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Abstract

In systems biology, we study structures and networks with the goal of achieving
an understanding of the system as a whole. The networks we study are often
biological networks, say cancer networks. When we understand how these sys-
tems evolve over time and what their characteristics are, we can think about
controlling the network to a specific state. Identification of new drugs and treat-
ments is one application of network controllability where, if we can show how
to control the system into a healthy state, we can then develop a drug which
mimics that behavior.

In this thesis, we extend this idea of network controllability. We introduce a
model with the goal of achieving something we call strong controllability. The
idea is that unanimous influences are conserved over long paths which results in
stronger controllability, hence the name. With unanimous influences we mean
that there is no disagreement between the influences, such as receiving both an
activation signal and an inhibition signal. The case of contradictory influences
is handled in a special way in order to ensure that only the unanimous influences
win.

The model we introduce is called strong regulatory graphs. Our model is
defined on the already well-established gene-regulatory networks. We show that
the model is well defined and produces non-trivial state spaces. We apply the
model on a small cancer network and compare the state space to a majority-
voting based Boolean network model.

We also introduce a concept called target attractors that serve as this thesis’s
major contribution towards strong controllability. Since much theory has been
developed for Boolean networks, we also introduce a transformation from our
model into a Boolean network that preserves the transitions and attractors.
Finally, we present some open research problems related to strong controllability
that can be good venues for further research.

In addition to the theoretical part, we also introduce a software tool that we
have developed, which can help with the analysis of the models. The tool can
show, simulate, analyze and control networks. The software is multi-platform
and can be run on any modern computer without the need to install additional
software.
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Chapter 1

Motivation

Biology and computer science might seem like an unlikely pair. Biology is an
experimental science where things are discovered and verified through experi-
ments, whereas computer science, much like mathematics, deals with absolute
truths. Perhaps surprisingly, biology and computer science are today working
together more than ever, as is evident from the relatively new discipline called
bioinformatics. The explosion of biological data has developed a need for new
tools and algorithms to handle that data. Projects such as the Human Genome
Project would certainly not have been completed without the development of
new sequencing algorithms. However, it is not only biology that has benefited
from computer science, the other way around is also true. The field of machine
and deep-learning was originally inspired by how the neurons in the human
brain function.

A field where both computer scientists and biologists cooperate on a large
scale is systems biology. Here we try to understand how biological systems work
by studying them in a systems approach. It is very much a holistic approach to
biology which has traditionally had a more reductionist approach where smaller
parts were studied in-depth in the hope that understanding the smaller parts
would help in understanding the bigger picture as well. In systems biology,
the belief is that the knowledge of the system as a whole is needed before the
individual properties can be understood. Even if the approach is more abstract
the networks and structures that are studied come from reality, for example
from experiments done by biologists. The networks often come in the form
of gene-regulatory networks. In these networks, every gene either activates or
inhibits some other genes. With the help of these networks it is possible to, for
example, make predictions about possible drug treatments for illnesses, or study
the development of cancer in cells [14, 7]. Why is computer science needed in
this field? The reason is that the structures that are studied in systems biology
have given rise to new computational problems that are computationally difficult
and say something interesting about nature and reality itself.

There exist many frameworks of study within systems biology, ranging from
discrete to continuous to a mix of both [26]. Most continuous models, such as
differential equation models, rely on quantitative and qualitative data about the
networks being modeled. This data is often not available [6] and even if it is, the
continuous model presents additional challenges, such as the need for accurate
parameters [20]. When modeling discretely, for example with Boolean networks,
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in which we only work with the values of 1 and 0 indicating if a gene is active
or not, these biochemical values need not be known since they are not taken
into account into the model. What matters more for logical modeling is that we
have access to the topology of the network, that is, the interactions between the
nodes in the network, such as who inhibits who and similar for activation. Such
networks are available from the KEGG PATHWAY [21] database and other
similar databases.

At a first glance, it might seem unreasonable, careless even, to try to model
any kind of reality with such a coarse model as Boolean network or any other
kind of logical modeling. Is reality in itself not a continuous process, especially
when we are talking about biology? As a matter of fact, logical modeling has
been used successfully for many real biological applications. One such example
is the identification of drug targets and treatments [6]. They are not without
faults, however. A common approach for Boolean networks is to use a modeling
technique called majority voting. In majority voting, the gene’s influence which
has the most representative, a majority, determines the state of the gene. This
is not a biologically faithful model. The strengths of the interactions are not
taken into account. For example, it is often the case that inhibition is seen as
the stronger influence even if it has fewer representatives [41]. In many cases the
strengths of the interactions are simply unknown or difficult to measure [39].

In this thesis we take a new approach. We will consider the unanimous
influences on a node as a starting point for our model. With unanimous we
mean influences that are in agreement. Consider for example a node that has
only inhibition influences. This node, we can be sure, will always be inactive as
soon as it receives a signal. Now consider instead a node that has both activation
and inhibition influences. What should we do if both of them are active at the
same time, if we do not know the strengths of the interactions? In our case, we
will consider this to be an ambiguous situation. If a node is not in an ambiguous
state then we can in some sense say that the state is strong, meaning that the
node really should be in that state, otherwise it would have been ambiguous.
We will develop this much more in-depth in the coming chapters.

We will also focus on a concept called network controllability. Network con-
trollability means that we take control over some nodes and try to guide the
system from one state to another. This could, for example, be a system that has
entered an unhealthy state and we would like to guide it to a healthy state. We
will consider network controllability in the form of strong controllability where
we want to guide our systems into specific stable states that have certain prop-
erties that we will describe later. How we can find these stable states will be
the main focus of the thesis.

In Chapter 2, we will start the thesis with a review of some mathematical
concepts that are needed for the thesis. In Chapter 3, we will introduce our own
model that is based on the intuition given above and give a few examples of how
the model behaves in some examples. In Chapter 4, we present an algorithm
for finding interesting stable state based on unanimity between the nodes. Most
of the time will be spent in this chapter, since we need to reason extensively
and introduce new ideas. We also introduce a transformation from our model
into a Boolean network. We also introduce two open problems related to strong
controllability. Finally, we introduce a tool that we have developed for the
purpose of analyzing and working with our models.
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Chapter 2

Mathematical Preliminaries

This chapter is a short introduction to the necessary mathematical structures
and concepts that are used in this thesis. We start with a short overview of
some basic concepts from algorithm analysis and complexity theory. Then we
introduce the notion of Boolean networks, which is a widely used framework for
modeling biological networks. After that we discuss some general issues about
network controllability and how that more specifically applies to discrete logic-
based models such as Boolean networks. We also mention the complexity of
some well-known problems related to Boolean networks and controllability.

2.1 Algorithm analysis
There is a need in computer science to categorize problems into classes so that
it is possible to easily know if a problem is, in some sense, easy or difficult. In
the field of algorithm analysis, we look closer at the performance of algorithms,
often stated with pseudocode. We assume there is some abstract model of com-
putation that can run this pseudocode and all operations take a set amount of
time. Thus, we can ignore differences between different machines and architec-
tures and focus only on what matters, which is the run-time and memory usage
of our algorithms.

A useful tool for analyzing algorithms is the so-called “Big-Oh” notation,
popularized among computer scientists in the 1970’s by Donald Knuth [24]. The
idea is that we can analyze algorithms in a machine-independent way. Constants
and other factors are ignored even though they could have some difference in
a real-life implementation. We only care about the operations that take the
longest amount of time. An algorithm’s running time is often defined as a
function of the size of the input, which will be denoted by n in this section. We
can see that an algorithm that has a running time of n2 will be faster than one
with 2n since already for small n the latter expression grows much faster. We
formalize this idea as follows:
Definition 1. (Upper bound) O(f(n)) is the set of all g(n) such that there
exist constants c ≥ 0 and n0 ≥ 0 with the property that |g(n)| ≤ cf(n), for all
n ≥ n0.

If we say that g(n) = O(f(n)), then we can intuitively think about it as f
being a strict upper bound on g, meaning that when n ≥ n0, f will always grow
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faster than g. There is a similar notion for a function that works as a lower
bound:

Definition 2. (Lower bound) Ω(f(n)) is the set of all g(n) such that there
exist constants c ≥ 0 and n0 ≥ 0 with the property that |g(n)| ≥ cf(n), for all
n ≥ n0.

Similarly to the upper bound we can now think of g(n) = Ω(f(n)) as saying
that g(n) always grows faster than f(n) when n ≥ n0. Combining the definitions
we have a definition for a strict bound:

Definition 3. (Exact bound) θ(f(n)) is the set of all functions g(n) such that
g(n) = Ω(f(n)) and g(n) = O(f(n)).

Here we see that the statement g(n) = θ(f(n)) implies that g(n) grows at
exactly the same rate as f(n).

When doing algorithm analysis we are often interested in the worst-case
running time. We often try to find an upper bound for some algorithm and
state that in the worst case, the algorithm will always have a running time below
some upper bound. It is often easy to find a simple upper bound, yet finding
an exact one can be more challenging. In this thesis, we will deal mostly with
bounds that are quadratic or exponential. Quadratic means that the running
times grow by the square of the input, such as n2 while exponential means that
there is some exponential relationship with the input, such as 2n.

2.2 Computational complexity
The goal of computational complexity theory is to categorize different problems
into classes, where each class represents a different degree of difficulty. The field
is relatively new compared to other fields of science. It began to manifest itself
among researches in the 1970’s due to Karp’s paper [22] where he showed that
21 well-known problems related to graph-theory were in fact NP-complete. A
recent textbook about computational complexity which this section is based on
is [3]. Although there exists many complexity classes, we will only focus on the
two perhaps most famous ones, P and NP. Informally, the difference between
these two classes can be explained by an example.

Consider the problem called the Traveling salesman-problem. The goal of
the salesman is to visit every city on a given map only once and, in addition, he
wants to return to his original starting city. Now, given a list of visited cities
(c1, c2, · · · , cn) it is easy to verify that he indeed visited every city once and
that c1 = cn. However, without this list how should we propose a route for him
to take? There exists an enormously large number of different paths. The total
number of routes are n! in the case of a fully connected graph. The class of NP
can be described as problems where given a solution, it is easy to verify that
solution, but finding a solution is much more difficult. Formally, complexity
classes are often defined in terms of a Turing Machine (TM). The reason is that
the TM is the simplest form of computation that is still equivalent to most other
notions of a computational device.

We first define the class of P in terms of decision problems. A decision
problem is a problem that has a yes or no answer. The problem of determining
whether a number is prime or not is a well-known decision problem.
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Definition 4. (Decision Problem) A decision problem is a set Lf = {x : f(x) =
1}, where f is a Boolean function, giving 0 or 1 as an answer. The problem is:
given an instance x of a problem, decide if f(x) = 1 or equivalently x ∈ Lf .

We look at Boolean functions more closely in the next section in the context
of Boolean networks. Here it is only relevant to know that they give either 0 or
1 as an output.

Definition 5. (Class P) The class of P is the set of all decision problems which
can be decided in polynomial time, that is O(nk), for some k ≥ 0.

Problems that belong to P are usually thought of as problems that can be
solved efficiently. We now move on to the class of NP. In modern literature,
this class is often defined in terms of a verifier, which we also use here. The
intuition behind the verifier was explained in the traveling salesman example
above. That is, given a solution to a problem, we can easily check that the
solution is correct.

Definition 6. (Class NP) The class of NP is the set of all decision problems
which have a verifier that runs in polynomial time. That is, given a solution y
to a problem Lf , the verifier outputs:

1. “Yes” if y is a solution, that is, y ∈ Lf ;

2. “No” if y is not a solution, that is, y /∈ Lf .

Note that the definition does not include any information about actually
obtaining the solution. From the definition we see that P ⊆ NP, since having
an algorithm that produces a solution in polynomial time is essentially our
verifier for problems in P. Problems that are in NP are often thought of as
problems where finding a solution that runs in polynomial time is impossible.
Within NP there is a class of problems known as NP-complete problems. They
are defined as follows:

Definition 7. (NP-completeness) A decision problem X is said to be NP-
complete if

1. X is in NP;

2. Every other problem in NP is reducible to X in polynomial time.

Reducible essentially means that we have some algorithm that can transform
an instance of a problem X, into another instance of a problem Y , in polynomial
time. A common way to show that a specific problem Y is NP-complete is to
reduce another NP-complete problem X to Y . If we can find a polynomial time
solution to any problem that is NP-complete, then we have found a solution
to every problem in NP and this would imply that NP = P. Most researchers
are of the opinion that NP ̸= P [13], however no proof of this exists.

The following famous problem is an example of a NP-complete problem [22].

Problem: 3SAT
Input: A logical formula L that consists of k clauses and where each clause

Ci contains a disjunction of three variables.
Output: “Yes” if there exists a satisfying assignment to the formula. “No”

otherwise.
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Example 2.2.1. The following is an instance of 3SAT:

(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x5 ∨ ¬x6).

The above formula has two clauses, each with three variables. This instance
has a solution. The partial assignment (x1, x4) = (1, 1) satisfies the formula.

Reducing from 3SAT is a common way to prove NP-completeness of some
problems. The reason is that many problems can be naturally encoded as a
binary choice, which corresponds to assigning the value of 1 or 0 to a variable
xi in the formula for a 3SAT instance.

2.3 Boolean networks
This section is a short review of terms needed for working with Boolean net-
works. Boolean networks were introduced in 1969 by Kauffman [23]. A Boolean
network is a graph where each node can be either expressed or not correspond-
ing to the Boolean values of true and false, denoted respectively by 0 and 1. A
more recent text on Boolean networks is [1] and includes the theory on which
this chapter is based.

Each node in the network has an activation function. For Boolean networks
this function is a Boolean function. A Boolean function takes as input Boolean
variables and gives a Boolean output, 0 or 1.

Definition 8. (Boolean function.) A Boolean function with n inputs is a func-
tion f(x1, · · · , xn) : {0, 1}n → {0, 1}.

Using vectors the notation can be simplified. Let x = (x1, · · · , xn) where
each xi is a Boolean variable. Then the Boolean function f(x1, · · · , xn), can be
written as f(x).

All Boolean functions can be constructed by using one or more of the fun-
damental Boolean functions. The fundamental Boolean functions are:

1. The constant function f = 0 and f = 1;

2. The identity function f(x) = x, maps an element to itself;

3. Negation f(x) = ¬x, flips the truth value;

4. Conjunction f(x, y) = x ∧ y;

5. Disjunction f(x, y) = x ∨ y;

6. Implication f(x, y) = x→ y.

Example 2.3.1. Consider the following Boolean function f(x, y, z) = (x∨ (y∧
z)). This function has three Boolean variables x, y, and z. It uses two of the
fundamental Boolean functions. The assignment a1 = (1, 0, 1) gives f(a1) = 1,
while the assignment a2 = (0, 0, 1) gives f(a2) = 0.

We are now able to define a Boolean network formally.



Patric Gustafsson 10

Definition 9. (Boolean Network) A Boolean network (BN), is a graph G,
with a set of nodes V = {x1, x2, · · · , xn}, and a list of Boolean functions F =
(f1, f2, · · · , fn). The list of functions defines the edges. If a node xj appears in
the formula for a node xi, then there is an edge from xj to xi. The edges are
directed, so pairs of edges are ordered, that is (xi, xj) is an edge from xi to xj .
We will denote BNs in this text as G(V, F ), where V is a set of nodes and F is
a list of Boolean functions, one for each node.

We illustrate the definition by showing an example of a BN which we will
use as a running example in this section.

Example 2.3.2. Consider a BN that consists of the following three nodes x1, x2,
and x3, then V = {x1, x2, x3}. To know which nodes have edges between them,
we need to define a Boolean function for each node. Assume they are defined as
follows:

x1(t+ 1) = x1(t) ∨ ¬x3(t)
x2(t+ 1) = x1(t) ∧ x3(t)
x3(t+ 1) = x2(t).

From this equation, we can now state the edges of the BN. Recall from
Definition 9 that there is an edge from node xi to xj, if xj appears in the
formula for xi(t). Following this reasoning, we see that the set of edges is
E = {(x1, x1), (x1, x2), (x2, x3), (x3, x1), (x3, x2)}. The whole BN can be seen in
Figure 2.1.

