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Chapter 1

Basic concepts and principles

1.1 Introduction

Devices based on organic semiconductors exhibit great potential for future elec-
tronics. This includes sandwich-type thin-film devices such as diodes, solar cells,
photodetectors, and light-emitting diodes, but also other type of structures such
as field-effect transistors [1–3]. Currently, organic light-emitting diodes (OLED)
are commercially available. Another emerging organic diode application that is
receiving more and more attention is organic solar cells [4–6]. The commercial
solar cells on the market today are almost exclusively made of inorganic semi-
conductors, mainly crystalline silicon. The disadvantage of crystalline silicon
is the relatively expensive manufacturing process, requiring a large amount of
material. This issue may be overcome with flexible thin-film structures based
on organic semiconductors. The main advantage of organic semiconductors
is the potential for large-area production using cheap materials at low pro-
cessing temperatures [2]. Moreover, the properties of organic semiconductors
can be manipulated and fine-tuned by organic chemistry, with the promise of
environmental-friendly materials. A disadvantage of organic solar cells is their
low power conversion efficiencies (PCE), currently being at ≤ 11.5%; this is to
be compared to the 20-25% typically encountered in conventional p-n junction
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Chapter 1. Basic concepts and principles

solar cells based on silicon [7]. An emerging organic-inorganic hybrid thin-film
solar cell technology that has recently exceeded PCEs of 20% is perovskite so-
lar cells [8–10]. Currently, the main disadvantages of perovskite solar cells are
related to the stability and the hazardous materials used in the manufacturing
of the active components.

1.1.1 Thin-film diodes

A thin-film diode is composed of a thin (intrinsic) semiconductor layer, con-
stituting the active layer, sandwiched between two electrodes, referred to as
the anode and the cathode. A schematic picture is shown in Figure 1.1(a).
The charge conduction in the semiconductor is carried by negatively-charged
electrons in the conduction band and/or positively-charged holes (empty elec-
tron states) in the valence band. By applying an external voltage V to the
anode, relative to the cathode, a current of charge carriers will flow though the
diode, depending on the polarity of the voltage. The corresponding steady-
state current density J , in accordance with the equivalent-circuit-diode model,
is generally of the form

J = J0

[
exp

(
q [V − JRs]
ηidkT

)
− 1
]

+ V − JRs
Rsh

− JL, (1.1.1)

where J0 is the dark saturation current, ηid is the diode ideality factor, and
JL is the photoinduced current obtained by illuminating the diode by external
photons; q is the elementary charge, k is the Boltzmann constant, and T is the
temperature. Furthermore, Rs is the series resistance (in Ωm2) of the external
circuit (electrodes and the external wires) and Rsh is the shunt resistance (in
Ωm2) describing unintentional leakage currents going "around the device" via
parasitic conductive pathways within the layer [11]; in the ideal case, these
external non-idealities are negligible and Rs = 1/Rsh = 0. A schematic picture
of the equivalent circuit is given in Figure 1.1(b). The parameters J0, ηid, and
JL are determined by both material properties of the semiconductor and device

2



Chapter 1. Basic concepts and principles

Figure 1.1: (a) A schematic picture of a sandwich-type thin-film diode. The device is composed
of an active semiconductor layer, sandwiched between an anode and a cathode. The equivalent
circuit of the device is illustrated in (b), where JD(V ) is the current density component that
flows through the diode in the dark. (c) The current-voltage characteristics obtained by
applying a voltage V to the anode, relative to the cathode. The dashed and solid curve
corresponds to a diode in dark and under illumination, respectively; the Fill Factor (FF )
is determined by the ratio of the dark-shaded area relative to the overall shaded area. (d)
Example of two organic semiconductors: the polymer poly-(3-hexyltiophene) (P3HT) and the
fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM).

parameters, such as the active layer thickness d, and generally depend on the
applied voltage as well. In dark (JL = 0), the diode conducts current under
positive voltages (forward bias), whereas the current is suppressed at negative
voltages (reverse bias).

By illuminating the diode with an external photon source (of photons with
suitable energy), electrons may be promoted to the conduction band, leaving

3



Chapter 1. Basic concepts and principles

holes in the valence band; these photoinduced charge carriers give rise to the
additional current component JL flowing in the reverse direction of the diode.
Under these conditions, the diode operates as a photodetector. In case of sun
light, the photodetector becomes a solar cell. The current-voltage characteristics
(J-V curve) of a solar cell is depicted in Figure 1.1(c). The power conversion
efficiency is given by PCE = −J (Vm)Vm/Pin, where Pin is the incoming (areal)
sun power (of the standard AM 1.5 sun spectra) and Vm is the voltage at which
the output power P = −J (V )V is at its maximum. The key parameters to be
maximized for optimum PCE are the fill factor FF ≡ J (Vm)Vm/JscVoc, the
short-circuit current Jsc ≡ J (0), and the open-circuit voltage Voc ≡ V (J = 0).

1.1.2 Organic bulk heterojunction solar cells

In an organic thin-film diode, the active layer is composed of an organic semi-
conductor, typically a semiconducting polymer, a fullerene, or a small molecule.
In dark, the current conduction in the active layer is enabled by charge-carrier
injection from the electrode contacts. The properties of the contacts are cho-
sen so that the anode is hole-injecting and/or the cathode is electron-injecting.
In forward bias, holes (electrons) are then injected from the anode (cathode)
into the active layer, giving rise to the dark current. Examples of two com-
mon organic semiconductors that have been widely used in diode and solar cell
applications are shown in Figure 1.1(d).

The first organic solar cells were based on a single-semiconductor active layer
and exhibited poor power conversion efficiencies well below 1% [12]. Although
active layers of only a few hundred nm are needed to effectively absorb pho-
tons in most organic semiconductors, these types of organic solar cells are not
able to convert a sufficient amount of photoexcitations into free charge carri-
ers. As a photon of sufficient energy is absorbed, an electron is promoted to
an excited state leaving a hole behind in the ground state. The subsequent
electron-hole pair, commonly referred to as an exciton, is bound together by the
mutual coulomb attraction. In organic materials the screening of the electric

4
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field is weak (low dielectric constant), resulting in electron-hole pairs that are
strongly bound (� kT ). (This in contrast to inorganic semiconductors, where
excitons are weakly bound and dissociate spontaneously to free carriers.) Con-
sequently, following the excitation event, the charge-neutral exciton execute a
random walk within the organic layer during the excitation lifetime after which a
transition back to the ground state takes place [13]. This issue can be overcome
by adding a semiconductor with electron-accepting properties into the active
layer, as demonstrated by Tang [14].

Most organic solar cells today are based on blends of two different or-
ganic semiconductors: an electron-donating semiconductor (donor, D) and an
electron-accepting semiconductor (acceptor, A) [5]. The D:A blend forms an
interpenetrating network of separate donor and acceptor phases. This blend is
referred to as a bulk heterojunction (BHJ). When an exciton, commonly pho-
toexcited within the donor phase, reach a D-A interface, a charge transfer takes
place with the exciton ultimately dissociating into free carriers. In order to
harvest an optimal amount of excitons, the phase separation should roughly be
twice the exciton diffusion length. Following the charge transfer process (gen-
erally occurring via intermediate steps), the electron is located in the acceptor
phase and the hole is in the donor [5, 13]. The free electron (hole) is sub-
sequently transported within the acceptor (donor) phase towards the cathode
(anode). The electrons and holes that avoid charge-carrier recombination on
the way to the electrodes can finally be collected to the external circuit and
contribute to the photocurrent. This competition between charge-carrier col-
lection and recombination in organic solar cells is strongly dependent on the
charge transport properties of the active semiconductor layer.

1.2 Electronic processes in disordered materials

The charge transport properties of a solid is typically classified according to
its conductivity, determined by the density of free charge carriers and their
mobilities. At thermal equilibrium, the electron and hole density is given by
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n =
� ∞
−∞

g (E) f (E) dE, (1.2.1)

p =
� ∞
−∞

g (E) [1− f (E)] dE, (1.2.2)

respectively, where g(E) is the associated density of states (DOS) and f (E) is
the occupation probability given by the Fermi-Dirac distribution:

f (E) = 1
1 + exp

(
E−EF

kT

) , (1.2.3)

where EF is the Fermi level. At low carrier densities, when the Fermi level is
several kT below the (effective) conduction level edge and several kT above the
(effective) valence level edge, the Boltzmann approximation applies: f (E) ≈
exp ( [EF − E]/kT ) and 1−f (E) ≈ exp ( [E − EF ]/kT ) for electrons and holes,
respectively. This is referred to as the non-degenerate limit. The charge-carrier
mobility describes the proportionality between the velocity of carriers drifting
within the material and the electric field. Under the influence of an external
electric field F , the corresponding drift velocity is given by vdr = µ F , where µ
is the mobility of the carriers (electrons in conduction band or holes in valance
band). The mobility is strongly dependent on the electronic energy structure of
the material.

1.2.1 Inorganic semiconductors

Solid crystals based on inorganic semiconductors, such as Si, consist of an
ordered structure of covalently bound atoms. In this structure, the nearest-
neighbor distances between atoms are small enough for the wave functions of
the outer valence electrons to overlap. Due to the strong interaction, the atomic
valence energy levels form continuous bands of extended states, delocalized over
the entire crystal. The carrier transport occurs within the highest occupied en-
ergy band (valence band) and the lowest unoccupied band (conduction band).
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Figure 1.2: Schematic of the electronic structure in disordered inorganic semiconductors.
Within the band of extended states, electrons are delocalized and the conduction occurs by
band-like transport. In the band (mobility) gap, EV < E < EC , the states are localized and
the conduction takes place by hopping.

Electrons and holes introduced into the conduction band and valence band, re-
spectively, effectively behave as a gas of free carriers, executing random thermal
motion within the crystal. Under the influence of a small electric field, the car-
rier transport in the bulk is only limited by scattering with lattice vibrations
and impurities, and the carrier mobility can qualitatively be expressed as [15]

µ = q

m∗
τsc , (1.2.4)

where τsc is the effective carrier scattering time, and m∗ is the effective mass.
This type of conduction mechanism is referred to as band transport. Typical
values for the mobility are on the order of 100 cm2/Vs and larger. The density of
states within the conduction band is g (E) = 2NC [(E − EC) /kT ]1/2/ (

√
πkT )

for E > EC , and zero otherwise; here, EC is the conduction band edge and NC is
the effective density of states in the conduction band [15]. In the non-degenerate
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limit, the electron density in the conduction band is

n = NC exp
(
EF − EC

kT

)
. (1.2.5)

An analogous expression is valid for the hole density in the valence band, at
E < EV , where EV is the valence band edge.

In amorphous inorganic materials, the atomic structure is disordered, con-
sisting of a random network of covalently bound atoms. Although delocalized
extended states resembling energy bands are still present, owing to the disorder-
induced broadening of the energy levels, localized tail states are present within
the band gap [16]. In this case, EC corresponds to the mobility edge, which is
the energy level separating extended delocalized states in the conduction band
from localized tail states. A schematic picture is shown in Figure 1.2. The
density of localized tail states is typically characterized with an exponential dis-
tribution [16], gt (E) = [NCt/Ech] exp ( [E − EC ]/Ech) for E < EC , where Ech
is the characteristic energy and NCt is the density of tail states. For Ech > kT ,
the density of electrons in the tail states can be evaluated as [17]

nt = NCt exp
(
EF − EC
Ech

)
×
[

(πkT/Ech)
sin (πkT/Ech)

]
. (1.2.6)

The disordered structure reduces the free carrier mobility within the extended
band (compared to crystalline structures) and µ on the order of 10 cm2/Vs are
expected [17]. However, because of the tendency of the tail states to trap carri-
ers, the charge transport in amorphous semiconductors is sometimes presented
as a trapping-and-release type of conduction mechanism. These trapping and
release events effectively reduce the drift velocity, relative to pure band trans-
port, and the transport is described by a trap-controlled mobility.

In cases when the energetic disorder is large or the temperatures are low,
direct "trap-to-trap" transport between localized states starts to dominate the
current conduction [16]. This conduction mechanism is referred to as hopping
transport, consisting of a combination of thermally activated processes and tun-
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neling between localized states. The electron hopping rate from site i to j,
separated by a distance rij , is commonly described by the Miller-Abraham rate
[16]

νij = ν0 exp (−2γrij)×

exp
(
−∆Eij

kT

)
if ∆Eij ≥ 0,

1 if ∆Eij < 0,
(1.2.7)

where γ is the inverse localization radius, ∆Eij is the energy difference between
sites i and j, and ν0 is the attempt-to-escape frequency.

1.2.2 Organic semiconductors

Organic semiconductors are based on molecules and molecular segments that are
bound by alternating single and double bonds, so called π-conjugated bonds,
along which electrons are delocalized. The ground state of the delocalized elec-
trons is referred to as the highest occupied molecular orbital (HOMO) with the
first excited state being the lowest unoccupied molecular orbital (LUMO). A
schematic picture is shown in Figure 1.3. If the overlap (interaction) between
the frontier orbitals of nearest-neighbor segments is strong, narrow bands of
extended states will be formed; the band of HOMO levels corresponds to the
valence band, whereas the LUMO band corresponds to the conduction band
[18]. Provided that the band width W is larger than the energetic uncertainty
of the carriers, the carrier conduction is band-like with a mobility given by
µ ≈ (qτsc/kT ) < v2 >, where

√
< v2 > ∼ s/τsc and s is the mean free path;

this is only valid for µ > qa2W/~kT (∼ 1 cm2/Vs), where a is the lattice
constant [17, 19].

In films of semiconducting polymers and small molecules that are used for
diode and solar cell applications, however, energetic disorder effects dominate
over nearest-neighbor interactions. Consequently, the conjugation in these poly-
mers is typically only maintained to one or a few repeat units and the interaction
(between segments) is mediated by weak van der Waals forces. Because of the
weak electronic interaction between separate conjugated segments, the current

9
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Figure 1.3: Schematic picture of the electronic structures in organic semiconductors. (a)
The energy levels of a conjugated segment. (b) Along the conjugated chain, the (intra-
chain) transport is ideally taking place by band-like transport. (c) In disordered organic
semiconductors, the (inter-chain) transport takes place by hopping of charge carriers between
separate conjugated segments, bound to each other by weak van der Waals forces.

conduction is subsequently limited by hopping of charge carriers between the
conjugated units (Figure 1.3(c)). The energetic variation of the LUMO and
HOMO levels (between conjugated segments) is often approximated by a Gaus-
sian distribution with the energetic variance σ,

g (E) = N0√
2πσ2

exp
[
− (E − E0)2

2σ2

]
, (1.2.8)

where N0 is the total density of sites (conjugated segments) and E0 is the mean
value of the corresponding energy levels. The electron density for this type of
distribution of LUMO levels can in the non-degenerate (low-carrier) limit be

10
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expressed as [20]

n = N0 exp
(
EF − E0,LUMO + σ2

2kT
kT

)
= N0 exp

(
EF − Ec
kT

)
, (1.2.9)

where Ec = E0,LUMO − σ2/2kT may be interpreted as an effective conduction
level edge.

The hopping rate in disordered organic semiconductors is commonly de-
scribed by the Miller-Abraham rate (Eq. (1.2.7)) [16, 18]. The Miller-Abrahams
hopping rate, however, neglects polaronic effects. Adding/removing an electron
to/from a molecule or a conjugated segment will generally also induce an elec-
trostatic reorganization of the surrounding energetic environment, accompanied
by a relaxation of the energy levels (of the occupied unit) into the gap. To
account for the polaronic relaxation, the hopping rate can be characterized as
a Marcus charge transfer process:

νij = |Iij |
2

~

√
π

ErkT
exp

(
− [∆Eij + Er]2

4ErkT

)
, (1.2.10)

where Er is the reorganization energy and Iij describes the electronic coupling
between the sites.

1.3 The charge transport equations

From a macroscopic perspective, the electrical current in semiconductor devices
with planar structures (Figure 1.1(a)) can quite generally be characterized by
the following set of basic equations [15, 21–23]. In accordance with Maxwell’s
fundamental equations, we have the total (time-dependent) current equation

j (t) = Jc (x, t) + εε0
∂F (x, t)

∂t
, (1.3.1)

11
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where Jc (x, t) = Jp (x, t) +Jn (x, t) is the conduction current density composed
of the sum of the hole and electron current density, the charge carrier continuity
equations

∂n

∂t
= 1

q

dJn
dx

+Rn, (1.3.2)

∂p

∂t
= −1

q

dJp
dx

+Rp, (1.3.3)

where Rn and Rp are the respective net generation-recombination rates for
electrons and holes, and the Poisson equation

dF

dx
= 1
q

d2Ec,v
dx2 = ρsc

εε0
(1.3.4)

that relates the electric field F to the net charge density ρsc within the semicon-
ductor layer, with εε0 being the permittivity of the layer. Note that dj (t)/dx =
0 and the total current is independent of x.

1.3.1 The drift-diffusion equations

The individual electron and hole current densities are given by the drift-diffusion
equations:

Jn = µnn
dEc
dx

+ qDn
dn

dx
= µnn

dEFn
dx

, (1.3.5)

Jp = µpp
dEv
dx
− qDp

dp

dx
= µpp

dEFp
dx

, (1.3.6)

where EFn is the electron quasi-Fermi level, EFp is the hole quasi-Fermi level,
whereas Dn and Dp is the diffusion coefficient for electrons and holes, respec-
tively. The drift-diffusion equations (in some cases also referred to as the Nernst-
Planck equations) are very general and have been used to describe the charge
transport in a wide variety of systems, including the transport of electrons and
holes in semiconductor devices and the transport of ions in liquids and cell mem-
branes [15, 21, 24–26]. The drift-diffusion equations have also been successfully
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applied to organic devices [17], including diodes and solar cells [22, 27–31].
The mobilities and the diffusion coefficients are related via the generalized

Einstein relation,

Dn(p) =
µn(p)kT

q
ηn(p), (1.3.7)

where ηn(p) is a dimensionless quantity accounting for the DOS occupation
for electrons (holes) [32]; for electrons: ηn = [∂ (EFn − Ec)/∂n]n/kT . In non-
degenerate systems, the diffusion coefficient obeys the classical Einstein relation,
ηn = ηp = 1. Conversely, when DOS filling effects become important (degener-
ate limit), the generalized Einstein relation is typically used instead. However,
it has been pointed out that the definition of ηn and ηp in disordered materials
also depends on the definitions of free carriers and the mobility [33]. Under
low-voltage operation, the classical Einstein relation may be considered a good
approximation when describing the electrical behavior in organic diode devices
[34]. Unless otherwise stated, the classical Einstein relation is assumed in this
work as well.

For the device simulations, the above equations [Eqs. (1.3.1) to (1.3.7)] are
solved numerically using the well-established discretization and iteration scheme
by Scharfetter and Gummel [35, 36], as outlined in Refs. [23] and [37] (see also
Ref. [28]). Under non-degenerate conditions (ηn = ηp = 1), the general solution
of Eq. (1.3.5) and Eq. (1.3.6) for the electron and hole density, respectively,
takes the form

n = Nc exp
(
EFn − Ec

kT

)
, (1.3.8)

p = Nv exp
(
Ev − EFp

kT

)
, (1.3.9)

where Ec is the effective conduction level edge, Nc is the (effective) density of
electron transport states, Ev is the effective valence level edge, and Nv is the (ef-
fective) density of hole transport states. In case of a Gaussian distribution (Eq.
(1.2.8)), we have Ec = E0,LUMO−σ2

n/2kT and Ev = E0,HOMO+σ2
p/2kT , where
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σn and σp are the disorder parameters of the LUMO and HOMO distribution,
respectively.

1.3.2 Drift-diffusion and mobility from the viewpoint of hopping
transport

In disordered semiconductors where the carrier transport is governed by hop-
ping, the mobilities and diffusion coefficients are to be considered effective quan-
tities [22]. Figure 1.4 shows a schematic picture of the hopping transport. The
electron current between adjacent planes i and j, separated by a typical hopping
distance a, can be expressed as

Jn = qNjaWji − qNiaWij ≡ qµnF
Ni +Nj

2 + qDn
Nj −Ni

a
, (1.3.10)

where Wij is the hopping rate (averaged over the carrier density) from i to j,
and Ni and Nj are the average electron concentrations within the respective
planes [38]. Here, the mobility and the diffusion coefficient:

µn = a [Wji −Wij ]
F

, (1.3.11)

Dn = a2

2 [Wij +Wji] , (1.3.12)

respectively. At low electric field strengths (q |F | a < kT ) in particular is Eq.
(1.3.10) well approximated by Eq. (1.3.5), justifying the use of drift-diffusion in
this limit. The mobilities associated with hopping transport are generally very
low (µ� 1 cm2/Vs), typical values being on the order of 10−4cm2/Vs.

When the energetic disorder is small, the energy difference between two
consecutive sites under an applied electric field is given by q |F | a (see Figure
1.4). For a hopping rate given by Eq. (1.2.7), dominated by hops between
nearest neighbors, the drift velocity can then be approximated as vdr = vsat[1 −
exp (−q |F | a/kT )], where vsat = aν0 exp (−2γa). The mobility at low electric
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Figure 1.4: Schematic energy level diagram illustrating hopping transport under the influence
of an electric field F . The hopping distance between two sites is given by a.

field strengths |F | � 2kT/qa is subsequently given by [39]

µ = vdr
F

= qa2ν0

kT
exp (−2γa), (1.3.13)

for small σ. An analogous expression for the mobility can be found in case of a
Marcus charge transfer type hopping rate.1

The effect of a Gaussian distribution of energy levels on the mobility in a
hopping system was investigated by Bässler using Monte Carlo simulations [40].
The mobility was found to follow a temperature and field dependence of the
form lnµ ∝ −4σ2/9 (kT )2 + b (T )

√
F in the limit of low carrier concentrations,

where the temperature-dependent coefficient b (T ) also depends on the energetic
variance σ. This model is typically referred to as the Gaussian disorder model. A
wide variety of extensions and alternatives to this model have been suggested,
and in general the mobility also depends on the carrier density [16, 18, 31].
An extended Gaussian disorder model (EGDM), taking into account the DOS

1An analogous situation applies for hopping transport described by Marcus charge transfer
Eq. (1.2.10); the mobility is obtained as

µn =
qa2

kT

|Iij |2

~

√
π

ErkT
exp
(
−
Er

4kT

){ sinh (qFa/2kT )
(qFa/2kT )

exp
(
−
|qFa|2

4ErkT

)}
,

where the factor within the curly brackets {. . .} → 1 at low electric field strengths, when[
qFa/

√
6kT
]2
� 1.
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occupation c was presented by Pasveer et al. [41]. In the EGDM framework, the
zero-field mobility in the low carrier density limit (c→ 0) is well approximated
by

µ0 (T ) = qa2ν0

σ
c1 exp

(
−c2

[ σ
kT

]2)
, (1.3.14)

where c1 = 1.8 × 10−9 and c2 = 0.42 in case of uncorrelated Gaussian disor-
der. Here, the prefactor c1 ∼ exp (−2γa) describes the wave function overlap
between the states. At large electric field strengths |F | > σ/qa and/or high car-
rier densities, the mobility is enhanced as µ (T, F, c) = µ0 (T ) f1 (F, T ) f2(c, T )
where f1(F, T ) and f2(c, T ) are the enhancement factors due to non-zero electric
field and carrier density, respectively [41]. The onset for the carrier density de-
pendence (f2 (c, T ) > 1) occurs when the energetic difference between the DOS
center and the carrier quasi-Fermi level becomes smaller than σ2/kT [31]. In
the limit of very high electric field strengths, however, all jumps are "downhill"
and the drift velocity saturates to vsat = aν0 exp (−2γa), seen as a µ ∝ 1/F .

The Gaussian disorder model for the mobility neglects the initial relaxation
of the carriers. Electrons initially generated within an otherwise empty DOS
will relax downwards in energy. During the relaxation process, the carrier mo-
bility decreases with time until an equilibrium condition is established around
the electron mean energy σ2/kT below the DOS center (into the gap) [18]. The
initial relaxation is important during non-equilibrium photogeneration condi-
tions, where charges do not have time to relax before leaving the device [42,
43]. Under steady-state conditions, this would be seen as an effectively higher
device mobility that also depends on the active layer thickness [44].

