
LOW LATENCY ADAPTIVE VIDEO

ENCODING

Andi Domi
Student number: 41259

Master of Science Thesis
Supervisor: Sébastien Lafond

Second Supervisor: Annamari Soini
Åbo Akademi University

Faculty of Science and Engineering
Embedded Systems Laboratory

May 2019

ABSTRACT

This thesis presents a prototype method for streaming video data over large networks
implemented in the high level programming language Python. The objective is to de-
velop a software which would allow video footage to be streamed from a remote drone
to a controller with a latency of less than 200 milliseconds and which would be able
to deliver a satisfactory image quality in relation to the available bandwidth through
different control algorithms and techniques. The proposed solution decreases the pos-
sible delays between the controller and the drone, making the navigation more secure
while providing better maneuverability. The thesis details the state of known techno-
logies implemented for the same purpose and conducts research on their advantages
and disadvantages, while using these technologies as the base to develop a solution by
removing some of the disadvantages encountered. In this work different methods were
used to increase the coverage of the bandwidth by dynamically allocating the video
bitrate to the given bandwidth level using the GStreamer framework implemented in a
small-board computer, an Nvidia TX2, as the main mechanism for the purpose. Con-
sequently two adaptive bitrate algorithms were created and implemented to tackle this
problem. Finally the solution was tested under two custom bandwidth functions with
the help of the ROBOT framework and a Linksys DIR-809 router.

The analysis of the results shows that achieving real time video streaming with
variable bitrate depending on the bandwidth level is possible. Moreover, these results
also detail the inability of the two algorithms to achieve on their own a satisfactory
bitrate and streaming quality in relation to the different bandwidth behavior, making
the usage of the two conjoined algorithms a possible better solution.

Keywords: Adaptive Bitrate, Video Streaming, Low Latency, Embedded Board

i

CONTENTS

Abstract i

Contents ii

List of Figures iv

Glossary vi

1 Introduction 1
1.1 Field of interest . 1
1.2 Streaming over internet . 2
1.3 Objectives of the thesis . 4
1.4 Thesis structure . 5

2 Related Work 7
2.1 What is Adaptive bitrate . 7
2.2 Different Implementations . 8

2.2.1 MPEG-DASH . 9
2.2.2 HLS . 10
2.2.3 SVC . 11
2.2.4 RTP . 12

2.3 Drawbacks of the existing technologies 14

3 Proposed Solution 17
3.1 Overview of the solution approach 17
3.2 Software Design . 20
3.3 Implementation of Gstreamer Nvidia TX2 21
3.4 Adaptive Bitrate Algorithms . 26

3.4.1 Decrease Algorithm . 27
3.4.2 Linear Algorithm . 27
3.4.3 Slow Start Algorithm . 30

ii

4 Results Analysis 33
4.1 Evaluation Environment . 33
4.2 Evaluation Metrics . 37

4.2.1 Picture Quality . 37
4.2.2 Video and Streaming Quality 38

4.3 Laboratory Analysis . 40
4.3.1 Sinusoidal bandwidth function 40
4.3.2 Real dataset bandwidth function 44
4.3.3 Conclusions . 47

5 Implementation Analysis and Future Work 52
5.1 Implementation analysis . 52
5.2 Future work . 53

Bibliography 55

A Appendix A 58
A.1 GStreamer server - example . 58

iii

LIST OF FIGURES

1.1 Adaptive Bitrate Streaming overview [1] 3

2.1 Adaptive streaming in action. [2] . 8
2.2 MPEG-DASH Scope. [3] . 9
2.3 HLS Scope. [4] . 10
2.4 SVC Layers. [5] . 11
2.5 RTP header and extension. [6] . 13
2.6 RTPC Scope. [7] . 14
2.7 The normal response of ABR algorithms under variable bandwidth [2] 15

3.1 Software architecture . 18
3.2 Sequence diagram . 19
3.3 The response of dynamic ABR algorithm under variable bandwidth . 20
3.4 Standard UML diagram. 21
3.5 Elements of a Gstreamer pipeline . 22
3.6 Caps of a Gstreamer element . 23
3.7 GStreamer transmitter pipeline . 24
3.8 GStreamer receiver pipeline . 25
3.9 GStreamer transmitter pipeline . 25
3.10 GStreamer receiver pipeline . 26
3.11 Linear Algorithm . 28
3.12 Exponential Algorithm . 31

4.1 Linksys router web interface . 34
4.2 Testing environment architecture [8] 35
4.3 Bandwidth modification function . 36
4.4 Bandwidth variability dataset . 37
4.5 Example of FPS analysis for 1s . 39
4.6 Example of latency analysis . 39
4.7 Empirical research of linear algorithm variable 41
4.8 Plotted data of linear algorithm under sinusoidal bandwidth levels . . 42
4.9 Plotted data of slow start algorithm under sinusoidal bandwidth levels 43
4.10 Plotted data of linear algorithm under variable bandwidth levels . . . 45
4.11 Plotted data of slow start algorithm under variable bandwidth levels . 46

iv

4.12 Plotted data of linear and slow start algorithms under variable band-
width levels . 48

4.13 Plotted data of linear and slow start algorithm under variable band-
width levels . 49

5.1 Construction and deconstruction of a timestamp segment 54

v

ACRONYMS

UAV Unmanned aerial vehicle

ABR Adaptive Bitrate Streaming

SVC Scalable Video Coding

RTP Real Time Protocol

UDP User Datagram Protocol

RTPC Real Time Control Protocol

TCP Transmission Control Protocol

ISP Internet Service Provider

FPS Frame per second

HEVC High-Efficiency Video Coding

HTTP Hyper Text Transfer Protocol

URL Uniform Resource Locator

DRM Digital Rights Management

AES Advanced Encryption Standard

HTTPS Hyper Text Transfer Protocol Secure

QoS Quality of Service

CNAME Canonical Name

SSRC Synchronization Source Identifier

vi

PT Payload Type

SN Sequence Number

ML Machine Learning

MSS Maximum Segment Size

SSTHRESH Slow Start Threshold

RWND Receiver’s Window

API Application Programming Interface

MSE Mean Square Error

PSTNR Peak Signal-To-Noise Ratio

SSIM Structural Similarity

PAE Peak Absolute Error

RMSE Root Mean Square Error

vii

1 INTRODUCTION

1.1 Field of interest

Drones, also called unmanned aerial vehicles (UAVs), are vehicles with no human pilot
on board which are either controlled remotely by an operator or are self-autonomous
via computer software. In today’s world, they are becoming progressively popular not
just for military purposes, where their services have been used for years, but also for
a wide range of different operations. They are used by scientists to collect data in
dangerous environments where it would be otherwise impossible for humans to col-
lect the information needed and where satellites cannot provide enough details for the
given purpose. They are deployed for the study of hurricanes with the use of swarm
technology implemented in drones to help create a model about the complex flow of
a hurricane, or in law enforcement, where they are used to survey possible suspects’
locations and to create a plan of action in case of a hostile situation. However, they
are also used for commercial purposes, with drone delivery currently being tested in
several locations giving impressive results in light of them being totally autonomous.
Also, drones are used for recreational purposes like drone racing, capturing live events,
and a myriad of other applications. One thing that brings together the diverse uses of
drones is their ability to navigate through different landscapes without the need for an
onboard pilot making them extremely versatile and safe. Remote controller naviga-
tion is achieved by streaming visual footage of the drone location to the operator or
to a software which then computes the needed data through different video processing
technologies. This navigation technology uses a direct linked connection between the
operator and the drone, without third-party software or hardware, so it would be able
to receive and send data between the two. This wireless connection is normally held
over a 2.4 and 5.8 GHz WiFi frequency band [9] [10] which provides a low latency
video output of the drone video footage which is directly correlated to a low latency
navigation input by the operator, two features with an extremely high priority. Having

1

a direct linked connection also brings some disadvantages from which we can mention
a limited connection range, where the operator should normally stay in a range of a
maximum of 92 meters [9] [10] from the drone to be able to maintain a stable connec-
tion. With the increasing usage and different purposes, we see the need for a method
to remotely control the drones over larger distances. As a result, drone navigation
technology is shifting from end-to-end connection to a larger and broader network, the
internet. While this solves the main problem of remotely controlling a drone over a
wider distance, this also brings more challenges, such as the increase in the latency of
the connection, and unpredictable bandwidth which varies greatly over time. This al-
teration in the connection latency is translated to an increase in the response time of the
drone to the operator input but also an increase in drone video footage output, which
increases the general latency of the navigation of the drone with unpredictable results.
While in some autonomous vehicles low latency may not be of a high priority, in other
implementations like autonomous cars and drone racing it is extremely important to
have a fast response to the different environmental variables as part of the navigation
system. The remote operation of the drones is divided into two parts, one of which is
remotely controlling the drone according to the input of the pilot, but for the purpose
of this thesis we will focus more on the streaming of the video footage from the drone
to the end user side of the navigation.

1.2 Streaming over internet

For us to be able to stream multimedia data from a moving object over unstable com-
puter networks, such as over the internet, we need to adapt the bitrate of the video
footage to the available bandwidth level conditions. This is done using a technique
called Adaptive Bitrate Streaming (ABR). ABR is a method used in streaming multi-
media data over computer networks to adopt the video quality to the available band-
width conditions. These algorithms can run either on the operator (client) side or on
a drone (server) and by monitoring different variables such as packets drop, latency,
bandwidth, CPU load etc. They take adequate measures to alter the bitrate of the
video stream. The majority of ABR algorithm streams require the use of an encoder
and decoder which can encode a single video source into multiple streams of different
bitrates, then each stream is divided into smaller segments, usually between 2 to 10
seconds. The client, in the beginning, is made aware of the available bitrates with the

2

help of a special file, and after assessing the download speed of each segment, usually
starting from the segment present in the lowest bitrate, compares it with the bitrate of
the video source. Based on the difference between the two it requests segments from
either the next higher bitrate in case of the difference being small, or a lower bitrate in
case of the difference being bigger as can be seen in Figure 1.1.

Figure 1.1: Adaptive Bitrate Streaming overview [1]

Different technologies have already implemented several versions of adaptive video
streaming like MPEG-Dash, HLS, SVC, RTP etc. but they have their limitations. The
majority of them were created to tackle another field of video streaming, on-demand
video streaming, as per 2018 almost 58% of all downstream traffic on the internet is
video data with streaming giants like Netflix and YouTube holding the top two of the
three spots for global application traffic share [11].

The currently implemented technologies are based on almost the same principle.
They divide the video stream in chunks of different quality attributes and then, depend-
ing on the bandwidth level of the connection, select the most appropriate quality for the
given connection and proceed to the streaming phase. Some use complex algorithms
which divide a high-quality video stream in different data layers, with each layer hold-
ing certain parts of the quality, and then try to deliver as many layers as possible to the
client so that when they arrive and cluster on top of each other they are able to improve
the quality of the video proportionally to the layers received, as seen in the Scalable
Video Coding (SVC) implementation [12]. Another approach is to have a specific type
of packets which holds information about the video stream sent to the client. Upon
receiving this particular packet the client sends back to the server detailed statistics
which are in turn used by it to adapt the video quality to the connection. This method
is used in Real Time Protocol (RTP) implementation technology. RTP typically wraps
User Datagram Protocol (UDP) packets [13], assigning each of them with a unique

3

identifying number to be able to retrieve statistics about the video stream. The packets
are then sent to the client for statistical analysis by counting the packet identifiers and
the time of delivery of each packet. The RTP protocol is almost always conjoined with
Real Time Control Protocol (RTCP) to retrieve the statistical analysis. RTCP works by
creating a Transmission Control Protocol (TCP) connection to be able to retrieve the
statistical information packets from the client.