2.4 Dynamical systems of Boolean networks
By considering how a BN evolves over time we get a discrete dynamical system.
This system only has a finite amount of states, since each Boolean variable can
only take on two values. For a network consisting of n nodes, we have 2n different
states the network can be in. We now go through two well-known updating
schemes called the synchronous and the asynchronous updating scheme [33].

1. Synchronous. This model was introduced in [23]. Its main feature is that
all nodes are updated simultaneously. This is the model that we will focus
on in this thesis, mainly because it has been studied extensively and is
simpler to reason about than the asynchronous model. Even though the
synchronous update rule can be seen as simple from a biological point
of view, it has been used recently to predict oncogenesis, which is how
cells turn into cancer cells [14]. Another use case is for development of
personalized medicine [43].

2. Asynchronous. In the asynchronous model the nodes are updated in a
random order and at different timescales. The way this is usually done is
to have a permutation π, and apply this to the vector (x1, · · · , xn) which
gives (xπ(1), · · ·xπ(n)). A new permutation is generated each timestep and
xπ(i) means that node xi gets updated as the i:th node in that round of
updates. This model was introduced in [37]. The idea of the model is that
there is more choice at each state and it should, therefore, be able to model
more complex interactions. For example, cases where the interactions can
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x1 x2

x3

Figure 2.1: Boolean network with three nodes. Adapted from [40].

be non-deterministic, which is usually the case in biological systems. Since
each state is no longer exactly determined by the previous state, there will
be multiple ways to traverse the state space of the dynamics. Reasoning
about the dynamics becomes more difficult in the asynchronous case, since
updating is no longer completely deterministic.

In this thesis we only use the synchronous updating scheme, however, the
asynchronous one is useful to know about since they are closely related.

2.4.1 Formal definition of synchronous updating
Now we formally define how to reason about the dynamics of a BN.

Definition 10. (Configuration) First denote the number of nodes in a given
BN by m, then a configuration of a BN is a vector:

x ∈ {1, 0}m.

That is, x = (x1, x2, · · · , xm) where xi ∈ {1, 0} for all 1 ≤ i ≤ m. A configura-
tion describes the state of a BN completely at any time t.

At each timestep t the network changes configuration. A transition in the
network from time t to t+ 1 is given by:

x(t+ 1) = f(x(t)).

Here x = (x1, x2, · · · , xm) and f = (f1, f2, · · · , fm), where each fi is a Boolean
function assigned to each node. A transition for a single node x is written
as x(t + 1) = f(x(t)). To visualize how the dynamics of the systems evolve
over time we can use a state-transition table (STT) and a state-transition graph
(STG). In the STT we enumerate all the states the BN can be in. Each row
includes a state: s ∈ {1, 0}m, and the corresponding next state: f(s).

The STG is a graph where each node is one of the states s. There is an
edge between two nodes if both states appear at the same row in the STT. The
number of nodes in the STG and the number of rows in the STT are the same:
2m, since we enumerate each state.

Example 2.4.1. Consider the same network as in Example 2.3.2. In Table
2.1, we have created the STT for the BN. We can see that since the network
consists of three nodes that the total amount of rows in the STT is 23 = 8.
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x1(t) x2(t) x3(t) x1(t+ 1) x2(t+ 1) x3(t+ 1)
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Table 2.1: The state-transition diagram for the BN in Figure 2.1. We can see
that it has 8 = 23 rows. One for each configuration of the network.

2.4.2 Attractors and their basins
Starting from an initial configuration in a BN one of the following two things
are bound to happen: either a fixed point will be reached in which the network
will stay, or it will encounter a previously seen node and stay in a cycle of those
nodes. The fixed points and cycles of states are called attractors of the BN. An
attractor is a set {A1, A2, · · · , An}, where each state follows from the previous
one, except when i = n, then we “wrap around” to the first state. Formally we
can state this as:

Definition 11. (Attractor) An attractor of a BN is a set of states

{A1, A2, · · · , An},

where each Ai for 2 ≤ i ≤ n− 1 can be calculated as:

Ai = f(Ai−1).
The first entry i = 1 is calculated in a special way A1 = f(An). This is so

that we “wrap around” correctly and complete the cycle.

The size of the attractor set is called the period or length of the attractor.
The attractors that have period p = 1 are called singleton attractors, and those
that have period p ≥ 1 are called periodic attractors. Note that singleton at-
tractors are just a special case of the periodic attractors. In this thesis, when
we mention periodic attractors we will always mean those that have p ≥ 2, as
to distinguish them from the singleton attractors.

Another way to define attractors is as cycles in the STG. Each connected
component of the graph contains one attractor. The set of states that eventually
lead to an attractor is called the basin of the attractor. There exist different
interpretations of how these attractors correspond to real biological functions of
the cell. One interpretation [19] is that singleton attractors correspond to cell
differentiation or apoptosis. Cell differentiation means that the cell becomes
more specialized at doing a certain task. Apoptosis is programmed cell death
[10], it is considered a vital part of many normal human processes such as embryo
development, however, it can also be a factor in neurodegenerative diseases as
well as many types of cancers, if an abnormal amount of apoptosis takes place.

A periodic attractor could correspond to different phases of the cell cycle.
During various phases of the cell cycle, similar patterns of gene activity can
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be seen in the cell as in the periodic attractor, thus making this a compelling
interpretation. We now show an example of some attractors.

Example 2.4.2. The attractors of the BN from Example 2.3.2 can be found
by creating the STG. To create the STG, we first have to create the STT. For
each row, we create a new node that corresponds to that state. We then add an
edge between the node for the state at time t and the state at time t+ 1. If the
two states are the same, then we have found a singleton attractor. Using this
method we find that the BN has two singleton attractors: {(1, 1, 1)}, {(1, 0, 0)},
and also a periodic attractor: {(1, 0, 1), (1, 1, 0)}

One observation is that if the basin of attraction is large, then many mu-
tations can occur in the initial state of the cell and it will still end up in the
same stable state at the end. The largest attractor in the network can thus be
seen as the normal function of the cell and considerable mutation is needed in
order to reach any of the other stable states, assuming that they have a much
smaller basin of attraction [19]. Even though it is generally assumed that the
most important cell states manifest themselves as the attractors with the largest
basin, this is not always the case. In [12], they argue that some attractors which
have small basins can be important biologically.

From these arguments, it follows that we would often be interested in know-
ing what kind of attractors there are in our network. The most obvious way
to find them is to enumerate the whole STG. This is only possible for small
networks (n ≤ 20), since the STG grows exponentially, on the order of Ω(2n).
Consider now the problem of determining if a given BN contains a singleton
attractor:

Problem: SingletonAttractor
Input: Given a BN G(V, F ), determine if it has a singleton attractor.

Output: “Yes” if the BN contains a singleton attractor. “No” otherwise.

Proposition 1. SingletonAttractor is NP-complete, if we restrict the inde-
gree of each node to at most k.

Proof. The proof can be found in [1].

The reason we restrict the indegree to some k, is that the problem is not
NP-complete for unrestricted k. In the case of unrestricted k, the problem
becomes NP-hard.

We might also be interested in finding not only singleton attractors, but also
periodic attractors. The problem can be stated formally as:

Problem: PeriodicAttractor
Input: A BN G(V, F ) and a period p.

Output: “Yes” if the BN has a periodic attractor with period p, “No” oth-
erwise.

The complexity of this problem is not known. It is believed to be PSPACE-
complete [1]. In both cases, singleton and periodic, we should not expect any
polynomial time algorithms to be available. Attractor finding is closely related
to the satisfiability problem, due to this, some algorithms try to take advantage
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of that. One such algorithm is based on model checking and SAT-solvers [9]. It
is capable of handling some hundreds of nodes. A drawback of the algorithm is
that it only seems effective for networks that have their indegree restricted to
some k ≤ 2.

2.5 Network controllability
Consider a dynamical system that has entered an unhealthy state. This could,
for example, be a cell or some small system inside the cell. What we would be
interested in, is to guide or control the network away from the unhealthy state
to a healthy one. The control in controllability, refers to the fact that we take
control of some nodes and control their states through different mechanisms.
A common approach is to choose a subset of the nodes, called driver nodes,
formally denoted by D [18].

These driver nodes can be chosen in multiple ways. They can either be nodes
from the original network, then D ⊆ V , or they are extra nodes added to the
network. If the nodes are chosen from the original graph, then they are called
internal nodes, otherwise we call them external nodes [2].

The most general form of controllability states that we should be able to
guide the network from any initial state into any final state. Formally we can
state this as:

Problem: AnyStateControl
Input: A BN G(V, F ), an initial state x0, and a final state xm.

Output: A minimal set of driver nodes, which can steer the BN from the
initial state to the final state in m timesteps.

Proposition 2. AnyStateControl is NP-hard.

Proof. The proof can be found in [18].

However, instead of allowing the final state to be an arbitrary state, it might
be more reasonable to restrict the target state to attractors [17]. As mentioned
earlier, attractors often correspond to biologically significant states. For this
reason, we also focus on controllability to attractors in this thesis. This per-
spective has the other advantage that it is enough to only reach the basin of the
attractor that we are interested in, since by reaching the basin we will eventually
fall into the attractor. This gives us more possible states as control targets while
still reaching the attractor. Another good reason to consider control methods
when the target is an attractor, is due to a recent result regarding controllability
to attractors that was shown in [17]. They showed that if we limit controllability
to only attractor states, then the expected number of driver nodes for a given
BN is O(log2 m+ log2 n), where n is the number of nodes and m is the number
of attractors in the network. This is a significant result, since even with large
networks the expected number of attractors is small for BNs. We now state
two problems that are related to the type of controllability problems we will
consider when introducing our own model.
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Problem: AttractorDependentControl
Input: A BN G(V, F ), an initial state x0, an attractor A.

Output: A minimal set of driver nodes that can drive the network from the
initial state into the attractor.

Problem: AttractorIndependentControl
Input: A BN G(V, F ), an initial state x0.

Output: A minimal set of driver nodes that can drive the network to any
attractor in the network.

In the first problem, we have an initial state and want to go from that state
to the attractor. The second problem is a more general version, where we do
not have a specific attractor as the goal, rather we want to find a set of nodes,
such that, they allow us to control the network into any attractor. For each of
these two problems, it is enough that we simply reach the basin of the target
state. The complexity of these problems, to the author’s best knowledge, is still
unknown. After introducing our own model, in Section 4.1 we will study some
special controllability problems in the context of our model.
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Chapter 3

The SRG Model

In this chapter, we introduce our own model for modeling biological systems.
The model is similar to the logical regulatory graph model defined in [32]. There
a node can have one of m different expression levels. The expression level of
a node is given by a function that is dependent on the incoming edges, called
regulators to the node. In order to differentiate our model from the already
quite well-established regulatory graph model, we will call our model Strong
Regulatory Graphs (SRG). The name symbolizes that we want the nodes of the
network to be in some kind of agreement amongst each other. The agreement
should be strong in the sense that there should be as little ambiguity between
the nodes as possible. One easy example to see where ambiguity could arise is to
consider a node that is being activated and inhibited at the same time. In what
way should the node be updated, if we have no way of knowing the strengths
of the interactions, which is often the case [39]? In our model, we consider this
kind of situation to be a contradiction and, thus, assign a special value to that
node.

In the first part of this chapter, we introduce and define what an SRG consists
of in graph-theoretic terms. The structure of the network is actually the same
as used in other models that make use of regulatory graphs; the difference comes
when we define the dynamics of our model later on. This gives the advantage
that we can use existing regulatory networks for our model without needing to
change them. In the second part, we formally define the dynamics of the SRG
model. We first introduce a definition that is based on our intuition of how
the model should behave, and later show that the definition can be shortened
considerably. The shorter definition is easier to implement and to reason about.

The final two sections are where we show some examples of how the SRG
model behaves, first on an artificial example, and then on a small, but real
cancer network. By real, we mean that the network has been constructed by
looking at experimental data from the real world and that something can be
said about reality by studying it. We compare our SRG model to the majority
voting model that the network was originally studied with.
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x1 x2

x3

1

1

-1

1
-1 -1

Figure 3.1: A labeled-directed graph with three nodes: x1, x2, and x3. Each
edge has been labeled with its corresponding number, where 1 means that the
edge is an activation edge, while -1 means that the edge is an inhibition edge.
The numbers will be omitted from now on, since the shape of the edges already
gives its function.

3.1 Strong regulatory graphs
We begin this section with a formal definition of what an SRG is in terms of
graph theory.
Definition 12. (Strong Regulatory Graphs) An SRG is an edge-labeled graph
[15] SRG(V,E, ψ, F ) where

1. V is a finite set of nodes {x1, x2, · · · , xn}, where n is the number of nodes
in the graph.

2. E is a set of ordered pairs (e1, e2) where each element denotes a node.
Formally, E = {(e1, e2) : (e1, e2) ∈ V × V }.

3. ψ is a function that labels the edges, in this case with either − or +.
Formally, ψ : E → {+,−}. Here + means the edge is an activation edge,
while − means that the edge is an inhibition edge.

4. F is a set of n three-valued functions, each denoted by fi. Each fi is
assigned to a node. Each function is defined in terms of the structure of
the network. Each fi is defined as fi : V → {1,−1, 0}. These values will
be explained more in depth later.

Example 3.1.1. An example of an SRG can be seen in Figure 3.1. The graph
has three nodes: x2, x2, and x3, so V = {x1, x2, x3}. It also has six edges so
E = {(x1, x2), (x1, x3), (x2, x1), (x2, x3), (x3, x1), (x3, x2)}. Three of the edges
have the label +, that is, ψ(x1, x3) = ψ(x2, x3) = ψ(x1, x2) = +. The remaining
three edges have − as a label.

In the text we will omit ψ and F when stating that we have an SRG. Instead
we just write SRG(V,E). The functions in F can be derived from the edges so
for that reason we also omit F .

3.2 Dynamics of the SRG model
As mentioned earlier, the nodes of a BN can be in only one of two states, 0 or 1.
In this section, we expand on this idea and introduce the dynamics of the SRG
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model. In the SRG model, each node can take one of three values from the set
{1,−1, 0}. We also introduce a fixed update rule that apply to every node in
the network. This is slightly different from the BN case where we considered
arbitrary Boolean functions as update rules. The notation we use is the same
as for BNs, that is xi(t) is the state of node i at timestep t, since we have three
values for each xi ∈ {1,−1, 0}. Similarly to BNs, a configuration is now a vector
v ∈ {1,−1, 0}|V |. It can be noted here that the STG when using the SRG model
will have 3|V | nodes.

Each state is now described in depth. The state 1 corresponds to an active
node, then it will try to either make its neighbors active or inactive depending
on the outgoing edges. If the state is -1 then the node is said to be inactive,
essentially having no effect on its neighbors. The state 0 means that the node is
in an ambiguous state. This ambiguity might spread to other nodes under some
circumstances. At this point it is worth elaborating on where the intuition and
idea of this ambiguity comes.

The notion of ambiguity is really a consequence of what we are trying to
achieve with our model. Consider for example a node that has contradicting
influences, meaning that it is both being activated and inhibited at the same
time. Usually we do not have the strengths of the interactions available to us,
we will consider this situation to be ambiguous. The node could be active or
inactive depending on which influence is stronger. For this reason, we introduce
the additional state of ambiguous into our model. Now we can also see that
a node will only be active or inactive if there is no ambiguity with respect to
the node’s influences. Intuitively this should mean that when a node is in a
non-ambiguous state, then it really should be in that state, since otherwise the
node would have been in the ambiguous state.

The update function is defined for each node v in terms of the state of the
adjacent nodes and the state of node v itself. The set of adjacent nodes for
activating as well as inhibiting nodes are denoted as ρ+ and ρ− respectively.
Formally we can define these sets as:

Definition 13. (Adjacent nodes) Consider a node v ∈ V . Then the set of
active nodes ρ+(v), and the set of inhibiting nodes, ρ−(v) are defined as:

ρ+(v) = {u ∈ V : (u, v) ∈ E ∧ ψ(u, v) = +}
ρ−(v) = {u ∈ V : (u, v) ∈ E ∧ ψ(u, v) = −}

Next we illustrate the usage of this definition by an example.

