
Annif: DIY automated subject indexing
using multiple algorithms
Osma Suominen
National Library of Finland
osma.suominen@helsinki.fi
https://orcid.org/0000-0003-0042-0745

​Abstract
Manually indexing documents for subject-based access is a labour-intensive process. We
propose using metadata gathered from bibliographic databases to train algorithms that assist
librarians in that work. We have developed Annif, an open source tool and microservice for
automated subject indexing. After training it with a subject vocabulary and existing metadata,
Annif can be used to assign subject headings for new documents. We have tested Annif with
different document collections including scientific papers, old scanned books and contemporary
e-books, Q&A pairs from an “ask a librarian” service, Finnish Wikipedia, and the archives of a
local newspaper. The results of analysing scientific papers and current books have been
reassuring, while other types of documents have proved to be more challenging. The current
version is based on a combination of existing natural language processing and machine
learning tools. By combining multiple approaches and existing open source algorithms, Annif
can build on the strengths of individual algorithms and adapt to different settings. With Annif, we
expect to improve subject indexing and classification processes especially for electronic
documents as well as collections that otherwise would not be indexed at all.

Key Words​: metadata; automated subject indexing; natural language processing; machine
learning

​1​ Introduction
Libraries manage a vast amount of metadata about different kinds of documents. Typically,
these documents are indexed with subject headings from a subject vocabulary such as a
thesaurus or subject heading system to improve discoverability. Manually indexing documents is
a very labour-intensive intellectual process. Many new documents are available electronically,
so it is possible to have a machine perform part of the indexing based on either the full text or
shorter pieces of text such as a summary, an abstract, or a descriptive title.

mailto:osma.suominen@helsinki.fi
https://orcid.org/0000-0003-0042-0745

For the machine to perform well, it needs to be trained with examples. Libraries have a lot of
training data in the form of bibliographic databases, but in many cases, only a title and possibly
an abstract is available, but not the full text. We propose to leverage that data to help indexing
new documents.

To do so, we have developed Annif, an open source multi-algorithm automated indexing tool.
After loading a subject vocabulary and existing metadata, Annif learns how to assign subject
headings to new documents. It can also be used as a web service that can be integrated with
other systems. Annif is being developed on GitHub and thanks to the collaboration between the 1

Zenodo repository and GitHub, it also has a permanent DOI . An initial prototype was developed 2

in early 2017 and a new version that is suitable for production use is now ready to be used.

​2​ Background and related work
In this section we explain the typical process of operation of automated indexing systems,
review the main approaches used in automated indexing and discuss how automated indexing
services can be provided as web services that can be integrated with other systems. We will
also consider the limitations of existing systems from the perspective of libraries..

​2.1​ Process of automated indexing
Automated subject indexing systems generally follow a particular process. First, text documents
are preprocessed, for example by tokenizing the text into sentences and individual words,
converting words into lower case, removing stop words and/or stemming or lemmatizing words
so that different grammatical variations of the same word are reduced to the stem or lemma that
identifies the meaning of the word. Second, the documents are often converted into a vector
representation of word frequencies, known as a ​bag-of-words model, ​that can be used to query
for matching subjects using a suitable algorithm​. ​Alternatively, the preprocessed tokens may be
directly matched with terms from a controlled vocabulary. In both cases, the result is a list of
candidate subjects​ for the document. In order to determine the final set of suggested subjects
for the document, the candidates must then be ranked and only the most promising ones
retained (Medelyan 2009; Toepfer & Seifert 2018).

​2.2​ Approaches
Algorithms for automated subject indexing can generally be divided into ​lexical​ and ​associative
approaches ​(Toepfer & Seifert 2018). In lexical approaches, frequently occurring or otherwise
salient terms in the document are matched with terms in the vocabulary. Such algorithms can
be relatively simple and precise, but their downside is that quite often, not all relevant subjects
appear verbatim in document text, so these will never be suggested by lexical algorithms

1 See ​https://github.com/NatLibFi/Annif
2 ​https://doi.org/10.5281/zenodo.2578948

https://github.com/NatLibFi/Annif
https://doi.org/10.5281/zenodo.2578948

(Pouliquen, Steinberger & Ignat 2003). Associative approaches, including machine learning
algorithms, instead find correlations between words (or, more generally, short sequences of
words called n-grams) in document text and subjects, based on a large amount of training data.
These two approaches can be considered complementary, and often the best results are
obtained by combining results from both kinds of algorithms using ​ensembles​ and/or ​fusion
architectures ​(Toepfer & Seifert 2018).

​2.2.1​ Lexical approaches
Well-known lexical automated subject indexing systems include KEA and its successors KEA++
and Maui (Medelyan 2009). They support multiple languages and they can be used with any
indexing vocabulary. Another lexical automated subject indexing system is the Medical Text
Indexer developed by the US National Library of Medicine for indexing medical documents with
the Medical Subject Headings vocabulary (Mork, Jimeno-Yepes & Aronson 2013). Although all
of these systems include some machine learning aspects, they are primarily based on lexical
matching between vocabulary terms and document terms.

