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List of abbreviations, acronyms and symbols 

100C beads Pure (100%) cellulose beads 
4-O-Me-GluA 4-O-Methylglucuronic acid 
60C40L beads 60% cellulose/40% lignin beads 
75C25L beads 75% cellulose/25% lignin beads 
90C10L beads 90% cellulose/10% lignin beads 
AD Air-dried 
Ara Arabinose 
ASL Acid-soluble lignin 
ATR Attenuated total reflection 
CFU Colony-forming unit 
DMSO Dimethyl sulfoxide 
DP Degree of polymerization 
EDS Energy-dispersive X-ray spectroscopy 
FA Ferulic acid 
FE-SEM Field-emission scanning electron microscope 
FTIR Fourier transform infrared spectroscopy 
G Guaiacylpropane lignin unit 
Gal Galactose 
GalA Galacturonic acid 
Glu Glucose 
GluA Glucuronic acid 
H Hydroxyphenylpropane lignin unit 
HMDS Hexamethyldisilazane 
HMF Hydroxymethylfurfural 
LCC Lignin-carbohydrate complex 
Man Mannose 
MHC Minimal hydrotrope concentration 
MTBE Methyl tert-butyl ether 
ND Never-dried 
NSSC Neutral sulfite semichemical pulping 
O Oxygen delignification 
OD Oven-dried 
P Hydrogen peroxide bleaching stage 
pCA para-Coumaric acid 
PO Pressurized hydrogen peroxide bleaching stage 
PPU Phenylpropane unit 
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Py-GC-MS Pyrolysis-gas chromatography-mass spectrometry 
Q Chelation stage 
S Syringylpropane lignin unit 
SEC Size exclusion chromatography 
SEM Scanning electron microscopy 
SXS Sodium xylenesulfonate 
TMAH Tetramethylammonium hydroxide treatment  
TMCS Trimethylchlorosilane 
TSB Tryptic soy broth 
UV Ultraviolet 
Xyl Xylose 
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Abstract 

Konstantin Gabov 
Hydrotropic process for green biorefinery applications 

Doctor of Science (Technology) Thesis, Åbo Akademi University, 
Faculty of Science and Engineering, Laboratory of Fibre and Cellulose 
Technology, Turku 2017 

Keywords: hydrotropic process, sodium xylenesulfonate, birch wood 
chips, sugarcane bagasse, hydrotropic lignin, hydrotropic pulp, spent 
solution, NaOH/urea aqueous solution, lignin-cellulose beads, 
Staphylococcus aureus, Escherichia coli 

Biorefinery is a concept of sustainable biomass processing into several useful 
products, such as fuels, materials, power and chemicals. The necessity of 
more extensive biomass utilization is governed nowadays by the intensively 
growing population and the increased pollution caused by the usage of oil-
based products, which lead, among other things, to the global climate change. 
However, successful implementation of the biorefinery concept requires 
efficient fractionation technologies. Therefore, the aim of the present study 
was the investigation of a hydrotropic process as a method for biomass 
fractionation. The hydrotropic method is an environmentally friendly water-
based process that possesses several attractive features, such as simple 
recovery of the hydrotropic solution and possibility to obtain, besides fibers, 
several by-products. 

In the scope of the study, two raw materials, namely birch wood chips 
from Finland and sugarcane bagasse from Brazil, were treated with the 
hydrotropic method, and the obtained fractions were characterized 
employing different techniques. In addition, lignin hydrotropically extracted 
from birch wood was utilized for the preparation of lignin-cellulose particles. 

The result of the fractionation of the birch wood chips showed that this 
raw material could be efficiently delignified with the process under the 
conditions employed. The modification of the solutions with formic acid, or 
hydrogen peroxide, or both improved considerably the delignification 
efficiency. Generally, the produced pulps were enriched in cellulose. 
Subsequent bleaching further increased the cellulose content. Therefore, the 
obtained cellulose fractions could potentially be used as dissolving grade 
pulps. Lignins extracted from the wood by the unmodified and modified 
(formic acid and hydrogen peroxide) hydrotropic solutions were isolated by 
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dilution of the spent solutions with water and filtration and had low contents 
of non-lignin compounds.  

Sugarcane bagasse was fractionated with a hydrotropic process at different 
treatment temperatures and times. Generally, two fractions, namely cellulose 
and lignin, were obtained. The purity of both fractions and the yield of lignin 
were higher at more severe treatment conditions. The spent solutions from 
the treatments contained, besides lignin, also dissolved hemicelluloses, sugar 
monomers, furfural, acetic and formic acids. The content of the dissolved 
components varied depending on the treatment conditions.  

Lignin extracted from birch wood with a conventional hydrotropic 
method was mixed with cellulose and shaped into beads employing 7% 
NaOH/12% urea aqueous solution as a solvent. The beads in the never-dried 
state were highly porous particles, and the lignin was evenly distributed in 
them. Antibacterial studies against the common pathogens Staphylococcus 
aureus and Escherichia coli revealed that the beads could inhibit the growth 
of S. aureus, and the extent of the inhibition correlated with the lignin 
content in the beads. 

The results summarized in the thesis showed a great potential of the 
hydrotropic treatment for fractionation of hardwood and non-wood raw 
materials into valuable products, such as cellulose and lignin. Positive aspects 
of the hydrotropic treatment with the respect to the recovery of the named 
fractions are simple isolation of the extracted lignin from the solution and 
minimal losses of cellulose over the course of the treatment. In addition, both 
fractions can be produced with a high degree of purity, and they present 
excellent raw materials for further conversion. As was shown with sugarcane 
bagasse, besides the main streams, several other products (furfural and acetic 
acid) can be obtained as well. Overall, the results of the thesis can serve as a 
basis for further development of hydrotropic process-based biorefinery 
technology. 
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Sammanfattning 

Konstantin Gabov 
Hydrotropisk process för gröna bioraffinaderitillämpningar 

Teknologiedoktorsavhandling, Åbo Akademi, Fakulteten för 
naturvetenskaper och teknik, Laboratoriet för fiber- och 
cellulosateknologi, Åbo 2017 

Nyckelord: hydrotropisk process, sodium xylensulfonat, björkflis, 
sockerrörsblast, hydrotropisk lignin, hydrotropisk massa, restlut, 
NaOH/urea vattenlösning, lignin-cellulosa pärlor, Staphylococcus aureus, 
Escherichia coli 

Bioraffinaderi är ett koncept som innefattar hållbar förädling av biomassa till 
flera nyttiga produkter såsom bränsle, material, energi och kemikalier. 
Behovet av en bredare användning av råvaror från biomassa har sin grund i 
jordens befolkningsökning och förorening med olja-baserade produkter, 
vilka bland annat bidrar till klimatförändringen. En framgångsrik 
implementering av bioraffinaderier behöver effektiva fraktioneringsmetoder 
och därför är syftet av den här forskningen att undersöka en hydrotropisk 
process som kan användas som metod för fraktionering av biomassa. Den 
undersökta hydrotropiska metoden är en miljövänlig vatten-baserad process 
med enkel återvinning av hydrotropen och en möjlighet att erhålla olika 
biprodukter. 

Två typer av råvaror användes i studierna, nämligen flis av nordisk björk 
och sockerrörsblast (bagass) från Brasilien. De här råvarorna behandlades 
med den hydrotropiska metoden och erhållna fraktioner analyserades med 
olika tekniker. Dessutom användes lignin, som var extraherad med den 
hydrotropiska metoden, för tillverkning av lignin-cellulosa partiklar (pärlor). 

Experiment med björkflis visade att under de förhållanden som användes 
kunde den hydrotropiska metoden effektivt delignifiera den här råvaran. 
Tillsats av myrsyra, väteperoxid eller de båda i kombination till den 
hydrotropiska lösningen hjälpte att avsevärt förbättra delignifieringen. De 
producerade massorna hade en hög cellulosahalt, som ytterligare ökade efter 
blekning. Därför är dissolvingmassa ett möjligt användningsområde för de 
här massorna. Lignin som extraherats med den omodifierade och den 
modifierade (myrsyra och väteperoxid) processen isolerades genom tillsats av 
vatten till restlutarna och därpå följande filtrering. Ligninet hade låga halter 
av icke-lignin komponenter.  
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Sökerrörsblast (bagass) fraktionerades med den hydrotropiska metoden 
vid olika temperaturer och tider. Vanligen erhölls två fraktioner, nämligen 
cellulosa och lignin. Renheten av de båda fraktionerna och utbytet av lignin 
var högre vid de hårdare processförhållandena. Förutom utlöst lignin fanns 
det i restlutarna också hemicellulosor, monosackarider, furfural, ättik- och 
myrsyra. Halten av de utlösta komponenterna varierade med 
processförhållandena.  

Lignin som extraherats från björkved med den konventionella 
hydrotropiska metoden blandades med cellulosa i en vattenlösning 
innehållande 7 % NaOH/12 % urea och den här lignin-cellulosa lösningen 
användes för att framställa partiklar som kallas pärlor. Icke-torkade pärlor 
hade en hög porositet och ligninet var jämnt utspritt i pärlorna. 
Antibakteriologiska prov mot vanliga patogener Staphylococcus aureus och 
Escherichia coli visade att lignin-cellulosa pärlorna förhindrade tillväxten av 
S. aureus och inhibitionen var högre när ligninhalten steg. 

Resultaten av den har undersökningen visade att den hydrotropiska 
metoden har en stor potential för fraktionering av lövved och icke-ved 
råvaror till värdefulla produkter såsom cellulosa och lignin. De positiva 
sidorna av processen när det gäller återvinning av de nämnda fraktionerna är 
en enkel isolering av extraherat lignin från restluten och små förluster av 
cellulosa under processen. Dessutom kan de båda fraktionerna produceras 
med hög renhet och därför är de utmärkta råvaror för vidare förädlingar. 
Som det visades med sökerrörsblast kan förutom huvudprodukterna cellulosa 
och lignin också flera andra produkter erhållas såsom furfural och ättiksyra. 
På det hela taget, resultaten av denna avhandling kan stå som grund för 
ytterligare utvecklingar av ett bioraffinaderi baserat på hydrotropiska 
processer. 
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oil can be considered as an additional advantage of biomass refinery 
(Mussatto and Dragone 2016). 

1.2 Biomass fractionation 

One of the prerequisites for the successful implementation of the biorefinery 
concept is the development of the chemical fractionation methods that would 
enable techno-economically feasible recovery of the main constituents of the 
lignocellulosic material, namely cellulose, hemicelluloses and lignin, in a 
sufficiently pure form (Amore et al. 2016; Mikkola et al. 2016; Mussatto and 
Dragone 2016). 

The fractionation into the constituents is generally performed by chemical 
treatments or a sequence of chemical processes. For example, the 
hemicellulose fraction can be extracted by a hydrothermal method that 
comprises treatment of lignocellulosic materials with water/steam at 
temperatures of 150–230 °C in an autocatalyzed mode or with the addition of 
an acid catalyst (Garrote et al. 1999). This process has been applied to various 
lignocellulosic materials, and a huge number of research papers devoted to 
the hydrothermal treatment can be found (Borrega et al. 2013; Song et al. 
2008, 2013; Vallejos et al. 2015a). Extraction of lignin is accomplished by, for 
example, organosolv fractionation methods or other methods that are used in 
pulping technology, such as kraft and sulfite processes, and treatment with 
sodium hydroxide (soda pulping) (Amore et al. 2016; Mikkola et al. 2016). As 
a rule, delignification methods also extract and modify hemicelluloses. 
Several researchers have applied a combination of hydrothermal and 
organosolv processes to extract hemicelluloses and lignin from biomass, for 
example, from sugarcane bagasse and eucalyptus (Romaní et al. 2011; 
Vallejos et al. 2015b). During both hydrothermal treatment and 
delignification processes, cellulose generally undergoes several changes, such 
as reduction in the degree of polymerization (DP) and partial dissolution. 
However, it is usually affected to a lesser extent, because it is the most robust 
constituent of lignocellulosic biomass due to the high DP and the 
supramolecular structure (Garrote et al. 1999; Sjöström 1993a). Therefore, 
the residue remaining after the extraction of hemicelluloses and lignin 
constitutes a cellulose fraction with a certain degree of purity. This principle 
is used in the manufacture of dissolving grade pulps, which essentially consist 
of cellulose, by prehydrolysis treatment combined with a kraft/soda process 
(Andrade and Colodette 2014; Borrega et al. 2013; Sixta et al. 2006). 
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Research presented in this thesis was devoted to a special type of a 
fractionation method, a hydrotropic process. Generally, this treatment is an 
alternative to other delignification processes, some of which are listed above. 
Despite that the lignin extraction methods exist in a fully commercial scale 
and are very common, e.g. pulping processes, research on a hydrotropic 
method is still of great importance. This is related to the fact that the 
commercial kraft and less widespread sulfite processes have several 
drawbacks. Most important is that neither of the methods can be considered 
as environmentally friendly, because of the various types of pollution (Süss 
2006). Besides this, these processes have complex systems for the recovery of 
the pulping chemicals and, in the case of the sulfite process, the recovery is 
performed only for certain types of bases, magnesium and sodium 
(Krotscheck and Sixta 2006). 

The hydrotropic treatment is an environmentally friendly water-based 
process with a simple recovery of hydrotropic solution and a possibility to 
obtain several products (McKee 1954). These advantages over the commercial 
processes make this method an attractive candidate for the biorefinery 
applications. In this work, the hydrotropic method was applied to two raw 
materials, namely birch wood from Finland and sugarcane bagasse from 
Brazil as representatives of hardwood and non-wood types of biomass. 
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Birch wood lignin can be regarded as syringyl-guaiacyl one. The S/G ratio for 
Betula pendula lignin is in the range of 2–2.4 (Pinto et al. 2005; Rauhala et al. 
2011; Rencoret et al. 2012). The main linkages between the lignin units 
(Figure 4) and their amount in birch wood are shown in Table 1. As can be 
seen from the table, β-O-4' is the main linkage in birch wood lignin. 
Generally, it is the most predominant type of bond in both softwood and 
hardwood lignins (Sjöström 1993e). Other values for the abundance of β-O-
4', β-5' and β-β '  linkages in birch wood (Betula pendula) lignin found in 
literature are 40–55, 2–5 and 7–10 per 100 PPU, respectively (Balakshin et al. 
2011; Lundquist 1991, 1992; Pinto et al. 2005; Rauhala et al. 2011). 

Table 1. Linkages in birch wood (Betula verrucosa) lignin (Adler 1977; 
Sjöström 1993e). 

Linkage Dimer structure per 100 PPU 

β-O-4' Arylglycerol-β-aryl ether 60a 

α-O-4' Noncyclic benzyl aryl ether 6–8 

β-5' Phenylcoumaran 6 

5-5' Biphenyl 4.5b 

4-O-5' Diphenyl ether 6.5c 

β-1' 1,2-Diaryl propane 7 

β-β '  Linked through side chains 3 
a22–28 of G type and 34–39 of S type. 
bG type. 
c1 of G type and 5.5 of S type. 