Example 3.2.1. As an example, consider the SRG in Figure 3.1, then the sets
ρ+(v) and ρ−(v) can be seen in Table 3.1.

v ρ+ ρ−

x1 ∅ {x2, x3}
x2 {x1} {x3}
x3 {x1, x2} ∅

Table 3.1: Table showing the adjacent nodes for each node in the SRG in Figure
3.1.
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We will also need access to the state of each node at a given time t. This we
will do by defining a new set that will contain the states of the adjacent nodes.
This can be done as follows:

Definition 14. (Adjacent nodes state) Consider a node v ∈ V . The state of
the adjacent active nodes, ρ+

t (v), and the state of the adjacent inhibiting nodes
ρ−

t (v), is defined as:

ρ+
t (v) = {u(t) : u ∈ ρ+(v)}
ρ−

t (v) = {u(t) : u ∈ ρ−(v)}

Having defined the concept of activating and inhibiting adjacent nodes as
well as how to access their states, we are now ready to formally define the first
version of our update function. As explained earlier, this function is the same
for all nodes in the network. If we compare this with the BN case where each
update function defines the edges of the network, here it is the opposite. The
structure of the network defines what kind of update function each node will
have.

Definition 15. (Network update (1)) Consider an arbitrary node v at time t
in the network, then the next state of the node, that is, v(t+ 1) is

• 1 (active), if

– ρ+
t (v) ∋ 1 ∧ ρ−

t (v) ⊆ {−1} OR
– v(t) = 1 ∧ ρ−

t (v) ⊆ {−1}.

• -1 (inactive), if

– ρ−
t (v) ∋ 1 ∧ ρ+

t (v) ⊆ {−1} OR
– v(t) = −1 ∧ ρ+

t (v) ⊆ {−1}.

• 0 (ambiguous), if

– ρ+
t (v) ∩ {1, 0} ≠ ∅ ∧ ρ−

t (v) ∩ {1, 0} ≠ ∅ OR
– v(t) = 1 ∧ ρ−

t (v) ⊆ {0,−1} ∧ ρ−
t (v) ∋ 0 OR

– v(t) = −1 ∧ ρ+
t (v) ⊆ {0,−1} ∧ ρ+

t (v) ∋ 0 OR
– v(t) = 0 ∧ ρ+

t (v) ⊆ {0,−1} ∧ ρ−
t (v) ⊆ {0,−1}

The intuition for each case is given now. The activation case says that if a
node is being activated, then it should become active, as long as every other
node that is inhibiting it is inactive. The other case is that a node is already
active, and all nodes that say otherwise are inactive, then the node simply
remain active. The inactive case follows exactly the same line of reasoning, but
instead of being activated the node is being inhibited.

The last case is more involved. The first clause represents a contradiction or
disagreement between the nodes. The node is being activated as well as inhib-
ited. This also includes ambiguous nodes as can be seen from the definition. The
second clause says that if a node is currently active and a node that is inhibiting
it is in the ambiguous state, then the node should also become ambiguous. The
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reason is that the node’s state could change, however, since the inhibiting node
is ambiguous, no definite answer about the next possible state can be deduced.
The same situation is mirrored for the inactive case in the third clause.

The final clause says that a node should remain ambiguous, as long as there
is no new information given from the other nodes. This ensures that the network
remains ambiguous until given a clear activation signal.

We could now show an example of how Definition 15 would be used in
practice. The example would be long and not that pedagogic. Instead, we will
now show that there is a more succinct and equivalent way to define the update
functions. We first state the alternative definition, and then we prove that it is
equivalent to our previously introduced definition.

Definition 16. (Network update (2)) Consider an arbitrary node v in the
network at time t. The new state for v, at time t+1, that is v(t+1) is calculated
according to Table 3.2. The table should be read so that the leftmost column
corresponds to the current value of the node at time t. Each rule (column two
and three) is checked and if any of them apply, then the node is given the value
in the rightmost column.

v(t) ρ+
t (v) ρ−

t (v) v(t + 1)
* ⊆ {−1} 1 ∈ ρ−

t (v) -1
-1 ⊆ {−1} ⊆ {−1, 0} -1
* 1 ∈ ρ+

t (v) ⊆ {−1} 1
1 ⊆ {−1, 0} ⊆ {−1} 1

Otherwise 0

Table 3.2: Table of rules defining how updates are done in the network. The
leftmost column corresponds to the value of the node at time t, while the last
column is the new value at time t+ 1.

We now prove that Definition 15 and Definition 16 of the update function
are equivalent. The proof is essentially by construction where we enumerate all
possibilities for the update function and notice that many cases collapse into
more simple statements. The shorter form of the update function is stated in
Definition 16. The proof of Lemma 1 shows that both definitions are equivalent.

Lemma 1. The update function in Definition 15 and Definition 16 are equiva-
lent.

Proof. We now prove Lemma 1. First consider an arbitrary node v in some SRG
with incoming activation and inhibition edges. See Figure 3.2 for a graphical
representation of this situation. Consider the set ρ+

t (v) ⊆ {1,−1, 0}, we can
enumerate all possible combinations of activation edges by considering the power
set of {1,−1, 0}, namely P({1,−1, 0}). The size of this set is |P({1,−1, 0})| =
2|{1,−1,0}| = 23 = 8. The exact same calculation applies for the inhibiting edges.
In total, we have 8 · 8 = 64 different cases.

For each of the 64 different cases, we also need to take into consideration
the value of the node v, since that is used during the update. Now, v can be
in three different states, so for each of the 64 cases we need to take these three
values into account. In total, we have 64 ∗ 3 = 192 different cases to consider.

Next we construct a table of all different cases. For each case we consider
what value the update function would give. Table 3.3 shows the calculations.
The table includes the three additional cases for the values {1,−1, 0} on the
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v

ρ+
t (v) ρ−

t (v)

Figure 3.2: The neighborhood of a node v considered in the proof of Lemma
1. The node v is an arbitrary node in the network, ρ+

t (v) are all its incoming
activation edges, and ρ−

t (v) are all incoming inhibition edges.

same row, that is, even though the table only has 64 rows, all 192 cases are
included.

By grouping together all outcomes from Table 3.3 that gives a certain output,
we can find common factors among the cases. In Table 3.4, we have collected
all rows where v(t + 1) is −1. The last row of each table collects the common
factors into a single case. Now we have a more compressed version of the update
function in the case of −1. A similar table can be made for the cases where
the node becomes active. The end result is two new rules for when a node will
become active.

By combining these four new rules, we get the first four rows of Table 3.2.
All other cases are mapped onto 0, and correspond to the last row of Table 3.2,
meaning that if none of the four rules apply, then v will become ambiguous. We
have now constructed Table 3.2 (Definition 16) and have thus completed the
proof of Lemma 1.

What has taken place is that all the four different cases for the ambiguous
clause in Definition 15 have collapsed into a single statement. This new state-
ment is only true whenever the statements for activation and inhibition are false.
Thus, when updating, we only need to check the conditions for becoming active
or inactive and if neither of those are true, then we say that the node will be
ambiguous in the next configuration. We will now show, by example, how to
construct the set of update functions using Definition 16.

Example 3.2.2. Consider the SRG in Figure 3.1. We are interested in con-
structing the set F of update functions using Definition 16. To accomplish this,
we first need to construct the two sets that contain the adjacent nodes, namely
ρ+ and ρ−. We have already done this earlier in Table 3.1. Now we can directly
use Definition 16 to define each update function fi, for each of the nodes in the
SRG as follows:
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ρ+
t (xi) ρ−

t (xi) v(t) → v(t + 1), ∀v(t) ∈ {1, −1, 0}
∅ ∅ 1 → 1; −1 → −1; 0 → 0
∅ {−1} 1 → 1; −1 → −1; 0 → 0
∅ {0} 1 → 0; −1 → −1; 0 → 0
∅ {1} 1 → −1; −1 → −1; 0 → −1
∅ {−1, 0} 1 → 0; −1 → 0; 0 → 0
∅ {1, −1} 1 → −1; −1 → −1; 0 → −1
∅ {1, 0} 1 → −1; −1 → −1; 0 → −1
∅ {1, −1, 0} 1 → −1; −1 → −1; 0 → −1

{−1} ∅ 1 → 1; −1 → −1; 0 → 0
{−1} {−1} 1 → 1; −1 → −1; 0 → 0
{−1} {0} 1 → 0; −1 → −1; 0 → 0
{−1} {1} 1 → 1; −1 → −1; 0 → −1
{−1} {−1, 0} 1 → 0; −1 → 0; 0 → 0
{−1} {1, −1} 1 → −1; −1 → −1; 0 → −1
{−1} {1, 0} 1 → −1; −1 → −1; 0 → −1
{−1} {1, −1, 0} 1 → −1; −1 → −1; 0 → −1
{0} ∅ 1 → 1; −1 → 0; 0 → 0
{0} {−1} 1 → 1; −1 → 0; 0 → 0
{0} {0} 1 → 0; −1 → 0; 0 → 0
{0} {1} 1 → 0; −1 → 0; 0 → 0
{0} {−1, 0} 1 → 0; −1 → 0; 0 → 0
{0} {1, −1} 1 → 0; −1 → 0; 0 → 0
{0} {1, 0} 1 → 0; −1 → 0; 0 → 0
{0} {1, −1, 0} 1 → 0; −1 → 0; 0 → 0
{1} ∅ 1 → 1; −1 → 1; 0 → 1
{1} {−1} 1 → 1; −1 → 1; 0 → 1
{1} {0} 1 → 0; −1 → 0; 0 → 0
{1} {1} 1 → 0; −1 → 0; 0 → 0
{1} {−1, 0} 1 → 0; −1 → 0; 0 → 0
{1} {1, −1} 1 → 0; −1 → 0; 0 → 0
{1} {1, 0} 1 → 0; −1 → 0; 0 → 0

{−1, 0} ∅ 1 → 1; −1 → 0; 0 → 0
{−1, 0} {−1} 1 → 1; −1 → 0; 0 → 0
{−1, 0} {0} 1 → 0; −1 → 0; 0 → 0
{−1, 0} {1} 1 → 0; −1 → 0; 0 → 0
{−1, 0} {−1, 0} 1 → 0; −1 → 0; 0 → 0
{−1, 0} {1, −1} 1 → 0; −1 → 0; 0 → 0
{−1, 0} {1, 0} 1 → 0; −1 → 0; 0 → 0
{1, −1} ∅ 1 → 1; −1 → 1; 0 → 1
{1, −1} {−1} 1 → 1; −1 → 1; 0 → 1
{1, −1} {0} 1 → 0; −1 → 0; 0 → 0
{1, −1} {1} 1 → 0; −1 → 0; 0 → 0
{1, −1} {−1, 0} 1 → 0; −1 → 0; 0 → 0
{1, −1} {1, −1} 1 → 0; −1 → 0; 0 → 0
{1, −1} {1, 0} 1 → 0; −1 → 0; 0 → 0
{1, −1} {1, −1, 0} 1 → 0; −1 → 0; 0 → 0
{1, 0} ∅ 1 → 1; −1 → 1; 0 → 1
{1, 0} {−1} 1 → 1; −1 → 1; 0 → 1
{1, 0} {0} 1 → 0; −1 → 0; 0 → 0
{1, 0} {1} 1 → 0; −1 → 0; 0 → 0
{1, 0} {−1, 0} 1 → 0; −1 → 0; 0 → 0
{1, 0} {1, −1} 1 → 0; −1 → 0; 0 → 0
{1, 0} {1, 0} 1 → 0; −1 → 0; 0 → 0
{1, 0} {1, −1, 0} 1 → 0; −1 → 0; 0 → 0

{1, −1, 0} ∅ 1 → 1; −1 → 1; 0 → 1
{1, −1, 0} {−1} 1 → 1; −1 → 1; 0 → 1
{1, −1, 0} {0} 1 → 0; −1 → 0; 0 → 0
{1, −1, 0} {1} 1 → 0; −1 → 0; 0 → 0
{1, −1, 0} {−1, 0} 1 → 0; −1 → 0; 0 → 0
{1, −1, 0} {1, −1} 1 → 0; −1 → 0; 0 → 0
{1, −1, 0} {1, 0} 1 → 0; −1 → 0; 0 → 0
{1, −1, 0} {1, −1, 0} 1 → 0; −1 → 0; 0 → 0

Table 3.3: Table of possible updates for a node. The last column shows the next
state, v(t+ 1), depending on the value of the previous state, v(t).
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ρ+
t (v) ρ−

t (v) v(t) → v(t + 1)
∅ {1} ∗ → −1
∅ {1, −1} ∗ → −1
∅ {1, 0} ∗ → −1
∅ {1, −1, 0} ∗ → −1

{−1} {1} ∗ → −1
{−1} {1, −1} ∗ → −1
{−1} {1, 0} ∗ → −1
{−1} {1, −1, 0} ∗ → −1

⊆ {−1} 1 ∈ ρ−(v) ∗ → −1

ρ+
t (v) ρ+

t (v) v(t + 1)
{−1} ∅ ∗ → −1
{−1} {−1} ∗ → −1
{−1} {0} ∗ → −1
{−1} {−1, 0} ∗ → −1

∅ ∅ ∗ → −1
∅ {0} ∗ → −1
∅ {−1} ∗ → −1
∅ {−1, 0} ∗ → −1

⊆ {−1} ⊆ {1, 0} -1

Table 3.4: In these two tables we have collected all possibilities where the node
value at time t+1 is -1. The last row of each table collects the common factors of
all the above rows. Thus collapsing eight different cases into a single statement.
The notation, ∗ → x means that, regardless of the initial value of v(t), v(t+ 1)
will always be x in the next state.

f1(x1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, (x2(t) = −1 ∨ x3(t) = −1)∨

(x1(t) = −1 ∧ x2(t) ⊂ {−1, 0} ∧ x3(t) ⊂ {−1, 0})

1, x1(t) = 1 ∧ (x2(t) = −1 ∧ x3(t) = −1)

0, otherwise

f2(x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1, (x1(t) = −1 ∧ x3(t) = 1)∨
(x2(t) = −1 ∧ x1(t) = −1 ∧ x3(t) ⊂ {−1, 0})

1, (x1(t) = 1 ∧ x3(t) = −1)∨
(x2(t) = 1 ∧ x1(t) ⊂ {−1, 0} ∧ x3(t) = −1)

0, otherwise

f3(x3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1, (x3(t) = −1 ∧ x1(t) = −1 ∧ x2(t) = −1

1, (x1(t) = 1 ∨ x2(t) = −1)∨
(x3(t) = 1 ∧ x1(t) ⊂ {−1, 0} ∧ x2(t) ⊂ {−1, 0})

0, otherwise

Now that we have defined each update function we simply assign them to
the nodes. For each configuration we now have a rule for updating each state.
Even with our shorter definition, this process takes some time to write down by
hand, however, it can easily be implemented on a computer. If a node’s adjacent
nodes, either the active or the inactive ones, is the empty set, then the update
rule becomes shorter, since we can exclude some rules from the definition by
concluding that those rules can never be satisfied.

3.3 Modeling examples
In this section, we work through a small example to demonstrate the topics in-
troduced in this chapter. Our modeling example comes from synthetic biology,
and is called the repressilator [11]. The repressilator was introduced, because
many “simple” biological functions were poorly understood, even though they
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A

B C

(a) The original repressilator
model. Each node inhibits the
next one in the cycle.

A

ˆ︁A

Bˆ︁B C ˆ︁C

(b) Our modified version of the repressilator.

Figure 3.3: On the left is the original repressilator. On the right is our modified
version.

had been extensively researched. With the repressilator, they tried to create
one of these systems, by hand, in the hope that it would lend a better under-
standing of how the real biological counterpart works. The repressilator uses
three repression genes in a cycle, as can be seen in Figure 3.3. In the figure, we
see that we have three nodes A, B, and C, where each node represses the next
one in the cycle. We do not need to consider what genes are actually used in
the real biological repressilator, the only important property is that the genes
repress each other in a cycle.

