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ABSTRACT 
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Supervisor: Dr. Markku Heikkilä 

Abstract: 

Companies are constantly generating large amounts of data from different business 

processes. This data is usually spread out in many separate source systems. 

Organizations can benefit from utilizing this data by performing different types of 

analytics. However, the data is usually in different formats and it is not viable to build 

analytical solutions right on top of the source systems. A data warehouse is one solution 

to this problem. A data warehouse works as a central repository for company data, and 

it works as a great foundation for all kinds of reporting and analytics.  

Retailers can gain insight into purchase patterns by performing market basket analysis 

on transactional data. With the help of market basket analysis, retailers can find out 

which products are frequently bought together. This information can be used for 

various purposes, such as store design, marketing campaigns and recommendations. 

There are various algorithms available, and it can be challenging to decide which ones 

to use. Building an automated solution that can perform market basket analysis can be 

beneficial for a retail business. 

This thesis introduces the concept of data warehousing as well as different architectures 

and modeling techniques. In addition, some market basket analysis algorithms are 

introduced. To answer the research questions, a data warehouse and a market basket 

analysis system was designed with the help of scientific literature and personal project 

experience. The designed system was then implemented to evaluate its functionality 
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and usability. 

After developing and testing the system, it was concluded that the proposed architecture 

works. The system could be further developed to support more data and different types 

of analytics.  

Keywords: Data warehousing, Market Basket Analysis, Affinity Analysis, 

Dimensional Modeling 

Date: 24.4.2019 Number of pages: 82 
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1 INTRODUCTION 

1.1 BACKGROUND 

The amount of data generated is constantly increasing and companies are trying to find 

new ways of utilizing the vast amounts of data they have stored in various source systems. 

Data is a valuable asset as it can be helpful in decision making. Most retailers have all of 

their transactional data saved in a transactional database, and applying data mining 

methods on the data can give valuable insight into customer behavior. This can help to 

understand customers and improve the marketing strategy.  

As transactional data is easily accessible, most companies could benefit from mining this 

data. However, especially small and medium sized retailers may lack the knowledge and 

expertise to implement solutions for analytics. Furthermore, it is a challenge to collect the 

correct data and to prepare it for analysis, as it is usually not feasible to build analytical 

solutions directly on the source systems. A solution to this problem is to develop a data 

warehouse. Designing an automated, effective and affordable data warehouse solution 

and an ETL-pipeline (Extract, Transform, Load) for data mining purposes is therefore 

crucial.  

A common approach to utilize transactional data is to perform market basket analysis. 

With the help of market basket analysis, it is possible to gain valuable information from 

the raw transactional data. Market basket analysis can help to identify items that are 

frequently bought together, and this can be used for various purposes such as store layout 

design and campaigns. By developing a data warehouse that serves analytical needs it is 

possible to build an automated system for transactional data analytics. 

By personal experience, there is still a lack of knowledge in data warehouse design in the 

industry, and companies are not aware of the possibilities and opportunities that analytics 

can provide. As it is difficult to understand the benefits and drawbacks of different data 

warehouse modeling techniques and market basket analysis algorithms, it is interesting 
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to dive deeper into this area. As market basket analysis can be highly useful for retailers, 

it is important to research the best way of developing a system for this purpose.  

1.2 AIM AND RESEARCH QUESTIONS 

The aim of this thesis is to study different data warehousing architectures as well as 

different data mining methods that are applicable to transactional data to gain insight 

about customer purchase patterns, namely in the form of market basket analysis. There 

are various methods available, and it can be quite challenging to know which methods 

should be used in different scenarios. The aim is to then design a generic data warehouse 

that can be used as a starting point when designing a data warehouse solution for market 

basket analysis in the retail industry. The resulting model is not meant to be a complete 

data warehouse model for a retail company, but rather a part of a solution that can quickly 

deliver results. The architecture should be easily scalable and support various future 

BI/Analysis needs. The designed system will also include a market basket analysis 

solution. The goal is to finally develop the proposed system to test its functionality and 

analyze the results. I try to answer the following research questions with this thesis: 

1. How should a data warehouse be designed so that it can support market basket 

analysis? 

2. How should automated market basket analysis be applied? 

With this thesis, I hope to shed light upon the benefits and drawbacks of the different 

methods available in literature. 

1.3 LIMITATION 

My thesis will be limited to data warehousing models and market basket analysis in the 

retail industry. The thesis will focus on existing theories and models introduced in 

literature. Challenges in big data will not be part of this thesis. Additionally, I will not try 

to improve or do performance testing on different algorithms. I will further limit the 

algorithms discussed in this thesis to Affinity Analysis and Market Basket Analysis. 

Although data presentation is a crucial part of the models that are studied, the thesis will 
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not focus on data presentation and visualization theory. 

1.4 STRUCTURE OF THE THESIS 

The second chapter of this thesis presents the research methodology. Chapters three and 

four are a literature review on data warehousing and market basket analysis algorithms, 

which in turn serve as a foundation for chapter five of the thesis which consists of the 

actual design and development of the architecture. Chapter six includes the conclusion of 

the thesis. Finally, the seventh chapter is a summary of the thesis in Swedish.  
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2 RESEARCH METHODOLOGY 

There are various research methods that are relevant and used in information systems 

research. Exploratory research is suitable for problems that have not yet been studied. It 

will help in defining and understanding a problem. This method will not lead into 

conclusive results. In this case, the research will start with a general idea, and the results 

can be used for future research. Empirical research can be used to answer clear questions 

and it can be both quantitative and qualitative. Quantitative research methods include 

conducting surveys and gathering data to perform statistical analyses. The data can be 

used to uncover patterns. Qualitative methods on the other hand have typically smaller 

sample sizes. Some examples on qualitative methods are interviews, observations and 

focus groups. A common method is to conduct a case study, which can be both 

quantitative and qualitative. 

Järvinen (2004) have presented a taxonomy for information systems research, illustrated 

in Figure 1. Innovation-building and innovation-evaluating approaches are related to 

building and evaluating e.g. an information system, which makes this branch of the 

taxonomy relevant to the thesis. An innovation building approach is most relevant, as the 

thesis will focus on answering the research questions without an existing information 

system. The methodology for the thesis is based on design science research. Design 

science is a suitable approach, as it is appropriate to research the problem in this thesis by 

designing an artifact and actually implementing it to test its functionality and evaluate it.  
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Figure 1. Taxonomy of research methods. (Järvinen, 2004) 

2.1 DESIGN SCIENCE RESEARCH 

According to Järvinen (2004), design science research is relevant when we try to build or 

evaluate an innovation. Hevner et al. (2004) have stated that design science research is a 

common approach in information systems research and “seeks to extend the boundaries 

of human and organizational capabilities by creating new and innovative artifacts”. 

Design science is a problem solving process. The main goal of design science research is 

to acquire knowledge and understanding of a design problem by building and applying 

an artifact. The result of design science research is therefore an artifact that addresses an 

important organizational issue. The artifact should be described in a way that it is 

implementable and applicable in a relevant domain. Table 1 describes some general 

guidelines for design science research. 

The designed artifact should be evaluated by well defined evaluation methods and it is a 

crucial part of the research process. The evaluation is based on the requirements of the 

business environment, and the environment includes the technical infrastructure meaning 

that the evaluation of the artifact includes the integration of the artifact into the technical 

architecture of the business setting (Hevner et al., 2004).  
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For this thesis, the architecture of the system is the artifact, and it will be evaluated 

through an actual implementation using test data. The functionality of the system will 

work as evaluation criteria, as it is not based on a real-world case. The artifact is more of 

a proof-of-concept that can be implemented in a real business setting. 

 

Table 1. Guidelines for design science research. (Hevner et al., 2004) 
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3 DATA WAREHOUSING FOR RETAIL DATA 

This chapter will give an introduction to the concept of data warehousing. The idea behind 

data warehousing is explained, different models and architectures are introduced and 

finally benefits and drawbacks of the models are discussed. 

3.1 DEFINITION 

The concept of Data Warehousing (DW) is not new as it has already been around for three 

decades. The need for Data Warehousing originally appeared as companies had a need 

for information. As the multiple systems in companies started to look like giant spider 

webs, there had to be a better solution for making good corporate decisions than trying to 

navigate the data in all the various sources (Inmon et al., 2008). 

Inmon et al. (2008) define the Data Warehouse as “a basis for informational processing”. 

Further, a Data Warehouse is subject-oriented, integrated, non-volatile, time-variant and 

a collection of data in support of management's decisions. The most important task of a 

data warehouse is to gather and maintain historical data from various sources. This data 

can consist of many different types and is often generated by various business events and 

activities (Bojičić et al. 2016). As the data is integrated, it allows for an organization-wide 

view of the data and an analyst can look at the data as it came from one single source 

(Inmon et al., 2008). An Enterprise Data Warehouse (EDW) is an organization-wide data 

warehouse that tries to represent all the data and business rules in the organization 

(Linstedt & Olschimke, 2016)  

According to Kimball & Ross (2013) there are a few key goals that a Data 

Warehouse/Business Intelligence system should solve and they can be extracted from 

the following themes that have existed for more than three decades: 

- Companies collect data, but cannot access it. 

- Users need to slice and dice the data in various ways 

- Business users need to access the data easily 

- Companies want to see the important information only  

- Companies spend time battling inconsistencies in the data instead of making decisions 
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- Companies want people to do more fact-based decision making.  

These problems give a good view of the challenges the companies face when trying to 

make the best decisions for the business. As a result, these concerns still work as the main 

requirements for a DW/BI system. 

According to Kimball et al. (2013), the concerns above can be turned into the following 

DW/BI system requirements. 

- Information has to be easily accessible. The contents of the system should be 

obvious and easy to understand for the business user. The data labels and structure 

of the system should take the business users thought process into account and use 

familiar vocabulary. Business users will also want to utilize the data in various 

ways, and the results should be accessible with short query times. All this can be 

summarized into the following statement: Simple and Fast. 

- Information must be presented consistently. All data in the system should be 

credible and carefully cleansed, of high quality and released only when it is ready 

for the use by the business users. Data labels must also be consistent; same labels 

must mean the same thing.  

- The system must be able to handle changes. Business requirements, user needs, 

data and technologies will change under the lifespan of the system. This means 

that the system must be able to adapt to new requirements without invalidating 

old data. Adding new data or features to the system should not break existing 

solutions or change the data. In case that descriptive data has to be modified, these 

changes should be transparent to the users.  

- Data must be presented in a timely way. As the data in a Data Warehouse is used 

for operational decisions, raw data has to be converted into valuable insight in the 

matter of hours, minutes or seconds. This means that the business and developers 

must have realistic expectations. 

- The information in the Data Warehouse must be safe. Many businesses store 

sensitive information about customers, price etc. This information must be 

securely stored in the DW and access to it should be controlled effectively. 

- The system should work as an authoritative and trustworthy foundation for 
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decision making. The data warehouse should have the right data needed for 

decision making. As the most important outputs of a Data Warehouse is decisions, 

designing a data warehouse should mean that you are designing a decision support 

system. 

- The business community must accept the Data Warehouse. If the business users 

do not use the system, it is unsuccessful. It does not matter how nice the solution 

is if the business cannot use the DW for its intended purpose. DW systems are 

often optional to use, so a bad solution will not get any or little use. 

These requirements can be met by focusing on the following things when designing the 

Data Warehouse: 

- Understand the business users 

- Deliver high quality, relevant and accessible data to the business users 

- Maintain the Data Warehouse 

A typical architecture of a data warehouse is two-layered and introduced by Kimball. This 

type of architecture is illustrated in Figure 2. The complete data warehouse itself consists 

of a staging layer and the data warehouse layer. The data from the source systems is first 

loaded into to staging layer. The staging layer is modeled based on the sources, as the 

goal is to have an exact copy of the data that is loaded into the data warehouse. The staging 

area is used to reduce the operations and load times on the source systems (Linstedt & 

Olschimke, 2016). The transforms and calculations are performed when the data is loaded 

from the staging layer into the data warehouse. This way the work is focused in the data 

warehouse itself instead of burdening the source systems.  
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Figure 2. Two-layer architecture. (Abramson)  

Another option is a three-layer architecture illustrated in Figure 3. This architecture has 

been introduced by Inmon. In this architecture, the middle layer holds the atomic raw data 

that is modeled in 3NF. The goal of this layer is to capture all data in the organization, 

and it is based on the sources. This layer reminds more of a large operational database. 

On top of this normalized layer, there is a data mart layer. This data mart layer is most 

often based on dimensional modeling (Linstedt & Olschimke, 2016).  

