
UTKIMUKSIA FORSKNINGSRAPPORTER RESEARCH REPORTS

▼ ▼ Kari Djerf ▼
■w 'V -w ^

P r o p e r t ie s  o f  s o m e  e s t im a t o r s

.  UNDER UNIT NONRESPONSE

Tilastokeskus 
Statistiko entralen 
Statistics Finland



T u t k im u k s ia  F o r s k n in g s r a p p o r t e r  R e s e a r c h  R e p o r t s 231

Kari Djerf

P roperties of som e  estimators
UNDER UNIT NONRESPONSE

Tilastokeskus 
Statistikcentralen 
Statistics Finland



Editorial Board o f the Research Report Series 
The Scietific Advisory Board of Statistics Finland

Chief Editor
Director of Research of Statistics Finland 

Risto Lehtonen

Cover
Maija Sohiman 

Layout
Hilkka Lehikoinen

© Statistics Finland 2001

ISSN 0355-2071 
ISBN 951-727-857-8

Hakapaino Oy, Helsinki 2001



r

FOREWORD

This study reviews some reweighting methodology widely used in 
statistical agencies to adjust for unit nonresponse in sample sur­
veys. As an academic thesis it covers many theoretical sections, 
but the ultimate goal was to find out which methods perform best 
in simulation where a real data set was used. The results con­
firmed some earlier empirical findings on the usefulness of mod­
ern calibration estimators. Thus, the decision to replace tradi­
tional types of estimators by calibration estimators in many of 
Statistics Finland’s surveys was justified from the nonresponse 
adjustment point of view as well.
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My collaborators at the Statistical Research and Development 
section and the Social Statistics unit gave me a lot of support and 
could devote their time for fruitful discussions. Professors 
Carl-Erik Särndal (Université de Montréal) and Erkki Pahkinen 
(University of Jyväskylä) as supervisors with Dr Risto Lehtonen 
of Statistics Finland were the real motivators of my study with 
their helpful comments. My family members suffered from the 
time needed for the study and therefore, I would like to thank 
them once more for their understanding.

Ms Merja Ryhänen carefully checked and improved my English 
in this study. Finally, financial support both from the Academy of 
Finland and Statistics Finland, and technical support from the 
Department of Statistics, University of Jyväskylä provided me 
with material opportunities to complete this licentiate thesis.

Helsinki, September 2000

3



r

CONTENTS

Foreword..................................................................................................................3

Summary.................................................................................................................6

Tiivistelmä...............................................................................................................8

I Unit nonresponse models........... ............................................................. 10

1. Introduction to missing data..........................................................11
1.1. Coverage errors .............................................................................11
1.2. Nonresponse error.........................................................................13
1.3. Measurement errors .....................................................................14
1.4. Consequences of missing data......................................................14
1.5. Aim of the study.............................................................................16

2. Theory of unit nonresponse...........................................................17
2.1. Introduction................................................................................... 17
2.2. Basic concepts in sample selection............................................. 18
2.3. Alternative reweighting strategies............................................. 24

2.3.1. Weighting-class estimators............................................... 24
2.3.2. Post-stratification................................................................ 25
2.3.3. Raking ratio adjustment................................................... 27
2.3.4. Adjustment based on explicit response modelling........ 29
2.3.5. Calibration of sampling weights....................................... 31

2.4. Evaluation of different reweighting approaches.........................35

II Empirical comparison of different estimators..................................37
3. Empirical findings from various reweighting strategies.................. 38

3.1. Introduction...................................................................................38
3.2. Study variables and estimators................................................... 39
3.3. Estimates for to ta ls ...................................................................... 41
3.4. Discussion.......................................................................................43

4. Monte Carlo Study.................................................................................... 45
4.1. The setup of the simulation study.............................................45

4.1.1. General setup...................................................................... 45
4.1.2. Study population................................................................45
4.1.3. Study variables.................................................................... 47
4.1.4. Monte Carlo samples..........................................................48

4



4.1.5. Program ............................................................................ 50
4.2. Measures of accuracy and precision............................................50
4.3. Simulation results.........................................................................52

4.3.1. Accuracy of estimators.......................................  52
4.3.2. Mean square error and variance....................................... 54
4.3.3. Standard error estimates and coverage rates.................. 55

4.4. Domain estimates...........................................................................57
4.4.1. Bias consideration . . .......................................................... 57
4.4.2. Coverage rates of the domain estim ates.........................59
4.4.3. Conclusions...........................................................................61

5. Conclusions and further study............................................................... 62

References............................................................................................................64

Appendix 1.
Estimators for domains......................................................................................... 68

Appendix 2.
A logit model for explaining response and nonresponse
in the data set of the stu dy................................................................................... 70

Appendix 3.
Empirical and the predicted response probabilities according
to some demographic characteristics.................................................................. 71

5



SUMMARY

Missing and incomplete observations are present in practically all 
surveys. A totally missing observation is called unit nonresponse. 
Sometimes totally missing observations are not reacted to in any 
way. Therefore, one could assume that nonresponse is harmless, 
i.e. distribution in the nonresponse is the same as in the response. 
However, in most cases such assumption is wrong, leading to 
biased estimates.

In the past few years attention has focused on the conse­
quences of nonresponse. A variety of new methods have been de­
veloped in the sampling theory for correcting the consequences of 
unit nonresponse. Especially the so-called reweighting methods 
have been used frequently. The properties of the unknown mecha­
nism which generates response or nonresponse have also been in­
vestigated. The response process can be interpreted as a second 
phase sampling, conditioned on the original sampling procedure. 
Application of the two-phase sampling theory complicates the der­
ivation of the estimators of sampling variances.

The aim of this study is to compare the statistical properties, 
especially bias and precision, of some commonly used estimators 
when there is unit nonresponse in the data set. The estimators 
commonly used in surveys conducted by Statistics Finland in­
clude, for example, the Horvitz-Thompson estimator, and the fol­
lowing re weighting methods: weighting-class estimator, post- 
stratified estimator and calibration estimator. Their properties 
are evaluated by empirical data and by a Monte Carlo simulation. 
A real data set from the Finnish Labour Force Survey was used as 
the basis for the simulation study. In order to mimic the original 
response structure as exactly as possible, a response/nonresponse 
indicator was created in the data set. Subsequently, 1,000 inde­
pendent SRSWOR samples, each containing 1,165 elements, were 
selected from the data. The properties of the estimators were as­
sessed on the basis of these samples.

The result from the simulation study was clear: the auxiliary 
information used should always correlate with both the response 
mechanism and the study parameters. If both conditions are met,
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bias will remain negligible and precision will be good. In general, 
the best results in this respect were obtained using calibration es­
timators. However, the effect is not necessarily carried to the do­
mains of the study. To minimise bias and maximise precision, the 
effect of the auxiliary information should also extend to the do­
mains.
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TIIVISTELMÄ

Puuttuvat ja puutteelliset havainnot aiheuttavat ongelmia miltei 
kaikissa survey-tutkimuksissa. Koko havainnon puuttumista 
kutsutaan yksikkökadoksi. Havaintoyksiköiden puuttumiseen ei 
joskus reagoida mitenkään. Silloin oletetaan, että kato olisi har­
mitonta eli se jakautuisi täsmälleen samalla tavalla kuin saadut 
havainnotkin. Useimmiten oletus harmittomasta kadosta osoit­
tautuu vääräksi, jolloin kuvattu menettely johtaa harhaisiin esti- 
maatteihin.

Yksikkökadon vaikutukseen on viime vuosina kiinnitetty huo­
miota. Otantateoriassa on kehitetty useita eri menetelmiä, joilla 
kadon vaikutusta kyettäisiin eliminoimaan. Yleisimmin käyte­
tään niin sanottuja uudelleenpainotusmenetelmiä. Samoin vas­
taamista ja katoa generoivan (tuntemattoman) mekanismin omi­
naisuuksia on pyritty jäljittämään. Vastaamisprosenssi voidaan 
tulkita toisen vaiheen todennäköisyysotannaksi ehdolla alkupe­
räinen otanta. Kaksivaiheisen teorian soveltaminen tekee otosva- 
rianssien estimaattorien johtamisen monimutkaiseksi.

Tämän työn tavoitteena on vertailla joidenkin yleisesti käytet­
tyjen estimaattorien tilastollisia ominaisuuksia, varsinkin har­
haa ja täsmällisyyttä yksikkökadon vallitessa. Valittuja estimaat- 
toreita käytetään muun muassa Tilastokeskuksen otantatutki­
muksissa. Ne poikkeavat toisistaan sekä survey-tutkimuksen si­
säisen että sen ulkopuolisista lähteistä saatavan lisäinformaation 
käytettävyyden suhteen. Esimerkkeinä mainittakoon tavallinen 
Horvitz-Thompson -estimaattori, ja varsinaisista uudelleenpaino- 
tusmenetelmistä painotusluokka-estimaattori, jälkiositusesti- 
maattori tai kalibrointiestimaattori. Estimaattorien ominaisuuk­
sia arvioidaan sekä empiirisen aineiston perusteella että empiiri­
seen aineistoon perustuvalla Monte Carlo -simuloinnilla. Simu­
lointia varten aineistoon generoitiin vastaamista ja katoa kuvaa­
va indikaattori siten, että se kuvaisi mahdollisimman tarkasti al­
kuperäisen aineiston vastaamisprosessia. Aineistosta poimittiin 
tuhat toisistaan riippumatonta 1 165 alkion suuruista yksinker­
taista satunnaisotosta, joiden perusteella estimaattorien ominai­
suuksia on kyetty arvioimaan.
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Tutkimuksen tulokset ovat selkeät: havaintoja painotettaessa 
on syytä käyttää sellaista lisäinformaatiota, jolla on selkeä ja 
mieluiten voimakas riippuvuus yhtäältä vastaamista jäljittävän 
prosessin ja toisaalta tutkimuksen kohteena olevien parametrien 
kanssa. Silloin harha pysyy pienenä ja estimaatit ovat täsmälli­
siä. Yleisesti ottaen parhaat tulokset saavutettin kalibrointiesti- 
maattoreilla. Vaikutus ei kuitenkaan välttämättä ulotu koko po­
pulaatiosta osajoukkoihin saakka. Harhattomuuden ja täsmälli­
syyd en  turvaamiseksi lisäinformaatio kyettävä ulottamaan myös 
osajoukkoon.
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UNIT NONRESPONSE MODELS
I

10



r

INTRODUCTION TO MISSING
DATAlip'

Traditional sampling theory assumes complete measurement for 
all sampling units (and elements) and all study variables. This 
ideal situation can be achieved in some circumstances, for exam­
ple when a sample is selected from administrative records which 
contain the whole target population. In sample surveys, however, 
this ideal can rarely be achieved. In true surveys we are faced 
with numerous types of data imperfections. The number of the 
sampled unit may eventually be reduced from the original sam­
ple size in different phases of survey operations. Reductions may 
result from coverage errors which are actually caused by cover­
age problems in the sampling frame; from unit nonresponse dur­
ing the field work, or from the rejections of some responses dur­
ing the data checking process. Survey contents may also be re­
duced from the basic survey design due to item nonresponse or 
other imperfections in data obtained by surveys. This paper fives 
a brief outline of sources of errors in the Finnish context.

________________ 1.1. Coverage errors________________

The Finnish system of registers is quite up-to-date, especially in 
register data on individual persons. The Central Population Reg­
ister (CPR) containing in principle all resident persons, is the 
most frequently used sampling frame. Certain coverage problems 
exist, though which will be dealt with briefly.

Overcoverage can be measured. In Statistics Finland’s samples 
for surveys on individual persons overcoverage is normally about 
1.5 per cent. The principal reasons for overcoverage are the 
death of the sampled person or moving either to an institution 
(hospital, prison) or abroad.

The size of undercoverage is more difficult to evaluate. In sur­
veys on individuals undercoverage most often originates from 
moves away from institutions or from abroad back home. The
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mechanism of undercoverage arises due to delays either in updat­
ing the frames or starting the survey. Undercoverage has gener­
ally not been viewed as particularly harmful in the surveys con­
ducted by Statistics Finland.

Although unit coverage errors remain fairly small, other types 
of coverage problems may be substantial. The contents of the CPR 
itself are not very comprehensive. General demographic and hous­
ing information is normally considered to fulfil the needs of basic 
types of surveys. The updating delay in the CPR is normally less 
than one month. There remains another, far more important de­
lay factor -  the lag between the primary sample selection and the 
actual start of the survey.

In some surveys basic demographic information is not compre­
hensive enough. In such cases other administrative records or 
register information is merged into the original sample. Despite 
the technical feasibility of merging large data sets, the problem of 
the quality of the auxiliary data becomes far more pervasive. In 
many cases the additional data sources may have much longer up­
dating delays either due to administrative reason (e.g. taxation 
data is at least one year old), or lags in updating the register. 
Such lags cause major problems in business survey data. When 
the sampling frame is known to contain errors or when using 
multiple frames from different points in time, etc., polishing the 
final sampling frame is a very important task. It may require the 
use of statistical matching, frame estimation and other ways to 
obtain the information necessary for calculating merely the basic 
inclusion probabilities.

The means of dealing with coverage errors differ significantly 
from one survey to another. In the surveys on individual persons 
or households there is good reason to believe that coverage errors 
are of minor importance. The coverage errors are therefore nor­
mally taken into account in weighting. The original size mea­
sures, for example population size N* (which may contain over- 
and undercoverage) is replaced by the “corrected” N. The latter is 
always an estimate of the true N. In normal circumstances we 
can obtain a fairly good approximation of N  for deriving the inclu­
sion probabilities.
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1.2. Nonresponse error

The problems caused by nonresponse can be far more serious 
than those caused by coverage errors. In this presentation we 
deal with unit nonresponse. The size of unit nonresponse varies 
considerably from one survey to another. Nonresponse rates in 
the Labour Force Survey remained quite low until 1996; the rate 
for the first wave was about 7.5 per cent on average. In the house­
hold surveys conducted by Statistics Finland, instead, the non­
response rates are much higher, ranging from 15 to 40 per cent, 
depending of the response burden in the survey in question. Some 
features of nonresponse are quite common but, of course, there 
are features specific to each survey (c.f. Djerf 1996a).

Various ways of dealing with unit nonresponse are available. 
Reweighting is perhaps the most common method. The idea of 
reweighting the data set is to adjust the original inclusion proba­
bilities by the response probabilities. The following chapters will 
deal with different types of reweighting adjustment.

Another technique, unit imputation, is common in some coun­
tries and in some research institutes. Unit imputation means that 
the missing unit is replaced by another unit which is close enough 
in a metric sense, for example by using the nearest neighbour 
technique. So far, unit imputation has been used seldom in the 
surveys conducted by Statistics Finland (c.f. Laaksonen 1992).