​2.2.2​ Machine learning approaches
Many machine learning based systems for automated subject indexing have been developed
since the 1990s, when the approach became the dominant paradigm for automated subject
indexing (Sebastiani 2002). Some recent examples for which an implementation is available
include Magpie (Kim 2014; Berger 2015), FastXML (Prabhu & Varma 2014), PD-Sparse (Yen et
al. 2016), fastText (Joulin et al. 2017), Quadflor (Galke et al. 2017), AnnexML (Tagami 2017)
and Parabel (Prabhu et al. 2018).

​2.3​ Web services
Some automated subject indexing systems are also available as web services which can be
integrated with existing document management systems. The BioPortal ontology repository 3

provides a service called Annotator, which is given text and matches terms in the text to
concepts in biomedical vocabularies such as SNOMED CT. It can be used to find concepts in
ontologies that correspond to variables or other entities in a description of a biomedical data set
(Jonquet, Shah & Musen 2009). Another somewhat similar annotation and entity extraction
service is DBpedia Spotlight, which finds occurrences of DBpedia entities within text (Daiber et
al. 2013). The focus of both of these tools is to provide a web API for retrieving all the matches
within the given text. They do not try to determine the most relevant subjects of a document, so
by themselves they only solve the first part of an automated subject indexing task, which is to
determine possible candidate subjects for a given text.

3 See ​https://bioportal.bioontology.org/

https://bioportal.bioontology.org/

​2.4​ Commercial tools
Some commercial vocabulary management tools also include entity extraction and/or
automated subject indexing functionalities. The PoolParty thesaurus management platform
includes the PoolParty Extractor module , which finds entities in text that correspond to 4

concepts in the thesaurus and may also suggest new concepts for addition. This functionality
was at least initially based on a modified version of KEA (Schandl & Blumauer 2010). The
TopBraid Enterprise Data Graph suite includes the AutoClassifier module which uses Maui to 5

perform a similar function, suggesting concepts that best represent the topic of an input
document (Cyganiak 2015). Both tools provide a REST-style web API that enables integration of
the subject indexing functionality with other systems.

​2.5​ Limitations of existing systems
From the perspective of libraries, the systems mentioned above suffer from one or more
drawbacks. First, many tools are limited to a single language (often English) and/or tied to a
specific subject vocabulary. Yet subject indexing practices vary in different institutions and often
there is a need to index materials in multiple languages and also use several different
vocabularies. Second, the tools that are not language- or vocabulary-specific, including KEA,
KEA++, Maui and the many machine learning algorithms, can be difficult to integrate with
existing systems used for cataloguing and indexing, since they are either provided as command
line tools or as software libraries in a particular implementation language. The commercial
systems provide web services that are designed to be easily integrated with other systems, but
their implementation is controlled by the respective vendors.

​3​ Architecture
The first prototype of Annif was created in early 2017. It consisted of a loose collection of
Python scripts that implemented a minimal REST API and a simple web user interface. An
Elasticsearch index was used to find associations between subjects in a vocabulary and words
in document titles that had been collected from the Finna API . The idea was to turn a traditional 6

text index on its head: instead of entering a topic and getting a list of documents about that topic
in response, the input would be a single document and the output would be the most relevant
topics for that document. The name given to the tool reflects this idea: Annif is Finna spelled
backwards. The prototype worked well enough to demonstrate the utility of the approach, but
the technical implementation would have been difficult to maintain, so development of a new
version was started in early 2018.

4 See ​https://www.poolparty.biz/poolparty-extractor/
5 See ​https://www.topquadrant.com/products/topbraid-tagger-autoclassifier/
6 See ​https://api.finna.fi

https://www.poolparty.biz/poolparty-extractor/
https://www.topquadrant.com/products/topbraid-tagger-autoclassifier/
https://api.finna.fi/

The new Annif is implemented as a Python application using the Flask and Connexion
frameworks for web server and REST API functionality. The subject indexing and classification
is handled by different backends, i.e. different algorithms that can be used either alone or in
combinations (so-called ensembles). Each backend is implemented as a separate module and
new backends can be added in the future. A more detailed system architecture diagram is
shown in Figure 1. This figure will be explained in more detail through sections 3.1 to 3.7.

Figure 1​. Annif system architecture

​3.1​ Project configuration
Annif is configured by defining ​projects​, which are used to set up backends and configure them
with a specific vocabulary and parameters, including its language and analyzer (see section 3.2
below). Each project is independent of other projects but in some cases projects may be linked,
for example by using the output of one project as the input of an ensemble project. The projects
are defined in a configuration file (① in Figure 1).

​3.2​ Analyzers
Document text needs to be preprocessed before it can be analyzed with subject indexing
algorithms. In Annif, text preprocessing is handled by Analyzer modules, that tokenize the text
into sentences and individual words. Words may further be normalized using language-specific
stemming or lemmatization algorithms. Tokenization and stemming are implemented using the

NLTK library , which provides a Snowball stemmer that supports 15 different languages. There 7

is also a lemmatizing algorithm for the Finnish language based on the Voikko library . 8

​3.3​ Vocabulary support
Annif needs to be aware of the subject vocabulary that will be used for indexing. The vocabulary
module handles loading and storing of vocabulary data. Vocabularies can be loaded either from
simple TSV files or from SKOS/RDF files (② in Figure 2). The same vocabulary may be shared
by multiple Annif projects and needs to be loaded only once.