 

Figure 3. Three-layer architecture. (Abramson) 

These architectures and approaches are discussed further in the following chapters. 
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According to Linstedt & Olschimke (2016), the best way for data warehouse development 

is an iterative approach. This means that the data warehouse solution is not developed in 

a “big-bang”-fashion. A “big-bang” approach means that the system is developed as a 

whole first before the entire system is deployed and ready for use. Instead, the data 

warehouse should be developed in small iterations. There are still problems in an iterative 

approach, as the effort to add new functionalities keeps increasing due to dependencies 

to existing features. Figure 4 illustrates the increased effort when developing subsequent 

data marts. Every time a new data mart or functionality is developed, it falls into 

maintenance mode and the development team needs to make sure that all dependencies 

are taken care of and the old data marts are tested as well. New sources can also cause 

problems, and it is quite common that the entire solution needs to be refactored when new 

data marts or functionality is added to the data warehouse solution.  

 

Figure 4. Effort and cost with subsequent data marts. (Linstedt & Olschimke, 2016) 

3.1.2 EXTRACT, TRANSFORM, LOAD 

As the data needed for any type of analytics is usually in many different sources and in 

different formats, the source data cannot be used as-is. This is where the Extract, 

Transform, and Load process comes into play. According to Kimball & Ross (2013), 

everything between the DW presentation area and the source systems is considered the 

ETL-system. Extraction is the process of getting the source data from various sources into 

the ETL system for further processing. The source data is loaded into a staging layer. 
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After the data has been extracted, the data has to be transformed in numerous ways. Some 

examples include: correcting spelling errors, standardizing values and formats, and 

handling incorrect and missing information and adding default values (Inmon et al., 2008, 

Kimball & Ross, 2013). 

The load step refers to the loading of the transformed data into the presentation area in 

the final layer of the data warehouse. Behind the ETL process there is usually table 

denormalization, code lookups and splitting or combining columns (Kimball & Ross, 

2013). 

3.2 DIMENSIONAL MODELING 

According to Kimball & Ross (2013), dimensional modeling is widely accepted as the 

preferred technique for data warehouse design. Linstedt & Olschimke (2016) also states 

that dimensional modeling is “de-facto standard”. This technique addresses two 

requirements:  

- Deliver data that’s understandable to the business user 

- Deliver fast query performance 

Dimensional modeling has been used for a long time because it is a working technique 

for making databases simple. Simplicity is a basic need of business users, as this helps in 

understanding and navigating the data that is available. When a data model has a simple 

design at the start, it has a high chance of staying simple when development continues. A 

complex design at start will also be complex in the end, and this will cause poor 

understanding of the model and slow query performance (Kimball & Ross 2013).  

Dimensional models are quite different from normal transactional databases which are in 

3NF. Databases in 3NF divide data into multiple relational tables which seek to reduce 

redundancy. This results in a web of relational tables up to hundreds of tables which is 

highly effective for a transactional system, but hard to navigate as a user. 3NF models 

work well as operational databases, as each event or transaction usually only does an 

update or insert in one place of the database. However, it is challenging to build Business 

Intelligence solutions or queries on this type of database as they are too complex. Users 
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can not understand, navigate or remember the relationships and meanings in tables, and 

the resulting queries can lead to extremely poor query performance. On the other hand, a 

dimensional model contains the same information as a normalized model, but the data is 

formatted in a way that is much easier to understand and provides better query 

performance (Kimball & Ross, 2013). 

Dimensional Models that are implemented in a relational database management system 

are called star schemas. This is because the model has a star-like structure. This table 

structure is illustrated in Figure 5 below.  

 

Figure 5. Star Schema. 

The fact table is the core in the dimensional model and it stores the performance 

measurements resulting from business process events. Low-level measurements from a 

single business process should be stored in one dimensional model as measurement data 

is the largest set of data. This is why the same measurements should not be replicated into 

multiple places in the data warehouse. By keeping the same data in a single place, it is 

easier to find the correct data and to maintain consistency throughout the organization. 

The term fact represents measure, and each measure is represented by a row in the fact 

table. Each row is at a specific level of detail, such as one row per product sold in a 

transaction. All rows in a fact table must be on the same level of detail, also called the 

grain. Having rows on different grains can cause problems like double counting (Kimball 
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& Ross, 2013). 

The best facts are numeric, as they can aggregated in multiple ways. Some aggregation 

examples include adding, calculating averages and finding minimum/maximum values. 

A good example of a numeric fact is amount in Euros. Additivity is important as analytics 

and BI-tools usually do not use rows alone, instead they are analysed as larger datasets. 

However, there are many situations in which facts are also semi-additive and non-

additive. It is possible for a fact to be in text form, but in these cases the designer should 

try to put the text values into dimensions as the values are often from a discrete list of 

values. If the text is unique for each row in the fact table, it should be added to the 

dimension table instead. True text facts are problematic to analyze, as aggregation 

functions are not possible for this type of data (Kimball & Ross, 2013). 

Figure 6 shows an example of a simple fact table in a retail sales environment. If there is 

no sales activity, no new rows will be added to the fact table. This means that no 0-valued 

rows should be added to the fact table when there has been no activity to show this non 

occurring activity. By leaving empty rows out of the fact table, it stays scarcer. This is 

important, as most of the data in a dimensional model is stored in fact tables. Fact tables 

are in normal cases quite narrow (few columns) but have many rows instead. The grain 

in a fact table can be of three different types: transaction, periodic snapshot and 

accumulating snapshot (Kimball & Ross, 2013).  

A transaction fact table is a measurement taken at a single activity. One example of this 

is a retail store beep. The measurement is valid only for that instant, and there is no 

guarantee for when the next measurement will happen. This type of fact tables are the 

most dimensional and expressive fact tables (Kimball & Ross, 2013). 
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Figure 6. Sales fact table. (Kimball & Ross, 2013) 

Periodic snapshot fact tables summarizes many measurements over a standard period. As 

this can be e.g. once a day, week or a month, the grain is the period instead of a single 

transaction. If no activity takes place in the period, a fact row is typically still inserted 

with a null or zero value. An accumulating snapshot fact table is quite different from the 

previous two types; it is used for processes that have a defined beginning and end, and 

has identifiable milestones in between. The fact row will contain date foreign keys for 

each milestone, and the fact row is updated correspondingly whenever the row has moved 

forward in the process (Kimball & Ross, 2013).  

All fact tables have foreign keys (marked “FK” in Figure 6) that link to the dimension 

tables' primary keys. In the sales example, the customer key always matches to a customer 

in the Customer dimension. When all the foreign keys match to primary keys in their 

respective dimension tables, database integrity is maintained. The dimensions are 

accessed through the fact table using joins (Kimball & Ross, 2013).  

The dimension tables are crucial for the dimensional model. The dimension tables contain 

all the additional textual information for the fact table. The dimension table answers the 

questions “who, what, where, when, how and why” to the event inserted into the fact 

table. Figure 7 illustrates an example of a product dimension table. Dimension tables are 

often quite wide with many columns, and opposing the fact table, they have much less 

rows. Dimension tables can however also contain only a handful of columns as this 

completely depends on the business and dimensional model (Kimball & Ross, 2013).  
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Figure 7. Product dimension table. (Kimball & Ross, 2013) 

Each dimension table has a defined primary key. The purpose of the primary key (“PK” 

in Figure 7) is to maintain integrity in the data warehouse, as it is joined to the 

corresponding key in the fact table. The attributes in the dimension tables serve as 

constraints, groupings and report labels. When a business user wants to see sales per 

product category, they can simply join the fact table to the product dimension and group 

by the category attribute available in the dimension table. As the dimension attributes 

provide this kind of information, they are critical to an understandable and functional data 

warehouse that is based on a dimensional model. The attributes should consist of logical 

words that are easy to understand. This also means that any type of codes or abbreviations 

should be avoided, and full descriptions should be used instead. One should focus on 

giving verbose and accurate values for the attributes as high quality attributes deliver 

better analytical capabilities (Kimball & Ross, 2013). 

It can be hard to determine whether numeric data is a fact or a dimension. One option to 

classify them is to make it a fact if it participates in calculations, and make it a dimension 

attribute if it is part of constraints and row labels. Sometimes, a value seems like a 

constant attribute but changes so often that it can also be considered a fact. Other times, 

one might not be sure whether the value is a fact or a dimension attribute and in these 

cases it can be modeled both ways (Kimball & Ross, 2013).  

Dimension tables can often include hierarchical data. In a product dimension, the 

attributes could include brand name and category name. In these cases, there will be 

redundant data in the table, but this will in turn lead to easy use and better query 
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performance. It is easy to normalize these situations by creating a separate look-up table. 

This type of normalization is called snowflaking. As the dimension tables are usually 

quite small compared to the fact tables, normalization will have low impact on the overall 

size and performance on the database but will in turn make querying harder. Snowflaking 

should thus be avoided (Kimball & Ross, 2013).  

By finally combining the building blocks, we get a star schema. Figure 8 illustrates a 

simple star schema for a retail case.  

 

Figure 8. Retail star schema. (Modified from Kimball & Ross, 2013) 

Looking at the schema as a whole, it is easy to see and understand its simplicity. Database 

engines optimize queries on these schemas more efficiently as there are less joins. As the 

design is simple, it is easy to build reports and analytics on the data. Additionally, the 

dimensional model can handle changes quite well. As all dimensions work as entry points 

to the fact tables in the same way, there are no unexpected problems caused by queries 

(Kimball & Ross, 2013). 

The most atomic data is the best for a dimensional model. When the data has not been 

aggregated, it supports all kinds of unexpected ad-hoc queries and analyses. The 

dimensional model also supports addition of dimensions and columns without breaking 
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any solutions and integrations that are built on top of the dimensional model (Kimball & 

Ross, 2013). 

There are several different types of dimensions. The dimensions can either be rapidly 

changing, meaning that one or more rows in the dimensions change frequently, or a 

slowly changing dimension. Kimball has defined 7 different types of slowly changing 

dimensions: 

- Type 0, Retain original: In this type, the original attributes will be retained and 

never changed in the dimension.  

- Type 1, Overwrite: The old attribute value will be overwritten by new values, 

meaning that the dimension will always contain the most recent information. 

- Type 2, Add new row: A new row with the new attribute values is added to the 

dimension. A new primary key should be generalized beyond the natural key as 

there might be many rows describing the same thing. Type 2 dimensions require 

three additional attributes: row effective time, row expiration time and current row 

identifier. 

- Type 3, Add new attribute: A new attribute is added to the row that overwrites the 

old value with the main value. This way the original value can also be stored. This 

type of dimension is rarely used (Kimball & Ross, 2013; 1Keydata), and should 

only be used when the attribute values can change a finite amount of times 

(1Keydata) 

- Type 4, Add mini-dimension: This type is used when the attributes change rapidly 

in the dimension. The dimension is split off to a mini-dimension. The mini-

dimension gets an own primary key, and both the main dimension and mini-

dimension are accessed through the foreign keys in the fact table (Kimball & Ross, 

2013; disoln.org).  

- Type 5, Add mini-dimension and outrigger dimension type 1: This type builds on 

Type 4 for by using a Type 1 outrigger dimension instead of linking through the 

fact table. The outrigger dimension means that the mini-dimension is accessed 

through the base-dimension.  

- Type 6, Add Type 1 Attributes to Type 2 Dimension: This type builds on Type 2 

by adding the current values as attributes to the dimension. These attributes are 
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systematically overwritten when the value is updated. 

- Type 7, Dual Type 1 and Type 2 Dimensions: This hybrid approach allows 

accessing both historical and current values by having 2 separate dimensions 

which are accessed by separate foreign keys in the fact table. 

The choice of dimension types depend heavily on the data and the needs of the 

organization. Table 2 illustrates the different types and their impact on fact analysis. 

 

Table 2. Dimension types. (Kimball & Ross, 2013) 

 

The primary keys in the dimensions should consist of surrogate keys instead of natural or 

business keys. A surrogate key is an artificial or synthetic key that is used as a substitute 

for a natural key. The surrogate key should be an integer value which is not a combination 

of natural keys and it should not be a smart key. A smart key means that the key tells 

something about the row itself. By using surrogate keys, various errors and problems in 

production can be avoided as the dimension is not dependent on the keys in the underlying 

operational systems (Kimball, 1998). These dimension surrogate keys are simple integers 

assigned in sequence, starting with the value 1, every time a new key is needed (Kimball 

Group). 

To keep the data warehouse intact and controlled, the Kimball approach requires the so 

called Bus Architecture. The bus architecture focuses on business processes while 
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delivering integration via standardized conformed dimensions. An essential tool for 

managing the development of the Enterprise Data Warehouse Bus Architecture is the Bus 

Matrix, illustrated in Figure 9. The rows of the matrix illustrate business processes while 

the columns are dimensions. The matrix can also be used to prioritize development 

according to business needs, as the data warehouse should be developed one row at a time 

(Kimball & Ross, 2013). 

