

Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
Luigia Petre, Modeling with Action Systems

Lu Yan, Systematic Design of Ubiquitous Systems

Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
Ville Harkke, Knowledge Freedom for Medical Professionals — An Evaluation Study
of a Mobile Information System for Physicians in Finland

Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and
Emissions Trading Scheme

Chihab BenMoussa, Supporting the Sales Force through Mobile Information and
Communication Technologies: Focusing on the Pharmaceutical Sales Force

Jussi Salmi, Improving Data Analysis in Proteomics

Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and
Probabilistic Programs

Kaj-Mikael Bjork, Supply Chain Efficiency with Some Forest Industry
Improvements

Viorel Preoteasa, Program Variables — The Core of Mechanical Reasoning about
Imperative Programs

Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a
Mixed-Mode Array Image Processor

Luka Milovanov, Agile Software Development in an Academic Environment
Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft
Applications

Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in
Relation to Software and Other Digitally Distributable Media

Dragos Truscan, Model Driven Development of Programmable Architectures
Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch
Sets in Automata Theory

86.

87.

88.
89.
90.

91.

92.
93.

94.

95.
96.
97.
98.
99.

100.

101.

102.
103.

104.
105.
106.
107.
108.

109.
110.

111.

112,
113.

114.
115.

116.
117.

118.
119.

120.
121.
122,
123.
124,
125,

126.
127.

Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

Elena Czeizler, Intricacies of Word Equations

Marcus Alanen, A Metamodeling Framework for Software Engineering

Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods
and Resources

Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated
Synchronous DS-CDMA Systems

Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational
Databases

Dubravka Ili¢, Formal Reasoning about Dependability in Model-Driven
Development

Kim Solin, Abstract Algebra of Program Refinement

Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
Kalle Saari, On the Frequency and Periodicity of Infinite Words

Tomi Karki, Similarity Relations on Words: Relational Codes and Periods
Markus M. Madkeléd, Essays on Software Product Development: A Strategic
Management Viewpoint

Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal
Constellations

Anne-Maria Ernvall-Hyténen, On Short Exponential Sums Involving Fourier
Coefficients of Holomorphic Cusp Forms

Chang Li, Parallelism and Complexity in Gene Assembly

Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data
Mining

Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
Anna Sell, Mobile Digital Calendars in Knowledge Work

Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data
Mining Tasks

Tero Santti, A Co-Processor Approach for Efficient Java Execution in Embedded
Systems

Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
Pontus Bostrom, Formal Design and Verification of Systems Using Domain-
Specific Languages

Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric
and Asymmetric Designs

Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption
Estimation

Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods

Petri Salmela, On Commutation and Conjugacy of Rational Languages and the
Fixed Point Method

Siamak Taati, Conservation Laws in Cellular Automata

Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary
Operations, Parallelism and Computation

Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems

Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic
Vowels

Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
Johanna Tuominen, Formal Power Analysis of Systems-on-Chip

Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip

Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass
Forms

Linda Mannila, Teaching Mathematics and Programming - New Approaches with
Empirical Evaluation

Hanna Suominen, Machine Learning and Clinical Text: Supporting Health
Information Flow

Tuomo Saarni, Segmental Durations of Speech

Johannes Eriksson, Tool-Supported Invariant-Based Programming

128.

129,

130.

131.

132,

133.

134.
135.

136.
137.
138.
139.
140.
141.
142,
143.
144.
145.
146.

147.
148.

149.
150.
151.
152,
153.

154.
155.

156.
157.
158.
159.
160.
161.

162.
163.

164.
165.

166.

Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

Yong Liu, Solving the Puzzle of Mobile Learning Adoption

Stina Ojala, Towards an Integrative Information Society: Studies on Individuality
in Speech and Sign

Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
Ville Junnila, On Identifying and Locating-Dominating Codes

Andrzej Mizera, Methods for Construction and Analysis of Computational Models
in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

Csaba Raduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

Jari Kyngas, Solving Challenging Real-World Scheduling Problems

Arho Suominen, Notes on Emerging Technologies

J6zsef Mezei, A Quantitative View on Fuzzy Numbers

Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of
Development

Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace
Estimation

Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability
and Characterizations

Lasse Bergroth, Kahden merkkijonon pisimméan yhteisen alijonon ongelma ja sen
ratkaiseminen

Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
Tuomas Madkild, Software Development Process Modeling — Developers
Perspective to Contemporary Modeling Techniques

Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile
Service Characteristics and Individual Perception

Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent
Approach

Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems

Fredrik Degerlund, Scheduling of Guarded Command Based Models
Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient
Networked Many-Core Systems

Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip

Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King
Grid

Anton Tarasyuk, Formal Development and Quantitative Verification of
Dependable Systems

Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and
Smart Spaces: Architectures, Tools and Application Development

Tommi J. M. Lehtinen, Numbers and Languages

Peter Sarlin, Mapping Financial Stability

Alexander Wei Yin, On Energy Efficient Computing Platforms

Mikotaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of
Large Software Systems

Maryam Kamali, Reusable Formal Architectures for Networked Systems
Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis - A SOM-
Based Approach

Timo Jolivet, Combinatorics of Pisot Substitutions

Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for
Sustainable Wireless Systems

Khalid Latif, Design Space Exploration for MPSoC Architectures

167.
168.
169.
170.
171.
172,

173.
174.

175.
176.

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.

189.
190.

191.
192,
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

206.

Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
Sonja Leskinen, m-Equine: IS Support for the Horse Industry

Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing
Environment

Moazzam Fareed Niazi, A Model-Based Development and Verification Framework
for Distributed System-on-Chip Architecture

Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,
Equations and Palindromes

Ville Timonen, Scalable Algorithms for Height Field Illumination

Henri Korvela, Virtual Communities - A Virtual Treasure Trove for End-User
Developers

Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and
Well-Being Services

Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
Jari Bjorne, Biomedical Event Extraction with Machine Learning

Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus
Development in the General and Clinical Domains

Ville Salo, Subshifts with Simple Cellular Automata

Johan Ersfolk, Scheduling Dynamic Dataflow Graphs

Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,
Admission Control, and Consolidation

Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to
Improve Web Usability: A Semiotic Framework

Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From
Imputation to Visualization

Natalia Diaz Rodriguez, Semantic and Fuzzy Modelling for Human Behaviour
Recognition in Smart Spaces. A Case Study on Ambient Assisted Living

Mikko Pankdaald, Potential and Challenges of Analog Reconfigurable Computation
in Modern and Future CMOS

Sami Hyrynsalmi, Letters from the War of Ecosystems - An Analysis of
Independent Software Vendors in Mobile Application Marketplaces

Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
Sami Pyéttidla, Optimization and Measuring Techniques for Collect-and-Place
Machines in Printed Circuit Board Industry

Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for
Resource Management in Massively Parallel Architectures

Toni Ernvall, On Distributed Storage Codes

Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems

Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing — Analysis and
Applications

Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market
Segmentation

Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:
Rigorous Design and Efficient Implementation

Espen Suenson, How Computer Programmers Work - Understanding Software
Development in Practise

Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels

Ilkka Térma, Structural and Computational Existence Results for Multidimensional
Subshifts

Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide
Association Studies of Complex Diseases

Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and
Performance

Inna Pereverzeva, Formal Development of Resilient Distributed Systems
Mikhail Barash, Defining Contexts in Context-Free Grammars

Sepinoud Azimi, Computational Models for and from Biology: Simple Gene
Assembly and Reaction Systems

Petter Sandvik, Formal Modelling for Digital Media Distribution

207.

208.
209.

210.
211.
212,
213.
214.
215.

216.
217.
218.

219.
220.

221.

222,
223.

224.

225.

226.

227.
228.

229.
230.
231.
232,
233.

234.
235.