Lignin bears various functional groups. Among them are methoxyl, phenolic 
and primary and secondary aliphatic hydroxyls. The quantity of these groups 
in birch wood (Betula pendula) lignin is 1.5, 0.2, 0.5 and 0.6 per PPU, 
respectively. If expressed in mmol/g, the content of aliphatic and phenolic 
OH groups is 5.4 and 1.2, respectively (Rauhala et al. 2011). In addition, 
carboxyl groups are present in the lignin in amount of 0.18 mmol/g (Rauhala 
et al. 2011). 

In wood, lignin is chemically connected to hemicelluloses through ester, 
ether and glycosidic bonds forming a so-called lignin-carbohydrate complex 
(LCC). Examples of the possible combinations can be an ester bond between 
a lignin unit and 4-O-Me-glucuronic acid of xylan and ether linkages with 
arabinose and mannose units of arabinoglucuronoxylan and glucomannan 
(Sjöström 1993e). 
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2.2 Sugarcane bagasse 

Sugarcane is a major crop used for the manufacture of table sugar or sucrose 
followed by sugar beet. Sugarcane is cultivated in tropical and subtropical 
countries, and in 2013, its production accounted for 1.9 billion tons with 
Brazil being the top sugarcane-producing country (O’Hara 2016). Other 
major producers include, in descending order, India, China, Thailand and 
Pakistan (O’Hara 2016). 

When sugarcane is harvested, the leaves and the top parts of the plant are 
removed from the stalks and are left in the field to decompose, or they are 
collected to be burnt (O’Hara 2016). Only the stalks are delivered to the 
factory for the sugar manufacturing process (O’Hara 2016). The sugarcane 
stalks contain 65–75% of water, 10–18% of fiber material, 10–15% of sucrose 
and a small percentage of other soluble material (Mann 2016). In the factory, 
they are shredded, and the sugar juice is extracted from the crushed material 
in a set of mills and/or diffusers with the assistance of water (O’Hara 2016). 
The fibrous material remaining after the juice extraction is called bagasse. 
Generally, sugar mills generate about 260–280 kg of wet bagasse (dry content 
of 50%) from 1 ton of sugarcane (Clauser et al. 2016; Seabra et al. 2010), and 
most of it is burnt in boilers to produce steam and generate electricity to 
cover the energy demand needed for the factory operation (O’Hara 2016). 
However, bagasse obtained in the course of sugar manufacturing contains 
more energy than is needed by the factory and, therefore, upon optimization 
of the incineration technology, a high amount of this agro-industrial waste 
will be available for the conversion into other high-added value products. The 
manufacture of high-added value products from the bagasse, in turn, will 
help the sugar factories to diversify their economy and to make the 
profitability less dependent on the sugar price on the global market (O’Hara 
2016). 

Sugarcane bagasse consists of 40–45% of cellulose, 20–25% of lignin, 25–
30% of hemicelluloses and minor amounts of other compounds, such as 
inorganic materials and extractives (Andrade and Colodette 2014; Canilha et 
al. 2012; Clauser et al. 2016), and it is a potential low-value high-volume 
biomass resource for biorefinery technology. Comparing the values for the 
chemical composition of sugarcane bagasse with those for birch wood 
(section 2.1), one can observe that these two raw materials are similar to each 
other with respect to the content of the structural components. However, the 
structure of the constituents, in particular, hemicelluloses and lignin is 
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different. Therefore, a brief description of the composition of the bagasse 
hemicelluloses and lignin should also be presented. 

Hemicelluloses 
A main hemicellulose in sugarcane bagasse is arabinoglucuronoxylan (Morais 
de Carvalho et al. 2017). The description below is based on the work by 
Morais de Carvalho et al. (2017), who isolated this hemicellulose using 
dimethyl sulfoxide (DMSO) from the peracetic acid-delignified sugarcane 
bagasse and characterized it with the help of different methods. Generally, its 
structure is similar to that of birch wood xylan, except that the OH groups of 
the anhydroxylose units in the backbone of the hemicellulose are also 
substituted with α-L-arabinofuranose connected by C1-C3' glycosidic bonds. 
The content of the arabinose and 4-O-Me-glucuronic acid units is 5 and 1, 
respectively, per 100 xylose units. The content of acetyl groups is 8.7%. The 
O-acetyl groups are attached either to C2 or C3 atoms of the xylose rings or to 
both atoms simultaneously. The ratio of such units, and also those not 
bearing any acetyl groups, is 11:16:3:70, respectively.  

Besides arabinoglucuronoxylan, sugarcane bagasse also contains other 
hemicelluloses. The results of several studies have shown that upon 
hydrolysis or methanolysis, sugarcane bagasse also produces other non-
cellulosic carbohydrate units, such as mannose and galactose (Alves et al. 
2010; de Carvalho et al. 2015; Szczerbowski et al. 2014). The content of each is 
usually below 1% based on bagasse (Alves et al. 2010; de Carvalho et al. 2015; 
Szczerbowski et al. 2014). 

Lignin 
The S/G ratio of sugarcane bagasse varies in literature due to probably 
different procedures used for the determination as well as due to the variation 
among the raw materials. The reported values are 1.1 (de Carvalho et al. 
2015), 1.3–1.6 (del Río et al. 2015) and 0.8–1.3 (Lopes et al. 2011). It has also 
been shown that the number of H units is small, 2–3 in 100 PPU (del Río et 
al. 2015). 

Besides the classical lignin units, sugarcane bagasse contains residues of p-
coumaric and ferulic acids and tricin (Figure 5). These were found in 
amounts of, respectively, 68, 26 and 2 mol% based on the total sum of S, G 
and H units (del Río et al. 2015). Tricin is a flavon, and it is incorporated into 
the lignin structure being connected to another lignin unit through a 4-O-β '  
linkage. p-Coumaric acid acylates Cγ-OH of the lignin units, predominantly S 
units, whereas ferulic acid is mainly attached to the hemicelluloses (del Río et 
al. 2015). 
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The main lignin linkage is β-O-4', which accounts for 83% of all linkages 
(del Río et al. 2015). It is represented by the β-O-4' structure and β-O-4' with 
acylated Cγ-OH in Figure 5. In addition, 3% of all β-aryl ether linkages is 
found in the structure of Cα-oxidized β-O-4'. Other linkages and structures 
found in sugarcane bagasse lignin are: 6% phenylcoumaran (Figure 4, β-5'+α-
O-4'), 2% resinol (Figure 5), 4% tetrahydrofuran, 2% α,β-diaryl ether and 3% 
spirodienone (del Río et al. 2015). 

 
Figure 5. Main structures of sugarcane bagasse lignin. R1 in the structures of 
β-O-4' with acylated Cγ-OH and tetrahydrofuran is acetyl or p-coumaroyl 

group (del Río et al. 2015). 
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2.3 Hydrotropic treatment 

2.3.1 Hydrotropic agents 

Hydrotropic agents or hydrotropes are chemicals that, when used in a 
concentrated form of the aqueous solutions, improve the solubility of water-
insoluble organic substances (Hodgdon and Kaler 2007; Procter 1971). Such 
compounds are amphiphilic substances, meaning that they consist of 
hydrophobic and hydrophilic parts. Despite the similarity with surfactants in 
respect of the amphiphilic nature, these two groups of compounds differ from 
each other by the size of the hydrophobic part which is usually smaller in the 
case of hydrotropes (Srinivas and Balasubramanian 1998). The difference in 
the hydrophobic part, in turn, governs the different solubilization behavior of 
these two groups. Hence, a higher concentration of a hydrotrope is required 
to initiate solubilization of a hydrophobic compound, and the solubilization 
power is much superior compared to surfactants (Friberg and Blute 2006). 

Many types of chemical compounds, including aromatic 
anionic/cationic/nonionic and aliphatic molecules, are today recognized to 
possess hydrotropic properties (Friberg and Blute 2006; Hodgdon and Kaler 
2007). However, the most common ones used for the biomass processing 
were metal salts of aromatic acids (Procter 1971). Several hydrotropic agents 
are depicted in Figure 6 as an example. 

  

  
 

A B C D E 
Figure 6. Examples of some hydrotropic agents used for biomass processing 
(Bland et al. 1978; Gromov and Odincov 1957a; Procter 1971). Sodium salts 
of: (A) xylenesulfonate, (B) toluensulfonate, (C) benzoate, (D) salicylate, (E) 

benzenesulfonate. 
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2.3.2 Hydrotropic treatment of biomass: a short overview 

A hydrotropic process for biomass treatment was patented first time by 
McKee in 1943 (McKee 1943). In the patent, the author describes a process 
for the recovery of cellulose and lignin from various types of biomass using 
30–40% aqueous solutions of the salts with the aromatic anions derived from 
a single benzene ring. The publication also includes an example of treatment 
of poplar wood chips for 12 hours at a temperature of 150 °C using 30% 
sodium xylenesulfonate (SXS) solution. 

The author of the patent mentioned several benefits of the application of 
the hydrotropic method for biomass processing in comparison with the 
conventional cooking processes (McKee 1946, 1954, 1960). The most 
remarkable technological feature is a simple regeneration procedure of the 
cooking solution that comprises three steps: dilution of the spent solution 
with water, filtration of the precipitated lignin and reconcentration of the 
dilute hydrotropic solution to the operating concentration. Before the 
regeneration, the spent solution can be reused for several subsequent 
treatments until it becomes saturated with dissolved lignin. The saturation 
point is reached at about 350 g of lignin per liter of the solution. In practice 
that would mean, if using the conditions and the results of the conventional 
hydrotropic (R) or acidified (F) treatment from Paper I, one solution could be 
used for 5 treatments. The reuse of the spent solution for the subsequent 
treatments can help to save the energy that otherwise would be required to 
heat fresh cooking solution. After the regeneration, the hydrotropic solution 
does not lose its efficiency and can be re-applied for new treatments. McKee 
(1946) stated that the same solution could be used for 72 subsequent 
treatments, and it remained as effective as the fresh one. There is also a 
possibility to obtain several by-products, such as lignin, furfural, acetic acid, 
and so forth. Besides the advantages mentioned above, other benefits include 
the environmental friendliness of the process, a high alpha-cellulose content 
of the pulps, low consumption of the cooking agent and lower capital 
investment to erect a hydrotropic process-based mill compared to a kraft 
pulp mill. The latter requires more extensive evaporation, installation of a 
recovery boiler and a causticizing plant.  

The positive aspects of the hydrotropic method motivated other scientists 
to become engaged in research on this process in the 1950s–1980s. The 
studies dealt with the investigation of hydrotropic treatment of different types 
of biomass, i.e. softwood, hardwood, non-wood, bark, and biomass species 
(Gromov and Odincov 1957a; Hinrichs et al. 1957; Lenz and Kurth 1963; 
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McKee 1946; Nelson 1978; Procter 1971); the efficiency of different 
hydrotropic agents, such as sodium salts of xylenesulfonic, toluenesulfonic, 
benzenesulfonic, benzoic, salicylic acids (Figure 6) (Bland et al. 1978; Gromov 
and Odincov 1957a; references in Procter 1971); the effect of the process 
conditions and various additives on the pulp properties (Gromov and 
Odincov 1957b, 1959; Gromov and Khrol 1964; Nelson 1978; references in 
Procter 1971; Treimanis et al. 1981). Since the original proposed treatment of 
wood biomass was fairly long, i.e. 12 h (McKee 1946), some attempts were 
made to shorten the treatment time. One of the suggested methods rested 
upon the usage of higher temperatures (Gromov et al. 1967; Kalninsh et al. 
1967). At the same time, alkaline buffers were added to the cooking solution 
to neutralize the liberated acids and, thus, diminish their adverse effect on the 
pulp quality which was especially pronounced at the higher temperatures. 

The research in that time was mainly focused around the manufacture of 
paper-grade chemical pulps and semi-chemical pulps, and the aim was to 
eventually develop a process that could compete with the existing kraft and 
sulfite pulping methods with respect to the pulp quality. However, despite the 
extensive research and numerous efforts, the hydrotropic process has not 
been realized in a full industrial scale. The reasons for this were associated 
with the drawbacks of the process. Hydrotropic treatment has a limited 
application with respect to raw materials. In particular, it cannot sufficiently 
delignify softwoods at the reasonable process conditions, as has been shown 
experimentally by several researchers (Gromov et al. 1963; Gromov and 
Odincov 1957a; Korpinen and Fardim 2009; Nelson 1978). In Gromov’s 
experiments on hydrotropic pulping of spruce and pine wood chips (Gromov 
and Odincov 1957a), a delignification degree of only 62–64% could be 
reached after the treatment with 40% SXS solution for 10 h at 150 °C. For 
comparison, 93.7% of the original lignin could be removed from aspen chips 
at the same conditions (Gromov and Odincov 1957a). The explanation for 
such behavior is related to the structural differences in the lignins of two 
types of the raw materials. Lignin in softwoods is mainly composed of G 
units, which are less reactive and have greater proneness to condensation 
reactions (Nelson 1978; Pinto et al. 2005; Procter 1971). Secondly, the process 
has not eventually become comparable to conventional kraft or sulfite 
methods with regard to the pulp quality (Table 2). As to the former, 
hydrotropic pulps exhibited inferior mechanical properties (Gromov and 
Tupuraine 1960; Hinrichs et al. 1957; Nelson 1978; Procter 1971) and, with 
the latter, the main aspect was the lower yield and brightness of hydrotropic 
pulps at a given lignin content (Procter 1971). Modification of the 
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hydrotropic solution by addition of alkali/buffers could improve the 
mechanical properties of the hydrotropic pulps (Table 2), but such a method 
would raise the problems related to the recovery of a hydrotropic agent 
(Procter 1971). The added alkaline reagents will react with the acids that are 
liberated form the biomass during the treatment, e.g. acetic acid. The formed 
salts of these acids are well-soluble in an aqueous medium, and they will not 
be removed from the solution during the recovery step. Therefore, they will 
accumulate in the hydrotropic solution impairing its solvent efficiency 
(Procter 1971). In addition, it has been shown that the presence of certain 
salts can influence the delignification result during hydrotropic treatment 
(Gromov and Khrol 1964). In particular, when sodium acetate was added to 
the solution, the amount of lignin dissolved during the treatment was lower 
compared to the experiment with the pure hydrotropic solution (Gromov 
and Khrol 1964).  

Table 2. Comparison of hydrotropic, kraft and acid sulfite pulping of 
eucalyptus (E. regnans) (data from Nelson 1978). 