The model represented in Figure 3.3 is compatible with the SRG model, but
using it directly in the presented way would be incorrect. There is an implicit
assumption in the repressilator, which is that if a node is not being actively
repressed, then it should be active. One idea to make this assumption explicit
can be seen in Figure 3.3. In the figure, we can see that three additional nodes
have been added. The idea of the new nodes is that they should always be in
the opposite state to their counterpart node. We make this idea more clear by
an example.
Example 3.3.1. Assume that the node ˆ︁A is in the state −1, then A should
be active and in the next state ˆ︁B = 1, since A activates that node. Similarly,
B = −1, since A represses that node. The same reasoning can be applied to C.

If our model of the repressilator is correct, then we should see some attrac-
tors that have a period of length greater than one. This is motivated by the
biological function of the repressilator that behaves oscillatory. After simulating
the repressilator, we end up with an STG that has 729 different states. The
whole STG can be seen in Figure 3.4.

If we analyze the repressilator’s attractors, we see that they all have the kind
of oscillatory behavior that we described earlier. The attractor

C ={{1, 1, 1,−1,−1,−1},
{−1,−1,−1, 1, 1, 1}}
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Figure 3.4: The STG for the modified repressilator from Figure 3.3. The attrac-
tors can be seen as cycles in the graph. The red edges do not signify inhibition
rather they just highlight the attractors.
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is perhaps the one where this behavior is the most obvious. This attractor can
also be seen on the very left side of Figure 3.4. In this attractor, we see that
in the first state, all the nodes A,B, and C are activated, then they become
inactive, since they all repress each other. Due to how the network is connected,
we see that the three other nodes in the network, ˆ︁A, ˆ︁B, and ˆ︁C become active.
In the next state, the same behavior occurs, only now the roles of the nodes are
switched. This process will continue indefinitely.

3.4 Comparison to other models
In this section, we compare the SRG model to two already existing models. To
the author’s best knowledge, the concept of unanimous influences has not been
studied before. Still, there are some models that bear similarities to our model,
both Boolean and multi-valued models.

3.4.1 Majority voting
Majority voting bears some resemblance to our model. In majority voting,
a predefined amount of the influences must be in agreement before a change
can take place. This type of modeling is often done with the help of Boolean
Threshold Networks (BTN) [42]. Here, instead of using a different Boolean
function for each node, only one function is used. This function is based on the
structure of the network, and a predefined threshold. The update function is
defined as follows:

xi(t) = f
(︂
σ1

i , · · · , σ
j
i , · · · , σ

k
i

)︂
=

⎧⎪⎨⎪⎩
1,

∑︁ki

j=1 aijσij(t) ≥ θi

0,
∑︁ki

j=1 aijσij(t) ≤ θi

σi(t),
∑︁ki

j=1 aijσij = θi.

Here, θi is called the threshold of the network, and σij is 1 if the edge
between node i and j is an activation edge, and 0 if it is an inhibition edge.
The parameter θi is adjustable. This value is usually set to 0, then only one
activation signal is needed for a node to become active. If there is an equal
number of activations and inhibitions, then the state is unchanged. The term
“majority voting” stems from the fact that the influences which have majority
determine the next state. In some small networks, BTNs can successfully predict
the behavior of real biological systems [42]. BTNs are similar to the SRG model,
in the sense that the update function is defined by the topology of the network.
Still, the BTN model places assumptions on the strengths of the interactions.
As an example, assume that a node has three activators and two inhibitors. In
biochemistry, inhibition is often seen as the stronger “force” [41], and it could
be possible that the node should become inactive instead of active. Our model
does not make any assumption about the strengths of the interactions, instead
we model it as a lack of data, hence the ambiguous state in our update function.

3.4.2 Multi-valued model
Many multi-valued models have also been introduced for modeling biological
networks [38, 8, 4]. The motivation is that the Boolean model is too coarse to
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model reality. One such model was introduced in [37]. The model is defined
as asynchronous, but can be used in the synchronous framework as well. The
network topology that is used is the same as in the SRG model, with activators
and inhibitors. The idea is to use multiple logical levels for each node, up to k
levels. The difference between this model and the SRG model, is that the levels
can only increase and decrease monotonously, that is, decrease or increase by
one value at a time. In this model, some edges can also be inactive or active,
depending on the current state of the node. This model is similar to ours in
the case when k = 3, however, there is no way to model unanimity in the sense
that we are after. This is because in this model, node values are only updated
monotonously, which is incompatible with our definitions.

3.4.3 State-space comparison of a small cancer model
In this section, we look at a specific cancer network and see how the state space
of the majority voting scheme compares to the SRG model. The reason we
focus only on majority voting is first: the network we are comparing against
was originally developed using a majority voting model. Secondly, the multi-
valued model introduced above needs to have a specific multi-valued function
assigned to each node, thus we cannot simply work on the network structure
level if we wish to have a comparison to the multi-valued model as well. For
these two reasons, we focus only on comparing the SRG model to the majority
voting model.

Network

In order to make this comparison somewhat tractable, we have limited ourselves
to a model of modest size. Specifically, we will use a network introduced in [41].
The purpose of the network was to study the impact of the miR-17-92 cluster
on the regulation of the network as a whole. The network itself is linked to the
G1/S transition in the cell cycle. It has been shown that an accurate transition
from the G1 state to the S state in the cell cycle is vital, and misregulation at
this stage is linked to cancer formation of the cell, so-called oncogenesis [5]. In
fact, they showed with the help of a Boolean model that miR-17-92 is critical
in the suppression of the G1/S transition and misregulation of miR-17-92 can
result in an increase of cancer proliferation among cells.

The model used in [41] is a specific case of a majority voting model. To be
more precise, it has the parameter θ set to 0. The network model itself consists
of eight nodes and can be seen in Figure 3.5. The network was deduced from
experimental data. Many of the genes in the network are either oncogenes,
for example: Cdc25A and Cdk, while others are tumor suppressors, such as:
pRb and p25. An oncogene is a gene that might cause cancer, while tumor
suppressors on the other hand work against cancer in different ways: they inhibit
the growth of cancerous cells, stops them from dividing too quickly, repairs
damaged DNA, and etc. [27]

In [41] they found six different attractors, while our model had 60. Due to
the size of the networks, 256 nodes for the Boolean model, and 6561 nodes for
the SRG model, it is difficult to create a meaningful image of the STG to show.
Instead we rank the attractors by size and show them in a table. In Table 3.6,
we can see all attractors found by using a BTN model for the cancer network.
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miR-17-92

E2F

pRb

Cdk2/CyclinE

Cdc25A

Cdk4/CyclinD

p27

Myc

Figure 3.5: The network that we consider in order to make the state-space
comparison. The network has eight nodes where green edges represent activation
and blue or black edges represent inhibition. The purpose of the network is to
model the influence of the miR-17-92 gene on the G1/S transition in the cell
cycle.

Basin size miR-17-92 Myc E2F p27 pRb Cdk4 Cdk2 Cdc25A
184 0 0 0 0 0 0 1 1
48 0 0 0 1 0 0 0 0
16 0 0 0 1 1 0 0 0
6 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0

Table 3.5: The six attractors found by using a majority voting model in a
Boolean framework as shown in [41]. All attractors are singletons. Cdk2 and
Cdk4 have shortened names in the table for typographical reasons.

The 10 attractors with the largest basin found with the SRG model can be seen
in Table 3.6.

We can note some interesting differences between the attractors found by the
SRG model and the BTN model. For example, we can see that the node Cdc25A
is never active in the SRG model. The reason is that if a node has a negative
self-loop, then it can never be active in an attractor. Another difference that
can easily be seen, is that the only node that is active at all, in any attractor, is
Cdk2. This is partly due to the number of negative self-loops that the network
has. However, there are other features of the network that causes this type of
behavior in the SRG model. We will go into more detail on this in the next
chapter, where we show that in the SRG model some nodes cannot have a certain
value in any attractor whatsoever.

At this point, we do not go any deeper into some comparison about the
differences between the BTN and SRG model. We show this example here to
illustrate that the SRG model does produce different results than some already
existing model.
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Basin size miR-17-92 Myc E2F p27 pRb Cdk4 Cdk2 Cdc25A
1472 0 0 0 0 -1 -1 1 0
1152 0 0 0 0 -1 -1 0 0
736 0 0 0 -1 -1 0 1 0
616 0 0 0 -1 -1 -1 0 0
576 0 0 0 0 0 0 0 0
576 0 0 0 0 0 -1 0 0
288 0 0 0 0 -1 0 0 0
272 0 0 0 -1 -1 0 0 0
84 -1 -1 -1 -1 -1 -1 1 0
80 -1 -1 -1 0 -1 -1 0 0

Table 3.6: The top 10 attractors found with the SRG model ranked by their
basin size. All attractors are singletons. Cdk2 and Cdk4 have shortened names
in the table for typographical reasons.
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Chapter 4

Controllability of the Model

In this chapter, we try to answer some questions regarding the controllability of
our model. What we will be after, is some special target attractor that we want
to control the network into. This will be the focus of this chapter.

The first topic we will cover is that of a transformation of a given SRG
network into an equivalent Boolean network. This has the benefit of allowing
us to apply existing tools and algorithms that have already been developed for
BNs. We will show that the transformation can be carried out efficiently. The
transformation we show is not a perfect solution for the problems we present in
this chapter, however, it is nonetheless a good starting point.

In the second section of this chapter, we present a more efficient approach
to finding target attractors, based on inspecting the SRG. We will show that
we can determine, purely based on the SRG, if some special target attractors
can exist. We will be spending most of the time on this topic, since we need to
develop some new theory and definitions to explain the concepts in depth.

In the last section, we introduce some special controllability problems. Here,
we do not present any complete solutions, rather we show that some existing
algorithms and ideas can be applied to these problems. We will show partial
solutions, involving the theory developed in this chapter, as well as some previ-
ously shown results. The issues we present are still open research problems, so
we cannot directly state that any of the given partial solutions are optimal, or
even correct.

4.1 Target attractor detection
In this section, we consider a problem that is related to the controllability prob-
lem. The problem is, given some set of nodes, called target nodes and a target
configuration for those nodes, does the dynamical system of the SRG have an
attractor where this target configuration always holds? An equivalent statement
is: does there exist an attractor, where the target values stay constant? If we
can answer this question, then the next question would be: how do we control
the network to this attractor? It should be noted here that we are considering
a more constrained version of controllability. Instead of controlling the network
to any given state, we are requiring that the target configuration should belong
to an attractor. This is a reasonable requirement, since most states will be
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nonsense states that have no real biological meaning, while attractors usually
represent some core function of the cell [16]. We formulate the question as a
decidability problem, called UnanimousAttractorDetection as follows:

Problem: UnanimousAttractorDetection
Input: A target set T ⊆ V , and a target configuration α = {1,−1}|T |

Output: Is there an attractor C, such that Ci|T = α, for all 1 ≤ i ≤ l,
where l is the period of C?

We will call attractors that satisfy UnanimousAttractorDetection, tar-
get attractors.

The first question we should ask ourselves is: does such attractors even
exist in our model? The case is certainly true for l = 1, since we can choose
α = {−1}|V | and this is always a singleton attractor in our model. The question
is more interesting when l ≥ 2. Having attractors, where some nodes stay
constant for longer periods of time, symbolizes that they have some sort of
“agreement" or unanimity between them. We now show with an example that
there exist attractors with l ≥ 2 and α ̸= {−1}|V |. This shows that the problem
is well defined and that our search is not meaningless.

Example 4.1.1. Consider the graph in Figure 4.1. Assume that we have the
target set V = {x1} and have α = {1}, that is, we want to find an attractor
where the node x1 remains active throughout. The network in Figure 4.1 has
such an attractor. It consists of the following states:

C ={{1, 0,−1,−1, 0,−1,−1}, {1,−1,−1, 0, 0,−1,−1},
{1,−1, 0, 0,−1,−1,−1}, {1, 0, 0,−1,−1,−1,−1}}

It can easily be seen that C is a target attractor, since it satisfies the needed
properties, namely that the target value stays constant through the attractor. If
we denote the states in C by Ci then we have:

C1|{x1} = 1
C2|{x1} = 1
C3|{x1} = 1
C4|{x1} = 1

We can see that the target node, x1, remains constant throughout the attractor,
as it should.

One obvious way to solve UnanimousAttractorDetection is to create the
whole STG and then use a technique such as depth-first search, which is able to
find cycles in graphs. The drawback of this method is that generating the STG
takes exponential time and memory, namely Ω(3n), so something more efficient
is desired. We can achieve a marginal improvement by keeping the nodes in the
target set constant. This makes the number of possible states we need to check
fewer.

Proposition 3. UnanimousAttractorDetection can be solved inO(3n−|α|).
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Figure 4.1: Network that is used as an example to show a constant attractor
with a period greater than one.

Proof. Keep each node in the target set constant when generating the STG.
This reduces the number of possible combinations to 3n−|α|.

Our first try at a more efficient solution, is to reduce the SRG network into
a BN, which we do in the next section.

4.2 Boolean network transformation
In this section, we present an algorithm for transforming any network expressed
in the SRG model into an equivalent Boolean one. Since we are interested in
controllability, we will consider the two networks equivalent, if the attractors of
the two networks have a one-to-one mapping between them. If the attractors
were somehow different, then any results found by this transformation would not
be useful, since we would not be reasoning about the same state space anymore.
The usefulness of this transformation is mostly in the controllability sense; since
there has been some work on controllability in BNs, it would be useful for
us to be able to apply those results to the SRG model as easily as possible.
Transforming a given SRG into a BN is one way to achieve this. Another
benefit that we can mention, is that the transformation will provide us with an
upper bound for many complexity problems. As we know, many attractor and
controllability-related problems are NP-hard in a BN context. This reduction
would thus give an upper bound on UnanimousAttractorDetection, since it
is a special case of PeriodicAttractor which, as mentioned earlier, is believed
to be PSPACE-complete.

To begin this section, we will first give a high-level intuitive explanation
of how the transformation is done, and in what sense the newly created BN
is equivalent to the SRG it was derived from. After that, we will state the
transformation in more formal terms. We finish this section by presenting the
complete transformation algorithm and show that the transformation can be
done in polynomial time.

4.2.1 High-level description
The intuitive idea behind the algorithm is that we only need two bits to encode
our three-value logic with binary states. With two bits, we can represent 22 = 4
different states, thus our three states can be encoded. The next step comes from
inspecting the update function in Definition 16. As can be seen, each update
clause is essentially a logical statement with a binary outcome. The statements
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x1 xk1

z1 zk2

. . .

. . .

(a) Arbitrary node v in an
SRG before the transforma-
tion.

v̂ ṽ

˜︂x1ˆ︂x1 ˆ︃xk1 ˜︃xk1

˜︁z1ˆ︁z1 ˆ︂zk2 ˜︂zk2

. . .

. . .

(b) The same node v, but now after the transfor-
mation. We can see v has now been split into two
nodes v̂ and ṽ. Every other nodes has also been
split into two new nodes.

Figure 4.2: On the left we see a node in the SRG before the transformation. The
picture on the right demonstrates what the node v and its immediate adjacent
nodes will look like in the BN after the transformation.

are also disjunct from each other. Taking advantage of this fact, we will set
one node to be the “active” node v̂, and another to be the “inactive” node ṽ.
The node v̂ will have the update function that corresponds to the state “1”
in the SRG model, similarly we assign to the node ṽ the update function that
corresponds to “-1”. The state “0”, is modeled in the binary case implicitly,
due to the fact that if both v̂’s and ṽ’s update functions evaluate to false, then
that would correspond to the otherwise update clause in Definition 16. Thus,
each time both of the functions evaluate to false, the original node v would be
updated to “0” in the SRG model.

The notion of activating and inhibiting edges is translated implicitly in the
Boolean formula for each new node. This new BN that we create will only use
unlabeled edges that have no special meaning biologically.