1.3.3 Generation and recombination processes in the bulk

Apart from injection from the contacts, charge carriers can also be generated by
photoinduced and thermal excitations in the bulk. The reverse process of charge-
carrier generation is recombination. The excess energy created during this type
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of annihilation process can be released by radiative emission of photons (direct
recombination), and/or non-radiative emission via phonons (indirect). The net
generation-recombination rate of free electrons and holes is given by

Rn = GL −Rb −R−n +G−n −R+
n +G+

n , (1.3.15a)

Rp = GL −Rb −R−p +G−p −R+
p +G+

p , (1.3.15b)

respectively, where GL is the photogeneration rate of free electron-hole pairs and
Rb is the net recombination rate for bimolecular recombination. Moreover, R−n
(R+

p ) is the capture rate of electrons (holes) into traps, G−n (G+
p ) is the escape

rate of electrons (holes) from the traps (back into the transport levels), G−p
(G+

n ) is the trap-assisted generation rate of free holes (electrons), and R−p (R+
n )

is the recombination rate between free holes (electrons) with trapped electrons
(holes). In this context, traps are defined as localized states within the gap that
do not participate in the charge transport process. By detailed balance, Eq.
(1.3.15) generally takes the form Rn = Rp = GL −R, where

R = βR
[
np− n2

i

]
(1.3.16)

is the net bulk recombination rate; here, n2
i = NcNv exp (−Eg/kT ), where

Eg = Ec −Ev is the effective electrical bandgap. The recombination coefficient
βR = βR (n, p), which in general also depends on the carrier densities, is deter-
mined by the dominating recombination mechanism.

Bimolecular recombination

The direct recombination between a free electron and a free hole is a bimolecular
process. The net bimolecular recombination rate between electrons and holes is
given by

Rb = β
[
np− n2

i

]
, (1.3.17)
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where β is the associated bimolecular recombination coefficient. In Eq. (1.3.17),
the term βn2

i is the recombination rate at thermal equilibrium and equals the
thermal generation rate of free carriers. In homogenous low-mobility materials,
the probability for a free electron and a free hole to find each other is determined
by the drift time in their mutual Coulomb potential. The requirements for this
type of encounter mechanism to occur is that the carrier mean free path (or
hopping distance) a is much smaller than the Coulomb capture radius rc, where

rc = q2

4πεε0kT
. (1.3.18)

If the recombination is encounter-limited, the bimolecular recombination pro-
cess is then characterized by Langevin recombination [45], with the bimolecular
recombination coefficient given by2

βL = q

εε0
(µn + µp) , (1.3.19)

being only dependent on the mobilities and the dielectric properties of the
medium.

In organic BHJ solar cells, however, electrons and holes are restricted to
different phases and the recombination mostly occur at organic interfaces; see

2The drift velocity of the j:th positively-charged hole, relative to a negatively-charged
electron, is given by

~vj = (µn + µp)
[
~F −

q~rj

4πεε0 |~rj |3

]
,

where ~rj is the distance vector between the two carriers and the external field ~F is constant.
The volume element spanned, in time dt, is given by ~vjdt · d~σj , where d~σj is the normal area
element. Assuming that the number Ne of electrons is larger than Nh of holes, the largest
possible number of volume elements is then Ne. The number of recombination events (i.e.
the number of elements that contain a hole) is then equal to the product between the total
volume spanned and the hole density p [45]:

dNh = dNe = p dt
∑�

~vj · d~σj = −pdt
∑ q (µn + µp)

εε0
= −βLNep dt,

where Gauss theorem was used. Hence, in terms of carrier densities: dp/dt = dn/dt = −βLnp.
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Figure 1.5. In effect, this means that the bimolecular coefficient β for charge
encounter is reduced relative to the Langevin coefficient (Eq. (1.3.19)) [46, 47].
Koster et al. suggested that the recombination rate under these circumstances
is limited by the mobility of the slower carrier, so that β = qmin (µn, µp)/εε0

[48]. A recent theoretical study found that the impact of the slower mobility
indeed increases as the phase domains become larger, whereas the Langevin
model is approached in the limit of small phase separations (< 5 nm) [49]. At
intermediate phase separations (∼ 10-35 nm) the mobility dependence of the
recombination coefficient was, on the other hand, better approximated by the
geometric mean between the electron and hole mobilities (β ∝ √µnµp) [46,
49]. It should be noted, however, that the charge-carrier recombination in most
materials is not encounter-limited and generally takes place via intermediate
states.

Figure 1.5: Encounter-limited bimolecular recombination between electrons and holes in low-
mobility materials. In homogenous materials (to the left) the recombination coefficient for
charge encounter is represented by Langevin recombination, dominated by the mobility of the
faster carrier. The situation is different in blend structures (to the right), where electrons
and holes are restricted to acceptor (A) and donor (D) phases, respectively. In this case,
the recombination coefficient for charge encounter is reduced (relative to Langevin) and the
impact of the slower mobility enhanced.
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Recombination via intermediate states

The charge-carrier recombination mechanism in the bulk is, in general, a multi-
step process [50]. Once an electron and a hole has encountered each other they
may combine into a charge-encounter complex, also referred to as a charge-
transfer (CT) state [22]. The complex then either recombines with a rate-
coefficient kf to the ground state or dissociates back into free carriers with a
rate-coefficient kd [28, 51, 52] A simplified schematic picture of this process is
shown in Figure 1.6. Accordingly, the density of charge-encounter complexes X
is related to the generation and recombination rates of free carriers by

∂ X

∂ t
= G0 +Rb − kdX − kfX, (1.3.20)

Rn,p = GL −R = G∗ + kdX −Rb, (1.3.21)

where G0 is the generation rate of (relaxed) CT states from excitons. Here,
we also included the rate G∗ for free carriers to be generated "directly" from
(hot) excitons (possibly via highly excited CT states) [53]. At steady-state
(∂X/∂t = 0), the net generation and recombination rates of free carriers may
then be expressed as GL = G∗ + PG0 and R = (1− P )Rb, with

P = kd
kf + kd

(1.3.22)

being the probability for the charge-transfer state to dissociate into free charge
carriers. Taking this effect into account, the reduced recombination coefficient
between free carriers becomes

βR = (1− P )β, (1.3.23)

where β is the bimolecular rate coefficient for electrons and holes to find each
other in space to form a charge-transfer state, while the factor (1− P ) deter-
mines the probability for the complex to ultimately recombine (i.e. make a
transition to the ground state) once it has been formed.
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Figure 1.6: A simplified energetic structure diagram representing generation and recombina-
tion of free carriers taking place via intermediate charge transfer (CT) states.

The dissociation probability P has traditionally been characterized as an
electric-field-enhanced process in accordance with the Onsager-Braun model
[54, 55]. This model, which assumes a homogenous (Langevin) material, has
been well reproduced in organic single-layers. At F = 0, the dissociation co-
efficient takes the form kd = βLN

∗ exp (−∆ECT /kT ),3 where ∆ECT is the
binding energy of the electron-hole pair. For kd � kf , one then finds βR =
β0 exp (∆ECT /kT ), where β0 depends on kf and N∗. In a blend, however, also
the relative field orientation and the energetic landscape at the D-A interface
need to be taken into account. It has also been suggested that gradients in the
density of available states (N∗) at the interfaces might play a role [56, 57], with
the resulting additional gradient in free energy constituting an entropic driving
force for the dissociation [11]. It should be stressed that the complete recombina-
tion mechanism in BHJ solar cells is still under debate [22], and experimentally

3In accordance with the Onsager-Braun model, the dissociation rate-coefficient reads [55]

kd (0) = βLN
∗ exp

(
−

∆EB
kT

)
,
kd (F )
kd (0)

=
J1
(√
−8b
)

√
−2b

= 1 + b+
b2

3
+
b3

18
+ . . . ,

where ∆ECT = q2/4πεε0r0, N∗ = 3/4πr3
0 , b = q |F | rc/2kT , and r0 is the initial electron-hole

separation.
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obtained βR = ζβL generally exhibit ζ ranging between 1 to 10−3 [50, 58–60].
Recent work by Benduhn et al. on a large number of organic blend structures
suggests that the recombination coefficient kf for CT states, and therefore also
the overall bimolecular recombination coefficient, is dominated by intrinsic non-
radiative processes mediated by intramolecular carbon-carbon vibrations [61].

Trap-assisted recombination of carriers via traps

The recombination of free carriers can also take place through traps within the
bandgap. Electron traps are traps that are negatively-charged when occupied
by an electron and neutral when empty (occupied by a hole), referred to as
acceptor-like. Conversely, hole traps are donor-like, being neutral when occupied
with an electron and positively-charged when occupied by a hole (i.e. when
empty). If the recombination predominately occurs via acceptor-like traps, the
net recombination rate between electrons and holes becomes [21,62,63]

R−SRH = R−n −G−n = R−p −G−p = β−SRH
[
np− n2

i

]
, (1.3.24)

in accordance with Shockley-Read-Hall (SRH) statistics. Here, the effective
coefficient β−SRH depends on the carrier density as

β−SRH =
∑
j

CnCpN
−
tj

Cn (n+ n1,j) + Cp (p+ p1,j)
, (1.3.25)

where N−tj is the trap density at energy E−tj , n1,j = Nc exp
( [
E−tj − Ec

]
/kT

)
,

p1,j = Nv exp
( [
Ev − E−tj

]
/kT

)
, Cn is the capture (trapping) coefficient of elec-

trons from the conduction level into traps, and Cp is the recombination coef-
ficient between trapped electrons and free holes. In accordance with Langevin
recombination, one expects Cp = qµp/εε0 [64]. When this type of SRH re-
combination mechanism is dominating, we have βR = β−SRH . Analogous ex-
pressions are valid for the recombination taking place via donor-like hole traps:
R+
SRH = β+

SRH

[
np− n2

i

]
.
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Figure 1.7(a) shows a schematic picture of trap-assisted recombination tak-
ing place via acceptor-like traps. For monoenergetic traps of density Nt at the
energy level Et, the following scenarios may arise. In case of deep midgap trap
levels (EFn > Et > EFp), a situation where the traps are predominantly acting
as recombination centers prevails and the recombination rate is monomolecular,
R−SRH ∝ n (since β−SRH ≈ CnCpNt/ [Cn + Cp]n for p ≈ n). Conversely, if the
traps are shallow (Et < EFn), corresponding to n1 � n, p, the trap-assisted re-
combination rate is effectively bimolecular with β−SRH = CpNt/n1. Under these
circumstances, the effect of the traps is mainly to capture and release electrons,
effectively slowing down the transport of electrons in the conduction level.

Figure 1.7: (a) Schematic energy level diagram illustrating trap-assisted recombination via
acceptor-like traps within the gap. In (b), three different types of acceptor-like traps are
depicted: shallow traps situated close to the conduction level, deep traps within the gap, and
levels that are deep enough to directly accept an electron from the valence level (i.e. p-dopant
levels).

1.3.4 Space charge

In the presence of electrode contacts, a net charge can be established within
the active layer. The charge may originate from photogeneration, doping or
injection from the contacts. However, on a global scale charge neutrality applies.
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This means that the net charge per unit area inside the active layer, defined by

Qs =
� d

0
ρsc (x)dx, (1.3.26)

is exactly balanced by an equal but opposite charge stored on the electrodes,
where d is the thickness of the active layer. From Eq. (1.3.4), one obtains:
Qan + Qcat − Qs = 0, where Qan = εε0F (0) and Qcat = −εε0F (d) is the
charge per unit area (immediately outside the surface) in the anode and cathode,
respectively. In this respect, the device behaves as a parallel plate capacitor with
the geometric capacitance (per unit area) Cgeo = εε0/d.

Apart from free charge carriers, also trapped charges contribute to the total
space charge within the layer, and thus affect the local electric field in accordance
with Eq. (1.3.4). The net space-charge density inside the active layer is given
by

ρsc = q [p− n] + q
∑
j

[ptj − ntj ] , (1.3.27)

where ntj and ptj is the density of trapped electrons and holes, respectively, at
the energy level Etj . The trap occupation is commonly described by Shockley-
Hall-Read statistics [21]. At steady-state conditions, the density of trapped
electrons in acceptor-like trap levels is4

ntj =
N−tj (Cnn+ Cpp1j)

Cn (n+ n1j) + Cp (p+ p1j)
. (1.3.28)

In the absence of holes (p = p1j = 0), the trapped electron occupation is well
approximated by Fermi-Dirac statistics, with the quasi-Fermi level being the

4The kinetics of the density of electrons at a monoenergetic acceptor-type trap level can
be described by

dnt

dt
= R−n −G−n +G−p −R−p = Cnn

[
N−t − nt

]
−C′nNcnt +C′pNv

[
N−t − nt

]
−Cpntp,

where n� Nc and p� Nv have been assumed. Here, C′p = Cp exp ([Et − Ev ] /kT ) and C′n =
Cn exp ([Ec − Et] /kT ), noting that Fermi-Dirac statistics must apply at thermal equilibrium.
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same for trapped and mobile electrons. A schematic picture of acceptor-like
trap levels with different trap depths is shown in Figure 1.7(b).

A situation of special interest arise when acceptor-like impurities, with electron-
accepting energy levels (e.g. the LUMO of the impurity molecule) that are close
to (or beyond) the valence level, are introduced into the semiconductor layer. In
this case (p1 � n, n1), the acceptor level accepts an electron directly from the
valence level, creating a free hole in the active layer. This is a mechanism re-
sponsible for p-type doping [65]. The density of electrons occupying the acceptor
level is given by nt ≈ N−t / (1 + p/p1) = Np, being equal to the density of ionized
dopants Np [66]. The net space-charge density is then ρsc = q [p (x)−Np]. In
the absence of an electric field, it then follows from Eq. (1.3.4) that p = Np. An
analogous situation applies for donor-like impurities, resulting in n-type doping.

1.4 The motivation and scope

In thin-film diodes based on organic semiconductors, the conductivity of the
active layer is in general limiting the current, in contrast to conventional p-n
junctions. In order to describe the device physics of organic solar cells, a deeper
physical understanding of the processes taking place is needed. The charge
collection in organic solar cells is generally analyzed from the perspective that
charge transport competes with bulk recombination. However, these models
generally assume surface recombination at the electrodes to be negligible and
do not account for contact effects. The charge collection in these devices are
also sensitive to unintentional doping giving rise to doping-induced space-charge
regions within the active layer, generally degrading the performance. To be able
to further improve and optimize the charge collection in these devices, it is es-
sential to be able to identify and understand these loss mechanisms. The aim of
this thesis is to clarify the charge collection in thin-film devices based on low-
mobility semiconductors. In particular the interplay between charge transport,
recombination and extraction at the contacts is investigated by means of analyt-
ical derivations and numerical simulations. Furthermore, analytical methods to
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distinguish and quantify relevant parameters related to these loss mechanisms
are presented. Special emphasis is devoted to the role of the contacts and how
these impact charge extraction in organic solar cells, based on optically thin
active layers.

In Chapter 2, we start by reviewing and discussing the underlying theory
regarding the charge transport processes taking place at the contacts and within
devices. This discussion follows the established general current theory for trans-
port processes at metal-semiconductor contacts, however, from the perspective
of thin-film devices based on low-mobility semiconductors thus providing new
insights into the charge-carrier collection in these devices.

In Chapter 3, we begin by briefly reviewing the basic theory behind the
charge extraction by linearly increasing voltage pulse (CELIV) method, which
has frequently been used to extract the charge-carrier mobility in organic solar
cells. Afterwards, the theory of CELIV is extended to account for effects of
the contacts, these being of particular importance in thin-film devices. Apart
from providing corrections to the mobility determination, we also show how the
extended theory can be used to quantify other parameters such as the built-in
voltage, the doping concentration, and the surface recombination velocity at
the contacts, which are relevant for understanding charge collection in organic
semiconductor devices.

In Chapter 4, the charge collection in organic solar cells is discussed. The
competition between charge-carrier extraction and recombination, the impact
of surface recombination and charge-carrier selectivity at the contacts, and the
influence of space-charge regions within the active layer is investigated from
a theoretical point of view. Based on the results, new tools and methods to
distinguish, identify and quantify loss mechanisms related to charge-carrier col-
lection in organic solar cells are presented. To conclude, some of the devel-
oped analytical tools and methods are experimentally demonstrated on inverted
P3HT:PCBM BHJ solar cells employing TiO2 as the electron-selective electrode
interlayer.
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Current injection and collection in
thin-film devices

In order to collect charges in thin-film devices, contacts between the semiconduc-
tor layer and the electrodes are needed. Different applications generally require
different contact properties. If the current in the dark is solely conducted by
holes in the active layer, the transport is unipolar and the device is referred
to as hole-only. A hole-only diode is realized by choosing the properties of the
contacts in such a way that the anode is hole-injecting, whereas the cathode is
non-injecting (for both carrier types). In forward bias, holes are then injected
from the anode into the active layer, transported through the semiconductor
and eventually collected at the cathode. Reversely, an electron-only diode is
realized by instead choosing an electron-injecting cathode and a non-injecting
anode. If the anode is hole-injecting anode and the cathode electron-injecting,
a bipolar (or double-carrier) device is obtained. In this section, the basic theory
behind current injection and collection in sandwich-type thin-film devices based
on low-mobility semiconductors is discussed.
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2.1 Sandwich-type thin-film structures

The sandwich-type device structure generally has an electrode-semiconductor-
electrode configuration with electrodes (or conducting layers) of different work
functions. The work function is defined by the energy difference between the
Fermi level and the vacuum level. The electrode with the larger work function
constitutes the anode, while the electrode with the lower work function is the
cathode. At thermal equilibrium, the Fermi levels are the same and constant
throughout the device. The effect of applying an external voltage V to the
anode, with respect to the cathode, is to displace the anode Fermi level relative
to the cathode Fermi level,

qV = EF,cat − EF,an. (2.1.1)

This will disrupt the thermal equilibrium condition, often resulting in a flow of
a net current. The applied voltage is related to the local electric field F inside
the active layer via

V − Vbi =
� d

0
Fdx, (2.1.2)

where Vbi is the built-in voltage across the active layer and given by the difference
between the electrode work functions:

Vbi,0 ≡
1
q

[Φan − Φcat] , (2.1.3)

where Φan and Φcat is the work function at the anode and the cathode contact,
respectively.

2.1.1 Metal-semiconductor interfaces

When a contact between a semiconductor and an electrode is formed, some
transfer of charge will always be present. Consider a contact between a metal
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Figure 2.1: Schematic energy level diagram of an electrode-semiconductor system before con-
tact and at thermal equilibrium after contact. To establish equilibrium, charge transfer be-
tween the electrode and the semiconductor occurs, to equilibrate the Fermi level in the semi-
conductor. If this net charge transfer is large enough, energy-level bending will occur at the
contact.

electrode and a semiconductor (of infinite layer thickness). The work function
of the metal is given by Φel, while ΦS is the work function of the semiconductor.
For an intrinsic semiconductor, the Fermi level is originally close to the middle
of the bandgap. The energy difference between the valence level edge and the
Fermi level at the metal will constitute a barrier for hole injection from the
metal into the semiconductor. The hole-injection barrier is given by

ϕp,el = χp − Φel, (2.1.4)

where χp corresponds to the ionization potential, describing the difference be-
tween the valence level edge and the vacuum level. A corresponding injection
barrier can be defined for electrons,

ϕn,el = Φel − χn, (2.1.5)

given by the difference between the Fermi level at the metal electrode and
the conduction level edge of the semiconductor. Here, χn corresponds to the
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electron affinity given by the difference between the conduction level edge and
the vacuum level.

Upon intimate contact, charge transfer of electrons and holes, driven by the
Fermi level difference between the two solids, will occur between the electrode
and the semiconductor to establish thermal equilibrium. Thermal equilibrium
is established when the Fermi level in the semiconductor is aligned with the
Fermi level of the electrode and the system possess a common spatially constant
Fermi level. A schematic picture is shown in Figure 2.1. The equilibrium carrier
density in the semiconductor at the contact is then given by

nel = Nc exp
(
−ϕn,el
kT

)
, (2.1.6)

pel = Nv exp
(
−ϕp,el
kT

)
, (2.1.7)

for electrons and holes, respectively. For the case Φel < ΦS , there will be a
surplus of electrons and a deficit of holes in the semiconductor. The situation is
reversed when Φel > ΦS . If the net charge transfer is large enough, the Fermi
level alignment is also accompanied with an energy-level bending within the
semiconductor (close to the contact); see Figure 2.1.

In general, when a metal-semiconductor interface is formed, depending on
the quality of the metal and semiconductor surfaces, there might also be impurity-
induced, interface-induced, and/or relaxed states present within the gap at the
interface [67–70]. In effect, this means that the work function at the contact is
strongly dependent on interface properties, such as the density and the energetic
position of gap states. Conversely, the work function at the contact can also be
modified by permanent dipole moments (e.g. using self-assembled mono-layers),
or by using doped interlayers.

2.1.2 The metal-insulator-metal (MIM) concept

When an intrinsic semiconductor layer is sandwiched between two electrodes a
different situation arises. Since the carrier density within the intrinsic semicon-
ductor is inherently very low, these types of thin-film devices essentially behave
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as metal-insulator-metal (MIM) structures.
Upon contact, electrons are transferred from the low-work function cathode

to the high-work function anode, until the electrode Fermi levels are equal. This
results in net negative and positive charge at the anode and cathode surface,
respectively, inducing a built-in electric field in the active layer [19, 71]. If the
space charge injected into the active layer from the contacts is negligible, the
electric field F in the active layer is uniform. These types of contacts are gen-
erally referred to as neutral (or non-ohmic) contacts. A schematic picture of
the energy level diagrams of a MIM device with neutral contacts is depicted in
Figure 2.2. At thermal equilibrium (EF = const.), the carrier density vary ex-
ponentially with x inside the active layer: p (x) = pan exp (qFx/kT ). Provided
that space-charge effects remain negligible under the application of an external
voltage (low voltages), the electric field is then given by

F = V − Vbi
d

. (2.1.8)

The corresponding potential energy (energy levels), relative to the Fermi level
at the cathode, drops linearly across the semiconductor layer as

Ev (x)− EF,cat = q (V − Vbi)
[
x− d
d

]
− ϕp,cat, (2.1.9)

where ϕp,cat is the hole-injection barrier at the cathode.

2.1.3 Ohmic contacts

To ensure efficient charge injection or collection at least one of the contacts
needs to be ohmic. A contact is said to be ohmic for holes (electrons) when
the hole (electron) current is not limited by this contact. This corresponds to a
contact whose resistance or impedance is negligibly small compared to the (rest
of) bulk. In practice, a contact becomes ohmic for holes (electrons), when the
hole (electron) density at the contact is much larger than within the bulk [15,
19]. This can be achieved by choosing a metal that forms a negligibly small

31



Chapter 2. Current injection and collection in thin-film devices

Figure 2.2: Schematic energy level diagrams of a metal-insulator-metal (MIM) device with
neutral contacts, which assume that the injected space charge within the active layer (insu-
lator) is negligible: (a) before contact, (b) at thermal equilibrium after contact (V = 0), and
(c) at an applied positive voltage V > 0. The energy level diagram in (a) is the same as the
one obtained by applying a voltage V = Vbi = Vbi,0, referred to as flat-band conditions.

injection barrier with the semiconductor or by heavily doping the region of the
semiconductor layer close to the metal.

Asymmetric contacts with an injecting contact at the anode

When the injection barrier for holes is small at the anode, the amount of carriers
originating from the anode can be large enough to cause energy-level bending
in the vicinity of the contact in the active layer. The subsequent energy-level
bending, determined by the Poisson equation, obeys

d2Ev (x)
dx2 = q2p (x)

εε0
, (2.1.10)

under hole-dominating conditions. In general, at large carrier concentrations,
the shape of the DOS becomes important (degenerate regime) [70, 72, 73]. For
a Gaussian DOS, the hole density at thermal equilibrium is given by
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Figure 2.3: (a) Energy level diagram of thin-film device having an Ohmic contact for holes at
the anode and a large barrier at the cathode. The device can be treated as a MIM device with
an effective injection barrier b at the anode. In (b) the same device is simulated for different
injection barriers at the cathode. A Gaussian distribution (Eq. (2.1.11)) with σ = 3kT and
N0 = 1021 cm−3 is assumed. The Fermi level of the anode is taken to coincide with the DOS
center E0,HOMO at the anode contact (x = 0).

p (x) = N0√
2πσ2

� ∞
−∞

exp
(
− [E0,HOMO(x)−E]2

2σ2

)
1 + exp

(
[EF−E]
kT

) dE, (2.1.11)

where σ is the Gaussian disorder parameter and E0,HOMO is the center of the
HOMO DOS.

At small energetic disorder σ, however, the Boltzmann approximation may
be used, and Eq. (2.1.11) can be simplified and re-expressed as Ev (x)−Ev (0) =
kT ln [p (0)/p (x)], where Ev = E0,HOMO + σ2/2kT . Then, if the anode is hole-
injecting, while the cathode contact is neutral (p (0) � p (d)), the hole density
within the active layer can be obtained as [74]

p (x) = 2B2n0

sinh2
(
Bx
d + sinh−1

[
B
√

2n0
p(0)

]) , (2.1.12)
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where n0 ≡ εε0kT/q
2d2 andB = sinh−1

[
B
√

2n0/p (d)
]
−sinh−1

[
B
√

2n0/p (0)
]

as determined from the boundary conditions at the contacts.5 Provided that
the hole density p (0) at the anode is large enough for energy-level bending to
occur, Eq. (2.1.12) reduces to p (x) ≈ p (0)/ [1 + x/λan]2 for x close to the an-
ode, where λan =

√
2εε0kT/q

2p (0) is a characteristic screening length for holes
at the anode.