​3.4​ Subject indexing algorithms
Currently, four subject indexing algorithms have been implemented as Annif backends. All
implementations are based on existing open source libraries, which have been integrated into
the Annif framework. ​Maui​ uses a lexical approach, while ​TF-IDF​, ​fastText​ and ​Vowpal Wabbit
represent different kinds of associative approaches. Most algorithms need to be trained using
existing metadata and/or full text documents (③ in Figure 1).

​3.4.1​ Maui
Maui is a lexical automated subject indexing algorithm developed at the University of Waikato
(Medelyan 2009). It incorporates a large number of heuristics for determining which of the
possible matches between terms in a vocabulary and words in a document best represent the
topics of that document. The balance between the available heuristics is determined using
machine learning, so a relatively small amount of manually indexed documents (up to a few
hundred) is required for training a Maui model. In Annif, Maui is used via the ​http​ backend,
which allows integrating subject indexing services which have a suitable REST API, including
Annif itself and MauiService , a REST microservice wrapper around Maui. 9

​3.4.2​ TF-IDF
The ​tfidf​ backend in Annif is a relatively simple statistical method used for finding correlations
between subjects in the vocabulary and words in documents. A representative set of text is
formed for each subject in the vocabulary by concatenating text (usually only titles) from
documents that have been manually indexed with that subject. The ​term frequencies​ and
inverse document frequencies​ are then calculated for all words appearing in those sets and
these TF-IDF values are stored as vectors in an index. For new documents, TF-IDF vectors are
similarly calculated and the most similar subjects are retrieved from the index. The calculations
are performed using the Gensim library (Rehurek & Sojka 2010).

7 See ​http://www.nltk.org/
8 See ​https://voikko.puimula.org/
9 See ​https://github.com/NatLibFi/mauiservice

http://www.nltk.org/
https://voikko.puimula.org/
https://github.com/NatLibFi/mauiservice

​3.4.3​ fastText
fastText (Joulin et al. 2017) is a machine learning algorithm for text classification created at
Facebook Research. It claims to be roughly on par with deep learning approaches despite using
a simpler architecture that resembles a shallow feed-forward neural network. The algorithm is
relatively fast to train compared to other machine learning approaches, in part thanks to some
tricks and shortcuts used in the implementation. The ​fasttext​ backend in Annif is a thin wrapper
around the fastText Python bindings. There are quite a few hyperparameters to select and these
may be tuned to attain good classification accuracy using a particular vocabulary and document
corpus.

​3.4.4​ Vowpal Wabbit
Vowpal Wabbit (VW) is a general purpose online machine learning framework. It was originally 10

created by Yahoo! Research and current development continues at Microsoft Research. The
vw_multi​ backend in Annif is a wrapper around several VW algorithms for multi-class and
multi-label classification. Thanks to the online learning approach, the VW models can be further
trained during use based on feedback from a user verifying the suggestions made by the
algorithm. As the most recent addition to the Annif backends it has not yet been thoroughly
evaluated, but it appears to be best suited for classification with relatively small (fewer than
1,000 classes/subjects) vocabularies.

​3.5​ Ensembles and data fusion
All automated subject indexing algorithms have their drawbacks. Incorrect subject assignments
can be caused by many factors, including homonyms (e.g. ‘rock’ can mean stone or a kind of
music), misinterpreted names (e.g. ‘Smith’ as a surname or a profession), correlations in data
that do not imply causation, biased training data and random noise. Generally speaking,
different kinds of algorithms tend to make different mistakes. A good strategy for improving
quality is thus to combine different algorithms aiming to bring out the strengths of individual
algorithms while diminishing their flaws.

Fusion methods for automated subject indexing (Toepfer & Seifert 2018) are ways of combining
results from multiple algorithms. The algorithms are combined into an ensemble and the final
prediction of subjects is made by using a ​decision function​ applied on the predictions of
individual algorithms. Fusion methods can be further divided into ​descriptor-invariant​ and
descriptor-specific​ decision functions. In a descriptor-invariant function, every concept is
handled in the same way, while descriptor-specific functions vary per individual concept. Annif
supports two fusion backends, which combine results from configured source backends.

10 See ​http://hunch.net/~vw/​ and ​https://github.com/VowpalWabbit/vowpal_wabbit

http://hunch.net/~vw/
https://github.com/VowpalWabbit/vowpal_wabbit

​3.5.1​ Simple ensemble
The ​ensemble​ backend in Annif implements a simple, descriptor-invariant fusion method where
the predictions from individual algorithms are merged by calculating the mean of score values
for each predicted subject and using those as the final prediction. No learning is involved in this
method.

​3.5.2​ PAV ensemble
The ​pav​ backend in Annif implements a more advanced, descriptor-specific fusion method. It
requires some more manually indexed full text documents for training in addition to those used
to train the original backends. In experiments described in more detail in section 4 below, we
have obtained good results using thousands of training documents to train PAV ensembles.

The training documents are first passed to the backend algorithms within the ensemble. Their
prediction results are compared with the manually assigned subjects using ​isotonic regression​,
which is a statistical method that can be used for estimating the relationship between score
values returned by the backends for particular subjects and the probability of the subject being
relevant for the document (Wilbur & Kim 2014). A separate regression model is created for each
backend and each subject. New documents are first analyzed by the backends and the
regression models are applied to the predicted scores, giving predicted probabilities. The final
prediction is calculated using the mean value of the predicted probabilities.