In Figure 4.2, we show graphically the idea behind the transformation. We
can see that the node v is split into two new nodes: v̂ and ṽ. Here, v̂ is the
“active” node and ṽ is the “inactive” node. We can also see that all other nodes
have been split into two new nodes. At this point, we have not, yet, defined a
Boolean function for each node, so we should not draw any edges between the
nodes, if we are being strict. This is because in a BN, the edges are defined by the
update functions, and not the other way around as in the SRG model. However,
we jump slightly ahead here and show the edges for illustration purposes. We
will see later that our transformation will create exactly such a function that
gives rise to such edges.

4.2.2 Formalization
Consider a node v in the SRG. In the transformed BN, v will correspond to
two new nodes, v̂ and ṽ. The following encoding scheme is used for the active,
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inactive, and ambiguous states:⎧⎪⎨⎪⎩
(v̂, ṽ) = (1, 0) =⇒ Active
(v̂, ṽ) = (0, 1) =⇒ Inactive
(v̂, ṽ) = (0, 0) =⇒ Ambiguous

(4.1)

In Equation (4.1) we can see the encoding. The idea is that the v̂ node only
has the value 1, when the node is active in the SRG. The same idea applies to
ṽ. Now, if neither of these is 1, then this should correspond to the ambiguous
state as we explained earlier. This is encoded by (0, 0). We can see that (1, 1) is
unused, however, it does not matter since we only have three values to encode.
Assuming that the formulas we present later are correct, we can decode a state
from the transformed BN back into the SRG model by using a decoding function.
We formally define it as follows:

Definition 17. (Decoding Function) The decoding function is a function

π : {1, 0}|2V | → {1,−1, 0}|V |

where |V | is number of nodes in the given SRG under consideration. The
decoding function is defined as:

π(v) = (τ(v1, v2), . . . , τ(v2|V |−1, τ(v2|V |)). (4.2)

Here τ is a function τ : {1, 0} × {1, 0} → {1,−1, 0} and is defined as:

τ(v1, v2) =

⎧⎪⎨⎪⎩
1, (v1, v2) = (1, 0)
−1, (v1, v2) = (0, 1)
0 (v1, v2) = (0, 0)

(4.3)

Using the decoding function, we can easily decode states from the trans-
formed BN back into our SRG model. We make a small note here that the
transformed BN will have 3|2V | states, since we are introducing two new nodes
for each node in the SRG. This means that the state space of the BN will be
larger than our original state space for the SRG, and thus include some states
that have no meaning in the SRG framework. We will ignore these states, since
they would have no meaning in the SRG.

We now introduce the definitions of the Boolean functions that will be used
in the transformed BN. In the update rules in Definition 3.2, we can see that
we need to check the following conditions, one from each column in the table:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ+(v) ⊆ {−1} “All adjacent activation nodes are inactive”
ρ−(v) ⊆ {−1} “All adjacent inhibition nodes are inactive”
1 ∈ ρ+(v) “At least one adjacent activation node is active”
1 ∈ ρ−(v) “At least one adjacent inhibition node is active”
ρ+(v) ⊆ {−1, 0} “All adjacent activation nodes are inactive or ambiguous”
ρ−(v) ⊆ {−1, 0} “All adjacent inhibition nodes are inactive or ambiguous”

(4.4)
In Equation (4.4), we can see that we need to encode quantified statements

with logical formulas. We first consider the simpler case when we only have one
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node, and generalize the concept later. Now, instead of checking if all nodes are
for instance active, we instead consider only one node. The states we want to
formulate according to Equation (4.4) are: a node is active, a node is inactive,
and a node is inactive or ambiguous. The first statement can be written as
follows:

v̂ ∧ ¬ṽ. (4.5)

We can see that the formula in Equation (4.5), is only true if (v̂, ṽ) = (1, 0),
which is exactly how we encode the active node in Equation (4.1). We can now
construct a similar formula for an inactive node:

¬v̂ ∧ ṽ. (4.6)

Equation (4.6) will only be true if: (v̂, ṽ) = (0, 1), which is how we encoded
inactivity earlier. Now only the last statement remains. We want to create a
logical formula for when a node is either inactive or ambiguous. We already
know how to check if a node is inactive from Equation (4.6), so we only need to
combine that with the formula for a node being ambiguous. We combine them
using a disjunction since either of the states can be true:

(¬v̂ ∧ ṽ) ∨ (¬v̂ ∧ ¬ṽ). (4.7)

We see that the first part of the disjunction is Equation (4.6). The right part
¬v̂ ∧¬ṽ, is only true if: (v̂, ṽ) = (0, 0), which is how we encoded the ambiguous
state. Equation (4.7) can be simplified to a more intuitive form:

(¬v̂ ∧ ṽ) ∨ (¬v̂ ∧ ¬ṽ) ≡ (¬v̂ ∧ (ṽ ∨ ¬ṽ)) (De Morgan)
≡ (¬v̂ ∧ T ) (Law of Excluded Middle)
≡ ¬v̂.

The whole formula has collapsed into ¬v̂. This is a natural result, since the
formula now simply says: v is not active, which is equivalent to saying: v is
either inactive or ambiguous, which is what we had before. Now we can state
all the Boolean formulas together at once:⎧⎪⎨⎪⎩

v̂ ∧ ¬ṽ v is active;
¬v̂ ∧ ṽ v is inactive;
¬v̂ v is not active.

We now have the logical formulas we need in order to create Boolean func-
tions that correspond to the statements in Equation (4.4). The equation has six
statements, three for activation and inhibition each. We only cover one of each
sort since they are symmetric to each other. If we first consider the statement
“All adjacent activation nodes are inactive”, that is, ρ+(v) ⊆ {−1}. This state-
ment is quantified over all adjacent nodes, so we might think that we would need
quantifiers in the formula. This is not the case, since the set of adjacent nodes is
finite for each node. Quantified statements are essentially infinite conjunctions,
however since our domain is finite, we can stay within propositional logic for
the formulas. The following formula checks that all adjacent nodes are inactive:
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⋀︂
w∈ρ+(v)

(¬ ˆ︁w ∧ ˜︁w).

What is important to note here, is that v is a node in the SRG, while ˆ︁w and˜︁w are nodes in the transformed BN.
The next statement is: “At least one adjacent activation node is active”. This

means that as soon as we have an active adjacent node, this statement should
be true. A natural choice for this is to have a disjunction over all adjacent
nodes, together with the activation formula from Equation (4.5). We now have
the following: ⋁︂

w∈ρ+(v)

( ˆ︁w ∧ ¬ ˜︁w).

The last of the three statements is: “All active nodes should be either inactive
or ambiguous”, or as we derived earlier: “All active nodes should be non-active”,
which is more of a mouthful in written form, but simpler with logic. The formula
follows the same reasoning as the two earlier cases:⋀︂

w∈ρ+

(¬w).

We now have formulas for the BN that are equivalent to the statements in
Equation (4.4). The only matter that is left is to combine them in such a way, so
that they correspond to Table 3.2. Between each of the columns is a conjunction
and between the two rows there is a disjunction. The rule for inactivity, which
is the first two rows of the table, can be stated as a Boolean function that we
assign to the “inactive” node ṽ:

ṽ(t) =

⎛⎝ ⋀︂
w∈ρ+(v)

(¬ ˆ︁w ∧ ˜︁w)

⎞⎠ ∧
⎛⎝ ⋁︂

u∈ρ−(v)

(û ∧ ¬ū)

⎞⎠∨
⎛⎝ ⋀︂

w∈ρ+(v)

(¬ ˆ︁w ∧ ˜︁w)

⎞⎠ ∧
⎛⎝ ⋁︂

u∈ρ−(v)

¬û

⎞⎠ ∧ (¬v̂ ∧ ṽ).

(4.8)

We can see that Equation (4.8) encodes the rules for a node to become
inactive. For completeness, we will also state the same rule for the active node
v̂.

v̂(t) =

⎛⎝ ⋁︂
u∈ρ+(v)

(û ∧ ¬ũ)

⎞⎠ ∧
⎛⎝ ⋀︂

w∈ρ−(v)

(¬ ˆ︁w ∧ ˜︁w)

⎞⎠∨
⎛⎝ ⋁︂

u∈ρ+(v)

¬û

⎞⎠ ∧
⎛⎝ ⋀︂

w∈ρ−(v)

( ˆ︁w ∧ ¬ ˜︁w)

⎞⎠ ∧ (v̂ ∧ ¬ṽ).

(4.9)

Using eqs. (4.8) and (4.9) we now have a function for each node. Using all
this we can now describe the complete algorithm for doing the transformation
to a BN, or Booleanization as we will call it. We describe it in the next section.
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4.2.3 Algorithm
In this section, we present the complete algorithm for doing the Booleanization.
We also discuss its complexity. See Algorithm 1 for a complete code listing in
pseudocode.

Algorithm 1 Booleanization of an SRG
1: procedure Booleanize(G,GB) ▷ Construct a BN GB from the SRG G
2: V ← G(V )
3: VB ← GB(V )
4: for v ∈ V do
5: VB ← VB ∪ (v̂, ṽ)
6: v̂(t)← Equation (4.9)
7: ṽ(t)← Equation (4.8)
8: end for
9: return GB

10: end procedure

As can be seen from the code, the algorithm constructs a new BN called
GB , which has for every node v ∈ G two new nodes in GB . This implies that
|VB | = 2|V |, meaning that there is twice the number of nodes in GB when
compared to G. The edges are defined on line six and seven by eqs. (4.8)
and (4.9). If we look closer on the formulas, we see that if |ρ+(v)| > 0, then
we need to add two edges to both nodes: v̂ and ṽ. The same applies when
|ρ−(v)| > 0. The final clause in each of the equations also adds a self-loop to
each node and an edge from v̂ to ṽ and vice versa. If we sum over the indegree
of each node in GB , then we will get the total number of edges. Denote the
indegree of a node u ∈ VB , by δ+(u). This quantity can be calculated as:

δ+(u) = 2
(︁
|ρ+(v)|+ |ρ−(v)|

)︁
+ 2,∀u ∈ VB . (4.10)

To get the total number of edges, we sum over the indegree of all the nodes.

|EB | =
∑︂

u∈VB

δ+(u)

We can see that, in general, GB will be a densely connected graph with a
high indegree for each node. As can be seen from Equation (4.10), we see that
δ+(u) ≥ 2, since the node u will always have a self-loop and at least one more
edge from its partner node. We will now discuss the complexity of Algorithm
1. We will prove that it runs in quadratic time with respect to the number of
nodes in the SRG.

Proposition 4. Algorithm 1 has a worst-case running time of O(|V |2).

Proof. We see that the running time is dominated by the loop starting on line
four. Inside the loop, we construct each of the Boolean functions according to
the given equations. To do this, we have to go through each node in ρ+(v)
and ρ−(v). In the worst case, which is if the graph G is fully connected with
respect to both type of edges, the size of these two sets will be |V |, including
self-loops. What this means is that in the worst case we have to, for each node
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v ∈ V , consider every other node in V \ {v}. The following calculation shows
this formally.

O(|V | · (|ρ+(v)|+ |ρ−(v)|) = O(|V | · (|V |+ |V |) |ρ+(v)| = |ρ−(v)| = |V |
= O(2|V |2)
= O(|V |2)

Thus, we have now shown that Algorithm 1 has a worst-case running time
of O(|V |2).

This result shows that the transformation can be done in polynomial time
and is thus efficient. Next, we show an example to illustrate the theory developed
in this chapter thus far.

Example 4.2.1. Consider the graph in Figure 3.1. If we give this graph to
Algorithm 1, it returns the graph that can be seen in Figure 4.4. The functions
constructed by the algorithm will define the edges of the BN. The following
functions were constructed by the algorithm:

ˆ︂x1(t) = ((¬ˆ︂x2 ∧˜︂x2) ∧ (¬ˆ︂x3 ∧˜︂x3)) ∨ ((ˆ︂x2 ∧ ¬˜︂x2) ∧ (ˆ︂x3 ∧ ¬˜︂x3) ∧ (ˆ︂x1 ∧ ¬˜︂x1))˜︂x1(t) = ((ˆ︂x2 ∧ ¬˜︂x2) ∨ (ˆ︂x3 ∧ ¬˜︂x3)) ∨ ((¬ˆ︂x2) ∨ (¬ˆ︂x3) ∧ (¬ˆ︂x1 ∧ ¬˜︂x1))ˆ︂x2(t) = ((ˆ︂x1 ∧ ¬˜︂x1) ∧ (¬ˆ︂x3 ∧˜︂x3)) ∨ ((¬ˆ︂x1) ∧ (ˆ︂x3 ∧ ¬˜︂x3) ∧ (ˆ︂x2 ∧ ¬˜︂x2))˜︂x2(t) = ((¬ˆ︂x1 ∧˜︂x1) ∧ (ˆ︂x3 ∧ ¬˜︂x3)) ∨ ((¬ˆ︂x1 ∧˜︂x1) ∧ (¬ˆ︂x3) ∧ (¬ˆ︂x2 ∧˜︂x2))ˆ︂x3(t) = ((ˆ︂x1 ∧ ¬˜︂x1) ∨ (ˆ︂x2 ∧ ¬˜︂x2)) ∨ ((¬ˆ︂x1 ∨ ¬ˆ︂x2) ∧ (ˆ︂x3 ∧ ¬˜︂x3))˜︂x3(t) = ((¬ˆ︂x1 ∧ ˜︁w) ∧ (¬ˆ︂x2 ∧˜︂x2)) ∨ ((¬ˆ︂x1 ∧˜︂x1) ∧ (¬ˆ︂x2 ∧˜︂x2) ∧ (¬ˆ︂x3 ∧˜︂x3))

As we can see from the equation above, every node is connected to every other
node.

As the last topic that we cover in this section, we will show an example that
demonstrates how the equivalence between the attractors in the SRG model and
the transformed BN model works in practice. Remember, that the equivalence
is not only in the attractors, but also on the transitions between the states.

Example 4.2.2. The SRG in Figure 3.1 has the attractor that can be seen in
Figure 4.3 along with its basin. The BN constructed in Example 4.2.1, has the
“same” attractor and basin, which can be seen on the right in Figure 4.3. The
states from the BN’s STG can be decoded by using the decoding function we
defined earlier. The states would be decoded as follows:

π((0, 0, 0, 1, 1, 0)) = (τ(0, 0), τ(0, 1), τ(1, 0)) = (0,−1, 1)
π((0, 1, 0, 0, 1, 0)) = (τ(0, 1), τ(0, 0), τ(1, 0)) = (−1, 0, 1)
π((0, 1, 0, 1, 0, 0)) = (τ(0, 1), τ(0, 1), τ(0, 0)) = (−1,−1, 0)

We can see that the decoded attractor is the same as the one in the SRG.
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0,−1, 1

−1, 0, 1

−1,−1, 0

(a) Attractor and its
basin in the SRG.

0, 0, 0, 1, 1, 0

0, 1, 0, 0, 1, 0

0, 1, 0, 1, 0, 0

(b) Attractor and its basin in the
transformed BN.

Figure 4.3: Figure showing the two different paths in the STG from the SRG
in Figure 3.1, and the BN created from the SRG in Example 4.2.1. On the left,
is the SRG’s STG, and on the right is the BN’s STG.

˜︂x1 ˆ︂x1

˜︂x2

ˆ︂x2

˜︂x3

ˆ︂x3

Figure 4.4: The new BN GB constructed from the SRG G in Figure 3.1.

The transformation that we have presented in this section, while certainly
useful, is of more theoretical interest than practical. The blowup of the number
of edges in the transformed BN is likely an obstacle for many current algorithms
that work with controllability problems on BNs. It can still be used for a modest
number of nodes, and if any efficient algorithms for controllability problems for
BNs are invented, they can be applied directly to our SRG model with the help
of this Booleanization algorithm.

4.3 Conditions for existence of target attractors
The BN transformation from the previous section turned out to be a suboptimal
solution for finding target attractors. In this section, we will go through a more
efficient approach that is based entirely on the SRG model.