While these technologies have individual benefits they also have their limitations,
linked to the specific field they are applied to when tackling the specific problems they
are used for. For example, MPEG-dash tries to tackle the scalability problem [14] and
because of that, it creates several chunks of video data with different bitrates for the
same given video file, which in turns breaks the bandwidth interval to quality ration
into ten parts not providing a satisfactory quality for the available bandwidth. Other ad-
vanced technologies like SVC are not widespread for their difficulty to be implemented
and for the lack of support for HEVC. Lastly, protocol specific implementations like
RTP are not well accepted by some Internet Service Providers (ISP), which puts the
packets behind a firewall not allowing them to be sent to the end user.

1.3 Objectives of the thesis

The objective of this Master’s thesis is to implement and assess a prototype method
to adapt a video stream between the server and the client in such a way that it will
maximize the quality of the video stream footage depending on the available network
bandwidth by maintaining a real-time low latency of fewer than 200 milliseconds under
the highest possible resolution of 3840x2160 pixels (4K) and a frame rate of a min-
imum of 30 frames per second (FPS). This is done by using the state of the art video
compression codec, HEVC (High-Efficiency Video Coding), also known as H.265, im-
plemented on an embedded board with the hardware capability to compute the video
footage at the given latency. The embedded board also provides a custom-built encoder
named “envenc” to encode the video footage under the non-functional requirements of
this thesis [15]. This thesis takes inspiration from the concepts implemented in RTP
and RTPC video streaming protocols in a high-level programming language such as
Python. This is done to use any transport protocol for data delivery in order to be able
to send the video stream over several network filters, like firewalls, by keeping to a
minimum the non-data packets sent across the network. The result is a more efficient

4

usage of the bandwidth by not encapsulating the data packets under any wrapper but by
streaming unadulterated UDP packets. The solution we are proposing is implemented
by having two separate synchronized threads on the server and the client side, one of
which prepares and streams the video data and the other one which computes the stat-
istical analysis of the packets and computes the available bandwidth and the bitrate on
which the encoder should operate upon. The thread responsible for the statistical ana-
lysis of the packets creates a report of the bandwidth by counting the number of packets
sent and received from the transmitter to the receiver and then opens TCP stream for
the statistical packets to be delivered. Depending on the difference between the number
of packets sent and received we can create a general understanding of the maximum
bandwidth level of the network. Different techniques are used to ensure the delivery of
the data packets responsible for the statistical analysis and the synchronization of the
threads between the server and the client. Also, two different custom ABR’s are imple-
mented to improve the streaming performance to handle different bandwidth level by
giving the maximum bitrate to bandwidth ratio, which results in better perceived video
quality. These algorithms are then put under several rigorous tests analyzing their
performance down to the pixel levels of the streamed video frames, with the help of
specialized algorithm which try to emulate human vision by giving a quantifiable score
to the video streaming quality, a score which is comparable to the average perceived
quality by a human being.

1.4 Thesis structure

Chapter 2 provides background knowledge on the definition of ABR’s and their differ-
ent implementations. We take a closer look at each implementation, its purpose, the
mechanism behind its implementation, and the different advantages and disadvantages
each of them offers.

In Chapter 3 we provide our own implementation for the ABR. Firstly, we analyze
the concept behind the software from a high-level architecture perspective, and how the
non-functional requirements are implemented into code. Then we analyze and explain
the different algorithms used as the core of our ABR implementation and try to make
assumptions on their behavior under different bandwidth levels.

Chapter 4 presents the testing ground for the software. We explain how we de-
signed our testing environment for the proposed solution and the different technolo-

5

gies used. Also, we give a clear representation of the bandwidth levels our proposed
solution will be tested upon so we can analyze the different algorithms. We try to keep
this evaluation as objective as possible using several methods to evaluate the overall
streaming performance of the video by tools well accepted by the research community.

In Chapter 5 we give the evaluation for the different experiments conducted in this
thesis. Last but not least, we explain the next possible step in the implementation of
the proposed solution by proposing a clear overview of future work.

6

2 RELATED WORK

This chapter introduces the concept of ABR in regard to different implementations.
Conventional video streaming methods commonly deliver a fixed bitrate of the video
stream, therefore not giving the best video quality for the given bandwidth. While a
different type of ABR attempts to send a satisfactory bitrate for the amount of band-
width, its implementation is difficult and requires additional encoders and protocols
to encapsulate the stream. This encapsulation may result in a sub-optimal streaming
experience as the protocols may not be accepted by the different layers of the network.

2.1 What is Adaptive bitrate

Adaptive Bitrate Streaming is a technique used in streaming multimedia over com-
puter networks to adapt the video quality to the available bandwidth conditions. This
algorithm can run either on the server or on the client side, and monitors different vari-
ables such as packets drops, latency, bandwidth, CPU load, etc. to compute the output
bitrate for the given maximum bandwidth level of the video stream. The majority of
the ABR algorithms require the use of an encoder and decoder which can encode a
single video source into multiple bitrates, then each bitrate is divided into smaller seg-
ments. At the beginning, the client is made aware of different available bitrates with
the help of a manifest file, and after assessing the download speed of each segment,
usually starting from the one present in the lowest bitrate, compares it with the bitrate
of the video source. Based on the difference between the two packet counts it requests
segments from either the next higher bitrate in case of the difference being small, or a
lower bitrate in case of the difference being bigger, as can be seen in the Figure 2.1.

7

Figure 2.1: Adaptive streaming in action. [2]

2.2 Different Implementations

Different implementation solutions are available such as HLS, MPEG-DASH, Adobe
HTTP Dynamic Streaming, Microsoft smooth streaming etc. All these adaptive stream-
ing technologies follow almost the same core principle [16]. They generate different
versions of a video file in different quality, spatial resolution etc. and then divide these
versions into segments, usually between 2 to 10 seconds, which are then provided by
a web server through a Hypertext Transfer Protocol (HTTP) request to the client. The
information of different versions and relationships between them is encapsulated in the
manifest file which is provided to the client at the very beginning of the streaming ses-
sion. The manifest file describes all the different qualities of the media content and the
individual segments of each quality with HTTP Uniform Resource Locators (URLs).
This structure provides the binding of the segments to the bitrate among other things
, e.g., start time, duration of segments etc. As a consequence, each client will first re-
quest the manifest that contains the temporal and structural information for the media
content, and based on that information, it will start requesting the individual segments
that fit best the current bandwidth level. The adaption of the quality or spatial resolu-
tion to the bandwidth is done on the transmitter side for each segment. Depending on
the available bandwidth of the client, the server can switch to a higher bitrate segment
or a lower one if the bandwidth decreases.

8

2.2.1 MPEG-DASH

MPEG-DASH is the only adaptive bitrate HTTP-based streaming solution adopted as
an international standard. To be able to play the content, the client obtains first an MPD
file which can be acquired from different transport routes such as HTTP, email, thumb
drive, etc. The file is then parsed to be able to learn the program timing, resolution,
minimum and maximum bandwidth, media types, media-content availability, and also
the existence of various encoded alternatives of multimedia components, digital rights
management (DRM), media-component locations on the network, and other character-
istics.

With the information provided, the client selects the appropriate encoded stream
and then starts it by fetching the segments using HTTP GET requests. After the re-
ceiver has pre-loaded the stream data into a buffer, it continues fetching the subsequent
segments of the video while monitoring fluctuations in the bandwidth. Depending
on its throughput, it can then decide to adapt the video stream to match the available
bandwidth by fetching segments of different bitrates as presented in Figure 2.2.

Figure 2.2: MPEG-DASH Scope. [3]

9

2.2.2 HLS

HTTP Live Streaming, also known as HLS, is a widely used adaptive HTTP-based
streaming protocol available as IETF Internet Draft and implemented and patented
by APPLE Inc. as part of its software suite. In its core, HLS works like all adapt-
ive streaming technologies. It encodes the source into multiple files at different data
rates and it divides them into short segments, usually 5-10 seconds long. These are
loaded onto an HTTP server along with a manifest file, with the extension "M3U8"
that provides information to the client about additional manifest files as shown in Fig-
ure 2.3.

Figure 2.3: HLS Scope. [4]

The encoding protocol used is normally Advanced Video Coding, also known as
H.264 for video, and MP3, AAC, EC-3, or AC-3 for audio. The video/audio stream
must be segmented in a MPEG-2 Transport stream with an extension of "ts". The
files are then deployed into an HTTP server. The .M3U8 manifest files are constantly
updated with the location of different available streams and file chunks. The client then

10

requests and downloads the file resources, assembling them into a continuous flow
video. The client first downloads the index file through a URL and then the several
available media files. Then it assembles the sequences to allow the continued display
to the user. HLS is equipped with Advanced Encryption Standard (AES) encryption
mechanism and a secure-key distribution method, using Hypertext Transfer Protocol
Secure (HTTPS) which uses either an HTTP cookie or device-specific authentication,
two methods which combined provide a digital rights management system.

2.2.3 SVC

SVC is an extension of the H.264/MPEG-4 AVC standard providing scalability at a bit-
stream level with a considerable increase in decoder complexity relative to single-layer
H.264/MPEG-4 AVC. The SVC codec adapts to sub-par network connections by drop-
ping bitstream subsets or packets in order to reduce the frame rate, bandwidth overload,
and resolution of a picture, which prevents the picture from losing the integrity by not
being able to be properly formed. For example, a receiver would receive only the base
layer or bitstream if the bandwidth level is low, while a high bandwidth client would
receive both, the base layer and bitstream subset or enhancement layer, resulting in a
higher quality video. This is possible because a subset bitstream can signify a smaller
screen (lower spatial resolution), or a lower frame rate (lower temporal resolution), or
a lower quality video signal to the bitstream it is derived from as illustrated in Figure
2.4.

Figure 2.4: SVC Layers. [5]

11

The following modalities are possible:

• Temporal scalability: refers to the possibility to represent video streams with
different frame rates by numerous bitstreams.

• Spatial (picture size) scalability: the video is coded in multiple resolutions.
Videos of higher resolutions are responsible for enhancing the lower resolution
layer through prediction.

• Fidelity scalability: the video is coded at a single spatial resolution but at differ-
ent qualities. The data and decoded samples of lower qualities can be used to
predict data or samples of higher qualities in order to reduce the bit rate to code
the higher qualities.

• Combined scalability: a combination of the three scalability modalities described
above.