 

 

Figure 9. Enterprise data warehouse bus matrix. (Kimball & Ross, 2013) 

3.3 INMON APPROACH 

Bill Inmon is considered one of the original influencers in data warehousing. He has been 

a proponent of the Corporate Information Factory (CIF) as an alternative to the Kimball 

approach. According to Inmon et al. (2001), the CIF is generic as it is recognizable across 

different organizations, but it also has its organization-specific parts that are unique based 

on the business.  

In Inmon’s approach, all the organizational data is first stored in a central data warehouse 

in 3NF. The architecture then incorporates several data marts which serve different 
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business needs and users. These data marts extract their data from the central data 

warehouse. This architecture ensures that the data stored in the business specific data 

marts is consistent, as all the data marts have the same source; the atomic data warehouse. 

This architecture follows traditional database design patterns, as the goal is to have a 

normalized data warehouse.  

The development process follows a top-down approach which means that the data 

warehouse is built before the data marts. The Inmon approach also uses Entity-

Relationship Diagrams in the design. This approach means that the development team 

needs to be skilled, and that the development is quite complex. As a result, it can take 

considerable time before there are results to show, but the data will be consistent as a 

result of this approach (Breslin, 2004). Inmon’s idea is that the initial effort to build an 

atomic data warehouse is worth it because this allows building of new data marts for every 

business need while also keeping consistency in the data (Inmon et al. 2001). 

Inmon’s approach targets IT Professionals, and requires a substantial knowledge to use 

his tools and methodologies. This puts the end users more in the role of audience, as the 

end-users will rely on the output of IT-professionals (Breslin, 2004).  

3.4 DATA VAULT 

Data Vault modeling is invented by Dan Lindstedt. He started developing and researching 

this method in 1990, and continued developing it until the early 2000’s. The Data Vault 

1.0 has later developed into Data Vault 2.0. Data Vault 1.0 focused primarily on the 

physical and logical models for creating the raw data warehouse. Data Vault 2.0 has 

expanded and also includes methodology, architecture and implementation. Methodology 

refers to agile development methods and the architecture includes NoSQL and big-data 

systems (Linstedt & Olschimke, 2016).  

The Data Vault 2.0 architecture illustrated in Figure 10 implements a modified three-layer 

architecture as introduced earlier in this thesis. The architecture consists of three layers. 

The first layer is the staging area, which collects the raw data from source systems. The 

data warehouse layer consists of a data warehouse modeled according to the data vault 
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2.0 modeling technique. The final layer in the architecture includes one or more data 

marts that are used for data information delivery and they are modeled as star schemas or 

other structures depending on the needs of the data warehouse. The architecture also 

allows optional vaults that include operational data, metrics and business rules which are 

integrated in the data warehouse layer. The architecture can also allow capabilities for 

self-service BI including write-back of information to the Data Vault (Linstedt & 

Olschimke, 2016). Due to platform independence, the Data Vault 2.0 architecture also 

supports NoSQL in all layers. 

 

Figure 10. Data Vault architecture. (Linstedt & Olschimke, 2016) 

The staging area tables duplicate the source table structures. This means that the tables 

have the same columns including primary key columns. Indexes and foreign keys are 

however not included in the staging tables. All columns should be nullable, as also faulty 

and dirty source data should be loaded into the staging area. In this layer, only hard 

business rules should be applied. Hard business rules refer to rules like truncating long 

strings, but are not specific logic for the business. It is also common to include the source 
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table names and columns in the staging area (Linstedt & Olschimke, 2016).  

The purpose of the data warehouse layer in the Data Vault 2.0 architecture is to store all 

historical, time-variant data. The Data Vault stores raw data that has not been modified 

by any business rules and logic, except for hard business rules. The data is stored at the 

same grain as in the source. Every change in the source systems is also tracked in the Data 

Vault (Linstedt & Olschimke, 2016).  

As the data warehouse layer in the Data Vault architecture is not directly accessed by the 

end-users, there is a separate layer with information marts. This way, the data is delivered 

to the end-users in a more comfortable way. The data in the information mart can be 

aggregated, flat or wide, structured for reporting, indexed etc. It is often based on 

dimensional modeling (Linstedt & Olschimke, 2016). Linstedt (2010) has also stated in 

his blog that the data vault model should not be directly accessed by BI applications. The 

model is meant to work as a backend in the data warehouse. This means that the data vault 

is only used to store the historical data in the organization and to provide a platform for 

quick development of data marts. The data marts can then be built using star schemas.  

Data Vault modeling is based on three main entities. These entities are Hubs, Links and 

Satellites. Figure 11 illustrates a logical design of an airline system. 
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Figure 11. Logical Data Vault design. (Linstedt & Olschimke, 2016) 

Every business object has a business key of some sort, be it an invoice number, customer 

number or an ID. In some cases the business key might be a combination of many fields, 

or it might be identifiable by a name. As the business keys are a central part of identifying 

business objects, these are separated in the Data Vault Model. The purpose of the Hub 

entity is to store these business keys along with some metadata. In the Data Vault model, 

there are different hubs for each type of business key. Hubs are the foundation of the Data 

Vault model. Figure 12 illustrates an airline hub. All entries in a hub should have the same 

semantic meaning and granularity, which means that a contact person should be in a 

different hub than a customer that is a company. The hub tracks all business keys in the 

data warehouse with the help of the following additional attributes: source system, load 

date and a hash key which is used to reference business objects in other entities. (Linstedt 

& Olschimke, 2016). 
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Figure 12. Airline Hub. (Linstedt & Olschimke, 2016) 

Business objects are never entirely separate from other business objects, instead they are 

naturally linked to each other in any business setting. The purpose of the link entity is to 

track the different links that exist between two or more hubs. A business process often 

represents a transaction, and this transaction is often a link as well. Figure 13 illustrates 

and example of a link entity. The main structure of a link includes the hash keys of the 

referenced hubs. In addition, a link has its own hash key and load date. A link can also 

reference more than two hubs, as seen earlier in Figure 10. Links store the connection 

between two hubs at the lowest possible grain, and they will store past, present and future 

data. The links will not store timelines or temporarity, instead they will represent a 

relationship that exists currently or existed in the past. Links will also ensure scalability 

in the warehouse, as it is possible to start with a small Data Vault and then develop it 

further by adding more links and hubs. Due to the link entities, only many-to-many 

relationships can exist in the Data Vault Model as links can model 1:m, 1:1, m:m, and 

m:1 relationships without changing the table definitions. This whole structure allows for 

easy scalability and faster response time from IT when there are changes in the business 

requirements (Linstedt & Olschimke, 2016).  
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Figure 13. Operator link. (Linstedt & Olschimke, 2016) 

With only links and hubs, the Data Vault Model would not provide all information that is 

needed of a data warehouse. This is where the satellite entities come into play. Figure 14 

illustrates a satellite for an airport. The context and attributes of the hubs and the links are 

stored in satellite entities. There can be multiple satellites on a link or a hub. There are 

many reasons for distributing the attributes into different satellites, and these include: 

multiple or changing source systems, different frequency of changes, or functional 

separation of attribute data. The satellites provide context to links and hubs at a given 

time, and the descriptive data in a satellite can often change over time. The satellite will 

also track these changes over time. A satellite is attached to only one hub or a link and is 

therefore identified by the parents’ hash key. In addition to the standard metadata, the 

satellite entity stores all needed descriptive attributes (Linstedt & Olschimke, 2016).  
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Figure 14. Airport satellite. (Linstedt & Olschimke, 2016) 

Due to the architecture of the Data Vault, the only place where historical data is stored is 

in the Data Warehouse layer. There is no historical data in the staging area, and the data 

in the data marts may change due to changes in the business requirements. This means 

that to maintain auditability, no changes should be made to the data in the satellites, with 

the exception of the load end date attributes. 

3.5 CHOICE OF ARCHITECTURE 

According to Inmon et al. (2008) there are some fundamental flaws in the dimensional 

modeling technique. One problem are their brittleness, which means that they are 

designed for a specific requirement and cannot handle changes well. As soon as there are 

bigger changes in the requirements, the star schemas require massive changes or even 

complete remodeling. They are also not easy to extend, as they are limited to the set 

requirements. Star schemas are also aimed at one audience, meaning that usually the star 

schemas are optimal for only some of the users, when the data warehouse should be 

organization-wide. As a single star schema does not satisfy all users, multiple star 

schemas will cause problems with granularity. To avoid granularity issues, all schemas 

should be at the lowest grain, but this defeats the purpose as it creates a classical relational 

design. 
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The Inmon and Data Vault models will inevitably contain more tables and be more 

complex than a dimensional model. According to Linstedt (2010) the data vault model is 

designed for flexibility. As all the relationships are extrapolated to link tables, the design 

is bound to have more tables than a dimensional model. In return, this design allows for 

more flexibility, and more joins isn’t necessarily a bad thing. When star schemas grow 

they also have to be conformed, and this can lead to very complex ETL. This will in turn 

lead to slow loading times and slow development when there are changes in requirements. 

Linstedt (2010) has also argued that star schemas have scalability issues, especially when 

the amount of data is in the hundreds of terabytes range. 

According to Jukic (2006), the difference between the Inmon and Kimball approaches 

can be considered a trade-off between extensiveness versus quickness and simplicity. As 

the Kimball approach only requires dimensional structures without an underlying 

normalized model, it is inevitably quicker and easier to implement. If the business will 

only need dimensional structures for their analysis needs, then the Kimball approach is 

the quicker and easier way to develop the data warehouse. However, the Kimball 

approach is designed for end-user OLAP-style analysis, so if the organization needs data 

stores structured in wide variety, the Inmon approach is a better choice. The Kimball 

approach is sometimes criticized for not being enterprise-wide, but this is simply not true 

as the fact tables and dimensions can be created enterprise wide. Kimball et al. (2013) 

have further pointed out that the Inmon approach can by all means be used if the 

organization has the patience, budget, appetite and need to have a fully normalized 

structure before loading the data to dimensional structures. 

According to Bojičić et al. (2016), the main weakness of the normalized model, or Inmon-

approach, is that the relationships and attributes are related to the source system, so any 

changes in the structure of the source will cause a need for change in the data warehouse 

structure as well. The Data Vault model, however, offers more flexibility for these types 

of problems as the structure of an object is decoupled from the object itself with the help 

of satellites. On the other hand, obtaining the original source model from the data vault 

model is not possible. The dimensional model suffers from some of the same problems 

as the normalized model, as addition of new attributes in the source requires changes in 

the corresponding dimension. Bojičić et al. (2016) concluded that none of the models 
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fulfill all the requirements for a data warehouse. The choice of model should thereby not 

be based on which methodology is “better”, but rather on the right fit for the project and 

organization in question (Jukic, 2006). 
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4 MARKET BASKET ANALYSIS AND AFFINITY 

ANALYSIS 

The goal with affinity analysis is to find attributes that belong together. A popular 

application of this is through market basket analysis. With market basket analysis, the 

goal is to seek associations between two or more attributes (Larose 2005). With the help 

of Market Basket Analysis we can identify frequent patterns in a dataset. Frequent 

patterns are sets of items, subsequences or substructures that appear frequently in a dataset 

(Han et al. 2014). With the help of market basket analysis, it is possible to identify which 

products in a retail store are frequently bought together which can then be used to improve 

marketing, shop layout, recommendations etc. This chapter will discuss the basics of 

market basket analysis and some of the methods that are used.  

4.1 SALES DATA ANALYSIS WITH ASSOCIATION 

RULES 

A retail store will store various types of data about customers and sales. This data can be 

analyzed to help the business boost its sales. Finding association rules with the help of 

market basket analysis can help the company in this task. Association rules are used to 

find associations and patterns between objects in a dataset. In a retail context, market 

basket analysis can tell which products are bought together frequently. A retail company 

can use this information to change or add new products, perform cross-marketing and 

send customized emails (Jabeen, 2018). Retailers can also use the information to design 

the store layout to improve the shopping experience and marketing in ways that encourage 

customers to spend more on their shopping basket (Jabeen, 2018, Karthiyayini & 

Balasubramanian, 2016). Online retailers and publishers can use affinity analysis for 

better content placement, drive recommendation engines and deliver targeted marketing 

by offering products that are likely to be interesting to the customers (Karthiyayini & 

Balasubramanian, 2016).  
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4.2 SUPPORT, CONFIDENCE AND LIFT 

Let I be a collection of itemsets. Suppose that I contains two different itemsets, A (e.g 

milk, bread) and B (e.g. carrots). An association rule is in the following form: if A, 

then B (A ⇒ B), where A and B are mutually exclusive (Larose 2005). The support for 

a particular association rule A ⇒ B is the proportion of transactions in the whole dataset 

that contain both A and B (Larose 2005, Han et al. 2014). This can be described as 

follows: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = P(A U B) = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

The confidence of the association rule A ⇒  B measures the percentage of transactions 

containing A that also contain B (Larose 2005, Han et al. 2014). This can be written 

as follows: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝑃(𝐵 | 𝐴) = 
𝑃(𝐴 𝑈 𝐵) 

𝑃(𝐴)
 

= 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴
 

To illustrate these concepts, consider Table 3 which consists of a number of transactions. 