Parameters 

Hydrotropica 
Kraft 

1b 
Hydro-
tropica 

Kraft 
2c 

Acid 
sulfite 

No 
additive 

+ 4%  
NaOH 

Temperature, °C 170 170 170 158 170 - 
Duration, h 1.5 5.5 1.42 5.5 1.75 - 
Yield, % 47.1 53.4 52.4 48.3 53.5 55.0 
Kappa # 37.5 48.8 13.8 24.6 15.9 - 
Freeness, csf 184 166 179 250 250 250 
Tear index, mN×m2/g 5.8 7.6 7.3 7.7 10.8 8.1 
Breaking lengthd, km 8.1 10.2 13.3 7.1 11.5 8.0 
Burst index, kPa×m2/g 5.3 6.4 8.6 - - - 
a40% (w/v) solution of hydrotropic agent, liquor-to-solid ratio 6, 70 min to 170 °C. 
btotal alkali 15%, sulfidity 25%, liquor-to-solid ratio 3.5:1, 60 min to 170 °C. 
csame as kraft 1 except that the heating time to 170 °C was 45 min. 
dbreaking length is the length at which a paper strip would break under its own weight if hung 
vertically (TAPPI T 494 om-01). 

Today, upon the emergence of a biorefinery concept, the topic of a 
hydrotropic process has been revisited. The method has received increased 
attention as a potential candidate for biomass refinery applications, such as 
biomass fractionation or for pretreatment purposes, where the mechanical 
properties of the obtained products are of the least concern. Besides this 
thesis and related to it articles, the recent research activity on the hydrotropic 
method includes extraction of lignin from spruce and birch wood (Korpinen 
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and Fardim 2009) and bagasse (Ansari and Gaikar 2014); manufacture of 
pulps from miscanthus, oat hulls and intermediate flax (Denisova et al. 2015a; 
b) and application of a hydrotropic process as pretreatment before enzymatic 
hydrolysis (Mou et al. 2014a; b, Mou and Wu 2016, 2017). 

2.3.3 Mechanism of lignin dissolution during hydrotropic 
treatment of lignocellulosic biomass 

The reactions taking place during hydrotropic treatment of lignocellulosic 
biomass are complex, giving the fact that biomass consists of a mixture of 
polymers that have complex structures, especially lignin. 

It is generally acknowledged that the removal of lignin from 
lignocellulosic material during hydrotropic treatment involves two steps 
(Gromov 1963; Ishikawa et al. 1970; Nelson 1978). In the first step, the native 
lignin is altered and fragmented due to the cleavage of the lignin-lignin and 
lignin-carbohydrate linkages. In the subsequent step, the lignin fragments are 
solubilized by the hydrotropic solution. However, the reactions do not stop at 
this point, and the liberated lignin is further modified in the solution 
(Gromov 1963; Procter 1971). 

In general, hydrotropic treatment is performed under the acidic 
conditions. The conditions of the treatment can be alkaline as well, if alkali or 
alkaline salts are added. However, the alkaline pH should be avoided, because 
this can cause problems with the recovery of hydrotropic solution (Procter 
1971). If acids are not added during the treatment, the process is 
autocatalyzed, and the pH drops due to the liberated organic acids, such as 
formic and acetic acids (Gromov 1963; Procter 1971). Therefore, one can 
suppose that the reactions responsible for the fragmentation of a lignin 
macromolecule during hydrotropic treatment are similar to those taking 
place during acidic organosolv pulping processes. The most important 
reactions are the cleavage of the α-O-4' and β-O-4' bonds (McDonough 1993; 
Sarkanen 1990). 

The mechanism of the α-aryl ether bond cleavage is depicted in Figure 7. 
This cleavage mechanism occurs through the formation of the intermediate 
benzyl carbocation (Sarkanen 1990). The formed carbocation can further 
react with water to form benzylalcohol or with another nucleophilic 
molecule, if such is present in the system. In addition, a counterproductive 
coupling reaction with another lignin unit can take place resulting in lignin 
condensation. 
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the hydrotropic solution acquires the solubilization power (Srinivas et al. 
1997 and references therein). At this concentration, the molecules of a 
hydrotropic salt form non-covalently self-associated layered structures with 
non-polar regions that accommodate hydrophobic molecules (Srinivas et al. 
1997). The existence of MHC can well explain the solubilization of lignin and 
its precipitation upon the dilution of the hydrotropic solution.  

2.3.4 Hydrotropic lignin 

A great deal of the research related to the hydrotropic process has been 
focused on the pulp properties. However, several papers have been devoted to 
the investigation of lignin isolated with this process as well as to its 
applications. 

It has been stated by McKee that hydrotropic lignin is unaltered or only 
slightly different from the original lignin of biomass (McKee 1943, 1946, 
1960). Other researchers have pointed to the opposite, though, i.e. lignin 
isolated by this method is modified and is different from the corresponding 
protolignin (Ishikawa et al. 1970; Kreicberg and Grabovskij 1960; Zoldners 
and Surna 1969). Thus, hydrotropic lignin extracted from aspen wood at 160 
°C and 120 min was shown to be more condensed compared to dioxane 
lignin, which was considered as a representative of the protolignin (Zoldners 
and Surna 1969). The conclusion was made based on the yield of aromatic 
aldehydes formed upon nitrobenzene oxidation (8.1 and 24.3%, respectively) 
and on the quantity of phenol reacted with the lignins (47 and 99%, 
respectively). The authors, however, also mentioned that the treatment 
conditions had a great effect on the extent of the modification and the 
reactivity of hydrotropic lignin. 

Several researchers and research groups worked on the utilization of 
hydrotropic lignin. The inventor of the process, McKee, suggested that lignin 
upon addition of formaldehyde can produce thermoset plastic of a medium 
quality without usage of phenol (McKee 1954). Similar application of 
hydrotropic lignin was discussed by Kalninsh et al. (1962), who performed 
experiments on the substitution of phenol in phenol-formaldehyde resins 
with hydrotropic lignin. In the cited publication, the authors make an 
example of resin with 55% of phenol being replaced by the hydrotropic 
lignin. Other researchers carried out hydrogenation of lignin dissolved 
during hydrotropic treatment over a Ni catalyst to obtain phenolic 
compounds (Gromov and Pormale 1961). With the conditions employed in 
the study, the yield of phenols was 12% of the dissolved lignin. In another 
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study, hydrotropic aspen lignin was subjected to nitrobenzene oxidation in an 
alkaline medium, and the reaction yielded 8.8% of aromatic aldehydes based 
on Klason lignin of the hydrotropic lignin (Kreicberg and Grabovskij 1960). 
Telysheva et al. (1966) obtained 39.3% (based on Klason lignin of hydrotropic 
lignin) of low molar mass products from aspen hydrotropic lignin by 
oxidative degradation with oxygen in an alkaline media in the presence of 
copper oxide. The authors further fractionated the obtained products into 
aldehyde, acidic, phenolic and neutral fractions. 

2.4 Lignin application: antimicrobial properties 

Lignin is generally considered as a waste by-product of the pulp and paper 
and ethanol industry (Espinoza-Acosta et al. 2016). Despite that a small 
percentage of lignin extracted from biomass at a commercial scale is utilized 
for making low added value products, most of it is burned in the form of 
spent solution, so-called black liquor, to produce energy and to recover the 
pulping chemicals (Espinoza-Acosta et al. 2016). Given the fact that lignin is 
renewable, available in high quantities and has a unique structure and 
composition, many researchers have tried to find a way to utilize this polymer 
for high added value applications, for example as an antioxidant (Dizhbite et 
al. 2004; Dong et al. 2011; Pan et al. 2006). One of the potential fields of high 
added value applications of lignin is related to its antimicrobial properties. 
Several research articles are devoted to this area. Different types of lignins 
have been tested for their antimicrobial activity against Gram-positive and 
Gram-negative bacteria as well as against fungi. 

Nada et al. (1989) studied the antimicrobial properties of lignins isolated 
from bagasse by soda and kraft pulping methods and lignin isolated from 
cotton stalks by a soda process. The obtained lignins did not show any 
antimicrobial activity against fungi, Aspergillus niger, and Gram-negative 
bacterium, Escherichia coli. Better performance was shown by the lignins 
against Gram-positive types of bacteria, Bacillus subtilis and Bacillus 
mycoids. However, the activity against these bacteria was also dependent on 
the raw material and the pulping conditions which were used for the 
extraction of the lignins. 

Lignins in the form of spent solutions from Organocell pulping of spruce 
wood and neutral sulfite semichemical pulping (NSSC) of a mixture of 
hardwood as well as organocell lignin and prehydrolysis beech lignin were 
subjected to the antimicrobial activity test against several types of yeasts 
(Slavikova and Kosikova 1994). Some lignin and spent solution samples were 
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also applied after oxidation treatment. The results of the study showed that 
the tested lignin samples could greatly inhibit the growth of C. albicans, T. 
cutaneum and S. roseus. Based on the inhibition efficiency, the authors 
arranged the lignin samples in the following order: organocell spent 
solution<organocell lignin<NSSC spent liquor. Beech prehydrolysate lignin 
showed good efficiency against C. albicans, but its performance was inferior 
to other samples with respect to other yeasts. Interestingly, the oxidation of 
the organocell and prehydrolysis lignins mitigated their antimicrobial 
efficiency. It was also mentioned in the article that the antimicrobial 
efficiency could correlate with the surface tension, which was explained in 
terms of better ability of compounds with a lower surface tension to penetrate 
through the cell wall. The NSSC spent solution, which showed the highest 
inhibition in the study, had the lowest surface tension. 

The antimicrobial activity tests of several types of lignins against 
microorganisms were conducted by Telysheva et al. (2005). The authors 
concluded that the antimicrobial properties strongly depended on the lignin 
prehistory, the type of the microorganism and the concentration of lignin in a 
cultural medium. For example, it was shown that the inhibition efficiency of 
E. coli growth differed among the soda lignins isolated from different non-
wood raw materials, and it was strongest for sisal, abaca and flax soda lignins.  

Based on these research cases (Nada et al. 1989; Slavikova and Kosikova 
1994; Telysheva et al. 2005), it is clear that lignins can behave as antimicrobial 
agents, and it is also evident that the antimicrobial performance depends 
considerably on a type of microorganisms and lignins tested. From this point 
of view, the botanical origin of lignin and the method used for its production 
are the crucial factors that determine its antimicrobial behavior. The 
antimicrobial properties of lignins are apparently connected to its nature via 
the structure, meaning that the lignin prehistory affects the lignin structure 
and this, in turn, reflects its antimicrobial properties. It has been shown by 
Zemek et al. (1979) using various lignin-derived low molar mass compounds 
and different types of microorganisms that the chemical structure of such 
compounds greatly influences the antimicrobial efficiency. In particular, a 
structure with a double bond at the Cα, Cβ position and a methyl group at Cγ 
showed the highest efficiency. Contrarily, the compounds with a carbonyl 
group in Cα, Cβ positions or with a carboxyl and hydroxyl group in the side 
chain were less efficient. 

Despite the fact that many types of lignins have been tested, there is no 
information about the antimicrobial properties of hydrotropic lignins in the 
literature. Therefore, investigation of the antimicrobial behavior of this 
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special type of lignin isolated from birch wood presented a great scientific 
interest. 

2.5 Objectives of the study 

The aim of the research presented in this thesis was to explore hydrotropic 
treatment as a process for biomass refinery and to generate knowledge that 
would allow further development of biorefinery technology based on the 
hydrotropic treatment. Despite the fact that the hydrotropic process has been 
extensively researched, and many scientific papers about this process can be 
found, a major part of the performed earlier research had a papermaking 
context. However, application of the hydrotropic treatment as a biorefinery 
tool instead of a pulping process for papermaking requires additional 
knowledge, and other process streams must also be considered. Therefore, 
the study on this process is still worthwhile. 

In the scope of the study, the objectives were set to investigate the 
feasibility of hydrotropic treatment for fractionation of different raw 
materials. This was accomplished by application of the hydrotropic method 
for processing of birch wood from Finland and sugarcane bagasse from Brazil 
and characterization of the obtained fractions, mainly cellulose and lignin. In 
addition, the lignin obtained from the fractionation of the birch wood chips 
was utilized for the preparation of a shaped product, lignin-cellulose beads, 
and these beads together with the lignin itself were tested for their 
antibacterial properties. 
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strains were cultured in conical, sterile, loosely capped 50-mL polypropylene 
tubes in tryptic soy broth (TSB) at 37 °C, 250 rpm. TSB was purchased from 
Sigma-Aldrich. 

Other chemicals were obtained from the chemical companies and were 
used without further purification. 

3.2 Methods 

3.2.1 Hydrotropic treatment 

The treatments of birch wood (Paper I) were performed batch-wise in 
stainless steel reactors. One treatment was carried out using 36% SXS 
aqueous solution (Rbir). For the other three, the hydrotropic solution was 
modified either by addition of hydrogen peroxide at the dosage of 2.5% based 
on wood (Hbir) or by acidification with formic acid to the pH of 3.5 (Fbir), or 
by addition of both hydrogen peroxide, 2.5% based on wood, and formic acid 
to lower the pH to 3.5 (HFbir). Before placing the chips into the digester, they 
were impregnated with the hydrotropic solutions under reduced pressure at 
room temperature. The time-temperature profile of the treatments was as 
follows: heating rate of 1.5 °C/min, dwell time of 120 min and dwell 
temperature of 170 °C. The liquor-to-solid ratio was 4 (w/w). 

For Paper II, hydrotropic extraction of lignin from birch wood was 
performed using the solutions and the conditions of Rbir and HFbir treatments. 

Sugarcane bagasse (Paper III) was treated using 1 L reactors placed into a 
rocking digester. Rbag and Fbag treatments were carried out using unmodified 
and acidified 30% SXS solutions, respectively. The liquor-to-solid ratio was 
10 (w/w) and the ramp was 1.5 °C/min. Other parameters are specified in 
Table 3. When the treatments ended, the reactors were transferred into 
buckets with cold tap water and were kept there for 10 minutes. 

Table 3. Conditions of hydrotropic treatments of sugarcane bagasse. 

Treatment 
Dwell 

temperature, °C 
Dwell time,  

min 
Initial 

pH 

R1bag 150 120 9.5 
F1bag 150 120 3.5 
R2bag 170 60 9.6 
F2bag 170 60 3.5 
R3bag 170 120 9.6 
F3bag 170 120 3.5 
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The obtained treated material (Papers I, II and III) was disintegrated to 
produce fibers (pulps), pre-washed with tap water to remove remained spent 
solution, centrifuged and soaked in 0.5% NaOH solution at a consistency of 
about 7.5% for 10 minutes. Subsequently, the NaOH-treated pulps were 
thoroughly washed with tap water until the filtrates became colorless. 
Screening of the pulps was carried out using a Valmet TAP03 rotary screen 
with a 0.06 mm slit basket. The screened yield was estimated by subtracting 
the rejects from the total yield. 

3.2.2 Bleaching of birch hydrotropic pulps 

Selected birch hydrotropic pulps (Paper I) were oxygen delignified (O) and 
bleached with a chelation–pressurized peroxide bleaching–chelation–
peroxide bleaching sequence (Q-PO-Q-P) (Table 4). The parameters and the 
chemical dosages of the Q and PO stages were chosen based on the literature 
(Anderson and Amini 1996; Wackerberg et al. 1997), respectively, and for the 
P stage based on trial experiments. The unpressurised stages were carried out 
in plastic bags heated in a thermostatic water bath. The oxygen delignification 
and the PO stage were performed in a Quantum Mark IV mixer. Washing of 
the pulps after the bleaching was done using distilled water until the neutral 
pH. 