In Figure 2.3(a), the energy level diagrams are shown at moderate σ for
conditions when the contact at the anode may be regarded as ohmic for holes.
With the exception of the band bending near the injecting contact, the energy
levels are linear, in accordance with the MIM picture (see Figure 2.2). Within
the band-bending region, extending a few nm into the active layer, the carrier
density is generally much higher than in the rest of the bulk. This (thin) accu-
mulation region is acting as a virtual (extended) anode contact with an effective
hole-injection barrier b. Under low-voltage operation, the device subsequently
behaves as a MIM diode but with a reduced built-in voltage [30]

qVbi = qVbi,0 − b, (2.1.13)

where b is the magnitude of energy-level bending within the hole accumulation
region. The effect of increasing the disorder parameter σ is mainly to change b.

Two hole-injecting contacts

In the case when both contacts are hole-injecting, we arrive at a situation where
the hole densities are larger at the contacts than within the active layer. In this

5Assume Ev (x) − Ev (0) = kT ln [p (0)/p (x)]. Then, after multiplying both sides with
dEv (x)/dx and integrating, Eq. (2.1.10) can be rewritten as[

dEv (x)
dx

]2
=
(2kT
λan

)2
exp
(
Ev (x)− Ev (0)

kT

)
±
(2kTB

d

)2
,

where the last term to the right is an integration constant to be determined from the boundary
conditions at the contacts. The (+) and the (−) sign corresponds to the case with p(x) > p(d)
(non-injecting cathode) and p(x) < p(d) (injecting cathode), respectively, for x < d. By
separating this equation and integrating, Ev (x) can be obtained.
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case, a considerable energy-level bending extending well within the active layer
is present at both contacts, with the electric field changing its sign inside the
active layer. The situation is depicted in Figure 2.3(b). In the non-degenerate
limit (low disorder), the corresponding hole density under equilibrium conditions
(constant Fermi level) is given by [74]

p (x) = 2B2n0

cos2
(
Bx
d − arccos

[
B
√

2n0
p(0)

]) , (2.1.14)

where B = arccos
[
B
√

2n0/p (0)
]
+arccos

[
B
√

2n0/p (d)
]
.5 When the hole den-

sities at both contacts are much larger than 2π2n0, one finds B → π. In this
case, the hole density within the region close to the cathode can be approxi-
mated as p (x) ≈ p (d)/ [1 + (d− x)/λcat]2, with λcat =

√
2εε0kT/q

2p (d) being
the associated screening length for carriers accumulated at the cathode.

2.1.4 The image charge effect

At large injection barriers, on the other hand, the carrier density close to the con-
tact might become very small. If the average distance between carriers inside the
active layer is much larger than the relevant device dimensions, single-particle
effects need to be taken into account [75]. From a single-particle perspective,
an injected charge carrier within the semiconductor will induce an oppositely-
charged image in the metal. The corresponding electrostatic potential energy
qψ (x) = EF,cat − Ev (x) (relative to the Fermi level of the electrode) between
the positively-charged hole q within the active layer and its negatively-charged
image −q′ in the cathode is given by [15]

qψ (x) = ϕp,cat −
qq′

16πεε0 [d− x] − qF [x− d] , (2.1.15)

where F is the external electric field. When F < 0, the image charge potential
Eq. (2.1.15) will effectively reduce the injection barrier for holes at the cathode
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by

∆ϕ = q

√
q′F

4πεε0
. (2.1.16)

In case of a metal cathode, we have q′ = q. However, if another dielectric
medium (e.g. another semiconductor) with a dielectric constant of εc is used as
cathode (interlayer), the magnitude of the image charge is reduced as: q′/q =
(εc − ε)/(εc + ε) [76–78]. Image charge effects are important near contacts that
have large injection barriers at which the carrier densities are low (single-particle
approximation) [75]. In contrast, for contacts with low injection barriers, where
the density at the contact becomes significant, the image charges tend to be
screened (effective medium) and can be neglected.

2.2 Charge-transfer mechanisms at
electrode-semiconductor contacts

Charge-carrier injection and collection at contacts between electrode and active
semiconductor layers is a crucial part of the operation of sandwich-type thin-
film devices. Many applications also require contacts that are blocking in terms
of carrier injection and/or extraction. This may be realized by tuning the ener-
getics at the contacts or by covering the conductive layer with a wide-bandgap
insulator or a charge-selective electrode interlayer. In the following, charge-
transfer mechanisms taking place between an electrode and a semiconductor
are discussed.

2.2.1 Thermionic emission and the concept of surface
recombination at contacts

In the case when an injection barrier is present between the electrode and the
semiconductor, carriers that are to be injected from the electrode into the semi-
conductor have to traverse this energetic barrier. During ideal conditions, the
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particle current flowing from the electrode to the semiconductor is usually de-
scribed in terms of a thermally activated process referred to as thermionic emis-
sion. This is analogous to the emission of (hot) electrons from a metal into
(the state continuum of) vacuum at free metal surfaces [79]. For a given (ef-
fective) injection barrier between the electrode and the semiconductor, the cur-
rent of electrons flowing into the conduction band of the semiconductor due to
thermionic emission is given by [15]

Jm→s = −A∗thT 2 [1−Q] exp
(
−ϕn,el
kT

)
, (2.2.1)

where A∗th = qk2m∗/2π2~3 is the effective Richardson coefficient and Q is a
reflection factor. Eq. (2.2.1) assumes that the carriers are emitted into the
semiconductor from the metal in accordance with a Maxwell-Boltzmann velocity
distribution (free electron gas), implying that the carrier conduction in the
semiconductor (or the region close to the contact) takes place by band transport.

On the other hand, the collection current of electrons flowing from the semi-
conductor into the electrode is typically presented as an effective surface re-
combination process at the contact, Js→m = qSRn, where SR is the collec-
tion (or recombination) velocity at the surface. At thermal equilibrium, the
macroscopic current is zero, implying that Jm→s = −qSRnel, where nel =
Nc exp (−ϕn,el/kT ) is the equilibrium hole density at the electrode contact [15,
80]. Subsequently, the net surface recombination current at the contact can be
expressed as

J = qSR [n− nel] , (2.2.2)

with the associated surface recombination velocity being equal to

SR = A∗thT
2

qNc
[1−Q] . (2.2.3)

For an ideal metal-semiconductor interface Q→ 0, the upper limit of SR is given
by the average thermal velocity (in the x-direction) [15]. For free electrons, this

37



Chapter 2. Current injection and collection in thin-film devices

corresponds to SR = 2.7× 106 cm/s at T = 300 K.

2.2.2 Interpretation of the surface recombination velocity at
contacts in hopping systems

The thermionic injection of carriers into hopping systems has been investigated
by Gartstein and Conwell and others [81–87]. In these studies, the charge trans-
fer rate is described in terms of hopping transport, taking both the energetic
disorder and the barrier-lowering effect due to image charges into account. Sim-
plified models for the surface recombination velocity have also been discussed
to some extent [27, 88, 89]. From a qualitative point of view, the charge-carrier
collection at electrode-organic semiconductor contacts can be portrayed as fol-
lows.

Metal-semiconductor contacts

Consider a metal-semiconductor contact where the hopping rate in the semi-
conductor is assumed to follow the Miller-Abrahams rate, Eq. (1.2.7). The
contact is assumed to be ideal, containing an infinite amount of available states
in the metal (Q = 0). In this case, the electron flow from the semiconductor to
the metal consists of down-hill jumps only (possibly along relaxed states in the
image potential). The situation is illustrated in Figure 2.4(a). In accordance
with the discussion in Section 1.3.2, the surface recombination velocity should
then be equal to the saturated drift velocity as

SR = aν0 exp (−2γa), (2.2.4)

where a is the hopping distance between a site in the semiconductor and a
relaxed site at the metal interface. Since Eq. (2.2.4) corresponds to the upper
limit of the drift velocity (for Miller-Abrahams hopping), we thus always have
SR ≥ µ |F | in this case. Eq. (2.2.4) can also be related to the zero-field EGDM
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Figure 2.4: Interpretation of the surface recombination velocity at contacts in hopping sys-
tem: (a) ideal metal-semiconductor contact, and (b) blocking contact where a charge-selective
electrode interlayer is inserted between the metal and the semiconductor. The surface recom-
bination of electrons at the blocking contact may take place via thermal activation, hopping
transport via impurity-induced gap states, or direct recombination with holes in the interlayer.

mobility at low carrier densities (Eq. (1.3.14)) via

SR ∼
σµ (T )
qa

exp
(
c2

[ σ
kT

]2)
. (2.2.5)

With typical vales of µ = 10−4 cm2/Vs (at T = 300 K) and a = 1.5 nm,
this amounts to SR ∼ 300 cm/s for σ = 58 meV. This is to be compared to
SR ∼ 3×106 cm/s expected for "ideal" inorganic semiconductor-metal contacts.
It should be noted that γ and a can in general be different near the interface
compared to the bulk.

Blocking contacts

In several applications, contacts that are selective from the view point of car-
rier extraction are desired. A charge-selective contact is a contact that only
allow one type of carrier to pass through it, whereas the other type is blocked.

39



Chapter 2. Current injection and collection in thin-film devices

Electron-blocking contacts are realized by inserting an electrode interlayer with
a higher Ec, leading to a conduction level-offset ∆Ec at the interlayer-organic
semiconductor interface. This creates an energetic barrier for electron extrac-
tion which reduces the effective hopping velocity Eq. (2.2.4) by a factor of
exp (∆Ec/kT ).

In the ideal case, when the energy-level offset is very large, no electrons can
be extracted at the electron-blocking contact layer and SR = 0. In practice,
however, impurity-induced (or interface-induced) gap states are always present
to some extent within the blocking layer [90]. In such situations, electrons
may be conducted by hopping via gap states through the layer. This may
be described in terms of an effectively reduced surface recombination velocity
SR,eff = SR [1−Q], relative to Eq. (2.2.4). The factor (1 − Q) represents the
probability of finding a state at the interface. If the density of gap states is large
(Q → 0), the blocking layer effectively behaves as a metal. Furthermore, for
charge-selective contacts utilizing conductive (doped) transport layers, direct
recombination across the interface presents an additional surface recombination
channel. If this mechanism is dominating (e.g. taking place between an electron
in the active layer and a hole in the p-doped layer), the associated surface
recombination velocity becomes dependent on the doping concentration of the
conductive transport layer. A schematic overview is shown in Figure 2.4(b).

2.3 Unipolar charge transport in thin-film devices

At V = 0 in dark (thermal equilibrium), the drift component of the current is
exactly balanced by diffusion, and the net macroscopic current is zero. Upon ap-
plying an external voltage, the magnitude of the internal electric field is changed,
resulting in an imbalance between drift and diffusion and a subsequent current.
Depending on the applied voltage, the transport properties, and the type of
device, different current regimes can be identified. In this section, we consider
unipolar (single-carrier) devices with a hole-injecting ohmic contact at the anode
and a hole-collecting contact at the cathode.
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2.3.1 Theory

The current density is obtained by solving the drift-diffusion equation for holes.
In accordance with Section 2.2, the boundary conditions at the contacts are

Jp (d) = qSp [p (d)− pcat] , (2.3.1)

Jp (0) = −qSP [p (0)− pan] , (2.3.2)

where SP and Sp is the (effective) surface recombination velocity for holes at
the anode and cathode contact, respectively. Taking the anode to be ohmic for
holes (qSP pan → ∞), we thus have p (0) = pan (or EFp (0) = EF,an), where
pan = Nv exp (−b/kT ) with the effective injection barrier b (see Section 2.1.3).
For hole-dominated charge transport, the current can then be evaluated as6

J = qvppcat
1 + vp/Sp

[
exp

(
qV

kT

)
− 1
]
, (2.3.3)

where pcat = Nv exp (−ϕcat/kT ) and

vp ≡

[� d

0

q

µkT
exp

(
EF,cat − ϕp,cat − Ev (x)

kT

)
dx

]−1

(2.3.4)

is an effective transport velocity for holes within the active layer [15, 80], which
depends on the mobility and the electrostatic potential. Note that, since only
holes are considered in this section, the notation ϕp,cat = ϕcat and µp = µ is
used interchangeably.

In Figure 2.5, a typical J-V curve of a hole-only MIM diode is shown for

6Utilizing Eq. (1.3.9), one finds Jp (x) = µpp
dEF p

dx
= µpkTNv exp

(
Ev−EF p

kT

)
d
dx

(
EF p

kT

)
.

Assuming that EFp (0) = EF,an, the hole current equation can in conjunction with Eq. (2.1.1)
and Eq. (2.3.1) be rewritten as

� d

0

Jp (x)
µpkT

exp
(
EF,cat − ϕp,cat − Ev (x)

kT

)
dx = pcat

[
exp
(
qV

kT

)
− 1
]
−
Jp (d)
qSp

.

For hole-only transport, dJp/dx = 0, the steady-state hole current is independent of x and
Jp (x) = Jp (d) = J .
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Figure 2.5: The current-voltage characteristics for a hole-only MIM diode with an ohmic
contact at the anode is shown on a lin-log scale. The insets depict the corresponding energy
level diagrams for the different current regimes: injection-limited (V < 0), diffusion-limited
(0 < V < Vbi), and drift-dominated (V > Vbi).

the case when the charge collection is ideal and not limited by the contacts
(Sp � vp). In forward bias (V > 0), when holes are injected from the anode
and collected at the cathode, the current at low voltages 0 < V < Vbi is in this
case limited by diffusion against the built-in voltage, whereas for V > Vbi the
current becomes dominated by the drift component as the current eventually
becomes space-charge-limited. In reverse bias (V < 0), on the other hand, the
current is limited by injection from the cathode contact. In general, depending
on the contact properties and the prevailing space-charge effects, other situations
may also occur. The different current regimes will be discussed in more detail
in the following.
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2.3.2 Diffusion-limited currents

If the current is limited by charge transport within the bulk and not by the
kinetics at the collecting contact, i.e. Sp � vp, the current at low voltages (0 <
V < Vbi) is diffusion-limited. Under these conditions, the cathode virtually acts
as a perfect sink that is able to instantly collect all additional holes without any
hold up, the hole density at the cathode contact retaining its thermal equilibrium
value. The current is constituted by holes injected from the anode, diffusing
against the (reverse) internal electric field, and collected at the cathode. The
diffusion-limited current reads

J = qvpNve
−ϕcat/kT

[
exp

(
qV

kT

)
− 1
]
, (2.3.5)

where vp is the associated effective diffusion velocity given by Eq. (2.3.4). For
a MIM diode, with Ev (x) given by Eq. (2.1.9) and Vbi = Vbi,0 − b, we have

vp = qµp [Vbi − V ]
d
[
1− exp

(
q[V−Vbi]

kT

)] , (2.3.6)

for 0 ≤ V < Vbi. At voltages close to zero, the current Eq. (2.3.5) depends
linearly with the applied voltage. At larger forward bias, the strength of the
opposing internal electric field is reduced, leading to an exponential increase of
the collection current. Noting that the effective diffusion velocity simplifies as
vp ∼ µ |F | for voltages below Vbi, the condition for the charge collection to be
diffusion-limited is Sp � µ |F |. For a mobility of 10−4 cm2/Vs, this corresponds
to Sp � 10 cm/s at |F | = 1 V/100 nm.

In general, also the band-bending parameter b might depend on the voltage.
However, the shape of the current in Eq. (2.3.5) is fairly insensitive to the exact
value of b at voltages below Vbi; only when V is close to Vbi does the value of b
become important [30]. The band-bending parameter to be used in Eq. (2.3.5)
can be well approximated by
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Figure 2.6: Current-voltage characteristics of the hole-only MIM diode (from Figure 2.5) in
forward bias on log-log scale. The current for a symmetric device with two hole-injecting
contacts, as indicated by the dashed line, is shown for comparison. At voltages above the
built-in voltage, the space-charge-current limit is approached, distinguished by the slope of
two on the log-log scale (J ∝ V 2).

b = kT

q

[
ln
(
q2Nvd

2

2εε0kT

)
− 2
]
, (2.3.7)

relative to Ev (0), as demonstrated by de Bruyn et al. [30].

2.3.3 Space-charge-limited currents

For V > Vbi, the internal electric field is reversed facilitating injection of holes
from the anode. Under these conditions, the space charge of the injected carriers
dominates, and the assumption of a constant field inside the active layer is no
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longer valid. The corresponding J-V curve is shown in Figure 2.6. At large
enough voltages, the effect of diffusion becomes negligible and the current is
dominated by drift, J = qµp (x)F (x). The electric field is then adjusted in
accordance with dF/dx = qp (x)/εε0 = J/µεε0F (x). Provided that a potential
minimum is present close to the hole-injecting anode (F (0) ≈ 0) (see inset in
Figure 2.5), the current density can be readily obtained [91]. The space-charge-
limited current (SCLC) for unipolar carrier injection reads

J = 9
8µεε0

(V − Vbi)2

d3 , (2.3.8)

for V � Vbi. Eq. (2.3.8) is generally referred to as the Mott-Gurney square law
or Child’s law for solids.

Similarly, the net injected charge (per unit area) ∆Q = Qs (V )−Qs (0), given
by the difference between the net charge within the active layer (Eq. (1.3.26))
at the applied voltage V and at thermal equilibrium (V = 0), in the SCLC limit
can be found as

∆Q = 3εε0 [V − Vbi]
2d = 3

2Cgeo [V − Vbi] , (2.3.9)

for V � Vbi. This is the net injected charge that is accumulating within the
active layer during steady-state conditions. The capacitance (per unit area)
of the device in the SCLC limit is thus effectively increased by a factor of 1.5
relative to the geometric capacitance.

2.3.4 Injection-limited currents

In the reverse bias, on the other hand, the current is controlled by diffusion
of carriers injected at the cathode. In this case, when carrier injection from
contacts with high injection barriers is the source for the current, the current is
said to be injection-limited. Under these conditions, the barrier lowering effect
due to image charges become important. Taking into account the image-charge
potential Eq. (2.1.15), with q′ = q, at the cathode in Eq. (2.3.4), analytical
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approximations for the diffusion-limited current Eq. (2.3.5) can be obtained
at low and high electric field strengths, as discussed by Emtage and O’Dwyer
[92]. At low electric field strengths, Eq. (2.3.6) applies, and Eq. (2.3.4) is well
approximated by vp ≈ µ |F |. At high electric field strengths |F | > kT/qrc, in
turn, the reverse current approaches

J = qµ [V − Vbi]Nv
d

[
4kTd

π2q |V − Vbi| rc

]1/4
exp

(
−ϕcat −∆ϕ

kT

)
, (2.3.10)

where ∆ϕ =
√
q3 |V − Vbi|/4πεε0d and rc = q2/4πεε0kT is the Coulomb cap-

ture radius. The current under these circumstances, is limited by the diffusion
of holes over the lowered potential barrier at the cathode, and is sometimes also
referred to as diffusion-limited thermionic emission. Figure 2.7 shows the ex-
perimental reverse-bias current of a hole-only MIM diode, based on the polymer
PTAA. The current is indeed well reproduced by Eq. (2.3.10).
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Figure 2.7: Injection-limited cathode currents in hole-only organic diodes, based on poly-
(tri-arylamine) (PTAA) [93]. The device structure is Cu/PTAA/Au. The experimental hole-
injection current (reverse bias) from the Au-cathode is well reproduced by Eq. (2.3.10), with
Nve−ϕcat/kT ≈ 2.1× 1012 cm−3. For Nv = 3× 1020 cm−3, this amounts to ϕcat ≈ 485 meV.
The details of the polymer are given in Refs. [94] and [95].
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In terms of charge collection at the cathode, the impact of the image po-
tential is to effectively reduce the built-in voltage qVbi by ∆ϕeff = ∆ϕ −
1
4kT ln

(
π2q |F | rC/4kT

)
at |F | > kT/qrC . At moderate electric field strengths,

this reduction is small and overshadowed by the reduction (of Vbi) due to the
energy-level bending from the ohmic anode contact. In the remainder of this
thesis, the effect of the image charges on the charge collection is assumed to be
negligible.

2.3.5 Ohmic linear current-voltage regime

In the special case of two hole-injecting (symmetric) contacts, a situation with
vanishing built-in voltage similar to the one in Figure 2.3(b) is approached.
When both contacts are ohmic for hole injection, the hole density profile at small
voltages will not change significantly from the equilibrium hole distribution given
by Eq. (2.1.14). Under these conditions, the current relation J = µpdEFp/dx

can readily be separated and integrated as: J = V /
� d

0 [1/qµp (x)] dx. The
current density at small voltages is consequently found as [96]

J = 2qµpcenterV

d
≈ 4π2εε0µkT

q

V

d3 , (2.3.11)

where the hole density near the center of the device is given by pcenter = 2B2n0 ≈
2π2εε0kT/q

2d2. This type of current exhibits a linear voltage dependence, com-
monly referred to as an ohmic current, as shown in Figure 2.6. As the magnitude
of the voltage is increased above |V | > 32π2kT/9q, however, the SCLC limit
(Eq. (2.3.8)) is eventually approached.

2.3.6 The case with a doped semiconductor layer; the Schottky
barrier

If the active layer is p-doped, a different scenario arises. In this case, a space-
charge region (of ionized dopants), depleted of free holes, is formed adjacent
to the cathode. Provided that the doping concentration is high enough, the
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Figure 2.8: Schematic energy level diagrams for the case with a doped semiconductor layer.
In (a) the situation before contact (or at flat-band conditions, V = Vbi), whereas in (b) the
situation after contact at thermal equilibrium (V = 0).

entire potential difference is absorbed over the space-charge region at quasi-
equilibrium conditions; in the remainder of the active layer, referred to as the
quasi-neutral region, flat-band conditions prevail. The situation for V = 0 is
depicted in Figure 2.8.

The thickness of the depleted space-charge region depends on the dielectric
properties of the semiconductor material, the concentration of ionized dopants
Np, and the potential difference. Taking the concentration of ionized dopants
to be uniform, the thickness of the space-charge region is given by [15]

w0 ≈

√
2εε0

qNp

(
Vbi − V −

kT

q

)
, (2.3.12)

where the term kT/q is a correction due to diffusion. Eq. (2.3.12) is valid
provided that the doping concentration is large enough for w0 < d to be fulfilled
[97], i.e. Np > 2εε0 [Vbi − V ]/qd2. Note that the built-in voltage is in this case
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given by Vbi = Vbi,0−b/q, with the energy-level bending near the anode given by
b = kT ln (Nv/Np). The corresponding potential energy (relative to the cathode
Fermi level) in the space-charge region d− w0 < x ≤ d reads

Ev (x)− EFcat ≈ −ϕcat −
q2Np
εε0

[
(d− x)2

2 − w0 (d− x)
]
. (2.3.13)

The electric field is thus linear with position within the space-charge region,
whereas F = 0 applies inside the quasi-neutral region (where p = Np). In dark,
this system acts as a device with an effective active layer thickness of w0, with
the quasi-neutral region virtually behaving as an extension of the contact. The
forward bias current then approximates as [15]

J ≈ qµ

√
2qNp [Vbi − V ]

εε0
Nve

−ϕcat/kT

[
exp

(
qV

kT

)
− 1
]
, (2.3.14)

for V < Vbi.
As the voltage is increased beyond the built-in voltage, the depletion region

w0 → 0. With the exception of the neighborhood of the collecting cathode
contact, the active layer is essentially neutral in this case, with p ≈ Np. Under
these conditions, the electric field is constant throughout the active layer and
the current approximates as J ≈ qµNp [V − Vbi]/d. At larger voltages, when
V > Vbi + 8qNpd2/9εε0, the density of injected carriers eventually start to
dominate as the current becomes space-charge-limited.