​3.6​ Command line interface
Annif provides a command line interface which is mainly intended for initial setup, training, and
evaluation of models. The training of models is done by providing Annif with training documents
expressed in simple text file formats . It can also be used to assign subjects to individual 11

documents or document collections stored as text files. The command line interface can also be
used to evaluate the algorithms by comparing their output to manually indexed document
collections. Annif can be used to calculate many evaluation metrics, including precision, recall,
F1 score and normalized discounted cumulative gain (NDCG).

When using the command line, the models need to be loaded from disk into memory separately
for each invocation, so using large models is not very efficient. After initial setup and
experimentation, setting up Annif as a persistent web service is recommended.

11 See ​https://github.com/NatLibFi/Annif/wiki/Document-corpus-formats​ for documentation about formats

https://github.com/NatLibFi/Annif/wiki/Document-corpus-formats

​3.7​ REST API
When Annif is run as a web service it provides a relatively simple REST API which exposes 12

the automated indexing functionality to other applications. The web server functionality of Annif
is based on the Flask and Connexion toolkits and can be integrated with standard web server
software such as Apache HTTPD using a WSGI gateway service (e.g. mod_wsgi). The core
method of the API is ​suggest​, which is given a text document and returns a JSON-encoded list
of suggested subjects (concept URIs and labels) along with their estimated scores. Another
important method is ​learn​, which is given one or more text document along with verified subjects
for each document, and the corresponding models are updated based on this feedback.
Currently only the Vowpal Wabbit based backend supports this kind of feedback-based online
learning but learning support will be extended to other backends in the future.

​4​ Evaluation
Annif has been evaluated with several Finnish language corpora.

​4.1​ Vocabulary
All of the documents have been manually indexed using either the General Finnish Thesaurus
YSA or its successor, the General Finnish Ontology YSO. For corpora indexed using YSA, the
YSA subjects have been converted to their nearest YSO equivalents.

​4.2​ Training data
The following algorithms were used:

● TF-IDF model trained using metadata from Finna.fi
● fastText model trained using metadata from Finna.fi
● Maui model trained using a combination of all the ​maui-train​ subsets
● PAV specific: PAV models trained on a ​train​ set specific to each corpus
● PAV generic: a single PAV model trained on a combination of all ​train ​sets

​4.3​ Document corpora
The following corpora were used for evaluation:

1. Arto​: Articles from the Arto bibliographic database (n=6287 articles). These include 13

both academic articles as well as less formal publications from e.g. professional journals,
and cover many different disciplines.

12 See ​http://api.annif.org​ for API documentation
13 ​https://www.kansalliskirjasto.fi/en/services/metadata-reserve-services/arto

http://api.annif.org/
https://www.kansalliskirjasto.fi/en/services/metadata-reserve-services/arto

2. JYU Theses​: Master’s and doctoral theses from University of Jyväskylä (n=7400)
published in the years 2010 to 2017 (inclusive). These are long, in-depth academic
documents that cover many disciplines.

3. AskLib​: Question and answer pairs from the Ask a Librarian service run by public
libraries in Finland. The original database consisted of over 25,000 documents but we
extracted the subset with a minimum of 4 subjects per document (n=3150). These are
short, informal questions and answers about many different topics.

4. Satakunnan Kansa​: Digital archives of Satakunnan Kansa regional newspaper. The
archives consist of over 100,000 unindexed documents. Out of these, a random sample
of 50 documents was manually indexed by four librarians working independently.

The corpora 1-3 are available on GitHub, in the Annif-corpora public repository. In corpora 1 14

and 2, only links to PDF files are provided due to copyright reasons, but the full text is available
elsewhere on the web.

Each corpus was split into ​train​, ​validate​ and ​test​ subsets, where the ​train​ set was to be used
for training Annif algorithm, the ​validate​ set for choosing optimal hyperparameters and
limit/threshold settings, and the ​test​ set for final evaluation. For the Arto corpus, a random split
was used. For JYU Theses and AskLib, the corpus was split by publication time: documents
published before 2016 were assigned to the ​train​ set, documents published in 2016 to the
validate​ set and documents published in 2017 to the ​test​ set. For the first three corpora, an
additional ​maui-train​ subset, intended for training Maui models, was created by taking a random
sample of 200 documents from the ​train​ set. For Satakunnan Kansa, all the manually indexed
documents were used only as a ​test​ set. Each document was indexed independently by four
librarians. We considered each set of subjects independently, so the evaluation was performed
on 200 different document/subject combinations. The number of documents in each subset are
summarized in Table 1.

Corpus # train # maui-train # validate # test

Arto 5287 (84%) 200 (3%) 500 (8%) 500 (8%)

JYU Theses 3635 (70%) 200 (4%) 786 (15%) 766 (15%)

AskLib 2625 (83%) 200 (6%) 213 (7%) 312 (10%)

Satakunnan Kansa - - - 50 * 4

Table 1: Subsets of the document corpora used for evaluation.