Besides the above techniques several other methods exist 
which can be constructed as a remedy against nonresponse, such 
as randomized response, substitution, and quota sampling. Some 
of the methods have a fairly sound statistical background and 
thus their use can be recommended. But the widely used tech­
niques of substitution and quota sampling fall short in this re­
spect (c.f., however, Deville 1991). As our study is restricted to 
reweighting, none of these methods will be discussed.

Another type of nonresponse is item nonresponse, where the 
response is generally acceptable although some items are missing. 
Some questions may be ones that the respondent either cannot or 
is not willing to answer. Principally item nonresponse is always 
specific to the survey in question. Imputation is a technique com­
monly used to cover the blanks in the data set due to item 
nonresponse. This is also the case at Statistics Finland. Some 
forms of imputation are known as logical or deductive imputation: 
in some cases a missing item can be imputed with probability 1, 
while in other cases we must use either some kind of prediction (a
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simple regression or other type of modelling), or to locate out a 
suitable host whose value can be brought to the missing case (hot 
decking), or both. Laaksonen (op cit.) has given examples of dif­
ferent methods applied at Statistics Finland.

1.3. Measurement errors

Measurement errors are the third general type of errors which 
exist in sample surveys. They are also probably the most difficult 
errors because they are difficult to detect. Measurement errors 
may derive from various sources: insufficient design of the survey 
and/or the questionnaire, misleading interviewer (or respondent) 
instructions, wording and language problems, deliberately or 
undeliberately given misleading answers, technical problems etc.

Efforts are made to trace measurement errors by applying var­
ious logical checks, data edits and occasionally by modelling. 
Nonetheless measurement errors exist in every survey and are 
also to be found in the “cleaned” data sets. In the broad sense of 
the term, certain problems arising from data missingness can also 
be regarded as measurement errors. However, measurement er­
rors as such are not the topic of this paper, so in this case the 
reader should refer to other sources. A comprehensive treatment 
of the topic is presented, for example, in the handbook by Biemer 
et al. (1991): Measurement Errors in Surveys.

________ 1,4. Consequences of missing data_________

In an ideal situation missing data are not harmful. The term 
“harmless” means that all statistical properties of the data set re­
main untouched in analysis except the number of cases. Little and 
Rubin also use the concept “missing at random” (1987). Conse­
quently, the term “harmful” means that some kind of problem will 
be present when the data set is analysed by statistical methods 
(i.e. not missing at random). The distinction can easily be illus­
trated by two distributions. Let us take two hypothetical data sets 
from the same phenomenon obtained by comparable procedures. 
In data set A  data missingness is random and therefore we can 
proceed in analysing our study variable Z. However, in data set B 
we have lost information in a non-random manner. The distribu­
tion of the study variable Z therefore no longer presents the true 
population distribution. Harmful missingness thus leads to bi-

14



Figure 1. Examples of missing data: harmless and harmful cases.

A: Harmless case B. Harmful case

ased estimators (See Little and Rubin 1987 for different exam­
ples of the problems).

In case A we can assume that there is no actual change caused 
by nonresponse in the distribution of our study variable, i.e. 
E(ZA\mA) ~ E(ZA\nA) = Z, where n is the sample size and m the 
number of respondents (mA < nA ). By contrast it is easy to recog­
nise from case B that the expectations differ: E(ZB\mB) < E(ZB\nB). 
Also the sampling variance of case B will be smaller than that ob­
tained from case A due to reduced variability of Z.

“Ignorable” and “non-ignorable” are terms closely related to 
“harmless” and “harmful”. Loosely speaking both terms refer to 
the same phenomenon. There exists, however, theoretical differ­
ences between the two. Rubin advocated the use of former terms 
in Bayesian analysis. Data missingness (and nonresponse in par­
ticular) is non-ignorable when the statistic in question contains a 
parameter where information on the data missingness procedure 
is given. Normally it is a parameter reflecting the true population 
distribution. In the Bayesian analysis such a parameter can be 
solved, and the estimates are improved in reflecting the popula­
tion distribution.
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________________ 1.5. Aim of the study___________ _

The main goal in this study is to compare different types of ad­
justment methods used for unit nonresponse. Various methods 
developed for the purpose are presented and the most significant 
ones are further empirically evaluated. Firstly, the methods are 
tested using an empirical data set in the estimation problem of 
the Finnish Labour Force Survey. Secondly, they are tested in a 
Monte Carlo simulation study. The latter reveals statistical prop­
erties of the estimators in the nonresponse case: bias, mean 
square error and coverage rates.

The choice of methods which are compared is also connected 
with the use of auxiliary informal-ion. There are methods which 
use information at the sample level, and some other at the popu­
lation level. The best case being, of course, the one where informa­
tion is available both at the sample and at the population level. 
The availability of information will also be discussed.
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THEORY OF UNIT NONRESPONSE
2 .

2.1. Introduction

The impact of unit nonresponse on surveys, has been known a 
long time, with efforts presumably having been targeted to over­
come the problem after the first large scale surveys were intro­
duced. Current statistical methods to deal with unit nonresponse 
date back to the 1940s. Although we deal only with the statistical 
methods in this study it is worth of remembering that improving 
the survey setup and operations in general can result in greatly 
reduced nonresponse.

Perhaps the first method to be adopted in widespread use was 
callbacks and reminders, introduced to surveys in the 1940s. In 
the original callback (here remainder) method the nonrespondents 
are sent one or more reminders after the first data collection dead­
line is over. They are dealt with separately in order to locate possi­
ble differences due to early or late responding. The current call­
back method is clearly related to reminding the sampled persons 
or firms already during the fieldwork period to respond, or inter­
viewing the reluctant part of the sample using a reduced set of 
core questions. In any case the method improves the quality of 
the survey and may reduce bias as well.

The first well-known adjustment method was based on a simi­
lar idea. Households “being not at home” upon the arrival of the 
interviewer were given adjustment weights, a method was sug­
gested by Hartley and implemented by Politz and Simmons (Oh 
and Scheuren 1983, Cochran 1983).

Subsampling of nonrespondents was first devised by Hansen 
and Hurwitz in 1946, where subsample is generally interviewed 
with a reduced set of questions. Subsampling may reveal the 
characteristics of respondents and nonrespondents, making it 
possible to reduce eventual bias by other methods.

The Hansen and Hurwitz method leads to the so-called 
reweighting approach, which has become a widespread means of 
reducing bias due to unit nonresponse. Reweighting is based on
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the idea certain characteristics differ in the subsets of the sam­
ple, namely the respondents and the nonrespondents. Thus the 
main task is to locate these characteristics from the whole sample 
and then the reweight the respondents so that the original sample 
(or population) distributions can be maintained. There are nu­
merous technical options available: post-stratification (e.g. Thom­
sen 1973, Bethlehem 1988), weighting-class estimators (Oh and 
Scheuren 1983), the raking-ratio method (originally Deming 
1940) and the prediction of individual response probabilities us­
ing a model estimated from the obtained sample (e.g. Ekholm and 
Laaksonen 1991). Furthermore, more generalised estimation 
techniques may be used, especially the regression and the calibra­
tion estimators (Bethlehem and Keller 1987, Deville and Sàrndal 
1992, Sàrndal et al. 1992). Many of these techniques are dis­
cussed later in this presentation.

However it took time before the problem of nonresponse was 
clearly addressed in the sampling theory textbooks. For example 
Cochran (1977) and Sukhatme et al. (1984) included chapters 
dealing with the problem in general terms, but restricted the 
treatment to the basic methods. Kish (1965) provides a more 
comprehensive treatment of the question using a fairly practical 
approach, while Sàrndal et al. (1992) supplied a longer chapter on 
the problem of the nonresponse, also offering a number of 
up-to-date solutions to deal with nonresponse. In Lehtonen and 
Pahkinen (1995) the discussion is more limited but works along 
the lines of Sàrndal et al. Even the two recent books by Sàrndal 
et al. and by Lehtonen and Pahkinen only mention the more com­
plicated model-based approach presented in Ekholm and 
Laaksonen (1992), and Rosenbaum and Rubin (1983). Probably 
the most comprehensive treatment of nonresponse is to be found 
in a three-volume set of books under the title Incomplete Data in 
Sample Surveys (1983).

In the following chapters we introduce some reweighting 
methods which can be used to tackle bias resulting from 
nonresponse.

______ 2.2. Basic concepts in sample selection______

Let [7={l,...,fc,...,IV ’ }b ea  finite population andy be the variable 
of interest (study variable) which has values in the whole popula­
tion U (yk is the value ofy for the £th element). We are interested

18



in estimating a parameter ofy (e.g. the total value ofy denoted by 
t) from U. Allow for an arbitrary sampling design p(• ) such that 
p( s ) is the probability of selecting a sample s with size ns. We can 
denote that the samples s are subsets of U ( s c  U). Then the first 
and second order inclusion probabilities can be denoted by

p (s ), and nkl = X  p(s)
S3k S3 A, l

where nkk = nk. Let Aw = nkl -  nknr Let us assume for simplicity, 
that both the first and second order inclusion probabilities are 
strictly positive. Then the n or Horvitz-Thompson (abbreviated as 
H-T) estimator for the population total is

(2.1)
*=1 nk

The simple expansion or H-T estimator is easily shown to be 
design unbiased. Let I  (s) be an indicator for the sample member­
ship such that E (Ik) = nk . Then the expectation for the H-T esti­
mator is

E(tn ) = E
(  n  v  ̂ N

I  h y- y  = 2 >
k=\

y  k = t
*=i nk

The design variance for the n estimator i

Vht (i) = I l A tl(yk/nk )(yl/nl)
u

An unbiased estimator for the variance is

V î i î . ¥ -  v
n.

ÏL
n,

(2 .2)

(2.3)

Various sampling designs can be treated under the general 
principles of the B estimator (c.f. e.g. Sàrndal et al. 1992).

The Tc estimator assumes that we can obtain information from 
all units which belong to the target population U. For different 
reasons, however, we will have missing units in our sample s. Let 
us denote the responding set by r (e  s) and r -  s the 
nonresponding set by nr. Instead of the original sample of size ns 
we receive complete responses for mr.
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Furthermore, we have to assume that the response probabili­
ties are strictly positive for all elements k. This means that no 
hard-core refusers exist whose response probability is exactly 
zero. Loosely speaking, every sampled element is willing to at 
least to consider responding to a survey.

The most common method of handling nonresponse is probably 
reweighting, where the original (first phase) inclusion probabili­
ties are deflated by the relative size of response. The sampling 
weights are inflated by the reciprocal of the measure of response, 
say 0 ( 0 < 0 < 1). Hence we obtain wk = 1/ (nk Qk).

Uniform response mechanism

A naive way would be to assume that the response generating 
mechanism is stochastic and uniform over the obtained sample 
(and more generally over all samples in the sample space). Then 
the response probability is fixed to 0 (= min). The use of a globally 
uniform response model is acceptable provided that

(a) the (unknown) process generating the response probabili­
ties is a random process for all elements in the target population

(b) there is no association between the study variables and the 
response probabilities.

If both conditions are met the researcher may wish to continue 
without further problems, the sample size n is replaced by the 
number of respondents m (= Bn ) in weighting. This “doing noth­
ing” approach leads to the estimator

tr =Nyr = N
S y * /ic*e

E 1/ic*0 N  X  1/?c*
which in this case would be practically unbiased.

(2.4)

In this case the only effect of nonresponse is observed in the 
form of increased sampling variance. In the case of simple ran­
dom sampling without replacement, sampling variance can be 
derived conditionally; first the original sampling variance and fol­
lowed by the variance due to conditional subsampling of respon­
dents from the obtained sample. Thus the total variance is:

V(i|/i, m) = W2 ( - - - £ - )  V + JV2( - - - ) V =  N 2(— - h v  (2.5) 
n AO m n m N

where V = £  (yk -  yv )N 2 / (N  -1 )
k=l
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The unbiased estimator of the variance is obtained directly 
from the ordinary SRSWOR sampling variance estimator which 
is slightly bigger in the nonresponse case than in the full response 
case since m <n  (m >1):

Although optimal circumstances occur quite seldom, this ap­
proach prevails in the traditional sampling theory. However, some 
authors advocating the traditional approach have warned about 
the bias. For example, Cochran, while presenting one version of 
the model (using separate strata for respondents and 
nonrespondents), also shows that fixed deterministic nonresponse 
treatment can lead to substantial bias. We divide the population 
U into the subsets of respondents and nonrespondents as above, 
so that they are treated as strata: in stratum Ur the response 
probability is 1 and in stratum Unr it is 0. It is easy to indicate 
that bias is a function of the differences of the means in each stra­
tum of the population:

(Cochran 1977, 360-361).

If the response probabilities vary (i.e. Pr { k e r I s } = 0* ) 
and are associated with the study variables, there will again be 
bias:

(2.6)

B(t r) = E(t r ) -  t = tr -  (tr + tnr) = N nr (yr -  ynr) (2.7)

U _____ S m
- t  = ( N - 1 ) -^ -

%

(2.8)

(Sarndal et al. 1992, 577).

The size of bias depends on the correlation between the study 
variable and the response probability in population (RyW), and the



coefficient of variation of the study variable (cvyU ) and the re­
sponse probabilities in population (cvm ). Since both coefficients 
of variation have some positive values, the magnitude of bias is 
inherent in the correlation coefficient. Non-zero correlation 
clearly violates assumption (b) above. This type of a missing data 
mechanism is harmful.

It can be claimed that one of the two conditions is almost always 
violated in real sample surveys. Without appropriate modification of 
the estimator(s) the results will be biased. A more advanced way of 
handling nonresponse is presented in the following section.

Two-phase sampling theory applied to nonresponse

A random process which determines that some sample elements 
will be nonrespondents and that the rest are respondents is actu­
ally second phase sampling conditional to the realization of the 
original sampling design: Pr {• |s } = 0* . This is sometimes called 
quasi-randomisation (Oh and Scheuren 1983) or response homo­
geneity group models (Sàrndal et al. 1992). It should be observed 
that the true response distribution remains undetectable. How­
ever, we may attempt to approximate the true distribution by 
modelling the empirical responses and then use the estimated re­
sponse probabilities. One useful way is to assume they are re­
sults from individual Bernoulli trials over the sample set. Thus 
Pr{£ e r | s) = 0* and Pr { k & l e r \ s } = 04 0,. The latter inclusion 
probability is not true if we assume that the sampled elements 
do not respond independently of each other.