TID    

1 Bread Milk Carrots 

2 Bread Milk  

3 Eggs Drink  

4 Bread Milk Carrots 

5 Eggs Carrots  

 

Table 3. Example of transactions. 
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Consider the rule {Bread, Milk} ⇒ {Carrots}. As there are 2 transactions containing 

Bread, Milk and Carrots, the support for the rule is 2/5 = 0,4. As there are 3 transactions 

containing Bread and Milk the confidence for the rule is 2/3 = 0.67. According to Larose 

(2005), analysts may prefer rules that have either high confidence or high support 

depending on the situation and the data that is analysed. Usually rules that have both high 

support and confidence are preferred. A k-itemset is an itemset containing k items, e.g. 

{orange,banana} is a 2-itemset. The number of transactions containing a particular 

itemset is the itemset frequency. When performing analysis, the minimum support and 

confidence thresholds are set to help determine and identify interesting rules (Jabeen, 

2018). 

Lift measures the correlation between A and B in the rule A ⇒ B. The correlation 

shows how the itemset A affects the itemset B. Lift is calculated with the following 

formula: 

Lift (A,B) = 
𝑃(𝐴 𝑈 𝐵)

𝑃(𝐴)𝑃(𝐵)
 

This means that the higher the lift, the higher the chance of A and B occurring together 

(Jabeen, 2018). A lift of 1 means that A and B are independent, and a lift of < 1 means 

that the presence of A has a negative effect on B. 

4.3 METHODS 

In this section I will present common algorithms that are useful and widely used for 

market basket analysis. First, the apriori-algorithm will be discussed followed by the 

Eclat-algorithm and FP-growth. Finally, other approaches will be briefly introduced.  

4.3.1 APRIORI-ALGORITHM 

The Apriori algorithm is a typical algorithm used for frequent itemset mining in 

transactional data (Yabing 2013, Rathod et al. 2014). The Apriori-algorithm was 

proposed by Agrawal & Srikant in 1994. The algorithm uses support-based pruning to 
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control the growth of candidate itemsets. The algorithm is shown in Figure 15 (Tan et al. 

2006).  

 

Figure 15. Apriori algorithm. (Tan et al. 2006) 

Initially, the algorithm goes through the whole dataset, and determines the support count 

for each 1-itemset. After step 1 and 2 are completed, all frequent 1-itemsets are known. 

Next, the algorithm will generate new candidate itemsets using the frequent (k-1)- 

itemsets from the earlier iteration using a function called apriori-gen. This function is 

described in 4.3.1.1. In the steps 6-10, the support count for each candidate itemset is 

counted by going through the dataset. This function is described in chapter 4.3.1.2 When 

the support counts for each candidate itemset is known, the algorithm prunes all candidate 

itemsets that do not meet the minimum support count provided to the algorithm. The 

algorithm will repeat with k= k+1 until no new frequent itemsets are generated (Tan et al. 

2006).  

There are some drawbacks in the Apriori algorithm. The candidate generation process 

takes a lot of time, space and memory, and the algorithm requires scanning of the database 

multiple times (Kumbhare & Chobe 2014). There are however various ways to improve 

the performance of the Apriori algorithm. Singh et al. (2013) have introduced an 

improved algorithm in which the size of the transaction is introduced. This leads to an 

improvement as the candidate itemsets are reduced as well as I/O by cutting down the 

amount of transaction records in the database. To improve processing of large data, Li et 

al. (2012) have implemented a parallel Apriori algorithm based on MapReduce. Their 

implementation was successful and works well with increasing database size.  
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4.3.1.1 Apriori-gen 

The apriori-gen function consists of two different operations; candidate generation and 

candidate pruning. In the candidate generation step, new candidate k-itemsets are 

generated from the k-1 itemsets generated in the previous step. In the candidate pruning 

step, some of the candidate itemsets are pruned based on the support count they have. The 

pruning is based on the Apriori principle; if an itemset is frequent, then all of its subsets 

must also be frequent. To better illustrate this, consider X to be a k-itemset. The algorithm 

has to determine if the subsets of X are frequent, and if any of the subsets are not frequent, 

X is immediately pruned. This pruning step reduces the amount of itemsets considered 

for counting of the minimum support later on in the algorithm. The apriori principle is 

further illustrated in Figure 16 (Tan et al. 2006). Considering the requirement on frequent 

itemsets, Figure 17 illustrates the apriori-principle based pruning. 

 

Figure 16. Illustration of the Apriori principle. (Tan et al. 2006) 
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Figure 17. An illustration of Apriori-principle based pruning. (Tan et al. 2006) 

There are multiple methods for candidate generation. According to Tan et al. (2006) the 

apriori-gen function uses the 𝐹𝑘−1  𝑥  𝐹𝑘−1 -method, which merges two k-1 itemsets if 

their k-2 items are identical. The algorithm does not need to merge itemsets that have 

different first items, as if they are frequent itemsets the same itemset will be generated by 

merging itemsets with the same first items. This is best illustrated in Figure 18 below.  
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Figure 18. Candidate generation and pruning. (Tan et al. 2006) 

There is no need to merge {Beer,Diapers} with {Diapers,Milk} as the same candidate 

would be generated by merging {Beer, Diapers} with {Beer, Milk} instead in case it 

would be a viable candidate (Tan et al. 2006). 

4.3.1.2 Support Counting 

The frequency of every candidate itemset that has survived the pruning step of the apriori-

gen is counted in the support counting step. One way of counting the frequency is to 

compare each transaction against every candidate itemset and to update the support counts 

of the candidates contained in the transaction, but this approach is computationally 

expensive (Tan et al. 2006).  

The apriori algorithm uses a more efficient way for support counting with the help of a 

hash tree structure. All candidate itemsets are stored in different buckets in a hash tree. 

Using this structure, each itemset in a transaction is hashed to their appropriate buckets 

and are only compared to the candidate itemsets in the same bucket. This way, there is no 

need to compare each itemset in the transaction to every candidate itemset. Figure 19 

shows an example of this structure with candidate 3-itemsets. Each node in the structure 

uses the hash function h(p) = p mod 3 to determine the node to be followed. All the 

candidate itemsets are stored in the leaf nodes of the hash tree. To update the support 
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counts of the candidate itemsets, the tree has to be traversed in a way that all the leaves 

containing candidate itemsets belonging to a transaction are visited at least once (Tan et 

al. 2006).  

 

 

Figure 19. Hashing a transaction. (Tan et al. 2006) 

Consider the transaction with items {1,2,3,5,6} in Figure 19. Items 1,2 and 3 will be 

hashed differently at the root node so that item one is hashed to the left child, 2 to the 

middle and 3 to the right. On the next level, the transaction is hashed on the next item. 

This process is continued until the leaf nodes are reached. The candidate itemsets found 

at the leaf nodes are compared against the transaction and if a candidate itemset is a subset 

of the transaction, the support counts are updated accordingly.  

 

4.3.1.3 Complexity 

There are multiple factors that have an impact on the computational complexity of the 

apriori-algorithm. As frequent itemsets are determined by the support threshold, lowering 
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the threshold will usually result in more frequent itemsets. This will in return have a 

negative impact on the performance of the algorithm, as more itemsets has to be generated 

and counted. When the maximum size of itemsets is increased, the algorithm has to pass 

over the dataset more times (Tan et al. 2006).  

With increasing number of items, more space will be required to store the support counts 

of the items and if the frequent items increase with more items, the complexity will 

increase as more candidate itemsets are generated. Another factor that affects the 

performance is the amount of transactions, as the algorithm has to do more passes over 

the dataset (Tan et al. 2006).  

The performance of the Apriori algorithm is also affected in two ways by the transaction 

width. First, with an increasing maximum size of itemsets more candidate itemsets must 

be evaluated. Second, as the transactions get larger the transactions will contain more 

itemsets (Tan et al. 2006). 

4.3.2 ECLAT-ALGORITHM 

The ECLAT-algorithm (Equivalence Class Transformation) was first introduced in 1997 

by Zaki, Parthasarathy, Li and Ogihara. The algorithm takes a different approach to 

finding association rules compared to the Apriori algorithm. The Apriori algorithm takes 

a breadth-first approach to mining itemsets, whereas the ECLAT-algorithm is a depth-

first search algorithm. 

The transaction data set is structured differently than in the Apriori algorithm. Instead of 

storing the data in a horizontal manner, the data is represented in a vertical layout. This 

is seen as a TID-list, as it is a list of transaction identifiers. Each item is represented by a 

list of all the transactions it belongs to, as illustrated in Figure 20.  
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Figure 20. Vertical and horizontal layout. (Tan et al. 2006) 

The idea behind the Eclat-algorithm is that the support can be counted by intersecting the 

candidate itemsets. Given transactions t(X) and t(Y) for two frequent itemsets X and Y, 

it the intersection can be written as follows: 

t(X,Y) = t(X) ∩ t(Y). 

As an example, for TID-sets A = 1345 and B = 2456, the support of AB can be calculated 

by intersecting the TID-sets, 1345 ∩ 2456 = 45. In this case, the support for the example 

is 2. ECLAT intersects TID-sets only if the frequent itemsets share a common prefix. It 

traverses the tree in a depth-first manner by processing a group of itemsets that have the 

same prefix, also called a prefix equivalence class (Zaki & Meira, 2013).  

Figure 21 illustrates an example of the ECLAT-algorithm with a minimum support of 3. 

The initial prefix equivalence class is {(A,1345), (B,123456), (C,2456), (D,1356), (E, 

12345)}. ECLAT intersects A with the other TID-sets to obtain the TID-sets AB, AC, 

AD and AE. AC is infrequent and pruned. The frequent itemsets form a new prefix 

equivalence class, {(AB,1345), (AD,135), (AE,1345)} which is then recursively 

processed. All branches are processed in a similar fashion, and the entire tree is illustrated 

in Figure 21, with infrequent TID-sets marked gray. The Eclat-algorithm itself is 

described in Figure 22. 
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Figure 21. Eclat-algorithm, example (Zaki & Meira, 2013). 

 

Figure 22. The Eclat-algorithm. (Zaki & Meira, 2013) 

The complexity of the Eclat-algorithm is hard to characterize, as it is largely dependent 

on the size of the intermediate TID-sets. It is thereby possible to improve the algorithm 

by shrinking the size of the intermediate TID-sets. The dEclat-algorithm keeps track of 

the difference in each TID-set, called diffset, instead of keeping track of the full TID-set. 
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This is viable as it is possible to obtain a diffset from the diffsets of the subsets. The 

support of a candidate itemset can be calculated by subtracting the diffset size from the 

support of the prefix itemset. The dEclat-algorithm is illustrated in Figure 23, with 

infrequent itemsets marked as gray. To process candidates with A as a prefix, the dEclat-

algorithm calculates the diffsets for AB, AC, AD and AE. In this example the diffset of 

AB = ∅ , and AC = 1,3. The corresponding support values are sup(AB) = 4-0 = 4 and 

sup(AC) = 4-2 = 2, meaning that AC is pruned. The rest of the branches are processed in 

a similar way. 

 

Figure 23. The dEclat-algorithm (Zaki & Meira, 2013). 

  

4.3.3 FP-GROWTH 

The FP-Growth algorithm finds frequent itemsets by first generating a special data 

structure called frequent pattern tree (FP-tree). Each node in the tree is labeled as a single 

item in the transaction dataset. Each child node will represent a different item. Each node 

in the tree will store the support count among the path from the root for the itemset. First, 

all items will be ordered in descending order based on their support counts. Each 
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transaction will also be ordered based on the initial support-order and items that are under 

the support threshold will be eliminated (Zaki & Meira, 2013).  

The FP-tree is first initialized with a null node. Then, each itemset is inserted into the tree 

and support counts for each node in the itemset is increased along the correct path in the 

FP-tree. If the next itemset shares items with the existing nodes in the tree, it will follow 

the path as long as the items remain the same. For the remaining items in the new itemset, 

new nodes will be added to the tree with initial support counts of 1. When all transactions 

have been added to the FP-tree, the FP-tree is considered complete. As the support counts 

are calculated for all single items, and the inserted itemsets are ordered based on this 

order, the tree will be as compact as possible (Zaki & Meira, 2013).  