14 ​https://github.com/NatLibFi/Annif-corpora

https://github.com/NatLibFi/Annif-corpora

​4.4​ Evaluation results

The main evaluation measure was F1 score. However, since F1 score is sensitive to the number
of subjects assigned to each document, which is affected by the limit and threshold parameters,
we applied a limit of at most suggested 5 subjects per document, which appeared to be
near-optimal based on evaluation on the ​validate​ sets. The results of evaluations on the final
test​ sets are shown in Figure 2.

Figure 2​: Evaluation results

Based on the evaluation results, we can conclude the following:

1. Of the individual algorithms, Maui performed best on all corpora. The relative
performance of TF-IDF and fastText varied by corpus, with TF-IDF being somewhat
better on average.

2. The ensemble models were always superior to individual algorithms.
3. The PAV ensembles were generally superior to plain ensembles, with the exception of

the Satakunnan Kansa corpus.
4. The generic and specific PAV ensembles were roughly on par, but for AskLib, the

specific PAV ensemble performed slightly better.

​5​ Usage scenarios
Automated subject indexing can be used to assist manual indexing (​semi-automated indexing)​,
so that an algorithm is used to suggest subjects for a new document which are then verified
manually, or independently (​fully automated indexing)​, so that the suggestions of the algorithm
are accepted without manual verification. Annif may be used in both kinds of scenarios as well
as some less conventional settings.

​5.1​ Semi-automated indexing
In semi-automated subject indexing, the quality of results is not as critical as in the fully
automated case, but the suggestions of the algorithm must still provide value to the indexer
instead of being a distraction. Automated suggestions can be incorporated into existing manual
indexing workflows.

​5.1.1​ JYX institutional repository
The University of Jyväskylä has integrated Annif into its institutional repository JYX , which is 15

used, among other purposes, for archiving Master’s and doctoral theses. Students upload their
thesis to the repository as a PDF file and are then requested to enter metadata about the thesis,
including subjects. The text is extracted from the PDF document and sent to the Annif REST
API for analysis. The predicted subjects are shown to the student, who can then select the most
appropriate subjects and also enter additional subjects that the algorithm has missed. A
screenshot of the suggestions is shown in Figure 3.

15 See ​https://jyx.jyu.fi/

https://jyx.jyu.fi/

Figure 3​. Subjects suggested by Annif after uploading a document to the JYX repository.

The university was an early adopter of Annif and started using the REST API of the Annif
prototype in May 2018, when a new version of the JYX repository was launched. In the
beginning of November 2018, JYX switched to the REST API of the new Annif implementation.
The university has collected data about the subjects suggested by Annif for Master’s theses, the
choices made by students and the final subjects assigned by librarians, who perform the final
validation of metadata. This data makes it possible to evaluate the quality of subjects suggested
by Annif and to compare the quality of the Annif prototype against the new version.

From May to October 2018, 890 Master’s theses were uploaded to JYX and analyzed by the
Annif prototype. From November 2018 to January 2019, a further 385 Master’s theses were
uploaded and analyzed by the new version of Annif, which used a simple ensemble model
combining TF-IDF, fastText and Maui algorithms.

Similarity between the subjects suggested by Annif (either the prototype or new version), the
subjects selected by students and the final subjects assigned by librarians is shown in Figure 4.
We can see that approximately one third of the subjects suggested by the Annif prototype were
selected both by students and the librarians making the final choices, which already shows that
the system provided value to the users of JYX. However, the results for the new version were
much better: students selected approximately one half of the suggestions by Annif, and the
librarians slightly more (53%). The variation in F1 scores between documents is quite high, as

shown by the error bars, indicating that the results were much better for some theses than for
other. In the case of students, some of this variation can be explained by students who did not
select any subject from the suggestions (30% for the prototype, 15% for the new version). We
cannot tell whether this happened because the suggestions were very bad or because of some
other, unrelated reason.

Figure 4​. F1 similarity between Annif suggestions, student-selected subjects and final subjects
in JYX, for the Annif prototype and new version

The similarity scores for the new version are analyzed broken down by university department in
Figure 5. Due to the relatively small number of documents and the high variation in F1 scores,
we cannot draw any firm conclusions, but it appears that the best results are obtained in the
humanities, while results are not as good in mathematics, science and technology. This pattern
may be due to differences in granularity of the subject vocabulary in different topical areas, as
well as the different nature of concepts in different fields: in the humanities, concepts may often
be broader and fuzzier, whereas in more technical fields they can be more specific and strictly
bounded.

Figure 5​. F1 similarity between Annif (new version) suggestions, student-selected subjects and
final subjects in JYX, by department

​5.2​ Fully automated indexing
Fully automated indexing is suitable for large document collections, where manual verification of
suggested subjects is not feasible. Typically, stricter criteria are applied on the suggested
concepts: the number of subjects per document is limited to a small number and a high score or
probability threshold is used to restrict the assigned subjects to only the most certain ones. To
demonstrate how Annif can be applied for automatically indexing large document collections, we
have tested it on two large document corpora: Finnish Wikipedia and the digital archives of
Satakunnan Kansa regional newspaper.