We will derive necessary and sufficient conditions for when a target attrac-
tor can exist, with specific target values, in the SRG. We will give a proof that
states if the graph is built in a certain way, then there cannot exist a target at-
tractor with some given target values α. We will show that if one such attractor
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can exist, then there may be multiple such attractors. We will show that the
conditions are necessary and sufficient for finding singleton target attractors.
We also show that the conditions are necessary, but not in general sufficient for
periodic target attractors to exist. When we say target attractor in this section,
we mainly mean singleton target attractors, unless otherwise stated.

The proof will also give the necessary values for such an attractor, allowing
us to construct one of them. We start by stating our goal for this section:

Theorem 1. UnanimousAttractorDetection ∈ P.

We first consider a more constrained version of UnanimousAttractorDe-
tection, where we only have one target node, and the target is that the node
should be active in the attractor. We start with this concept and then move on
to the inactive case. Finally, we show how to combine them and the end result
is an algorithm that solves UnanimousAttractorDetection.

4.3.1 Attractor with active target value
As mentioned, we start with a more constrained version of our problem. Here,
we only consider one node that should be active in the attractor. This problem
can be formally formulated as:

Problem: UnanimousAttractorSingle
Input: An SRG(V,E), a target value α = 1, and a target node v.

Output: “Yes” if there exists a target attractor A with v = 1. “No” other-
wise.

We will show that this problem can be decided by inspecting the graph. We
first note that, if a node is to remain active in a target attractor, then all nodes
in ρ−(v) must be inactive, otherwise v would become inactive in the next state.
This, in turn, gives a condition for the adjacent activation nodes for ρ−(v), they
must also be inactive, and their activation nodes must also be inactive. We
have now found a pattern, each node that we enumerate in this way must stay
inactive. We can safely ignore all incoming activation edges, since they have no
impact on whether v stays active or not.

We will now introduce some notation, which will help us formalize the idea
above.

Definition 18. (Positive path) A positive path, is a directed path in the SRG
that only follows edges labeled with a +.

Definition 19. (Negative path) A negative path, is a directed path in the SRG
that only follows edges labeled with a −.

With these two definitions, we can now define the concept of inactive ances-
tors. Intuitively, an inactive ancestor is a node that must remain inactive for
v to remain active. The set of inactive ancestors is then all nodes that must
remain inactive for v to stay active. Formally, we can define the set with the
help of positive paths and we will call the set: Inactive ancestors for activity.

Definition 20. (Inactive ancestors for activity) The set of inactive ancestors
for activity for a node v is defined as:

λ−(v) = ρ−(v) ∪ {u : there is a positive path from u to w where w ∈ ρ−(v)}
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v = 1

u1 u2 uk

w1 w2 wl

z1 z2 zm

. . .

. . .

...
...

...

λ−(v)

Figure 4.5: Illustration of a node with its inactive ancestors for activity, λ−(v).
The first layer of the graph is just v’s inhibitors. The second layer is all nodes
that have a positive path of length one to any of the inhibitors. The k:th layer
is all nodes that have a positive path of length k to any inhibition node of v.
Here, we show the most general version of the figure, which is when every node
is connected to every node that has a positive path of k − 1. In general only
one such path is needed.
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The set of inactive ancestors can be seen graphically in Figure 4.5. In the
figure, we have put the nodes in layers depending on the length of the positive
path from each node. In general, there can be more than one such path and if
that is the case, then we say that the positive path is simply the shortest path,
taken from the set of all positive paths.

We can now state our first condition for v to remain active. In all the
proposition and proofs we will assume that v is active, unless otherwise stated.

Proposition 5. Given an SRG(V,E) and a target value of α = 1 for some node
v ∈ V , all nodes belonging to λ−(v) must be inactive for there to be a target
attractor with v = 1.

Proof. Assume that a node u ∈ λ−(v) is not inactive. If u ∈ ρ−(v), then v will
become non-active in the next state and no target attractor with v = 1 can
exist. If u /∈ ρ−(v), then there must be a positive path from u leading to a node
w ∈ ρ−(v). Assume the length of this path is k, then w will become either 0 or
1 in k timesteps and in turn make v non-active in the k + 1:th state. We have
now shown that if any node in λ−(v) is active, then no target attractor with
v = 1 can exist.

We are now ready to consider the case when v has outgoing edges. We
already know that the only nodes which are important for v to stay active is
exactly the set λ−(v). Thus, only edges that go into that set will have any impact
on v’s dynamics. It can easily be seen that an inhibition edge into the set of
inactive ancestors will make no difference since, by assumption, all those nodes
must be inactive anyway. This leaves the activation edge. The relationship
between the activation edge and the inactive ancestors is the following:

Proposition 6. If the target node v with α = 1, has at least one activation
edge to any node in λ−(v), then no target attractor is possible with v = 1.

Proof. Assume there is one such edge e = (v, w), where w ∈ λ−(v), then in the
next state w will become active. By Proposition 5 there can, therefore, exist
no target attractor with v = 1, since not all nodes in λ−(v) are inactive. This
completes the proof.

What we have now proved is that for a target attractor to exist for a node v
with a target value of α = 1, all nodes in λ−(v) must be inactive and, further-
more, there can be no activation edge from v to any node in λ−(v). It turns
out that this generalizes to k nodes. That is, if we have k nodes, and we ask:
is there an attractor where all k nodes are active? It can be solved in the same
way as for only one node, but with an extra special case. The problem we are
now interested in solving is the following:

Problem: UnanimousAttractorMultiple
Input: An SRG(V,E), a set of target nodes V and target values α =

{1}|V |.
Output: “Yes” if there exists a target attractor A with v = 1, ∀v ∈ V .

“No” otherwise.

Proposition 6 gives the condition for one node. We can extend it to k nodes,
by realizing that as soon as any node v has an activation edge into any other
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node’s u ̸= v inactive ancestors, then there cannot exist any target attractors.
The reason is that this edge would violate Proposition 6, since v would be active,
and not inactive as required by the proposition. We can state this fact in many
equivalent ways but one is the following:

Proposition 7. For there to exist a target attractor A, for a set of nodes V with
α = {1}|V | no node can belong to any of the other node’s inactive ancestors.

Proof. Assume that some node v ∈ V belongs to some other node u’s inactive
ancestors. By Proposition 5, no target attractor with the requested target values
can then exist. This completes the proof.

We have now covered the case for how to find a target attractor, when the
given target values are that all target nodes should be active. We now move on
to the case when the target is instead that the node should be inactive.

4.3.2 Attractor with inactive target value
We begin this section by considering, as before, the easier case when the target
set V only consists of one node. The difference now is that we want the node
to be inactive in the attractor, that is α = −1. We define a similar problem as
we defined earlier when we considered active target values:

Problem: UnanimousAttractorSingleInactive
Input: An SRG(V,E), a target value α = −1, and a target node v.

Output: “Yes” if there exists a target attractor A with v = −1. “No”
otherwise.

The thing to note with inactivity in the SRG model is that as soon as a
node becomes inactive, its edges no longer have any impact on the nodes it is
connected to. Thus, we can ignore the outgoing edges from our target node.

We start by defining the inactive ancestors for inactivity. An inactive node
can only become active if some other node activates it. For this reason, the
set of inactive ancestors for inactivity is the set of nodes that have a positive
path to the target node. The inhibiting nodes will have no impact on the target
node. Formally, we define the set of inactive ancestors for inactivity as follows:

Definition 21. (Inactive ancestors for inactivity) The set of inactive ancestor
for inactivity is defined as:

λ+(v) = {u : such that there is a positive path from u to v}

Depending on the target value for a node, we now have two different sets of
inactive ancestors. For this reason, we introduce the notation: λ(v), to mean
the inactive ancestors of v. Which set this refers to should be clear from the
context. Formally, we define λ(v) as:

Definition 22. (Inactive ancestors) The set of inactive ancestors, for v, given
some target value α ∈ {1,−1}, is denoted by λ(v) and is defined as:

λ(v) =
{︄
λ−(v) if α = 1
λ+(v) if α = −1.
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In the rest of this section, we will write λ(v) to mean the set of inactive
ancestors.

The following fact follows immediately by inspecting the graph and due to
similar reasoning as for node activity in the previous section:

Proposition 8. For a target attractor A to exist with a target value α = −1,
for some given node v, it is enough that all nodes in the set λ(v) are inactive.

In fact, such an attractor will always exist. Consider the configuration v =
{−1}|V |, that is, setting every node in the network to be inactive. By definition
of our update function, all nodes will remain inactive if they do not have a clear
activation signal. Proposition 8 actually gives something more powerful than
simply stating that all nodes must be inactive. It says that it is enough if only
the nodes belonging to the inactive ancestors are inactive. This allows for more
freedom, since we are still free to choose the values for the remaining nodes. We
will now prove this.

Proof. Consider a node u that is not in the set of inactive ancestors for v. This
node will either only have an inhibition edge to v, or it will reside in some other
strongly connected component. Either way, it will not have any effect on v once
v has become inactive. For this reason, we can ignore all such nodes u.

Consider now instead a node w, which is in the set of inactive ancestors.
Assume further that this node is not inactive. This non-inactive state will
propagate through the positive path and activate v in k timesteps, where k is
the length of the shortest positive path from w to v. Thus, we see that if any
such node w, is non-inactive, then v will become active. For this reason, all
such nodes w must be inactive.

We now move on to the case where we have multiple target nodes that we
want to have as inactive. In fact, we can very easily extend Proposition 8 to
multiple nodes in the following way: we simply require that, for each node v
in the target set, all nodes belonging to each node’s inactive ancestors must be
inactive. We do not have to consider outgoing edges, since all the nodes are
inactive and the outgoing edges are now, in some sense, unused. We have now
proved the following fact:

Proposition 9. For a target attractor A, given a target set of nodes V , with
target values a = {−1}|V |, it is enough to set all nodes in

⋃︁
v∈V λ

+(v) to
inactive.

Now all that is left is to combine both of the cases for activity and inactivity
and show that we can determine if a target attractor exists when we are given
a combination of target values.

4.3.3 Combining the cases
In this section, we want to combine the theory we developed in the previous two
sections, in order to find conditions that can solve UnanimousAttractorDe-
tection. When combining the cases, we will be back to the original problem
that we started with, namely UnanimousAttractorDetection.

It turns out there are some additional cases we need to consider when we
have a combination of target values. The first observation is that Proposition 7
must hold for all nodes that have a target value of α = 1.
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The second observation is that no node with a target value of α = 1 can be
in the inactive ancestors for a node that has an inactive target value. The reason
is that this would contradict Proposition 9, since it requires that all nodes are
inactive. When we are looking for a target attractor that has a combination of
active and inactive values, we will consider this as an extra case. The following
theorem combines all that we have discussed thus far.

Theorem 2. For a target attractor to exist, where the target nodes V have the
following target values α = {1,−1}|V |, the following two conditions must hold:

1. For all nodes v ∈ V with a target value of α = 1, Proposition 6 and
Proposition 7 must hold.

2. For all nodes v ∈ V with a target value of α = −1. Proposition 9 must
hold and no node u with an active target value can be in the inactive
ancestors of v.

From this theorem, we can see that this also gives a condition for the exis-
tence of target periodic attractors. The reason is, if there cannot be a singleton
target attractor with the given target values, then there certainly cannot be
a periodic attractor that has those values. Thus, we arrive at the following
corollary:

Corollary 1. For a periodic target attractor to exist, where the target nodes
V have the following target values α = {1,−1}|V |, the conditions in Theorem
2 must hold.

In fact, we have now shown that the original problem we set out to solve
can be solved by applying the conditions stated in Theorem 2. What we have
still not yet shown, is that the solution is efficient. We will now give algorithms
that put the theory into practice, and then give a short analysis stating that
the algorithms run in polynomial time.

4.3.4 Algorithms
The most important set that we should be able to compute is the set of inactive
ancestors, that is λ+(v) and λ−(v). One way to do it, is by starting from our
target node v, then compute in a breadth-first search (BFS) [36] like manner, the
inactive ancestors. Here, we consider the incoming edges, instead of outgoing
edges. We have a set U , where we keep track of all the nodes we have seen
so far. We also have a queue, where we put new unexplored nodes. When we
encounter a node that we have not seen, we put it into U , as well as the queue.
We continue exploring with nodes from the queue until it is empty. Algorithm
2, formalizes this idea.

Algorithm 2 is a special case of BFS, thus we can immediately conclude that
the worst case running time is O(|V |+ |E|), where V is the number of nodes in
the network, and E is the number of edges. We have now established that:

Lemma 2. The set of inactive ancestors λ+ and λ− can be constructed in
O(|V |+ |E|) time.
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Algorithm 2 Algorithm for constructing the set of inactive ancestors. The
parameter v is the target node and α is the target value.

1: procedure InactiveAncestors(v, α)
2: Let S be a queue
3: if α = 1 then
4: U ← ρ−(v)
5: else
6: U ← ∅
7: end if
8: S.enqueue(v)
9: while S is not empty do

10: u← S.dequeue()
11: for w ∈ ρ+(u) do
12: if w /∈ U then
13: U ← U ∪ {w}
14: S.enqueue(w)
15: end if
16: end for
17: end while
18: return U
19: end procedure

To conclude, we will show an algorithm for solving UnanimousAttrac-
torDetection. Algorithm 3 makes use of Theorem 2 to decide whether the
requested target attractor can exist. The algorithm returns either T or F , rep-
resenting the truth values true and false respectively. True indicates that a
target attractor exists, while false indicates that no such target attractor exists
at all. We can see that each condition that we derived for target attractors is
checked in the algorithm.

The running time of the algorithm is dominated by the time it takes to
construct the set of inactive ancestors. The loop starting on line four, can in
the worst case run in O(|T |(|V |+ |E|)) time. This is because the time it takes
to construct the inactive ancestors is O(|V |+ |E|), in the worst case. The other
loops only work with smaller subsets of V and T , so for that reason they do
not have any impact on the worst-case running time. We have now shown the
following result:

Proposition 10. Algorithm 3 has a worst case running time ofO(|T |(|V |+|E|))
and solves UnanimousAttractorDetection in polynomial time.

Using Proposition 10, we can prove Theorem 1, which we set as our goal for
this section.

Theorem 1. UnanimousAttractorDetection ∈ P.

Proof. Proposition 10 shows that Algorithm 3 runs in polynomial time and
solves UnanimousAttractorDetection.

It is important to note that UnanimousAttractorDetection can be solved
in polynomial time, only because the dynamics of the SRG model have certain
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Algorithm 3 Algorithm that solves the UnanimousAttractorDetection
problem. The parameters are the target set of nodes V and the target val-
ues α.

1: procedure UnanimousAttractor(T , α)
2: T ′ ← {ui : αi = 1}
3: T ′′ ← {ui : αi = −1}
4: for 0 ≤ i ≤ |T | do
5: λ(vi)← InactiveAncestors(vi, αi)
6: end for
7: for v ∈ T ′ do ▷ Proposition 6
8: if There is an activation edge (v, u), where u ∈ λ(v) then
9: return F

10: end if
11: end for
12: for v ∈ T ′ do ▷ Proposition 7
13: for u ∈ T ′ \ {v} do
14: if v ∈ λ(u) then
15: return F
16: end if
17: end for
18: end for
19: for v ∈ T ′′ do ▷ Inactivity requirement from Theorem 2
20: for u ∈ T ′ do
21: if u ∈ λ(v) then
22: return F
23: end if
24: end for
25: end for
26: return T
27: end procedure
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properties. If we would try and solve UnanimousAttractorDetection in a
BN context, then the result would most likely not hold. This is because, in a
BN, any Boolean function can be assigned to a given node, so it is not possible
to reason about the network structure and inactive ancestors, in the way we
have done here for the SRG model.

We now present an example illustrating the theory we have developed in this
chapter.