2.3.7 The impact of the recombination velocity at the collecting
contact

Thus far the charge collection at the cathode contact has been assumed to be
excellent (Sp → ∞). In general, however, this is not necessarily the case (see
Section 2.2.2). In situations when Sp � vp, the charge collection is instead
limited by interface kinetics at the (collecting) contact. The corresponding
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diode current reads

J = qSppcat

[
exp

(
qV

kT

)
− 1
]
, (2.3.15)

for V < Vbi. Figure 2.9(a) shows the simulated J-V curves for different surface
recombination velocities at the collecting cathode. The effect of reducing Sp is
to shift the onset for the injection towards larger voltages; at voltages below Vbi,
the effective voltage shift (relative to Eq. (2.3.5)) is ∆S ≈ kT ln (1 + µ |F |/Sp).
Furthermore, the carrier density at the cathode is related to the applied voltage
via

p (d) = pcat + J

qSp
→ pcat exp

(
qV

kT

)
for Sp � vp. (2.3.16)

Under these conditions (Sp � vp), the quasi-Fermi level is nearly flat throughout
the active layer, being separated from the cathode Fermi level by qV . In case of
negligible space charge, the carrier density inside the active layer is then given
by p (x) = p (d) exp (qF [x− d]/kT ).

At voltages larger than the built-in voltage, V > Vbi, a bias-induced carrier
accumulation can be established at the cathode interface for Sp � vp. Provided
that the quasi-Fermi level remains flat within the accumulation region near
the collecting contact, the hole density in this region is well approximated by
p (x) = p (d)/ (1 + [d− x]/λ)2 (see Section 2.1.3), with λ =

√
2εε0kT/q

2p (d)
being the corresponding screening length. The net injected charge, accumulating
at the collecting contact, is then given by [Paper I]

∆Q ≈
√

2εε0kTp (d) =

√
2εε0kT

[
J

qSp
+ pcat

]
. (2.3.17)

for p(d) � pcat. Eq. (2.3.17) allows for a direct relation between the current
and the accumulated charge to be established. Figure 2.9(b) shows the corre-
sponding net injected charge as a function of the applied voltage at different Sp.
This charge is mainly concentrated at the cathode interface and increases with
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Figure 2.9: The effect of surface recombination velocity Sp at the hole collecting cathode
contact in a hole-only MIM diode. In (a), interface-kinetic-limited J-V curves for different
Sp are shown. In (b) the net injected charge ∆Q at different voltages V > Vbi are simulated
(symbols). The analytical approximations Eq. (2.3.17) are indicated by the solid lines. Close
to flat-band conditions, vp ≈ µkT/qd ≈ 0.13 cm/s, where µ = 10−4cm2/Vs and d = 200 nm.

decreasing Sp. We note that, in the SCLC regime (J → JSCLC), the net in-
jected charge Eq. (2.3.17) is a factor

√
µkT/qSpd larger than the corresponding

net injected charge (Eq. (2.3.9)) expected in the Sp � vp-limit.

2.4 Bipolar currents in thin-film devices

Thus far we have mainly considered unipolar devices, such as hole-only diodes.
If we allow both holes and electrons to be present, charge-carrier recombination
within the bulk can no longer be neglected. This is an important process in
bipolar (double-carrier) devices such as organic light-emitting diodes and solar
cells. The energy level diagrams of a typical bipolar MIM diode are depicted in
Figure 2.10.

The steady-state current density J = Jp (x) + Jn (x) is obtained by solving
the hole and electron current equations, subject to Eq. (2.3.1) and (2.3.2) for

51



Chapter 2. Current injection and collection in thin-film devices

Figure 2.10: Schematic energy level diagrams of a bipolar device (in dark) with a hole-ohmic
contact at the anode and an electron-ohmic contact at the cathode (a) at thermal equilibrium
(V = 0) and (b) under a small forward bias (0 < V < Vbi). In this case, energy-level bending
is present at both contacts. Apart from surface recombination of holes at the cathode, under
these conditions also surface recombination of electrons at the anode and bulk recombination
(either directly between free electrons and holes or via traps) inside the active layer become
significant.

holes and

Jn (0) = qSn [n (0)− nan] , (2.4.1)

Jn (d) = −qSN [n (d)− ncat] , (2.4.2)

for electrons; Sn and SN is the surface recombination velocity for electrons
at the anode and cathode, respectively, with nan = Nc exp (−ϕn,an/kT ) and
ncat = Nc exp (−ϕn,cat/kT ). To ensure that the device injects both types of
carriers, asymmetric injecting contacts are required. In other words, the contact
at the anode needs to be ohmic for hole injection (qSP pan → ∞), whereas the
contact at the cathode needs to be ohmic for electron injection (qSNncat →∞).

In the absence of photogeneration, the total current density can be expressed
by the sum of the collected hole and electron currents (at the cathode and the
anode, respectively) and the bulk recombination current (of carriers lost within

52



Chapter 2. Current injection and collection in thin-film devices

0 . 0 1 0 . 1 1 1 0
1 0 - 1 3
1 0 - 1 1
1 0 - 9
1 0 - 7
1 0 - 5
1 0 - 3
1 0 - 1
1 0 1
1 0 3

- 1 . 5 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5
1 0 - 1 6
1 0 - 1 4
1 0 - 1 2
1 0 - 1 0
1 0 - 8
1 0 - 6
1 0 - 4
1 0 - 2
1 0 0

 R s  =  0
 R s  =  1 0 - 3  Ω m 2

( b )

Cu
rre

nt 
De

ns
ity 

(A/
cm

2 )
A p p l i e d  V o l t a g e  ( V )

s l o p e  =  2

s l o p e  =  1

( a )

|Cu
rre

nt 
De

ns
ity|

 (A
/cm

2 )

A p p l i e d  V o l t a g e  ( V )

 R s h  → ∞

 R s h  =  1 0 3  Ω m 2  

d i o d e  i d e a l i t y  
f a c t o r

Figure 2.11: Dark current-voltage characteristics of a bipolar MIM diode shown in (a) on
a log-lin scale, and (b) in forward bias on log-log scale. The slope of the current within
0 < V < Vbi of the log-lin plot determines the diode ideality factor. At low current levels (at
small voltages), the current is sensitive to parasitic leakage currents, typically characterized
by a finite shunt resistance. At large voltages (V > Vbi), the space-charge-limited double-
injection current is approached, distinguished by the slope of two on the log-log scale (J ∝ V 2).
However, this requires that voltage losses caused by the series resistance from the external
circuit, which might become significant at large current levels, are small.

the bulk) as

J = JR + JS , (2.4.3)

where JS = Jn (0) + Jp (d) is the net surface recombination current density of
minority carriers (i.e. electrons at the anode, holes at the cathode) and

JR = q

� d

0
Rdx = q〈R〉d, (2.4.4)

is the net bulk recombination current density. A typical dark J-V curve for
a bipolar MIM diode is shown in Figure 2.11. It should be noted that at low
current levels, parasitic leakage currents characterized by a finite shunt resis-
tance Rsh might become dominating (see Eq. (1.1.1)), increasing the current in
reverse bias. At large current levels, on the other hand, voltage losses caused by
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a non-zero series resistance Rs 6= 0 of the external circuit reduces the current;
when this voltage loss is large the current tends to become linear with the volt-
age. In the following, however, resistive effects caused by external non-idealities
are neglected.

2.4.1 The case when bulk recombination dominates

If surface recombination is negligible, the quasi-Fermi level difference between
electrons and holes, related to the bulk recombination rate as R = βRn

2
i ×

[exp ( [EFn − EFp]/kT )− 1], is constant throughout the active layer at low volt-
ages and given by qV = EFn−EFp. In this regime (V < Vbi), the recombination
current then reads

J = JR = JR,0

[
exp

(
qV

kT

)
− 1
]

(2.4.5)

where JR,0 = q〈βR〉n2
i d exp (−Eg/kT ). If the dominating bulk recombination

mechanism is bimolecular, the saturation current JR,0 is independent of the
applied voltage. The functional form of Eq. (2.4.5) is in this case consistent
with the standard diode equation Eq. (1.1.1), having a diode ideality factor
ηid = 1.

On the other hand, if trap-assisted bulk recombination dominates, JR,0 gen-
erally depends on the applied voltage. Consider the case when trap-assisted
recombination predominately takes place via deep gap states. Making use
of the regional approximation, i.e. that electrons dominate at the cathode
side of the active layer and holes at the anode side, we expect βR ∝ 1/n
for x > d/2 and βR ∝ 1/p for x < d/2, in accordance with Eq. (1.3.25).
Then, with the carrier densities given by n (x) = ncat exp (qF [d− x]/kT ) and
p (x) = pan exp (qFx/kT ), it follows that7 JR,0 ∝ exp (−qV/2kT ) for V well

7As per the regional approximation [98], the voltage dependence of JR,0 = q〈βR〉n2
i d is

given via

〈βR〉 ∝
1
d

[� d

d/2

dx

n (x)
+
� d/2

0

dx

p (x)

]
∝

kT

q [Vbi − V ]

[
exp
(
q [Vbi − V ]

2kT

)
− 1
]
,
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below Vbi [11, 98]. Consequently, a principal voltage dependence of the form

J (V ) ∝ sinh
(
qV

2kT

)
∼ exp

(
qV

2kT

)
(2.4.6)

is expected in the forward bias, corresponding to a diode ideality factor being
close to 2 (for qV > kT ). For a general bulk recombination rate of the recombi-
nation order δ for free carriers (R ∝ nδ), the voltage dependence of the current
in the forward bias follows a diode ideality factor of ηid ≈ 2/δ [99]. It should
be noted, however, that because of shunt and series resistances, an accurate
determination of the diode ideality factor from the dark J-V curve might be
challenging [100, 101].

2.4.2 The case when surface recombination dominates

Also accounting for the surface recombination current, constituting injected
carriers that make it to the collecting contact, the total current for V < Vbi

may be generally expressed as

J (V ) = J0 (V )
[
exp

(
qV

kT

)
− 1
]
, (2.4.7)

where J0 (V ) = JR,0 (V ) + JS,0 (V ) is the sum of the contributions of both bulk
and surface recombination to the total dark saturation current.

For conditions when the recombination taking place within the bulk is negli-
gible (R = 0), we have JR,0 � JS,0. This type of situation might occur for thin
active layers and/or large mobilities, when carriers have a large probability to
traverse the active layer without recombining within the bulk. Under these cir-
cumstances, the individual hole and electron currents are constants of x (since
dJp/dx = dJn/dx = 0), flowing in parallel with each other through the active
layer: J = Jp (d) + Jn (0). The associated dark saturation current is then given

when trap-assisted recombination via deep midgap traps is dominating and F is given by Eq.
(2.1.8).
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by

JS,0 = qvppcat
1 + vp/Sp

+ qvnnan
1 + vn/Sn

, (2.4.8)

where vp and vn are the effective transport velocities for holes and electrons,
respectively, associated with diffusion of carriers within the active layer. Here,
vp is given in accordance with Eq. (2.3.4). A completely analogous expression
is valid for vn (see Footnote 8). In case of hole (electron) collection at a neutral
cathode (anode) contact, corresponding to the case considered in Section 2.3.2,
one directly obtains vp(n) ≈ µp(n) (Vbi − V ) /d.

In case of ohmic collecting contacts, however, also the impact of the energy-
level bending at the contacts needs to be considered. For holes collected at
the cathode, the energy-level bending at the electron-ohmic cathode creates a
steeper potential barrier at the contact, simultaneously reducing the opposing
internal electric field inside the active layer; see Figure 2.10(b). An analo-
gous situation applies for electrons collected at the hole-ohmic anode. In the
non-degenerate limit, accounting for the impact of energy-level bending in Eq.
(2.3.4) then reveals8

vp ≈
µpkT

qλcat
, vn ≈

µnkT

qλan
, (2.4.9)

where λan =
√

2εε0kT/q
2pan and λcat =

√
2εε0kT/q

2ncat. Accordingly, the
saturation current is independent of both the applied voltage and the active
layer thickness, the concomitant diode ideality factor ηid = 1 in this case being
the same as for bimolecular recombination.

8To account for the energy-level bending at the hole-ohmic contact, Ec (x) can be approx-
imated by Ec (x) − EF,an = ϕn,an − kT ln [pan/p (x)], with p (x) given by Eq. (2.1.12) for
V < Vbi and p(0) = pan (see Section 2.1.3). The effective diffusion velocity for electrons can
then be evaluated as

vn ≡
[� d

0

q

µnkT
exp
(
Ec (x)− EF,an − ϕn,an

kT

)
dx

]−1

≈
µnkT

qλan
,

for B
√

2n0/pan � 1.
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2.4.3 Space-charge-limited double-injection currents

At higher voltages, the number of injected electrons and holes eventually be-
comes large enough to perturb the electric field within the active layer. When
this occurs, the drift component of the injected current start to dominate the
transport inside the active layer, the current becoming limited by both space-
charge effects and recombination.

Considering a MIM device (with an undoped active layer), the dominating
recombination mechanism at high carrier concentrations is bimolecular: βR = β.
In the limit of strong recombination (β � βL), the injected carriers immediately
recombine when they meet, forming two separate space-charge-limited regions
inside the active layer: a hole-dominated region where J ≈ Jp adjacent to the an-
ode and an electron-dominated region with J ≈ Jn on the cathode side (regional
approximation). In the weak recombination regime (β � βL), in turn, the in-
jected carriers instead form a charge-neutral plasma (injected-plasma limit); in
this limit, n ≈ p applies throughout the active layer. Provided that the series re-
sistance of the external circuit is negligible and the contacts remain ohmic under
these (high-injection) conditions, the drift-dominated double-injection current
reads [91, 102]

JDOI = 9
8εε0µR

(V − Vbi)2

d3 , (2.4.10)

where µR is an effective SCLC mobility for double injection,9 which takes the
limiting values:

9The general solution for µR as derived by Parmenter and Ruppel [91, 102], assuming
drift-dominated transport, is

µR =
8µnµp

9 (µn + µp)
βL

β

[
Γ
(

3
2νn + 3

2νp
)

Γ
(

3
2νn
)

Γ
(

3
2νp
)]2 [

Γ (νn) Γ (νp)
Γ (νn + νp)

]3

,

where νn = 2µn

(µn+µp)
βL
β

, νp = 2µp

(µn+µp)
βL
β
, and Γ (s+ 1) ≡ s! is the Gamma function.
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µR ≈

µp + µn , for β � βL,√
16πβL

β µpµn , for β � βL,
(2.4.11)

for strong (β � βL) and weak bulk recombination (β � βL).
The above discussion is valid for the case when injected carriers are dominat-

ing in the active layer. We note, however, that under conditions when the active
layer is doped, the active layer is initially charge-neutral at voltages V > Vbi,
as discussed in Section 2.3.6. If the active layer is p-doped, the corresponding
double-injection current in the presence of bimolecular recombination is given
by [91]

JDOI = 8
9q

√
(µn + µp)µpµnNp

β

(V − Vbi)3/2

d2 . (2.4.12)

At high-injection conditions, on the other hand, when the density of injected
carriers exceeds the background doping concentration, the limiting case Eq.
(2.4.10) is eventually approached. For a more detailed discussion, including the
derivations of Eq. (2.4.10) and Eq. (2.4.12), see Ref. [91].
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Charge extraction by a linearly
increasing voltage pulse

Current transient measurements are useful for gaining additional information
of transport properties in semiconductor devices. A frequently used method
for determining the mobility in organic thin-film devices is charge extraction
by linearly increasing voltage (CELIV). In CELIV, one uses a linear ramp-up
voltage pulse, applied in reverse bias, to extract photoinduced or dark (either
doping-induced or injected) charge carriers. The applied voltage is given by

u (t) =

−At+ Voff when t ≥ 0,

Voff when t < 0.
(3.0.1)

Here, Voff is the applied offset (dc) voltage and A = umax/tpulse is the voltage
rise speed of the transient voltage pulse with amplitude umax and pulse length
tpulse. From the transient features and the characteristic time scales of the
corresponding extraction current transients, the mobility can be calculated.

The standard CELIV theory used for extracting the mobility neglects the
influence of the contacts. In sandwich-type thin-film devices, this might lead to
severe errors in the mobility determination. In this chapter, the basic CELIV
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theory is extended to account for contact effects, such as the presence of a
built-in voltage and carrier diffusion from the contacts. Apart from providing
a correction for the mobility determination, we also show how the extended
CELIV theory can be used to determine the doping concentration, the built-in
voltage and the surface recombination velocity.

3.1 Basic theory

We start by reviewing the basic theory used for the mobility determination in
CELIV. The active layer is assumed to contain uniform distributions of charge
carriers. In general, these charges can either be photogenerated, doping-induced
or injected from the contacts. Prior to the voltage pulse (t < 0), the sample is
held at flat-band (or open-circuit) conditions (Voff = Vbi) and the active layer
is assumed electrically neutral with p = n. Upon applying the ramp-up voltage
pulse, charge carriers are subsequently extracted as a uniformly moving sheet;
the extraction current transient for t ≥ 0 becomes [103, 104]

j (t) = j0 + ∆j (t) , (3.1.1)

where j0 = −εε0A/d is the average displacement current and ∆j (t) is the aver-
age conduction current. A schematic picture is shown in Figure 3.1. Neglecting
diffusion,

∆j (t) = 1
d

[� d

ln(t)
qµnnFdx+

� d−lp(t)

0
qµpnFdx

]
, (3.1.2)

where ln (t) and lp (t) is the extraction depth for electrons and holes, respectively.

3.1.1 Low-conductivity regime

The extraction current in Eq. (3.1.2) is generally dominated by the faster carrier
type. In this case, the extraction depth is related to the electric field within the
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Figure 3.1: Schematic picture of CELIV. (a) The energy level diagram for the case when the
charge extraction process is dominated by holes. Upon applying the reversely-biased ramp-
up voltage pulse, holes are extracted at the anode, leaving a space-charge region of electrons
behind in the active layer. (b) The corresponding extraction current transient j(t), normalized
to the geometric capacitive current response j0. The length of the voltage pulse, applied at
t = 0, is tpulse.

quasi-neutral region via dw/dt = −µF , where µ and w is the mobility and
the extraction depth, respectively, of the faster charge carriers. If space-charge
effects are negligible, the extracting electric field is given by F = −At/d. The
average conduction current density Eq. (3.1.2) then simplifies as

∆j (t)
j0

= qnµt

εε0

[
1− t2

t2tr

]
, (3.1.3)

for 0 ≤ t ≤ ttr where ttr ≡
√

2d2/µA is the transit time for the carriers. The
mobility can be calculated from the time tmax where the extraction current
∆j (t) /j0 has its maximum [103],

µ = 2d2

3At2max
. (3.1.4)
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The regime of negligible space-charge effects is valid for low carrier concen-
trations (∆j (t) � j0), referred to as the low-conductivity regime. It should
be noted that, in general, both carrier types contribute to the extracted cur-
rent, with µ being a combination of both carrier mobilities; accounting for both
carrier types, the extracted mobility µ in Eq. (3.1.4) actually corresponds to
µ =

(
µ2
n + µ2

p

)
/ (µn + µp).

3.1.2 Moderate-conductivity regime; the impact of space charge

The general assumption in CELIV is that the charge species with the lower
mobility is effectively immobile during the extraction process (µfast � µslow).
Under these conditions, the extraction of the faster carrier will leave a depleted
layer of thickness w(t) of the immobile charges behind within the active layer.
If we assume the faster carriers to be holes, the net charge density is then given
by

ρsc (x, t) =

−qn if d− w ≤ x < d,

0 otherwise ,
(3.1.5)

reducing the electric field within the neutral (non-depleted) region.10 Hence,

dw

dt
= −µF (0, t) = µ

[
At

d
− qnw2

2εε0d

]
, (3.1.6)

with the condition w (0) = 0 [103]. Note that the low-conductivity regime
applies in the limit when the electric field is changing much faster than the
field redistribution due to the space charge, corresponding to ttr � εε0/qnµ

(space-charge effects become negligible).

10The electric field is explicitly obtain by integrating Gauss law, Eq. (1.3.4), as

F (x, t) =
{
F (0, t) + qn

εε0
(d− w − x) if d− w ≤ x < d,

F (0, t) , else .

Eq. (3.1.6) is then obtained after making use of −At =
� d
0 F (x, t) dx.
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At moderate conductivities when ttr ∼ εε0/qnµ, however, the space-charge
term in Eq. (3.1.6) becomes significant, resulting in a reduced extraction rate
of the charge carriers. The net effect of this is to shift tmax to earlier times,
relative to Eq. (3.1.4). Unfortunately, the general solution to Eq. (3.1.6) is not
analytically tractable.11 Based on numerical simulations, however, Juška et al.
obtained [104, 105]

µ = 2d2

3At2max
K, (3.1.7)

where K = [1 + χ∆jmax/j0]−1, with χ being a numerical correction factor that
takes the field redistribution into account and ∆jmax ≡ ∆j (tmax). Juška et al.
initially proposed χ = 0.36. The accuracy of this correction factor was later
improved by other groups [106–108]; an excellent account on this topic is given
by Lorrmann et al. [108]. Note that in the limit ∆jmax/j0 � 1, K → 1 and the
low-conductivity regime is reobtained.

3.1.3 Influence of bulk recombination

In the derivation of Eq. (3.1.4) and Eq. (3.1.7), recombination between carri-
ers inside the active layer was neglected. In case of extraction of photoinduced
carriers, however, this mechanism becomes important. The effect of bulk re-
combination is to decrease the carrier density during the extraction process,
resulting in an additional time dependence in the extraction current [107, 109,
110]. For a bimolecular recombination rate dn/dt = −βn2, the carrier density

11The solution to Eq. (3.1.6), with the boundary condition w (0) = 0, is given by [108]

w (t) = 2d
(
τσ

ttr

)2/3
√

3Ai′
(
t/ 3
√
τσt2tr

)
+ Bi′

(
t/ 3
√
τσt2tr

)
√

3Ai
(
t/ 3
√
τσt2tr

)
+ Bi

(
t/ 3
√
τσt2tr

) ,

where τσ = εε0/qnµ. Here, Ai(u) (Bi(u)) is the Airy function of the first (second) kind, with
Ai′(u) (Bi′(u)) being the respective derivative.
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varies with time as

n (t) = n∗
1 + βn∗ [t+ tdel]

= n (0)
1 + βn (0) t , (3.1.8)

for carriers with an initial density n∗ at t = −tdel, where tdel is the delay time.
Now, if we take space-charge effects to be negligible during the extraction

process (i.e. the current is given by Eq. (3.1.3)) and assume a time dependence
of n (t) given by Eq. (3.1.8), a relation between tmax and the recombination
coefficient β can be established; we find

t2max (β) = t2max (0)
[
1− β∆jmax

βLj0

]
, (3.1.9)

where ∆jmax depends on β and n (0) (and thus also on tdel), and βL = qµ/εε0.
The presented analytical approximation [Eq. (3.1.9)] agrees well with numerical
simulations by Bange et al. [107] for ∆jmax/j0 � 1, as demonstrated in Figure
3.2. However, a good agreement is also found at moderate ∆jmax/j0. Hence,
in accordance with Eq. (3.1.9), the mobility is then obtained from

µ ≈ K 2d2

3At2max

[
1− β∆jmax

βLj0

]
. (3.1.10)

For small β/βL, the carrier density changes negligibly during the extraction
process. On the other hand, at high carrier concentrations or large β/βL, the
recombination sets an upper limit for the extraction current given by

∆jmax
j0

≈ βL
β
, (3.1.11)

as previously pointed out by Juška and co-workers [110, 111]. This upper limit
can be used to estimate the bimolecular recombination coefficient β. We note
that analogous expressions can also be obtained for monomolecular recombina-
tion.12

12In case of monomolecular recombination of carriers (dn/dt = −n/τ) with the lifetime τ ,
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Figure 3.2: The effect of bimolecular recombination on the current transient maximum
tmax (β) for different recombination coefficients. The symbols correspond to numerical data
by Bange et al. [107], whereas the analytical approximations as per Eq. (3.1.9) are indicated
by the solid lines. Here, tmax (0) corresponds to the case without recombination (Eq. (3.1.7)).

3.1.4 Non-uniform carrier distributions

The above considerations all assume that the carrier concentrations are uniform
throughout the active layer at the application of the pulse. This implies either a
doped semiconductor layer, or a uniform photogeneration of carriers prior to the

we instead have n (t) ∝ exp (−t/τ); an analogous treatment then yields for the mobility

µ =
2d2

At2max

[
τ − tmax
3τ − tmax

]
.

For large τ , this relation reduces back to Eq. (3.1.3), whereas in the limit of short lifetimes
(τ � ttr), tmax → τ .
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pulse. In case of non-uniform distributions the above mobility formulas are no
longer valid. For example, in the case of non-uniform absorption encountered in
optically thick layers, the mobility determination becomes strongly dependent
on the absorption coefficient of the film [112].