​5.2.1​ Finnish Wikipedia
We downloaded the full database dump of Finnish Wikipedia articles dated 2019-03-01 and
converted it to plain text using the WikiExtractor tool . The dump included 452,857 articles. 16

Each article was analyzed with Annif using a simple ensemble consisting of TF-IDF, fastText
and Maui backends. Relatively strict criteria were used for selecting subjects, both because
Wikipedia articles are focused on a single topic and to avoid false positives that could skew the
analysis. A maximum of 3 subjects per article were chosen, and a score threshold of 0.85
relative to the best score was used (i.e. if the best subject got a score of 0.5, then up to two
other subjects with a score of at least 0.425 were included as well). This resulted in 1.56
subjects per article on average. The processing was performed on a standard virtual server
using four CPU cores in parallel and took about 16 hours, at a rate of 8.0 articles per second.
The most frequently occurring subjects according to this analysis are shown in Figure 6.

16 See ​https://github.com/attardi/wikiextractor

https://github.com/attardi/wikiextractor

Figure 6​. Most frequently occurring subjects in Finnish Wikipedia articles.

If we group the top 20 subjects by themes, we can see that the most common themes include
cinema (films, actors, directors), music (musical groups, music recordings, death metal), sports
(football, world championships, sports matches, Olympics, formula racing), and geography
(lakes, villages). Some surprisingly common themes are subjects related to the navy (e.g. fleet
and naval fleet) and bishops. A spot check of articles indexed with these subjects reveals that
there really are quite many pages about individual warships on Finnish Wikipedia, as well as
biographical pages for bishops, most of them apparently imported from a database of Catholic
priests. The analysis gives a thematic overview of Finnish Wikipedia that would be difficult to
obtain using text processing (e.g. calculating word frequencies) alone. Since the vocabulary
YSO is trilingual, the same analysis could also potentially be performed on Swedish and English
Wikipedia and the results compared on a conceptual level.

​5.2.2​ Satakunnan Kansa
We performed a similar analysis using the same methods as with the Finnish Wikipedia articles
on the digital archives of the Satakunnan Kansa regional newspaper, which contains 111,850
articles published between 1987 and 2004. The analysis took about 4.5 hours, or 7.1 articles
per second. In this case, the main themes were related to municipal decision-making and
development (e.g. municipal councils, local executives, chairpersons, schools, plots of land,
municipal managers), use of money and currencies (Finnish markka, euros, budgets) and the
local jazz music festival Pori Jazz. However, many articles were incorrectly assigned subjects
related to specific buildings such as the Pori Orthodox Church, the Church of Holy Trinity in
Rauma, and the Vanhakartano Manor in Köyliö. The articles indexed with those subjects were
mostly not concerned with those buildings but were more generally about the cities of Pori and

Rauma and the former municipality of Köyliö. However, since the YSO subject vocabulary does
not include places—they are in a separate vocabulary called YSO Places—the algorithms
ended up suggesting buildings located in those places instead. Even in this case the analysis
gives a thematic overview of the newspaper archives, but the results need to be interpreted
carefully as some of the assigned subjects can be misleading.

​5.3​ Unconventional uses
While semi-automated and fully automated indexing are the main usage scenarios of Annif, it
can also be used for novel purposes. Since Annif provides a simple REST API, it can be easily
integrated into various tools that go beyond the scope of traditional automated subject indexing.

​5.3.1​ Supporting indexing of printed materials
Although automated indexing is mostly applied to digital materials, we have explored
possibilities to use Annif for assisting in the indexing of traditional printed materials such as
books and articles. We have built two prototype mobile apps that use the camera in a tablet or
smartphone to take a picture of a document (or a part of it such as the introduction section),
convert it to text using optical character recognition (OCR) technology, and analyze it using the
Annif REST API.

The first prototype is a mobile web application that runs within the browser of a mobile device. 17

It uses a cloud OCR service to convert the picture into text, which is relatively slow because the
picture needs to be uploaded to the web, but the app works on any mobile device with a modern
browser. The second prototype is a native Android app which uses the Google ML Kit library to 18

perform real time OCR on the mobile device. In both apps, the user will then be presented with
a list of suggested subjects, usually in a much shorter time than it would take to read the
document. However, these prototypes are currently just demonstrations of the idea and we have
not yet performed any formal testing of these apps as part of an actual subject indexing
workflow.

​5.3.2​ Recommending documents based on web page text
One of the applications developed at a hackathon organized by the National Library of Finland,
together with other partners, was a Chrome browser extension called Finna Recommends . 19

The extension adds a small button with the Finna icon to the browser toolbar. The user can
select any text from a web page and then click the button to get recommendations of related
books (see Figure 7). Behind the scenes, the selected text is given to the Annif API, then the top
three subjects suggested by Annif are used to query for books in the Finna API. This extension

17 See ​http://m.annif.org
18 See ​https://developers.google.com/ml-kit/
19 See ​https://github.com/YazanAlhalabi/Finna-recommends

http://m.annif.org/
https://developers.google.com/ml-kit/
https://github.com/YazanAlhalabi/Finna-recommends

makes the collections of libraries available to any web user using just a single click, without the
user having to think about suitable keywords.

Figure 7​. The Finna Recommends browser extension suggests of books based on selected
web page text. The user has selected some text on a Wikipedia page for a parrot species and is
shown recommendations for books about parrots.