236.
237.

238.
239.
240.
241.

242.
243.

Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

Simon Holmbacka, Energy Aware Software for Many-Core Systems
Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional
Subshifts of Finite Type

Mika Murtojarvi, Efficient Algorithms for Coastal Geographic Problems

Sami Makeld, Cohesion Metrics for Improving Software Quality

Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
Jetro Vesti, Rich Words and Balanced Words

Jarkko Peltomaki, Privileged Words and Sturmian Words

Fahimeh Farahnakian, Energy and Performance Management of Virtual
Machines: Provisioning, Placement and Consolidation

Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets

Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
Stefan Gronroos, Efficient and Low-Cost Software Defined Radio on Commodity
Hardware

Noora Nieminen, Garbling Schemes and Applications

Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
Design Thinking Methods

Johannes Holvitie, Technical Debt in Software Development — Examining
Premises and Overcoming Implementation for Efficient Management

Tewodros Deneke, Proactive Management of Video Transcoding Services
Kashif Javed, Model-Driven Development and Verification of Fault Tolerant
Systems

Pekka Naula, Sparse Predictive Modeling — A Cost-Effective Perspective

Antti Hakkala, On Security and Privacy for Networked Information Society -
Observations and Solutions for Security Engineering and Trust Building in
Advanced Societal Processes

Anne-Maarit Majanoja, Selective Outsourcing in Global IT Services — Operational
Level Challenges and Opportunities

Samuel Ronnqvist, Knowledge-Lean Text Mining

Mohammad-Hashem Hahgbayan, Energy-Efficient and Reliable Computing in
Dark Silicon Era

Charmi Panchal, Qualitative Methods for Modeling Biochemical Systems and
Datasets: The Logicome and the Reaction Systems Approaches

Erkki Kaila, Utilizing Educational Technology in Computer Science and
Programming Courses: Theory and Practice

Fredrik Robertsén, The Lattice Boltzmann Method, a Petaflop and Beyond
Jonne Pohjankukka, Machine Learning Approaches for Natural Resource Data
Paavo Nevalainen, Geometric Data Understanding: Deriving Case-Specific
Features

Michal Szabados, An Algebraic Approach to Nivat's Conjecture

Tuan Nguyen Gia, Design for Energy-Efficient and Reliable Fog-Assisted
Healthcare IoT Systems

Anil Kanduri, Adaptive Knobs for Resource Efficient Computing

Veronika Suni, Computational Methods and Tools for Protein Phosphorylation
Analysis

Behailu Negash, Interoperating Networked Embedded Systems to Compose the
Web of Things

Kalle Rindell, Development of Secure Software: Rationale, Standards and
Practices

Jurka Rahikkala, On Top Management Support for Software Cost Estimation
Markus A. Whiteland, On the k-Abelian Equivalence Relation of Finite Words
Mojgan Kamali, Formal Analysis of Network Routing Protocols

Jesus Carabaiio Bravo, A Compiler Approach to Map Algebra for Raster Spatial
Modeling

TURKU

CENTRE for
COMPUTER

SCIENCE

http://www.
tucs@abo.fi

40

[

W2

S
AT

%o

ISBN 978-952-

tucs.fi

University of Turku
Faculty of Science and Engineering

e Department of Future Technologies

e Department of Mathematics and Statistics
Turku School of Economics

e Institute of Information Systems Science

Abo Akademi University

Faculty of Science and Engineering
e Computer Engineering
e Computer Science

Faculty of Social Sciences, Business and Economics
e Information Systems

12-3853-6

ISSN 1239-1883

Jesus Carabafio Bravo A Compiler Approach to Map Algebra for Raster Spatial Modeling

Jesus Carabafio Bravo A Compiler Approach to Map Algebra for Raster Spatial Modeling

Jesus Carabafio Bravo A Compiler Approach to Map Algebra for Raster Spatial Modeling

	Blank Page
	Blank Page