In dark, on the other hand, thin-film diodes based on organic semiconductors
are inherently undoped, behaving as MIM devices with exponential distributions
of injected carriers (from the contacts); see Section 2.1.2. At low steady-state
voltages, 0 < Voff < Vbi, the injected hole density is to a good approximation
given by

p (x) = p (0) exp
(
−q [Vbi − Voff ]x

kTd

)
. (3.1.12)

At these offset voltages, the drift current is closely balanced by diffusion prior
to the application of the extracting voltage pulse. In case of an injected carrier
distribution Eq. (3.1.12), the mobility can be calculated from [Paper 1]

µ = kTd2

[Vbi − Voff ] qAt2max
, (3.1.13)

at large voltage rise speeds (Atmax � kT/q). In this case, tmax depends on the
potential difference prior to the pulse via t−2

max ∝ (Vbi − Voff). As a result, Vbi
can be estimated from a t−2

max vs. Voff plot by extrapolating to the applied offset
voltage at which the measured t−2

max crosses the Voff-axis [Paper 1].

3.2 CELIV on doped samples; the impact of the
built-in voltage

In the derivation of Eq. (3.1.6), following the treatment by Juška et al. [103],
the presence of a built-in voltage was neglected. If the charge carriers are
doping-induced, the effect of the built-in voltage can no longer be neglected.
Consider a p-doped active layer with a doping concentration p = Np (see Section
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2.3.6). In this case, the extraction is dominated by holes, whereas electrons are
immobilized (in ionized dopant levels). Taking the effect of the built-in voltage
into account, Eq. (3.1.6) is modified as

dw (t)
dt

= µAt

d
− qµNp

2εε0d

[
w (t)2 − w2

0

]
(3.2.1)

as shown in [Paper II], where w (0) = w0 is given by

w0 =

√
2εε0

qNp

[
Vbi − Voff −

kT

q

]
, (3.2.2)

being the familiar steady-state depletion region thickness from Section 2.3.6.
Analytical approximations to Eq. (3.2.1) are readily obtained in the following
two regimes, depending on the voltage rise speed A.

3.2.1 The transport-limited regime

In the A→∞-limit (∆j � j0), Eq. (3.2.1) is simplified as dw (t)/dt ≈ µAt/d,
being otherwise identical to the low-conductivity limit in Section 3.1.1, but now
a part of the carriers within the device has already been extracted prior to the
pulse and w (0) 6= 0. Solving for w(t) and inserting into ∆j (t), one then finds
µ = 2

[
d2 − dw0

]
/3At2max. This expression differs from Eq. (3.1.4) by a factor of

[1− w0/d], which represents the correction due to the presence of a steady-state
depletion region. For moderate conductivities (∆j ∼ j0), we correspondingly
find [Paper II]

µ = 2d2

3At2max

[
1− w0

d

]
K, (3.2.3)

in analogy with Eq. (3.1.7). Consequently, the effect of Vbi and w0 is to reduce
tmax, leading to an overestimation of the mobility if Eq. (3.1.7) is used in this
case. Eq. (3.2.3) is valid as long as the current transient is transport-limited,
j (tmax)� εε0A/w0.
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Figure 3.3: The transition from a transport-limited regime to a doping-induced capacitive
regime is simulated at varying voltage rise speeds A = umax/tpulse. The extraction current
transients becomes capacitive either by (a) decreasing the amplitude umax or (b) increasing
the duration tpulse of the voltage pulse. The analytical expression Eq. (3.2.7) is indicated by
the dashed line in (b).

3.2.2 The capacitive regime

Figure 3.3 shows simulated CELIV current transients of a p-doped device at
different ramp-up rates A. In the limit of small A, corresponding to slowly
changing voltage pulses, a saturation of the current transients is seen. In this
limit, the current transients are limited by the capacitance of the depletion layer.
Depending on the amplitude and pulse length of the voltage pulse, one of the
following two situations may arise.

Low amplitudes, tpulse � tmax

At low amplitudes umax of the applied voltage pulse, or high doping concentra-
tions, the change ∆w = w −w0 in the depletion layer becomes negligibly small
during the pulse. In the limit ∆w (t)� w0, Eq. (3.2.1) approximates as

d

dt
[∆w] ≈ µAt

d
− qNpµw0

εε0d
∆w. (3.2.4)
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Solving Eq. (3.2.4) reveals for the extraction current transient [Paper 2]

j (t) = j0 + j0

[
d

w0
− 1
] [

1 − exp
(
−w0t

dτσ

)]
, (3.2.5)

where τσ = εε0/qNpµ is the dielectric relaxation time. At t � τσ, the cur-
rent saturates to j (t) /j0 → Cw/Cgeo, where Cw = εε0/w0 is the steady-state
depletion-layer capacitance (prior to the pulse). Here, Cgeo = εε0/d is the
geometric capacitance. Concomitantly, the extraction current transient at low
amplitudes is limited by the charging current of the steady-state depletion layer,
with the quasi-neutral region virtually acting as an extension of the contact. A
distinguishing feature of this current regime is that j(t)/j0 becomes independent
of the amplitude for a fixed tpulse (see Figure 3.3(a)).

Long pulses, tpulse � tmax

At large tpulse, when the voltage pulse length is long enough for the electric field
to have time to redistribute (t � τσ), a perpetual screening of the field inside
the quasi-neutral region is taking place during the extraction pulse (F ≈ 0). In
this situation, the dw/dt term in Eq. (3.2.1) becomes negligibly small compared
to the other terms, and the extraction depth can directly be evaluated as

w(t) =

√
2εε0

qNp

[
At+ Vbi − Voff −

kT

q

]
. (3.2.6)

The total extraction current transient at slow pulses is subsequently obtained
as [Paper II]

j (t) = εε0A

w
, (3.2.7)

with w given by Eq. (3.2.6). As a result, the extraction current transient
becomes limited by the displacement current of depletion layer at slow pulses.
A characteristic feature of current transients in the slow-pulse capacitive regime
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is that j (t) /j0 becomes independent of tpulse (when keeping the amplitude
fixed) and depends only on the applied transient voltage (see Figure 3.3(b)).

3.2.3 Using CELIV to measure the built-in voltage and the
doping concentration

At slow pulses, the extraction current transient is directly proportional to the
depletion-layer capacitance. In this case, the extraction current transient can
be used to directly obtain the depletion-layer capacitance as

Cw = j

A
=
(
j

j0

)
Cgeo, (3.2.8)

at the applied voltage u (t) = −At+Voff , where j is given by Eq. (3.2.7). When
plotting the transient current as function of u(t) in this regime, the voltage
dependence of the depletion-layer capacitance can be mapped. From the voltage
dependence of the inverse square of the depletion capacitance (1/C2

w), referred
to as a Mott-Schottky plot [15, 97], the doping concentration and the built-in
voltage can be estimated. In terms of the normalized current transient j/j0, we
can write(

j

j0

)−2
= 2εε0

qNpd2

[
Vbi −

kT

q
− u (t)

]
, (3.2.9)

for w < d. From the slope and the intercept with the u(t)-axis, respectively, the
doping concentration and built-in voltage can be extracted. Note that it is the
(effective) built-in voltage over the depletion region (see Fig. 2.8(b)) which is
extracted in this case. An experimental demonstration of this method, referred
to as CELIV in the doping-induced capacitive regime (doping-CELIV), is shown
in Figure 3.4 on a p-doped P3HT:PCBM device. The method can also be used
to extract the doping profile, as demonstrated by Nyman et al. [Paper 3].
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Figure 3.4: The doping-CELIV method. (a) Experimental extraction current transients at
different voltage pulse lengths tpulse on a p-doped P3HT:PCBM device. The voltage amplitude
is kept fixed at umax = 2 V and the offset voltage is zero. (b) The corresponding Mott-Schottky
plots, (j/j0)−2 vs. At, of the normalized extraction current transients. The device structure
is ITO/MoO3/P3HT:PCBM/LiF/Al, the experimental details are given in [Paper II].

3.3 Extraction of carriers injected into structures with
blocking contacts

In an intrinsic semiconductor, the number of dark charge carriers in a single-
carrier structure is inherently very low at small offset voltages. However, if the
cathode contact is blocking, a significant charge reservoir of holes (injected from
the anode) can be created at the cathode for Voff > Vbi. Juška and co-workers
showed that at large enough offset voltages, the subsequent CELIV extraction
current transient of the injected carrier reservoir becomes space-charge-limited,
allowing for the mobility to be calculated [113, 114]. The blocking contact
is realized by introducing a thin wide-bandgap insulating layer between the
electrode and the semiconductor, thus forming a metal-insulator-semiconductor
(MIS) configuration. This is the basic idea behind the charge extraction of in-
jected carriers by linearly increasing voltage in MIS structures, typically referred
to as MIS-CELIV or i-CELIV [114, 115].
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Figure 3.5: Schematic picture of MIS-CELIV, where the cathode contact has been made
blocking by covering the cathode with a thin insulator layer. (a) At a large enough offset
voltage Voff > Vbi, an injected charge-carrier reservoir can be created at the blocking contact
during dc conditions (prior to the CELIV pulse). (b) The subsequent extraction of these
injected carriers ideally result in space-charge limited extraction current transients (dashed
lines).

3.3.1 Space-charge-limited extraction current transients

Consider a hole-only device structure with a hole-injecting anode and a blocking
wide-bandgap insulator at the cathode. The insulator layer, with the dielectric
constant εi and thickness di, is assumed to be perfectly blocking (Sp = 0). By
applying a large offset voltage that injects holes from the anode, an accumu-
lation of charge carriers can be created at the insulator-semiconductor inter-
face. At dc conditions, the current is identically zero across the semiconductor
(equilibrium). Upon applying the extraction pulse, the total extraction current
transient is obtained as [Paper III]:
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j (t) = j∗0 + ∆j∗ (t) , (3.3.1)

where j∗0 ≡ −C∗geoA and ∆j∗ (t) are the effective average displacement and
conduction currents, respectively, for the semiconductor-insulator system, and
C∗geo = [ds/ε0εs + di/ε0εi]−1 is the total geometric capacitance. A schematic
picture of MIS-CELIV is shown in Figure 3.5.

Provided that a large enough offset voltage is applied for a charge reservoir
to be formed, the corresponding extraction current transient is space-charge-
limited. Under the following simplifying assumptions that i) diffusion is negli-
gible (large extracting electric field), and ii) that the concentration inside the
semiconductor is small (all carriers are concentrated at the insulator interface)
the space-charge-limited extraction current transient for 0 ≤ t ≤ tsc is given by

j (t) = j∗0

[
1 + tan2

(
t

t∗tr
√

1 + f

)]
, (3.3.2)

where t∗tr = ds
√

2 (1 + f)/µA is the small-charge transit time, tsc ≈ 0.92ttr is
the arrival time of the initial front of carriers at the extracting contact, and
f ≡ εsdi/εids is the ratio between the individual geometric capacitances of
the semiconductor and the insulator. The mobility can be extracted using the
relation

µ = π2d2
s

8A∗t21
(1 + f) , (3.3.3)

where t1 is the time at which j (t1) = 2j∗0 , and A∗ ≡ A/(1 + f). At larger times
t > tsc, the extraction current transient approaches

j (t) = j∗0 + [jsat − j∗0 ] tanh2

(
3t

2t∗tr

√
j∗0
jsat

)
, (3.3.4)

where jsat = εiε0A/di is the saturation current due to the displacement current
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Figure 3.6: The MIS-CELIV mobilities, extracted using the original MIS-CELIV formula Eq.
(3.3.3), as obtained from simulated MIS-CELIV extraction current transients at different hole-
injecting contacts. The extracted MIS-CELIV mobilities are normalized to the input mobility.
It can be seen that when the injecting contact is ohmic (pan � 2π2n0), a severe overestimation
of the mobility might occur, depending on the extracting transient voltage A∗t1. At moderate
barriers at the injecting contact, a better agreement is found. The corresponding barriers at
the hole-injecting contacts are 0.27 eV (2π2n0), 0.41 eV (10−1n0), 0.47 eV (10−2n0), and 0.65
eV (10−5n0). In (b), the extracted MIS-CELIV mobility in case of ohmic contacts, using Eq.
(3.3.3) (SCLC) is compared to Eq. (3.3.6) (corrected) that accounts for the ohmic diffusion
current at small A∗t1.

of the insulator. A necessary condition for Eq. (3.3.3) to be valid is jsat > 3.3j∗0
[115]. The analytical derivation of Eq. (3.3.2) and Eq. (3.3.4) are detailed in
the supplementary material of [Paper III].

3.3.2 Effect of diffusion in thin-film devices

In thin-film devices, the above two simplifying assumptions i) and ii) made in the
derivation of the space-charge-limited extraction current transient are generally
only valid in the limit of large extracting electric fields. Moreover, at small
A∗t, the shape of the extraction current transient is also strongly dependent on
the properties of the injecting contact, which might result in large errors in the
mobility determination [Paper III]. The situation is illustrated in Figure 3.6.
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In case of an ohmic injecting contact, the carrier density inside the active
layer at large offset voltages is identical to the case with two symmetric ohmic
contacts and given by Eq. (2.1.14), with the large charge accumulation at
the insulator interface behaving like a reservoir-type contact under the SCLC
extraction process. As a consequence, a non-negligible amount of carriers is
present inside the semiconductor layer under dc conditions. During the extrac-
tion process, these carriers induce an additional ohmic current regime (see Eq.
(2.3.11)),

∆j∗ (t) ≈ −4π2εsε0kTµA
∗t

qd3
s

, (3.3.5)

which dominates over the SCLC transient response at small A∗t1 [Paper III].
This current contribution give rise to an apparent shift of t1 to earlier time
scales, with Eq. (3.3.3) overestimating the mobility under these conditions.
However, the deviation caused by the diffusion-induced ohmic current regime
can be taken into account by introducing a correction factor that modifies the
mobility expression as [Paper III]

µ = π2d2
s

8A∗t21
(1 + f)[

1 + π4kT
2qA∗t1

] . (3.3.6)

For large A∗t1, the original mobility formula Eq. (3.3.3) is reobtained, as ex-
pected.

3.3.3 Using CELIV to measure surface recombination velocity at
blocking contacts

Charge extraction by linearly increasing voltage can also be used to quantify the
injected charge accumulating within the active layer. For a hole-only structure,
the extracted charge is related to the carrier density distribution within the
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active layer in accordance with [116]

Qextr ≡
� textr

0
∆j (t) dt =

� textr

0
Jdt− q

d

� d

0

[� d

x

p (x′, 0) dx′
]
dx, (3.3.7)

where the hole-extracting contact is located at x = 0 and textr is the time at
which the injected holes have been extracted. As demonstrated in Section 2.3.7,
the bias-induced charge reservoir at a blocking contact is directly related to the
associated (effective) surface recombination velocity Sp for voltages Voff > Vbi.
Provided that the magnitude of the dc current J(Voff) is small compared to
the magnitude of transient current response ∆j (t), we find for λ � d that
|Qextr| ≈ |∆Q|, where ∆Q is given by Eq. (2.3.17) [Paper I].13 The surface
recombination velocity can then be calculated from

Sp = 2εε0kT

qQ2
extr

JD × η, (3.3.8)

where JD = J (Voff). Hence, by measuring the extracted charge and dc current
density at different offset voltages Voff > Vbi, the associated surface recombina-
tion velocity at the blocking contact can be estimated. Here, η is a correction
factor that takes DOS filling effects for the accumulated carriers into account; in
the non-degenerate limit η = 1. At very large carrier concentrations, however, η
deviates from unity. For a Gaussian distribution of states, the correction factor
can be numerically approximated as η ≈ 1/erf

(
[− ln (c)]2/3 kT/σ

)
for c ≤ 0.1,

where c = p (d) /N0 at the blocking contact (x = d) [Paper I].

13If pcat at the blocking contact is large, a large charge carrier reservoir may already be
present at Voff = 0. In this case, Eq. (3.3.8) is to be replaced by:

Sp =
J (Voff)

q

[
Q2

extr (Voff)
2εε0kT

− pcat

]−1

=
2εε0kT

q
[
Q2

extr (Voff)−Q2
extr (0)

]J(Voff),

where Qextr (0) =
√

2εε0kTpcat is the accumulated charge at Voff = 0.
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Chapter 4

Charge collection and the effect of
contacts in organic thin-film solar cells

An important application of sandwich-type thin-film diodes is within the area
of thin-film solar cells. The general principle of solar cells is based on utilizing
the built-in asymmetry of the semiconductor diode structure to extract charge
carriers generated by sunlight. In conventional (high-mobility) solar cells, based
on p-n junctions made of crystalline silicon, the built-in asymmetry is mainly
provided by charge selectivity. In thin-film organic solar cells, based on low-
mobility semiconductors, however, a different situation applies. The charge
collection in organic solar cells has generally been analyzed in accordance with
the MIM model. However, the charge collection in these devices is also sensi-
tive to doping-induced space-charge regions and surface recombination at the
contacts. In this chapter, the interplay between charge transport, recombina-
tion, and contact properties in sandwich-type solar cells, based on low-mobility
semiconductors with optically thin active layers, is investigated. The theoretical
findings provide tools to identify and distinguish between various loss mecha-
nisms in organic BHJ solar cells.

77



Chapter 4. Charge collection and the effect of contacts in organic thin-film solar cells

4.1 Charge transport and recombination in organic
solar cells

The typical single-absorber layer organic solar cell structure constitute a light-
absorbing active BHJ layer, typically a polymer-fullerene blend, which is sand-
wiched between a hole-collecting anode and an electron-collecting cathode. The
total (steady-state) current density under illumination can generally be ex-
pressed as

J = −qGd+ q

� d

0
βRn

2
i

[
exp

(
qVint (x)
kT

)
− 1
]
dx+ Jn (0) + Jp (d) , (4.1.1)

where qVint (x) = EFn (x)−EFp (x) is the quasi-Fermi level difference inside the
active layer and G is the average photogeneration rate, qGd ≡ q

� d
0 GL (x)dx.

The active layer is assumed to be optically thin. The open-circuit conditions
are reached at the voltage V = Voc when the total current J = 0, correspond-
ing to conditions when the total photogeneration is exactly balanced by (bulk
and surface) recombination. Ideally, the contacts are selective, meaning that
no carriers are extracted and/or injected at the wrong electrode (electrons at
anode, holes at cathode); in this case, losses due to surface recombination (of
the minority carriers) are absent and Jn (0) = Jp (d) = 0.

4.1.1 Negligible recombination between photoinduced carriers

Taking the contacts to be ideal in terms of charge-carrier selectivity and energy
levels, all recombination occur within the bulk. Under conditions when pho-
toinduced carriers are extracted fast enough, or have a low enough density, for
the recombination between photogenerated carriers to be negligible compared to
the recombination of the injected background carriers, JR can be approximated
by its corresponding dark current so that

J = −qGd+ JR,0 (V )
[
exp

(
qV

kT

)
− 1
]
, (4.1.2)
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where JR,0 is the dark saturation current for bulk recombination (see Section
2.4.1). At short-circuit conditions, all photoinduced carriers are collected during
operating solar cell conditions and the net photocurrent, Jph = Jillum−Jdark, is
saturated: Jph,sat = −qGd. This situation is encountered in active layers with
(relatively) high mobilities, or at low illumination levels when the recombination
within the bulk is negligible.

In the ideal case, when external recombination channels (such as recombi-
nation via traps) are absent, the only loss mechanism is by direct bimolecular
recombination inside the bulk. In this case, Eq. (4.1.2) simplifies as

J = −qGd+ qβRn
2
i d

[
exp

(
qV

kT

)
− 1
]
. (4.1.3)

The open-circuit voltage (J (Voc) = 0), i.e. the voltage at which the photogen-
eration current is exactly balanced by the recombination current, is given by
[51, 117, 118]

qVoc,max = Eg − kT ln
(
βRNcNv
Gtot

)
, (4.1.4)

where Gtot = G + βRn
2
i . This corresponds to the maximum attainable open-

circuit voltage. Under normal illumination conditions, the external photogener-
ation rate (G) is much larger than the thermal generation rate (βRn2

i ), and in the
remainder of this work, we assume Gtot = G. Note that if βR ∝ exp (∆ECT /kT )
(see Section 1.3.3), we obtain qVoc ∝ ECT , where ECT is the energy of the CT
state (see e.g. 3.3.2 and 3.3.3 in Ref. [22], and the work by Koen Vandewal and
co-workers [61, 119, 120]).

Eq. (4.1.4) is valid for situations when second-order (bimolecular) recombi-
nation is the dominating recombination mechanism for free carriers inside the
bulk, provided that surface recombination is absent. In the case of additional
bulk recombination channels, such as trap-assisted recombination, a voltage de-
pendence in βR is to be expected, as discussed in Section 2.4.1. Accordingly, for
a free-carrier recombination rate of the order δ, we expect
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qVoc ∝ mkT ln
(
G/m−3s−1), (4.1.5)

where the slope m, referred to as the light ideality factor, is given by mR ≡
2/δ [118] [Paper 10]. When trap-assisted recombination (via midgap states)
dominates, we have mR = 2 [121]. If the dominating bulk recombination
mechanism between free carriers occurs through trap-assisted recombination
via tail-states having an exponential distribution [Paper 5], one instead expects
mR ≈ 2/ (1 + kT/Ech), where Ech > kT is the characteristic trap depth [122].
Light-intensity-dependent Voc measurements, sometimes also referred to as the
Suns-Voc method [101], can thus be used to probe the dominating recombination
mechanism.

4.1.2 Charge transport vs. bulk recombination

In low-mobility semiconductors, the charge collection of photogenerated carriers
is generally also limited by the charge transport [123–127]. The shape of the
photocurrent is subsequently determined by the competition between charge-
carrier extraction and recombination in the active layer, and depends on the
dominating recombination mechanism.

The case with constant lifetimes

The case when photogenerated carriers have a constant bulk recombination
lifetime is discussed briefly here. This type of situation may occur when trap-
assisted recombination via deep trap-states is dominate (cf. section 2.4.1): the
lifetime for holes in the (electron-dominated) cathode side of the active layer is
given by τp, whereas the lifetime of electrons in the (hole-dominated) anode side
of the active layer is given by τn. In case of constant recombination lifetimes,
the current is typically analyzed in accordance with the Hecht equation [128].
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This equation assumes that the transport of photogenerated carriers is drift-
dominated and neglects diffusion. The electric field is assumed constant (of
x), with the electron and hole current being zero at the anode and cathode,
respectively (selective contacts). The current is then given by [129]

Jph = −qGd
(
Ldr
d

)[
1− exp

(
− d

Ldr

)]
, (4.1.6)

for F ≤ 0, where Ldr = Ldr,n + Ldr,p and

Ldr,n = µnτn |F | , (4.1.7)

Ldr,p = µpτp |F |

are the drift lengths for electrons and holes, respectively. As expected, at high
electric field strengths, when Ldr � d, Jph → −qGd. Under these circum-
stances, the photoinduced carriers are extracted fast enough to avoid recom-
bination within the active layer. Conversely, for Ldr � d, the recombination
within the active layer is substantial and the magnitude of the photocurrent is
heavily reduced: Jph ≈ qG [µnτn + µpτp]F . The µτ -product represents the key
material parameter to be maximized to enhance charge collection.

The case with bimolecular bulk recombination

An expression analogous to the Hecht equation can also be obtained for the
case when bimolecular bulk recombination dominates. If the impact of the dark
carriers is negligible and the currents are dominated by drift, the continuity
equations simplify as

µnF
dn

dx
= −G+ βRnp, (4.1.8)

µpF
dp

dx
= G− βRnp, (4.1.9)

assuming the electric field to be uniform. Then, for selective contacts and
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F ≈ (V − Voc) /d, the photocurrent takes the form14

Jph =

qµeff

√
G
βR

(V−Voc)
d if L∗dr � d,

−qGd if L∗dr � d,
(4.1.10)

where L∗dr = µeff |F | τβ is an effective drift length, µeff = 2√µnµp is the effective
mobility, and τβ = 1/

√
βRG is the bimolecular recombination lifetime. When

the recombination is substantial (L∗dr � d), the photocurrent is linear with the
voltage (analogous to Eq. (4.1.6)); however, a square-root dependence of the
generation rate is obtained, Jph ∝

√
G. Conversely, when the bulk recombina-

tion is negligible, corresponding to the limit of large mobilities, strong electric
fields, and/or low intensities, the magnitude of the current saturates to its max-
imum value |Jph| = qGd. The characteristic material parameter that needs to
be maximized in this case is µnµp/βR.