Zaki & Meira (2013) have illustrated the algorithm with an example. Consider the 

itemsets in Table 4. The sorted item order for the dataset is B(6), E(4), A(4), C(4), D(4). 

Each itemset is ordered according to this order and inserted to the tree. Figure 24 

illustrates this process one transaction at a time. 

 

 

Table 4. Frequent itemsets with min support = 3. (Zaki & Meira, 2013) 
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Figure 24. Inserting transactions to the FP-tree. (Zaki & Meira, 2013)  

Once the FP-tree has been generated, it represents the original dataset with support counts 

in a tree data structure. The FP-tree can then be mined for frequent itemsets with the 

FPGrowth-method, illustrated in Figure 25. FPGrowth creates a new projected FP-tree 

from each item, but in increasing support count. Given the initial FP-tree in Figure 24, 

there are 3 different paths for item D. These paths, excluding the last item D, are inserted 

to the tree. The count of the occurrence of item D on the path in question is also calculated. 

The projected FP-tree for item D is illustrated in Figure 26. 
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Figure 25. FPGrowth-method. (Zaki & Meira, 2013) 

 

 

Figure 26. Projected FP-tree. (Zaki & Meira, 2013) 

After processing the FP-tree, and after removing the items below minimum support count 

(item C), we have the itemsets for prefix D. This results in a single path B(4)–E(3)–A(3). 

By splitting this to all subsets and prefixing them with D, the frequent itemsets DB(4), 

DE(3), DA(3), DBE(3), DBA(3), DEA(3) and DBEA(3) are obtained. The frequent 
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itemsets for the other prefixes can be generated in the same way (Zaki & Meira, 2013). 

The tree projection for the other items is illustrated in Figure 27. 

 

Figure 27. FP-tree projection. (Zaki & Meira, 2013) 
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4.4 ASSOCIATION RULE GENERATION 

When the frequent itemsets have been calculated, it is possible to obtain association 

rules from the collection of the frequent itemsets. All itemsets are iterated to calculate 

the confidence of various rules that can be derived from the itemset. Given a frequent 

itemset Z, the association rules are in the form X → Y, where X and Y are subsets of 

Z. To calculate the confidence of a rule, it can be done with the formula sup(Z) / 

sup(Y) (Zaki & Meira, 2013). 

Taking the frequent itemset ABDE(3) from Table 4 as an example, and using 0.9 as 

a minimum confidence threshold, the set of antecedents are ABD(3), ABE(4), 

ADE(3), BDE(3), AB(3), AD(4), AE(4), BD(4), BE(5), DE(3), A(4), B(6), D(4), E(5). 

The first subset is ABD, and the confidence for the rule ABD → E is 3/3 = 1.0, so the 

rule is strong. The next subset is ABE and the confidence for the rule ABE → D is 3/4 

= 0,75, so the rule is discarded. We can therefore remove all subsets of ABE from the 

antecedents, so the updated antecedents are ADE(3), BDE(3), AD(4), BD(4), DE(3) 

and D(4). Following this logic we can extract all strong rules from the list of frequent 

itemsets (Zaki & Meira, 2013). 

 

4.5 OTHER APPROACHES 

Tan & Lau (2013) have done a study on time-series clustering as an alternative to regular 

market basket analysis. They argue that market basket analysis is not always the best 

alternative, especially when the dataset is large with many products. This is because of 

long processing times and many rules without much insight. Instead, clustering on 

transactional data formatted as time-series data can provide better insight. The dataset is 

transformed as follows: Each month gets an identifier and then represented as a column 

in the data matrix. This is best illustrated in Figure 28. 
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Figure 28. Transactional data formatted as time-series data. (Tan & Lau, 2013) 

Using the k-means algorithm, they managed to get useful patterns of products bought 

together. This can be used for cross-selling and better inventory control. One of the 

benefits of this approach is the drastically reduced size of the data. Since market basket 

analysis is widely used, many problems can be tackled with this approach instead. Further 

suggested research includes applying other (more advanced) clustering algorithms with 

this approach.  

Videla-Cavieres & Ríos (2014) have presented an approach for market basket analysis 

based on graph mining techniques. Their method is useful when the data is huge and 

scattered and common techniques fail. The graph is generated by connecting each 

transaction with corresponding products. The graph is then transformed to a product-to-

product weighted network. With the help of community detection algorithms frequent 

itemsets can be discovered.  

According to Baer & Chakraborty (2013) there are three approaches for product affinity 

segmentation. Customers can be segmented by demographic or other transaction 

variables which can then be combined with product-level purchase data. Market Basket 

Analysis using POS data can be used to understand what products are bought together, 

and finally product type data can be directly used in clustering algorithms to find affinity 

segments. They have applied the “doughnut” clustering method to generate customer 

clusters based on purchase patterns. This method is useful when the goal is to find out 

which customers have similar purchase patterns and can be used for more effective 

marketing.   
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5 ANALYSIS 

This chapter will give an overview of some of the different tools and technologies that 

are relevant to data warehousing and market basket analysis. The chapter will however 

only give a brief introduction to some of the options that are available, as the focus of the 

thesis is on the process and models instead. Followed by an introduction to the tools, the 

general architecture of the DW/MBA system will be explained. 

5.1 CLOUD TECHNOLOGIES 

In recent years, cloud computing has emerged as an attractive alternative to traditional 

on-premise solutions. Common cloud services include Amazon AWS and Microsoft 

Azure. According to Carroll et al. (2011) and Rittinghouse & Ransome (2009), there are 

some obvious benefits in cloud computing, some of which are: 

- Scalability 

- Flexibility 

- Reduced implementation and maintenance costs, cost efficiency 

- Availability of high-performance applications 

- Fast start up 

The usage of cloud computing is however dependent on the business at hand, and every 

project should be evaluated independently. As an example, Aljabre (2012) has pointed 

out that cloud services may still lack some features. Cloud services might also raise 

problems with the security of confidential data.  

5.2 ETL-TOOLS 

There are various ways of handling the ETL-process for the data warehouse solution. 

First, there are many different ETL-tools available on the market, both open-source and 

commercial. Second, it is completely viable to handle the ETL-process by writing own 

code in the form of stored procedures in the database or by writing scripts for example in 

Python or PowerShell.  
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If using SQL Server as the database, SSIS is a good option for an ETL-tool. It is offered 

by Microsoft and included in the SQL Server licence. SSIS offers great integration with 

SQL Server, making it a good choice. Gartner (2018) has also listed Informatica 

PowerCenter and the open source-tool Talend as other good options rated by customers. 

Another common open-source tool is Kettle by Pentaho.  

As mentioned earlier, it is also possible to opt for a solution without an ETL-tool. One 

option is to use plain SQL to write all transforms and loads. The benefit of this approach 

is a simpler architecture as no other tools are needed, and as SQL is universal and well 

known it is easier for new developers to work on the data warehouse as there is no need 

for knowledge of another tool. Quite often, it is also easier to write the transforms and 

loads in plain SQL compared to using an ETL-tool. The drawback of this solution is the 

lack of visual aid, and complex ETL-processes can become very hard to maintain and 

understand. Writing the ETL in a scripting language can give greater control and 

flexibility compared to plain SQL, but requires more expertise as it requires knowledge 

in another language in addition to SQL. 

The choice of an ETL-tool is largely dependent on company preferences regarding 

technology, budget and architectural preferences. If the data warehouse is small and the 

ETL is fairly simple, a SQL-based ETL-pipeline will be perfectly fine. Larger and more 

complex solutions on the other hand may gain significant advantage from the visual aid 

provided by ETL-tools.  

 

5.3 DATABASE ENGINES 

Today, there are multiple database engines to choose from. First of all, cloud solutions 

will have different options compared to a traditional data-center or on-premise approach 

for the database. In the traditional approach, there are open-source, free and paid services. 

From the open-source possibilities, the most common database engines are MySQL and 

PostgreSQL. From the commercial options Microsoft SQL Server and Oracle Database 

are commonly used. Microsoft also offers a free version of SQL Server, called the Express 
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version. The SQL Server Express Edition is completely suitable for small enterprise 

usage, but it has some restrictions, as an example the maximum database size limit is 

10GB (Microsoft, 2019). SQL Server uses a specific language that is based on SQL, 

called T-SQL.  

As I am used to work with SQL Server, the architecture will be planned with SQL Server 

in mind and code will be written in T-SQL. This can however be changed based on the 

organization in question depending on preferences and existing architecture.  

 

5.4 ANALYTICS OPTIONS 

There are multiple tools and technologies that can be used for performing market basket 

analysis. Examples of the tools that can generate association rules are WEKA and 

Rapidminer, but it is also common to use programming/scripting languages for the task. 

For example, R and Python have ready libraries for this task. A common implementation 

is to use R, and there are multiple tutorials available on the internet. As a bonus, Microsoft 

has added support for R in SQL Server from version 2016 onward, which means that the 

scripts can be embedded in stored procedures inside the data warehouse. This will make 

the entire solution even cleaner and help in maintenance as all code can be found and ran 

in one place. If using another database, the R script can be triggered in other ways. 

To perform market basket analysis in R, the easiest way is to import the “arules”-package. 

The “arules”-package contains implementations for both eclat and apriori and can be 

performed by calling the eclat()- and apriori()-functions (Hahsler et al. 2019) 

 

5.5 RETAIL DATA PIPELINE 

This chapter introduces the artifact that was created to answer the research questions. In 

this case, the artifact is the entire architecture and proposed system. It is designed with a 
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data warehouse that works as source for the MBA-integration. The architecture is also 

designed with automation in mind. Another option would naturally be to obtain data from 

source systems and perform manual MBA whenever needed. This option would be 

perfectly fine if the organization is only looking to do occasional ad-hoc analyses, and 

does not need automated analytics. The proposed architecture will however also work as 

a stable foundation for future analytics needs, and is deployable on both cloud and on-

premise platforms. 

 

5.5.1 ARCHITECTURE 

Based on the literature review and the scope of this thesis, it seems that the best approach 

would be to build a two-layered data warehouse architecture as a base if the company 

doesn't already have a functional data warehouse solution. By using a data warehouse as 

a basis for the architecture, it allows for much better scalability and easy development of 

other analytical solutions. An option would be to build an automated market basket 

analysis solution on the raw source data, but this solution will not support other analytics 

and BI needs in the future. Building the solution on raw source data runs a risk of 

becoming a nightmare to maintain if all subsequent analytical solutions are developed in 

a similar way.  

In the proposed solution, it is also assumed that the company does not have an important 

need for data auditing and traceability, but rather wants to focus on analysis. A two-

layered architecture will deliver results much quicker and therefore also hold a much 

smaller budget compared to a three-layered architecture. This architecture means that the 

data warehouse layer itself should be based on dimensional modeling. The complete 

architecture is illustrated in Figure 29 with the following layers: 

1. Source systems: The source data may be available e.g. in OLTP-databases or 

provided as flat files. 

2. Staging area: The staging area consists of database tables that mimic the structure 

of the source tables and/or source flat files. 

3. Data Warehouse layer: This is where the actual data is stored. The structure is 



V. Prykäri: Designing a Data Warehouse for Market Basket Analysis in Retailing 

58 

based on the Kimball approach, meaning that the layer is based on dimensional 

modeling. 

4. Analytics layer: In this layer MBA is performed. Any future BI/Analytics will be 

built in this layer.  

5. Presentation/End users: The data is delivered in a usable and easily 

understandable format for end users in a way that can help in decision making.  

 

 

Figure 29. The proposed architecture.  

An example of a retail POS-system is illustrated in Figure 30. It is fairly simple to extract 

the needed data from the source tables into the staging area and load the data into a star 

schema. In another situation, the data might have to be delivered as flat files, and in this 

case the staging tables are based on the columns in the flat file(s).  
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Figure 30. Example ER-diagram of a retail sales business.  

Following agile and scrum philosophy, the development should start with the minimum 

viable product (MVP). The MVP is an actual product with least effort that can be offered 

to customers to be further observed (Agile Alliance, 2019). In this case, the star schema 

is the first thing that should be developed, and it is fairly quick to do. Taking the business 

goals into account, the dimensional model should include at least the fact table, the 

product dimension, the customer dimension and the date dimension. Figure 31 illustrates 

the star schema for this purpose.  
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Figure 31. Proposed Star Schema. 

 

Dim_Customer: Customer dimension. As customer data will change over time and there 

might be need to track changes at some point, SCD Type 2 would be a great option for 

this dimension as it allows track of the history while still staying simple. Valid_From is 

a date field that marks when the row is effective, Valid_To marks the expiration date, and 

Is_Current indicates the current row.  