The variance of the two-phase design with the general 
Horvitz-Thompson type of presentation is presented by Sârndal 
and Swensson as follows:

^ 2 ? )  = H  +

E. XX (*«!.-
nkl s KHs

(2.9)
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and its unbiased variance estimator as:

V ' ( i 2p) =  I X  +  - A -
r n kfikl K l r Qkl Kk®k K f i l

K k f i k i  ~  n k ® k n f i i  V k  y t (2.10)

r k̂fiki nk®k

(Sarndal and Swensson 1987, 280-281).

This general formula consists of two parts; the first being the 
variance estimator for the realised sample with the condition that 
only r responses out of n are obtained. The other component is the 
variance of selecting r elements for responding from the sample of 
n.

Application of the quasi-randomization theory leads to adjust­
ment of the original sampling weights (design weights) by the em­
pirical or predicted response probabilities conditioned to the ob­
tained sample. When the sample elements are divided into mutu­
ally exclusive categories each having similar response probabili­
ties, the empirical nonresponse treatment is based on adjustment 
cells. This approach is also known as the uniform response 
mechanism in subpopulations (Oh and Scheuren 1983).

Different methods exist, depending on the use of the sample or 
population information or both. In any case one uses the mean of 
the empirical response probabilities in each adjustment cell.

It is possible to go even further and use strictly model-based 
adjustment. In model-based adjustment the predicted (some­
times actual) response probabilities are grouped according to a 
parametric model. The number of response homogeneity groups g  
can easily grow quite large and the predicted probabilities 0, also 
vary greatly from one group to another, and in an extreme case 
each element may end up with its own response probability.

In the broad sense of statistical thinking all methods developed 
for reweighting presume some type of model. Thus they can be re­
garded as model-assisted methods. The next subsection will pres­
ent briefly the most common practices which are based on this 
theory.
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_______2.3. Alternative reweighting strategies_______

2.3.1. Weighting-class estimators

Probably the most well-known method of adjusting sampling 
weights is what is known as the weighting-class estimator (WTC 
estimator, c.f. e.g. Oh and Scheuren 1983), where the sample is di­
vided into homogenous and mutually exclusive groups (0̂  > 0, \fg) 
with respect to the response generating process. We have to as­
sume that the response process in each group is random, and that 
no other information is available besides the empirical information 
of the sample. Thus only sample count information is used in the 
re weighting {ng and m j.

tWTC
N f
n g=1 mg l y k (2.11)

The variance estimator in the WTC estimator is slightly cum­
bersome. In the case of the SRSWOR design it becomes:

V (t wtc ) — N 2 1 - n ! N
n

f ng f  1- 1 -n g /n n )
P  n mg n - 1/

yg

n V  ns ~\
+— 7 — (yg - y )n -1  e=i n

+ N 2 £
n

g=t

l - m g /ng o2
mr

-  V + V ° y g  v i + v 2 (2.12)

where S2 = — — -  ^  ( y k -  y )2, y = —  ^ y gk, , ÿ = Z  — y ,
m - l t i  me £Î g= 1 n

and y = — £  yk
m fci

The first sampling variance component of the WTC estimator 
(Vj) is practically the same as the unconditional variance estimator 
for post-stratified sampling, while the second component inflates 
the sampling variance by the “missing units”, and disappears if m 
-  n.

The weighting-class estimator is unconditionally unbiased, but 
conditional bias can arise when a difference between the distribu-
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tion of a (incorrectly) weighted population and the sample level 
based weighted population exists. Oh and Scheuren (1983, 152) 
show that conditional bias cannot be directly derived. However, an 
average can be obtained from mean square error derivation. Kalton 
and Maligalig (1991, 414) derive slightly simpler approximation

B(tWTC\n,m )^fj (Ng - N g) y g (2.13)
g=1

where N  is the estimate for the population in each subgroup based 
on the respondents.

2.3.2. Post-stratification

The post-stratification approach and weighting-class approach 
share common features but use information in different ways. In 
post-stratification we have information on subpopulations 
(RHG’s) both at the sample and at the population level. 
Subpopulations can be treated as strata because we know both 
N , ng and mg. Besides the nonresponse adjustment, post-stratifi­
cation can correct some coverage errors. The post-stratified esti­
mator for a total is:

¿POST (2.14)

Let us assume that the sample has been selected by simple ran­
dom sampling without replacement and the second phase sampling 
process can be approximated without bias. Two variance estima­
tors can be given. The first one is the “ordinary” one, as follows:

V '  ( t  p o s t  )  —  N
1-m /N

m

G AT I  GI ^ + ¿ 1(1
g=l m g=i N

)S 2
yg

(2.15)

The “second-phase” conditional formula applied to the strati­
fied design more complicated again:
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V (i% 0ST_2p) = i V ( i V - l ) X
£=1

X - 1 mg ~ 1
n - 1 i )-*■ 1__ nV 7

n

n - 1 r i  n
(2.16)

where s 2• = — — - £  (ygk - y g )2,yg = —  X , y gk> y  = X  —  y.
rne t i  S  n

X 2™,
and y = — X  y*

m A=1

rc is the sample size, m is the number of respondents, and g  is 
the response homogeneity group.

(Sarndal et al. 1992, 289, Sarndal and Swensson 1987, 
282-283).

The post-stratified estimator is most often be design unbiased 
if the population totals are known and if there is no covariance be­
tween the study variable and the response probabilities:

B(iP0ST\n,m) = % N g (t g ~tg) ^ N gC6Yg/% (2.17)
£=1 g=1

where C0Yg = 2 (e * * -§ * )  O'** ~yg^ Ng
k=i

(Bethlehem 1988, 257).

If the population totals are unknown for some strata they 
must be estimated using the sample level information. In this 
case bias can occur for reasons similar to those of the weighting 
class estimator above. (Oh and Scheuren 1983,150).

Where the traditional approach is chosen and the response 
mechanism is regarded as fixed, two sources of bias exist: (A) the 
weighted difference of the means between the respondent and the 
nonrespondent stratum and (B) the variability of the response 
rates within the strata (Thomsen 1973 and 1978).

Owing to the existence of different interpretations, it is worth 
citing Bethlehem (1987, 258):

1. Construct strata which are homogenous with respect to the 
target variable .... the covariance Ceyg will be close to zero.
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2. Construct strata which are homogenous with respect to the 
response probabilities. Then again the covariance will be close to 
zero.

As Bethlehem points out, the construction of such post-strata 
simultaneously is difficult.

2.3.3. Raking ratio adjustment

Raking ratio adjustment was developed by Deming and his col­
leagues in the early 1940s. The idea was to adjust survey esti­
mates to be consistent with the known population counts. The 
method was commonly used in the U.S. Bureau of the Census and 
at Statistics Canada from the 1950s onwards. The use of the 
method also covers nonresponse adjustment, resembling 
post-stratification because the information is used both at the 
population level and at the sample level. However, in raking ratio 
adjustment either the population information or sample informa­
tion is restricted to the marginal distributions, whereas post­
stratification uses all information on the adjustment cells.

Here we treat the raking procedure in the so-called popula­
tion-based adjustment mode prevalent in the Finnish context (c.f. 
Kalton and Maligalig 1991, 417; and comments by Little op cit., 
441-443). In broad terms raking can be described as follows: con­
sider a two-way table consisting of cell counts. The sample count 
is nhj, and the number of respondents mhj, respectively, h -  {1, 
... H } and j  -  {1, ... J }. We know the marginal distributions of Nh+ 
and N+J.from the population. Since the joint distribution (i.e. pop­
ulation cell counts) Nhj are unknown they must be estimated 
from the marginal distributions using the sample information. 
Let us denote the estimate by NhJ The raking ratio estimator re­
sults from an iterative process where the row and column counts 
are calculated from each cell in turn. The totals are adjusted in 
each iteration to the known marginal and gradually the adjusted 
cell count estimates nhj provide correct estimates for both the row 
and the column distributions. Ireland and Kullback (1968) dem­
onstrated that in the case of the SRS design the population cell 
count estimates for large samples are asymptotically unbiased, 
i.e.

'TSP

, n j
ECnhi) = N,hj
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They also demonstrated that the raking estimators are best as­
ymptotically normal (BAN) estimators for the unknown cell fre­
quencies.

In the case of nonresponse Oh and Scheuren postulated that
1. Within each subgroup the responses are generated by a 

Bernoulli sampling process with common probability Qhj > 0.
2. The response mechanism is independent from one 

subpopulation to another, and
3. The response probabilities Qhj have following structure over 

population subgroups: In (Qhj /(l- Qkj)) = ah + (3 . Thus they depend 
linearly on row and column margins, not on cells hj.

(Oh and Scheuren 1983, 164).

In addition, zero cells must not exist. The raking estimator for 
the total under nonresponse will be

with the condition of Ñhj = âh bj mhj where âh bj are the factors 
needed for the convergence of marginal distributions.

The conditional bias of the raking method is comparable to the 
WTC estimator above:

(Kalton & Maligalig 1991, 419).

The unconditional bias will be zero over repeated samples be­
cause E Nkj = Nhj.

The derivation of the variance estimator is always rather com­
plicated and only approximate solutions exist. The conditional 
variance of the raked estimator under nonresponse is

Irak -  X í S  Ñ hj y hj (2.18)

B i t w  I n,m) = ¿ ¿ (Ñhj - N hj){Yhj - Y h+- Y +j+ Y )  (2.19)
fc=i j=i

(2.20)

28



The approximate variance estimator is very lengthy and will not 
be presented here, c.f. Kalton & Maligalig for details (1991, 427).

2.3.4. Adjustment based on explicit response modelling

The previous strategies to adjust for nonresponse were con­
structed on the idea of using adjustment cells, where implicit 
models to compensate for nonresponse are employed. Next we will 
treat explicit response modelling. The model-based adjustment 
strategy has much in common with the weighting cell approach 
but also a number of differing elements exist. The model-based 
sampling theory is closely related to the superpopulation theory 
and Bayesian inference. The theory presented in the Bayes con­
text can, for instance, be found in Rubin (1983), Rosenbaum and 
Rubin (1983), Little (1983a and 1983b) or Rosenbaum (1987). The 
use of the explicit model also contains the assumption of a deter­
ministic response mechanism, and the modeler’s task is to deter­
mine the correct empirical model for each data set.

The approach of Ekholm and Laaksonen (1991) will be pre­
sented here, where a logistic regression model for explaining the 
response mechanism is applied, as follows :

Response probabilities for all sample elements were predicted 
after estimation and nonresponse adjustment cells g  were created 
according to the characteristics of the covariates in x. Thus the 
response probabilities are model-based estimates (0 < Qg< 1). This 
approach has been advocated, for example, by Rosenbaum who 
claims that besides nonresponse adjustment, the model-based es­
timates can also compensate for differences between the popula­
tion and sample proportions (1987, 391). The estimator for a total 
is thus

The conditional variance estimator of the model-based re­
sponse probability estimator according to Ekholm and Laaksonen 
is a modification of the ordinary H-T variance estimator although 
not a true two-phase sampling estimator:

= B x* ( 2.21)

G t
î  _  V  s,HT
1MOD ~  Z j  Z

8=1 vg Mod
(2.22)
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VitMOD
I s m VIn,m) = ------ -  2 ,

^  “  1 fe=l
- % ~ y

vn *9 * ,

+ m i l -  m!  n)
-V

v” *9* y
(2.23)

(Ekholm and Laaksonen 1991, 333).

Ekholm and Laaksonen give proof that the estimator is asymp­
totically unbiased (1990). Ekholm and Laaksonen assume that (a) 
nonresponse is believed to be ignorable (i.e. harmless) in each ad­
justment cell, and (b) the applied model is correct in explaining 
the true response distribution. Assumption (a) essentially relates 
the model of Ekholm and Laaksonen to the quasi-randomization 
approach (c.f. Little 1983a, 337-340). Assumption (b) is a key to 
evaluating unbiasedness. Little (1983a and 1983b) considers nu­
merous different models which could be applied to the 
nonresponse problem. The result in general terms is that 
model-based predicted response probabilities tend to control bias 
(Little 1986).

Model-based adjustment and the generalized regression 
estimator

The model-based adjustment estimator can actually be considered 
as a special case of the generalized regression estimator. Bethle­
hem (1988) uses the following normal formulation of the estima­
tor for complete response:

Îgreg ~^ht + (x —x Hr) P (2.24)

where the parameter vector p is the outcome of the model predict­
ing the auxiliary information. Bethlehem considers the estimator 
in its ordinary form and discusses post-stratification only as a 
special case.

Kott (1994) goes further by using the obtained model for ex­
plaining response probabilities. A short description of the possibil­
ity of considering the GREG estimator as a tool in fighting 
nonresponse bias is given below.

Let us assume that nonresponse is harmful. Then the H-T es­
timator tHTr ■£ tHTs. We can, however, improve our estimate us­
ing a model, provided that the information available to us is as­
sociated either with the study variable(s) or the response proba­
bilities or both. If our model is good it ensures that E (¡3 xr ) = xs.

30



According to basic assumptions our original sampling design is 
unbiased, so E (xB) = x. Now we can use the GREG estimator 
which “shifts” the biased estimate (tmr ) by the amount of esti­
mated bias:

^GREG ~ ^ H T ,r  + ( X  —  P (2.25)

The GREG estimator is asymptotically unbiased provided that 
the applied model is correct. However, it is not very easy to show 
that it will hold in practise in the case of nonresponse. Isaki and 
Fuller (1982) and Kott (1994) demonstrate that the obtained esti­
mators are design consistent (or quasi-design consistent). Thus 
the bias and the sampling variance will have a limit at zero for 
(very) large samples. If the model fails it will yield biased esti­
mates.

2.3.5. Calibration o f sampling weights

The calibration estimator was introduced in two articles by 
Deville and Sàrndal (1992) and by Deville et al. (1993), although 
the ideas were developed in a long sequence of studies originating 
to Demin g and Stephan (1940). Deming stressed the importance 
of obtaining a good population structure in samples, and recom­
mended the raking ratio estimator. This estimator was widely 
used despite the lack of a good approximate variance estimator. 
Other techniques were also developed with stratification and 
post-stratification appearing particularly useful. These two tech­
niques have the advantage over raking of a straightforward way 
of calculating sampling variances.

The general idea of calibration is to modify the sampling 
weights so that marginal distributions become correct. This can 
be achieved using a suitable distance measure so that the mea­
sure minimizes the distance between the design weights (as­
sumed to be design unbiased) and the calibrated weights. The dis­
tance function to be minimized is generally of the form: EpG s ( wk 
-  dkf  / dk qk\. Deville and Sàrndal (1992) show that there are nu­
merous distance functions which yield fairly close results. Four of 
them have been included in the computer program CALMAR: the 
linear distance function (“ordinary linear regression”), the expo­
nential distance function (raking), the bounded logistic distance 
function (logit regression) and the bounded linear distance func­
tion (truncated regression) (Sautory, 1993).
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The calibration estimator is flexible comprising elements of 
both post-stratification and the ratio estimator. Where auxiliary 
information is available in the form of total counts of marginal 
distributions, the calibration estimator can be regarded as incom­
plete post-stratification. Where auxiliary information is continu­
ous, the calibration estimator resembles the ratio estimator. The 
two basic approaches can also be combined in order to obtain a 
form of the generalized regression estimator.