In the derivation of Eq. (4.1.10), the impact of the injected carriers was
neglected. In the general case described by Eq. (4.1.1), however, the current is
governed by both photogenerated and injected carriers, recombining with each
other. An analytical current expression that accounts for the injected carriers
can be obtained by making the effective approximation

� d
0 exp (qVint/kT )dx =

d exp (q [V − JReff ]/kT ) in Eq. (4.1.1), where Reff = exp (−q [V − JReff ] /2kT )
× [d/qµeffni] is the associated transport resistance (per unit area) of the active
layer [125, 130]. Based on these considerations, Neher et al. showed that the

14For a uniform F < 0, taking Jn (0) = Jp (d) = 0, the solutions to Eq. (4.1.8) and Eq.
(4.1.9) are given by n (x) = n−

√
µp/µn and p (x) = n+

√
µn/µp, where

n+/− = A

√
G

βR

{
tan
(
Ad
L∗
dr

)
± tan

(
A
L∗
dr

[d− 2x]
)}

and 0 ≤ A = cos
(
Ad/L∗dr

)
≤ 1. The current, Jph = qn (x)µnF + qp (x)µpF , then reads

Jph = −qGL∗dr sin
(
Ad
L∗
dr

)
,

where: i) A → πL∗dr/2d for Ldr � d, and ii) A → 1 for L∗dr � d.
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current can be approximated as [131]

J = −qGd
{

1− exp
[
q (V − Voc)
(1 + α) kT

]}
, (4.1.11)

where qVoc = kT ln
(
G/βRn

2
i

)
as per Eq. (4.1.4), and α = (d/L∗)2 with L∗ =√

µeffkTτβ/q. Eq. (4.1.11) reproduces the photocurrent [Eq. (4.1.10)] in the
limit of significant (α � 1) and negligible (α � 1) bulk recombination, and
reduces to Eq. (4.1.3) under conditions when the transport is not limiting the
current-voltage characteristics.

4.1.3 Diffusion-limited photocurrents

The above considerations all assume selective contacts and neglects the impact
of diffusion and surface recombination. However, taking the electric field to be
independent of x, the drift-diffusion equations can be solved analytically for the
case of negligible bulk recombination. This type of situation was considered
by Sokel and Hughes for a device with non-selective and non-injecting contacts
(ncat/an = pcat/an → 0). For this case, the photocurrent becomes [132]

Jph = −qGd

1− 2

 kT

q (Vbi − V ) −
1

exp
(
q[Vbi−V ]

kT

)
− 1

 . (4.1.12)

In this limit, the charge collection of photo-carriers is limited by diffusion and
the recombination is exclusively taking place by surface recombination at the
contacts. The effect of diffusion becomes important for voltages close to the
built-in voltage where a considerable surface recombination is present. The
open-circuit condition is obtained at Voc = Vbi, when the extraction of electrons
(holes) at the cathode (anode) is exactly balanced by an equal extraction of
holes (electrons) at the same contact, resulting in a zero net current.

The effect of introducing bulk recombination and injecting contacts mainly
give rise to additional recombination channels, resulting in Voc < Vbi. Con-
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comitantly, the implication of Eq. (4.1.12) is that when both contacts are non-
selective, the upper limit of Voc is generally given by the built-in voltage [22, 100,
133]. The saturation of Voc to Vbi at low temperatures or high light intensities
is a clear indication that both contacts are non-selective. This indeed occurs in
organic Ca/Al/P3HT:PCBM/PEDOT:PSS solar cells, suggesting that Ca/Al
and PEDOT:PSS both form non-selective contacts in these devices [133]. The
impact of surface recombination, and the role of the charge-carrier selectivity
at the contacts is clarified in the next section.

4.2 The role of the contacts

In this section, the correlation between surface recombination, the energy levels
at the contacts, and the role of charge-carrier selectivity at the contacts in
thin-film solar cells based on low-mobility semiconductors is clarified.

4.2.1 Simplified analytical model

Insights into how surface recombination and the charge-carrier selectivity, char-
acterized in terms of the surface recombination velocities, at the contacts impact
the photocurrent can be gained by extending the analysis of negligible bulk re-
combination (R = 0), discussed in Section 4.1.3 above, to the case with finite
surface recombination velocities and injecting contacts. In the following, we
assume the extraction of majority carriers (holes at the anode, electrons at the
cathode) to be ideal (SP = SN →∞). Then, for conditions when space-charge
effects and bulk recombination are negligible, an analytical solution for the cur-
rent can then be obtained as

J = −qGd [1− fS ] + JS,0

[
exp

(
qV

kT

)
− 1
]
, (4.2.1)

where
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fS =

 kT

q (Vbi − V ) −
1

exp
(
q[Vbi−V ]

kT

)
− 1


[

1
1 + vn

Sn

+ 1
1 + vp

Sp

]
(4.2.2)

describes the surface-recombination-induced reduction of the photocurrent, JS,0
is the dark saturation current component given by Eq. (2.4.8), and

vp(n) =
µp(n) [Vbi − V ]

d
[
1− exp

(
q[V−Vbi]

kT

)] (4.2.3)

is the diffusion velocity for holes (electrons), as before.15 The current Eq. (4.2.1)
is illustrated in Figure 4.1 for the case when the contacts are non-injecting
(JS,0 → 0), corresponding to the upper limit for the photocurrent (for V < Voc)
and the open-circuit voltage as set by the contacts. When both contacts are
non-selective, i.e. Sn(p) � vn(p), Eq. (4.2.1) reduces back to Eq. (4.1.12), as
expected. In this case, the built-in driving force for charge extraction is solely
provided by the built-in voltage Vbi, being the upper limit of the open-circuit
voltage.

By reducing the surface recombination velocity at one of the contacts, in
this case at the cathode, to such an extent that Sp < vp (for voltages below
Vbi), the open-circuit voltage can be increased beyond the built-in voltage. This
is demonstrated in Figure 4.1(a). In the absence of injection, the effect of

15For electrons, Jn (0)− qGx′ = qµnFn (x′) + µnkTdn/dx′, where F = [V − Vbi]/d. Mul-
tiplying with exp (qFx′/kT ) and integrating from x′ = 0 to x′ = x we find

n (x) = n (0) e−
qF x
kT +

Jn (0)
qµnF

[
1− e−

qF x
kT

]
−

GkT

qµnF 2

[
e−

qF x
kT +

qFx

kT
− 1
]
.

With the conditions n (d) = nan exp (qVbi/kT ) and n (0) = Jn (0)/qSn + nan, solving for
Jn (0) yields

Jn (0) =
qvn

1 + vn/Sn

{
nan
[
eqV/kT − 1

]
+

Gd

µnF

[
kT

qFd
+
(

1−
kT

qFd

)
e

qF d
kT

]}
.

An analogous expression can be obtained for Jp (d). The total current is given by J =
−qGd+ Jn (0) + Jd (d).
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Figure 4.1: Normalized photocurrents of Eq. (4.2.1) for a device with different surface recom-
bination velocities for holes (Sp) and electrons (Sn) at the cathode and anode, respectively,
under conditions when both the bulk recombination and the space-charge effects are negli-
gible (R = ρsc = 0). The parameters used are µp = µn = 10−4 cm2/Vs and d = 100 nm,
corresponding to vp,n = µp,nkT/qd ≈ 0.26 cm/s at V = Vbi.

increasing the selectivity at one of the contacts is to increase the open-circuit
voltage by

∆S ≈
kT

q
ln
(

1 + µpkT

qSpd

)
. (4.2.4)

However, as Sp is decreased, an additional s-shape feature is developed in the
J-V curve for Vbi < V < Voc, the photocurrent changing from −qGd/2 to 0.
The reason for the low current levels within this voltage regime can be traced
back to the electric field reversing its sign when V > Vbi. As the (reversed)
electric field increases, more electrons are driven in the wrong direction towards
the non-selective anode, resulting in a considerable surface recombination of
electrons at the anode, and reduced current levels.

This issue can be overcome by increasing the selectivity at both contacts
simultaneously, to such an extent that Sp � vp and Sn � vn. In this case, the
surface recombination at both contacts is significantly reduced and the overall
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curve, along with the open-circuit voltage, can be shifted to larger voltages, as
demonstrated Figure 4.1(b). Although the electric field is reversed for Vbi <
V < Voc, the charge collection remains efficient, this is because the surface
recombination is negligible below the open-circuit conditions (the photoinduced
carriers accumulate in the active layer until they diffuse out at the collecting
contacts). In this case, the photocurrent is purely diffusion-driven and the built-
in asymmetry is provided by the charge selectivity of the contacts [21].

The above analysis does not account for losses due to bulk recombination.
The effect of bulk recombination is to introduce an upper limit to the open-
circuit voltage (as given by Eq. (4.1.4)) and reduce the magnitude of the pho-
tocurrent at voltages around V = Voc [134]. We note, however, that in case of
ohmic contacts, also an additional photocurrent multiplication effect might be
present in the forward bias at V > Voc [135]. In the remainder of this section,
the interplay between surface recombination, bulk recombination, and injection
from the contacts is clarified.

4.2.2 Competition between bulk recombination and surface
recombination in case of ohmic contacts

Figure 4.2 shows the effect of bulk recombination and injection on the J-V curves
of solar cells with (a) perfectly selective (Sp = Sn → 0) and (b) non-selective
(Sp = Sn → ∞) ohmic contacts. In the ideal case with perfectly selective
contacts, bulk recombination presents the only recombination channel. In this
case, the open-circuit voltage is given by Eq. (4.1.4), as expected. However,
in case of non-selective contacts, losses due to surface recombination become
significant, limiting the open-circuit voltage at low bulk recombination rates.

Figure 4.3 shows the corresponding open-circuit voltages, simulated for a so-
lar cell device with ohmic contacts at different surface recombination velocities.
For ohmic contacts, the open-circuit voltage can generally be expressed as
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Figure 4.2: Simulated J-V curves for a solar cell device with ohmic contacts is shown at
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case with non-selective contact (Sp = Sn →∞). The surface recombination (at non-selective
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Figure 4.3: The corresponding open-circuit voltages of the solar cell devices with ohmic con-
tacts considered in Figure 4.2 at the different βR. The open-circuit voltage is shown as a
function of the surface recombination velocity Sp = Sn. The analytical approximations Eq.
(4.2.5), with v∗p = v∗n given by Eq. (4.2.8), are indicated by the black dashed lines.
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qVoc = Eg − kT ln
(

[βR + βS ]NvNc
G

)
, (4.2.5)

where βS = βS,n+βS,p is an effective recombination coefficient describing surface
recombination of minority carriers at the contacts [Paper IV]. For holes at the
cathode,

βS,p =
v∗ppcat

n2
i d

[
1 +

v∗p
Sp

]−1

, (4.2.6)

where

v∗p = µpkT
q ×

[� d
0
Jp(x)
Jp(d) exp

(
EF,cat−ϕcat−Ev(x)

kT

)
dx
]−1

. (4.2.7)

Analogous expressions are valid for electrons at the anode.16

An analytical approximation of Eq. (4.2.7) can be obtained for ohmic con-
tacts when surface recombination is dominating under open-circuit conditions.
Assuming Boltzmann statistics, it can then be shown that [Paper IV]

v∗p ≈
µpkT

qλcat
. (4.2.8)

The agreement between the simulations and the analytical approximation is
excellent. Note that the light-intensity dependence in Eq. (4.2.5) (the light
ideality factor) when surface recombination (at ohmic contacts) dominates is
the same as when bimolecular bulk recombination dominates, i.e. m = 1. At

16For surface recombination of electrons at the anode, we instead obtain

βS,n =
v∗nnan

n2
i d

[
1 +

v∗n
Sn

]−1
,

where

v∗n =
µnkT

q
×
[� d

0

Jn (x)
Jn (0)

exp
(
−
EF,an + ϕan − Ec (x)

kT

)
dx

]−1

.

89



Chapter 4. Charge collection and the effect of contacts in organic thin-film solar cells

large Sp (= Sn), the surface recombination is diffusion-limited, with Voc being
independent of Sp. In this case, Eq. (4.2.5) predicts a mobility dependence of the
open-circuit voltage when surface recombination is dominating (high mobilities
and low βR), consistent with previous studies [51, 89, 136]. At small enough Sp,
in turn, when Sp < v∗p, the surface recombination is instead limited by interface
kinetics at the contacts. Based on Eq. (4.2.5), the requirement for the cathode
contact to be selective is βS,p < βR, corresponding to Sp < βRncatd.

The surface recombination at V = Voc also increases with decreasing active
layer thickness, βS,p ∝ 1/d. Noting that the average photogeneration rate is
related to the saturated photocurrent via |Jph,sat| = qGd, the dark saturation
current J0 = |Jph,sat| exp (−Voc/kT ) will then be independent of d if surface
recombination is dominating, whereas a linear dependence of d is expected when
bulk recombination dominates. This was recently demonstrated by Zonno et
al. [137]; based on this method, organic solar cell structures where surface
recombination is dominating could be experimentally identified. It should be
stressed, however, that a different situation applies in the case when one or both
of the contacts are non-ohmic.

4.2.3 Interplay between bulk recombination and surface
recombination at non-ohmic contacts

The case when one of the contacts is non-ohmic is considered next. A non-
ohmic contact might be the result of non-optimized or degraded energy levels at
the electrode. In particular the energetics at low-WF metal cathodes (which are
sensitive to oxygen) and metal-oxide-based electrodes is known to change during
operating and/or processing conditions [138–142]. Figure 4.4 shows the effect
of a non-ohmic contact at the cathode. Here, the anode is assumed perfectly
selective (Sn = 0) and ohmic for holes. Depending on whether the surface
recombination of holes at the cathode is limited by diffusion (large Sp) or by
interface kinetics at the cathode contact (small Sp), different scenarios might
occur.
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Figure 4.4: The effect of a non-ohmic contact at the cathode. In (a) and (b), the simulated J-V
curves for the case when the cathode contact is non-selective (Sp →∞) and perfectly selective
(Sp → 0) at different electron-injection barriers ϕn at the cathode, assuming ζ = 3×10−2. The
short-dashed line depicts the case when the cathode contact is ohmic. In (c), the corresponding
open-circuit voltage as a function of Sp, at different βR = ζβL, is shown for ϕn,cat = 0.4 eV.
The insets in (c) shows typical energy level diagrams at open-circuit conditions for large Sp
(upper diagram, to the right) and small Sp (lower diagram, to the left). In the simulations,
the anode is assumed perfectly selective (Sn = 0) and ohmic for holes; the other parameters
are the same as in Figure 4.2 and Figure 4.3.
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Diffusion-limited surface recombination

If the cathode is non-selective (Sp � vp), two competing loss mechanisms will
be present: diffusion-limited surface recombination (of holes at the cathode)
and bulk recombination. When the density of photoinduced carriers is small
(low intensities), nph � ncat = Nc exp (−ϕn,cat/kT ), the open-circuit voltage
is controlled by the dark current. In this case, if JS,0 � JR,0, the bulk re-
combination is dominating and the open-circuit voltage is directly given by Eq.
(4.1.4). Conversely, if JS,0 � JR,0, the bulk recombination is negligible and
surface recombination dominates at open-circuit conditions; as per Eq. (4.2.1),
the open-circuit voltage for Voc ≤ Vbi then reads

qVoc = Eg − ϕn,cat − kT ln
(
v∗pNv

Gd

)
, (4.2.9)

where v∗p = vp/ [1− fS ], with vp given by Eq. (4.2.3) and fS given by Eq.
(4.2.2) (with Sn = 0 and Sp =∞). In this situation, the open-circuit voltage is
limited by diffusion-induced surface recombination of holes at the cathode. For
Vbi − Voc � kT/q, v∗p can be approximated as

v∗p ≈
µp [Vbi − Voc + kT/q]

d
. (4.2.10)

As Voc → Vbi, however, the surface recombination current Jp (d) (balanced by
−Jn (d)) is maximized; a further increase in Voc is compensated by an equal
reduction in b/q (effective increase in Vbi), leaving the flat-band condition un-
changed, and v∗p → 2µpkT/qd [Paper IV]. The open-circuit voltage as a func-
tion of the light intensity is shown in Figure 4.5(a).

At intermediate carrier concentrations, when i) the electron density nbulk

well inside the active layer is high enough for bulk recombination to become
limiting (nbulk ∼

√
G/βR), and ii) nbulk > ncat, a transition from the low-

concentration limit to an intermediate regime takes place. In this case, the
surface recombination-controlled zone is restricted to a region of thickness L∗ ≈
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√
µeffkTτβ/q adjacent to the cathode (at open-circuit conditions) [Paper IV].

The surface recombination at the cathode is accompanied by an internal voltage
loss ∆EFn = kT ln (nbulk/ncat) over this region [Paper V]. The corresponding
open-circuit voltage can then be found as

qVoc = Eg − ϕn,cat −
kT

2 ln
(
µpβRNv
µnG

)
. (4.2.11)

An interesting feature of Eq. (4.2.11) is the factor of 1/2 appearing in front of
the logarithm, implying that the light ideality factor is halved (m = mR/2), with
respect to the one expected for Eq. (4.1.4), when this regime is entered. This
feature was recently verified by light-intensity-dependent Voc measurements by
Solak et al. [143, 144], and is consistent with experimental Voc-T characteristics
presented by Rauh et al. [133]. The above analytical findings (Eq. (4.2.9) and
Eq. (4.2.11)) are also consistent with recent work by Spies et al. [145]. Note that
the open-circuit voltage is directly proportional to the injection barrier (or the
WF of the non-ohmic contact), this is a characteristic feature of when a contact
(in this case the cathode) is limiting the open-circuit voltage [118,146,147].

We note that, if also the anode is allowed to be non-selective (Sn � vn),
at high enough carrier concentrations, the photoinduced carrier densities within
the active layer eventually exceed the majority carrier densities at both contacts
(nbulk > ncat, pan). In this case, the situation discussed in Section 4.1.3 is
approached and the open-circuit voltage saturates as Voc → Vbi,0 = [Eg−ϕn,cat−
ϕp,an]/q. This kind of situation might arise either at high light intensities, low
temperatures, or high injection barriers at the contacts, however, only if both of
the contacts are non-selective [22]. If the bulk recombination dominates within
the active layer, the open-circuit voltage can in this case be summarized by

qVoc ≈ Eg −max
(
ϕn,cat ,

kT
2 ln

[
µnβRN

2
c

µpG

])
−max

(
ϕp,an ,

kT
2 ln

[
µpβRN

2
v

µnG

])
,

(4.2.12)

for non-selective contacts, as pointed out in [Paper V].
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Figure 4.5: (a) Open-circuit voltage as a function of the photogeneration rate (light intensity),
for a solar cell device with a non-selective contact at the cathode. The cases for strong and
weak bulk recombination are shown. The black lines correspond to Eq. (4.1.4) (short-dashed),
Eq. (4.2.9) (dashed), and Eq. (4.2.11) (solid). The corresponding light ideality factors are
indicated by the numbers. (b) The increase of the open-circuit voltage obtained by decreasing
the surface recombination velocity for holes at the cathode is demonstrated. At non-selective
contacts, the surface recombination is limited by diffusion. As the charge-carrier selectivity
is increased, the surface recombination becomes limited by interface kinetics at the cathode
contact. The solid black lines correspond to Eq. (4.2.13). The anode is assumed perfectly
selective and ohmic for holes (Sp = 0).

Interface-kinetic-limited surface recombination

We return to the case with Sn = 0 and variable Sp, presented in Figure 4.4(c).
At small Sp, an increase of the open-circuit voltage is obtained. This occurs
when Sp < v∗p and the surface recombination of holes becomes limited by kinetics
at the cathode contact. As the open-circuit voltage is increased beyond Vbi,
however, an s kink is developed in the J-V curve [Paper VI]. Analogous to
the situation in Figure 4.1(a), this occurs when the average electric field with
the active layer is reversed. This is demonstrated in Figure 4.4(b) for the limit
Sp = Sn = 0, when surface recombination is absent and the open-circuit voltage
is fixed at Voc = Voc,max, as given by Eq. (4.1.4). It can be seen that as Vbi
(= [Eg − b− ϕn,cat]/q) is decreased below Voc, with increasing injection barrier,

94



Chapter 4. Charge collection and the effect of contacts in organic thin-film solar cells

the inflection point of the s kink is shifted in the negative voltage direction (the
interval Vbi < V < Voc,max grows larger). Noting that a large accumulation
of injected holes is present at the hole-blocking cathode contact for V > Vbi

(Section 2.3.7), the low current levels at Vbi < V < Voc are in this case mainly
caused by the recombination of photogenerated carriers (diffusing against the
electric field) with injected holes.

The behavior in the Sp-dependent Voc region, seen at moderate Sp in Figure
4.4(c), can be explained in the following way. When bulk recombination is sig-
nificant at open-circuit conditions, on average, only electrons within a distance
L∗∗n from the cathode can be extracted at the cathode: Jn (d) = −qGL∗∗n . Here,
L∗∗n =

√
µnkTτ

∗∗
n /q is a reduced effective diffusion length for electrons, with

τ∗∗n being the associated recombination lifetime. Since electrons are predom-
inantly recombining with injected holes accumulating at the cathode contact,
we expect τ∗∗n ∼ 1/βRp (d), where p (d) = pcat exp (qVoc/kT ) in accordance with
Eq. (2.3.16). At V = Voc, this electron current is exactly balanced by an
interface-kinetic-limited surface recombination current of holes at the cathode,
Jp (d) = qSpp (d). The corresponding open-circuit voltage can then be obtained
as

qVoc = Eg − ϕn,cat −
2
3kT ln

(
K
SpN

3/2
v

G

)
, (4.2.13)

where K ∼ (µnkT/qβR)−1/2 is determined by material parameters of the active
layer; a more rigorous treatment yields [Paper IV]

K ≈ βR
µn

√
8εε0

kT

[√
1 + 8εε0βR

qµn
+ 1
]−1

, (4.2.14)

related to L∗∗n via L∗∗n = K−1/
√
p (d). A distinguishing feature of Eq. (4.2.13)

is the additional factor of 2/3 in front of the logarithm. Consequently, under
conditions when bulk recombination dominates within the active layer, but the
open-circuit voltage is controlled by interface-kinetic-limited surface recombina-
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tion at the non-ohmic contact, a light ideality factor of m = 2/3 is expected;
see Figure 4.5(b). This is experimentally verified in Section 4.4.3.

In general, Eq. (4.2.13) is no longer valid when either i) the recombination
within the bulk is small, corresponding to low light intensities and/or high mo-
bilities, or ii) Sp → 0, corresponding to the case when the surface recombination
becomes negligible compared to the recombination in the bulk. After taking the
cases i) and ii) into account, Eq. (4.2.13) can be generalized as [Paper IV]

qVoc = Eg − kT ln


[
βR + Sp

ncatdeff

]
NcNv

G

, (4.2.15)

for Sp � v∗n, where deff = L∗∗n for L∗∗n � d and deff = d for L∗∗n � d. Con-
sequently, at negligible bulk recombination (deff = d), the open-circuit voltage
simplifies as qVoc = Eg − ϕcat − kT ln (SpNv/Gd). Under these conditions, a
situation similar to the case depicted in Figure 4.1(b) is encountered.

On the other hand, when the hole surface recombination velocity at the cath-
ode becomes small enough for Sp < βRncatdeff , the open circuit voltage saturates
to the upper limit set by bulk recombination: Voc → Voc,max. Hence, to avoid
losses due to surface recombination, Sp needs to be smaller than βRncatdeff .
Unsurprisingly, for a smaller electron-injection barrier (i.e. larger ncat/smaller
pcat) and/or a larger bulk recombination coefficient, a less selective contact is
required in order to avoid surface recombination. Note that for ohmic contacts
(deff → d), Eq. (4.2.15) becomes identical to Eq. (4.2.5) (with Sp � v∗p and
Sn = 0).

4.2.4 Poor extraction of majority carriers at the contacts

Thus far we assumed the extraction of majority carriers at the contacts, i.e.
holes at the anode and electrons at the cathode, to be excellent (SP = SN →∞).
In the following, we consider the case when this assumption is violated. A re-
duced extraction rate of electrons at the cathode contact may be caused by poor
interface quality, the formation of an unintentional oxide layer at the contact
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Figure 4.6: The case with non-ideal extraction of majority carriers at the cathode. In (a)
simulated current-voltage curves for a device under illumination with different reduced surface
recombination velocities SN for electrons at the cathode are shown. In (b), the corresponding
currents are plotted vs. (V −Vbi,eff), where Vbi,eff ≡ Vbi−∆S and ∆S is given by Eq. (4.2.16).
The dashed thin line corresponds to the case SN → ∞, but where the injection barrier at
the cathode has been increased by the corresponding ∆S for SN = 10−9 cm/s. The bulk
recombination within the active layer is strong; the parameters are given in [Paper V].

[29, 148, 149], or if an energy barrier (energy level offset) for extraction is present
at the active layer-electrode interlayer interface [150, 151]. This may qualita-
tively be described by an effectively reduced surface recombination velocity for
electrons at the cathode SN (see Section 2.2.2).