SVC enables forward compatibility for older hardware: the same bitstream can
be consumed by basic hardware which can only decode a low-resolution subset
(i.e. 720p or 1080i), while more advanced hardware will be able to decode high-
quality video stream (1080p).

2.2.4 RTP

RTP is a real-time end-to-end transport protocol for delivering audio and video over the
network. RTP works by encapsulating UDP packets on its own data wrapper packet.
UDP, which is also a transport protocol in its own, is a connection less transport layer
protocol which allows sending packets (datagrams) to other hosts without guarantee-
ing the delivery, ordering, or duplicate protection of the packets. For this reason, RTP
adds real end-to-end delivery services on UDP, service that include sequence number-
ing, time-stamping, and delivery monitoring as part of its payload identification. The
minimum header size of RTP is 12 bytes, with a maximum size of 76, depending on
the optional fields used. [17]

RTP itself does not provide any means to ensure Quality of Service (QoS), timely
delivery, or sequenced packet as it does not assume the network to be reliable and
deliver packets in sequence, as can be seen in the protocol’s header scheme Figure 2.5.

12

Figure 2.5: RTP header and extension. [6]

For this reason, RTP is normally used together with another protocol called RTCP,
to monitor the quality of service and to convey information about the participants in
an on-going session. This latter aspect of RTCP may be sufficient for "loosely con-
trolled" sessions, i.e., where there is no explicit membership control and set-up, but
it is not necessarily intended to support all of an application’s control communication
requirements.

RTCP is based on the periodic transmission of control packets to all participants in
the session, using the same distribution mechanism as the data packets.

RTCP performs four functions:
1. The primary function is to provide feedback on the QoS of the data distributed.
2. RTCP carries a constant transport-level identifier called the canonical name

(CNAME). The Synchronization Source Identifier (SSRC) may change because of a
conflict and because of that, the receivers use CNAME to keep track of the different
participants.

3. It is required from the first two functions that all the participants send RTCP
packets. For RTP to be able to scale up and reach a large number of participants the
rate must be controlled.

4. The fourth function is to rely on minimal information for session control. Be-
cause of that, there is a limit of 5 seconds by which time the rate of the session control
information will be sent. Using a high bandwidth rate this limit may be lower, but this
is not advised.

RTCP provides a way to connect and synchronize different media streams that
have come from the same sender. This is done by providing the necessary details of

13

the connection, such as statistics or control information, using a dedicated channel,
also called Out-of-band, to send such information as illustrated in Figure 2.6.

Figure 2.6: RTPC Scope. [7]

2.3 Drawbacks of the existing technologies

While these streaming technologies are the current state of the art for ABR, they all
have their own drawbacks. ABR technologies which are based on HTTP are more
complex than other adaptive bit rate technologies.

Another area where HTTP-based adaptive streaming solutions are not optimized is
the ability to have the most optimal bitrate for the available bandwidth, because of the
division of the video source into fixed stream quality.

14

Figure 2.7: The normal response of ABR algorithms under variable bandwidth [2]

As shown in Figure 2.7, the quality of the video will not change if the bandwidth
level is in between the three thresholds of the bandwidth. This means that a large
segment of the bandwidth capable of delivering a higher bitrate is not utilized.

An even more complex and new implementation like SVC has a poor performance
delivering a satisfactory bitrate for the available bandwidth level, as its implementation
is really complex, and as to date there is no consolidated implementation of SVC tech-
nology for the H.265 video compression protocol, which would, in theory, decrease the
bandwidth usage while maintaining the same bitrate level as another type of encoding.

Also, segmenting a stream in different layers with several types of bitrate and qual-
ities results in an increase in the required computational capacity. While this may not
be of a high priority for non-live video streaming where this segmentation can be done
prior to the streaming, this is not a feasible option when the resources at our disposal
are restricted, for example in a drone, where navigation is done by live streaming the
drone footage.

Another issue with HTTP streaming implementations is the management of the
DMRs as there is no universal way of delivering content which is time-sensitive or
restricted. With no single clearly defined or open standard for the digital rights man-
agement used in the above methods, there is no compatible way of delivering restricted
or time-sensitive content to all the participants.

Last but not least, issues also exist with RTP or other non-HTTP-based streaming
implementations. Normally, streaming to different participants is done behind different

15

layers of networks, with each layer having a different node. Each node in the network
may put a filter to discard RTP packets, which will make the transportation of the
packets difficult. This is fairly seen in internet mobile network technologies which
will be integrated into the drone to have access to the internet. RTP permits omitting
different fields in the header, which allows the creation of a header shorter than 12
bytes; a minimal version of RTP of two bytes can be constructed, only containing a
payload type (PT) and a sequence number (SN). This choice may come with some
disadvantages from the which we can mention the difficulty to synchronize audio and
video (cross-media synchronization) if we omit the time-stamp field. Also, a great
part of the RTCP functionality would have to be altered as it depends on the time-
stamp header and a long sequence number field for loss-statistics jitter computation
and synchronization [18].

16

3 PROPOSED SOLUTION

As mentioned in Chapter 2, RTP is not used extensively in today’s streaming services
because of the restricting network filters which may be applied by the servers but also
for the overhead RTCP adds to the stream for QoS analysis. For this reason, we decided
to build an implementation of RTCP while still using RTP as the base for the streaming
protocol. We will still be using RTP as the main streaming protocol for testing our
implementation of RTCP because RTP is already a consolidated platform for video
streaming and can be well implemented in our solution. Further in Chapter 5 we detail
a new way in which we can remove RTP from our proposed solution by using UDP
with specialized markers which will behave as RTP QoS analysis tags. Our solution
will also be protocol agnostic. This is another reason we are trying to implement it on
RTP to show that a future implementation of this solution with an unspecified protocol
is possible.

3.1 Overview of the solution approach

Each RTP packet has a header, for encapsulating UDP packets in its protocol. Through
this encapsulation, with the help of RTCP, we are able to have QoS over our desired
stream. Our implementation uses the same approach as RTCP but without relying on
RTP and RTCP packet headers. To remove the RTP packets header, and therefore
the packet header of RTCP, using only UDP packets while still maintaining the QoS
analysis, we are counting the packets on the source and destination side.

17

Figure 3.1: Software architecture

The high-level representation of the proposed architecture is shown in Figure 3.1.
The solution is implemented in a Linux environment where the server is an embedded
Nvidia TX2 board and the client a generic PC. The packet counting mechanism is
achieved by using a Python library named SCAPY[19], implemented on both, the
server and client side, and this counting mechanism analyzes a specific port where
the video stream is broadcast to count the outgoing and incoming packages as seen in
the sequence diagram Figure 3.2 .

18

Figure 3.2: Sequence diagram

Another socket is then open to be able to send the details about the received packets,
by the client to the server. The bitrate is then adapted based on the difference between
the number of packets sent and received. If the difference between the two counters is
under a certain level, the bitrate is increased until the difference crosses the specified
level. To be able to synchronize the counting of the packets at the same time interval a
synchronization mechanism is also used that starts the application and sends the QoS
report at a chosen interval of milliseconds. This is done by implementing a Python
library name NTPlib [20].

This mechanism allows us to have a better streaming quality for the given band-

19

width because we can manipulate the bitrate, and different variables which impact the
streaming quality, to a more precise level as shown in Figure 3.3

Figure 3.3: The response of dynamic ABR algorithm under variable bandwidth

As we can see, our solution does not have a fixed bitrate for different bandwidth
levels like in the case of other ABR implementations. In the base of the bandwidth we
have a more optimal bitrate of the video stream, a bitrate that is translated to a video
stream quality that looks more of a gradient playback quality.

3.2 Software Design

The standard UML diagram of the application is divided into 3 classes.
The transmitter and receiver UML diagrams are the same in regard to their specific

purposes. There are main three functions, supported by several secondary ones, each
having a particular role in the application. The _init_ function creates the necessary
GStreamer configuration variables to be able to create the stream. The stream is then
initialized in the run function. The purpose of this function is to start the synchroniz-
ation process, creating the initialization of the stream, and then counting the sent and
received packages. The main difference between the server and the client application is
in the GStreamer configuration variables and the supporting functions. The server run
function also has the duty to create the TCP QoS stream to connect to the client. Once
the connection is achieved, the client sends the statistical data, in our case the number
of packets it counted, to the server where the ABR algorithm is implemented and the

20

Figure 3.4: Standard UML diagram.

bitrate is changed. The last main function on_error() serves in case of a connection
error between the two for log purposes.

3.3 Implementation of Gstreamer Nvidia TX2

To be able to stream the live data we implemented the GStreamer under a Python wrap-
per to create an RTP stream. GStreamer was chosen as it is the only framework able
to manipulate the Nvidia codec’s bitrate [15] and because it is a well accepted and
adopted library for streaming purposes. The entire software was implemented in Py-
thon because of the vast libraries available, especially for the ease of use of the packet
manipulation libraries and for managing Gstreamer script elements on a high level of
abstraction. Last but not least, Python was chosen because different frameworks for
Machine Learning (ML) algorithms are mostly written and implemented in Python
[21] and these may be used to create a better ABR algorithm.

A GStreamer script should be visualized as a pipeline as shown in Figure 3.5. Each
part of the script is divided into elements. We should think of GStreamer elements as
black boxes. The data is created in the source element and ends in the sink one. Each
element is composed of two parts, an input pad and an output pad. For example, we
may have a decoder element which accepts a given stream of data and encodes it in a
given format.

21

Figure 3.5: Elements of a Gstreamer pipeline

For the purpose of our solution we created a pipeline with the following sequence:

• Transmitter

1. Generate the video data

2. Encode the video data

3. Split the data into smaller packets

4. Send the packets through RTP transport protocol

• Receiver

1. Receive the packets from the network

2. Put together the packets into video data

3. Decode the video data

4. Visualise the video

To do this we use the following Gstreamer pipeline elements for both the transmit-
ter and receiver:

1. nvcamerasrc

This is a source element for generating stream data in the form of images which
will then be used by the following elements as a source.

2. nvvidconv

The element is used to convert the video in a given rotation, in our case rotation
level 6 which translates to 90 degrees. It should be specified that this is an Nvidia
proprietary element and is not available in the main source code repository of
GStreamer.

22

3. CapsFilter We can visualize Capsfilter as a setting required by some elements
of the pipeline to connect with each other. In our case this is a setting for the
camera resolution, framerate ,etc. as shown on Figure 3.6.

Figure 3.6: Caps of a Gstreamer element

4. omxh264enc / omxh265enc

This element is a custom encoder used by and proprietary of the embedded
Nvidia board to encode the video images in H.264 and H.265 compression
format. A parameter is given to the element to make the bitrate variable by
giving a default bitrate and a control rate level, which enables the continuous
changing of the bitrate.

5. h264parse / h265parse

This element is necessary for extracting missing information and, if needed,
splitting it into packets and/or transforming packet format. The purpose of pars-
ing is to understand the stream format and to signal the format of the stream to
the upcoming element. It is also used to convert one H.264/H.265 stream from
one H.264/H.265 format to another without the use of encoding. [22]

6. rtph264pay / rtph265pay

This element has a similar function to the h264parse element. It converts the
stream in a given format but only by packetizing RTP packets, adding an RTP
payload.