Dim_Date: Date dimension. The Date dimension can be modeled as a Type 0 dimension, 

as it will most likely not change. It includes the date in a date data type which can be used 

for date functions and more fields can easily be added as needed. 

Dim_Product: Product dimension. The product dimension can be modeled as a Type 1 

dimension, unless the organization has specific needs for a more advanced type. This 

means that if the product description changes, the old information will be destroyed. 

Fact_Sales: Fact table for sales. The Fact table stores the product sold and is obviously 

at the transaction grain. The Fact table will also include fields for quantity and total 
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amount so that the Fact-table can be aggregated logically. 

The creation of the star schema is quite straightforward. The entire schema can be 

generated with “CREATE TABLE”-statements. The data types and lengths can be 

changed according to specific business needs. The staging layer also has to be created, 

and it should follow the table definitions in the source tables as discussed earlier in the 

thesis. A quick way is to use a visual tool, like SSMS for SQL Server, to generate table 

scripts of the needed tables. 

5.5.2 ETL-PROCESS 

The entire ETL process consists of the following steps in their specific order: 

1. Extract and load raw source data into staging tables 

2. Transform and load dimension tables 

3. Transform and load the fact table 

4. Run analytics 

Depending on the source database engine, there might be different needs to import the 

data into the SQL Server staging tables. One option is to create a linked server, and 

another is to use SSIS for the import task. If the linked server route is an option, it allows 

for the ETL process to be built entirely using stored procedures which creates a simple 

and easy solution. The first step in the ETL process is thereby to load the wanted data into 

the staging tables. For all tables except for the fact-source, it is best to load all rows into 

the staging tables. For the fact-source, a good option is to filter the extraction based on 

the time frame. If the ETL-process is to be ran once a day, then only sales for the day in 

question should be loaded into the staging table. Depending on the source, it might 

however only be feasible to load all data and do the actual filtering when loading the data 

into the data warehouse itself.  

The next step is to load the star schema. Due to the structure of a star schema, mainly 

because of the foreign key constraints in the fact table, the dimensions have to be loaded 

before the fact table. The Date dimension should be loaded only once manually, and it 

can be accomplished by writing T-SQL scripts using any of many guides available on the 
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web. Another option is to download e.g. a csv-file that contains the needed data. This 

approach can be good especially if banking holidays are of importance. The rest of the 

dimension tables can be loaded with stored procedures.  

When loading the data into the data warehouse layer, transformations are almost always 

necessary in some form. Data in source systems and files are usually of varying data 

types, and this should be taken into account in the ETL-process. This means that the data 

and data types should be transformed when loaded from the staging tables into the data 

warehouse. The data types should be conformed in the data warehouse to keep 

consistency in the data and the model. Take dates as an example, they can be stored as 

integers, dates, datetimes and strings. Strings can be further stored in varying formats, 

e.g. ‘DD/MM/YYYY’ or ‘YYYY--MM-DD’ which means that the string needs to be 

parsed and transformed to the correct data type. Another example is of currency amounts, 

as they can be of different precision and scale e.g. 122,24600 and 122,25. 

Another issue arises when different source systems store data of the same things. The data 

warehouse should not contain duplicate information, it should instead store "a single 

truth" to which all business areas and processes reference. When conforming the data, 

focus should be put on field names and naming conventions, so that they are easy to 

understand and same names actually mean the same thing. 

The product dimension should be loaded as follows: First, the needed data of the products 

should be gathered from the relevant staging tables and joined together. Next, the needed 

data cleansing and transforming should be performed so that the data is in good shape. 

Next, the transformed data should be left joined to the existing rows in the product 

dimension on the product id attribute to check whether a specific product already exists. 

If the product exists, the attributes should be updated accordingly as the dimension is a 

type 1 slowly changing dimension. If the product is new, the row is inserted into the 

dimension. An easy option for surrogate key generation is to set a new IDENTITY-

constraint on the table column Product_Key. This way every new row will get a new 

integer value. 

As the customer dimension is a type 2 slowly changing dimension, it will require some 

additional logic for loading. The rows that do not exist in the source data should be 
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terminated, meaning that Is_Current should be set to 0 and Valid_To should be set to the 

current date. Next new rows that do not exist in the dimension should be added with their 

correct attributes. For records that have changed, the existing rows need to be terminated, 

and new rows will be added. 

When the dimensions have been loaded, it is time to load the fact table. First, the needed 

facts should be gathered from the correct staging table. In the retail case, if the grain is 

not on product sold, it should be changed. The fact data should then be joined to the 

corresponding staging tables to get the customer id and product id. This dataset should 

then be joined to the dimensions loaded in the previous step to get the Customer_Key and 

Product_Key attributes. The enriched dataset should then be loaded into the fact table. 

The date key can be loaded as the transaction date converted to integer data type. 

At this point, the star schema has been loaded and the data is ready for use. It is easy to 

build different types of validations to run after the ETL-process to make sure that the data 

is loaded correctly. Some of the easy options include calculating row counts and 

comparisons to previous load dates.  

To actually develop an effective data warehouse solution, the ETL has to be automated. 

Running the ETL-process manually is cumbersome and ineffective, as the goal is that the 

ETL-process will succeed most times. This means that starting of the ETL-process should 

be scheduled by using a scheduler of some sort. It is of course also possible to trigger the 

ETL-process as a result of a specific event, e.g. when source files have arrived. Common 

options for the scheduling of the job is to use SQL Server agent jobs, Windows Task 

scheduler or a scheduler provided by the cloud service if opting for a cloud solution. The 

ETL-process should then run loading processes in the correct order, and only starting a 

task if its prerequisite has completed. If not using an ETL-tool, one option is to use a 

“master”-procedure that runs the subtasks in the correct order. 

Depending on the needs of the data warehouse, the ETL scheduling should be set to run 

on an interval, e.g. daily or monthly. The interval is naturally dependent on the analytical 

needs of the business, as if the business only needs to run analytics and reports on a 
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monthly basis, running the ETL-process monthly will suffice. In other cases the business 

will want the newest data available every day, and sometimes there might be a need to 

load new data into the data warehouse many times a day or even do real-time updating. 

If querying OLTP-systems, it makes sense to schedule the ETL-process for times when 

the transactional load is lower, e.g. during the night. 

A good ETL-process also consists of monitoring. SQL Server Agent allows for decent 

monitoring capabilities. Whenever a job completes or fails, it can be configured to send 

an email. Besides this, the job history is logged, so events can be tracked. SQL Server 

Agent also has integration with SSIS-packages which helps in monitoring. SQL Server 

also supports SSIS-reports, which are quite helpful for tracking statistics and errors in 

executed packages. Other tools, cloud services and RDBMS have similar capabilities, so 

the actual monitoring is heavily dependent on the technology at hand. It is obviously also 

possible to build own monitoring solutions that can be customized for the data warehouse. 

 

5.5.3 INTEGRATION TO MARKET BASKET ANALYSIS 

Based on the literature review, it seems most logical to start by using the Apriori 

algorithm, as it is the most common and easy to implement in R. When the general 

architecture is built, it is fairly easy to run different analyses and algorithms on the data. 

Using the dimensional model as a source for analysis, it is easy to access the needed data 

to run the Apriori algorithm in R. The proposed architecture is based on SQL Server 2016 

and onward, as the Machine Learning Services support R scripts inside stored procedures. 

The proposed architecture for the R integration is illustrated in Figure 32. 
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Figure 32. Proposed R integration. 

All the data needed can be found from the sales star schema by joining the Fact_Sales to 

the Dim_Product dimension. To further control the dates in the analysis, Fact_Sales can 

be joined to the Dim_Date-table. Sometimes, there might also be a need to further restrict 

the data based on customer attributes, and this achieved by joining to the customer 

dimension. The integration can be simplified by using a view (vwSales in Figure 31) that 

joins the tables. The view joins the fact table with the dimension tables on their specific 

keys. 

There are different ways how the data should be formatted for MBA in R. The common 

way is to format the data into the market basket format which is illustrated in Table 5 

below. Another option is to format the data into a transaction object with R-functions. In 

this case the source data can be in basic format, meaning that one row has only one 

product. 

  

Table 5. Market basket format. (Modified from Gulalkari, 2016) 

By querying the view with an optional WHERE-clause for date control, the data is ready 

for analysis. The WHERE-clause can naturally be used for any other type of filtering that 

is needed, e.g. removal of transactions that include specific items. 

The stored procedure with the embedded R script (spMBA in Figure 32) will use the data 

from the view as input. If using another technology than Machine Learning Services for 
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SQL Server, the stored procedure is replaced with the R script itself and triggered in 

another way. The first step when setting up the automated market basket analysis is to 

configure the script. This will take a lot of trial and error as the support and confidence 

thresholds have to be determined. Additionally, it will require decisions on the data time 

interval on and how often the script should run, e.g. running the script monthly with the 

accumulated data from the past month. Next, depending on the performance of the 

Apriori-algorithm, it might be useful to test the analysis with another algorithm.  

To make the integration more generic, some variables should be added to the architecture. 

By adding a table that holds variables (MBA_Variables in Figure 32), the script can be 

controlled. The stored procedure will be built with dynamic code, so that the script 

changes based on the variables. The benefit of this approach is that the script will require 

less modifications, as the behaviour of the script will change based on the variables in the 

control-table. As a starter, the following variables should be added: 

- Minimum support 

- Minimum confidence 

- Data interval in days, meaning how old data should be used 

- Algorithm to be used, in this case Apriori/Eclat. 

Finally, the results should be delivered in a clean and readable way. One option is to 

format the results as HTML and send it as email. This way the results of the analysis will 

automatically appear e.g. monthly as an email and the business can do decisions based on 

this or do further analysis. Another option is to write the results back into the database, 

as this allows for historical storage and usage for multiple purposes. The results can also 

be saved in another format, e.g. .jpeg, and saved to disk. The results of MBA can be 

viewed in multiple ways, e.g. as a list of rules or as graphs. The presentation of data and 

results are however out of scope for this thesis. 

 

5.5.4 EXPANDABILITY OF THE MODEL 

The goal of the architecture is to also support expansion to other types of analytics. This 
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means that new data from the sales process itself and from other processes should be 

easily integratable to the data warehouse so that further analysis can be performed. 

Dimensional modeling provides great support for this type of expansion, as concluded in 

the literature review.  

With the help of conformed dimensions, new fact tables can be added and they can be 

linked to existing and new dimensions without affecting the already existing data. It is 

also easy to further enrich the incoming data by adding new attributes to both the fact 

tables and the dimension tables. The data warehouse can then be used for various types 

of analytics, e.g. 

- Basic BI and reports, such as revenues and forecasting 

- Customer segmentation 

- Churn analysis 

- OLAP-cubes 

5.5.5 DEVELOPMENT AND IMPLEMENTATION 

For the actual development, SQL Server 2017 Developer version was chosen as the 

database environment, as the developer version is free and allows development in a non-

production environment with full features of SQL Server. SQL Server Machine Learning 

Services is a great addition, which allows the deployment of the R script inside SQL 

Server in a stored procedure, resulting in a very clean and compact solution.  

The star schema was developed in SSMS using “CREATE TABLE”-statements. All 

needed FK- and PK-constraints were added to the fact and dimension tables. A separate 

schema was created for the staging area to separate the staging area from the actual data 

warehouse. 

To test actual functionality of the system, some data was used. The data used is sales data 

of an online retail business, called “Online Retail Data Set”, and can be acquired from the 

UCI Machine Learning Repository (2015). As source data and systems differ widely in 

companies and the actual ETL-process from the source to the star schema is out of scope 

of this thesis, the data was loaded by manual queries into the star schema by first 
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importing the data into a staging table that mimics the structure of the xlsx-file. The 

source file has the following columns and meanings: 

- InvoiceNo: The invoice number 

- StockCode: The product code, contains both numbers and letters 

- Description: A short textual description of the product 

- Quantity: The quantity of the product sold  

- InvoiceDate: Datetime format: 01/12/2010 08:26 

- UnitPrice: Price of the product sold 

- CustomerID: Customer identifier 

- Country: Customer country 

All data was loaded into the staging table. First, the product dimension was loaded by 

finding all distinct StockCode-values, and by finding the maximum value of the 

descriptions by using a “GROUP BY”-clause to eliminate duplicate StockCode-, and 

Description values. As the real values of the customer dimension are not important for 

the testing of the architecture, the country value was aggregated with a “GROUP BY”-

clause in a way that the maximum value was picked and all rows where set to be valid 

with a Valid_From-value of ‘20091231’. 