Sarndal et al. show various approximate variance estimators 
which differ from each other in the use of auxiliary information 
(1992, 583-589). Sarndal and Hidiroglou (1995) and Dupont 
(1995) have also derived new results for the calibration estimator 
in a two-phase sampling situation. This idea can be extended to 
multi-phase designs in the manner presented by Breidt and 
Fuller (1993).

Calibration in the complete response case

The calibration estimator can be presented in a numerous ways. 
Here we present it as an estimator for study variables in the form 
of a generalized regression estimator. The derivation itself refers 
to the calibration of sampling design weights which are denoted 
here by dk (c.f. Deville and Sarndal 1992).

qk is a reciprocal of a size measure contained in a vector xp.

The calibration estimator is proven by Deville and Sarndal to 
be design consistent. They also point out that due to minimizing 
the distance between i and tyw the latter is also at least asymp­
totically design unbiased (1992, 379).

tyCAL = = tyK + ( t ,  - t CT) 'B ,
s

where t „  = £  dkx k,

(2.26)

Qk = 1^xP,k’ and
wk = d k(.l + qk* k X)
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Since the estimator itself is one form of the generalized regres­
sion estimator, the appropriate variance approximation in the 
variance formula is easy to derive using the residuals

(Deville and Sàrndal 1992, 380).

Calibration estimator and nonresponse

Owing to close kinship with the generalized regression estima­
tor, the calibration estimator can also be regarded as one tool in 
dealing with nonresponse bias. The role of the unbiased sampling 
design is necessary; it ensures that the calibrated weights contain 
the original design structure and hence changes from the design 
weights are minimized. However, certain differences between the 
nonresponse modelling and the calibration do also exist; the cali­
bration estimator provides the user with individually modified 
weights for all responding elements and does not presume that 
the response probabilities remain strictly positive. Moreover, the 
calibration estimator can be formulated as an unbalanced 
main-effects ANOVA model. Thus it works reasonably well in 
cases where the response distribution can be approximated by the 
marginal distribution of the “explanatory variables”. Further­
more, it does not easily run into problems with degrees of freedom 
even with very small sample sizes.

If information is available only at the sample level for the cali­
bration of sampling weights, then the final weighting resembles 
the response homogeneity group approach described above. A sec­
ond case, seldom encountered in the Finnish context is where in­
formation at the population level exists but does not exist at the 
sample level. This case is not dealt as it has little practical rele­
vance. The third case, the most common one is where auxiliary 
information exists both at the population and the sample level.

By applying the variance formula for the complete response 
case and allow for the ordinary formula (2.27) to be inflated by the 
estimated response probability, we obtain

(2.27)

where ek = y k -  x'k Bs

VCAi(i) = I E (wkekXwte,) (2.28)
v
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The two-phase estimator is of the form:

tyCAL-RHG °  yiz= L + ( t x - t l x ) ' B 1 + ( t x - t x ) ' B r

+ £ X
g=i

y k - y i k
TCt

+ y k - y k

where yk = x'k B r = x'k

G 1

I  4 r ï
V

x  k y k

£  mg /ng *7* o2k Kk

m g ! n g rs I t *

-1

Y * ' * *
2 - , 2

g  rs a * %
J (2.29)

and y lk = x 'lk B , = x'lk

G 1

S -A r E

G 1

i  - 4 - i -
, V 1

g=y mg ln g t 1 °lk *kv
x ii; Vk

1  m g / n g

Here xk refers to information at the sample level and x lk at the 
population level. As Sârndal and Swensson note, we must assume 
that variances V(yk) are constant (V(yi;) = d  > 0). Although un­
known, they disappear when estimating the residuals (1987, 
284).

Dupont (1995) produced several estimators which can be re­
garded as refined forms of the above general estimator with dis­
tinctions between the different forms arising from the availability 
and nature of auxiliary information. Our estimator best coincides 
with Dupont’s strategy 2.

The approximate variance estimator for a two-phase general­
ized regression estimator is:

V ( t  yCAL-RHG ) = E  X  a e ik r  e i l r + 1  *
r  n k f i k l  g =1

^  2 1- mg /ng S2
mg

Where elkr = yk-yik and S i  = - Es m r

(  ̂ » \ n2
y k - y k yk - y k

n*0* /
(2.30)

(Sârndal et al. 1992, 584).

It can be seen that when applying the exponential distance 
function (raking approach), the point estimates of the two-phase
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model will coincide exactly with the ordinary calibration esti­
mates because we measure the x variables both at the popula­
tion and at the sample level. Using the same variable additionally 
at the sample level only would not provide us with any extra in­
formation and thus yk = yxk-

This does not hold for variance form, although it has empiri­
cally been found that the original variance approximation and 
the two-phase variance approximation yield very close results.

Dupont (1994) showed that only the raking approach provides 
a consistent estimator in the case of nonresponse. The result is 
theoretically sound: the exponential distance function leads to a 
formula where the nonresponse is modelled by In {Qhj /( 1- Qhj )) = ah 
+ [).. The calibration estimator is design unbiased in the case of 
nonresponse with one condition: the main effects model exploits 
the unknown response probability information and no interac­
tions exist between the levels of a and (3.

2.4. Evaluation of different reweighting 
 approaches_____________________

Some discussion exist in sampling literature and comparisons of 
available methods of reweighting can be found. For example, Oh 
and Scheuren (1983), Kalton and Maligalig, and Laaksonen 
(1992) have reported their results. Laaksonen’s results refer to 
real survey data sets while others have used mainly artificially 
created data sets in their simulations. In the next sections some 
comparisons based both on direct comparison and simulation of 
various estimators are presented. The idea behind using real data 
sets is to investigate methods which could later be applied on the 
survey practice. The methods compared consist of the weight­
ing-class estimator, post-stratification and the calibration estima­
tor. The methods are also combined in order to determine whether 
a combination of two or more methods yields better results.
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EMPIRICAL COMPARISON OF 
DIFFERENT ESTIMATORS

II
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EMPIRICAL FINDINGS FROM 
VARIOUS REWEIGHTING 

STRATEGIES

3.

3.1. Introduction

The many alternative reweighting methods presented in the pre­
ceding chapter are tested here using a real survey data set. Two 
exceptions, however, must be mentioned. Firstly, the ordinary ra­
king ratio estimator has not been tested separately because it is 
included in the calibration estimator. And secondly, the explicit 
modelling of response probabilities is a good method for impro­
ving the weighting of large-scale surveys conducted fairly seldom. 
Our data set is large but the survey is carried out very frequently. 
Searching the best model available is not possible in the producti­
on of real statistics due to time constraints, however.

Data set, sampling design and estimation design

We have selected the Labour Force Survey (LFS) data set of Sta­
tistics Finland dating to March 1993. The monthly LFS has a rat­
her complicated design being a rotating panel design with five wa­
ves in the course of 15 months. However, the data set of one 
month can be regarded as a simple random sample of individuals 
aged from 15 to 74 years, although the true selection procedure is 
actually systematic sampling from the Central Population Regis­
ter, where the Register is sorted according to the domicile codes 
before the sample selection. It means that the sample has implicit 
geographical stratification. So far we have not encountered any 
indications of selection bias due to systematic sampling, so the se­
lection procedure can be approximated by simple random samp­
ling without replacement (SRSWOR).

The ordinary LFS data set is reweighted using post-stratifica­
tion. The purpose of post-stratification is to guarantee correct 
population distribution according to gender, age and geographic 
distribution. The total number of post-strata is 312 (2 * 13 * 12).
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The total sample size in March 1993 was 12,804 and the number 
of respondents 12,092. Some of the post-strata contain only a fewo
individuals. The strata of Autonomous Territory of the Aland Is­
lands proved to be particularly problematic.

The properties of the estimation method are described in Djerf 
(1997 and 1996b) and in Djerf and Väisänen (1993). Djerf and 
Väisänen began to examine the statistical properties of the cur­
rent estimation design as the gap between the unemployment fig­
ures generated by the LFS and those of the Unemployed Job- 
Seekers’ Register of the Ministry of Labour started to increase 
since 1988. It was found that the post-stratified estimator of the 
LFS performed reasonably well for providing the total estimates 
of study variables such as being in the labour force, being retired, 
etc. The estimates were also consistent and efficient. For the un­
employment figures, however, the post-stratified estimator did 
not yield efficient estimates. The design effect statistics remained 
about 1.

The precision of unemployment estimates was improved 
though by introducing an indicator whether or not the sampled 
person was an unemployed job-seeker in the Ministry’s register. 
The information is linked directly to each record using a unique 
personal identification number (PIN). The correlation between 
the two concepts of being unemployed proved to be fairly high, 
about 0.80.

Djerf obtained further results by showing that the 
post-stratification estimator provided biased estimates for the reg­
ister indicator because the share of unemployed persons was much 
higher among the nonrespondents than among the respondents. 
Hence the register indicator could serve as an explanatory variable 
for nonresponse as well. He advocated the use of the calibration es­
timator and the inclusion of register information in order to im­
prove both the accuracy and precision of the estimates (1997). 
Some of the results are discussed in more detail in this paper.

________3.2. Study variables and estimators________

We are interested here in two major study variables in the LFS; 
namely the size of the labour force and the number of unemployed 
people. The concepts are measured using the interview informati­
on. The decision rule for the labour force status is rather compli­
cated. First each person is classified according to his/her main ac-
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tivity indicating whether the respondent belongs to the labour for­
ce or not. Those in labour force are further classified according to 
their activities and working hours to those employed and those 
unemployed.

The following comparison serves mainly for determining the ef­
fect of using auxiliary information either at the sample level or 
both at the sample and at the population level. When using infor­
mation at the sample level only it is assumed we actually apply a 
weighting-class estimator connected to the original sampling or 
estimation design estimator. In allowing our auxiliary informa­
tion to contain the population counts, we can treat the informa­
tion as an additional post-stratification variable or as a calibra­
tion variable. It was also applied as a weighting-class estimator. 
The estimators to be compared consist of:

E s t im a t o r N o t e

H orvitz-Thom pson modified: sam ple size rep laced  by the num ber o f 
respondents

H orvitz-T hom pson -  2 PH ASE H -T estim ator in  the first phase, the M inistry o f  
Labour’s indicator o f  unem ployed job -seeker in 
the second phase (as a w eighting-class estim ator)

Post-stratification 
(sex, age, province)

ordinary post-stratification  used for official LFS 
statistics

Post-stratification
(sex, age, province, ue-indicator)

as above but the original strata are further stra­
tified by the ue-indicator

Post-stratification -  2 PH A SE  
(sex, age, province)

ordinary post-stratification  in  the first phase, the 
M inistry o f  L abour’s indicator o f  unem ployed jo b ­
seeker in the uniform  nonresponse m odel; 
second phase applied to the total sam ple level 
(as a w eighting-class estim ator)

P ost-stratification  -  2 PH ASE 
(sex, age, province)

ordinary post-stratification  in  the first phase, 
the M inistry o f  L abour’s ind icator o f  unem ployed 
job-seeker in  the separate nonresponse m odel; 
second phase applied in  each stratum  (as a 
weighting-class estim ator in  each  stratum )

Calibration
(sex, age, province, ue-indicator)

The calibration o f  w eights: both  the rak ing and 
linear m odels w ere applied

Calibration
(sex, age, province, ue-indicator) 
-  2 PH ASE

The calibration o f  w eights: both  the rak ing and 
linear m odels w ere applied, the M in istry o f  
Labour’s indicator o f  unem ployed job -seeker in 
the second phase (as a w eighting-class estim ator)

We present the results according to one domain only, namely 
the gender of the respondent (the formulae are in Appendix 1).
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Table 1 confirms the findings by Djerf (1997) both in reducing the 
sampling variance and increasing the estimate for the unemplo­
yed persons. In principle all methods that use some information 
on the Register of Unemployed Job-Seekers should yield about 
the same point estimates because the indicator has only two out­
comes. However, some surprising differences between the two oc­
cur. Especially the weighting-class method using only sample le­
vel information (H-T -  2 PHASE) performs much worse than the 
other methods in terms of sampling variance. The point estimates 
are also substantially lower than those obtained by using a more 
efficient estimator, e.g. the post-stratified estimator with a weigh­
ting-class estimator.

______________ 3.3. Estimates for totals_______________

Table 1. Comparison of estimates for totals of LFS, March 1993. 
(Estimated standard errors in parentheses).

( a) Labour force

E s t im a t o r M a le F e m a le T o t a l
H orvitz-T hom pson
(SR SW O R )

1,223,208
(16,118)

1,173,878
(15,940)

2,397,086
(16,647)

H orvitz-T hom pson 
-  2 PH A SE

1,227,048
(16,127)

1,175,648
(15,951)

2,402,696
(16,580)

P O S T -S T R A T IF IC A T IO N
(sex, age, province)

1,276,273
(8,551)

1 ,155,012
(9,268)

2 ,431,285
(12,610)

Post-stratification
(sex, age, province, ue-indicator)

1,280,468
(8,587)

1,156,630
(9,221)

2,437,098
(12,445)

Post-stratification  -  2 PH ASE 
(sex, age, province)
U niform  nonresponse m odel

1,252,242
(9,556)

1,159,406
(10,126)

2,411,649
(14,201)

Post-stratification  -  2 PH ASE 
(sex, age, province)
Separate nonresponse m odel 
in  each  stratum

1,277,224
(8,532)

1,154,758
(9,250)

2,431,982
(12,584)

C alibration  (raking)
(sex, age, province, ue-indicator)

1,273,467
(9,994)

1,161,977
(10,453)

2,435,444
(12,243)

C alibration  (raking) -  2 PH ASE 
(sex, age, province, ue-indicator)

1,273,467
(9,993)

1,161,977
(10,452)

2,435,444
(12,243)

C alibration  (linear)
(sex, age, province, ue-indicator)

1,273,037
(9,995)

1,162,438
(10,454)

2,436,475
(12,244)

C alibration  (linear) -  2 PH ASE 
(sex, age, province, ue-indicator)

1,273,092
(9,994)

1,162,336
(10,453)

2,435,428
(12,243)
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Table 1. Comparison of estimates for totals of LFS, March 1993. 
(Estimated standard errors in parentheses). (Contd.)