Table 4. Conditions of oxygen delignification and bleaching of birch 
hydrotropic pulps. 

Conditions/ 
chemicals 

Stagesa 

O Q PO Q P 

Temperature, °C 95 70 90 70 90 

Time, min 60 60 30/120b 60 270 

Consistency, % 10 10 10 10 10 

pH - 6-7 - 6-7 - 

Pressure, bar 6-7 - 5 - - 

DTPAc, %d - 0.2 - 0.2 - 

H2O2, %d - - 3.5 - 3 

NaOH, %d 2 - 3 - 3 

MgSO4, %d 0.3 - 0.3 - 0.3 
aO, oxygen delignification; Q, chelation; PO, pressurized hydrogen peroxide bleaching 
stage; P, peroxide bleaching stage. 
b30 min for HFbir pulp and 120 min for Rbir pulp. 
cDTPA, diethylenetriaminepentaacetic acid. 
dbased on oven-dry pulp. 
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The yield of lignin obtained by precipitation, % based on raw material 

�������/�	 � ������� �� �
���

��	

� 100 (2) 

The same as above, % based on lignin in raw material. For the estimation 
of the lignin yield based on the lignin in raw material, the purity of the 
isolated lignins was taken into account, and it was estimated using the 
content of non-lignin compounds in the lignins.  

�������/����� = ������� �� ×
���

������ �	

× 100 (3) 

Lignin that did not precipitate upon dilution of spent solution, % based on 
lignin in raw material 

����-������ = ���� − �������/�����, (4) 

where LRM and Lpulp are the content of lignin in the raw material and pulp, %; 
mRM and mpulp are the amount of the raw material used for the treatment and 

the amount of obtained pulp, g; Lprecip SS is the amount of lignin obtained from 
spent solution by precipitation, g/g of spent solution; mSS is the amount of 

spent solution estimated as a sum of the raw material dissolved during the 
treatment, water present in the raw material and hydrotropic solution used 
for the treatment, g; mlignin RM is the amount of lignin in the raw material, g. 

3.2.4 Preparation of lignin-cellulose beads 

Lignin-cellulose beads were prepared by co-dissolution of cellulose and lignin 
and shaping of the resultant solution. The beads were designed to have 
different mass ratios of cellulose and lignin: 100/0 (100C), 90/10 (90C10L), 
75/25 (75C25L) and 60/40 (60C40L). Lignin R isolated from birch (Paper II) 
was used as a raw material. 

Cellulose-lignin solutions were prepared using 7% NaOH/12% urea/water 
solvent, and the concentration of cellulose was always 5% (based on cellulose 
and solvent). The cellulose was first dispersed in the solvent at room 
temperature. Then, the desired amount of lignin was added, and stirring 
continued until all lignin clumps disappeared. Subsequently, the beaker was 
transferred into a cooler jar and kept there at -12 °C for about 45 min. The 
dissolution of cellulose was examined by light microscopy. Before shaping, 
the solutions were centrifuged at 3500 rpm for 5 min to remove air bubbles. 

The obtained solution was extruded through a 5 mL Eppendorf combitip 
into 10-fold (v/v) 2M HCl. The obtained beads were left overnight in the acid. 
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On the following day, they were washed with running tap water for 30 min 
and distilled water for 15 min (Trygg et al. 2013). 

3.3 Analyses 

3.3.1 Characterization of biomass and hydrotropic pulps 

Before the analyses, birch wood chips (Papers I and II) and the bagasse 
(Paper III) were ground with a cutting mill employing a sieve cassette with 1 
mm openings.  

Lignin content 
Lignin content was analyzed according to TAPPI T222 om-02 with some 
modifications (Schwanninger and Hinterstoisser 2002) and TAPPI UM 250. 
In Paper III, the lignin content was corrected for the silica content with the 
assumption that Si-containing compounds remained in Klason lignin as SiO2 
during the lignin determination. The silicon content was measured from the 
pressed ash of the bagasse or the pulps by energy-dispersive X-ray 
spectroscopy (EDS) using a JEOL JSM-6335F (Japan) SEM-EDS. The 
accelerating voltage of 20 kV was applied, and several spots (3–5) were 
analyzed. INCA Suit (v. 4.04) software was used to process the spectra. 

Carbohydrates 
Carbohydrate composition was determined by both acid methanolysis using 
2M HCl in MeOH or hydrolysis with 72% sulfuric acid followed by gas 
chromatography (GC) as described elsewhere (Sundberg et al. 1996). 

For the analysis of residual sucrose in the bagasse (Paper III), 10 mg of the 
material was extracted batch-wise three times for 90–120 min with 2 mL of 
distilled water. The extractions were performed at room temperature under 
stirring, and the solutions were withdrawn after centrifuging at 3500 rpm for 
5 min. The supernatants from each extraction were combined and freeze-
dried. Subsequently, the dry residues were dissolved in 150 μL of pyridine and 
silylated using 150 μL of hexamethyldisilazane (HMDS) and 70 μL 
trimethylchlorosilane (TMCS). The silylated samples were analyzed with GC 
using the method for the analysis of sugars after the hydrolysis (see above). 

Other analytical methods 
Other methods used include kappa number (SCAN-C 1:00), brightness (ISO 
3688), intrinsic viscosity (ISO/FDIS 5351) and ash content (TAPPI T 211 om-
02). Extractives were determined following SCAN CM 49:03 using a 95:5 
(v/v) acetone-water mixture. 
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3.3.2 Chemical and elemental composition of lignins 

The methods were used for the characterization of birch and bagasse 
hydrotropic lignins isolated in the studies for Papers II and III. 

Elemental composition 
CHNS elemental composition was carried out using a Thermo Scientific 
Flash 2000 series elemental analyzer (Vega et al. 2013). Oxygen (250 L/min, 6 
min) was used as an oxidizer. Helium at a flowrate of 140 L/min was used as a 
mobile phase. The temperature of the reactor was 950 °C. 

Residual hemicelluloses 
Carbohydrates in the lignins were determined using the acid methanolysis 
and GC (section 3.3.1) with several exceptions. The methanolysis time was 
reduced to 3 h and, in addition to the column HP-1 (25 m×0.200 mm i.d., 
0.11 μm, Agilent Technologies), the results were also obtained using an HP-5 
column with the dimensions of 25 m×0.199 mm i.d., 0.11 μm (Agilent 
Technologies, USA). Two columns were necessary to use, because some sugar 
peaks overlapped with the peaks of unknown compounds on the HP-1 
column chromatograms causing difficulties with the integration, and these 
peaks were better resolved with the HP-5 column. 

Low molar mass aliphatic and aromatic compounds 
The analysis was carried out using GC after silylation with N,O-
bis(trimethylsilyl)-trifluoroacetamide and TMCS. The chromatography was 
performed with Clarius 500 (PerkinElmer) and AutosystemXL (PerkinElmer) 
gas chromatographs equipped with short (6–7 m) and long (25 m) columns, 
respectively (Strand et al. 2011). The former was used for the analysis of the 
groups of the compounds, and the latter allowed analysis of the individual 
compounds except steryl esters and triglycerides. The peaks in the 
chromatograms were identified using gas chromatography-mass 
spectrometry (GC-MS) as described elsewhere (Smeds et al. 2012). 

3.3.3 Analysis of lignin structure 

FTIR (Paper II) 
FTIR spectra were collected from a KBr lignin pellet with a Thermo Scientific 
Nicolet iS50 spectrometer using 32 scans and the resolution of 4 cm-1. Lignin 
concentration in the pellet was around 1% (w/w). OMNIC spectra (Thermo 
Scientific) software was used to process the spectra. 
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NMR methods (Paper II) 
31P NMR was performed as described elsewhere (Gosselink et al. 2010) after 
derivatization with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 

A semiquantitative 1H-13C HSQC NMR spectroscopy was performed on a 
Bruker AVANCE III 400 MHz instrument equipped with a 5 mm BBI probe 
(5 G/cmA). For the analysis, about 50 mg of each lignin was dissolved in 1 
mL of DMSO-d6. The details of the method are described in Paper II.  

Analytical pyrolysis (Paper II and III) 
Hydrotropic lignins were analyzed with conventional Py-GC-MS using a 
Pyrola 2000 pyrolyzer (Pyrol AB, Lund, Sweden) and a GC-MS instrument. 
Before the pyrolysis, wood was milled as described in section 3.3.1 and sieved 
to isolate fractions <250 μm and freeze-dried. Ground bagasse was also 
additionally milled to improve sampling. 

The procedures were essentially based on those described elsewhere 
(Smeds et al. 2012). The pyrolysis temperature was 600 °C (Paper II) or 580 
°C (Paper III). In the case of the bagasse study, a different column and 
conditions were used in the GC as specified in Paper III.  

TMAH/Py-GC-MS (Paper III) was performed according to the literature 
(Smeds et al. 2016) using a pyrolysis temperature of 360 °C. The GC column 
and the conditions were the same as in the conventional pyrolysis in Paper 
III. 

The identification of the released compounds was done mainly with the 
help of the MS library created in the Laboratory of Wood and Paper 
Chemistry at Åbo Akademy University and partly using the Wiley 10/NIST 
2012 mass spectral libraries. 

Size-exclusion chromatography (Paper II and III) 
For Paper II, SEC was performed as described in the literature (Gosselink et 
al. 2010). 

For Paper III, SEC was performed using X-stream H2O 1000 Å columns 
connected in a series: 50×10 mm i.d. guard column and 250×10 mm i.d. main 
column (Jordi Labs, USA). Before the analysis, lignins were dissolved in 
DMSO. DMSO/0.05M LiBr was used as an eluent. The signal from the UV 
(DAD) detector was collected at 300 nm. Phenol and a series of pullulan 
standards were used for calibration.  
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3.3.4 Characterization of the spent solutions 

The following methods were used for characterization of the spent solutions 
in Paper III. 

Furfural and HMF 
The content of furfural and 5-hydroxymethylfurfural (HMF) was analyzed by 
high-performance liquid chromatography (HPLC) (Agilent 1260 series, 
Waldbronn, Germany) using a UV detector. Before the analysis, 0.2 mL of 
the spent solutions was diluted with distilled water in 50 mL volumetric 
flasks. The parameters of the chromatography including the column and the 
eluent are specified elsewhere (Korpinen et al. 2014). Diluted solution of SXS 
(62 mg/L) was run to verify that the hydrotropic agent did not interfere with 
the analyzed compounds. Quantification of furfural and HMF was done 
using the signals at 276 and 284 nm, respectively, with the help of calibration 
curves. 

Acetic and formic acids 
The content of the acids was determined with the same instrument as above 
using a 250 mm×4.6 mm i.d. Synergi 4 µm Hydro-RP 80A HPLC column 
(Phenomenex®, CA, USA). For the analysis, the spent solutions were first 
diluted with distilled water (2–3:10 v/v) and then with 40 mM KH2PO4 in a 
ratio of 1:1. 20 mM KH2PO4 was used as an eluent. Dilute solutions of acetic 
and formic acids were used to determine the retention times. The acids were 
quantified using calibration curves and the signals at 210 nm in the case of 
acetic acid and 220 nm for formic acid. 

Total dissolved solids 
Total dissolved solids were measured by freeze-drying 10 mL of the spent 
solutions. The values were used for calculations. The freeze-dried samples 
were converted to fine powder by crushing and were used for the 
determination of the content of carbohydrate monomers and polymers. 

Carbohydrates 
The total content of carbohydrates was determined by the acid methanolysis 
and GC (section 3.3.2). The calibration solutions were modified by addition 
of SXS, the amount of which corresponded roughly to that in the samples.  

The content of sugar monomers was analyzed by silylation and GC in the 
same way as it was done for the determination of total carbohydrate content 
but without methanolysis. 0.1 mg/mL xylitol in MeOH was added as an 
internal standard. The GC conditions were the same as those used in the 
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determination of carbohydrates by the hydrolysis (section 3.3.1). The amount 
of carbohydrate polymers was estimated by subtraction of sugar monomers 
from the total amount of carbohydrates. 

SEC 
The same set up was used as described in section 3.3.2. Before the analysis, 
the spent solutions and approximately 30% SXS solution were diluted 4-fold 
with distilled water, mixed well and centrifuged at 3500 rpm for 5 min. 
Subsequently, about 2.7 mL of the supernatants was freeze-dried, and the 
dried residue was dissolved in DMSO. 

3.3.5 Characterization of lignin-cellulose beads 

Lignin content 
Lignin content in the beads and in the birch hydrotropic lignin was analyzed 
as described in section 3.3.1. The acid-soluble lignin was measured from the 
combined filtrates and washing water.  

ATR-FTIR 
The measurements were performed with an ATR module of the FTIR 
instrument (section 3.3.3). The spectra were collected using 64 scans with the 
resolution of 4 cm-1. 

Weight, size, shape and porosity 
The weigh was determined with an ordinary procedure. The excess of water 
from never-dried beads was removed with a paper towel. The dimensions of 
the beads and the circularity were determined as described in the literature 
(Trygg et al. 2013). The porosity was calculated according to the equation: 

� �
��� � 
 �����

��� �

� 100% , (5) 

where Vbead is a volume of a bead calculated as described elsewhere (Trygg et 
al. 2013); Vsolid is a volume of the solid matter in a bead estimated from the 
weight of oven-dry (OD) beads and the density of the solid matter, assuming 
the densities of lignin and cellulose to be 1.3 (Feldman 2002; Ni and Hu 1995) 
and 1.5 g/cm3 (Ettenauer et al. 2011), respectively. 

Imaging 
The microstructure of the beads and the distribution of lignin in the beads 
were studied by Field Emission Scanning Electron Microscopy (FE-SEM) and 
laser scanning confocal fluorescence microscopy, respectively. For both 
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methods, the beads were frozen in liquid nitrogen and freeze-dried. The SEM 
was done using a LEO Gemini 1530 (Zeiss (LEO), Germany) microscope and 
an In-Lens detector. The accelerating voltage was 2.7 kV. The beads were 
sputter coated in Temcarb TB500 (Emscope Laboratories, Ashford, UK).  

A Leica TCS SP5 STED (Leica Microsystems GmbH, Germany) 
microscope with a GaAs-hybrid detector (Leica) and a 10.0x N.A. 0.30 dry 
objective was used for the confocal fluorescent microscopy. Fluorescence 
images were obtained with the excitation wavelength of 488 nm and the 
emission bandwidth of 600–650 nm. In the case of the reflection channel, the 
corresponding settings were 476 nm and 450–484 nm. About 20 images were 
collected with a step of approximately 5 μm. ImageJ was used to process the 
images. 