Example 4.3.1. Consider the SRG in Figure 3.5. Assume we are interested in
finding out if there exists an attractor where the nodes V = {E2F,Cdk2} have
the following target values α = {1,−1}. We first compute the set of inactive
ancestor for each of the nodes. The result is as follows:

λ−(E2F ) = {Myc,E2F,Cdc25A,Cdk2}
λ+(Cdk2) = {E2F,Myc, Cdc25A}

Now we are ready to use Algorithm 3 to check all the conditions. The output
is F , since the node E2F has an edge into its set of inactive ancestors. In fact,
there are multiple conditions that are not fulfilled for this target attractor. One
is that E2F is in the set of inactive ancestors for Cdk2, which is not allowed.

In this section, we have derived an algorithm for solving UnanimousAt-
tractorDetection in polynomial time. It is important to note that the algo-
rithm does not give as an output any attractor, it only decides if one can exist.
In fact, there can be multiple such target attractors. In some sense, we do not
really care about which of those target attractors we have found, as long as the
target values hold. Thus, we would be interested in constructing at least one of
the attractors. This is what we focus on in the next section.

4.3.5 Constructing a target attractor
In this section, we build on the theory of the previous section and show an
algorithm that constructs one of the target attractors, given that one exists.
The idea behind the algorithm is that the conditions for the target attractor give
some nodes their necessary values. This makes generating one of the attractors
easier, since we already have values for a subset of the nodes. The target
nodes need to be given their target values. Apart from the target nodes, and
their inactive ancestors, there will be a set of nodes that have no impact on
the dynamics of the target nodes. One possible solution is to simply initialize
those nodes to some random values, then we simply simulate starting from that
configuration until we reach an attractor. The set of nodes that have no impact
on the target nodes, called non-impacting nodes is defined as:

Definition 23. (Non-impacting nodes) The set of non-impacting nodes, de-
noted by ζ(T ), are nodes that have no impact on the target nodes, meaning
that there is no restriction on their values. They are all the nodes that are nei-
ther target nodes nor inactive ancestors. With this reasoning, we can construct
the set of non-impacting nodes as follows:

ζ(T ) = V \

(︄
T ∪

[︄⋃︂
u∈T

(λ(u))
]︄)︄
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We are now ready to present the algorithm for constructing a target attrac-
tor.

Algorithm 4 Algorithm that constructs a target attractor. Assume the sets of
inactive ancestors λ(v) have already been constructed. The parameters are the
SRG G(V, F ), the target nodes T , and the target vector α.

1: procedure ConstructUnanimousAttractor(G(V, F ), T,α)
2: t← 0
3: for v ∈ |T | do v(t)← αi

4: for u ∈ λ(v) do
5: u(t)← −1
6: end for
7: end for
8: U ← ζ(T ) ▷ Nodes not impacting nodes in T .
9: for w ∈ U do

10: w(t)← Random value from {1,−1, 0}
11: end for
12: GST G(V ′, E′) = ∅
13: while GST G is acyclic do
14: x(t+ 1)← F (x(t))
15: t← t+ 1
16: E′ ← E′ ∪ (x(t),x(t+ 1))
17: end while
18: return GST G

19: end procedure

Algorithm 4 constructs one target attractor, which attractor is actually con-
structed is due to random chance. The running time is dominated by the time
it takes to construct the STG. This running time will depend on the time it
takes before the simulation reaches the attractor. This time is called the tran-
sient period of the system. At least for small networks, this period seems to be
relatively short.

We finish this section, with an example of how to use Algorithm 4 to con-
struct a target attractor.

Example 4.3.2. Suppose that we are interested in finding a target attractor for
the SRG in Figure 3.5, where our target set is T = {pRb, p27}, and the target
values are: α = {1, 1}. We first need the set of inactive ancestors for both of
the nodes:

λ(pRb) = {Cdk2, E2F,Myc, Cdc25A,Cdk4}
λ(p27) = {Cdk2, E2F,Myc, Cdc25A}.

From this, we find the required values for all nodes but one. The nodes in
λ(v) ∪ λ(v) must all be inactive, while miR-17-92 can have any value. Assume
we let it be active.

Now we have a starting configuration x0 = (1,−1, 1,−1, 1,−1,−1,−1). This
configuration should be read in clockwise order from Figure 3.5, starting from
p27. After simulating from the state x0, we have the following STG:
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(1,−1, 1,−1, 1,−1,−1,−1)→ (1,−1,−1,−1, 1,−1,−1,−1) ⟲

The arrow at the ends means that we stay in the same state. Now we have
found one target attractor that we were after. We can note here that letting miR-
17-92 have a different initial value, would have resulted in the same attractor.

4.4 Controllability to target attractors
In this section, we will investigate a few controllability problems, in the context
of the SRG model. We reason about the problems in the context of strong con-
trollability. When we mention strong controllability we are proposing a special
kind of controllability. The word strong comes from the fact that we want the
values of the nodes in the SRG to be unanimous, meaning as little ambiguity
among the nodes as possible, which was the original idea behind the definitions
of our model. We state two problems, which we think are of importance, but
leave their solutions as open research problems. We give some possible solu-
tions, but do not claim that they are optimal. The first problem we want to
consider is the following:

Problem: AnyStateAttractorControl
Input: An SRG(V,E) and a target attractor A.

Output: A minimal set of driver nodes that allows the network to be con-
trolled into the attractor from any state x in one control.

The target attractor should be one that has the properties we presented in
Section 4.1. Control is applied only at t = 1, this is perhaps the most reason-
able assumption, since control at more time instances is biologically difficult to
achieve [17]. Formally, we define the concept of control as:

Definition 24. (Control) Given a set of driver nodes di ∈ D and an assignment
µ : D → {1,−1}, a control of a state x = (x1, · · · , xk) is defined as:

µ ◦ x = (u1, u2, · · · , uk), (4.11)

where ui is the application of the control values, namely:

ui =
{︄
xi if di /∈ D
µi if di ∈ D.

(4.12)

Here, each µi can be any of the values {1,−1} that can achieve the required
control.

We will now discuss a possible solution to AnyStateAttractorControl.
This problem can at least be partially solved, by using a concept from graph
theory called the feedback vertex set (FVS). The FVS is defined as a set of
nodes, whose removal from a graph, makes the graph acyclic. The problem of
finding such a set can be stated as follows:
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Problem: FVS-Problem
Input: A directed graph G(V,E).

Output: A set of nodes V ′ ⊆ V , such that removal of the nodes V ′ from G
makes G acyclic.

Acyclic means that the graph contains no cycle. In [29], they showed that
the FVS can be used as driver nodes in a BN if the target states are restricted
to attractors. In general, we are interested in finding the minimal number of
driver nodes. For this reason, we modify the definition of the problem above as:

Problem: Minimal FVS
Input: A directed graph G(V,E).

Output: A minimal set of nodes V ′ ⊆ V , such that removal of the nodes
V ′ from G makes G acyclic.

The inclusion of minimality is important since otherwise, we could choose
V ′ = V , which would work, but hardly be of any use. It is known that the prob-
lem of finding a minimal FVS is NP-complete [22]. We now show an example
of how we can use the FVS to locate a driver set that solves AnyStateAttrac-
torControl. It is currently unknown if this approach works in general on any
SRG.

Example 4.4.1. Consider the SRG in Figure 4.1. Assume that our target
attractor is the attractor we used in Example 4.1.1. A minimal FVS for the
SRG is {x7, x6, x5, x3}. The following control will guide the network from any
state into the attractor:

µ(x7) = −1, µ(x6) = 1, µ(x5) = 1, µ(x3) = 1 (4.13)

To see that this works, consider what other values the non-driver nodes can
have. The node x1 will become active no matter what, since x5 is activating it.
Node x2 will become inactive no matter what, since x1 will be inhibiting it in
the next state. The last node, x4, will also become inactive, because of x1. As
we can see, the network is now in a configuration that belongs to the attractor,
no matter what the initial state of the non-driver nodes is.

The other problem we want to introduce is called AnystateConstantAt-
tractorControl. The problem is almost the same: we have some target attrac-
tor, and want to find a control policy, which allows the SRG to be controlled
from any other state into the attractor. What is different in this problem is that
now control is not applied at t = 1, but instead the nodes are kept constant
at some given value. What we would prefer to happen is that all attractors
“collapse” into our target attractor A. We formally define the problem as:

Problem: AnyStateConstantAttractorControl
Input: An SRG(V,E) and a target attractor A.

Output: A minimal set of driver nodes that allows the network to be con-
trolled into the attractor from any state v, by keeping the driver
nodes constant.
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Now that the nodes are kept constant, some states will no longer be reach-
able. They will collapse into other states. Our target attractor will most likely
also be different, however, the important issue to us will be that the target
nodes in the target attractor have the correct values. This variant of controlla-
bility, has to the author’s best knowledge, not been studied in any other kind
of modeling framework before. We leave this as an open research problem.
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Chapter 5

Description of the
Simulation Software

To be able to study the dynamics of our model and see long-term behavior in
non-trivial networks software assistance is required. In this chapter, we give a
description of the requirements for the software, an overview of its architecture,
and a breakdown of the different features available. The software is available to
download from https://bitbucket.org/patric_gustafsson/network-sim/
src/master/, and can be run on Windows, Mac and Linux-based systems. The
software does not require any additional libraries or packages in order to be
run. We use the cancer model that we presented in Section 3.4.3 as a running
example to show the features of the software.

5.1 Requirements
The requirements of the software evolved from the problems we wanted to study.
Our models become computationally difficult to compute by hand even when
the number of nodes n is very small. Already n = 4 has 34 = 81 states. Thus,
we can see that already for small models it becomes a necessity to have access
to software that can handle the simulation automatically.

The software was developed using methods similar to Agile methods and
has for that reason no set requirements at the start. Rather, we developed
iteratively different prototypes to see what would best fit our needs at the time.
This is the essence of Agile, to be able to cope with changing requirements
quickly and develop rapid prototypes in order to always have a working version
of the software [28]. Some requirements were known from the start though:

1. Simulation. The software should possess the capability to run simulations
on a predefined network. The results, which is the whole STG, should be
available as a file in an appropriate format. The file should be compatible
with other graph visualization software so as to ease the analysis of the
STG. Since the STG can be very large, it needs to be opened in tools that
have the capability to handle large graphs, such as Cytoscape [35].

2. Attractors. The software should be able to compute the attractors using

https://bitbucket.org/patric_gustafsson/network-sim/src/master/
https://bitbucket.org/patric_gustafsson/network-sim/src/master/
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whatever algorithms we create, or simply with brute force. They should
then be presented inside the software to the user.

3. Controllability. The user should be able to study controllability of a given
network inside the software. From an initial state, the user should be able
to see the dynamics evolve and be able to specify the state of some nodes
or make them constant.

These requirements have all been implemented, and in the next section, we
give an overview of the software’s architecture and see how the requirements
have shaped some of the design choices.

5.2 Architecture of the software
The software follows the Model-View-Controller (MVC) pattern which is a com-
mon pattern for developing desktop GUI applications and was first introduced
in the 1980s in [25]. The idea with MVC is to separate the logic, data, and the
viewing of the software data into different classes or structures so that they are
independent from each other. Here is a short breakdown of the main responsi-
bilities for each component in MVC:

Model The model’s purpose is to hold the data that the application needs that
is domain-specific. A good example from [25] is that the model of a text
editor would be a string. For our software it would be the graph that
is loaded in by the user. The model is also responsible for doing all the
computations.

View The view is what the user sees when interacting with the program. The
view should issue calls to the controller whenever some features that need
the model are used. In our software, the view would be the GUI that is
presented to the user when the program is started. Whenever the view is
updated, it has to request the most recent data from the model.

Controller The controller is responsible for communication between the model
and the view. In our software, we do not explicitly use a controller class
and communication is mainly done between the model and the view. Since
Java automatically handles button events for us, there is no need for a
separate controller for doing that functionality. The controller is in some
form still there in our software only that is handled by existing Java classes.

In Figure 5.1, the structure of our application is shown. The MainAppli-
cation class is the view of the application. It contains functions for updating
the GUI and makes heavy use of the NetworkSim class which actually does all
the computations. The NetworkSim class is in this sense our model, since it
takes care of computations and keeps our model, the graph, as a class member.
Whenever the view wants to update it has to request the graph from the Net-
workSim. We then also have two additional helper classes that are used. One is
the DynamicsAnimator which takes care of animating the updates done to the
network when using the controllability feature of the software, which we will
explain later. For reading the actual data from disk, a class called MVGParser
is used.
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For the actual simulation we use a library called BioLQM developed by the
Colomoto (Consortium for Logical Models and Tools) Consortium [31]. It is a
Java library for manipulation of logical models and includes features for doing
various simulations. In our software, it is used by the class NetworkSim to
simulate our model. BioLQM was chosen since it has ready-made support for
multi-valued models. The function exportToMnet creates a file which can be
read and interpreted by BioLQM.

One modification had to be made to BioLQM before we could use it in our
simulator. BioLQM has multi-value logic support, however, not in the manner
that we needed it. BioLQM uses the multi-valued notion that we discussed in
Section 3.4, where values during the simulation are only updated monotonically.
This is not how the SRG model works, rather updates can happen from any value
to any other value. After we modified BioLQM to use the type of update rules
that the SRG model uses, it was successfully included into the software.

5.3 Features of the software
In this section, we give an overview of the features that are available in the
simulator. We also provide screenshots of the main functionality, which can
function as a short manual for using the software. Before any simulations can
be carried out, a network must be loaded in. We have created a file format
called MVG (Multi-valued Graph) for this purpose. The format is simple and
has a restricted grammar, which eases the parsing of MVG files.

5.3.1 The MVG format
The format can be seen as a subset of the simple interaction format (SIF), which
is used by Cytoscape. The grammar is simple and is easiest described by an
example.

Example 5.3.1.
A <node i n t e r a c t i o n > B
B <node i n t e r a c t i o n > C
C <node i n t e r a c t i o n > D E F
E <node i n t e r a c t i o n > F

On the left-hand side of the <node interaction>, should be the name of the
first node in the interaction. The right-hand side should be the name of the
node that is being interacted with. Node names are unique, so a node can only
have one name. It is also possible to specify multiple interactions at once, as is
done on line three. Interactions, where a node is interacting with itself, are also
allowed, this will give self-loops.

As mentioned, the MVG format is a subset of SIF. With SIF, it is possible
to specify different types of interactions, however, we are only interested in the
network topology. That is why we define the grammar of a node’s interactions
as: <node interaction> ::= {“ + ”|“ − ”}. This statement should be read in
extended Backus-Naur form (EBNF) [34]. Here, a “+” means that there is a
regulatory activation between the nodes. That is, if A is active and there is no
contradiction, then B should become active and likewise for “-”. Next, we show
an example of how to use the MVG format.
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MainApplication
loadedModel : File
networkSimulator : NetworkSim
dynamicsAnimator : DynamicsAnimator
loadModel()
simulateModel()
findAttractorsBruteForce()
showTableForAttractors()
animateDynamics()

NetworkSim
model : LogicalModel
MVGParser : MVGParser
loadModel(file : File)
simulateModel(resultFileName : String) : String
findAttractorsBruteForce() : List<List<String>>
generateBoolNetFile()

MVGParser
read(filePath : Path)
exportToMnet(mnetFilePath :
Path)
getGraph() : Graph

DynamicsAnimator
networkSimulator : NetworkSim
startAnimation(animSpeed : int, initState : byte[])
stopAnimation()
continueAnimation()

Figure 5.1: The overall class structure of our simulation software. Only the
methods that are relevant to the discussion are included in the diagram. They
represent the main functionality of the application and features that we discuss.
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Example 5.3.2. The cancer network from Figure 3.5 would be written in the
following way in the MVG format:

Myc + Mir1792
Myc + E2F
Myc + Cdc25A
Myc + Cdk2
Myc − Myc
Mir1792 − E2F
Mir1792 − Mir1792
E2F + E2F
E2F + Myc
E2F + Cdc25A
E2F + Cdk2
E2F + E2F
E2F + Mir1792
pRb − E2F
Cdk2 + Cdc25A
Cdk2 − p27
Cdk2 − pRb
Cdc25A − Cdc25A
Cdc25A + Cdk2
Cdk4 − Cdk4
Cdk4 − pRb
p27 − Cdk2

5.3.2 Viewing a network
A network can be loaded in and viewed in the software by clicking on File and
choosing Load Network from the menu. An MVG file should then be chosen,
which should be written in the format described in the previous section. There
is no upper limit on the number of nodes that the network can consist of.
The software has been tested with a few hundred nodes. See Figure 5.2 for a
screenshot of the software after we have loaded in the cancer network.