23

7. udpsink

This element is necessary to transport the given RTP stream from the transmitter
to the receiver, using the UDP transport protocol.

8. udpsrc

This is used as the data source of the receiver to obtain the data, provided by the
transmitter. The data is obtained through a port specified by the transmitter.

9. rtph264depay / rtph265depay

The purpose of this element is to extract H.264/H.265 video from the RTP packet
that can be then used downstream by the pipeline.

10. queue

Until one of the limits, specified by the properties max-size-time, max-size-
buffer and/or max-size-bytes, is reached the data is queued. If a thread attempts
to push more data into the queue it will be blocked until more space becomes
available. The queue creates a new thread on the source pad to separate the
processing on the source and sink pad. [23]

11. avdec_h264 / omxh265dec Both elements are used to decode the video stream in
their respective formats, H.264 and H.265, but the omxh265dec can only be used
on the embedded board, as currently there is no decoder available on GStreamer.

12. nvoverlaysink / xvimagesink

This is the last element of the streaming pipeline used to visualize the video.
This element can also only be used on the embedded board.

The GStreamer pipeline script and a visual representation for the transmitter, based
on H.264 video compression standard, is shown in Figure 3.7 and Listing 3.1

Figure 3.7: GStreamer transmitter pipeline

24

gst-launch-1.0 nvcamerasrc fpsRange="30 30" intent=3 ! nvvidconv flip-method=6 ! '

video/x-raw(memory:NVMM), width=(int)1920, height=(int)1080, format=(string)I420,

framerate=(fraction)30/1' ! omxh264enc control-rate=2 bitrate=4000000 ! 'video/x

-h264, stream-format=(string)byte-stream' ! h264parse ! rtph264pay mtu=1400 !

udpsink host=$CLIENT_IP port=5000 sync=false async=false

Listing 3.1: Transmitter pipeline

A visual representation of the receiver pipeline script is shown in the figure:

Figure 3.8: GStreamer receiver pipeline

gst-launch-1.0 udpsrc port=5000 ! application/x-rtp,encoding-name=H264,payload=96 !

rtph264depay ! h264parse ! queue ! avdec_h264 ! xvimagesink sync=false async=

false -e

Listing 3.2: Receiver pipeline

We also create an H.265 stream for the application. A stream which is visually
represented in the GStreamer pipeline script for the transmitter is shown in Figure 3.9.

Figure 3.9: GStreamer transmitter pipeline

gst-launch-1.0 nvcamerasrc fpsRange="30 30" intent=3 ! nvvidconv flip-method=6 ! '

video/x-raw(memory:NVMM), width=(int)1920, height=(int)1080, format=(string)I420,

framerate=(fraction)30/1' ! omxh265enc low-latency=1 control-rate=2 bitrate

=4000000 ! 'video/x-h265, stream-format=(string)byte-stream' ! h265parse !

rtph265pay mtu=1400 ! udpsink host=$CLIENT_IP port=5000 sync=false async=false

Listing 3.3: Transmitter pipeline

A visual representation of the receiver pipeline script is shown in the figure:

25

Figure 3.10: GStreamer receiver pipeline

gst-launch-1.0 udpsrc port=5000 ! application/x-rtp,encoding-name=H265,payload=96 !

rtph265depay ! h265parse ! queue ! omxh265dec ! nvoverlaysink sync=false async=

false -e

Listing 3.4: Receiver pipeline

As can be seen in the Listing 3.1 and 3.3, the omxh264enc / omxh265enc encoder
has a property named control-rate set to the value 2 which modifies the video quality
based only on the bitrate. Normally, to control the quality of a video several parameters
would be modified, like frames dropped in the video, the type of frames that compose
the video resolution, etc. but thanks to this property the encoder tweaks this parameter
in the background in such a way that the output video stream equals the inputted bitrate
in the parameter bitrate that in our case is set to 4000000 bits.

For the bitrate to be changed in the code implementation without the need to restart
the stream, the two parameters of the omxh264enc / omxh265enc encoder explained
earlier should be present and also a GStreamer loop-function named GLib.MainLoop().run()
should be called. This function on every iteration gives us the possibility to change the
bitrate without having (the need) to restart the stream. However, because we already
have a loop-function created by SCAPY and AppScheduler we removed it and sub-
stituted it with their equivalent as seen in the Appendix A.1. It should be noted that
both encoding compression algorithms H.264 and H.265 are shown in this high-level
visualization of the GStreamer elements, but only the H.264 compression is imple-
mented because the H.265 standard can only work between two TX2 boards, hence
the omission of the implementation.

3.4 Adaptive Bitrate Algorithms

For this thesis, two algorithms are presented, approaching the problem in two different
implementations. Each algorithm uses a different formula and method to achieve, in
its scope, a satisfactory video quality with respect to the available bandwidth. The

26

first algorithm uses a linear approach where it computes the difference between the
number of packets transmitted and sent, changing the bandwidth accordingly through
multiplying the difference with a given variable, without taking in consideration the
past history of the transmission. The second algorithm, on the other hand, uses the past
history of the difference between the sent and received packets to compute the bitrate
of the video stream. If the past transmissions are successful the algorithm increases
the speed exponentially. The difference between these algorithms is only seen in the
increase of the bitrate level, but both algorithms decrease the bitrate using the same
method. If the difference between the sent and received packets is bigger than our
specified level, 10 packets, the video bitrate is automatically changed to suit the current
bandwidth level.

3.4.1 Decrease Algorithm

Before detailing the two algorithms which increase the bitrate of the video stream we
will focus on the decrease algorithm formula that is common to both. Because we
cannot decrease the bitrate of the video stream to a level that is not on a par with
the bandwidth level at that exact moment, the formula is an Identity as shown in the
Equation 3.1.

Y = X (3.1)

where Y is the bandwidth level and X is the resulting bitrate for that given level.
The X variable is computed in case the number of packets sent is bigger by a difference
of more than 10 pakets as this would mean that, because of the decreasing bandwidth
level of the connection, the missing packets could not be sent and were dropped.

3.4.2 Linear Algorithm

The first algorithm uses a linear formula (3.2) where the difference between the number
of packets sent and received is used to calculate the output bandwidth by multiplying
it by a variable obtained by different laboratory tests.

Y = Z + ((X ∗ (−1)) + 10) ∗ 1000 (3.2)

Y represents the output bandwidth, Z the current bandwidth, and X the difference

27

in packets sent and received. As can be seen, there are also three fixed constants
in this formula. The first constant is a multiplier needed to convert the difference
in packets into a negative value if the difference is greater than the second constant,
in our case 10. This is done because of the high probability of having some false
negatives in the packets lost count which, based on prior testing, is typically under
10 packets. The third constant is used as a multiplier to increase the bandwidth by a
certain value greater than the packet difference. This constant can be adjusted based
on the bandwidth fluctuations of the connection as seen in Chapter 4. A representation
of the algorithm output can be seen in Figure 3.11.

Figure 3.11: Linear Algorithm

This algorithm depends heavily on the current packet count difference without tak-
ing into consideration the past packets and this brings, in theory, several advantages
and disadvantages which should be considered. The following assumptions are then
made:

Advantages Assumption

28

Fast and predictable in terms of speed:

Because of the straightforward linear approach, the adaptive bitrate al-
gorithm should respond particularly fast to achieve the satisfactory video
streaming quality in relation to the available bandwidth. It should not in-
troduce delays doing the necessary calculation, as it does not need extra
time to compute past packets into the formula. Also, because the constants
are given to the algorithm it is really predictable, hence making it ideal for
analyzing the bandwidth immediately after the time this algorithm has been
executed.

Disadvantages

Arbitrary speed:

What should make this algorithm fast and predictable is, at the same time,
what could make it slow. Because of the unpredictable terrain in which the
drone will navigate we can assume an unstable connection with a different
bandwidth interval. If the network has a high capacity bandwidth the con-
stant we provided to increase the bitrate may be too small for the bitrate
to grow as fast as the bandwidth allows. This is also true for the oppos-
ite. If the constant is too large for the bandwidth it may surpass the max-
imum bandwidth, resulting in the algorithm trying to find the maximum
bandwidth by increasing and lowering the bitrate over different iterations,
making it slower.

Bad performance in bandwidth saturation:

This also brings us to another negative effect from which this algorithm
may suffer. When the maximum bandwidth is found, it is hard to maintain
a stable video bitrate over every iteration of the difference between packets
sent and received. This would happen because it is highly unlikely to locate
the exact ceiling of the bandwidth because of the constant in the equation.
If the ceiling is not located in this value, the algorithm will be in a loop,
trying to achieve the maximum bandwidth. Since in real life the bandwidth
is always changing, this is a notable point which should be taken into con-
sideration for stable networks. Not maintaining the bitrate in a stable state
will introduce jitter to the video if the bitrate difference before and after a
bandwidth drop is high.

29

3.4.3 Slow Start Algorithm

The second algorithm is introduced to mitigate some of the disadvantages of the linear
one. This algorithm takes into consideration, to some extent, the past packet counter
and tries to increase the video bitrate in a smoother, slower, way. The inspiration for
this algorithm comes from the slow start TCP algorithm of TCP congestion control
method [24] which is a congestion control strategy used by TCP.

The slow start algorithm limits the amount of data that can pass through in the
beginning of a new established connection, to ramp it progressively until the carry-
ing capacity of the bandwidth is reached. An important part of the slow start is the
initial congestion window which puts a limit on how much data can be transmitted at
the beginning of the connection. Initially, the slow-start algorithm begins with a small
window size of a Maximum Segment Size (MSS) of either 1, 2, 4, or 10. The conges-
tion window value will be increased by each acknowledgment received doubling the
window size each time a round-trip is performed. The algorithm will increase the trans-
ition rate until a loss is detected, in case the Slow Start Threshold value (SSTHRESH)
or a limiting Receiver’s Window (RWND) are reached. In case of a loss event TCP also
reduces the load on the network, assuming the loss was due to network congestion. To
adapt the TCP congestion algorithm to our case we modified the formula as shown in
Figure (3.3) :

Y = X4 (3.3)

The output bandwidth Y is equal to a variable X to the power of four. The variable
in our case and for the purpose of the implementation is fixed at a certain value through
the evaluation tests in Chapter 4, but it can be adjusted in case of bandwidth fluctuations
as explained in more detail in Chapter 5. A representation of the algorithm can be seen
in Figure 3.12.

30

Figure 3.12: Exponential Algorithm

This brings us, in theory, several advantages and disadvantages.

Advantages

Good performance on bandwidth saturation:

The main idea of the slow start algorithm is to maximize the bandwidth
threshold by maintaining good video quality even though the bandwidth
itself is extremely variable. To overcome the second disadvantage of the
linear algorithm, once the bandwidth falls, we try to increase the bitrate by
a small amount, in the beginning, to be sure we didn’t reach the maximum
level, then we increment the speed by which the bitrate increases exponen-
tially until we hit the maximum bandwidth threshold. The small increase
in bitrate allows us to maintain the maximum level of the bandwidth by not
introducing dramatic drops in the bitrate which would result in increased
jitter of the video.