Lignin leaching 
Lignin leaching from the air- and never-dried beads as well as from the lignin 
itself was studied by keeping the beads and the lignin in distilled water for 
several 20–24 h periods and analyzing the solutions by UV spectroscopy. At 
the end of each 20–24 h period, the solutions were withdrawn, and a fresh 
portion of distilled water was added. In the case of the lignin, the beakers 
were centrifuged at 3900 rpm for 30 min to sediment the lignin particles, and 
before the UV spectroscopy, the supernatants were additionally filtered 
through 0.2 μm PTFE Acrodisc membrane filters. The amount of leached 
lignin in the solution was determined by UV spectroscopy as described in 
TAPPI UM 250. 

3.3.6 Antibacterial activity of lignin-cellulose beads 

Prepared lignin-cellulose beads in Paper IV were tested for the antibacterial 
activity against two common pathogens, namely Gram-negative E. coli and 
Gram-positive S. aureus.  

The assay was performed for all never-dried beads, air-dried 60C40L 
beads and hydrotropic lignin. The load of the beads corresponded to 50 mg of 
the dry weight, and the dosage of lignin was 20, 50 and 100 mg (dry weight). 
The beads and the lignin were kept in 5 mL of inoculated TSB for 24 h at 
37 °C under shaking at 250 rpm. The number of bacteria in TSB before (1–
3×10-6 CFU/mL) and after the incubation period was determined by viable 
counting. 

The second part of the study dealt with the determination of half 
inhibitory (IC50) and 90% inhibitory (IC90) concentrations for 60C40L 
never-dried beads using S. aureus only. A similar experimental set up was 
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used, and the number of the beads per tube was increased from 2 to 64 in 2-
fold increments.  

3.3.7 Other analyses 

Residual hydrogen peroxide in the spent bleaching solutions after the 
peroxide bleaching stages in Paper I was analyzed by a titration with 0.2 M 
sodium thiosulfate solution. Before the titration, 5–10 mL of the spent 
solutions was mixed with 20 mL of 0.2 N sulfuric acid, 10 mL of 10% 
potassium iodide solution, 100 mL of distilled water and 5 drops of 3% 
ammonium molybdate solution.  
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Table 5. Initial and end pHs of hydrotropic solutions and properties of birch 
hydrotropic pulps. 

Pulpa 
pH  

 
Yield, % Kappa 

number 
(K) 

Intrinsic 
viscosity  

(V), mL/g 
V/K 

Degree of 
delignifica-

tion, % Initial End Total Screened 

Rbir 9.3 3.5  47.6 47.3 26.6±0.2 1136±7 42.7 91 
Hbir 8.9 3.6  47.5 46.8 13.6±0.2 958±3 70.5 95 
Fbir 3.4 3.4  45.1 45.0 17.7±0.0 849±1 48.0 95 
HFbir 3.5 3.5  43.5 43.2 8.2±0.1 660±1 80.1 97 
aRbir, 36% SXS; Hbir, 36% SXS+H2O2; Fbir, 36% SXS+formic acid; HFbir, 36% SXS+H2O2+formic acid. 
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The addition of the reagents resulted in lower intrinsic viscosity values of the 
pulps (Table 5). Generally, intrinsic viscosity correlates with the molar mass 
of pulp cellulose (da Silva Perez and Van Heiningen 2002) and, consequently, 
cellulose of the hydrotropic pulps that had lower viscosity values was more 
degraded. The more extensive degradation of cellulose upon addition of 
formic acid was caused by the intensification of the hydrolytic reactions. In 
the case of hydrogen peroxide, besides the autocatalyzed hydrolysis, the 
reduction of cellulose DP was additionally caused by harmful radicals formed 
upon the high temperature and/or due to the presence of transition metals in 
the wood (Lachenal 1996). In contrast to the kappa number, formic acid 
exhibited a more drastic effect on the viscosity than did hydrogen peroxide. 

The modification of hydrotropic solution had both a positive and a 
negative effect on the treatment performance. However, if calculating the 
ratio of viscosity to a kappa number, which is a way of expressing the process 
selectivity (Patt et al. 2002), one could observe that the values were higher for 
the treatments that used the modified hydrotropic solutions. In particular, 
hydrogen peroxide-assisted processes exhibited higher viscosity/kappa 
number ratios. 

4.1.2 Chemical composition of birch hydrotropic pulps 

Hydrotropic treatments also removed, together with lignin, a great deal of 
hemicelluloses, and the pulps were enriched in cellulose. The residual 
hemicelluloses consisted mainly of xylan, which was also abundant in the 
original birch wood. The pulps obtained with the hydrotropic solutions 
containing formic acid had a higher cellulose content (Figure 11). Such a 
result could be attributed essentially to the enhancement of the hydrolytic 
reactions by formic acid, which led to the greater removal of the 
hemicelluloses. Hydrogen peroxide was not as effective as formic acid with 
respect to the pulp purity, as can be observed from the cellulose content for, 
for example, Rbir and Hbir vs Rbir and Fbir pulps (Figure 11). The pulp produced 
with HFbir treatment had the highest cellulose content. 
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Figure 11. Content of cellulose, lignin, xylose (anhydrous), uronic acids 
(anhydrous) and non-cellulosic polysaccharides in birch wood based on 

wood and in birch hydrotropic pulps based on pulp. 

It should be mentioned here that in the original paper (Paper II), the analysis 
of hemicelluloses in the pulps and the raw material was performed using the 
acid methanolysis procedure only. However, this method does not give true 
results, at least for certain hemicellulose units, in the case of modified 
materials, such as chemical pulps. Such samples contain a more resistant part 
of hemicelluloses that cannot be fully depolymerized by the methanolysis 
mixture (Sundberg et al. 1996; Willför et al. 2009). Therefore, the 
carbohydrates in the samples were additionally analyzed using the acid 
hydrolysis method. In the case of the birch wood, both methods gave 
comparable results with respect to the neutral hemicellulose units. However, 
greater discrepancy was observed for the pulps. In particular, the yields of 
xylose and mannose in the acid methanolysis were only 60–70% and 40–45%, 
respectively, of the yield of these sugars from the hydrolysis. Therefore, the 
results for these units from the hydrolysis procedure are reported in this 
thesis. The difference between the acid methanolysis and hydrolysis has also 
been discussed in relation to other types of treated residues/pulps, namely 
birch kraft pulp (Willför et al. 2009) and SO2-ethanol-water residues/pulps 
obtained from spruce wood (Iakovlev and van Heiningen 2012). 

Analyses of the chemical composition revealed that the low yields (Table 
5) of Fbir and HFbir pulps compared to the reference one (Rbir) and Hbir was due 
to the content of the non-cellulosic compounds, as the content of cellulose in 
the pulps based on wood was about the same, and it was slightly lower for 
HFbir pulp (Figure 12). 
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Figure 12. Content of cellulose, lignin and non-cellulosic 
polysaccharides in birch wood and birch hydrotropic pulps based on original 

wood. 

The cellulose content in the pulps (wood based) was also close to that of the 
original wood, which implied that there was no loss of cellulose in the course 
of the hydrotropic treatments or it was minor. This is an important advantage 
of a hydrotropic process over the alkaline cooking methods. In the alkaline 
processes, a significant amount of cellulose is lost due to the peeling 
reactions. These reactions remove one by one reducing glucose units of the 
cellulose chains converting them into carboxylic acids (Alen 2000b). For 
example, in the studies related to prehydrolysis and soda anthraquinone 
pulping (Soda-AQ) of birch wood (Borrega et al. 2013; Testova et al. 2014), 
the loss of the cellulose comprised about 27% based on cellulose after the 
Soda-AQ pulping, and it was 17% and higher after the prehydrolysis and 
pulping depending on the conditions. In a kraft process, the loss of cellulose 
upon pulping of birch wood (Betula verrucosa) is 15% based on cellulose 
(Sjöström 1993a). In contrast to the alkaline pulping methods, the peeling 
reactions do not take place during hydrotropic treatment and, therefore, the 
recovery of cellulose from birch wood was high, if not quantitative. 

Summarizing this part, the addition of hydrogen peroxide and formic acid 
or both improved performance of hydrotropic treatment in terms of 
delignification and, in the case of formic acid, pulps with a higher cellulose 
content could be obtained. This suggested that Fbir and HFbir pulps were 
potentially suitable for the application as dissolving-grade pulps, where high 
content of cellulose is important, because it is a principal compound of 
dissolving pulps. In addition, relatively low viscosity values would not be very 
critical, as dissolving-grade pulps have intrinsic viscosity values starting from 
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450 mL/g and higher depending on a target application (Schild and Sixta 
2011; Sixta 2006; Sixta et al. 2004). 

4.1.3 Bleaching of birch hydrotropic pulps 

Birch hydrotropic pulps having the highest and lowest kappa numbers, yields 
and viscosity values, Rbir and HFbir pulps, respectively, were oxygen-
delignified and then bleached with a TCF sequence. 

HFbir pulp consumed less hydrogen peroxide compared to the reference 
pulp to achieve a similar brightness level (Table 6). More severe conditions, in 
particular longer retention time (Table 4), had to be applied for the reference 
pulp during the PO stage due to the considerably higher starting kappa 
number (Table 5) and, consequently, a higher amount of the bleaching 
chemical was consumed in this stage (Table 6). The PO-bleached pulps 
became comparable with each other with respect to the kappa number, 
brightness and intrinsic viscosity. In the last bleaching stage, the 
consumption of hydrogen peroxide was nearly the same (Table 6). 

Table 6. Properties of birch hydrotropic pulps after different bleaching stages, 
and hydrogen peroxide consumption in the PO and P stages, and total in the 

bleaching. 

Stages and pulp properties 
Pulp 

Rbir HFbir 

Oxygen delignification   
Kappa number 16.3±0.2 4.4±0.1 
Viscosity, mL/g 1002±1 617±1 

PO stage   
Kappa number 2.4±0.1 1.3±0.1 
Viscosity, mL/g 588±6 578±4 
Brightness, %ISO 76.0±0.3 77.9±0.7 
H2O2 consumption, kg/t OD pulpa 32.7 10.4 

P stage   
Viscosity, mL/g 562±15 542±11 
Brightness, %ISO 87.5±0.1 87.9±0.1 
H2O2 consumption, kg/t OD pulpa 20.1 21.3 

Total H2O2 consumption, kg/t OD bleached pulp 56.3 33.2 
apulp before the bleaching stage.   

 

The bleaching additionally removed lignin and hemicelluloses from the pulps 
and lowered further an overall yield. The final yields were 41.4 and 38.7% for 
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Rbir and HFbir pulps, respectively. The residual hemicelluloses consisted of 
anhydroxylose and glucomannan. Their quantity was determined with the 
help of the hydrolysis procedure, and it was 6.8 and 1.8%, respectively, for the 
reference pulp. In the case of HF pulp, the corresponding values were 5.1 and 
1.3%. Hence, the pulp obtained with the modified process had higher purity 
than the reference one, and the lower yield of HFbir bleached pulp was partly 
offset by the lower content of hemicelluloses. 

Based on the intrinsic viscosity values and the purity, one could suggest 
the obtained pulps could be used as dissolving grade pulps, which generally 
have a low content of hemicelluloses and intrinsic viscosities above 450 mL/g 
(Schild and Sixta 2011; Sixta 2006; Sixta et al. 2004). However, in order to 
make more accurate conclusions about the suitability of the hydrotropic 
pulps for the dissolving-grade pulp applications other properties should be 
taken into account. Also, the actual manufacturing process of a particular 
product should be simulated (Sixta 2006). 

4.1.4 Isolation of birch hydrotropic lignin 

Lignin from birch wood was extracted with the conditions of Rbir and HFbir 
treatments, i.e. with pure 36% SXS solution (Rbir) and 36% SXS solution with 
added formic acid and hydrogen peroxide (HFbir). The pulp yield, the content 
of residual lignin and the degree of delignification are show in Table 7. The 
extracted lignins were precipitated from the spent solutions by dilution with 
10-fold of hot distilled water. 

Table 7. Results of the hydrotropic treatments used for the extraction of 
lignin from birch wood. 

Treatment 
Pulp 

yield, % 
Residual 
lignin, % 

Degree of 
delignification, % 

Rbir 48 4.5 91 
HFbir 43 1.7 97 

The yield of crude lignins from both treatments was 16.1% based on oven-dry 
wood or about 160 kg from 1 t of wood. This number was lower than the 
amount of lignin dissolved during the treatments, which was 21.9 and 23.3% 
based on oven-dry wood for Rbir and HFbir treatments, respectively. Thus, it 
was not possible to recover all the lignin that was dissolved during the 
treatments. Some amount stayed in the diluted spent solution forming a non-
precipitating fraction. It could also be possible that some amount was 
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removed during the washing step. However, it should have been small, as 
lignin is poorly soluble in water. 

Presence of the non-precipitating fraction during the isolation of 
hydrotropic lignin from the spent solution has been reported previously in 
connection to the hydrotropic treatment of aspen wood (Gromov and 
Odincov 1957b; c). The authors reported that 10 to 50% (based on lignin in 
wood) of the lignin did not precipitate upon the dilution (Gromov and 
Odincov 1957b). It was presumed that this fraction consisted of low molar 
mass lignin fragments, and it was shown that its amount depended on the 
treatment conditions (Gromov and Odincov 1957b; c). The authors also 
partially isolated this fraction by lowering the pH of the diluted spent solution 
and heating (Gromov and Odincov, 1957b). 

Besides the hydrotropic process, non-precipitating lignin has also been 
observed in other processes. For example, in the study of ethanol-water 
pulping of hardwoods, 20 to 40% of the original lignin present in wood 
remained dissolved in the spent solution during the isolation of lignin from 
the spent solution by dilution (Hergert et al. 1999). 

4.2 Characterization of birch lignins isolated with 
conventional and modified hydrotropic treatments 

4.2.1 Chemical composition of birch hydrotropic lignins 

The chemical and elemental composition of the lignins was studied with the 
purpose to obtain information about their purity. Possible non-lignin 
compounds originated either from the raw material or from the hydrotropic 
agent. The former included carbohydrates, extractives and other substances 
present in birch wood, and the latter could be contaminants in the 
hydrotropic agent. 

Both lignins contained very small quantities of residual carbohydrates 
(Figure 13, A). Such a result could be explained by the acidic nature of the 
hydrotropic treatments, which resulted in extensive hydrolysis of 
hemicelluloses and their removal. In the case of the modified process, these 
reactions were intensified by the added formic acid and, therefore, HF lignin 
contained less residual carbohydrates compared to the lignin from the 
reference process. Xylose (anhydrous form) was the most abundant among 
the hemicellulose units. This sugar unit was also present in a high amount in 
the birch wood (section 4.1.1). The residual hemicelluloses were bound to the 
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presence of the low molar mass aromatic and aliphatic compounds in the 
lignin can be explained by their co-precipitation during the lignin 
precipitation due to the poor solubility in water and/or good affinity for 
lignin. 