The date dimension was populated using example scripts available on the web. Finally 

the fact table was loaded by joining the staging table to the dimension tables on their 

corresponding columns to find the actual values for the key-columns. Besides the key-

columns, the values of the staging-columns InvoiceNo, UnitPrice/Quantity and Quantity 

was loaded into the columns Sales_No, Amount and Quantity. 

The execution of the market basket analysis was performed by embedding the R-script 

into a stored procedure in SQL Server. The prerequisites for this was to install SQL Server 

Machine Learning Services and to install the required packages for market basket analysis 

in R. The stored procedure takes the input dataset from the view of the dimensional model, 

with a “WHERE”-clause that controls the date. To also test the usability of the results, 

the script plots the top rules that are mined and saves the plot to disk. 
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5.5.6 RESULTS 

The developed star schema is very easy to understand. The querying of the model is 

straightforward, and creating a view to use as an input for the MBA keeps the structure 

simple and understandable. The execution of the R script inside a stored procedure works, 

and it produces a plot of top rules and saves the plot as a .jpeg-file on disk. The execution 

of the stored procedure is however slower compared to running MBA as standalone in R 

with the same data. With the full sample dataset, the run time of the procedure with 0.01 

support was 4 min 24 sec compared to roughly 2 seconds when running the R script 

independently. However, the returned messages of the script in the stored procedure show 

that generating the rules takes less than a second which would indicate that the bottleneck 

is caused by something else. By reducing the amount of data, the execution time is 

significantly reduced.  

As the data is easy to query from the dimensional model, it would be easy to build new 

solutions on top of the model. It is also quite straightforward to add new columns, and 

adding new fact- and dimension tables would allow for easy expanding of the model. This 

means that the model seems to work well for other types of analytics. No automation was 

implemented, but it would be easy to implement by creating a SQL Server agent job that 

triggers the needed stored procedures and schedule it to execute in wanted intervals. The 

overall results of the implementation seems to be that the architecture and model works 

as expected.   
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6 CONCLUSION 

To answer the research questions, an artifact was created. This artifact consisted of a 2-

layered data warehouse and an analytics layer with market basket analysis implemented 

in R. A data warehouse provides a great platform for data storage and analytics. 

Dimensional models are easy to understand and query, and they provide good query 

performance. By using a two-layered data warehouse, the development is also quick and 

easy. The data warehouse functions as a great foundation for market basket analysis, and 

allows for easy expandability to support more data and analytics. 

The creation of a simple dimensional model is straightforward. The most time-consuming 

part of the development is the development of the ETL-process and the actual design of 

the data warehouse. There are also multiple choices to be made when developing a data 

warehouse regarding database engines, ETL-tools and technologies, but the design itself 

is quite independent of these factors. 

The Apriori-algorithm is fast, as it generates rules in a few seconds with the sample 

dataset. Generally speaking, the rules were mined in less than one second on the sample 

data. This meant that there was no point in trying other algorithms, as the speed of Apriori 

was more than enough. With different data, the situation might however be different, and 

could then require further experimenting with other algorithms and technologies. 

Implementation of Apriori in R is simple, as association rules can be generated with only 

a few lines of code. It will however require more effort to find the correct parameters and 

to do actual data exploring. Embedding the R script into a stored procedure is however 

not as easy as running the R script as a standalone solution. Apriori requires the data to 

be in transaction format, and the function that transforms it into transaction format 

requires the source data to be in a .csv-file. When embedding the script in a stored 

procedure the goal is to use the data directly from the database which means that the 

function in question cannot be used. The data can however be converted to a transaction 

object by manually transforming the data to a matrix, but this requires additional code. 

The R script was significantly slower when embedded in a stored procedure. As the 

message from R was that the rule generation was completed in less than a second, it is 
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more likely that something else is slowing the script down. The actual bottleneck seems 

to be caused by the need to format the data into transaction format, and not by the Apriori 

algorithm. It will usually also take a few seconds for SQL Server to start a new R process 

when executing the stored procedure. However, the obvious benefit of the embedded 

script is that analytics can be kept close to the data and the costs and security risks 

associated with data movement can be eliminated. 

As the development of the actual R script started as a stand-alone script unrelated to the 

data warehouse, and as the script works in-database, it is obvious that the architecture 

would also work if the script was not inside a stored procedure. An architecture with a 

separate R script would be relevant for older versions of SQL Server and other database 

engines. If the performance is too slow for the in-database solution, it would also be better 

to run the script as stand-alone and import the data from a .csv-file. 

There are however some challenges related to the system:  

Interval of script execution: It might take some trial and error to figure out an optimal 

interval for running the MBA-script. Running the script too often will not provide any 

new value as the rules will not change much, or there is not enough data to mine relevant 

rules. 

Amount of data: It might be hard to figure out how old data should be used when running 

the script. As an example, should the script be executed once a month with only sales data 

of the past month? 

Useful rules: When automating the process, it can be quite hard to maintain quality and 

usefulness in the generated rules. 

Data cleansing: There might be existing and new errors in the data, which can cause 

problems in the ETL-process or the MBA-script. 

Product dimension design: The product dimension can be modeled in many ways. For 

example, if a label for a product is changed, should the historical facts also be linked to 

the new product label, or should the dimension store the old value as well?  
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It is also questionable if an automated market basket system will be able to deliver 

relevant results, as it might be necessary to configure the script constantly. Further 

analysis might be required each time that MBA is performed to actually get relevant 

results. If the company only needs to do MBA occasionally or on an ad-hoc basis with 

further analysis, it is most likely an easier and better option to just obtain the data as 

needed and perform the analysis manually. However, the data warehouse with the star 

schema will provide a robust and easy-to-query platform, and works as an excellent base 

for both automated and ad-hoc analytics.  

The implemented solution was not automated, but the actual automation of the system is 

fairly easy with different scheduling options discussed in the thesis. The system could 

also be further developed to be more reusable in different organizations by adding more 

variables and making the script more dynamic. By writing proper SQL-commands, it 

would be possible to create a “master”-script that would implement the entire system. 

This would allow for easy reusability and great flexibility with the addition of more 

variables. The only thing that would be left to develop is the actual ETL-process from 

source systems to the star schema, which is different for organizations. By developing the 

system further, it would start to resemble a generic product. 

With the artifact, it is possible to answer the research questions: 

1. How should a data warehouse be designed so that it can support market basket 

analysis? 

There are various ways to develop a data warehouse. The proposed 2-layer architecture 

designed according to dimensional modeling is a fairly simple structure to implement, 

and serves the basic needs for market basket analysis perfectly. This architecture is fast 

to implement and it allows for easy expansion. However, if the business has higher 

requirements for data quality and auditability, a 3-layer architecture might be needed. 

2. How should automated market basket analysis be applied? 

The proposed solution in this thesis shows one way of implementing an automated MBA 

system. The architecture in itself is fairly technology-independent, as if SQL Server 

Machine Learning Services is not available, the R script can be triggered separately. This 
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architecture can also be migrated to the cloud as-is when using a virtual machine. The 

architecture is easily automated in various ways, and by increasing the amount of 

variables the system will be more flexible. Market Basket Analysis can however be 

applied in many other ways as well with different software or programming languages. 

 

 

6.1 FUTURE RESEARCH 

How well does the star schema support expansion to more data and different types 

of analytics? 

Further research should focus on investigating how well a data warehouse based on 

dimensional design can handle expansion, and how non-relational data can be 

incorporated to the model. It is also of interest whether a dimensional design will provide 

the best foundation for an ever increasing variety of analytics, as some other type of 

solution might prove to work better, especially when the volume and variety of the data 

increases. 

How effective is an automated system compared to ad-hoc analytics? 

It is questionable how useful an automated market basket analysis system will be in 

practise. This is most likely highly dependent on the business and the data. The results 

might prove to not be useful, and incorporating these results might even lead to poor 

decisions and campaigns. This means that in many cases, simple ad-hoc analysis might 

prove to be more cost-effective with greater results.  

How effective is automated use of the MBA-results? 

The results of an automated MBA-system can be used for many purposes. It is also 

possible to build sophisticated applications and further analytics that use the results. Some 

examples are recommender systems, marketing emails and group pricing. Further usage 

options and their effectiveness should thereby be researched.  
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How should MBA-results be visualized? 

The visualization of the results are out of scope for this thesis, which means that this is a 

great area to work further on. In the implementation, the results were printed out as a 

simple graph, but there are much more sophisticated visualization methods. This means 

that different ways of presenting association rules could be researched further.  

Can the proposed system be developed into a product? 

The developed system shows some hope for the development of a generalized product 

that could be used as-is in different businesses. Improving the R script by adding more 

dynamic parts and using variables could make the system highly flexible. This means that 

the entire system could be deployed in seconds with a single build script. The remaining 

work would focus on the ETL from the source systems to the star schema.  

 

  



V. Prykäri: Designing a Data Warehouse for Market Basket Analysis in Retailing 

75 

7 SUMMARY IN SWEDISH 

Utveckling av ett automatiserat system för korganalys inom 

detaljhandel 

Företag samlar en stor mängd transaktionsdata som de skulle kunna dra nytta av men 

eftersom transaktionsdata ofta är sparat i operationella system är det orimligt att utveckla 

analytiska lösningar som utnyttjar dessa operationella data direkt. En lösning till detta är 

att utveckla ett datalager (eng. data warehouse).  

Ett vanligt sätt att dra nytta av transaktionsdata är att göra korganalys (eng. market basket 

analysis). Med hjälp av korganalys är det möjligt att identifiera vilka produkter som ofta 

köps tillsammans. Den här informationen kan sedan utnyttjas för t.ex. produktplacering, 

-kampanjer och -rekommendationer. På basen av ett datalager är det möjligt att utveckla 

ett automatiserat system för korganalys. 

Enligt egen erfarenhet, finns det inom industrin ofta bristfällig kunskap om 

datalagermodellering och analytik, speciellt vad gäller olika metoders för- och nackdelar. 

Målet med den här avhandlingen är att studera olika alternativ för datalagerdesign och att 

redogöra för olika algoritmer som används för korganalys. Det är sedan meningen att 

planera och utveckla ett system som består av ett datalager och korganalysintegrering. 

Systemet kommer slutligen att implementeras för att testa systemets funktionalitet och 

analysera resultaten.  

Enligt Inmon m.fl. (2008), är ett datalager en samling av subjektorienterade, integrerade, 

tidsberoende och konstanta data som kan stöda ledningen i beslutsfattningsprocesser. 

Dessa sparade data är ofta av olika typ och genereras av olika affärsaktiviteter (Bojičić et 

al. 2016). I enlighet med Linstedt & Olschimke (2016), kan ett datalager planeras i två 

eller tre olika skikt. En tvåskiktsstruktur består av ett iscensättningsskikt (eng. staging-

layer) och av själva datalagret. Eftersom målet med iscensättningsskiktet är att spara 

källdata i ursprunglig form liknar skiktets struktur strukturen för källdata. 

Iscensättningsskiktet minskar belastningen på operationella systemen. 

Treskiktsstrukturen har ett mellanskikt som är modellerat enligt 3NF. Det här skiktet 
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lagrar rådata och påminner mer om ett operationellt system. Ovanpå det här normaliserade 

skiktet finns ett eller flera datatorg (eng. data mart) som ofta är baserade på dimensionell 

modellering. I den tvåskiktade strukturen är å andra sidan själva datalagret utvecklat 

enligt dimensionell modellering. 

Enligt Kimball & Ross (2013) och Linstedt & Olschimke (2016), är dimensionell 

modellering väl accepterat i industrin och en standard datalagermodelleringsteknik. De 

två främsta fördelarna med dimensionell modellering är att den kan framföra data på ett 

lättförståeligt sätt samt ger en snabb förfrågningsprestanda (eng. query perfomance). 

Dimensionella modeller skiljer sig från transaktionella databaser som oftast är i 3NF. 

Databaser i 3NF strävar efter att minska redundans, vilket i sin tur leder till ett stort antal 

tabeller. Tabellnätverket som 3NF ger upphov till är effektivt för transaktionella system 

men svårt att navigera som användare.  

Dimensionella modeller implementeras som stjärnscheman (eng. star schema), vilket 

illustreras i Figure 5. Stjärnscheman består av två slags tabeller: fakta- och 

dimensionstabeller. I faktatabeller sparas data från affärsprocesser. Data från en 

affärsprocess skall sparas i endast en faktatabell. Varje rad i en faktatabell bör vara lika 

detaljerad, d.v.s. en rad i en faktatabell kan t.ex. innehålla information om endast en 

produkt. I Figure 6 illustreras en faktatabell (Kimball & Ross, 2013).  