31

Fast to reach the saturation point on a stable network:

In case of a stable network, this algorithm should, theoretically, be faster
than its linear counterpart. Assuming no packet drops occur the bitrate will
increase exponentially, reaching the maximum level at a higher speed. The
speed of this algorithm is especially high if the bandwidth has a great ca-
pacity, as being exponential will make the alrogorithm reach the maximum
level of the bandwidth faster.

Disadvantages

Slow when the bandwidth is extremely variable:

The ideal case scenario for this algorithm is for the bandwidth to be stable
through long enough not to introduce extreme drops, and variable when
at the maximum capacity. But this is hardly a real-life scenario. From
time to time we can see some packets drop because of unforeseen events
like ISP’s firewall, network problems, etc. which will stop this algorithm
from increasing its speed and, because of the slow start, the more drops we
have the slower this algorithm can be to reach the maximum level of the
bandwidth.

32

4 RESULTS ANALYSIS

To evaluate our solution we need to design a testing environment from which we can
manipulate the streaming bandwidth available between the server and the client. The
approach we implemented, and the one which allowed us to have a good degree of
bandwidth manipulation, is to create a laboratory environment. One non-functional
requirement of our proposed solution, as explained in Chapter 3, is to be able to assess
the level of the bandwidth even behind an operating system’s firewall. This is required
in case of a firewall rule targeting the same port as our application uses, which would
impair the video streaming.

For this reason, we used a Python library named Scapy which would allow us to
estimate the bandwidth level, even behind a firewall, by counting the packets on the
network adapter level. This would mean that we will not need to reset the bitrate of
the video when we change the video stream port, making the stream already adapted
to the available bandwidth. The implementation of such a library, on the other hand,
restricted us on the possible ways we could create the testing environment. This is be-
cause of the inability to use network shaper software as it works almost like a firewall,
allowing only a certain number of packets to go through a certain port.

Another approach we could have implemented was to create a virtual machine,
with a host operating system, able to receive the video stream. The virtual machine
would then be used as a sandbox, creating a fake network adapter for Scapy to work
upon. But after some preliminary testing, we had to exclude this option because of the
substantial delay introduced by the host operating system to render the video frames
upon receiving them.

4.1 Evaluation Environment

To be able to fulfill the non-functional requirements we decided to create a laboratory
environment with the help of a network router which would be used as a communic-

33

ation link between the receiver and the transmitter. As a non-functional requirement,
we needed a router which would allow us to manipulate the bandwidth without having
the need to restart and close the stream connection. Our choice was Linksys DIR-809

[25] as it fulfilled this requirement. In order to use this function we had to create our
own software to be able to change the bandwidth values in a dynamic way, because
the router did not provide an Application Programming Interface (API) we could im-
plement to achieve such a task. To have an API-like approach for our tests we used
a framework called ROBOT [26], originally developed by Nokia to test different soft-
ware, which with the help of a library called Selenium [8] allows us to manipulate the
administration interface of the router by automating the input of the variables on the
web interface of the router as shown in Figure 4.1.

Figure 4.1: Linksys router web interface

ROBOT allowed us to write easy-to-understand tests with a human-like syntax, but
also to have the possibility to use the SeleniumLibrary which is a ROBOT web testing
library that utilizes Selenium tool. Selenium is an automated testing suite of web-
based applications for a wide range of browsers and platforms. Selenium’s WebDriver
tool makes calls to the browser using each browser’s native support for automation,
allowing us to call and navigate any web page with the help of pre-made scripts, in

34

our case coded in Python, as in an API-like approach. A representation of the testing
environment architecture is shown in Figure 4.2.

Figure 4.2: Testing environment architecture [8]

To achieve different test cases we created two bandwidth manipulation tests, each
defined in a Python function linked to the ROBOT tests. The first one makes the
bandwidth variable to a small degree through a sinusoidal function. It follows a simple
formula to create the bitrate modification function.

Y = sin(Z) ∗ A (4.1)

Y represents the output bitrate which is created by the sinusoidal function of the
variable Z multiplied by the constant A to give the bandwidth in megabits per second
level as seen in 4.3.

35

Figure 4.3: Bandwidth modification function

This test is conducted to test the fluctuations of the bandwidth by increasing and
decreasing it in a smooth way.

In the second test, we wanted to simulate a real environment by abruptly increasing
and decreasing the bandwidth to simulate an unstable real-life connection. For this pur-
pose, we parsed a dataset with wireless bandwidth traces released at the MMSys 2013
conference in a paper entitled “Commute Path Bandwidth Traces from 3G Networks:
Analysis and Applications“ [27]. For the purpose of our thesis, the route from Ljans-
bakken to Jernbanetorget was chosen, from the provided dataset, because of the vari-
ations in the bandwidth level which were without many extreme increases and drops
compared to the other routes on the dataset which would make any type of stream quite
unstable. A representation of the bandwidth levels which we used for our test is shown
in Figure 4.4.

36

Figure 4.4: Bandwidth variability dataset

4.2 Evaluation Metrics

After implementing the the evaluation environment we need a way to evaluate the
quality of the video streamed. For this thesis we used different methods, and while we
tried to keep the subjectivity to a minimum that was not always possible because of
the nature of the test itself. The evaluation criteria used are divided into three sections
which are described below.

4.2.1 Picture Quality

Picture quality refers to the frame at a given time in the video stream which is then
compared to the original frame of the video before it was streamed by the transmit-
ter. This is done to understand the compression ratio of the frame as well as how
well the frame was constructed withstanding missing data packets and how different
the streamed frame is from the original. To be as objective as possible in the picture

37

quality test we compared the same frame at the end of both streamings, from the trans-
mitter side and from the receiver side, and created an array of different tests used by
the research community [28] [29], tests that we tried to create with different Python
libraries and software such as ImageMagick [30], SSIM-PIL [31], etc. These testing
algorithms are shown in the following table:

Picture Quality Statistics
Algorithm Analysis Type Additional Information

PAE Peak Absolute Error Within a channel, for 3D color spac
PSNR Peak Signal to noise ratio The ratio of mean square difference to the maximum mean square
MSE Mean absolute error Average squared error distance

RMSE Square root mean square error The standard deviation of the residuals (prediction errors)
SSIM Structural Similarity Index Image quality degradation caused by processing

We choose three different algorithms to assess the picture quality.
Mean Square Error (MSE) calculates the average squared difference between actual

and uncompressed pixel values. Because it measures errors, values close to 0 are better.
Peak signal-to-noise ratio (PSNR) calculates the peak signal-to-noise ratio between

the uncompressed image and the modified one. It is derived from MSE, and higher
PSNR values mean lower mean square errors between the two images. If the PSNR
value is low it implies a low quality of the compressed image.

Structural Similarity (SSIM) combines luminance, contrast, and local image struc-
ture into a quality score, where structures are patterns of pixel intensities. SSIM quality
metric is close to a subjective quality score because it mimics the way humans perceive
structures [32].

SSIM calculates a decimal value between -1 and 1 where 1 means that the images
are identical even though in most cases a score is given on the interval [0, 1], where
values closer to 0 represent no structural similarity [33]. SSIM can be negative when
the local image structure is inverted [34].

We use different algorithms directly derived from MSE like Peak Absolute Error
(PAE) and Root Mean Square Error (RMSE) which, as the name implies are different
metrics evaluated concerning the same algorithm.

4.2.2 Video and Streaming Quality

Video quality refers to the general video quality of the stream. While the picture quality
tests take into account just one frame at the given time, video quality evaluation focuses
on the general construction of the video on the receiver end. An important aspect is

38

also the general FPS of the video. Because of the missing UDP packets, GStreamer
may drop some incomplete frames. For this reason, a counter was put in the video file
for each frame and then analyzed for a given second.

Figure 4.5: Example of FPS analysis for 1s

The video played by the receiver is saved and afterwards the number of frames are
counted to create an average counter of the frames dropped and the lag in the video.

Another important test is the general latency of the video stream. To test it we
inputted a timestamp to the video stream which starts to play at the exact same moment
we start the stream over the network. At a given time a screenshot of the playing video
at both ends is taken and the different timestamp labels are compared.

Figure 4.6: Example of latency analysis

The difference between the two counters will show the lag of the video stream as
seen in Figure 4.6. This is done at different times of the video and at different levels of

39

bandwidth to evaluate the video streaming latency.

4.3 Laboratory Analysis

4.3.1 Sinusoidal bandwidth function

To evaluate the behavior of the two algorithms under a controlled bandwidth level
we create our own functions as explained in Chapter 3. In the first case, we created
a function which creates a steady increase and decrease of the bandwidth level in a
sinusoidal approach as shown in Figure 4.3. After running our software for 50 seconds
under such a function we collected and normalized the data and then proceeded to
create a plot for both algorithms.

Linear Algorithm

To be able to have a satisfactory bitrate for the bandwidth we exchanged the constant
1000 of the controller formula [3.2] for the fixed number 18500. This constant is used
to modify the angle of the linear algorithm function line and is derived from empirical
research of the bandwidth. To be able to find an adequate fitting line to increasing
segment of the bandwidth function we tried several constants, each incremented by
4600 as shown in Figure 4.7.

40

Figure 4.7: Empirical research of linear algorithm variable

As we can see the constant that fits the best the bandwidth function is the one
labeled with red dots as it will not surpass the bandwidth functions and also will be
closer to it compared with the other constants. We did not create more empirical test
because the constant would not be transferable to a real-life bandwidth function as
shown later in this chapter, but if a better precision of the constant is needed a lower
increment may be implemented.

The plotted data relative to the bandwidth with the constant chosen is shown in
Figure 4.8:

41

Figure 4.8: Plotted data of linear algorithm under sinusoidal bandwidth levels

As can be seen, the linear algorithm performed well, covering the majority of the
bandwidth level. As per the assumptions made in Chapter 3, the algorithm was indeed
fast and predictable. Knowing the current level of the bandwidth we could estimate
the bitrate of the video according to the algorithm. However, it has to be noted that
the speed by which the algorithm achieved the maximum bandwidth level is related to
the constant variable which was modified to fit this specific bandwidth function and
for this reason, the assumption of the disadvantage of the arbitrary speed still remains.
Another disadvantage of the linear algorithm can be seen at the 10, 20, and 45 seconds
of the stream. Because of the linear speed, the algorithm tried to increase the speed at
the same level while the bandwidth was stable, which made the algorithm change the
bitrate more than the bandwidth saturation point. This change resulted in a perceived
lag by the client, with an average of 20 frames lost in the 10 seconds and up to 30
frames lost in the 20 and 45 seconds. Such behavior proved that the performance of
the bitrate to the bandwidth saturation was indeed low, not only when the bandwidth
level achieved its maximum and remained constant for a short amount of time but also
on the lower spectrum, proving the disadvantage assumption.