Proteins and amino acids were another type of compounds that were 
transferred into the lignins from the raw material. Their content was 
estimated from the nitrogen content (Table 8) using a conversion factor of 
6.25 that assumes that proteins contain 16% (w/w) of nitrogen (Browning 
1967). Both lignins showed the same content of proteins/amino acids, about 
1.4%. The proteins were most probably chemically associated with the 
lignins, as in the case of acetic acid lignin obtained from wheat straw (Pan 
and Sano 2000). 

Table 8. Elemental composition of the birch hydrotropic lignins. 

Lignin 
Elements, wt% 

C H S N 

Rbir 65.5±0.1 5.9±0.0 0.16±0.01 0.23±0.01 

HFbir 64.5±0.2 5.5±0.1 0.39±0.01 0.22±0.00 

Both lignins contained sulfur (Table 8). However, its content in the lignins 
was still much lower than that in kraft lignins (1.0–3.0%) or lignosulfonates 
(3.5–8.0%) (Vishtal and Kraslawski 2011). It was quite unlikely that the sulfur 
originated from sodium xylenesulfonate. If SXS had reacted with lignin, the 
content of sulfur would have been much higher, taking into account that the 
amount of SXS used for the treatments was quite high. In addition, free SXS 
was removed from the lignins by the extensive washing. Therefore, the most 
satisfactory explanation for the source of the sulfur in the lignins would be 
possible contaminants of the hydrotropic salt, especially considering the fact 
that the hydrotropic agent was of a technical grade with the purity ˃90%. One 
of such contaminants was 2,2',5,5'-tetramethyldiphenylsulfone (and its 
isomers). This compound was detected in the Py-GC-MS analysis. Later, it 
was also found in the gas chromatograms from the analysis of low molar 
mass aliphatic and aromatic compounds. It is quite likely that this compound 
is poorly soluble in water, and it co-precipitated together with the lignins 
during the recovery procedure, when the spent solutions were diluted with 
water. The contribution of this compound to the total sulfur content was 
0.1%-units. 
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The purity of the lignins could be roughly estimated taking into account 
all the non-lignin compounds and assuming that the rest of the sulfur (0.06% 
for Rbir and 0.3% for HFbir lignins) originated from SXS. It was 96 and 95% in 
the case of Rbir and HFbir lignins, respectively. 

Lignin obtained by the modified process showed a slightly lower content 
of carbon than the reference lignin (Table 8). Both lignins with respect to the 
CHO composition were similar to some technical lignins, for example birch 
ethanol/H2O lignin and Alcell lignin (Fengel and Wegener 1984c; Hergert et 
al. 1999; Ni and Hu 1995). 

4.2.2 Structure of birch hydrotropic lignins 

The ratio of the lignin units was determined with the help of Py-GC-MS. 
Both lignins had nearly the same ratio of H, S and G units per 100 
phenylpropane units (PPU); albeit, the lignin from the reference treatment 
exhibited a slightly higher S/G ratio than the lignin from the modified process 
(Table 9). However, in general, it could be concluded that the modification of 
the hydrotropic solution did not result in a significant change of the lignin 
unit ratio. The unit ratio in the hydrotropic lignins was also similar to that of 
the original birch lignin. 

Table 9. Molar ratios of the lignin units in the birch hydrotropic lignins and 
birch wood determined with Py-GC-MS. 

Lignin 
Units per 100 PPU 

S/G 
H G S 

Birch 4 29 66 2.3 

Rbir 2 27 71 2.6 

HFbir 2 29 69 2.3 

A somewhat similar result in respect to the predominance of S units in the 
structure of the lignins was obtained with a 2D NMR technique. However, 
the S/G ratio estimated with the NMR method was higher than that obtained 
with the Py-GC-MS (Table 10). 
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other two linkages, β-5' and β-β', the information on possible transformations 
of these linkages under moderately acidic conditions at elevated temperatures 
is not available in literature. Therefore, it is difficult to say what kind of 
reactions involving these linkages could take place during the hydrotropic 
treatments. Besides the aforementioned reactions, other types of reactions 
triggered by hydrogen peroxide took place in the course of the modified 
process. These reactions are listed in Paper I. 

The cleavage of the bonds in the native birch lignin led to the formation of 
lignin fragments. The average molar masses and a polydispersity index of the 
lignin obtained by the modified process were slightly higher compared to the 
reference lignin (Table 10). 

Another consequence of the chemical reactions was the change in the 
phenolic and aliphatic OH ratio. According to the literature (Rauhala et al. 
2011), the original lignin in birch wood (Betula pendula) contains 5.4 mmol/g 
of aliphatic OH groups and 1.2 mmol/g of phenolic ones. The opposite was 
observed for the hydrotropic lignins, in which phenolic OH groups 
dominated over the aliphatic ones (Table 11). The increase in the content of 
phenolic OH groups occurred due to the cleavage of the aryl ether bonds, e.g. 
β-O-4', which resulted in the conversion of the non-phenolic lignin units into 
the phenolic ones. The reduction in the content of the aliphatic hydroxyls was 
also related to the aryl ether cleavage mechanism and the accompanying 
reactions, as has been shown by the studies performed by Li et al. (2000). 
Based on the products formed upon heating of the arylglycerol β-aryl ether 
lignin model compounds in buffer solution at a pH of 3, one could clearly 
observe that a part of the aliphatic hydroxyls was lost or they were converted 
into ethers, such as in the structure of syringaresinol/pinoresinol (Li et al. 
2000). Such changes in the contents of both types of hydroxyl groups have 
been reported for other autocatalyzed or moderately acidic processes and raw 
materials: hydrothermal treatment of eucalyptus wood (Leschinsky et al. 
2008), organosolv treatment of Buddleja davidii (Hallac et al. 2010) and 
hydrothermal treatment of birch wood (Rauhala et al. 2011). 
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Table 11. Content of hydroxyl and carboxyl functional groups in the birch 
hydrotropic lignins (mmol/g) determined with the help of 31P NMR. 

Lignin 
Aliphatic 

OH 

Phenolic OH 
Carboxyl 

Total 
5-substituted 

(condensed+S) 
G-OH H-OH 

Rbir 1.38 3.22 2.43 0.64 0.15 0.30 

HFbir 1.13 3.16 2.39 0.60 0.17 0.32 

In relation to the OH-containing functional groups determined with 31P 
NMR, both lignins were comparable to each other, except the aliphatic OH 
groups (Table 11). The lower content of these groups in the lignin from the 
modified process was apparently related to the higher severity of this 
treatment due to the added reagents, which resulted in more extensive 
removal of the aliphatic OH groups. 

In summary, both isolated lignins differed in the contents of the non-
lignin compounds, β-O-4' bonds and aliphatic hydroxyl groups. However, 
they were also similar in many aspects despite the significant difference in the 
performance of the conventional and modified treatments. The close 
structure of the lignins could also be seen from their FTIR spectra, which 
were identical (Paper II). 

4.3 Fractionation of sugarcane bagasse using a 
hydrotropic process 

Screened sugarcane bagasse (˃0.5 mm) was treated at the temperatures of 150 
and 170 °C and dwell times of 60 and 120 min using 30% SXS aqueous 
solution with and without addition of formic acid (Table 3). 

4.3.1 Hydrotropic treatment of sugarcane bagasse 

The hydrotropic process efficiently delignified the sugarcane bagasse at most 
of the chosen conditions, except the autocatalyzed process performed at 150 
°C and dwell time of 120 min (Table 12). The residue obtained under these 
conditions (R1bag) still contained a high amount of lignin (Figure 15), and it 
could not be defibrated with an ordinary disintegrator. Other treatments 
reached a sufficiently high degree of delignification, and the treated bagasse 
residues were easily converted to fibers. The higher severity of the processes, 
i.e. a higher temperature, longer treatment time and lower pH, resulted in a 
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higher degree of delignification, which could be followed from the decrease in 
the kappa number (Table 12) and lignin content (Figure 15, A). 

Table 12. Some properties of the pulps produced from sugarcane bagasse 
with hydrotropic treatments. 

Pulp 
End 
pH  

Yield, % Kappa 
number 

Intrinsic 
viscosity, mL/g 

Degree of 
delignification, % Total Screened 

R1bag 4.6 66.8 – – – 50 
F1bag 3.7 50.7 49.4 42.3±0.5 807±1 84 
R2bag 4.2 49.7 48.1 39.6±0.3 886±0 85 
F2bag 3.5 46.1 45.1 22.4±0.0 636±1 92 
R3bag 3.9 46.2 45.0 25.2±0.0 687±1 91 
F3bag 3.5 44.7 43.7 22.1±0.1 500±0 93 

 

  
Figure 15. Content of main constituents in sugarcane bagasse and in the 
hydrotropic pulps based on bagasse/pulp (A) and based on bagasse (B). 
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Intrinsic viscosity also decreased, as the process severity increased (Table 12). 
As was mentioned before (section 4.1.1), intrinsic viscosity is associated with 
the molar mass or DP of cellulose in pulp. The longer treatment time and the 
lower pH during the treatments resulted in more extensive hydrolysis, i.e. 
cleavage of the cellulose chains, which led to the greater reduction of cellulose 
DP. Although some pulps had low intrinsic viscosity values, they were still in 
the range of viscosities of certain grades of dissolving pulps (Schild and Sixta 
2011; Sixta 2006; Sixta et al. 2004). 

The chemical composition of the residues also varied depending on the 
severity of the processes (Figure 15, A). More severe conditions during the 
treatments increased the rate of delignification and hydrolytic reactions, and 
as a result, more lignin and hemicelluloses were removed from the bagasse. 
F3bag pulp, which was produced at the most severe conditions, showed the 
highest purity amongst the pulps, and R1bag pulp was the least pure. 
Generally, all pulps were enriched in cellulose and, therefore, could be 
regarded as cellulose fractions with a different degree of purity. The most 
abundant non-cellulosic component present in the pulps was hemicelluloses, 
mainly anhydroxylose, followed by lignin. 

The content of glucan in the residues based on the original bagasse was 
lower than that in the bagasse (Figure 15, B). It is important to mention here 
that the yield of glucan based on bagasse was determined using the screened 
yields. Therefore, it does not include glucan (cellulose) of the reject fraction. 
However, if it had also been taken into account, the content of glucan based 
on the bagasse in the case of the pulps would have been still lower than that of 
the bagasse. The difference could be explained by the presence of non-
cellulosic glucan. Since residual sucrose was not detected in the bagasse, it 
could be a part of the hemicelluloses or another carbohydrate constituent 
such as, for example, mixed-linkage (1→3), (1→4)-β-glucan (Morais de 
Carvalho et al. 2017). Such glucan was easily soluble, and it was removed 
from the bagasse even at the mildest conditions. Notably, dissolved glucan 
was also found in all the spent solutions (section 4.3.5). Therefore, the 
residues had a lower amount of glucan in % based on the original bagasse. It 
is quite likely that most of it, if not all, originated from the cellulose. 

The lower yield of the residues (Table 12) obtained with the more severe 
processes was mainly due to the lower contents of the non-cellulosic 
compounds, and there were no additional significant losses of cellulose in 
such treatments (Figure 15, B). However, during soda pulping of sugarcane 
bagasse after a prehydrolysis step, the loss of cellulose can be as high as 25–
27% based on the original cellulose, as has been shown in the study on the 
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manufacturing of dissolving pulps from Brazilian sugarcane bagasse 
(Andrade and Colodette 2014). This beneficial feature of the hydrotropic 
process over the alkaline ones has already been mentioned and explained in 
relation to the birch wood (section 4.1.2). 

Comparing the treatments of bagasse and birch wood performed at the 
same conditions (Rbir vs R3bag and Fbir vs F3bag) except the concentration of the 
hydrotropic agent, which should not have had any effect, one could observe 
that the raw materials were not considerably different regarding the 
proneness to delignification, although the birch wood showed a slight 
advantage in this respect (Table 5 and Table 12). The pulps obtained from the 
birch wood also had higher intrinsic viscosities than the corresponding 
bagasse pulps (Table 5 and Table 12). However, the bagasse hydrotropic 
pulps had a lower content of hemicelluloses, so they were purer (Figure 12 
and Figure 15). 

4.3.2 Isolation of bagasse hydrotropic lignins 

The dissolved lignins were isolated from the spent solutions by dilution with 
hot water and filtration. The yield of crude lignins and the yield of lignins in a 
pure form ('pure' lignin) were dependent on the treatment conditions, and 
both yields were higher for the more severe processes (Figure 16, A). The 
'pure' yields were estimated from the crude yields by taking into account the 
lignin purity, which was estimated indirectly from the contents of the non-
lignin compounds (Table 13). It should be noted here that the yields of the 
crude hydrotropic lignins from the bagasse were lower in comparison to the 
lignin yields from the birch wood. On the one hand, it could be because of the 
difference in the recovery protocol applied in both cases. On the other hand, 
it could also be influenced by the structural differences in the lignins of these 
two raw materials.  

Similar to the study on hydrotropic treatment of birch wood (Paper II), it 
was not possible to isolate all the lignin dissolved during the treatments. The 
lignin yields in a pure form varied in the range of 50–70% based on lignin in 
the bagasse, being higher for the more severe processes (Figure 16, B). A 
certain part of the lignins remained dissolved upon the dilution of the spent 
solution with hot water and, thus, could not be recovered. It constituted 25–
50% of the bagasse lignin, and it was higher for the milder processes. In the 
case of the mildest process (R1bag), none of the dissolved lignin could be 
recovered by the method used in the study. 
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Figure 16. (A) The yield of crude lignin and lignin in a pure form based on 
bagasse. (B) Distribution of bagasse lignin between different process streams, 
i.e. residual lignin in the pulps, recovered in a pure form and remained in the 

spent solution during the recovery of lignin. 

The material remained dissolved in the diluted spent solutions after the lignin 
precipitation was analyzed with SEC. To minimize the interference of the 
non-lignin compounds, the signal was collected at 300 nm (UV detector), and 
the calculation was performed using only the part eluted before phenol, i.e. 94 
g/mol and above. It was presumed that the results obtained with a such set up 
would reflect the average molar mass of the unrecovered lignin. The 
chromatograms of the non-precipitated lignin fractions had several maxima 
at about 100–120, 250 and 500 g/mol (pullulan calibration). Generally, these 
fractions had relatively low molar masses (Figure 17). With the exception of 
the R1bag process, they varied from 330 to 580 g/mol (pullulan standards) 
corresponding to 2–3 lignin units. The average molar masses were lower for 
the more severe processes. In the case of R1bag spent solution, the fraction that 
remained dissolved upon the dilution exhibited much higher average Mw, 
4110 g/mol. Such a result could be explained by the fact that none of the 
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dissolved lignin precipitated upon the dilution with water, and the diluted 
spent solution still contained high molar mass lignin fractions. It is important 
to mention that the average molar masses of the recovered lignins ranged 
between 2220 and 7710 g/mol (Figure 17), thus being considerably higher 
than the average molar masses of the corresponding unrecovered lignins. 