( b )  U n e m p lo y m e n t

E s t im a t o r M a le F e m a le T o t a l

Horvi tz-Thom pson 
(SRSW O R)

237,541
(8,352)

176,899
(7,268)

414,439
(10,754)

Horvi tz-Thom pson 
-  2 PH ASE

244,555
(8,460)

182,355
(7,397)

426,910
(10,734)

P O S T -S T R A T IF IC A T IO N
(sex, age, province)

250 ,170
(8,331)

171,922
(6,894)

422 ,091
(10,914)

Post-stratification
(sex, age, province, ue-indicator)

257,893
(6,863)

177,442
(6,093)

435,335
(6,802)

Post-stratification -  2  PH ASE 
(sex, age, province)
U niform  nonresponse model

252,343
(8,455)

178,972
(7,184)

431,315
(11,095)

Post-stratification -  2 PH ASE 
(sex, age, province)
Separate nonresponse model 
in  each stratum

258,076
(8,255)

173,363
(6,826)

431,440
(10,712)

Calibration (raking)
(sex, age, province, ue-indicator)

254,897
(6,852)

180,189
(6,125)

435,086
(6,722)

C alibration (raking) -  2 PH ASE 
(sex, age, province, ue-indicator)

254,897
(6,851)

180,189
(6,124)

435,086
(6,722)

Calibration (linear)
(sex, age, province, ue-indicator)

254,620
(6,849)

180,437
(6,128)

435,057
(6,722)

Calibration (linear) -  2 PH ASE 
(sex, age, province, ue-indicator)

254,794
(6,850)

180,269
(6,125)

435,063
(6,722)

The estimated standard errors produced results that were pre­
dictable; the smallest standard errors are found when auxiliary 
information is available both at the sample and at the population 
level. Owing to a strong correlation between the register concept 
of being unemployed and our study variable, the unemployment 
estimates gain in precision. In using the same variable in the 
sample information only ( Post-stratification -  2 PHASE), the 
sampling variance becomes substantially greater. By using 
slightly more information and by solving the response probabili­
ties separately in each stratum the sampling variance can be mar­
ginally reduced. Nonetheless the model remains a poor one be­
cause real response behaviour should be checked much more care­
fully (op cit. Djerf and Väisänen 1993).

Table 2 also illustrates that the register variable used in the 
RHG model violates the assumption that no association between
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Tabic 2. Response behaviour and unemployed |ob-seekcr status in the Ministry of 
Labour's register.

S a m p le N o t  in  t h e  R e g i s t e r  
f o r  U n e m p l o y e d  J o b  
S e e k e r s

I n  t h e  R e g i s t e r  f o r  
U n e m p l o y e d  J o b  
S e e k e r s

T o t a l

R espondents 10,714 1,378 12,092
(88.6% ) (11.4% )

N onrespondents 577 135 712
(81.0% ) (19.0% )

Total 11,291 1,513 12,804
(88.2% ) (11.8% )

the study variables and the response generating mechanism ex­
ists. This is easily detected either from correlation between the 
two variables (0.8) or by comparing the estimated number of un­
employed by the register concept, which stood at 440,458 for re­
spondents, while the correct the figure was 457,453 (c.f. Djerf 
1997).

A Pearson X2 test shows that the assumption that the rows and . 
columns are independent can be rejected (X2 =36.9, df=l, 
p<0.001). The concept of being an unemployed job seeker is thus 
associated with the response mechanism in the Labour Force Sur­
vey sample.

The use of register information as a response homogeneity 
group for nonresponse adjustment did not change the result from 
that of the calibration in the expected manner. Hence the vari­
ance component resulted in V2 = 0.

It seems that the calibration estimator can utilize information 
on the respondents and on the nonrespondents when fairly high 
correlation with the study variable exists. It would be with exam­
ining whether this finding holds with poorer correlation. The pos­
sibility of bias also requires a further Monte Carlo study.

3.4. Discussion

Despite fairly clear statistical evidence some fears of introducing 
register information on unemployed in the LFS estimation still 
exist. The main argument against the use of the Job-Seekers 
Register is a major one: it is claimed that there are problems in 
updating the register data which may result in bias in estimates. 
The time lag in updating does in fact exist because the unemplo­
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yed job-seekers are given fairly long intervals between the obliga­
tory visits to the employment office. However, if the indicator for 
each individual and the respective population total of the indica­
tor refer to the same period in time no discrepancy should occur. 
Hence measurement error is reduced if not removed completely. 
Secondly, it has been argued that part of those registered as 
unemployed are not viewed as unemployed according to the LFS 
concept, being instead claimed to have left the labour force becau­
se of long-term unemployment or given social problems. No clear 
evidence supporting such a claim has been obtained.

With the introduction of the revised LFS in January 1997, the 
estimation procedures were changed. The old post-stratified esti­
mator was replaced by the calibration estimator. In order to 
maintain the population distribution as correct as possible, 
weights are first post-stratified, and then calibrated both on the 
marginal distributions of the population and the register indica­
tor of the status of unemployed job-seeker. The indicator is fur­
ther divided into three categories according to the duration of un­
employment in the register. Thus the current LFS estimator ex­
hausts a lot of available auxiliary information. '
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F

MONTE CARLO STUDY

4.1. The setup of the simulation 
 study_____________

4.1.1. General setup

The performance of various estimators were examined in Monte 
Carlo simulations. We created a population which is actually a 
pooled data set of LFS respondents from three consecutive 
months in 1993. A total of 1,000 independent samples were 
drawn. Each sample consisted of generated response and 
nonresponse subsets which mimic the true population structure. 
The average number of respondents was 1,000.

The main purpose of this experiment was to examine the sta­
tistical properties of various estimators when nonresponse was 
present and auxiliary information was available. The next chap­
ters present the data creation procedure, the selected estima­
tors, the Monte Carlo estimators, and finally the results of the 
study.

4.1.2. Study population 

Original data set

In the Monte Carlo study we used a real data set for which both 
real and artificial variables were generated. The original data set 
was pooled from three months (March, April and May, 1993) of 
the Finnish Labour Force Survey. The elements, i.e. individual 
persons in those samples, were independent of each other and the 
pooled samples were mutually exclusive (non-overlapping). The 
total size of the pooled sample was 38,246.

However, our data matrix is not complete due to nonresponse. 
The number of nonrespondents was 2,351 (6.15 per cent) being 
fairly stabile over the selected months:
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R e s p o n d e n t s N o n r e s ­
p o n d e n t s

T o t a l

M arch 12,092 712
5.56%

12,804

April 11,930 780
6.14%

12,710

M ay 11,873 859
6.75%

12,732

Total 35,895 2,351
6.15%

38,246

Although the relative size of nonresponse is small, the distribu­
tion of nonrespondents differs from that of the respondents. Most 
study variables were lacking for nonrespondents but fortunately 
some background information from various register sources is 
available. We could therefore produce a model using a logistic re­
gression model which predicted values for the 2 parameter for 
each person. The model is presented in Appendix 2.

The register dummy indicating whether the person is an unem­
ployed job-seeker or not will be serve as a basic variable to create 
other indicators with different correlation with the unemployment 
measure. As indicated above, this indicator correlates strongly with 
the survey question involving unemployment (r = 0.8). Additional 
auxiliary variables were generated from the register indicator by 
assigning randomly selected individuals with “incorrect” values so 
that the correlation structure of the generated auxiliary variables 
varied between [0,0.8] with the increment of 10.41.

Creating the population frame

Next we discarded the original nonrespondents and used the res­
ponding set (35,895 persons) as our sampling frame. Nonrespon­
dents were generated by using model prediction and random se­
lection. The model prediction was used as a base for the selection. 
However, the proportion of men among the nonrespondents would 
have grown too large had the model prediction been used as such. 
We therefore decided to perform random selection among the lo­
west response probabilities (predicted response probability less 
than 12 per cent) separately for men and women. The size of 
nonresponse was 6.15 per cent (2,206 persons). Thus the number 
of “respondents” according to the responding indicator was 33,689 
its distribution being close to the original nonresponse distributi­
on for most variables. Some of the distributions are compared in 
Appendix 3.
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Figure 2. Data matrix of the population used in the Monte Carlo simulation study.

W h it e  a r e a :  n o n r e s p o n d e n t s  in  t h e  L F S  d a t a
L ig h t  g r e y :  r e s p o n d e n t s  p r e d i c t e d  t o  b e  n o n r e s p o n d e n t s  i n  t h e
s im u la t i o n  s t u d y
D a r k  g r e y :  r e s p o n d e n t s  p r e d i c t e d  t o  b e  r e s p o n d e n t s  in  t h e  s im u la t io n
s t u d y
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38246 x 38246.1 X 38246,2 0 - - -

As a starting point we used the original register variable indi­
cating whether a person is an unemployed job-seeker . The vari­
able was called RUEP8 and has a stable Pearson correlation of 
0.8 with the study variable of being unemployed. Next we created 
an indicator RUEP4 with Pearson correlation of 0.4 by selecting 
about 5,500 persons and assigning them with a randomly chosen 
indicator with the value of either 0 or 1. And finally a random as­
signment indicator RUEO was created from the pseudo-random 
generator (uniform distribution), which supposedly should have 
zero correlation with the unemployment variable. The table below 
shows the correlations in the frame and among the model-based 
“respondents”.

F r a m e  (n = 3 5 ,8 9 5 )  R e s p o n d e n t s  (n = 3 3 ,6 8 9 )

L a b o u r  F o r c e U n e m p l o y e d L a b o u r  F o r c e  U n e m p l o y e d

R U EP8 0.232 0.801 0.230 0.799
R U EP4 0.121 0.410 0.116 0.399
RUEO 0.010 -0 .0 0 4 0.009 -0 .0 0 3

4.1.3. Study variables

Our principal interest lay in the estimates for totals. The variab­
les chosen for the study were the number of people in the labour 
force and the number of unemployed. Our aim was to evaluate the 
effect of both nonresponse and different correlations of the auxi­
liary variables to the study variables. We also evaluated them ac­
cording to the gender and the age of the respondent.
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The true values of those variables according to respondent’s 
gender were

L a b o u r  F o r c e N u m b e r  o f  * 
U n e m p l o y e d

U n e m p l o y m e n t
R a t e

%

M ale 11,880 2,300 19.36
Fem ale 10,984 1,647 14.99

Total 22,864 3,947 17.26

In addition, we were interested in including the ratio of the two 
totals, the unemployment rate:

A

UR = t(UE) 
t(LBF)

*100

The Monte Carlo estimator for linear parameters are unbiased 
and consistent. However, for nonlinear parameters such as pro­
portions (ratios in general), correlation coefficients, etc., the 
Monte Carlo estimator is known to be slightly biased, but re­
mains consistent. Generally estimators which prove to be good 
for linear parameters are fairly good for functions of linear pa­
rameters, too. Here we are dealing with a situation where we 
compare the mean of the estimated proportions to the proportion 
of the estimated totals. Since in this Monte Carlo setting we only 
add up and divide with a fixed J (i.e. the weight is equal to 1), we 
can expect the bias problem to remain fairly small.

4.1.4. Monte Carlo samples

A total of 1,000 independent samples were selected from the fra­
me by simple random sampling. We used a pseudo-random num­
ber generator of uniform distribution for selecting fixed size 
samples. The sample size was 1,065. The samples were selected 
without replacement.

We could expect that the mean of the nonresponse indicator 
would be close to 6.15 per cent over all 1,000 samples. Thus we 
would have on average 1,000 respondents. The mean proved to be 
999.55 and the median 1,000. The distribution of respondents 
was normal but relatively flat, giving the impression of randomly 
varying nonresponse patterns. The smallest number of respon­
dents was 973 and the largest 1,022. The estimated nonresponse 
rates varied from 4.0 to 8.6, corresponding rather well with the 
real nonresponse behaviour of the LFS (c.f. Djerf 1996a, 207-211).
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A few estimators were calculated for each sample, with the or­
der is principally chosen according to the information contents:

E s t im a t o r V a r i a n c e  f o r m u la

H orvitz-T hom pson  estim ator 2.2 (2.6 w ith  m
in denom .)

H orvitz-T hom pson  estim ator + w eighting class 2.12
P ost-stratification 2.15
(sex, age*region)
Post-stratification 2.16
(sex, age*region) + w eighting class
Post-stratification 2.29
(sex, age*region) + ca libration  (sex, age*region, ue-indicator)
Calibration 2.29
(sex, age*region)
Calibration 2.29
(sex, age*region , ue-indicator)

We constructed post-stratification in a manner comparable to 
the original post-stratification applied in the LFS, i.e. according to 
the respondent’s sex, age and region. Since the size of the sample 
handled was relatively small, the number of post-strata was re­
duced to 24.
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The post-strata were formed in the following way:

V a r ia b le C a t e g o r ie s D e s c r ip t i o n
Sex 2 M , F
A ge 6 10 year groups starting from  15 to 24
Region 2 1 i f  the person w as living in Southern  Finland 

(Province o f  U usim aa, Turku  and P o p , H äm e or 
in  the A utonom ous Territory o f  the A lan d  Islands)
2 elsew here

Total 24

The domains in estimation were closely related to stratification 
categories but were not identical: The first variable was the re­
spondent’s sex and the crossing variable was a combination be­
tween age and region: Four age categories (15-24, 25-49, 50-64, 
65-74) were crossed to three regions (the Greater Helsinki Area, 
other parts of Southern Finland and the rest of Finland).

4.1.5. Program

We used a SAS macro program for calculating the point-estimates 
and their standard errors, CLAN v. 9510 (Andersson and Nord- 
berg, 1992, 1995). Although a rather slow and not very practical 
program for handling a large number of calculations, the SAS 
macro program possesses a number of good qualities; the calibra­
ted weights and the respective generalized regression estimator 
for sampling variance can be calculated inside the program itself. 
We were also able to program the whole sequence of estimators 
in one and the same run.

______4.2. Measures of accuracy and precision______

We were interested in evaluating both the bias and the precision 
properties of various estimators chosen for the study. The asymp­
totic properties of estimators can easily calculated in Monte Carlo 
studies by merely reestimating the parameter value as many ti­
mes as needed. Let us denote the population parameter we are in­
terested in (study variable) by 0  and its estimated value in the 
sample j  by 0.. The Monte Carlo estimator of the parameter is 
then the arithmetic mean of the parameter estimates over all the 
samples.

0MC

J 0
(4.1)
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Bias can be calculated directly from the Monte Carlo estimate: 
B = Omc -  0. Relative bias is achieved when the true value is 
plugged in the estimator above:

R el- Bias ® M C  ®
0

X  <e, - 0 )
_>1_________

J 0
(4.2)

The relative bias in the table below is given percentage points.