42

Slow Start Algorithm

To be able to fit the bandwidth function as well as possible, the constant X of the
equation 3.3 was set to 5. The data collected gave this result:

Figure 4.9: Plotted data of slow start algorithm under sinusoidal bandwidth levels

The first thing we notice is that the algorithm did not achieve the best possible
bitrate to the bandwidth ratio. This can be seen especially from the beginning of the
stream to the 10 seconds. Because of the nature of the algorithm, it takes time to
increase the bitrate, hence not reaching the maximum of the bandwidth, disproving
the assumption that the algorithm should be fast to reach the bandwidth saturation
point. This can also be seen further at 30 seconds. Because the algorithm was growing
exponentially it reached a level that went well beyond the bandwidth maximum. This
resulted in a lag of 1 second with almost 70 frames lost at that point. An interesting
part is seen in the lower part of the bandwidth function where the bandwidth level is
decreasing and maintains, for a short amount of time, an almost stable level. At this
point, the algorithm maintains a stable bitrate level relative to the saturation point of
the bandwidth. This behavior in the maximum and minimum bandwidth levels made

43

us partially disprove the advantage assumption of good performance on bandwidth
saturation, as the algorithm behaves well on the lower spectrum of the bandwidth but
poorly on the higher one.

4.3.2 Real dataset bandwidth function

Thanks to the known sinusoidal function of the bandwidth and preliminary tests, we
could tweak the variables of the ABR algorithms that would fit such a bandwidth func-
tion to give satisfactory results. But in a real case scenario, the connection is never
on desired levels or stable enough. For this reason, we decided to try both algorithms,
with the variables set by the sinusoidal bandwidth function, on a real-life dataset with
data recorded from a moving car over a 3G network.

Linear Algorithm

The linear algorithm with variable bandwidth gave satisfactory results by covering the
majority of the bandwidth function as can be seen in the Figure 4.10 .

44

Figure 4.10: Plotted data of linear algorithm under variable bandwidth levels

While the algorithm did not always reach the maximum bandwidth possible, as
seen from the 5 to the 10 seconds, it still managed to cover the majority of the band-
width levels. While on second 25, 32 and 44 we see some frame drops which are
translated to a maximum of 200 ms lag in the video stream. The real surprise was the
behavior of the bandwidth in the majority of the bandwidth saturation levels. Because
of the high fluctuation of the network, the bandwidth did not remain stable enough for
the algorithm to overestimate the bitrate. While this does not disprove the disadvantage
of bad performance at the saturation level we see that this rarely happens in real cases.
It also has to be stated that the increase of the bitrate, relative to the bandwidth level,
was indeed fast even without knowing the bandwidth function a priori, hence proving
once more the assumption of the algorithm being fast to reach the saturation point.

45

Slow Start Algorithm

On analyzing the slow start algorithm in a real-life environment, we see a sudden
change in the expected behavior on a very variable bandwidth as can be seen in the
Figure 4.11.

Figure 4.11: Plotted data of slow start algorithm under variable bandwidth levels

The algorithm did not fully cover the majority of the available bandwidth as seen
previously in the sinusoidal bandwidth function. This can be noted in the seconds
between 12 to 20, 28 to 30, and 40 to 47. However, the slow start algorithm did indeed
reach a higher bitrate than its counterpart, as seen in the seconds from 6 to 9 and 20
to 22. While the stream was smoother (with a single lag happening at the second 49)
the picture quality levels were not at a par with those of the linear algorithm. The al-
gorithm did also reach a good performance on the lower levels by maintaining a stable
connection and having fewer general frame drops compared to the linear algorithm
because of the not-sudden changes in the bitrate level.

46

4.3.3 Conclusions

Picture Quality

To be able to have a clear understanding of the picture quality of the video stream we
took different samples across the stream at the receiver and transmitter side. These
samples were collected mainly when we encountered big differences between the two
different algorithms. These samples were then tested under different quality assess-
ment algorithms as explained earlier.

The first assessment was done on the behavior of the linear and slow start al-
gorithms with the sinusoidal bandwidth function. We took four different frames at
four different timestamps and analyzed the difference between the picture output of
the linear and the slow algorithm in relation to the sinusoidal bandwidth function.

As can be seen in Figure 4.12, under the sinusoidal bandwidth function, the linear
algorithm surpassed its counterpart in delivering the more satisfactory bitrate for the
given bandwidth.

47

Figure 4.12: Plotted data of linear and slow start algorithms under variable band-
width levels

This was perceived as a better picture quality as shown by the picture quality met-
rics in the table.

Sinusoidal Bandwidth Function
Timestamp Tested Bandwidth Level Bitrate Output MSE RMSE PSNR SSIM

Linear Algorithm
00:05 399749 329500 0.00164698 0.040583 27.8331 0.8015942052425324
00:22 272058 269607 0.00213008 0.0461528 26.716 0.7623592820124696
00:48 268888 267955 0.00216061 0.0464824 26.6542 0.7610025098709223

Slow Start Algorithm
00:05 399749 238995 0.105379 0.324622 9.77244 0.5456502490399835
00:22 272058 224425 0.105112 0.32421 9.78348 0.5534908761915731
00:48 268888 224355 0.105112 0.32421 9.78348 0.5534908761915731

As we can see at the 5, 22, and 48 second, the MSE and RMSE are smaller in the
linear algorithm compared to the slow start which is translated to a better perceived
picture quality, as in both cases the lower the value the better. A better perceived
quality can also be seen in the higher levels of PSNR and in the value of SSIM which
is close to 1. These values of the picture quality algorithms in the analysis of the linear

48

algorithm compared to the slow start one showed that in almost all cases the picture
quality was better for the linear algorithm.

This picture quality ratio of the linear algorithm compared to the slow start one
is reversed under the variable bandwidth function. While the linear algorithm did,
in fact, maintain a better overall picture quality, the slow start algorithm did reach
a higher picture quality on different occasions especially when the bandwidth levels
were increasing, as can be seen in the Figure 4.13.

Figure 4.13: Plotted data of linear and slow start algorithm under variable band-
width levels

As shown in the above table, the better picture to quality ratio is also true for the
second bandwidth function.

49

Variable Bandwidth Function
Timestamp Tested Bandwidth Level Bitrate Output MSE RMSE PSNR SSIM

Linear Algorithm

00:08 406864 272864 0.105866 0.325371 9.75242 0.5336111550736803

00:17 346104 244136 0.104555 0.32335 9.80655 0.5606178375584953

00:32 265960 264004 0.104987 0.324017 9.78865 0.5571627618817595

00:41 240308 213324 0.104366 0.323058 9.8144 0.5714530271389546

Slow Start Algorithm

00:08 406864 288292 0.105838 0.325328 9.75356 0.537687282032009

00:17 346104 210833 0.104555 0.32335 9.80655 0.5606178375584953

00:32 265960 216297 0.106042 0.32564 9.74524 0.5373872389932631

00:41 240308 196120 0.104914 0.323905 9.79166 0.55936811775337

In the above table, we can see that at the 8 and 17 second the slow start algorithm
was inferior to the linear one, even though by a small margin. This is shown by the
higher values of MSE and RMSE and lower values of PSNR and SSIM compared to
the ones for the linear algorithm which means that the slow start algorithm has a lower
perceived quality of the picture. This is reversed at the 32 and 41 seconds where the
values of MSE and RMSE show that the slow start algorithm is outperforming the
linear one. This is also seen in higher values of PSNR and values of SSIM closer
to 1 compared to the linear algorithm. It should be noted that even though we see
differences in the bitrate of the two algorithm this is not always translated to a large
difference in the picture quality assessment. This may happen because of different
variables in the encoding of the frame, such as an over-compression of the frame, while
still keeping the same perceived quality. This happens especially when the picture has
patterns which are easy to compress, such as a large portion of the picture being a single
color. In both cases, the linear algorithm generally performed better in relation to the
picture quality, with the exception of some cases as seen when the bandwidth level was
increasing. While we only sampled parts that were indeed different, it also has to be
stated that the differences were noticeable on an increasing level of bandwidth. In case
of a decreasing bandwidth level, the algorithms performed almost the same because
they use the same logic to decrease the bandwidth.

Streaming quality

As we predicted earlier, each algorithm introduced its own delay into the video pro-
cessing. Latency-wise, the delay was unnoticeable, with an average of 170 milli-
seconds introduced by the encoding and decoding of the stream through the entire

50

stream, complying with the non-functional requirement of the prototype.
A noticeable delay was introduced when we look at the frame drops for each al-

gorithm. Under the sinusoidal bandwidth function, the linear algorithm introduced
two delays at the video stream in the form of a lag by almost 300 milliseconds at the
seconds 20 and 45, with an average of 20 frames dropped. The slow start algorithm
had a better performance on the total number of introduced lags, with only one lag
produced during the stream, but the numbers of frames dropped were more substan-
tial, with 70 frames on that particular occasion. The bandwidth function per se did not
introduce noticeable lag as the decrease in the bandwidth level was managed by the
two algorithms in a proper manner.

In the second laboratory test conducted we could see the same behavior of the two
algorithms. The linear algorithm introduced a number of three delays at the seconds 25,
33, 41 and 43 compared to the slow start which introduced only one at the 48 seconds.
But the difference in latency introduced by the linear algorithm was not noticeable
enough with an average of 100 milliseconds compared to the slow start algorithm with
150 milliseconds, a difference that could be also seen in the overall perceived delay of
the stream in the form of lags. Because the linear algorithm achieved a better coverage
of the bandwidth, its streaming suffered from the sudden drops of the bandwidth, which
resulted in more perceived lags in the stream as happened in ten occasions. While the
slow start algorithm always maintained a smoother increase in the bitrate levels, we
could only notice this behavior at four different occasions. There was a large difference
between the two algorithms in the maximum level of the lag, as the slow start algorithm
had almost 60% more lag than the linear one.

As we have seen in this analysis, we do not have a single silver bullet for different
levels of bandwidth. While the linear algorithm did in fact cover more bandwidth than
the slow start one, it did introduce more lag to the overall video stream but performed
as expected in decreasing levels of bandwidth. While the slow start algorithm had
better performance in the average streaming of the video data, it did suffer from low
performance in increasing levels of the bandwidth.

51

5 IMPLEMENTATION ANALYSIS AND
FUTURE WORK

5.1 Implementation analysis

The goal of this thesis was the creation of a video streaming solution capable of chan-
ging the quality of the stream by modifying the bitrate of the video under different
bandwidth conditions. The solution had to have a latency of 200 ms at maximum
and be capable of bypassing existing firewall rules imposed by different internet ser-
vice providers. This solution would be integrated into drones which would cover long
distances and therefore need a larger connection than a local network as part of their
navigation system.

In the beginning of the project several existing adaptive bitrate technologies were
considered and analyzed for their qualities, streaming properties, drawbacks, imple-
mentation difficulty, and several other factors which would satisfy the quality of the
stream and fulfill the nonfunctional requirements. Nonetheless, after close inspection,
we could not isolate an ABR technology capable of delivering what our strict con-
straint required. For this reason we decided to implement our own solution partially
based on the RTP and RTCP protocols. To make real-time video streaming possible
even in high resolution, such as 3840 x 2160 pixels, an embedded board (Nvidia Tx2)
was chosen. The board is capable of encoding video data in the requested resolution
but also capable of handling H.265 encoding for a lower bandwidth footprint of the
video stream.