 
Figure 17. Size exclusion chromatograms of the unrecovered lignins (solid 

lines, normalized to the areas below the curves) and sugarcane bagasse 
hydrotropic lignins (dash). The signals were obtained with a UV detector, 300 
nm. Average Mw and Mn (lignins only) are shown in brackets. The calibration 

was performed with a set of pullulan standards and phenol. 

The solubility of the unrecovered lignins can be elucidated by several factors. 
A higher molar mass part of the unrecovered lignins could be more 
hydrophilic than the precipitated lignin. One could hypothesize that this 
fraction was connected to carbohydrates. This guess could be supported by 
the fact that upon increase in the process severity, the amount of the residual 
carbohydrates in the recovered lignins and the amount of the carbohydrates 
in the spent solution became lower (Table 13) and, at the same time, the 
yields of the lignins increased. In the case of the R1bag process, the entire 
lignin extracted from the bagasse could be in the form of lignin-carbohydrate 
complexes. Lower molar mass fractions of the unrecovered lignins could be 
soluble in the diluted spent solution (in fact, warm) as such without being 
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connected to more hydrophilic moieties, because the concentration of these 
fractions in the diluted spent solutions was quite low, i.e. the total 
concentration of the unrecovered lignins in the diluted spent solutions was 1–
2.5 g/L and, in general, phenolic compounds are soluble in water to a certain 
extent. 

4.3.3 Properties of bagasse hydrotropic lignins 

The recovered lignins differed in purity. The difference was mainly affected 
by the content of residual hemicelluloses (Table 13). Similar to the pulps, the 
purity was higher for the lignins isolated from the more severe treatments 
owing to more extensive hydrolytic reactions and, thus, more complete 
removal of the hemicelluloses. 

Table 13. Chemical composition of sugarcane bagasse hydrotropic lignins. 
Only the most abundant individual compounds are shown. 

Compounds, mg/g of lignin 
Lignin 

F1bag R2bag F2bag R3bag F3bag 

Aliphatic compounds      
total 4.0 3.8 4.2 4.3 4.2 
acid 16:0 2.0 1.9 2.2 2.2 2.2 
acid 18:2 0.2 0.2 0.2 0.2 0.2 
acid 18:1 0.6 0.6 0.6 0.7 0.6 
acid 18:0 0.2 0.2 0.2 0.3 0.2 
sitosterol 0.6 0.4 0.6 0.4 0.5 

Aromatic compounds      
total 2.0 3.8 3.4 3.9 4.2 
x,x,4-trihydroxyacetophenone 1.3 2.4 2.2 2.5 2.9 
stilbenes 0.6 1.1 0.8 0.9 0.9 

Hemicelluloses (anhydrous units)      
total 48.2 42.3 7.0 6.1 2.1 
arabinose 10.8 6.4 1.4 0.7 0.2 
xylose 28.5 28.5 2.4 2.2 0.5 
mannose 0.3 0.2 0.1 0.2 0.1 
galactose 0.9 1.1 0.1 0.3 0.0 
glucose 4.3 4.0 1.9 2.1 1.0 
4-O-Me-glucuronic acid 3.3 2.0 0.9 0.6 0.3 

 

Generally, the bagasse hydrotropic lignins contained the same groups of 
compounds as the birch hydrotropic lignins (section 4.2.1), although at 
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different quantities, and there were also some differences regarding the 
presence of the individual constituents. Besides hemicelluloses, among these 
compounds were low molar mass aliphatic and aromatic compounds, 
nitrogen-, e.g. proteins, and sulfur-containing compounds (Table 13). A 
possible source of these compounds has also been explained for the birch 
hydrotropic lignins (section 4.2.1). 

Different treatment conditions also affected the elemental composition of 
the lignins (Table 14). One could observe the correlation between the amount 
of carbon and the process severity. Such a relation could be attributed to the 
formation of the condensed structures in the lignins upon the increased 
process severity or/and to the amount of residual carbohydrates, because they 
have a higher O/C ratio than lignin. 

Table 14. Elemental composition of the sugarcane bagasse  
hydrotropic lignins. 

Lignin 
Elements, wt% 

C H N S 
F1bag 63.2±0.2 6.1±0.0 0.58±0.01 0.31±0.04 
R2bag 64.1±0.1 6.1±0.0 0.57±0.00 0.31±0.01 
F2bag 65.6±0.0 6.1±0.0 0.54±0.00 0.26±0.02 
R3bag 65.6±0.0 6.1±0.0 0.59±0.01 0.29±0.02 
F3bag 66.6±0.0 6.0±0.0 0.48±0.00 0.29±0.01 

Sulfur in the bagasse hydrotropic lignins was mainly derived from the 
contaminant of the hydrotropic agent, namely tetramethyldiphenylsulfone 
(Table 14). Its contribution to the sulfur content was 0.2–0.25 %-units. It is 
worth mentioning that tetramethyldiphenylsulfone was also found in the 
hydrotropic agent. This was done by repeated extraction of 4-fold diluted 
30% SXS solution with methyl tert-butyl ether (MTBE) and analysis of the 
combined MTBE extract with GC. The obtained chromatograms, besides the 
peaks of the standards, contained peaks characteristic of 
tetramethyldiphenylsulfone (Figure 18, the peaks 1–5 shown on the enlarged 
part). Apart from this compound, some part of sulfur, 0.05–0.1%-unit, could 
also originate from the bagasse itself, as this raw material can contain up to 
0.1% of sulfur (Hassuani et al. 2005; Seabra and Macedo 2011). 
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Figure 18. Gas chromatograms from the analysis of low molar mass 

compounds in the lignins and a chromatogram of the MTBE extract of the 
hydrotropic agent. 

A distinct feature of the bagasse hydrotropic lignins was a relatively high 
content of nitrogen compared to the birch hydrotropic lignins (Table 8 and 
Table 14). This amount of nitrogen could be translated into 3–3.7% of protein 
content. Such difference was reasonable given the fact that the bagasse 
originated from sugarcane, which is an herbaceous plant and, in general, 
lignins isolated from such raw materials contain higher amounts of proteins 
than lignins isolated from wood (Gosselink et al. 2004; Pan and Sano 1999, 
2000). 

Besides the chemical and elemental composition, the process conditions 
also had an effect on the macromolecular properties of the lignins. The 
lignins extracted at the milder conditions had higher mass average molar 
masses and were more polydisperse than the lignins obtained at the more 
severe conditions (Figure 17). In the more severe treatments, the native 
bagasse lignin underwent more extensive cleavage of the lignin linkages 
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forming the fragments with lower average Mw. The results also implied that, 
at the most severe conditions, the condensation reactions were not very 
extensive, and repolymerisation of the dissolved lignin fragments did not take 
place. 

4.3.4 Analytical pyrolysis 

Analytical pyrolysis included two methods, namely conventional pyrolysis 
and pyrolysis with chemical treatment with tetramethylammonium 
hydroxide. The former was mainly used to determine the ratio of the lignin 
units in the bagasse hydrotropic lignins and in the bagasse lignin. The latter 
gave a possibility to gain information about the presence of the 
hydroxycinnamic acids. 

Obtained bagasse hydrotropic lignins contained a high proportion of S 
units, and the S/G ratios varied in the narrow range of 1.5–1.7 (Table 15). An 
S/G ratio in the original bagasse lignin was lower, or 1.0. Such results could be 
explained by the redistribution of the lignin units between different lignin 
fractions, i.e. in pulp/unrecovered lignin/recovered lignin. For example, it 
was shown that after kraft pulping of different hardwoods the residual lignins 
in the pulps had higher relative content of G units compared to the lignins in 
the raw materials (Pinto et al. 2005). The authors explained this result by 
better chemical reactivity of S units and greater susceptibility of G units 
towards the condensation reactions. 

Table 15. Relative abundances (mol%) of aromatic compounds released 
during Py-GC-MS of sugarcane bagasse and bagasse hydrotropic lignins. 

Phenolic compounds 
Lignin 

Bagasse F1bag R2bag F2bag R3bag F3bag 

H unit derivatives 3.2 10.8 5.4 10.3 9.1 11.7 

G unit derivatives 13.5 17.9 13.6 15.3 14.1 13.4 

S unit derivatives 13.8 26.0 21.9 24.9 23.5 22.5 

4-vinylphenol (H/p-CA) 54.4 31.8 41.5 34.5 36.1 35.9 

4-vinylguaiacol (G/FA) 12.5 9.4 12.7 10.4 12.2 11.8 

4-vinylsyringol (S) 2.6 4.0 5.0 4.5 5.1 4.7 

H:G:S 10:44:45 20:33:48 13:33:54 20:30:49 19:30:50 25:28:47 

S/G 1.0 1.5 1.6 1.6 1.7 1.7 

A relatively high content of H units in the hydrotropic lignins as well as in the 
original bagasse lignin could be false, because some of p-substituted phenolic 
compounds that were used for the estimation of H units could actually 
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originate from other sources, for example proteins (Ralph and Hatfield 1991; 
Rencoret et al. 2015). Moreover, 2D NMR (HSQC) analysis of 'milled wood' 
lignin isolated from Brazilian sugarcane bagasse and also of the whole bagasse 
itself has shown a low content of H units in the samples (del Río et al. 2015). 

Upon the pyrolysis, the lignins also produced significant amounts of 4-
vinylphenol and 4-vinylguaiacol. These compounds originated primarily 
from hydroxycinnamic acids, namely p-coumaric (p-CA) and ferulic (FA) 
acids, respectively (del Río et al. 2015). Because of this, 4-vinylphenol and 4-
vinylguaiacol were not used for the estimation of the lignin unit ratio. Since 
other lignin units could contribute to the abundance of 4-vinylphenol and 4-
vinylguaiacol, the bagasse hydrotropic lignins and the bagasse were subjected 
to pyrolysis with chemical treatment with tetramethylammonium hydroxide 
(TMAH/Py-GC-MS) to better distinguish the hydroxycinnamates. This 
procedure is performed at milder conditions, and it liberates methylated 
derivatives of the lignin units and the hydroxycinnamic acids. In addition, it 
prevents decarboxylation, so the compounds of interest could be clearly 
differentiated as methyl 4-methoxycinnamate (p-CA) and methyl 
veratrylpropenoate (FA). TMAH/Py-GC-MS proved the high abundance of 
these compounds in the isolated hydrotropic lignins and in the original 
bagasse lignin (Table 16). The p-CA/FA ratio in the case of the bagasse was 
similar to the value reported for Brazilian sugarcane bagasse elsewhere (del 
Río et al. 2015). In the bagasse hydrotropic lignins this ratio was higher, 9.4–
12.7, due to the lower abundance of methyl ester of veratrylpropenoic acid 
(FA). This result could be explained by the low content of residual 
carbohydrates in the lignins and by the fact that ferulic acid is mainly linked 
to the carbohydrates, whereas p-coumaric acid is primarily connected to 
lignin (del Río et al. 2015). 

Table 16. Relative molar abundances of phenolic compounds released during 
TMAH/Py-GC-MS analysis of the bagasse and bagasse hydrotropic lignins. 

Phenolic compounds 
Lignin 

Bagasse F1bag R2bag F2bag R3bag F3bag 

H unit derivatives 13.0 3.9 2.6 4.4 4.2 8.1 

G unit derivatives 14.2 19.1 16.2 15.9 12.6 15.1 

S unit derivatives 12.3 31.5 33.8 33.7 27.9 30.6 

methyl 4-methoxycinnamate (p-CA) 51.0 41.8 43.1 42.3 49.9 42.8 

methyl veratrylpropenoate (FA) 9.5 3.6 4.4 3.7 5.3 3.4 

S/G 0.9 1.6 2.1 2.1 2.2 2.0 

p-CA/FA 5.4 11.7 9.8 11.3 9.4 12.7 
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4.3.5 Characterization of the spent solutions 

The spent solutions from the hydrotropic treatments of the bagasse contained 
dissolved bagasse constituents and products of their degradation. Besides the 
lignins, another dissolved bagasse constituent was hemicelluloses. During the 
analysis of the spent solutions, special attention was paid to pentosans, 
because they were present in the bagasse in much higher quantities than 
hexosans and uronic acids.  

As can be observed for the autocatalyzed processes (R treatments, Table 
12), the pH of the hydrotropic solutions became acidic towards the end of the 
treatments. This happened due to the enrichment of the treatment solutions 
with acids. Among these acids, acetic and formic acids were detected by 
HPLC analysis (Figure 19). Formation of the acetic acid can be elucidated by 
the cleavage of the acetyl groups, the content of which in sugarcane bagasse is 
2.5–4% (Andrade and Colodette 2014; de Carvalho et al. 2015). More acetyl 
groups were split off from the hemicelluloses upon the increase in the process 
severity, so the concentration of acetic acid in the spent solutions was higher 
for the more severe treatments. The source of the formic acid was not that 
apparent. However, it has been shown for organosolv and hydrothermal 
processes that formic acid can be produced from xylan/xylose at elevated 
temperatures (Gosselink et al. 1995; Oefner et al. 1992). Similar routes could 
be expected for the hydrotropic process. A path that comprises formation of 
hydroxymethylfurfural (HMF) and the following degradation of HMF to 
levulinic and formic acid can be disregarded, because HMF was not present 
in the spent solutions. Generally, the yield of formic acid in the autocatalyzed 
processes, R1bag–R3bag, was smaller than the yield of acetic acid. However, it 
followed the same trend, meaning it was higher for the more severe 
treatments. The acidified treatments, F1bag–F3bag, had a higher concentration 
of formic acid compared to the autocatalyzed processes, because formic acid 
was added to the hydrotropic solutions before the treatments to lower the pH. 
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Figure 19. Yield of acetic and formic acids and furfural in the hydrotropic 

treatments of sugarcane bagasse. 
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Dissolved hemicelluloses were present in the spent solutions as polymers and 
monomers (Table 17). In addition, the C5 sugars also gave origin to such 
degradation product as furfural, which was detected in all the spent solutions 
(Figure 19). It is necessary to mention here that the degradation product of 
C6 carbohydrates, hydroxymethylfurfural, was not detected in the spent 
solutions. The ratio between the polymers and monomers depended on the 
treatment conditions leaning generally towards the monomers in the more 
severe treatments. Also, the yield of furfural increased as the process 
conditions became more severe. The main dissolved carbohydrate unit was 
xylose (Table 17), which was present predominantly in a polymeric form in 
the spent solutions of R1bag, F1bag and R2bag treatments. In other spent 
solutions, the monomeric form dominated over the polymeric one. 
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Table 17. Carbohydrate monomers and polymers dissolved in the spent 
solutions. 