Since our estimators are only approximate unbiased estimators 
it is necessary to calculate the mean square error (MSE):

„ </ (0  -  0 )2
MSEiQ) = V(0) + (B(0))2 = — J— ------  (4.3)

j= i J
Here we apply the root mean square error, which is merely the 

square root of the MSE statistic:

RMSE(Q) = VMSE(Q)

It is, however, also interesting to compare the estimated vari­
ance with the mean of the estimated variance of the study vari­
able in question. For comparison we have used the RMSE from 
the Monte Carlo samples, the standard error estimates (i.e. 
square root of the sampling variance estimates from the Monte 
Carlo samples) and the mean of the estimated standard error of 
each estimator.

Domain estimates

Due to a restricted number of classifying variables chosen for the 
simulations the only combinations available to us are constructed 
according to gender, region and age. In each run we calculated 
point estimates and their standard errors for totals and in 24 do­
mains; a combination of four age categories and three regions ti­
mes gender. Here we concentrate separately on the domains of 
gender and the combination of age and region. The small sample 
size makes it very difficult to calculate good measures of precisi­
on over all domains of interest. For example, the mean of the ab­
solute relative domain error might become too large for all estima­
tors. For this reason only a given number of relative bias figures 
and coverage rates were calculated for the domains of interest.
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Coverage rates

The coverage of the Monte Carlo experiment can be calculated in 
various ways. Here we have calculated the normal 95 per cent 
confidence interval from the estimated parameter and its standard 
deviation, e.g. y  -  y + 1.96VvX5Ô

The standard deviation of a binary variable for the 95 per cent 
coverage rate is 0.006892. Thus the acceptance region for the cov­
erage rate equals [ 93.65, 96.35 ].

_______________4.3. Simulation results_______________

4.3.1. Accuracy o f the estimators

The point estimates and the respective relative bias for each esti­
mator are presented in table 3 below. Here we analyse the results 
separately for each study variable. Auxiliary information con­
taining either modest (+0.4) or zero correlation with the study va­
riable were not included in the subsequent analysis. The impro­
vement in results using the modest correlation +0.4 was so negli­
gible that our decision may be justified.

Labour force participation

All but the Horvitz-Thompson estimator yield practically unbiased 
estimates for the study variable labour force participation. It is 
evident that information on the population distribution is 
necessary and sufficient for any estimator. For example, the 
relative bias of the original post-stratification and the respective 
calibration estimator is less than 0.1 per cent. When the register 
dummy of being an unemployed job-seeker is included, the point 
estimates of the labour force tend to increase slightly. In the case 
of the H-T estimator the negative bias is reduced but in other cases 
the use of auxiliary information causes some extra bias. The bias 
of the estimates still remained below a half per cent, though.

Unemployment

The lack of the auxiliary information causes serious negative bias 
in unemployment estimates. The largest relative bias stays from 
the H-T estimator (over 5 per cent), and is about 4.5 per cent for 
estimators that use information on the population distribution 
(post-stratification and calibration 1).
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The use of register information on the status of an unemployed 
job-seeker clearly improves the accuracy of the point estimates. 
The use of sample level information only (weighting-class estima­
tor for nonresponse) decreases the relative bias to about one per 
cent. Where the register information is used at the population 
level (calibrated estimators), the relative bias is further de­
creased to about 0.6 per cent.

Unemployment rate

Estimators which perform well both for labour force participation 
and the status of unemployment have fairly modest bias also for 
unemployment rates. In this case one of the problems connected 
with the ratio estimator becomes evident; namely the H-T esti­
mator with the weighting class adjustment for nonresponse provi­
des the least biased estimate for the unemployment rate although 
it is not least biased either for the nominator or the denominator.

Table 3. Accuracy of various estimators in Monte Carlo simulation under

E s t im a t o r L a b o u r
f o r c e

U n e m p l o y ­
m e n t

U n e m p l o y ­
m e n t  r a t e

(i = 2 2 ,8 6 4 ) ( t  = 3 ,9 4 7 ) (R  = 17.26)

H orvitz-T hom pson *MC

Rel-Bias
22,517.67

-1 .5 1
3,739.98

-5 .2 4
16.61
-3 .7 8

H orvitz-T hom pson 
+ w eigh tin g class

^MC

Rel-Bias
22,594.41

-1 .1 8
3,908.66

-0 .9 7
17.30

0.22

Post-stratification  
(sex, age, region)

*MC

Rel-B ias
22,881.03

0.07
3,774.21

-4 .3 8
16.49
-4 .4 5

Post-stratification  
(sex, age, region)
+  w eigh tin g class

^MC

Rel-B ias
22,918.22

0.24
3,910.99

-0 .9 1
17.06
-1 .1 5

Post-stratification  
(sex, age, region ) +  

C alibration  (sex, age, 
region , ue-indicator)

^MC

Rel-Bias
22,926.60

0.27
3,921.40

-0 .6 5
17.11-
-0 .9 0

C alibration  
(sex , age, region)

h i e

Rel-B ias
22,878.16

0.06
3,776.76

—4.31
16.51
-4 .3 8

C alibration  
(sex , age, region , 
ue-indicator)

h i e

Rel-B ias
22,924.40

0.26
3,922.77

-0 .6 1
17.11
-0 .8 6
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Conclusions

It can be concluded that in the Labour Force Survey it is not pos­
sible to obtain unbiased estimates on unemployment without 
using proper auxiliary information. It is obvious that labour force 
participation can be accurately estimated when sufficient infor­
mation on population structure is available. A distribution of po­
pulation according to the gender, age and region fulfills these re­
quirements. The result gives support to earlier findings by Djerf 
and Väisänen who claimed that the current post-stratified esti­
mator of the LFS is ample for large domains of study (1993).

When estimating unemployment and related study variables, 
however, more information would be necessary. It seems that the 
use of register information on unemployed job-seekers improves 
such estimates and reduce bias to an acceptable level. The disad­
vantage of using strongly correlating information is also evident, 
calling for slight bias in labour force participation which in this 
case amounts to positive bias in employment estimates. The mag­
nitude of the bias remains fairly small.

4.3.2. Mean square error and variance

Since the estimators were found to contain bias we will present 
both the MSE and the variance estimates of the linear parame­
ters based on the Monte Carlo simulation.

Here the role of the sampling and estimation design as well as 
use of information becomes crucial. Horvitz-Thompson estimator 
provides the largest mean square errors and variances in general. 
Post-stratification and calibration yield estimates which are simi­
lar to each other.

If we mow use auxiliary information as a response homogene­
ity model we do not gain in precision, but if we use the informa­
tion at maximum we can improve the precision significantly. This 
is the case when we look at post-stratification and use the auxil­
iary information as a weighting class. Variance for the number of 
unemployed is about 110,600 while it is reduced to 46,500 when 
we use the same variable as a simple indirect post-stratification 
variable (Deville et al. 1993). Thus we can improve precision by 
60 per cent by merely using information to the fullest.
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Table 4. Mean square error and variance for various estimators in the Monte Carlo 
simulation

E s t im a t o r L a b o u r
f o r c e

U n e m p l o y ­
m e n t

U n e m p l o y ­
m e n t  r a t e

H orvitz-T hom pson M S E 395,023 154,461 0.00025311
VAR 285,082 111,604 0.00021056

H orvitz-T hom pson M S E 344,664 112,368 0.00020826
+ w eighting class VAR 271,982 110,898 0.00020811

P ost-stratification M S E 164,364 142,303 0.00026329
(sex, age, region) VAR 164,074 112,448 0.00020420

P ost-stratification M S E 166,492 111,921 0.00020427
(sex, age, region) 
+ w eighting class

VAR 163,560 110,625 0.00020033

P ost-stratification M S E 161,112 47,193 0.00009239
(sex, age, region) + 
Calibration (sex, age, 
region, ue-indicator)

VAR 157,193 46,537 0.00008996

C alibration M S E 163,013 140,789 0.00025941
(sex, age, region) VAR 162,812 111,809 0.00020230

Calibration M S E 159,502 47,034 0.00009146
(sex, age, region, 
ue-indicator)

VAR 155,854 46,447 0.00008926

4.3.3. Standard error estimates and coverage rates

The mean of the estimated standard errors can be compared to 
the standard deviation and RMSE estimate of the Monte Carlo es­
timates. In general, the mean of the estimated standard errors 
was close to the Monte Carlo standard deviation. Where the esti­
mators were biased, the mean of the standard error estimate was 
quite distant from the RMSE, which means the confidence inter­
vals become too close.

In the case of nearly unbiased estimates two different phenom­
ena could be discerned. Generally the mean of the standard error 
estimates was greater than the standard deviation of the esti­
mates. (See the labour force estimates), which means the confi­
dence intervals can become slightly too distant. When using in­
formation on registered unemployment, instead, the calibrated 
estimates appear to result in confidence intervals that are slightly 
too close because the mean of the standard error estimates are 
smaller than the respective standard deviation. Table 5 below 
confirms the assumption empirically. Estimators which result in 
modest bias but contain large standard errors actually perform 
better than unbiased estimators with high efficiency.
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Table 5. Coverage rates of various estimators in Monte Carlo simulation. 
(Asterisk indicates estimates which did not fall into the 95 per cent acceptance 
ranae)

L a b o u r
f o r c e

U n e m p l o y ­
m e n t

U n e m p l o y ­
m e n t  r a t e

H orvitz-Thom pson 9 1 .0 * 90.2 * 92.7 *
H orvitz-Thom pson + w eighting class 9 3 .4 * 95.7 95.6
Post-stratification (sex, age, region) 96.1 9 1 .8 * 9 2 .0 *
Post-stratification (sex, age, region) 95.8 95.4 94.8
+ w eighting class
Post-stratification (sex, age, region) 96.0 93.9 94.0
+ calibration (inch ue -indicator)
Calibration (sex, age, region) 96.2 9 1 .4 * 9 2 .0 *
C alibration (sex, age, region, ue-indicator) 95.5 93.7 94.2

Table 6. Mean square error and variance 
simulation

for various estimators in the Monte Carlo

E s t im a t o r L a b o u r
f o r c e

U n e m p l o y ­
m e n t

U n e m p l o y ­
m e n t  r a t e

H orvitz-Thom pson R M S E 628.51 393.01 0.0159
s t d mc 524.48 334.07 0.0145
SE 541.29 341.75 0.0146

H orvitz-Thom pson R M S E 587.08 335.21 0.0144
+ w eighting class s t d mc 521.52 333.01 0.0144

S E 538.36 342.91 0.0146

Post-stratification R M S E 405.42 377.23 0.0162
(sex, age, region) s t d mc 405.06 335.33 0.0143

S E 422.62 344.51 0.0146

Post-stratification R M S E 408.03 334.55 0.0143
(sex, age, region) s t d mc 404.43 332.60 0.0142
+ w eighting class S E 421.18 342.85 0.0145

Post-stratification R M S E 401.39 217.24 0.0096
(sex, age, region) + s t d mc 396.48 215.72 0.0095
Calibration (sex, age, 
region, ue-indicator)

S E 413.42 212.50 0.0094

Calibration R M S E 403.75 375.22 0.0161
(sex, age, region) s t d mc 403.50 334.38 0.0142

S E 418.86 340.99 0.0145

C alibration R M S E 399.38 216.87 0.0096
(sex, age, region, s t d mc 394.78 215.52 0.0094
ue-indicator) S E 409.78 210.14 0.0093
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_______________ 4.4. Domain estimates_______________

4.4.1. Bias consideration 

Labour force

Estimators which use auxiliary information on the population 
distribution perform quite well. Even the relative bias of the Hor- 
vitz-Thompson estimator remains small when females are con­
cerned. Auxiliary information tends to induce some bias in esti­
mates but the magnitude remains quite small.

Unemployed

The use of auxiliary register information on the unemployed job­
seekers seems to also reduce bias in the gender domain. Howe­
ver, there is some evidence of “pushing”; the relative bias of wo­
men tends to grow from negative to positive whereas the bias of 
men is constantly reduced but remains negative.

Table 7. Relative bias of various estimators for the study variables of labour force 
participation and unemployment.

L a b o u r  f o r c e  U n e m p lo y m e n t

E s t im a t o r M a le F e m a le M a le F e m a le

H orvitz-T hom pson -3 .2 4 0.36 -7 .6 0 -1 .9 6

H orvitz-T hom pson  + w eighting class -2 .8 0 0.57 -3 .4 5 2.49

Post-stratification  (sex, age, region) 0.03 0.12 -5 .2 9 -3 .1 1

Post-stratification  (sex, age, region)+ 
w eigh tin g class 0.27 0.21 -0 .8 1 -1 .0 6

Post-stratification  (sex, age, region)+ 
ca libration  (sex, age, region, ue-ind.) 0.25 0.30 -1 .6 7 0.78

C alibration  (sex, age, region) -0 .1 6 0.30 -5 .4 2 -2 .7 7

C alibration  (sex, age, region, ue-ind.) 0.06 0.48 -1 .9 0 1.18

The results in table 7 prompted us to investigate the role of 
gender in more detail in domain estimation. The register indica­
tor was calculated separately for men and women and applied to 
the calibration estimators. Table 8 shows that the change was 
worth doing: the relative bias is clearly reduced when informa­
tion is applied on this domain level.
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Table 8. Relative bias of various estimators for the study variables of labour force 
participation and unemployment.

L a b o u r  f o r c e  U n e m p l o y m e n t

E s t im a t o r M a le F e m a le M a le F e m a le

H orvitz-T hom pson -3 .2 4 0.36 -7 .6 0 -1 .9 6
H orvitz-T hom pson  + w eighting class -2 .8 0 0.57 -3 .4 5 2.49
Post-stratification (sex, age, region) 0.03 0.12 -5 .2 9 -3 .1 1
Post-stratification (sex, age, region)+ 
w eighting class 0.27 0.21 -0 .8 1 -1 .0 6
Post-stratification (sex, age, region)+ 
calibration (sex, age, region, ue-indi­
cator) 0.25 0.30 -1 .6 7 0.78
Post-stratification  (sex, age, region)+ 
calibration (sex, age, region, ue-indi­
cator by  sex) 0.30 0.24 -1 .0 2 -0 .1 2
Calibration (sex, age, region) -0 .1 6 0.30 -5 .4 2 -2 .7 7
Calibration (sex, age, region, ue-indi- 
cator) 0.06 0.48 -1 .9 0 1.18
Calibration (sex, age, region, ue-indi­
cator by  sex) 0.14 0.40 -1 .0 5 -0 .0 0

We can, however, go further and check whether the use of more 
detailed information also improves the estimates of other do­
mains. In table 9 the domains cut across the structure of the use 
of auxiliary information in estimation.