When the network has loaded, the nodes and the edges between the nodes
should be visible. It is possible to move nodes around by clicking and dragging
them. Edges can also be moved in the exact same way. A green edge means
activation and a red edge means inhibition. If a new network is loaded, then
the previous network will be deleted and the new one will be displayed instead.
The software tries to layout all the nodes in a circle and this is the reason for
the nodes being in a circle, whenever a network is loaded in.

Under the menu Tools, there are a few different tools that can be used with
the network. In the following sections, we describe each of them.

5.3.3 Simulating a network
By clicking on Tools and then choosing Simulate Network, the network will be
simulated. By simulate, we mean that the simulator generates each state that
the network can be in and simulates to the next state, essentially constructing
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Figure 5.2: Screenshot of the software after having loaded in a model of the
cancer network from Section 3.4.3.

the whole STG. After the simulation is done, the program will output a Comma-
Separated Value (CSV) file, which contains two columns: one for the initial state
and one for the successor state. The CSV file can be imported and viewed in
other programs, such as Cytoscape, which is specifically made to handle large
graphs. There is a limit for how large the network can be before the memory
requirements become too large to handle. In testing, on a computer with 8GB
of RAM, about n = 25 is the upper limit before the JVM and the computer run
out of memory.

5.3.4 Computing attractors
The software also provides methods for computing attractors. Currently, only
a brute-force method is available. It can be invoked by going into Tools and
choosing Compute Attractors. The brute-force algorithm works by generating
the whole STG, in which cycles are located. Every cycle in the STG is an
attractor. This method suffers from the same limitations as the simulation
feature, since it is doing the same computations and in addition also searches
for attractors. After the computation is done, the attractors will be shown in
the tool in a new window, see Figure 5.3. The software will also open a window
where the attractors are ranked by the size of their basins. This is useful, since
the STG quickly grows so large that it is infeasible to show it for larger networks.
Thus, knowing the size of each basin of attraction can help by providing a bird’s-
eye view of the state space, without explicitly drawing it. An example of such
a table can be seen in Figure 5.3.
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(a) Top three attractors
shown in the tool.

(b) Tabular view of the attractors. Ranked by their basin
size.

Figure 5.3: Two screenshots from the software. On the left we see the top four
attractors. On the right we can see a tabular view of the attractors ranked by
their basin size.

5.3.5 Booleanization of a network
The algorithm presented in Section 4.2 is available in the software. It takes
the network and generates an output file, which can then be imported into the
R program BoolNet [30]. BoolNet is an R library that contains many tools
and ready implemented algorithms for Boolean networks, so it would not make
sense to reimplement them into the simulator. The Booleanization method can
be run even on very large networks, since the Booleanization algorithm runs in
quadratic time with respect to the number of nodes in the original SRG.

5.3.6 Controlling a network
Controllability can also be studied with the software. By selecting Tools and
then Simulate Dynamics, a dialog opens where an initial state can be entered.
An animation should now start on the network in the view. Nodes that are
active will be displayed in green, inactive ones in red, and ambiguous ones will
be in a dark gray color. The animation can be paused by clicking on the Pause
button on the right-hand side in the GUI. It should now be possible to click
on each node and change its state, thus controlling it and then resuming the
simulation. See Figure 5.4 for a demonstration of this feature.
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(a) The network shown in the controllability view. Here the initial state has been
chosen as having all nodes active.

(b) The network shown after one timestep. At this point, it is possible to stop the
simulation and set different values for some nodes if needed, and then resume the
simulation.

Figure 5.4: The controllability view is shown here. In a) we see the network in
the chosen initial state. In b) we see the network after one timestep from the
initial state.
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Chapter 6

Discussion

Introducing a new model for something is never a simple task. There are more
angles for exploiting weaknesses in some new work than in comparison to tested
and widely accepted models. One will have to convince not only oneself, but
other people that one’s model brings something novel both from a usability and
theoretical standpoint. The opinion of the author is that this endeavor was
successful in the context of this thesis, at least. When the project started we
were even worried that we were dealing with the empty set or a model that
would display completely degenerative behavior. One might ask why use these
logical modeling frameworks when so many of the problems that we want to
study in them are difficult, such as finding attractors?

The fact is that many of these logical models that are currently used in sys-
tems biology are not scalable to any real example. Already networks that have
a few hundred nodes will make many state of the art algorithms unusable. One
might wonder, if this an intrinsic limitation to all logical models used in systems
biology? Perhaps the exponential growth of the state space is something that
we will never be able to handle, since even with improved computer hardware
the gains will only be marginal.

This is why it was surprising to see that in the SRG model we are able to
decide if a target attractor exists, in polynomial time. The state space that
the SRG model deals with is even larger than the Boolean one. For the target
attractor we were helped by how the dynamics of our model was defined. This
might be an indication that the controllability problems we introduced can also
be solved efficiently. If that is the case, then the SRG model would have a very
strong case against other kinds of models. Another benefit of our model if we
compare it to others, is that it can be applied directly to any gene regulatory
network, since our model only needs the topology of the network. This is not
the case for most of the other models we have discussed in this thesis, only
for majority voting, but there we also have to take into account the starting
parameters and so on.

The author is of the opinion that the SRG model has properties that make it
worthwhile to study it from a controllability perspective. The whole idea of the
model was guided by the notion that we wanted strong controllability as a goal.
If unanimity among nodes can be conserved over long paths, then this would
hopefully present a stronger framework for controllability than the traditional
models.
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The two problems we presented in Chapter 4 should serve as a good guideline
for future research of the SRG model. If it turns out that these problems can
also be solved in polynomial time, as the target attractor problem could, then we
might be on the verge of some major discovery. This would allow us to quickly
generate control strategies for real biological networks consisting of hundreds of
nodes and not only tens of nodes which today is considered state of the art.

Using software will be essential for any future research. For this purpose, the
software that we developed in this thesis can be used. It can easily be extended
and new features can be added to study controllability more in depth.
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Svensk sammanfattning

Inom systembiologin studerar man biologiska strukturer med målet att få en
förståelse för hur systemet fungerar som en helhet. Detta är i kontrast till
den traditionella biologin där man ofta har studerat en viss del av ett system
väldigt noggrant, i hoppet om att genom att förstå de små delarna så skulle en
förståelse för systemet som en helhet uppenbara sig. Inom systembiolgin samar-
betar biologer och datavetare för att lösa problem som direkt kan användas i
verkligheten. Så kallade regulatoriska gennätverk är en vanlig from av nätverk
som används. Ett sådant nätverk kan ses som en graf där varje gen är en nod.
Varje nod reglerar andra noder genom att antingen aktivera eller inaktivera
andra noder. En nod som reglerar en annan nod innebär att det uppkommer
en båge mellan noderna i grafen. Systembiologin tillämpas t.ex. inom medici-
nen, där man b.la. kunnat förutspå vilka celler som är cancerbildande samt för
utveckling av nya mediciner [14, 7].

Ett ofta använt sätt för att studera gennätverk är med hjälp av logiska
modeller eller differentialekvationer. Differentialekvationer har nackdelen att
de kräver väldigt specifik data för att få en användbar modell. I de flesta fall
finns det inte tillräckligt med data för att göra en modell [39]. De logiska
nätverken jobbar på en abstraktionsnivå högre än differentialekvationerna och
tar endast i beaktande nätverkets (grafens) struktur. Den kändaste modellen för
detta är så kallade Booleska nätverk som introducerades år 1969 av Kauffman
[23]. I de Booleska nätverk kan en nod endast ha värdet sant eller falskt, oftast
skrivet som 1 eller 0. Från ett biologiskt perspektiv skulle sant betyda att noden
är aktiv medan falskt skulle betyda att den är inaktiv. Även om de Booleska
nätverken kan ge intrycket av att de har en allt för enkel bild av verkligheten, så
har de använts inom den medicinska industrin. Till exempel så har de använts
för att förutspå vilka celler som utgör en risk för tumörutveckling [14].

Vi introducerar en ny modell som är en sorts logisk modell. Men istället för
endast två värden, som de Booleska nätverken, använder vår modell tre. Två
av värdena har samma betydelse som i de Booleska nätverken, d.v.s. aktivt
eller inaktivt, medan det tredje värdet har en annan innebörd. Idén bakom det
tredje värdet är följande: anta att en nod påverkas av två andra noder där den
ena noden ger en signal för att aktivera medan den andra ger en signal för att
inaktivera. Hur ska noden i detta fall veta om den ska vara inaktiv eller aktiv i
följande tillstånd? I vår modell ser vi detta som en tvetydlig situation och skulle
tilldela noden värdet 0. Vår modell har på engelska namnet strong regulatory
graphs vilket på svenska kan översättas till ungefär starka regulatoriska grafer
(SRG). Med starka menar vi de noder som är aktiva eller inaktiva verkligen ska
ha ett av de tillstånden. För att om de inte skulle vara aktiva eller inaktiva skulle
de vara i det tredje tillståndet. Detta är tanken bakom vår modell, minimera
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tvetydighet.

Attraktorer och attraktionsbassänger
Varje nod i SRG modellen har en funktion som anger vilket värde noden får
beroende på de regulerande nodernas tillstånd. I sammanfattningen har vi inte
utrymme att beskriva hur tillstånden uppdateras i detalj men vad kan sägas
är att varje tillstånd alltid leder till antingen samma tillstånd eller ett nytt
tillstånd. Eftersom de nätverk vi behandlar är ändliga finns det endast ett
ändligt antal tillstånd som nätverken kan befinna sig i. Det är möjligt att rita
upp ett tillståndsdiagram där varje tillstånd finns med. Cykler i denna graf
kallas för attraktorer. De kan ses som låsta tillstånd från vilket det inte är
möjligt att komma ut. Längden på attraktoren kallas för attraktorens period.

De tillstånd som leder till attraktorerna kallas för attraktionsbassänger. Så
fort ett nätverk har hamnat i en attraktionsbassäng för en viss attraktor kom-
mer nätverket nödvändigtvis att gå mot attraktorn. Attraktorer är intressanta
hur en biologisk synpunkt eftersom de ofta kan ses som olika tillstånd i vilken
en cell kan vara i [19]. Ofta är vi intresserade av att leda nätverket från ett
ohälsosamt tillstånd till ett hälsosammare tillstånd. Detta koncept är känt som
nätverksstyrning, d.v.s. vi vill styra nätverket från ett tillstånd till ett annat.
Detta kan ske på olika sätt, men ett sådant är att ta styra över ett visst antal
noder genom att tilldela ett passande värde till dem så att nätverket styrs till
det tillstånd man är ute efter.

I SRG modellen kan varje nod ha ett värde från {1,−1, 0}. Eftersom varje
nod kan ha ett utav tre värden är det totala antalet olika tillstånd som nätverket
kan vara i 3n, där n är antalet noder.

SRG modellen och nätverksstyrning
Nätverksstyrning är ofta definierat som att givet ett tillstånd, styr nätverket
till vilket annat tillstånd som helst. Detta är för vårt ändamål en för bred
definition. Istället fokuserar vi på att styra nätverket till vissa attraktorer som
har den egenskapen att en nods värde hålls konstant som 1 (aktivt) eller -1
(inaktivt) under hela attraktorn. Detta kallar vi för stark nätverksstyrning.
Idén är att noderna ska vara överens om varför nätverket är i ett visst tillstånd.
Att hitta attraktorer med den egenskapen kan ses som en svår uppgift eftersom
vi har ett exponentiellt antal tillstånd att söka igenom. Som ett första försök
tar vi hjälp utav de Booleska nätverken.

Vi introducerar en algoritm som förvandlar ett SRG nätverk till ett Booleskt
nätverk. Nätverken är ekvivalenta med varandra med anseende på attraktorerna
och tillstånden. Förvandlingen gör det möjligt för oss att ta i bruk de algorit-
mer och resultat som redan har visats för Booleska nätverk. En nackdel med
förvandlingen är att den skapar mycket täta nätverk. Med täta menas att det
finns många bågar mellan noderna. Detta är ett problem för en del algoritmer
eftersom de oftast blir långsamma om graferna de jobbar med är täta. Denna
förvandling ger en övre gräns för svårighetsgraden på vårt problem men är inte
effektiv. Från teorin vet vi att nätverksstyrningsproblemet är ett NP-komplett
problem i Booleska nätverk, d.v.s. svårt att lösa. Eftersom vårt problem att
hitta konstanta attraktorer är ett specialfall av nätverksstyrningsproblemet så
är detta inte en effektiv lösning.
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En effektivare lösning existerar. Vi visar att det är möjligt att avgöra om
en konstant attraktor existerar i polynomiell tid, vilket anses vara en effektiv
körtid för algoritmer. Genom att kolla om SRG-nätverket uppfyller vissa krav
kan vi ge ett svar om en viss attraktor existerar eller inte, helt utan att ta i
beaktande tillståndsdiagrammet. De krav som vi hittar ger även värden på en
del noder i grafen vilket gör det möjligt för oss att inte bara visa att en konstant
attraktor existerar utan även konstruera en sådan.

Till slut introducerar vi även två problem som har med nätverksstyrning
att göra. I korthet vill vi styra nätverket från vilket tillstånd som helst till en
utav de konstanta attraktorerna. Vi lämnar de som öppna problem för framtida
forskning. I avhandlingen nämner vi ändå några möjliga lösningar men ger inga
garantier på att de skulle vara de mest optimala som finns.

Programvara för simulering
Under projektet har vi även utvecklat ett program för att studera SRG-nätverk.
Programmet kan köras på vilken som helst modern datorn och operativsystem.
Programmet har funktioner för att visa, simulera, analysera, förvandla och styra
nätverk. Programmet använder i bakgrunden programvaran BioLQM som är
utvecklat av Colomoto consortium [31]. BioLQM är ett bibliotek av funktioner
för att analysera och simulera olika modeller av logiska nätverk.

Att simulera nätverken har vissa begränsningar. Eftersom antalet tillstånd
växer exponentiellt är antalet noder i ett nätverk i praktiken begränsat till
omkring 25 stycken. De andra funktionerna som styrning eller förvandling till
ett Booleskt nätverk påverkas inte av dessa begränsningar. Programvaran finns
att ladda ner på följande sida: https://bitbucket.org/patric_gustafsson/
network-sim/src/master/.

Avslutning
Att skapa en ny modell för något är inte ett enkelt uppdrag. Man måste kunna
visa att den nya modellen är användbar inte bara sett ur ett teoretiskt perspektiv
utan även praktiskt. Sedan ska modellen också skilja sig på ett märkbart sätt
från de existerande modellerna. Enligt författarens åsikt har detta lyckats i
detta avhandlingsprojekt. En tid fanns det en tanke att det som vi hade att
göra med var endast tomma mängden eller att hela nätverket skulle ledas till
endast en attraktor. Detta visade sig inte stämma utan istället har vi skapat
en modell som kan tillämpas på verkliga data.

Att hitta attraktorer i polynomiell tid är en bedrift eftersom vi behandlar
strukturerar som innehåller ett exponentiellt antal tillstånd. Inom andra logiska
modeller skulle samma algoritm knappast fungera eftersom den är baserad på
hur vi definierat vår modell. En annan fördel med SRG modellen är att den kan
använda på vilka regulatoriska-gennätverk som helst.

Vi har även öppnat upp olika vägar för vidare forskning. Bland annat direkt
genom att ge två öppna problem inom nätverksstyrning. All vidare forskn-
ing kommer att ha hjälp av mjukvaran som utvecklades för att studera SRG-
nätverken. Nya upptäckter genom forskning kan enkelt studeras med hjälp av
programmet och nya funktioner kan läggas till efter behov.

https://bitbucket.org/patric_gustafsson/network-sim/src/master/
https://bitbucket.org/patric_gustafsson/network-sim/src/master/
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