Units 
Spent solution/Treatment 

R1bag F1bag R2bag F2bag R3bag F3bag 

Polymers/oligomersa, g/100g bagasse 
Arabinose 0.4 0.3 0.5 0.2 0.1 0.0 
Xylose 7.0 11.2 9.9 1.2 1.4 0.4 
Mannose 0.2 0.3 0.2 0.1 0.2 0.0 
Galactose 0.3 0.4 0.3 0.0 0.1 0.0 
Glucose 0.8 1.1 1.0 0.9 0.9 0.3 
Galacturonic acid 0.4 0.5 0.3 0.2 0.1 0.0 
4-O-Me-Glucuronic acid 0.2 0.3 0.5 0.3 0.4 0.3 

Monomersa, g/100g bagasse 
Arabinose 1.0 1.3 0.3 0.3 0.1 0.1 
Xylose 0.2 3.8 2.1 4.1 2.2 0.8 
Mannose 0.0 0.0 0.0 0.1 0.0 0.1 
Galactose 0.0 0.2 0.1 0.4 0.2 0.2 
Glucose 0.0 0.1 0.0 0.3 0.2 0.5 
arhamnose and glucuronic acid were present in the bagasse in very small amounts and therefore are 
not shown. 

Upon the increase in the process severity, the total content of dissolved C5 
hemicelluloses and C5 sugar monomers decreased. The polymeric 
carbohydrates were hydrolyzed to monomers, and the monomers were 
further dehydrated to furfural, and the rate of these reactions increased at a 
higher temperature or lower pH or longer treatment time. However, besides 
the named products, it seemed that the pentosans or their degradation 
products were also converted further into some other products that were not 
analyzed in the study. Such observation was based on the material balance for 
the C5 carbohydrates (Figure 20). The sum of the pentosans left in the treated 
residue and the pentosans present in the spent solutions as polymers, 
monomers and furfural was not equal to the total content of pentosans in the 
bagasse. This could be partly explained by the errors during the analyses and 
also determination of the pulp yield. In particular, such explanation could be 
true in the case of R1bag and, possibly, F1bag processes. However, the analytical 
errors could not be a reason for the greater discrepancy in the case of the 
severe treatments. Therefore, it became apparent that the pentosans or their 
degradation products were further converted into other compounds in the 
course of the treatments. Among such compounds could be pyruvic, glycolic 
and lactic acids (Gosselink et al. 2004; Oefner et al. 1992). Furfural could also 
participate in the condensation reactions (Zeitsch 2000). Generally, the 
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discrepancy in the balance was higher for the more severe processes implying 
that more considerable changes happened to the C5 carbohydrates during the 
treatments.  

 
Figure 20. Distribution of pentosans between the different streams of the 

hydrotropic process: in the pulps, dissolved in the spent solutions as polymers 
(SS, polymers) and monomers (SS, monomers), and converted to furfural. 

Furfural and monomers were recalculated to a polymeric form. The amount 
of pentosans in the bagasse is shown by a dotted line. 

Some compounds dissolved in the spent solutions were valuable products. In 
general, they can be recovered and sold to increase the revenue of the process. 
For example, in addition to the cellulose fraction and lignin, 60 and 75 kg of 
furfural, and 39 and 46 kg of acetic acid can be potentially obtained from 1 t 
of sugarcane bagasse using the processes F2bag and F3bag, respectively. 

4.4 Utilization of hydrotropic lignin for the preparation 
of lignin-cellulose beads 

4.4.1 Preparation of lignin-cellulose beads 

Lignin-cellulose beads were prepared by co-dissolution of birch hydrotropic 
lignin Rbir and HCl/EtOH-pretreated dissolving pulp (cellulose) in 
7%NaOH/12% urea aqueous solution and extrusion of the solution through a 
syringe. 

It should be mentioned here that it was not possible to obtain 
homogeneous solutions in all cases of the studied lignin/cellulose ratios. Both 
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images from both channels showed the same structural features in the beads, 
suggesting that the lignin was evenly distributed in the beads. 

Table 18. Weight, dimensions, porosity and lignin content of the air-dried 
and never-dried beads. 

Beads State 
Weight, 

mg 
Major/Minor 

axis, mm 
Porositya 

% 
Lignin 

content, % 

100C 
never-dried 15.3 3.1/3.0 93.9 

n.d.b 
air-dried 1.36 1.3/1.3 17.6 

90C10L 
never-dried 15.2 3.1/3.0 93.3 

9.6 
air-dried 1.43 1.3/1.2 – 

75C25L 
never-dried 14.9 3.3/2.8 91.3 

25.1 
air-dried 1.57 1.4/1.2 – 

60C40L 
never-dried 15.2 3.4/2.9 90.7 

39.2 
air-dried 1.86 1.6/1.3 – 

avalues for air-dried lignin-cellulose beads were below zero. 
bnot determined. 

It is important to mention that the lignin content measured according to the 
standard method corresponded well to the designed values (Table 18). This 
implied that the lignin was not essentially lost during the bead-making 
process. 

4.4.3 Morphology of the beads 

The microstructure of the beads was analyzed using a scanning electron 
microscope (Figure 22). The beads exhibited the difference between each 
other with respect to the microstructure of the surface and the interior. The 
cellulose beads and the beads with 10% of lignin (Figure 22, A and B) had 
bigger pores on the surface, whereas the surface of the beads with the higher 
lignin content was more closed (Figure 22, C and D). All beads also had a 
skin. This could be deduced from the different appearance of the surface 
(Figure 22, A–C) and the interior of the beads (Figure 22, E–J). The skin 
could not always be distinguished for the pure cellulose and 90C10L beads 
when the edges of the beads were examined under the microscope, which 
could be attributed to the varying thickness. In the case of other beads, it was 
about 5 μm.  

The analysis of the cross sections showed that the beads had highly porous 
structures (Figure 22, E–J), which correlated well with the porosity values 
(Table 18). Similar to the skin, the interior of the beads also differed between 
the bead types. The inner surfaces of 100C and 90C10L were smoother, and 
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1750 cm-1, where pure cellulose beads showed only a band at 1640 cm-1 
originated from water (Larkin 2011) and a shoulder at about 1460 cm-1. In the 
case of the hydrotropic lignin and the lignin-cellulose beads, several bands 
could be distinguished in this region, and their intensity became higher as the 
lignin content in the beads increased. The bands were located at 1702 cm-1, 
carbonyl group stretching; 1601 cm-1, aromatic skeletal vibration (more 
pronounced in syringyl-type lignin) and C=O stretch; 1513 cm-1 aromatic 
skeletal vibrations (more pronounced in guaiacyl-type lignin) and 1457 cm-1, 
C-H asymmetric deformations in methyl and methylene groups (Faix 1991; 
Hergert 1971). 

 
Figure 23. ATR-FTIR spectra of the lignin and lignin-cellulose beads. Note 

the break in the horizontal axis and the change of the scale. 

The results of the FTIR spectroscopy also helped to gain information about 
the interaction of the lignin and cellulose in the beads by applying the 
subtraction method (Cañavate et al. 2000; Kondo et al. 1994; Moskala et al. 
1985). After the subtraction of the lignin spectrum from the spectra of the 
lignin-cellulose beads, the resultant spectra looked very similar (Paper IV), 
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and no significant lateral shifts of the bands were observed, except the 
hydrogen bonded OH band at 3300–3350 cm-1 (Larkin 2011). Such results 
implied that the lignin and cellulose interacted with each other via the 
hydrogen bonds. The shift from 3332 cm-1 in the case of the pure cellulose 
beads to 3348 cm-1 for 60C40L beads was attributed to the formation of new 
hydrogen bonds between the lignin and cellulose. The lateral shift of the 
hydrogen bonded hydroxyl band towards the higher wavenumbers implied 
the increase in the energy of the OH group and decrease in the energy of the 
hydrogen bonds. The absence of the shifts of other bands could suggest that 
there were no other types of interactions between the polymers, besides the 
hydrogen bonding. However, it was also possible that they were not detected 
by the FTIR.  

4.4.5 Leaching of lignin in water 

When the lignin-cellulose beads were placed into water and kept there for 
several hours, some amount of lignin leached from the beads. This 
phenomenon was also accompanied by the transition of the solution color 
from colorless to yellow. Figure 24 shows cumulative leaching of lignin from 
the beads as a function of immersion time.  

 
Figure 24. Cumulative leaching of lignin from the never-dried (ND), air-dried 

(AD) beads and birch hydrotropic lignin into distilled water at room 
temperature. 

As can be observed from the chart (Figure 24), the extent of the leaching 
estimated on the bead weight basis showed a direct correlation with the lignin 
content in the beads. For all the lignin-cellulose beads, the rate of the leaching 
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was higher during the first 24 h and, after that, it slowed down and remained 
on nearly the same level at least during the studied period. In general, the 
amount of the leached lignin was still not very high even for the never-dried 
beads. For instance, the maximum of the leached lignin among the studied 
samples was found in the case of 60C40L beads after 24 h, and it was 0.46% 
based on the dry weight of the beads.  

A greater quantity of the lignin leached from the never-dried beads than 
form the air-dried ones (Figure 24). The collapsed structure and the limited 
accessibility of water to the lignin in the case of the air-dried beads hindered 
the diffusion of the lignin molecules into the solution.  

The birch hydrotropic lignin (Rbir) used for the preparation of the beads 
also released aromatic compounds into the solution, when it was submerged 
in distilled water (Figure 24). It was determined by the silylation and GC that 
the lignin contained low molar mass substances, such as syringaldehyde, 
syringic acid and vanillin, among others (Paper II). They are soluble in water 
to a certain degree and, therefore, they could gradually leach from the lignin 
upon contact with water. It was also possible that these aromatic compounds 
were translated together with the lignin into the beads when the beads were 
prepared, and they could contribute to the leached material in the case of the 
beads as well.  

4.4.6 Antibacterial properties of the beads 

Antibacterial activity studies were performed for different types of never-
dried beads, the air-dried beads with 40% of lignin as well as for the birch 
hydrotropic lignin, which was applied at different dosages. Two types of 
pathogenic bacteria were used, namely Gram-positive S. aureus and Gram-
negative E. coli.  

The beads and the lignin at the dosages of 25 and 50 mg/5 mL of broth did 
not show any activity against the Gram-negative bacteria. Only slight 
inhibition could be achieved when the lignin dosage was raised to 100 mg/5 
mL of broth (Paper IV). The obtained results were consistent with the results 
of other studies which reported low antibacterial efficacy of different types of 
lignins against E. coli (Dong et al. 2011; Nada et al. 1989). Besides the 
experimental conditions and, in particular, the applied dosages, such results 
could be explained by the chemical composition of the lignin. It has been 
shown that the antimicrobial properties depend on a type of lignin used for 
the studies (Telysheva et al. 2005). Furthermore, studies on the antimicrobial 
properties of different lignin-related model compounds have revealed a 
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strong relationship between the type of the model compound and the 
antimicrobial efficacy (Zemek et al. 1979).  

Better results were obtained for Gram-positive S. aureus. The inhibition 
correlated with the lignin content in the never-dried beads and with the 
lignin dosage in the case of the birch hydrotropic lignin (Figure 25). 
Contrarily, the pure cellulose beads exhibited a positive effect on the growth 
of S. aureus. Surprisingly, air-dried 60C40L beads also promoted the growth 
of S. aureus (Figure 25, A). 

Figure 25. (A) and (B), concentration of S. aureus in the broth after the 
incubation for 24 h at 37 °C with the hydrotropic lignin (Lig20, Lig50 and 
Lig100) at different loadings (20, 50 and 100 mg, respectively, per 5 mL of 
broth) and with different types of the beads. (A) and (B) charts show the 
results of the tests performed on two different days. (C) Inhibition of S. 
aureus growth. AD designates air-dried beads. Initial concentrations of 

bacteria were 6.38 and 6.26 log(CFU/ml) for (A) and (B) assays, respectively. 

The mechanism responsible for the antibacterial properties against S. aureus is 
not evident from the generated results. One could suggest that the mode of 
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the action could be related to the adsorption of the bacteria onto the surface 
of the beads (Telysheva et al. 2005) via the interaction with the lignin in the 
beads. Alternatively, the lignin leached into the solution could interact with 
the bacteria, or both mechanisms could contribute to the antibacterial action. 
The hypothesis about the leached lignin was supported by the positive 
correlation of the antimicrobial efficiency with the results of the leaching 
experiment (see also Figure 24). In that case, the inhibition of the bacterial 
growth would resemble the one that is exhibited by phenolic compounds 
(Cetin-Karaca and Newman 2015b; Cueva et al. 2010; Vigil et al. 2005; Zemek 
et al. 1979). Notably, in the mentioned studies (Cetin-Karaca and Newman 
2015a; Cueva et al. 2010; Zemek et al. 1979), the phenolic compounds were 
applied in a form of solutions, which could also support the hypothesis 
related to the interaction of the bacteria with the leached lignin. 

An interesting observation made during the experiments was that the pure 
lignin was not as efficient in the inhibition as the lignin incorporated in the 
never-dried beads. Comparing the inhibition for the same lignin loading, e.g. 
20 mg of the hydrotropic lignin and 50 mg (dry weight) of 60C40L beads, it 
was clear that the beads were superior to the lignin (Figure 25, C). Even the 
lignin at the dosage of 50 mg/5 mL of TSB did not show superiority over 
75C25L never-dried beads despite the 4-fold difference in the lignin loading 
per tube. Such a result could be connected to the lignin leaching. After 
keeping the beads and the lignin in water for 24 h, more lignin leached from 
60C40L and 75C25L never-dried beads than from the lignin (Figure 24). The 
corresponding values were 0.46%, 0.41% and 0.34% based on the weight of 
beads or lignin. It was also possible that the original hydrotropic lignin was 
modified during the bead-making process that facilitated its antibacterial 
properties. 

A more detailed study on the inhibition of S. aureus growth was 
performed with never-dried 60C40L beads. The load of the beads was 
increased in each test tube from 2 to 64 pieces stepwise by a factor of two 
(Figure 26). IC50 and IC90, i.e. concentrations (or dosages) at which a 50 and 
90% inhibition of bacterial growth is reached, were estimated using the 
obtained results. The IC50 was approximately 3 beads per 5 mL of TSB or, in a 
dry weight, 1.06 mg of beads per 1 mL of the broth. A 90% inhibition could 
be achieved with 16 beads/5mL TSB or 5.3 mg (dry weight) of the beads per 1 
mL of TSB. Both dosages of the beads corresponded to 425.4 μg and 2.13 mg 
of the lignin in the beads per 1 mL of TSB. 
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Figure 26. Concentration of S. aureus in the broth with a different quantity of 

never-dried 60C40L beads after the incubation for 24 h at 37 °C. Initial 
concentration of S. aureus was 6.48 log(CFU/mL). 
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71 

 

Lignin isolated by a hydrotropic method from birch wood was used for 
the preparation of spherical particles via co-dissolution with cellulose in 7% 
NaOH/12% urea aqueous solution and shaping. Prepared beads in a never-
dried state were highly porous particles. In contrast to the pure cellulose 
beads, the lignin-cellulose beads inhibited growth of Gram-positive 
bacterium Staphylococcus aureus, and the inhibition efficiency was higher for 
the beads with a higher lignin content.  
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