To implement a substitute for the existing protocols we created a streaming plat-
form using the GStreamer framework as the core of the application. Several elements
and variables of this framework were evaluated to create the video stream in a high
level programming language such as Python. GStreamer was also a nonfunctional re-
quirement as the embedded board was capable to encode video in the H.265 standard

52

only under this framework.
To make it possible to adapt the video bitrate to the bandwidth level without apply-

ing an existing protocol which might be filtered by a firewall, the data needed to be sent
in UDP and TCP packets. To accomplish the task, Scapy was chosen and implemented
as part of the Python plugin library.

To evaluate the software we decided to create our own laboratory environment,
because the existing network-shaper solutions were not compatible with the Scapy
library. For this reason, we decided to build a web browser automation system for an
existing router which did not allow API calls. To make the testing ground as intuitive
and easy to operate as possible, we implemented the testing software with ROBOT
framework and Selenium.

Two main bandwidth functions were tested, one of which was artificially created
and the other one used a real life dataset of different levels of bandwidth under a 3G
network.

To make the adaption of the video quality to the bandwidth as fast and responsive
as possible, two adaptive bitrate algorithms were implemented and then analyzed and
discussed under such a testing environment. We saw the difference in behavior under
different bandwidth functions, and their similarities; how the linear algorithm per-
formed well on covering the majority of the bandwidth level while under-performing
on the lower specter of the bandwidth. Also we saw how, on the contrary, the slow
start algorithm performed exceptionally well when the bandwidth level had a decreas-
ing trend, but gave not satisfactory results for an increasing bandwidth function. This
makes us believe that a combination of the two algorithms would be a better solution
for exploiting their strong points. In case of an increasing bandwidth level we could
switch the algorithm to the linear one until we see a decrease on which we could again
use the slow start.

5.2 Future work

Our solution is only a prototype of a full implementation of the presented solution.
While our implementation can be used to adapt the bitrate to available bandwidth it is
still based on the RTP protocol. To be able have a video stream which can pass through
different network firewalls we need to remove RTP and for this reason we might need
to create an implementation of it which would only use UDP packets at its base. The

53

role of RTP is to provide a means to analyze jitter compensation and packet loss, but
most importantly, out of order delivery which is common during UDP video streaming.
To be able to simulate this behavior the payload of the UDP packet could be used as a
wrapper to be injected with custom data as shown in Figure 5.1:

Figure 5.1: Construction and deconstruction of a timestamp segment

We could construct video data from the input stream by joining together the video
data with a timestamp data segment. The payload could then be streamed over the re-
ceiver where it could be reconstructed by maintaining the original order of the packets.
The timestamp could be used to compute jitter analysis and out-of-order delivery, and
in conjunction with our previous RTCP re-implementation. As the last step to make
the application fully operational, an advanced encryption algorithm and a mechanism
which would allow us to change the port number of the video stream could be added,
which could certainly give all the advantages of RTP and RTCP without the drawbacks.

54

BIBLIOGRAPHY

[1] Wikipedia contributors. Adaptive streaming overview, 2011. [Online;
accessed 28 July 2011]. URL: https://commons.wikimedia.org/wiki/File:
Adaptive_streaming_overview_daseddon_2011_07_28.png#/media/File:
Adaptive_streaming_overview_daseddon_2011_07_28.png.

[2] Adaptive streaming. [Online; accessed 1 January 2019]. URL: https://opentv.
nagra.com/player/adaptive-streaming.

[3] Wikipedia contributors. Mpeg-dash, an overview. URL: https:
//1yy04i3k9fyt3vqjsf2mv610yvm-wpengine.netdna-ssl.com/wp-content/
uploads/2015/07/EDC_DASH-80.png.

[4] Jan Ozer. What is hls (http live streaming), 2011. [Online; accessed 14
Octover 2011]. URL: http://www.streamingmedia.com/Images/ArticleImages/
ArticleImage.11612.jpg.

[5] Wes Simpson. Scaling up for scalable video coding, 2011. [On-
line; accessed 5 April 2011]. URL: https://www.tvtechnology.com/
.image/c_limit%2Ccs_srgb%2Cfl_progressive%2Cq_auto:good%2Cw_450/
MTUzNzQwNTMwODQyMDg1MTQ0/image-placeholder-title.jpg.

[6] A new tool to test the ip network performance. [Online; accessed 9 January
2019]. URL: https://www.researchgate.net/figure/RTP-header_fig4_315479711.

[7] Rtp, rtcp. [Online; accessed 10 January 2019]. URL: https://m.blog.naver.com/
thorong/70147853857.

[8] Selenium home page. [Online; accessed January 2019]. URL: https://www.
seleniumhq.org.

[9] Bradley Mitchell. The range of a typical wi-fi network. URL: https://www.
lifewire.com/range-of-typical-wifi-network-816564.

[10] All you need to know about frequencies on which drones operate. URL: https:
//www.jammer-store.com/drones-frequencies.html.

55

https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png#/media/File:Adaptive_streaming_overview_daseddon_2011_07_28.png
https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png#/media/File:Adaptive_streaming_overview_daseddon_2011_07_28.png
https://commons.wikimedia.org/wiki/File:Adaptive_streaming_overview_daseddon_2011_07_28.png#/media/File:Adaptive_streaming_overview_daseddon_2011_07_28.png
https://opentv.nagra.com/player/adaptive-streaming
https://opentv.nagra.com/player/adaptive-streaming
https://1yy04i3k9fyt3vqjsf2mv610yvm-wpengine.netdna-ssl.com/wp-content/uploads/2015/07/EDC_DASH-80.png
https://1yy04i3k9fyt3vqjsf2mv610yvm-wpengine.netdna-ssl.com/wp-content/uploads/2015/07/EDC_DASH-80.png
https://1yy04i3k9fyt3vqjsf2mv610yvm-wpengine.netdna-ssl.com/wp-content/uploads/2015/07/EDC_DASH-80.png
http://www.streamingmedia.com/Images/ArticleImages/ArticleImage.11612.jpg
http://www.streamingmedia.com/Images/ArticleImages/ArticleImage.11612.jpg
https://www.tvtechnology.com/.image/c_limit%2Ccs_srgb%2Cfl_progressive%2Cq_auto:good%2Cw_450/MTUzNzQwNTMwODQyMDg1MTQ0/image-placeholder-title.jpg
https://www.tvtechnology.com/.image/c_limit%2Ccs_srgb%2Cfl_progressive%2Cq_auto:good%2Cw_450/MTUzNzQwNTMwODQyMDg1MTQ0/image-placeholder-title.jpg
https://www.tvtechnology.com/.image/c_limit%2Ccs_srgb%2Cfl_progressive%2Cq_auto:good%2Cw_450/MTUzNzQwNTMwODQyMDg1MTQ0/image-placeholder-title.jpg
https://www.researchgate.net/figure/RTP-header_fig4_315479711
https://m.blog.naver.com/thorong/70147853857
https://m.blog.naver.com/thorong/70147853857
https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.lifewire.com/range-of-typical-wifi-network-816564
https://www.lifewire.com/range-of-typical-wifi-network-816564
https://www.jammer-store.com/drones-frequencies.html
https://www.jammer-store.com/drones-frequencies.html

[11] Cam Cullen. Sandvine releases 2018 global internet phenomena report,
2018. [Online; accessed 2 October 2018]. URL: https://www.sandvine.com/
press-releases/sandvine-releases-2018-global-internet-phenomena-report.

[12] F.A. López-Fuentes. P2p video streaming strategies based on scalable video
coding. Journal of Applied Research and Technology, 13(1):113 – 124, 2015.
URL: http://www.sciencedirect.com/science/article/pii/S1665642315300109,
doi:https://doi.org/10.1016/S1665-6423(15)30010-9.

[13] Rtp: A transport protocol for real-time applications. RFC 3550, RFC Editor, July
2003. URL: https://tools.ietf.org/html/rfc3550.

[14] Emmanuel Thomas. Enhancing mpeg dash performance
via server and network assistance, 2017. [Online; ac-
cessed 29 March 2018]. URL: https://www.ibc.org/delivery/
enhancing-mpeg-dash-performance-via-server-and-network-assistance/1027.
article.

[15] NVIDIA. ACCELERATED GSTREAMER USER GUIDE. NVIDIA.
URL: https://developer.download.nvidia.com/embedded/L4T/r28_Release_v2.0/
DP/Docs/Jetson_TX1_and_TX2_Accelerated_GStreamer_User_Guide.pdf.

[16] Christopher Mueller. Mpeg-dash vs. apple hls vs. microsoft smooth streaming
vs. adobe hds, 2015. [Online; accessed 29 March 2015]. URL: https://bitmovin.
com/mpeg-dash-vs-apple-hls-vs-microsoft-smooth-streaming-vs-adobe-hds/.

[17] Rtp: A transport protocol for real-time applications. RFC 3550, RFC Editor, July
2003. URL: https://tools.ietf.org/html/rfc3550#section-5.1.

[18] Some frequently asked questions about rtp. [Online; accessed 8 January 2019].
URL: https://www.cs.columbia.edu/~hgs/rtp/faq.html#lite.

[19] Philippe Biondi and the Scapy community Revision. Scapy User-Guide. URL:
https://scapy.readthedocs.io/en/latest/.

[20] Charles-Francois Natali. Ntplib. URL: https://pypi.org/project/ntplib/.

[21] The most popular language for machine learning is ... [Online; accessed January
2018]. URL: https://www.ibm.com/developerworks/community/blogs/jfp/entry/
What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=
en.

[22] Gsth264parser. Documentation. URL: https://gstreamer.freedesktop.org/data/
doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-h264parser.
html#gst-plugins-bad-libs-h264parser.description.

56

https://www.sandvine.com/press-releases/sandvine-releases-2018-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2018-global-internet-phenomena-report
http://www.sciencedirect.com/science/article/pii/S1665642315300109
http://dx.doi.org/https://doi.org/10.1016/S1665-6423(15)30010-9
https://tools.ietf.org/html/rfc3550
https://www.ibc.org/delivery/enhancing-mpeg-dash-performance-via-server-and-network-assistance/1027.article
https://www.ibc.org/delivery/enhancing-mpeg-dash-performance-via-server-and-network-assistance/1027.article
https://www.ibc.org/delivery/enhancing-mpeg-dash-performance-via-server-and-network-assistance/1027.article
https://developer.download.nvidia.com/embedded/L4T/r28_Release_v2.0/DP/Docs/Jetson_TX1_and_TX2_Accelerated_GStreamer_User_Guide.pdf
https://developer.download.nvidia.com/embedded/L4T/r28_Release_v2.0/DP/Docs/Jetson_TX1_and_TX2_Accelerated_GStreamer_User_Guide.pdf
https://bitmovin.com/mpeg-dash-vs-apple-hls-vs-microsoft-smooth-streaming-vs-adobe-hds/
https://bitmovin.com/mpeg-dash-vs-apple-hls-vs-microsoft-smooth-streaming-vs-adobe-hds/
https://tools.ietf.org/html/rfc3550#section-5.1
https://www.cs.columbia.edu/~hgs/rtp/faq.html#lite
https://scapy.readthedocs.io/en/latest/
https://pypi.org/project/ntplib/
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-h264parser.html#gst-plugins-bad-libs-h264parser.description
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-h264parser.html#gst-plugins-bad-libs-h264parser.description
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-bad-libs/html/gst-plugins-bad-libs-h264parser.html#gst-plugins-bad-libs-h264parser.description

[23] queue. Documentation. URL: https://gstreamer.freedesktop.org/data/doc/
gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue.html.