Table 9. Relative bias of various estimators for the study variables labour force par 
ticipation and unemployment for domains which do not coincide with strata or mar 
ginal distributions used in calibration_________________________________________

(a )  R e g i o n :  G r e a t e r  H e ls in k i  A r e a ;  A g e  c a t e g o r y :  1 5 -2 4

E s t im a t o r

H orvitz-T hom pson  
H orvitz-T hom pson  + w eighting class 
Post-stratification (sex, age, region)
Post-stratification (sex, age, region)+ 
w eighting class
Post-stratification (sex, age, region)+ ca li­
bration  (sex, age, region, ue-indicator)
Post-stratification (sex, age, region)+ ca li­
bration (sex, age, region, ue-indicator by 
sex)
Calibration (sex, age, region)
Calibration (sex, age, region, ue-indicator)
Calibration (sex, age, region, ue-indicator 
by sex)

L a b o u r  f o r c e  U n e m p l o y m e n t

M a le F e m a le M a le F e m a le

-1 1 .3 5 -1 1 .4 2 -1 1 .7 4 -1 2 .7 4
-1 1 .1 2 -1 1 .5 2 -7 .4 5 -9 .4 6

-4 .8 7 -8 .0 1 -5 .5 2 -9 .7 2

-4 .8 2 -8 .0 4 -1 .3 3 -8 .9 5

-4 .8 5 -8 .1 3 -1 .5 2 -6 .6 5

-4 .8 1 -8 .1 4 -0 .7 6 -7 .6 2
-5 .6 1 -8 .6 8 -6 .2 1 -1 0 .0 8
-5 .5 9 -8 .8 0 -2 .5 2 -7 .0 8

-5 .5 5 -8 .8 1 -1 .6 1 -8 .1 5
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Table 9. Relative bias of various estimators for the stud/ variables labour force par­
ticipation and unemployment for domains which do not coincide with strata or mar- 
ginal distributions used in calibration (Contd.)__________________________________

( b )  R e g i o n :  G r e a t e r  H e ls in k i  A r e a ;  A g e  c a t e g o r y :  5 0 -6 4

L a b o u r  f o r c e  U n e m p l o y m e n t

E s t im a t o r M a le F e m a le M a le F e m a le

H orvdtz-Thom pson -8 .1 3 -7 .6 4 -1 0 .5 9 -1 0 .8 3

H orv itz-T h om pson  + w eighting class -7 .9 9 -7 .7 8 -6 .9 1 -6 .9 1

Post-stratification  (sex, age, region) -3 .3 1 -5 .2 3 -5 .6 8 -9 .0 9

Post-stratification  (sex, age, region)+ 
w eighting class -3 .1 9 -5 .3 7 -2 .4 1 -8 .6 3

Post-stratification  (sex, age, region)+ cali­
bration  (sex, age, region, ue-indicator) -3 .2 0 -5 .1 5 -2 .4 3 -5 .2 6

Post-stratification  (sex, age, region)+ cali­
bration  (sex, age, region, ue-indicator by 
sex) -3 .2 0 -5 .1 4 -2 .0 7 -6 .1 7

C alibration  (sex, age, region) -3 .2 1 -5 .8 8 -5 .8 6 -1 0 .0 0

C alibration  (sex, age, region, ue-indicator) -3 .1 1 -5 .8 0 -2 .7 7 -6 .1 7

C alibration  (sex, age, region, ue-indicator 
by  sex) -3 .1 1 -5 .7 8 -2 .3 0 -7 .1 4

The overall impression is quite similar to earlier findings in the 
use of auxiliary information in general. However, now the esti­
mates for one domain (respondent’s gender) are not improved al­
though the information is given in that domain level (i.e. 
ue-indicator by sex). It can therefore be said that auxiliary infor­
mation should be used as comprehensively as possible when the 
most important domains are expected to gain in precision.

4.4.2. Coverage rates o f the domain estimates

We evaluated the accuracy and precision of the domain estimates 
by coverage rates. Here the estimators refer only to the domain of 
the respondent’s gender.

Table 10 demonstrates that for labour force participation all 
estimators other than the H-T estimator perform in a consistent 
manner. Instead, the unemployment estimates generate slightly 
controversial results. Estimators that use the most detailed infor­
mation, i.e. register-based unemployment separately for both 
sexes (post-stratification combined with calibration and calibra­
tion), are controversial. In the case of the calibration estimator all 
estimates stayed within the acceptance region, whereas a similar 
estimator that uses even more information (post-stratification 
combined with calibration) failed altogether three times.
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Table 10. Coverage rates of various estimators by respondent's gender in Monte 
Carlo simulation
(Asterisk indicates estimates which did not fall into the 95 per cent acceptance region)

(a )  L a b o u r  f o r c e M a le F e m a le T o t a l

H orvitz-Thom pson 8 8 .6 * 95.2 9 1 .0 *

H orvitz-T hom pson + w eighting class 9 0 .4 * 94.3 9 3 .4 *

Post-stratification (sex, age, region) 95.2 95.4 96.1

Post-stratification (sex, age, region) 94.8 95.5 95.8

+ weighting class
P ost-stratification  (sex, age, region) 94.7 95.2 96.0

+ calibration (sex, age, region, ue-indicator)
P ost-stratification  (sex, age, region) 94.8 96.0 95.9

+ calibration (sex, age, region, ue-indicator by sex)
Calibration (sex, age, region) 94.7 94.9 96.2

Calibration (sex, age, region, ue-indicator) 93.8 94.4 95.5

Calibration (sex, age, region, ue-indicator by sex) 94.1 94.6 95.6

(b) U nem ploym ent

H orvitz-Thom pson 8 7 .5 * 94.4 9 0 .2 *

H orvitz-T hom pson + w eighting class 9 2 .9 * 96.2 95.7

Post-stratification (sex, age, region) 9 1 .0 * 9 3 .5 * 9 1 .8 *

Post-stratification (sex, age, region) 94.7 95.3 95.4

+ w eighting class
P ost-stratification  (sex, age, region) 9 3 .5 * 95.2 93.9

+ calibration (sex, age, region, ue-indicator)
Post-stratification (sex, age, region) 93.5 * 96.0 9 3 .6 *

+ calibration (sex, age, region, ue-indicator by  sex)

Calibration (sex, age, region) 9 0 .4 * 94.1 91.4 *

C alibration (sex, age, region, ue-indicator) 9 2 .4 * 95.2 93.7

Calibration (sex, age, region, ue-indicator by  sex) 94.6 95.3 93.8

(c) U nem ploym ent rate

H orvitz-Thom pson 91.8 * 94.4 9 2 .7 *

H orvitz-T hom pson + w eighting class 95.6 96.2 95.6

P ost-stratification  (sex, age, region) 9 1 .4 * 93.5 * 9 2 .0 *
P ost-stratification  (sex, age, region) 94.9 95.3 94.8

+ w eighting class
P ost-stratification  (sex, age, region) 94.1 95.2 94.0

+ calibration (sex, age, region, ue-indicator)

P ost-stratification  (sex, age, region) 9 3 .6 * 96.0 94.4
+ calibration (sex, age, region, ue-indicator by sex)

Calibration (sex, age, region) 9 0 .1 * 94.1 9 2 .0 *

Calibration (sex, age, region, ue-indicator) 94.1 95.2 94.2

Calibration (sex, age, region, ue-indicator by  sex) 94.3 95.3 93.9
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4.4.3. Conclusions

It seems evident that the information-intensive methods perform 
best when measuring bias and precision also for the domain level. 
In our case the nonresponse structure was not the same according 
the gender of the respondent. Hence the use of auxiliary informa­
tion for overall totals did not improve the domain estimates as 
much as one could have expected. On the contrary, these rather 
strong methods induced some extra bias in estimates. We can 
thus conclude that information should always be targeted as pre­
cisely as possible to the correct domains.
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^ p M p i i r
CONCLUSIONS AND FURTHER

STUDY

The aim of the study was to compare a number of fairly straight­
forward estimation methods when unit nonresponse is present in 
the data set. Unit nonresponse is a prevailing and probably inc­
reasing problem in all kinds of surveys. Traditionally only “cosme­
tic” adjustments were used to decrease the possibility of biased 
estimates in some domains of surveys. This problem was given 
new insight in the early 1980s when empirical nonresponse mo­
delling was introduced, although post-stratification and raking 
ratio estimators had been used since the 1960s. The calibration 
estimator was introduced in the 1990s and was thought to provide 
new opportunities for dealing nonresponse bias.

The estimators in this study are generally used in sample sur­
veys. They differ in their ability to use information; while the 
Horvitz-Thompson estimator needs no information other than 
inclusion probability, calibration estimators can utilize a lot of in­
formation both at the sample level and at the population level. 
The key issue is, of course, whether the information available is 
suitable for adjusting for nonresponse. It should also be borne in 
mind fairly strong correlation either between the auxiliary infor­
mation and the response mechanism or between the auxiliary in­
formation and the study variable(s) or both must exist.

In this study we compared estimators using empirical data 
sets where nonresponse was not a major problem in general. 
However, nonresponse was not distributed in a way that the tra­
ditional way of dividing the data set into two strata according to 
the response could be justified. The nonresponse was in fact found 
to be associated with one of the major parameters of the survey, 
namely unemployment. In such circumstances it may be expected 
that the methods that are incapable of capturing the nonresponse 
mechanism will fail to provide unbiased estimates. This was con­
firmed in our findings.
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The Horvitz-Thompson estimator performed clearly worst, 
while the traditional post-stratification estimator and the calibra­
tion estimator using only information not directly linked to the re­
sponse mechanism did not perform much better for the parameter 
of unemployment. Nonetheless, they were much more accurate 
and precise than the H-T estimator in all other respects.

The introduction of an register indicator that correlates 
strongly both with the study variable of unemployment and with 
the response mechanism improved the problem of bias substan­
tially. The type of information usage had clear effects on the preci­
sion of the estimates; precision was not improved very much 
when information was used at the sample level (weighting-class 
estimator), whereas when information was available also at the 
population level large gains in precision could be achieved.

The difference between the post-stratified and the calibration 
estimator was minor, which was to be expected because in cate­
gorical auxiliary information it is only at the level of availability 
that information differs. Although both estimators belong to gen­
eralized regression estimators, the calibration estimator has ad­
vantage over post-stratification in that the ratio type estimator 
can be used at the same time as the total counts. Both perform 
well when information is good.

The estimates for domains revealed that the use of auxiliary 
information should be targeted as far as possible when there was 
clear evidence of unequal nonresponse mechanisms at the levels 
of the pertinent domain. In this study we found that the calibra­
tion estimator can introduce some bias in such cases.

It can be generally said that the efforts of introducing unit 
nonresponse adjustment is worthwhile provided that the efforts 
are correct. The calibration estimator is a very powerful tool in 
this respect since it can also cover the explicit nonresponse model­
ling approach.

There is definitely room for further study in the field of unit 
nonresponse adjustment. In this study we concentrated on very 
simple cases and simple sampling designs. The results need to be 
confirmed with more complex (multistage) designs and especially 
in panel surveys. Another important task would be to determine 
how these types of estimators could be applied in nonresponse 
problems prevailing in business surveys.
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Appendix 1.

Estimators for domains

The presentation of various estimators above did not contain the 
description of domain estimators but we will give a short intro­
duction here mainly following the presentation by Sarndal et al. 
(1992, ch. 10).

Let us divide our population U into D mutually disjoint 
subpopulations which we call domains:

U = [JUd., subject to N = f^N d (A l.l)
<¿=1 d= i

The ordinary expansion estimator for a total in domain d is 
simply

^  = X  — k e s d (A1.2)
sd nk,

In general one has to consider that also population will be un­
known and has to be estimated by

^ = 2 —  k e s d (A1.3)
‘j nk,

and the corresponding variance estimator is

V ( t d) =  ^ ^ ( K kn l — (A1.4)

In the case of SRSWOR design the variance estimator is

V ( t )  = N 2- __^  Nv SRSWOR'•‘' d '  iv n n -^-rl(yk-yd) + a - —)y:n , -1 7 7  n
(A1.5)

(Sarndal et al. 1992, 393). When population sizes in domains 
are known the variance will be smaller.
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The domain estimators for other designs are solved in the simi­
lar manner. We present, however, the domain estimators for the 
GREG estimator. Here we assume in the general case where the 
auxiliary information vector and the domains of interest do not 
completely coincide but cross each other:

tGREG,d

where

= 'L 'L dkgkyk
P=1 Srf

gk = i  + g*(xd - * * , ) '
\-i

x , x t x ,, and k e  d

(A1.6)

Here the index p denotes for the P-dimensional vector of pa­
rameters in the generalized regression equation. We have to as­
sume that the total of vector Xp is known. The variance estimator 
looks quite the same as in the case of grand total. However, there 
are terms which inflate the variance always when the domain d 
crosses the parameter p :

V(W,,) = E I  - Kl K ek)(Wiei)
Sj n kl

where edk =
y k - x MBdp,

~ x pkBdp,

when k e sd , k e Ud 

otherwise

(Al.7)

(Estevao et al. 1995, 194).

One has to note that similar inflation in variance takes place 
also in stratification estimator for such domains which cross the 
strata and do not contain the elements in the strata completely. 
In our case the model group and the domain will coincide. There­
fore we cannot expect to see very large sampling variances.
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Appendix 2

A logit model for explaining response and nonresponse in the data 
set of the study

V a r ia b le P a r a m e te r S ta n d a rd

E s tim a te E r r o r

Intercept -5 .4 9 7 0.203
Sex = fem ale -0 .3 9 4 0.044

R egion 1 0.440 0.068
2 0.462 0.083
3 0.160 0.072
4 -0 .2 3 8 0.071

5 0.216 0.085
M unicipality: big town 0.287 0.055

rural -0 .2 1 7 0.057
M other tongue Swedish -0 .0 7 3 0.095

other than F innish  or Sw edish 0.979 0.161
M arital status = m arried -0 .6 2 7 0.048
A ge 0.142 . 0.011
A g e  squared -0 .0 0 2 0.000
Profession  1991 Farm er -0 .0 5 5 0.072

E ntrepreneur or unknown 0.528 0.082
Type o f  pension  1991 0.156 0.067

U nem ployed job  seeker 0.286 0.062
Interview ing in  A pril 0.098 0.054

M ay 0.202 0.053

In te r c e p t M o d e l 2 fo r  c o v a ria te s

A kaike ’s Inform ation C riterion 17671 16684 -
-  2 log Likelihood 17669 16644 1025 (p<.0001)

M cF adden ’s p2 0.058
(likelihood ratio index for the fitted logistic m odel)
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Appendix 3

Empirical and predicted response probabilities according to some 
demographic characteristics

L F S  B a s i c  d a t a P r e d i c t e d  d a t a

Sex m ale 92.6 92.6
fem ale 95.1 95.0

A ge category 1 5 - 1 9 97.4 99.6
2 0 - 2 4 94.5 95.3
2 5 - 2 9 93.1 92.8
3 0 - 3 4 92.7 91.8
3 5 - 3 9 92.0 91.4
4 0 - 4 4 92.6 91.0
4 5 - 4 9 92.5 90.6
5 0 - 5 4 93.1 91.5
5 5 - 5 9 93.3 93.4
6 0 - 6 4 94.6 96.2
6 5 - 6 9 97.1 98.9
7 0 - 7 4 97.0 99.8

Province G reater H elsinki A rea 90.3 86.0
O ther U usim aa 92.8 90.9
T urku and Pori 93.9 94.0
H äm e 94.8 94.0
K ym i 94.8 96.1
St. M ichels 94.3 96.5
Pohjois-K arjala 95.9 96.6
K uopio 95.8 98.0
K eski-Suom i 96.5 97.1
V asa 95.5 98.1
O ulu 93.5 93.2

Lapland 95.2 94.5
A land 93.1 94.0
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T U T K I M U K S I A - S A R J A  
R E S E A R C H  R E P O R T S  S E R I E S

Tilastokeskus on julkaissut Tutkimuksia v. 1966 alkaen, 
v. 1990 lähtien ovat ilmestyneet seuraavat:

164. Henry Takala, K u n n a t  j a  k u n ­

t a i n l i i t o t  k a n s a n t a l o u d e n  t i l i n p i ­

d o s s a .  T a m m i k u u  1990. 60 s .