The effect of a reduced surface recombination velocity SN for electrons at the
cathode is shown in Figure 4.6. Under conditions when SN is significantly re-
duced, a considerable electron accumulation of majority carriers will be present
at the cathode contact [29]. The corresponding J-V curve is plagued by an
s kink in the fourth quadrant, as illustrated in Figure 4.6(a). The behavior
in Figure 4.6(a) is inverted relative to the one in Figure 4.1(a), with the J-
V curve below Voc in this case being shifted in the negative voltage direction
with decreasing SN . Analogous to Eq. (4.2.4), this shift can be described by
∆S = kT ln

(
1 + µnkT/qSN L̃n

)
, where d has been replaced by an effective

diffusion length L̃n to account for recombination of electrons inside the active
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layer [Paper V]. If the recombination inside the active layer is significant, the
cathode side of the active layer (x > d/2) is dominated by electrons and we may
approximate L̃n ≈ d/2. Hence,

∆S = kT ln
(

1 + 2µnkT
qSNd

)
. (4.2.16)

As demonstrated in Figure 4.6(b), Eq. (4.2.16) may be interpreted as an effective
increase of the electron-injection barrier at the cathode. Below the open-circuit
voltage, the solar cell thus behaves as a device having an effectively reduced
built-in voltage Vbi,eff = Vbi −∆S/q.

4.3 The impact of space charge on the photocurrent

The charge collection in low-mobility semiconductor devices is also strongly
sensitive to the presence of space-charge regions [127, 152–157]. The effect
of a space-charge region is to redistribute the electric field within the active
layer, typically resulting in inefficient charge collection and large recombination.
Space-charge-limited photocurrents caused by doping and imbalanced mobili-
ties, either within the active layer or in the vicinity of the contact, are discussed
in this section.

4.3.1 The influence of a doping-induced space-charge region

A source for degraded device performance in low-mobility solar cells is uninten-
tional doping of the active layer [97]. The doping can be caused by impurities
[Paper 6], or oxidation of the active layer in presence of oxygen and/or water
(see [Paper II] and references therein). If the active layer is p-doped, with a
high enough concentration of negatively charged dopants within the active layer,
a depleted space-charge region (SCR) of thickness w0 < d is formed within the
layer, adjacent to the cathode (see Section 2.3.6). Within the SCR, the charge
collection is driven by the electric field, while in the rest of the active layer (the
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field-free quasi-neutral region), the charge collection is driven by diffusion [158].

Since the electric field is mainly concentrated to the thin space-charge region,
the recombination of photogenerated carriers within thin region is expected to
be negligible, and the photocurrent density can be expressed as Jph = −qGLw0+
JNR, where JNR is the photocurrent contribution from the quasi-neutral region.
The hole density within the hole-dominated quasi-neutral region is assumed to
be unchanged under illumination and given by p = Np. The current JNR is
then exclusively consisting of electrons with a characteristic diffusion length
and lifetime given by

Ln =

√
µnτnkT

q
, τn = 1

βRNp
, (4.3.1)

respectively, within the quasi-neutral region. Assuming that the depletion region
is acting as a sink for photoinduced electrons (n (xj) ≈ 0), the diffusion-driven
electron current Jn (x) = qDndn/dx originating from the quasi-neutral region
can be obtained,17 where xj = d − w0 is the thickness of the quasi-neutral
region. Neglecting surface recombination at the anode (Jn (0) = 0), the current
contribution from the quasi-neutral region is found as

JNR = −q
� d−w0

0

[
G− n

τ

]
dx = −qGLn tanh

(
d− w0

Ln

)
. (4.3.2)

We note that, under conditions when the diffusion length is much shorter than
the thickness of the quasi-neutral region, the diffusion current simplifies as
JNR ≈ −qGLn.

17The continuity equation for electrons within the quasi-neutral region, where F = 0 and
R = βNpn = n/τn, is

G−
n

τn
= −

1
q

dJn

dx
= −

µnkT

q

d2n

dx2 .

After solving this differential equation with respect to n(x) for 0 ≤ x ≤ xj , subject to the
boundary conditions Jn (0) = 0 and n (xj) = 0, Eq. (4.3.2) is readily obtained.
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Figure 4.7: Simulated J-V curve (solid lines) under illumination for a p-doped active layer with
Np = 5 × 1017 cm−3. The analytical approximation, Eq. (4.3.3), is indicated by the dashed
lines. The inset shows the corresponding energy level diagram at short-circuit conditions.
The parameters used in the simulations are: µn = µp = 10−4 cm−2V−1s−1, βR = 10−2βL,
G = 6.24× 1027m−2s−1, ε = 3, and d = 100 nm.

The total photocurrent can then be written as

Jph = −qG
[
w0 + Ln tanh

(
d− w0

Ln

)]
, (4.3.3)

where

w0 =

√
2εε [Vbi − V ]

qNp
. (4.3.4)

A typical J-V curve of an organic solar cell with a p-doped active layer is
simulated in Figure 4.7, showing good agreement between the analytical ap-
proximation Eq. (4.3.3) and the simulated current. The photocurrent equation
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Eq. (4.3.3) states that a voltage dependence of the form ∼
√
Vbi − V is expected

for the photocurrent in case of a doped active layer. Noting that Np and Vbi

can be obtained by CELIV, as shown in Section 3.2.3, it is in principle possible
to extract the ratio µn/βR (via the diffusion length) from a Jph-w0 plot of a
p-doped solar cell. Using this method on J-V curves of p-doped active layer of
P3HT:PCBM (the light-soaked device in Figure 4.10) then yields βL/βR ∼ 130
if one assumes βL ∼ qµn/εε0.

In the limit of negligible bulk recombination, Ln � d, Eq. (4.3.3) reduces
to Jph = −qGd, as expected. It should be noted that at large βR (∼ βL), the
recombination within the depletion region is no longer negligible and Eq. (4.3.3)
overestimates the magnitude of the photocurrent under these circumstances.

4.3.2 Space-charge-limited photocurrents due to imbalanced
mobilities

A space-charge region can also be formed in an undoped active layer, consti-
tuting only photoinduced carriers, if the transport is highly unbalanced due to
imbalanced mobilities. Under these conditions, the photocurrent is limited by
the space charge of the slower carriers [159, 160]. As pointed out by Goodman
and Rose, the photocurrent within this region is space-charge-limited, taking
the form: Jph ∼ −qG3/4 (9µsεε0/8q)1/4 (V0 − V )1/2 [161], where µs is the mo-
bility of the slower carrier and V0 is the potential drop across the space-charge
region at V = 0. This expression, however, does not account for the spatial
dependence of the electron and hole currents within the space-charge region.

To account for this effect, consider a device where the mobility of holes is
much lower than the mobility of electrons (µs = µp � µn). Upon illuminating
the active layer, the charge build-up of holes will redistribute the electric field,
creating a region of a charge-neutral electron-hole plasma inside active layer.
The electric field is zero in the neutral region, resulting in a large recombination
and G ≈ R within this region. The electric field is instead concentrated to
a thin hole-dominated space-charge region of thickness ws close to the anode.
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Figure 4.8: (a) Simulated J-V curves (solid lines) for active layers with imbalanced mobilities.
The corresponding analytical approximations, Eq. (4.3.5), are indicated by the dashed lines.
In (b), the individual electron and hole currents are simulated for µp = 10−3µp at short-circuit
conditions; the inset shows the corresponding energy level diagram. The parameters used in
the simulations are: µn = 10−4 cm−2V−1s−1, β = 10−2βL, G = 6.24× 1027 m−2s−1, ε = 3,
and d = 100 nm. For the analytical curves, Eq. (4.3.5), we approximate: V0 = Voc.

The recombination within the space-charge region is assumed to be negligible
(R = 0), and the transport dominated by drift. The hole current is subsequently
given by Jp (x) = qµspF ≈ qG [x− ws] for 0 ≤ x ≤ ws, and zero otherwise (for
electrons: Jn (x) ≈ −qGx for 0 ≤ x ≤ ws, and Jn (x) = −qGws otherwise; see
Figure 4.8(b)). Within the space-charge region, the Poisson equation can then
be expressed as dF/dx = qp/εε0 = G [x− ws]/µsεε0F . Taking the electric field
to be zero within the neutral zone, F (ws) = 0, it then follows that

Jph = −qG3/4
(

4µsεε0

q

)1/4
(V0 − V )1/2

, (4.3.5)

for ws < d, where

ws =
√

2 (V0 − V )
(
εε0µs
qG

)1/4
. (4.3.6)
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In Figure 4.8, Eq. (4.3.5) is compared with simulated J-V curves for a device
under illumination. Indeed, an excellent agreement between the simulations and
Eq. (4.3.5) is obtained at highly imbalanced mobilities. Note that the analytical
result, Eq. (4.3.5), differs by a factor of 4

√
32/9 ≈ 1.37 from the corresponding

phenomenological Goodman and Rose result.

4.3.3 The effect of a space-charge region in the vicinity of the
electrode

Unintentional doping of the active layer can also be caused by diffusion of
dopants originating from the contacts into the active layer or by diffusion of
impurities that reacts with the electrodes [162] [Paper 3, Paper 6]. In such
cases, the doping concentration is not necessarily uniform throughout the ac-
tive layer, and might be higher close to the contacts. Taking the doping to be
p-type, a larger p-doping close to the anode tends to increase the hole conduc-
tivity close to this contact, in effect acting as an extension of the contact. An
interesting situation occurs, however, when the profile of p-dopants is increasing
towards the cathode. In this case, a thin p-doped layer may be formed at the
cathode, corresponding to doping the region near the cathode with minority
carriers.

Consider a profile of negatively charged p-dopants of the form

Np (x) =

0 if x < d− dp,cat,

Np if x ≥ d− dp,cat,
(4.3.7)

where dp,cat is the extension of the minority carrier dopants into the active layer
from the cathode. If the doping concentration Np is high, the thickness of the
depleted space-charge region is given by [Paper V]

w1 =


√

2εε[Vbi−V ]
qNp

if V ≥ V1,

d if V < V1,
(4.3.8)
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in accordance with the Poisson equation, where V1 = Vbi −∆p,cat is the cross-
over voltage and

∆p,cat =
qNpd

2
p,cat

2εε0
. (4.3.9)

For voltages V > V1, when w1 < dp,cat, the entire potential difference drops
over the depleted space-charge region of negatively charged dopants. In this
case, the potential difference across the undoped region is close to zero, and the
local potential distribution within this region is similar to that of a symmetric
device with two hole-injecting contacts (cf. Figure 2.3(b)).

Under illumination, the recombination within the undoped region is sub-
stantial and the contribution to the photocurrent from this region is small.
Conversely, due to the strong electric field inside the depleted space-charge re-
gion, all carriers generated within the space-charge region are extracted. If the
recombination in the undoped region is strong, the photocurrent within this
voltage regime is then

Jph ≈ −qGw1. (4.3.10)

This is identical to the case of bulk doping (dp,cat = d) of same doping con-
centration (when Ln � w0). The situation is demonstrated in Figure 4.9. As
the applied voltage is reduced below V1, (V < V1), on the other hand, the de-
pleted space region reaches its maximum value w1 = dp,cat. From this point
on, the remaining voltage will mostly drop across the undoped region, then
having an electric field given by F ≈ (V − Vbi + ∆p,cat)/d. When this occurs
the photocurrent will cross-over from the bulk doping-like current regime to an
undoped current regime, with the undoped region acting as an active layer with
an effectively reduced built-in voltage [Paper V]

Vbi,eff = Vbi −∆p,cat. (4.3.11)

The cross-over between these two current regimes is manifested by an s kink.
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Figure 4.9: Simulated J-V curves for a solar cell with a p-doped region, of thickness dp,cat, in
the vicinity of the electron-collecting cathode contact. The thickness of active layer is d = 100
nm. In (a) dp,cat = 20 nm and in (b) dp,cat is varied between dp,cat = 0 (undoped active
layer) and dp,cat = d (bulk doping). The dopant concentration is Np = 1018cm−3. The
parameters used in the simulations are given in [Paper V].

The s kink is in this case caused by a thin space-charge region screening
the electric field within the active layer at low voltages, but which is eventually
overcome at larger electric field strengths. This type of behavior can also be
induced by trapped majority carriers in the vicinity of the electrode interface
[Paper V], e.g. due to impurities accumulated at the contact [162], surface
dipoles [163], or by a significantly reduced mobility for majority carriers in a
region close to the electrodes [164].

4.4 Experimental demonstration on inverted organic
solar cell devices

In this section, some of the analytical tools and methods developed above, which
can be used to clarify charge collection in thin-film devices based on low-mobility
semiconductors, are experimentally demonstrated on organic solar cells.
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4.4.1 The model system TiO2/P3HT:PCBM and the
light-soaking effect

The model system used for the experiments consists of an active organic layer
of P3HT:PCBM, employing TiO2 as electron-selective cathode interlayer. This
structure has been used as a central ingredient in organic solar cells with inverted
device architectures. Figure 4.10 shows the current-voltage characteristics of an
inverted solar cell device with a bottom cathode of ITO, covered with TiO2,
the organic active layer, and a hole-collecting anode of MoO3/Ag on top. The
experimental details of the system is given in [Paper VI]. The J-V curves
of inverted organic solar cells with a metal-oxide-based electron-selective cath-
ode layer, such as TiO2 and ZnO, have been reported to require light soaking,
typically UV light, before the full efficiency is reached (see [Paper VI] and
references therein). Prior to the light soaking (pristine device), s-shaped J-V
characteristics are typically encountered in these devices. By soaking the device
in UV light for a certain period of time, the s kink is gradually removed, and
the normal "J-shaped" curve obtained. However, in many cases the s kink is
restored after storage in oxygen atmosphere.

The poor device performance prior to the light soaking has generally been
associated with a reduced collection of electrons. Many groups have attributed
the reduced electron collection to poor electron transport (and trapping) within
the metal oxide layer, which is significantly improved during light soaking [165–
167]. Conversely, a decrease of the WF at the metal-oxide contact is typically
observed in conjunction with the UV exposure [168, 169]. In the following, we
utilize CELIV and light-intensity-dependent Voc measurements to clarify the
charge collection in the model system presented in Figure 4.10.

4.4.2 Investigating the reason for the s kink in the J-V curve
using CELIV

To obtain a deeper understanding of the reason behind these phenomena, we
combine the J-V measurements with CELIV. The blend in this system is prone
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Figure 4.10: Experimental J-V curves of an inverted P3HT:PCBM solar cell device, with
TiO2 as electron-selective cathode interlayer. In the pristine device (prior to UV exposure)
a prominent s kink is present in the J-V curves. After soaking the device in UV light, the s
kink gradually disappears. The experimental details are given in [Paper VI].

to p-doping at thick active layers. Under these conditions, doping-CELIV can
be used to monitor changes in the work function of the ITO/TiO2 cathode (rel-
ative to the WF set by the doping level in the bulk) during the light soaking
[Paper VI]. In Figure 4.11, the doping-CELIV current transients of the device
in Figure 4.10 is shown at different UV-exposure times. Based on the measure-
ments, it turns out that the extracted built-in voltage is initially very low, but
then increases during the light soaking until it saturates to a value typical for
well-working P3HT:PCBM devices. The corresponding change in the WF of
the cathode is more than 0.7 eV. Clearly, the electron-injection barrier at the
cathode is initially very high.

From the CELIV current transients (MIS-CELIV) at forward-biased offset
voltages, a large injected charge reservoir can be observed in the pristine device
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[Paper VI]. The charge reservoir is then gradually diminished during the light
soaking. Based on these findings, the s kink is a direct result of the high injection
barrier at the electron-selective TiO2 contact, which lead to a low onset for hole
injection from the anode in the pristine device. Combined with the hole-blocking
properties of the TiO2, this creates a large reservoir of injected holes at the
electron-extracting cathode contact at voltages Vbi < V < Voc. The subsequent
recombination gives rise to the s shape, in line with the discussion regarding
Figure 4.4(b) in Section 4.2.3. As the injection barrier at the hole-blocking TiO2

cathode is decreased during the UV soaking, the built-in voltage is increased,
the onset for injection is shifted to larger voltages and the s shape gradually
disappears (as Vbi > Voc). As the electron-injection barrier is lowered, also the
number of electrons present at the contact is increased, further impairing the
formation of a hole reservoir after the light soaking.

- 0 . 6 - 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 20 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

( j 
/ j 0 )-2

(  V o f f  -  A t  )  ( V )

 P r i s t i n e
 S o a k e d  1 5  m i n
 S o a k e d  4 5  m i n
 S o a k e d  1 8 h

Figure 4.11: Doping-CELIV current transients presented as (j/j0)−2 vs. (Voff − At) (Mott-
Schottky plot) for the device in Figure 4.10 at different UV exposure times. The doping
concentration was found to change negligibly during the soaking.
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4.4.3 Light-intensity-dependent open-circuit voltage
measurements

To gain more insight into the dominating recombination mechanism, light-
intensity-dependent open-circuit voltage measurements are very useful. If bulk
recombination dominates at open-circuit conditions: m = mR = 2/δ, in accor-
dance with Eq. (4.1.5) and Section 4.1.1. However, the light ideality factor m
is also strongly dependent on surface recombination and the associated contact
properties. If surface recombination dominates in a device with ohmic contacts,
we expect m = 1 (see Section 4.2.2). Conversely, in the case when one of the
contacts is non-ohmic, different situations may arise depending on whether the
surface recombination at the non-ohmic contact is diffusion-limited or interface-
kinetic-limited [Paper IV], as summarized in Figure 4.5 (Section 4.2.3). It
should be noted that if both contacts are non-selective, we ultimately obtain
m→ 0 at high enough intensities (as Voc → Vbi) [100, 133], in accordance with
Eq. (4.2.12).
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Figure 4.12: (a) Experimental light-intensity-dependent open-circuit voltage measurements
(symbols) of the device in Figure 4.10, before (with s shape) and after UV exposure (without
s shape). The corresponding light ideality factors m = 1.2 and m = 2/3 are indicated by the
solid lines as a guide to the eye. (b) The corresponding qualitative simulations of the system
using the drift-diffusion model. The parameters used in the simulation are given in [Paper
VI]. A green laser (514 nm) was used to avoid UV soaking during the measurements.
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In Figure 4.12, light-intensity-dependent Voc measurements of the inverted
solar cell device (from Figure 4.10) is shown. It turns out that for the pristine
device, a distinct ideality factor of 2/3 is obtained, consistent with Eq. (4.2.13).
This suggests that the open-circuit voltage is in this case controlled by interface-
kinetic-limited surface recombination at a non-ohmic contact. This supports the
claim that the s kink is caused by a combined effect of un-optimized energy lev-
els (large ϕn,cat) at and inherent hole-blocking properties (reduced Sp) of the
electron-selective TiO2 contact, rather than by poor electron transport proper-
ties of the TiO2 layer itself. After the light soaking, the open-circuit voltage has
increased, and the light ideality factor takes a value of 1.2, consistent with typi-
cally observed values in P3HT:PCBM solar cells [170]. The qualitative behavior
of the experimental light-intensity-dependent Voc measurements for the pristine
and the light-soaked device are nicely reproduced by drift-diffusion simulations,
suggesting a surface recombination velocity Sp for holes at the TiO2/organic
contact on the order of Sp ∼10−5 cm/s. Note that since the open-circuit voltage
in the pristine devices is controlled by interface-kinetic-limited surface recombi-
nation (Sp 6= 0), holes are still able to be extracted at the TiO2/organic contact,
suggesting that some recombination between holes at the interface and electrons
(possibly via gap states or recombination centers) in the ITO/TiO2 do occur.

4.4.4 The surface recombination velocity of holes at TiO2/P3HT

Using the method described in Section 3.3.3, the surface recombination veloc-
ity at the TiO2/organic interface can be characterized with CELIV. For the
measurements, we use a hole-only ITO/TiO2/P3HT:PCBM/Cu device struc-
ture with a hole-injecting Cu anode. From CELIV, the size of the injected
charge reservoir, Qextr =

� tpulse
0 ∆j (t) dt, is extracted as a function of the offset

voltage Voff > Vbi [Paper I]. The corresponding steady-state current density
J (Voff) is obtained from the dark J-V curves. Figure 4.13 shows the extracted
hole surface recombination velocities at different dc voltages, using Eq. (3.3.8)
(assuming η = 1). The analysis reveals a value of Sp ≈ 5.8× 10−6 cm/s for the
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surface recombination velocity of holes at TiO2/organic interface, in excellent
agreement with the qualitative simulations used to reproduce the behavior of
the light-intensity-dependent Voc measurements in Figure 4.12. This is to be
compared to vp = µpkT/qd (at flat-band conditions), estimated to be 0.06 cm/s
in the organic semiconductor layer.

For comparison, the same method is also used to estimate the hole sur-
face recombination velocities at P3HT interfaces with two different (thin) wide-
bandgap insulators: ZrO2/P3HT and SiO2/P3HT, as included in Figure 4.13.
The corresponding values for Sp are close to Sp = 2.1 × 10−7 cm/s and Sp =
4.5× 10−9 cm/s, respectively. As expected, the obtained values at these wide-
bandgap charge-blocking layers are lower than at the TiO2 contact. It is in-
teresting to note that the obtained values for Sp in Figure 4.13 are orders of
magnitude smaller than values typically encountered in inorganic systems [171].
The low Sp obtained in this case are likely related to hopping transport dom-
inating the current conduction in these systems (see Section 2.2.2), however,
further studies are needed in order to clarify this phenomenon.
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Figure 4.13: Experimental surface recombination velocity for holes at hole-blocking
layer/organic interface as measured by CELIV. The red squares show the obtained val-
ues for ITO/TiO2(7 nm)/P3HT:PCBM, being close Sp = 5.8 × 10−6 cm/s (indicated by
the red solid line). For comparison, also the hole surface recombination velocities ob-
tained at the insulator/organic interfaces in ITO/ZrO2(∼ 30 nm)/P3HT/Ag and ITO/SiO2(5
nm)/P3HT/MoO3/Ag are shown. The corresponding hole surface recombination veloci-
ties at ZrO2/P3HT and SiO2/P3HT are close to Sp = 2.1 × 10−7 cm/s (black line) and
Sp = 4.5× 10−9 cm/s (blue line), respectively. Note that the SiO2/P3HT data has been cor-
rected for shunts; the details are given in [Paper I]. The ZrO2/P3HT device was measured
by Dahlström et al. [172]; the blocking layers were fabricated by dip-coating.
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Summary

In this work, the charge collection in thin-film devices, based on low-mobility
semiconductors, has been investigated by means of analytical derivations and
numerical device simulations, with emphasis on organic diodes and solar cells.
The charge collection in these devices is strongly influenced by charge trans-
port, recombination and properties of the contacts. The theoretical aspects of
the charge-carrier collection in unipolar and bipolar diode devices have been
discussed from the viewpoint of sandwich-type thin-film device structures.

Furthermore, the competition between charge transport and recombination,
and the role of the charge-carrier selectivity at the contacts in organic solar
cells is investigated. It is found that the open-circuit voltage, corresponding to
the point at which the charge collection is exactly balanced by recombination,
is strongly dependent on the prevailing contact conditions. Depending on the
interplay between the mobilities, the surface recombination velocities (used to
describe the charge-carrier selectivity of the contacts), the injection barriers,
and the prevailing bulk recombination, different light-intensity and thickness
dependences of the open-circuit voltage are expected. Moreover, the current-
voltage characteristics typically display an s kink in the case of reduced surface
recombination velocity at un-optimized contacts in low-mobility materials. The
charge collection is also dependent on the presence of space-charge regions within
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the active layer. Such space-charge regions may be formed as a consequence of
doping or imbalanced mobilities, generally degrading the device performance.
The associated space-charge-limited photocurrents exhibit distinctive voltage
and light-intensity dependences which can be used to distinguish these from
other loss mechanisms.

A popular technique to characterize the mobility in organic solar cells is
the charge extraction by linearly increasing voltage technique, or CELIV. In
this work, the underlying theory for the mobility determination using CELIV is
reviewed and extended to account for contact effects, such as the presence of a
built-in voltage and diffusion. Furthermore, we show how the extended theory of
CELIV can be used to determine doping concentration, built-in voltage, and the
surface recombination velocity. These quantities are key parameters associated
with loss mechanisms for charge collection in organic solar cells.

114



Bibliography

[1] R. Meerheim, B. Lüssem, and Karl Leo, Proc. IEEE 97, 1606 (2009).

[2] C. Brabec, U. Scherf, and V. Dyakonov, Organic Photovoltaics (Wiley
VCH,Weinheim, Germany, 2008).

[3] H. Sirringhaus, Adv. Mater. 26, 1319 (2014).

[4] J. Nelson, Mater. Today 14, 462 (2011).

[5] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Y. Yang, Adv.
Mater. 25, 6642 (2013).

[6] O. Inganäs and S. Admassie, Adv. Energy Mater. 26, 830 (2014).

[7] M. A. Green, Y. Hoshikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger,
A. W.Y. Ho-Baillie, Prog. Photovoltaics 26, 3 (2018).

[8] N.-G. Park, Mater. Today 18, 65 (2015).