I Figure 7 presenteras en dimensionstabell. Dimensionstabellerna är avgörande för den 

dimensionella modellen. En dimensionstabell innehåller all ytterlig information till 

faktatabellen. Dimensionerna svarar på frågorna vem, vad, var, när, hur och varför till 

händelserna i faktatabellen. Varje dimensionstabell har en primärnyckel (eng. primary 

key), vilken används för att länka faktatabellen till dimensionstabellen. Genom att 

kombinera fakta- och dimensionstabellerna får vi ett stjärnschema (Kimball & Ross, 

2013).  

Det finns även andra metoder för att modellera datalager. I enlighet med Inmons alternativ 

modelleras själva datalagret i 3NF. Därefter utvecklas flera datatorg som fyller olika krav 

som har framställts av företaget och dess avdelningar (Inmon m.fl., 2001). Ett datavalv 

(eng. data vault) å sin sida byggs upp av knutpunkter, länkar och satelliter (eng. hubs, 

links and satellites). Knutpunkternas uppgift är att spara affärsnycklar (eng. business key) 
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tillsammans med metadata. Eftersom affärsobjekt sällan förekommer ensamma behövs 

länkar som binder ihop knutpunkterna med varandra. För att kunna spara alla data räcker 

knutpunkterna och länkarna inte till. Satelliter lagrar all annan information som inte ingår 

i vare sig knutpunkter eller länkar (Linstedt & Olschimke, 2016).  

Ett datalager fungerar som bas för t.ex. korganalys. Det finns flera olika algoritmer som 

kan utnyttjas för korganalys. En typisk algoritm för korganalys är Apriori-algoritmen 

(Yabing 2013, Rathod et al. 2014). Andra kända algoritmer är t.ex. Eclat och FP-Growth. 

Med hjälp av korganalys kan företaget bl.a. lägga till nya produkter, förändra sortimentet, 

korsmarknadsföra produkter, förändra produktplaceringen eller skicka skräddarsydda e-

postmeddelanden i marknadsföringssyfte (Jabeen, 2018). 

I den här avhandlingen strävar jag efter att hitta en lösning på hur man kan designa 

datalager som stöder korganalys. I enlighet med min litteraturöversikt, föreslår jag en 

tvåskiktsstruktur med korganalysintegrering enligt Figure 29. Själva datalagret bör vara 

modellerat enligt dimensionell modellering och korganalysen i analysskiktet bör utföras 

med hjälp av R. Systemet utvecklas med SQL Server som grund och korganalysen utförs 

med Apriori-algoritmen. Apriori finns implementerad i R-paketet “arules” och 

korganalys kan göras med endast några få rader kod.  

Det var enkelt att implementera systemet. Testdata användes för att ladda datalagret och 

för att utföra korganalys. Systemet fungerade bra och skulle ha varit enkelt att 

automatisera. Själva korganalysen tog längre tid då R-skriptet var inbäddat i en lagrad 

procedur i SQL Server. Ifall R-skriptet är för långsamt med det dataset som används 

skulle det möjligen vara bättre att köra R-skriptet skilt från SQL Server. Det förblir dock 

oklart om ett automatiserat korganalyssystem klarar av att ge relevanta resultat, det kunde 

istället vara bättre att göra manuella analyser.   



V. Prykäri: Designing a Data Warehouse for Market Basket Analysis in Retailing 

78 

REFERENCES 

1Keydata. Website, URL: 

https://www.1keydata.com/datawarehousing/slowly-changing-dimensions-type-3.html 

Accessed 24.2.2019 

Abramson, I. Data Warehouse: The Choice of Inmon versus Kimball, IAS Inc.  

URL: https://www.ismll.uni-hildesheim.de/lehre/bi-10s/script/Inmon-vs-Kimball.pdf 

Accessed 14.2.2019. 

Agile Alliance. Minimum Viable Product (MVP). URL:  

https://www.agilealliance.org/glossary/mvp/#q=~(infinite~false~filters~(tags~(~'mvp))

~searchTerm~'~sort~false~sortDirection~'asc~page~1) Accessed 22.2.2019. 

Agrawal, R. & Srikant, R. (1994) Fast Algorithms for Mining Association Rules. VLDB 

'94 Proceedings of the 20th International Conference on Very Large Data Bases. 487-

499. 

Aljabre, A. (2012) Cloud Computing for Increased Business Value. International 

Journal of Business and Social Science. 3(1). 234-239. 

Baer, D. & Chakraborty G. (2013) Product Affinity Segmentation Using the Doughnut 

Clustering Approach. SAS Global Forum. 

Bojičić I., Marjanović Z., Turajlić N., Petrović M., Vučković M. (2016) A Comparative 

Analysis of Data Warehouse Data Models. 6th International Conference on Computers 

Communications and Control (ICCCC). 151-154. 

Breslin M. (2004) Data Warehousing Battle of the Giants: Comparing the Basics of the 

Kimball and Inmon Models. Business Intelligence Journal 

Carroll, M., van der Merwe, A., Kotzé, P. (2011) Secure cloud computing: Benefits, 

risks and controls. 2011 Information Security for South Africa. 1-9. IEEE 

 

https://www.1keydata.com/datawarehousing/slowly-changing-dimensions-type-3.html
https://www.ismll.uni-hildesheim.de/lehre/bi-10s/script/Inmon-vs-Kimball.pdf
https://www.agilealliance.org/glossary/mvp/#q=~


V. Prykäri: Designing a Data Warehouse for Market Basket Analysis in Retailing 

79 

Chegg, Website. URL:  

https://www.chegg.com/homework-help/questions-and-answers/er-diagram-show-

operational-system-retail-sales-business--create-complete-information-pack-q20412993 

Accessed 18.3.2019 

Disoln, Website. URL: 

http://www.disoln.org/2013/04/SCD-Type-4-a-solution-for-Rapidly-Changing-

Dimension.html Accessed 24.2.2019 

Gartner (2018) Best Data Integration Tools Software of 2018 as Reviewed by 

Customers. URL:  

https://www.gartner.com/reviews/customers-choice/data-integration-tools  

Accessed 18.3.2019 

Gulalkari, N. (2016) Implementing Apriori Algorithm in R. URL:  

https://www.r-bloggers.com/implementing-apriori-algorithm-in-r/ Accessed 21.2.2019. 

Hahsler, M., Buchta, C., Gruen, B., Hornik, K., Johnson, I., Borgelt, C. (2019) Package 

‘arules’. R Documentation. URL: 

https://cran.r-project.org/web/packages/arules/arules.pdf Accessed 9.3.2019. 

Hevner, A., March, S., Park, J., Ram, S. (2004) Design Science in Information Systems 

Research. MIS Quarterly, 2004, 28(1), 75-106. URL: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=p

df Accessed 16.3.2019 

Inmon, W., Strauss, D., Neuschloss, G. (2008) DW 2.0: The Architecture for the Next 

Generation of Data Warehousing, Elsevier.  

Inmon, W., Imhoff, C., Sousa, R. (2001) Corporate Information Factory. Second 

Edition. John Wiley & Sons. 

Jabeen, H. (2018) Market Basket Analysis using R. DataCamp. URL: 

https://www.datacamp.com/community/tutorials/market-basket-analysis-r#firsthead 

Accessed 6.3.2019 

https://www.chegg.com/homework-help/questions-and-answers/er-diagram-show-operational-system-retail-sales-business--create-complete-information-pack-q20412993
https://www.chegg.com/homework-help/questions-and-answers/er-diagram-show-operational-system-retail-sales-business--create-complete-information-pack-q20412993
http://www.disoln.org/2013/04/SCD-Type-4-a-solution-for-Rapidly-Changing-Dimension.html
http://www.disoln.org/2013/04/SCD-Type-4-a-solution-for-Rapidly-Changing-Dimension.html
https://www.gartner.com/reviews/customers-choice/data-integration-tools
https://www.r-bloggers.com/implementing-apriori-algorithm-in-r/
https://cran.r-project.org/web/packages/arules/arules.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=pdf
https://www.datacamp.com/community/tutorials/market-basket-analysis-r#firsthead


V. Prykäri: Designing a Data Warehouse for Market Basket Analysis in Retailing 

80 

Jukic, N. (2006) Modeling strategies and alternatives for data warehousing projects. 

Communications of the ACM, 49(4), 83-88. 

Järvinen, P. (2004) On Research Methods. Opinpajan kirja. 

Karthiyayini, R., Balasubramanian, R. (2016) Affinity Analysis and Association Rule 

Mining using Apriori Algorithm in Market Basket Analysis. International Journal of 

Advanced Research in Computer Science and Software Engineering, 6(10), 241-246. 

Kimball, R. (1998) Surrogate Keys. Kimball Group. Website, URL:  

https://www.kimballgroup.com/1998/05/surrogate-keys/ Accessed 24.2.2019 

Kimball Group. Dimension Surrogate Keys. Website, URL: 

https://www.kimballgroup.com/data-warehouse-business-intelligence-

resources/kimball-techniques/dimensional-modeling-techniques/dimension-surrogate-

key/  

Accessed 24.2.2019 

Kimball, R. & Ross, M. (2013) The Data Warehouse Toolkit: The Definitive Guide to 

Dimensional Modeling. Wiley. 

Kumbhare T.A. & Chobe S.V. (2014) An Overview of Association Rule Mining 

Algorithms. International Journal of Computer Science and Information Technologies, 

Vol. 5 (1), 2014, 927-930. 

Larose, D.T. (2005) Discovering Knowledge in Data. Wiley 

Li, N., Zeng, L., He, Q., Shi, Z. (2012) Parallel Implementation of Apriori Algorithm 

Based on MapReduce. 13th ACIS International Conference on Software Engineering. 

Linstedt, D. (2010) Data Vault Versus Dimensional – Part 1.URL: 

https://danlinstedt.com/allposts/datavaultcat/data-vault-versus-dimensional-part-1/ 

Accessed 12.2.2019 

Linstedt, D. & Olschimke, M. (2016) Building a Scalable Data Warehouse with Data 

Vault 2.0. Elsevier. 

https://www.kimballgroup.com/1998/05/surrogate-keys/
https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/dimension-surrogate-key/
https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/dimension-surrogate-key/
https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/dimension-surrogate-key/
https://danlinstedt.com/allposts/datavaultcat/data-vault-versus-dimensional-part-1/


V. Prykäri: Designing a Data Warehouse for Market Basket Analysis in Retailing 

81 

Microsoft (2019) Available SQL Server 2017 editions. URL: 

https://www.microsoft.com/en-us/sql-server/sql-server-2017-editions  

Accessed 23.2.2019 

Han, J., Pei, J., Kamber, M. (2014) Data Mining: Concepts and Techniques. Elsevier 

Science 

Rathod, A., Dhabariya, A., Thacker, C. (2014) A Survey on Association Rule Mining 

for Market Basket Analysis and Apriori Algorithm. International Journal of Research in 

Advent Technology,2(3). 230-234. 

Rittinghouse, J. & Ransome, J. (2009) Cloud Computing: Implementation, 

Management, and Security. CRC Press, Boca Raton 

Singh, J., Ram, H., Sodhi,J.S. (2013) Improving Efficiency of Apriori Algorithm Using 

Transaction Reduction. International Journal of Scientific and Research Publications, 

3(1). 

Tan, P-N., Steinbach, M., Kumar, V. (2008) Introduction to Data Mining. 

Tan, S.C, Lau, J.P.S (2013) Time Series Clustering: A Superior Alternative for Market 

Basket Analysis. Conference Paper: The First International Conference on Advanced 

Data and Information Engineering. 

UCI Machine Learning Repository (2015) Online Retail Data Set. URL: 

https://archive.ics.uci.edu/ml/datasets/online+retail Accessed 9.4.2019. 

Videla-Cavieres, I.F., Ríos, S.A. (2014) Extending market basket analysis with graph 

mining techniques: A real case. Expert Systems with Applications,41(4), 1928-1936. 

Yabing, J. (2013) Research of an Improved Apriori Algorithm in Data Mining 

Association Rules. International Journal of Computer and Communication Engineering, 

2(1). 

Zaki, M., Meira, W. (2013) Data Mining and Analysis: Fundamental Concepts and 

Algorithms. URL: 

https://www.microsoft.com/en-us/sql-server/sql-server-2017-editions
https://archive.ics.uci.edu/ml/datasets/online+retail


V. Prykäri: Designing a Data Warehouse for Market Basket Analysis in Retailing 

82 

https://repo.palkeo.com/algo/information-

retrieval/Data%20mining%20and%20analysis.pdf Accessed 8.3.2019 

https://repo.palkeo.com/algo/information-retrieval/Data%20mining%20and%20analysis.pdf
https://repo.palkeo.com/algo/information-retrieval/Data%20mining%20and%20analysis.pdf