1 6 5 .  Jarmo Hyrkkö, P a l k a n s a a j i e n

a n s i o t a s o i n d e k s i  1 9 8 5 = 1 0 0 .

T a m m i k u u  1 9 9 0 .  6 6  s .

1 6 6 .  Pekka Rytkönen, S i i v o u s p a l v e ­

l u ,  y m p ä r i s t ö h u o l t o  j a  p e s u l a p a l ­

v e l u  1 9 8 0 - l u v u l l a .  T a m m i k u u

1 9 9 0 .  7 0  s .

1 6 7 .  Jukka Muukkonen, L u o n n o n v a -  

r a t i l i n p i t o  k e s t ä v ä n  k e h i t y k s e n  k u ­

v a a j a n a .  1 9 9 0 .  1 1 9  s .

1 6 8 .  Juha-Pekka Ollila, T i e l i i k e n t e e n  

t a v a r a n k u l j e t u s  1 9 8 0 - l u v u l l a .  

H e l m i k u u  1 9 9 0 .  4 5  s .

169. Tuovi Allen -  Seppo Laaksonen
-  Päivi Keinänen -  Seija Ilma- 
kunnas, P a l k k a a  t y ö s t ä  j a  s u k u ­

p u o l e s t a .  H u h t i k u u  1 9 9 0 .  9 0  s .

1 7 0 .  Ari Tyrkkö, A s u i n o l o t i e d o t  v ä ­

e s t ö l a s k e n n a s s a  j a  k o t i t a l o u s t i e -  

d u s t e l u s s a .  H u h t i k u u  1 9 9 0 .  6 3  s .

1 7 1 .  Hannu Isoaho -  Osmo Kivinen -  

Risto Rinne, N u o r t e n  k o u l u t u s  j a  

k o t i t a u s t a .  T o u k o k u u  1 9 9 0 .  1 1 5  s .

171b.Hannu Isoaho -  Osmo Kivinen
-  Risto Rinne, E d u c a t i o n  a n d  t h e  

f a m i l y  b a c k g r o u n d  o f  t h e  y o u n g  in  

F i n l a n d .  1 9 9 0 .  1 1 5  p p .

1 7 2 .  Tapani Valkonen -  Tuija Mar- 
telin -  Arja Rimpelä, E r i a r v o i ­

s u u s  k u o l e m a n  e d e s s ä .  S o s i o e k o ­

n o m i s e t  k u o l l e i s u u s e r o t  S u o m e s s a  

1 9 7 1 - 8 5 .  K e s ä k u u  1 9 9 0 .  1 4 5  s .

1 7 3 .  Jukka Muukkonen, S u s t a i n a b l e  

d e v e l o p m e n t  a n d  n a t u r a l  r e s o u r c e  

a c c o u n t i n g .  A u g u s t  1 9 9 0 .  9 6  p p .

174. Iiris Niemi -  Hannu Pääkkönen,
T i m e  u s e  c h a n g e s  i n  F i n l a n d  in  

t h e  1 9 8 0 s .  A u g u s t  1 9 9 0 .  1 1 8  p p .

1 7 5 .  Väinö Kannisto, M o r t a l i t y  o f  

t h e  e l d e r l y  i n  la t e  1 9 t h  a n d  e a r l y

2 0 t h  c e n t u r y  F i n l a n d .  A u g u s t

1 9 9 0 .  5 0  p p .

1 7 6 .  Tapani Valkonen -  Tuija Mar- 
telin -  Arja Rimpelä, S o c i o ­

e c o n o m i c  m o r t a l i t y  d i f f e r e n c e s  i n  

F i n l a n d  1 9 7 1 - 8 5 .  D e c e m b e r  1 9 9 0 .  

1 0 8  p p .

1 7 7 .  Jaana Lähteenmaa -  Lasse Siu- 
rala, N u o r e t  j a  m u u t o s .  T a m m i ­

k u u  1 9 9 1 .  2 1 1  s .

1 7 8 .  Tuomo Martikainen -  Risto 
Yrjönen, V a a l i t ,  p u o l u e e t  j a  y h ­

t e i s k u n n a n  m u u t o s .  M a a l i s k u u

1 9 9 1 .  1 2 0  s .

1 7 9 .  Seppo Laaksonen, C o m p a r a t i v e  

A d j u s t m e n t s  f o r  M i s s i n g n e s s  i n  

S h o r t - t e r m  P a n e l s .  A p r i l  1 9 9 1 .  7 4

p p .

180. Agnes Babarczy -  Istvan Harcsa
-  Hannu Pääkkönen, T i m e  u s e  

t r e n d s  i n  F i n l a n d  a n d  i n  H u n g a r y .  

A p r i l  1 9 9 1 .  7 2  p p .

1 8 1 .  Timo Matala, A s u m i s e n  t u k i  

1 9 8 8 .  K e s ä k u u  1 9 9 1 .  6 4  s .

1 8 2 .  Iiris Niemi -  Parsia Eglite -  

Algimantas Mitrikas -  V.D. Pat­
rushev -  Hannu Pääkkönen,
T i m e  U s e  i n  F i n l a n d ,  L a t v i a ,  L i t ­

h u a n i a  a n d  R u s s i a .  J u l y  1 9 9 1 .  8 0

p p .

183. Iiris Niemi -  Hannu Pääkkönen,
V u o t u i n e n  a j a n k ä y t t ö .  J o u l u k u u

1 9 9 2 .  8 3  s .

183b.Iiris Niemi -  Hannu Pääkkönen
-  Veli Rajaniemi -  Seppo Laak­
sonen -  Jarmo Lauri, V u o t u i n e n  

a j a n k ä y t t ö .  A j a n k ä y t t ö t u t k i m u k -  

s e n  1 9 8 7 - 8 8  t a u l u k o t .  E l o k u u  

1 9 9 1 . 1 1 6  s .

1 8 4 .  Ari Leppälahti -  Mikael Äker- 
blom, I n d u s t r i a l  I n n o v a t i o n  i n  

F i n l a n d .  A u g u s t  1 9 9 1 .  8 2  p p .

185. Maarit Säynevirta, I n d e k s i t e o r i a  

j a  a n s i o t a s o i n d e k s i .  L o k a k u u

1 9 9 1 .  9 5  s .



1 8 6 .  Ari Tyrkkö, A h t a a s t i  a s u v a t .  

S y y s k u u  1 9 9 1 .  1 3 4  s .

187. Tuomo Martikainen -  Risto 
Yrjönen, V o t i n g ,  p a r t i e s  a n d  s o ­

c i a l  c h a n g e  i n  F i n l a n d .  O c t o b e r

1 9 9 1 .  1 0 8  p p .

1 8 8 .  Timo Kolu, T y ö e l ä m ä n  la a t u  

1 9 7 7 - 1 9 9 0 .  T y ö n  j a  h y v i n v o i n n i n  

k o e t t u j a  m u u t o k s i a .  T a m m i k u u

1 9 9 2 .  1 9 4  s .

1 8 9 .  Anna-Maija Lehto, T y ö e l ä m ä n  

la a t u  j a  t a s a - a r v o .  T a m m i k u u  

1 9 9 2 .  1 9 6  s .

1 9 0 .  Tuovi Alien -  Päivi Keinänen -  
Seppo Laaksonen -  Seija Ilma- 
kunnas, W a g e  f r o m  W o r k  a n d  

G e n d e r .  A  S t u d y  o n  W a g e  D i f f e ­

r e n t i a l s  i n  F i n l a n d  in  1 9 8 5 .  8 8  p p .

191. Kirsti Ahlqvist, K o d i n o m i s t a j a k s i  

v e l a l l a .  M a a l i s k u u  1992. 98 s .

1 9 2 .  Matti Simpanen -  Irja Blom­
qvist, A i k u i s k o u l u t u k s e e n  o s a l ­

l i s t u m i n e n .  A i k u i s k o u l u t u s t u t k i -  

m u s  1 9 9 0 .  T o u k o k u u  1 9 9 2 .  1 3 5  s .

193. Leena M. Kirjavainen -  Bistra 
Anachkova -  Seppo Laaksonen 
-  Iiris Niemi -  Hannu Pääkkö­
nen -  Zahari Staikov, H o u s e ­

w o r k  T i m e  i n  B u l g a r i a  a n d  F i n ­

la n d .  J u n e  1 9 9 2 .  1 3 1  p p .

1 9 4 .  Pekka Haapala -  Seppo Kouvo- 
nen, K u n t a s e k t o r i n  t y ö v o i m a k u s ­

t a n n u k s e t .  K e s ä k u u  1 9 9 2 .  7 0  s .

1 9 5 .  Pirkko Aulin-Ahmavaara, T h e
P r o d u c t i v i t y  o f  a  N a t i o n .  N o v e m ­

b e r  1 9 9 2 .  7 2  p p .

1 9 6 .  Tuula Melkas, V a l t i o n  j a  m a r k k i ­

n o i d e n  t u o l l a  p u o l e n .  J o u l u k u u  

1 9 9 2 .  1 5 0  s .

1 9 7 .  Fjalar Finnäs, F o r m a t i o n  o f  

u n i o n s  a n d  f a m i l i e s  i n  F i n n i s h  c o ­

h o r t s  b o r n  1 9 3 8 - 6 7 .  A p r i l  1 9 9 3 .  

5 8  p p .

198. Antti Siikanen -  Ari Tyrkkö,
K o t i  -  T a l o u s  -  A s u n t o m a r k k i n a t .  

K e s ä k u u  1 9 9 3 .  1 6 7  s .

1 9 9 .  Timo Matala, A s u m i s e n  t u k i  j a  

a r a v a v u o k r a l a i s e t .  K e s ä k u u  1 9 9 3 .  

8 4  s .

200. Arja Kinnunen, K u l u t t a j a h i n ­

t a i n d e k s i  1990=100. M e n e t e l m ä t  

j a  k ä y t ä n t ö .  E l o k u u  1993. 89 s .

2 0 1 .  Matti Simpanen, A i k u i s k o u l u t u s  

j a  t y ö e l ä m ä .  A i k u i s k o u l u t u s t u t k i -  

m u s  1 9 9 0 .  S y y s k u u  1 9 9 3 .  1 5 0  s .

2 0 2 .  Martti Puohiniemi, S u o m a l a i s t e n  

a r v o t  j a  t u l e v a i s u u s .  L o k a k u u

1 9 9 3 .  1 0 0  s .

203. Juha Kivinen -  Ari Mäkinen,
S u o m e n  e l i n t a r v i k e -  j a  m e t a l l i ­
t u o t e t e o l l i s u u d e n  r a k e n t e e n ,  k a n ­

n a t t a v u u d e n  j a  s u h d a n n e v a i h t e l u i ­

d e n  y h t e y s ;  e k o n o m e t r i n e n  a n a ­

l y y s i  v u o s i l t a  1 9 7 4  -  1 9 9 0 .  M a r ­

r a s k u u  1 9 9 3 .  9 2  s .

2 0 4 .  Juha Nurmela, K o t i t a l o u k s i e n  

e n e r g i a n  k o k o n a i s k u l u t u s  1 9 9 0 .  

M a r r a s k u u  1 9 9 3 .  1 0 8  s .

205a.Georg Luther, S u o m e n  t i l a s t o ­

t o i m e n  h i s t o r i a  v u o t e e n  1970. 
J o u l u k u u  1993. 382 s .

2 0 5 b .  Georg Luther, S t a t i s t i k e n s  h i s ­

t o r i a  i  F i n l a n d  t i l i  1 9 7 0 .  D e c e m b e r

1 9 9 3 .  3 8 0  s .

2 0 6 .  Riitta Harala -  Eva Hänninen- 
Salmelin -  Kaisa Kauppinen- 
Toropainen -  Päivi Keinänen -  
Tuulikki Petäjäniemi -  Sinikka 
Vanhala, N a i s e t  h u i p u l l a .  H u h t i ­

k u u  1 9 9 4 .  6 4  s .

2 0 7 .  Wangqiu Song, H e d o n i n e n  r e g ­

r e s s i o a n a l y y s i  k u l u t t a j a h i n t a i n d e k ­

s i s s ä .  H u h t i k u u  1 9 9 4 .  1 0 0  s .

208. Anne Koponen, T y ö o l o t  j a  a m -  

m a t t i l l i n e n  a i k u i s k o u l u t u s  1990. 
T o u k o k u u  1994. 118 s .

2 0 9 .  Fjalar Finnäs, L a n g u a g e  S h i f t s  

a n d  M i g r a t i o n .  M a y  1 9 9 4 .  3 7  p p .

210. Erkki Pahkinen -  Veijo Ritola,
S u h d a n n e k ä ä n n e  j a  t a l o u d e l l i s e t  

a i k a s a r j a t .  K e s ä k u u  1 9 9 4 .  2 0 0  s .



2 1 1 .  Riitta Harala -  Eva Hänninen- 
Salmelin -  Kaisa Kauppinen- 
Toropainen -  Päivi Keinänen -  
Tuulikki Petäjäniemi -  Sinikka 
Vanhala, W o m e n  a t  t h e  T o p .  J u l y

1 9 9 4 .  6 6  p p .

212. Olavi Lehtoranta, T e o l l i s u u d e n  
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