[24] Tcp congestion control. RFC 5681, RFC Editor, January 2019. URL: https:
//tools.ietf.org/html/rfc5681.

[25] Wireless AC750 Dual Band Router. [Online; accessed February
2019]. URL: https://eu.dlink.com/uk/en/-/media/consumer_products/dir/dir-809/
manual/dir_809_a3_manual_v1_01_eu.pdf.

[26] Robot home page. [Online; accessed January 2019]. URL: https://
robotframework.org.

[27] Haakon Riiser Paul Vigmostad Carsten Griwodz Pål Halvorsen. Commute path
bandwidth traces from 3g networks: Analysis and applications.

[28] Z. Wang. Applications of objective image quality assessment methods [applic-
ations corner]. IEEE Signal Processing Magazine, 28(6):137–142, Nov 2011.
doi:10.1109/MSP.2011.942295.

[29] J. D. Ruikar, A. K. Sinha, and S. Chaudhury. Image quality assessment al-
gorithms: Study and performance comparison. In 2014 International Confer-
ence on Electronics and Communication Systems (ICECS), pages 1–4, Feb 2014.
doi:10.1109/ECS.2014.6892744.

[30] Imagemagic home page. [Online; accessed January 2019]. URL: https://www.
imagemagick.org.

[31] Ssim-pil home page. [Online; accessed January 2019]. URL: https://pypi.org/
project/SSIM-PIL/.

[32] Image quality metrics. [Online; accessed January 2019]. URL: https://www.
mathworks.com/help/images/image-quality-metrics.html.

[33] Richard Dosselmann and Xue Dong Yang. A comprehensive assessment of the
structural similarity index. Signal, Image and Video Processing, 5:81–91, 01
2010. doi:10.1007/s11760-009-0144-1.

[34] Thrasyvoulos N. Pappas Alan C. Brooks, Xiaonan Zhao. Structural similarity
quality metrics in a coding context: exploring the space of realistic distortions.
IEEE TRANSACTIONS ON IMAGE PROCESSING, 17:i –8, 2008.

57

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue.html
https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc5681
https://eu.dlink.com/uk/en/-/media/consumer_products/dir/dir-809/manual/dir_809_a3_manual_v1_01_eu.pdf
https://eu.dlink.com/uk/en/-/media/consumer_products/dir/dir-809/manual/dir_809_a3_manual_v1_01_eu.pdf
https://robotframework.org
https://robotframework.org
http://dx.doi.org/10.1109/MSP.2011.942295
http://dx.doi.org/10.1109/ECS.2014.6892744
https://www.imagemagick.org
https://www.imagemagick.org
https://pypi.org/project/SSIM-PIL/
https://pypi.org/project/SSIM-PIL/
https://www.mathworks.com/help/images/image-quality-metrics.html
https://www.mathworks.com/help/images/image-quality-metrics.html
http://dx.doi.org/10.1007/s11760-009-0144-1

A APPENDIX A

A.1 GStreamer server - example

An example of the construction of a GStreamer pipeline and the concatenation of the
different elements is given below:

#!/usr/bin/env python2

import os

import socket

import time

import logging

import gi

gi.require_version('Gst', '1.0')

from gi.repository import GObject, Gst

from gi.repository import GLib

scheduler library for the application

from apscheduler.schedulers.blocking import BlockingScheduler

scrap packet to count them library

from scapy.all import *
fetch O-time class

from Fetchtime import SyncTime

required for the scheduler

logging.basicConfig()

GObject.threads_init()

Gst.init(None)

address of the client

TCP_IP = ''

TCP_PORT = 3333

BUFFER_SIZE = 1024 # Normally 64, less for faster response

fetch online time

SyncTime.try_to()

class Sender:

58

def __init__(self):

Create GStreamer pipeline

self.pipeline = Gst.Pipeline()

Create bus to get events from GStreamer pipeline

self.bus = self.pipeline.get_bus()

self.bus.add_signal_watch()

self.bus.connect('message::error', self.on_error)

source

self.src = Gst.ElementFactory.make('nvcamerasrc', None)

self.src.set_property('fpsRange', "30 30")

self.src.set_property('intent', 3)

video

#self.srccaps = Gst.Caps.from_string(

#"video/x-raw(memory:NVMM), width=(int)800, height=(int)800, format=(

string)I420, framerate=(fraction)30/1")

self.srccaps = Gst.Caps.from_string(

"video/x-raw(memory:NVMM), width=(int)800, height=(int)800, format=(

string)I420, framerate=(fraction)30/1")

conversion

self.conversion = Gst.ElementFactory.make('nvvidconv', None)

self.conversion.set_property('flip-method', 6)

encoder

self.encoder = Gst.ElementFactory.make('omxh264enc', None)

self.encoder.set_property('low-latency', 1)

self.encoder.set_property('control-rate', 2)

self.encoder.set_property('bitrate', 40000)

print(self.encoder.get_property('bitrate'))

stream

self.stream = Gst.Caps.from_string("video/x-h264, stream-format=(string)byte-

stream")

self.rtp = Gst.ElementFactory.make('rtph264pay', None)

for controlling the size of the rtp packets

#self.rtp.set_property('mtu',100)

self.parse = Gst.ElementFactory.make('h264parse', None)

self.udp = Gst.ElementFactory.make('udpsink', None)

self.udp.set_property('host', '192.168.11.35')

self.udp.set_property('port', 5001)

self.udp.set_property('auto-multicast', False)

add time

self.text = Gst.ElementFactory.make('textoverlay', None)

self.text.set_property('text', "Time:")

Add elements to the pipeline

self.pipeline.add(self.src)

self.pipeline.add(self.conversion)

59

self.pipeline.add(self.encoder)

self.pipeline.add(self.parse)

self.pipeline.add(self.rtp)

self.pipeline.add(self.udp)

we add the text overlay here

self.pipeline.add(self.text)

link them together

self.src.link_filtered(self.conversion, self.srccaps)

self.conversion.link_filtered(self.encoder, self.srccaps)

self.encoder.link_filtered(self.parse, self.stream)

self.parse.link(self.rtp)

self.rtp.link(self.udp)

run the program

def run(self):

create socket and accept connections

def connect(host, port):

address = (host, port)

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server_socket.bind(address)

server_socket.listen(5)

print "Listening for client . . ."

global conn

conn, address = server_socket.accept()

print "Connected to client at ", address

connect(TCP_IP, TCP_PORT)

Start Gstreamer playing

self.pipeline.set_state(Gst.State.PLAYING)

take the time for synch

time_start = conn.recv(BUFFER_SIZE)

print "h"

print " The program will start to monitor the packets at: ", time_start

method to count the packets

def count_udp():

initialize and reset the count var

global count

count = 0

60

function called for every packet

count how many packets are filtered

def pkt_callback(pakets):

global count

count += 1

conf for raspberry pi

packets = sniff(lfilter=pkt_callback, filter='udp and host 192.168.11.48

and port 5001', store=0, timeout=1)

method to get the last packet in case of a concatination when the

servers is down

def last_packet(received):

final_regex=re.findall('\d+',received)[-1]

final_regex=int(final_regex)

return final_regex

receive packet

rec_packets=last_packet(conn.recv(BUFFER_SIZE))

if packet is 0

if not rec_packets:

wait for a reconnection

connect(TCP_IP, TCP_PORT)

time_start = conn.recv(BUFFER_SIZE)

start everything

schedule_run.add_job(start_scheduler, 'date', run_date=time_start,

args=[time_start])

rec_packets = '0'

the difference between packets sent and received

difference_sent_received_packets = count - int(rec_packets)

method to lower the bitrate when the bandwidth lowers

todo: just a friendly reminder for you to actually use this

def lowerBitrate(created, received,bitrate):

diffpacket=created-received

diffPercentage=diffpacket/created

diffBitrate=bitrate*diffPercentage

return diffBitrate

test the output

print str(count) + " - " + str(rec_packets) + " = " + str(

difference_sent_received_packets)

61

bitrate2 = self.encoder.get_property('bitrate')

rec_packets = int(rec_packets)

print "difference:", difference_sent_received_packets

count = int(count)

count = abs(count)

print count

if (difference_sent_received_packets < count*0.2) and (bitrate2

<=4294967295) :

print difference_sent_received_packets - count*0.2

bitrate2= bitrate2+100000

elif (difference_sent_received_packets > count*0.2) and (bitrate2 >

200000):

#bitrate2 = bitrate2 - 200000

bitrate2=lowerBitrate(count,rec_packets,bitrate2)

bitrate2=int(bitrate2)

bitrate2=abs(bitrate2)

self.encoder.set_property('bitrate', bitrate2)

gititi = self.encoder.get_property('bitrate')

print " Current bitrate:" + str(gititi)

recursive running of the count_udp method

schedule_run.add_job(count_udp)

create schedule object

schedule_run = BlockingScheduler()

function to start for the first time count_udp method

def start_scheduler(datetime):

print "Program started in", datetime

schedule_run.add_job(count_udp)

start everything

schedule_run.add_job(start_scheduler, 'date', run_date=time_start, args=[

time_start])

schedule_run.start()

def on_error(self, bus, msg):

print('on_error():', msg.parse_error())

if __name__ == '__main__':

sender = Sender()

sender.run()

62

	Abstract
	Contents
	List of Figures
	Glossary
	1 Introduction
	1.1 Field of interest
	1.2 Streaming over internet
	1.3 Objectives of the thesis
	1.4 Thesis structure
	2 Related Work
	2.1 What is Adaptive bitrate
	2.2 Different Implementations
	2.2.1 MPEG-DASH
	2.2.2 HLS
	2.2.3 SVC
	2.2.4 RTP

	2.3 Drawbacks of the existing technologies

	3 Proposed Solution
	3.1 Overview of the solution approach
	3.2 Software Design
	3.3 Implementation of Gstreamer Nvidia TX2
	3.4 Adaptive Bitrate Algorithms
	3.4.1 Decrease Algorithm
	3.4.2 Linear Algorithm
	3.4.3 Slow Start Algorithm

	4 Results Analysis
	4.1 Evaluation Environment
	4.2 Evaluation Metrics
	4.2.1 Picture Quality
	4.2.2 Video and Streaming Quality

	4.3 Laboratory Analysis
	4.3.1 Sinusoidal bandwidth function
	4.3.2 Real dataset bandwidth function
	4.3.3 Conclusions

	5 Implementation Analysis and Future Work
	5.1 Implementation analysis
	5.2 Future work

	Bibliography
	A Appendix A
	A.1 GStreamer server - example