​5.3.3​ Powering a chatbot
We have created a prototype chatbot user interface, called AnnifBot , which asks questions 20

about the user’s interests, turns the responses into YSO subjects using the Annif REST API,
and then looks up books and images indexed with those subjects from the Finna API. The
functionality is similar to a more traditional search engine such as the main discovery user
interface of Finna, but providing a conversational user interface instead of a search form. In the
future, such a chatbot could be integrated into Finna or other similar systems to make them
more engaging and interactive. A similar chatbot could also use a custom vocabulary and model
which identifies frequently occurring user interests and provides appropriate answers.

20 See ​http://bot.annif.org

http://bot.annif.org/

​6​ Discussion and Conclusion
Libraries and related institutions have a clear need for automating some of their indexing
workflows. For this they need practical tools that provide sufficient indexing quality and that can
be integrated into existing systems. Some commercial tools are available, but they may not
always be attractive due to their cost, limited vocabulary and/or language support, or the vendor
lock-in aspect. While many open source automated subject indexing projects are available, they
are generally implementations of individual algorithms which may not be easy to integrate with
other systems. Annif provides a new alternative in this space and is designed to be extensible
by adding new analyzers and subject indexing algorithms.

Annif is based on a combination of natural language processing and machine learning tools.
Annif can be adapted to different settings, including both subject indexing and classification, and
it can make the best use of the results from different analysers. In our initial evaluations, we
have found that combinations of existing algorithms generally perform better than individual
algorithms. Using an ensemble of several algorithms, we could beat the F1 score of Maui, which
itself is advertised as achieving human-competitive indexing quality (Medelyan 2019), by
several percentage points on multiple very different document corpora.

Providing the Annif functionality as a REST API microservice makes it relatively easy to
integrate automated subject indexing functionality into existing systems, as exemplified by the
JYX institutional repository. We are planning to integrate more systems with Annif, including
those used for receiving electronic deposits and for processing digitized materials. The API
service also enables novel applications, including mobile apps, browser extensions and
chatbots.

We are planning to further develop Annif by adding new backend algorithms and incorporating
online learning support for more backends. We also aim to evaluate it with new corpora and
different kinds of vocabularies, including place names and library classifications such as UDC
and DDC. We expect to use Annif to help improve subject indexing and classification processes
especially for electronic documents as well as collections that otherwise would not be indexed at
all.

​Acknowledgements
We thank Martin Toepfer for stimulating discussions around automated indexing methods,
Markus Koskela for the suggestion to use ranking-based evaluation measures available in the
scikit-learn toolkit, Sampo Savolainen for improving the Maui codebase and creating
MauiService, Ari Häyrinen for being an early adopter of Annif and for collecting observations of
its use in the JYX document repository, Okko Vainonen for developing the Annif Android app,
and Yazan Alhalabi, Samuel Akangbe and Steven Nebo for creating the Finna Recommends

browser extension. We thank Thomas Baker, Juho Inkinen, Anna Kasprzik, Bruno P. Kinoshita,
Riitta Koikkalainen, Mona Lehtinen, Tuula Pääkkönen, and Hugo de Vos, who provided
insightful and constructive comments on the draft manuscript.

​References

Berger, M. J. (2015). Large scale multi-label text classification with semantic word vectors.
Technical Report. Stanford University. Retrieved from
https://cs224d.stanford.edu/reports/BergerMark.pdf

Cyganiak, R. (2015, September 22). Deep Dives into TopBraid EVN — Part 1: Automated
tagging with the New AutoClassifier. The Semantic Ecosystems Journal. Retrieved on 29 March
2019 from ​https://www.topquadrant.com/2015/09/22/automated-tagging-evn-autoclassifier/

Daiber, J., Jakob, M., Hokamp, C., & Mendes, P. N. (2013). Improving efficiency and accuracy
in multilingual entity extraction. In ​Proceedings of the 9th International Conference on Semantic
Systems​ (pp. 121-124). ACM. ​https://doi.org/10.1145/2506182.2506198​ Open access copy
available at
http://informatica.uniroma2.it/upload/2018/IA2/Improving%20efficiency%20and%20accuracy%2
0in%20multilingual%20entity%20extraction.pdf

Galke, L., Mai, F., Schelten, A., Brunsch, D., & Scherp, A. (2017). Using titles vs. full-text as
source for automated semantic document annotation. In ​Proceedings of the Knowledge Capture
Conference​ (p. 20). ACM. ​https://doi.org/10.1145/3148011.3148039​ Open access copy
available at ​https://arxiv.org/pdf/1705.05311

Jonquet, C., Shah, N. H., & Musen, M. A. (2009). The open biomedical annotator. ​Summit on
translational bioinformatics​, ​2009​, 56. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/21347171

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of tricks for efficient text
classification. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL). Retrieved from
http://aclweb.org/anthology/E17-2068

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing.
https://doi.org/10.3115/v1/D14-1181