[9] M. K. Nazeeruddin, and H. Snaith, MRS Bull. 40, 641 (2015).

[10] J. P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W.
Tress, and A. Hagfeldt, Science 358, 739 (2017).

[11] J. Nelson, The physics of solar cells (Imperial College Press, London,
2003).

115



Bibliography

[12] G. A. Chamberlain, Solar Cells, 8, 47, 1983.

[13] C. Deibel and V. Dyakonov, Rep. Prog. Phys. 73, 096401 (2010).

[14] C. W. Tang. Appl. Phys. Lett. 48, 183 (1986).

[15] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. (Wiley & Sons, New
York, 1981).

[16] Sergei Baranovski (edited by), Charge transport in disordered solids (John
Wiley & Sons, 2006).

[17] M. Pope and C. E. Swenberg, Electronic processes in organic crystals and
polymers, 2nd ed. (Oxford University Express, New York, 1999).

[18] A. Köhler and H. Bässler, Top. Curr. Chem. 312, 1 (2012).

[19] K. C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon Press,
Oxford, 1981).

[20] J. C. Blakesley and N. C. Greenham, J. Appl. Phys. 106, 034507 (2009).

[21] P. Würfel, Physics of Solar Cells, 2nd ed. (Wiley-VCH, Weinheim, Ger-
many, 2009).

[22] W. Tress, Organic Solar Cells: Theory, Experiment, and Device Simula-
tion (Springer, 2014).

[23] S. Selberherr, Analysis and Simulation of Semiconductor Devices
(Springer-Verlag, Wien, 1984).

[24] P. Nelson, Biological Physics: Energy, Information, Life (W. H. Freeman
Co. Ltd, New York, 2004).

[25] R. de Leive and H. Moreira, J. Membrane Biol. 9, 241 (1972).

[26] R. de Leive, N. G. Seidah and H. Moreira, J. Membrane Biol. 10, 171
(1972).

116



Bibliography

[27] P. S. Davids, I. H. Campbell, D. L. Smith, J. Appl. Phys. 82, 6319 (1997).

[28] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom,
Phys. Rev. B 72, 085205 (2005).

[29] A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, Phys.
Rev. B 82, 115306 (2010).

[30] P. de Bruyn, A. H. P. van Rest, G. A. H. Wetzelaer, D.M. de Leeuw, and
P.W. M. Blom, Phys. Rev. Lett. 111, 186801 (2013).

[31] R. Coehoorn and P. A. Bobbert, Phys. Status Solidi A 209, 12 (2012).

[32] Y. Roichman and N. Tessler, Appl. Phys. Lett. 80, 1948 (2002).

[33] F. Neumann, Y. A. Genenko, and H. von Seggern, J. Appl. Phys. 99,
013704 (2006).

[34] G. A. H. Wetzelaer, L. J. A. Koster, and P.W. M. Blom, Phys. Rev. Lett.
107, 066605 (2011).

[35] H. K. Gummel, IEEE Trans. Electron Devices 11, 455 (1964).

[36] D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices 16,
64 (1969).

[37] O. Sandberg, Modellering av laddningstransport och rekombination i poly-
mera solceller (in Swedish) (M.Sc. Thesis, Åbo Akademi University,
Turku, Finland, 2012).

[38] D. Mendels and N. Tessler, J. Phys. Chem. C 117, 3287 (2013).

[39] H. Cordes, S. D. Baranovskii, K. Kohary, P. Thomas, S. Yamasaki, F.
Hensel, and J.-H. Wendorff, Phys. Rev. B 63, 094201 (2001).

[40] H. Bässler, Phys. Status Solidi B 175, 15 (1993).

117



Bibliography

[41] W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W.
M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94,
206601 (2005).

[42] A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L.
Brassat, H. Bässler, Phys. Rev. B 71, 035214 (2005).

[43] A. Melianas, V. Pranculis, A. Devižis, V. Gulbinas, O. Inganäs, and M.
Kemerink, Adv. Funct. Mater. 24, 4507 (2014).

[44] A. Melianas, F. Etzold, T. J. Savenije, F. Laquai, O. Inganas, and M.
Kemerink, Nat. Commun. 6, 8778 (2015).

[45] M. P. Langevin, Ann. Chim. Phys. 28, 433 (1903).

[46] C. Groves and N. C. Greenham, Phys. Rev. B 78, 155205 (2008).

[47] C. Deibel, A. Wagenpfahl, V. Dyakonov, Phys Rev B 80, 075203 (2009).

[48] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 88,
052104 (2006).

[49] M. C. Heiber, C. Baumbach, V. Dyakonov, and C. Deibel, Phys. Rev.
Lett. 114, 136602 (2015).

[50] C. M. Proctor, M. Kuik, T.-Q. Nguyen, Prog. Polymer Science 38, 1941
(2013).

[51] W. Tress, K. Leo, and M. Riede, Phys. Rev. B 85, 155201 (2012).

[52] T. M. Burke, S. Sweetnam, K. Vandewal, and M. D. McGehee, Adv.
Energy Mater. 5, 1500123 (2015).

[53] A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S.
Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend,
Science 335, 1340 (2012).

[54] L. Onsager, J. Chem. Phys. 2, 599 (1934).

118



Bibliography

[55] C. L. Braun, J. Chem. Phys. 80, 4157 (1984).

[56] F. Gao, W. Tress, J. Wang, and O. Inganäs, Phys. Rev. Lett. 114, 128701
(2015).

[57] M. Stolterfoht, A. Armin, S. Shoaee, I. Kassal, P. Burn, and P. Meredith,
Nat. Commun. 7, 11944 (2016).

[58] A. Pivrikas, G. Juška, A. J. Mozer, M. Scharber, K. Arlauskas, N. S.
Sariciftci, H. Stubb, and R. Österbacka, Phys. Rev. Lett. 94, 176806
(2005).

[59] A. Pivrikas, N. S. Sariciftci, G. Juška and R. Österbacka, Prog. Photovolt:
Res. Appl. 15, 677 (2007).

[60] G. A. H. Wetzelaer, N. J. Van der Kaap, L. J. A. Koster, and P.W. M.
Blom, Adv. Energy Mater. 3, 1130 (2013).

[61] J. Benduhn, K. Tvingstedt, F. Piersimoni, S. Ullbrich, Y. Fan, M. Tropi-
ano, K. A. McGarry, O. Zeika, M. K. Riede, C. J. Douglas, S. Barlow, S.
R. Marder, D. Neher, D. Spoltore, and K. Vandewal, Nature Energy 2,
17053 (2017).

[62] W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

[63] R. N. Hall, Physical Review 87, 387 (1952).

[64] M. Kuik, L. J. A. Koster, G. A. H. Wetzelaer, and P.W. M. Blom, Phys.
Rev. Lett. 107, 256805 (2011).

[65] B. Lüssem, M. Riede, and K. Leo, Phys. Stat. Sol. A 210, 9 (2013).

[66] M. L. Tietze, L. Burtone, M. Riede, B. Lüssem, and K. Leo, Phys. Rev.
B 86, 035320 (2012).

[67] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).

[68] J. Hwang, A. Wan, A. Kahn, Mater. Sci. Eng. R 64, 1-31 (2009).

119



Bibliography

[69] S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).

[70] M. Oehzelt, N. Koch, and G. Heimel, Nat. Commun. 5, 4174 (2014).

[71] J. G. Simmons, J. Phys. Chem. Solids 32, 1987 (1971).

[72] G. Paasch, H. Peisert, M. Knupfer, J. Fink, and S. Scheinert, J. Appl.
Phys. 93, 6084 (2003).

[73] I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, and D. Neher,
Phys. Rev. Lett. 106, 216402 (2011).

[74] D. Cheyns, J. Poortmans, P. Heremans, C. Deibel, S. Verlaak, B. P. Rand,
and J. Genoe, Phys. Rev. B 77, 165332 (2008).

[75] Yu. A. Genenko, S. V. Yampolskii, C. Melzer, K. Stegmaier, and H. von
Seggern, Phys. Rev. B 81, 125310 (2010).

[76] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Pearson, Upper
Saddle River, NJ, 1999), pp. 188-190.

[77] P. De Visschere, Solid-State Electronics 29, 813 (1986).

[78] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley & Sons, 1999).

[79] N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and
Winston, New York, 1976), p. 362-364.

[80] C.R. Crowell, S.M. Sze, Solid State Electron. 9, 1035 (1966).

[81] M.A. Abkowitz, H.A. Mizes, J.S. Facci, Appl. Phys. Lett. 66, 1288 (1995).

[82] Yu.N. Gartstein, E.M. Conwell, Chem. Phys. Lett. 255, 93 (1996).

[83] U. Wolf, V. I. Arkhipov, and H. Bässler, Phys Rev B 59, 7507 (1999).

[84] V. I. Arkhipov, U. Wolf, and H. Bässler, Phys Rev B 59, 7514 (1999).

[85] A. Burin and M. Ratner, J. Chem. Phys. 113, 3941 (2000).

120



Bibliography

[86] J. J. M. van der Holst, F. W. A. van Oost, R. Coehoorn, and P. A.
Bobbert, Phys. Rev. B 80, 235202 (2009).

[87] T. Van Woudenbergh, P. W. M. Blom, M.C.J.M. Vissenberg, J. N. Huib-
erts, Appl. Phys. Lett. 79, 1697 (2001).

[88] J. C. Scott and G. G. Malliaras, Chem. Phys. Lett. 299, 115 (1999).

[89] T. Kirchartz, B. E. Pieters, K. Taretto, and U. Rau, Phys. Rev. B 80,
035334 (2009).

[90] E. L. Ratcliff, B. Zacher, and N. R. Armstrong, J. Phys. Chem. Lett. 2,
1337 (2011).

[91] M. A. Lampert and P. Mark, Current Injection in Solids (Academic Press,
New York, 1970).

[92] P. R. Emtage and J. J. O’dwyer, Phys. Rev. Lett. 16, 356 (1966).

[93] O. J. Sandberg et al. Unpublished.

[94] K. E. Lilja, H. S. Majumdar, F. S. Pettersson, R. Österbacka, and T.
Joutsenoja, ACS Appl. Mater. Interfaces 3, 7 (2011).

[95] K. E. Lilja, H. S. Majumdar, K. Lahtonen, P. Heljo, S. Tuukkanen, T.
Joutsenoja, M. Valden, R. Österbacka, and D. Lupo, J. Phys. D: Appl.
Phys. 44, 295301 (2011).

[96] S. L. M. van Mensfoort and R. Coehoorn, Phys. Rev. B 78, 085207 (2008).

[97] T. Kirchartz, W. Gong, S. A. Hawks, T. Agostinelli, R. C. I. MacKenzie,
Y. Yang, and J. Nelson, J. Phys. Chem. C 116, 7672 (2012).

[98] C.T. Sah, R. N. Noyce, W. Shockley, Proc. Institute of Radio Engineers,
1228 (1957).

[99] T. Kirchartz, B. E. Pieters, J. Kirkpatrick, U. Rau, and J. Nelson, Phys.
Rev. B 83, 115209 (2011).

121



Bibliography

[100] T. Kirchartz, F. Deledalle, P. Shakya Tuladhar, J. R. Durrant, and J.
Nelson, Phys. Chem. Lett. 4, 2371 (2013).

[101] K. Tvingstedt and C. Deibel, Adv. Energy Mater. 6, 1502230 (2016).

[102] R. H. Parmenter and W. Ruppel , J. Appl. Phys. 30, 1548 (1959).

[103] G. Juška, K. Arlauskas, M. Viliunas, and J. Kocka, Phys. Rev. Lett. 84,
4946 (2000) .

[104] G. Juška, K. Genevicius, K. Arlauskas, R. Österbacka, and H. Stubb,
Phys. Rev. B 65, 233208 (2002).

[105] G. Juška, K. Arlauskas, M. Viliunas, K. Genevicius, R. Österbacka, and
H. Stubb, Phys. Rev. B 62, R16235 (2000).

[106] C. Deibel, Phys. Stat. Sol. A 206, 2731 (2009).

[107] S. Bange, M. Schubert, and D. Neher, Phys. Rev. B 81, 035209 (2010).

[108] J. Lorrmann, B. H. Badada, O. Inganäs, V. Dyakonov, and C. Deibel, J.
Appl. Phys. 108, 113705 (2010).

[109] B. Philippa, C. Vijila, R. D. White, P. Sonar, P. L. Burn, P. Meredith, A.
Pivrikas, Org. Electron. 16, 205 (2015).

[110] N. Nekrasas, K. Genevicius, M. Viliunas, and G. Juška, Chem. Phys. 404,
56 (2012).

[111] A. Armin, M. Velusamy, P. L. Burn, P. Meredith, and A. Pivrikas, Appl.
Phys. Lett. 101, 083306 (2012).

[112] G. Juška, N. Nekrašas, V. Valentinavicius, P. Meredith, and A. Pivrikas,
Phys. Rev. B 84, 155202 (2011).

[113] G. Juška, N. Nekrašas, and K. Genevicius, J. Non-Cryst. Sol. 358, 748
(2012).

122



Bibliography

[114] A. Armin, G. Juška, M. Ullah, M. Velusamy, P. L. Burn, P. Meredith,
and A. Pivrikas, Adv. Energy Mater. 4, 1300954 (2014).

[115] J. Vazgela, K. Genevicius, and G. Juška, Chem. Phys. 478, 126 (2016).

[116] S. A. Hawks, B. Y. Finck, and B. J. Schwartz, Phys. Rev. Applied 3,
044014 (2015).

[117] L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, and P.W. M. Blom, Appl.
Phys. Lett. 86, 123509 (2005).

[118] J. C. Blakesley and D. Neher, Phys. Rev. B 84, 075210 (2011).

[119] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca,
Nat. Mater. 8, 904 (2009).

[120] K. R. Graham, P. Erwin, D. Nordlund, K. Vandewal, R. Li, G. O.
Ngongang Ndjawa, E. T. Hoke, A. Salleo, M. E. Thompson, M. D. McGe-
hee, and A. Amassian, Adv. Mater. 25, 6076 (2013).

[121] W. Tress, K. Leo, and M. Riede, Appl. Phys. Lett. 102, 163901 (2013).

[122] T. Kirchartz and J. Nelson, Phys. Rev. B 86, 165201 (2012).

[123] D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez,
D. Neher, and L. J. A. Koster, Nat. Commun. 6, 7083 (2015).

[124] M. L. I. Ibrahim, Z. Ahmad, and K. Sulaiman, AIP Advances 5, 027115
(2015).

[125] U. Würfel, D. Neher, A. Spies, and S. Albrecht, Nat. Commun. 6, 6951
(2015).

[126] P Kaienburg, U Rau, T Kirchartz, Phys. Rev. Applied 6, 024001 (2016).

[127] T. Kirchartz, T. Agostinelli, M. Campoy-Quiles, W. Gong, and J. Nelson,
J. Phys. Chem. Lett. 3, 3470 (2012).

123



Bibliography

[128] K. Hecht, Z. Phys. 77, 235 (1932).

[129] R. S. Crandall, J. Appl. Phys. 53, 3350 (1982).

[130] S. Schiefer, B. Zimmermann, and U. Würfel, J. Appl. Phys. 115, 044506
(2014).

[131] D. Neher, J. Kniepert, A. Elimelech, and L. J. A. Koster, Sci. Rep. 6,
24861 (2016).

[132] R. Sokel and R. C. Hughes, J. Appl. Phys. 53, 7414 (1982).

[133] D. Rauh, A. Wagenpfahl, C. Deibel, and V. Dyakonov, Appl. Phys. Lett.
98, 133301 (2011).

[134] A. Petersen, T. Kirchartz, and T. A. Wagner, Phys. Rev. B 85, 045208
(2012).

[135] D. J. Wehenkel, L. J. A. Koster, M.M. Wienk, and R. A. J. Janssen, Phys.
Rev. B 85, 125203 (2012).

[136] A. Wagenpfahl, C. Deibel, and V. Dyakonov, IEEE J. Sel. Top. Quantum
Electron. 16, 1759 (2010).

[137] I. Zonno, B. Krogmeier, V. Katte, D. Lübke, A. Martinez-Otero, and T.
Kirchartz, Appl. Phys. Lett. 109, 183301 (2016).

[138] Y. Zhou, J.W. Shim, C. F. Hernanderz, A. Sharma, K. A. Knauer, A. J.
Giordano, S. R. Marder, and B.Kippelen, Phys. Chem. Chem. Phys. 14,
12014 (2012).

[139] S. Wheeler, F. Deledalle, N. Tokmoldin, T. Kirchartz, J. Nelson, and J.
R. Durrant, Phys. Rev. Appl. 4, 024020 (2015).

[140] S. Schäfer, A. Petersen, T. A. Wagner, R. Kniprath, D. Lingenfelser, A.
Zen, T. Kirchartz, B. Zimmermann, U. Würfel, X. Feng, and T. Mayer,
Phys. Rev. B 83, 165311 (2011).

124



Bibliography

[141] M. Lu, P. de Bruyn, H. T. Nicolai, G.-J. A.Wetzelaer, and P.W. Blom,
Org. Electron. 13, 1693 (2012).

[142] K. Zilberberg, A. Behrendt, M. Kraft, U. Scherf, T. Riedl, Org. Electron.
14, 951 (2013).

[143] S. Solak, P. W. M. Blom, and G. A. H. Wetzelaer, Appl. Phys. Lett. 109,
053302 (2016).

[144] S. Solak, A. G. Ricciardulli, T. Lenz, N. I. Craciun, P. W. M. Blom, and
G. A. H. Wetzelaer, Appl. Phys. Lett. 110, 163301 (2017).

[145] A. Spies, M. List, T. Sarkar, and U. Würfel, Adv. Energy Mater. 7,
1601750 (2017).

[146] V. D. Mihailetchi, P.W.M. Blom, J. C. Hummelen, and M. T. Rispens, J.
Appl. Phys. 94, 6849 (2003).

[147] J. Reinhardt, M. Grein, C. Bühler, M. Schubert, and U. Würfel, Adv.
Energy Mater. 4, 1400081 (2014).

[148] J. C. Wang, X. C. Ren, S. Q. Shi, C.W. Leung, and P. K. Chan, Org.
Electron. 12, 880 (2011).

[149] M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann,
M. Niggemann, A. Hinsch, and A. Gombert, Solar Energy Mater. Sol.
Cells 91, 390 (2007).

[150] W. Tress, K. Leo, and M. Riede, Adv. Funct. Mater. 21, 2140 (2011).

[151] W. Tress and O. Inganäs, Solar Energy Mater. Sol. Cells 117, 599 (2013).

[152] V. A. Trukhanov, V. V. Bruevich, and D. Y. Paraschuk, Phys. Rev. B 84,
205318 (2011).

[153] F. Deledalle, T. Kirchartz, M. S. Vezie, M. Campoy-Quiles, P. S. Tuladhar,
J. Nelson, and J. R. Durrant, Phys. Rev. X 5, 011032 (2015).

125



Bibliography

[154] J. Wang, L. Xu, Y.-J. Lee, M. De Anda Villa, A. V. Malko, and J. W. P.
Hsu, Nano Lett. 15, 7627 (2015).

[155] J. G. Tait, U.W. Paetzold, D. Cheyns, M. Turbiez, P. Heremans, and B.
P. Rand, ACS Appl. Mater. Interfaces 8, 2211 (2016).

[156] F. F. Stelzl and U. Würfel, Phys. Rev. B 86, 075315 (2012).

[157] G. F. A. Dibb, M.-A. Muth, T. Kirchartz, S. Engmann, H. Hoppe, G.
Gobsch, M. Thelakkat, N. Blouin, S. Tierney, M. Carrasco-Orozco, J. R.
Durrant, J. Nelson, Sci. Rep. 3, 3335 (2013).

[158] W. W. Gärtner, Phys. Rev. 116, 84 (1954).

[159] V. D. Mihailetchi, J. Wildeman, and P.W. M. Blom, Phys. Rev. Lett. 94,
126602 (2005).

[160] M. Stolterfoht, A. Armin, B. Philippa, and D. Neher, J. Phys. Chem. Lett.
7, 4716 (2016).

[161] A. M. Goodman and A. Rose, J. Appl. Phys. 42, 2823 (1971).

[162] W. R. Mateker, J. D. Douglas, C. Cabanetos, I. T. Sachs- Quintana, J.
A. Bartelt, E. T. Hoke, A. El Labban, P. M. Beaujuge, J. M. J. Fréchet,
and M. D. McGehee, Energy Environ. Sci. 6, 2529 (2013).

[163] A. Kumar, S. Sista, and Y. Yang, J. Appl. Phys. 105, 094512 (2009).

[164] B. Y. Finck and B. J. Schwartz, Appl. Phys. Lett. 103, 053306 (2013).

[165] C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, Appl. Phys.
Lett. 94, 113302 (2009).

[166] B. Ecker, H.-J. Egelhaaf, R. Steim, J. Parisi, and E. von Hauff, J. Phys.
Chem. C 116, 16333 (2012).

[167] B. Romero, G. D. Pozo, E. Destouesse, S. Chambon, and B. Arredondo,
Org. Electron. 15, 3546 (2014).

126



Bibliography

[168] H. Schmidt, K. Zilberberg, S. Schmale, H. Flügge, T. Riedl, W. Kowalsky,
Appl. Phys. Lett. 96, 243305 (2010).

[169] M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman, F. C. Krebs,
Sol. Energy Mater. Sol. Cells 94, 2018 (2010).

[170] M. Lenes , S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. K. Hum-
melen, and P. W. M. Blom, Adv. Funct. Mater. 19, 3002 (2009).

[171] A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Phys.
Rev. B 86, 165202 (2012).

[172] Staffan Dahlström, Christian Weinberger, Oskar J. Sandberg, Jan-Henrik
Smått, Ronald Österbacka, Unpublished (2017).

127



Bibliography

128



Svensk resumé

Solceller är en förnybar energiteknologi som fått alltmer uppmärksamhet. De
kommersiella solcellerna på marknaden idag är nästan uteslutande baserade på
kristallint kisel. En nackdel med kiselsolcellerna är att dessa är relativt dyra att
framställa och kräver en stor mängd råmaterial. Solceller baserade på organiska
halvledare är ett attraktivt alternativ till kisel. En organisk solcell består av en
diodstruktur med ett tunt aktivt organiskt halvledarlager mellan två elektroder
(anoden och katoden). Fördelen med denna typ av solceller är dess potential för
miljövänlig och hållbar produktion i stor skala till ett lågt pris. Nackdelen med
organiska solceller är den låga effektiviteten. För att kunna förbättra prestan-
dan och öka på effektiviteten i organiska solceller är det viktigt att förstå den
underliggande fysiken bakom de begränsande förlustmekanismerna.

Det organiska halvledarlagret består typiskt av en blandning mellan en halv-
ledande polymer och ett fulleren-baserat halvledarmaterial. Då solljus absorbe-
ras i halvledarmaterialet, exciteras elektron-hålpar från grundtillståndet. Dessa
elektron-hålpar kan separeras till fria laddningar vid organiska gränsytor inne
i det aktiva lagret. De fria elektronerna (hålen) transporteras vidare inne i det
aktiva lagret till katoden (anoden), där de extraheras till den yttre kretsen och
ger upphov till en ström. På vägen till elektroderna kan elektroner och hål dock
rekombinera med varandra och förloras. Denna process är en viktig förlust-
mekanism i organiska solceller. Förhållandet mellan laddningsextraktion och
rekombination i organiska solceller är starkt beroende av laddningstransport-
egenskaperna i det organiska halvledarmaterialet. Laddningstransporten i halv-
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ledare klassificeras ofta enligt dess mobilitet. Medan mobiliteten i kristallint
kisel är hög, är den motsvarande mobiliteten i organiska halvledare ofta väldigt
låg.

Syftet med denna avhandling är att klargöra fysiken bakom laddningsextrak-
tion av elektroner och hål i diodstrukturer baserade på halvledarmaterial med lå-
ga mobiliteter och tunna aktiva lager. Med hjälp av drift-diffusionssimuleringar
diskuteras den teoretiska bakgrunden för laddningstransport och extraktion vid
kontakterna i tunnfilmsdioder. Denna teori tillämpas sedan på transienta ex-
traktionsmätningar och ström-spänningskurvor i organiska solceller. Förutom
förhållandet mellan laddningstransport och rekombination inom det aktiva lag-
ret, är laddningsextraktionen i dessa system också väldigt känslig för icke-ideala
kontakter och oavsiktlig dopning av det aktiva lagret. I kombination med tran-
sienta laddningsextraktionsmätningar, kan de teoretiska resultaten användas
för att identifiera och urskilja dominerande förlustmekanismer, samt användas
för att bestämma parametrar relevanta för laddningsextraktionen i organiska
solceller.
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