Medelyan, O. (2009). Human-competitive automatic topic indexing. Doctoral thesis, University of
Waikato, Hamilton, New Zealand. Retrieved from ​https://hdl.handle.net/10289/3513

https://cs224d.stanford.edu/reports/BergerMark.pdf
https://www.topquadrant.com/2015/09/22/automated-tagging-evn-autoclassifier/
https://doi.org/10.1145/2506182.2506198
http://informatica.uniroma2.it/upload/2018/IA2/Improving%20efficiency%20and%20accuracy%20in%20multilingual%20entity%20extraction.pdf
http://informatica.uniroma2.it/upload/2018/IA2/Improving%20efficiency%20and%20accuracy%20in%20multilingual%20entity%20extraction.pdf
https://doi.org/10.1145/3148011.3148039
https://arxiv.org/pdf/1705.05311
https://www.ncbi.nlm.nih.gov/pubmed/21347171
http://aclweb.org/anthology/E17-2068
https://doi.org/10.3115/v1/D14-1181
https://hdl.handle.net/10289/3513

Mork, J. G., Jimeno-Yepes, A., & Aronson, A. R. (2013). The NLM Medical Text Indexer System
for Indexing Biomedical Literature. In ​BioASQ@ CLEF​. Retrieved from
https://ii.nlm.nih.gov/Publications/Papers/MTI_System_Description_Expanded_2013_Accessibl
e.pdf

Pouliquen, B., Steinberger, R., & Ignat, C. (2003). Automatic annotation of multilingual text
collections with a conceptual thesaurus. ​In Proceedings of the Workshop on Ontologies and
Information Extraction at the EUROLAN Conference, Cluj-Napoca, Romania, pp.19–28.
Retrieved from ​https://arxiv.org/abs/cs/0609059

Prabhu, Y., & Varma, M. (2014). Fastxml: A fast, accurate and stable tree-classifier for extreme
multi-label learning. In ​Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining​ (pp. 263-272). ACM.
https://doi.org/10.1145/2623330.2623651​ Open access copy available from
http://manikvarma.org/pubs/prabhu14.pdf

Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., & Varma, M. (2018). Parabel: Partitioned label
trees for extreme classification with application to dynamic search advertising. In ​Proceedings of
the 2018 World Wide Web Conference on World Wide Web​ (pp. 993-1002). International World
Wide Web Conferences Steering Committee. ​https://doi.org/10.1145/3178876.3185998

Rehurek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. In
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks​. Retrieved
from ​https://is.muni.cz/publication/884893/en

Schandl T., Blumauer A. (2010) PoolParty: SKOS Thesaurus Management Utilizing Linked
Data. In: Aroyo L. et al. (eds) The Semantic Web: Research and Applications. ESWC 2010.
Lecture Notes in Computer Science, vol 6089. Springer, Berlin, Heidelberg
https://doi.org/10.1007/978-3-642-13489-0_36

Sebastiani, F. (2002). Machine learning in automated text categorization. ​ACM computing
surveys (CSUR)​, ​34​(1), 1-47. Retrieved from ​https://arxiv.org/abs/cs/0110053v1

Tagami, Y. (2017). AnnexML: Approximate nearest neighbor search for extreme multi-label
classification. In ​Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining​ (pp. 455-464). ACM. ​https://doi.org/10.1145/3097983.3097987​ No
open access version available.

Toepfer, M., & Seifert, C. (2018). Fusion architectures for automatic subject indexing under
concept drift. ​International Journal on Digital Libraries​, 1-21.
https://doi.org/10.1007/s00799-018-0240-3​ Open access copy available from

https://ii.nlm.nih.gov/Publications/Papers/MTI_System_Description_Expanded_2013_Accessible.pdf
https://ii.nlm.nih.gov/Publications/Papers/MTI_System_Description_Expanded_2013_Accessible.pdf
https://arxiv.org/abs/cs/0609059
https://doi.org/10.1145/2623330.2623651
http://manikvarma.org/pubs/prabhu14.pdf
https://doi.org/10.1145/3178876.3185998
https://is.muni.cz/publication/884893/en
https://doi.org/10.1007/978-3-642-13489-0_36
https://arxiv.org/abs/cs/0110053v1
https://doi.org/10.1145/3097983.3097987
https://doi.org/10.1007/s00799-018-0240-3

https://research.utwente.nl/files/80439235/Toepfer2018_ijdl_subject_indexing_under_concept_d
rift_preprint.pdf

Wilbur, W. J., & Kim, W. (2014). Stochastic Gradient Descent and the Prediction of MeSH for
PubMed Records. In Proceedings of the AMIA Annual Symposium 2014, 1198-207. Retrieved
from ​https://www.ncbi.nlm.nih.gov/pubmed/25954431

Yen, I. E. H., Huang, X., Ravikumar, P., Zhong, K., & Dhillon, I. (2016). PD-Sparse: A primal and
dual sparse approach to extreme multiclass and multilabel classification. In ​Proceedings of the
33​rd​ International Conference on Machine Learning​ (pp. 3069-3077). Retrieved from
http://proceedings.mlr.press/v48/yenb16.pdf

https://research.utwente.nl/files/80439235/Toepfer2018_ijdl_subject_indexing_under_concept_drift_preprint.pdf
https://research.utwente.nl/files/80439235/Toepfer2018_ijdl_subject_indexing_under_concept_drift_preprint.pdf
https://www.ncbi.nlm.nih.gov/pubmed/25954431
http://proceedings.mlr.press/v48/yenb16.pdf

