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Abstract 

Automating repetitive processes and replacing manual tasks with automated 

systems is an area of research that will greatly impact and transform our lives 

during the 21st century. Automation comes in many forms and we are now at the 

start of an era, after which repetitive non-creative tasks will be handled mainly 

by machines. In this thesis, two analytics approaches are presented that can be 

used to automate text processing tasks.  

The first is an automation approach using machine learning in which we show 

how we can improve text classification performance, and how we, through these 

improvements, can reach practically acceptable performance levels even in 

certain abstract classification problems. We test the developed methods on 

problematic web content categories, such as violence, racism, and hate.  

The second is an automation approach that uses network analytics to 

automatically process texts. We use this approach to automate processing of 

financial news and to automatically extract new information. We show that 

through automating the process, we can extract company specific sentiment-

risks that a person would not identify simply by reading the news articles. Lastly, 

we show that the risks we have extracted can be used to identify companies that 

are at higher risk of stock price decrease. 

 

 

 

 

 



 

 

Sammanfattning 

Att automatisera repetitiva processer och ersätta manuellt arbete med 

automatiska system är ett forskningsområde som kommer att ha stor inverkan 

på vårt samhälle och med stor sannolihet kommer att förändra våra liv under 

detta århundrade. Automatisering kan göras på många olika sätt. Vi är nu vid 

början på en era varefter repetitiva icke-kreativa arbetsuppgifter kommer 

hanteras till största del av maskiner. I denna avhandling presenteras två 

tillvägagångssätt som kan användas för att automatisera textprocessering. 

Det första tillvägagångssättet beskriver en metod för automatisk klassificering 

av texter till fördefinierade kategorier genom användning av maskininlärning. Vi 

går igenom hur man kan utveckla textprocesseringsmetoder som kan nå praktisk 

användbar prestanda även i mera abstrakta och svårhanterliga kategorier, som 

t.ex. klassificering av våldsamma, rasistiska och hatiska webbsidor. 

Det andra tillvägagångssättet beskriver en metod för att automatiskt processera 

stora mängder nyhetstexter genom nätverksanalytik. Vi använder metoden för 

att processera finansiella artiklar och skapa ny information. Genom 

automatisering av processen visar vi att vi kan beräkna företagsspecifika 

förväntningsrisker som en person inte kunde ha identifierat enbart från att ha 

läst artiklarna. Slutligen visar vi att det är möjligt att identifiera företag som har 

en högre risk än medeltalet, och att hög risk korrelerar med ökad risk att 

aktiepriset för företaget sjunker. 

  



 

 

Tiivistelmä 

Manuaalisen työn ja toistuvien työprosessien automatisointi ja siihen liittyvä 

tutkimus tulee mitä todennäköisimmin muuttamaan yhteiskuntamme 

toisenlaiseksi tämän vuosisadan aikana. 

Automatisointia voidaan toteuttaa monilla tavoilla. Elämme nyt sen aikakauden 

alkuvaihetta, jonka kuluessa koneet tulevat tekemään miltei kaikki toistuvat 

työprosessit. Tässä väitöskirjassa esitetään kaksi tapaa tekstinkäsittelyn 

automatisointiin.  

Ensimmäisessä tavassa sovelletaan uutta tekstinluokitusta, jossa kehitetty 

koneoppimismenetelmä luokittelee tekstit ennalta määriteltyihin luokkiin 

automaattisesti. Menetelmän avulla käyttökelpoinen suorituskyky voidaan 

saavuttaa jopa abstrakteissa ja vaikeissa tehtävissä, kuten esimerkiksi väkivaltaa 

ja rasismia sisältävien tekstien luokittelussa. 

Toisessa tavassa sovelletaan uutta verkkoanalyysimenetelmää uutistekstien 

automaattiseen käsittelyyn. Kehitetyllä sentimenttianalyysimenetelmällä 

analysoidaan rahoitusuutistietokantaa. Tällöin voidaan löytää sellaisia uusia 

sentimenttejä yrityskohtaisten riskien mittaamiseen, joita tietokannan uutisia 

lukiessa ei tunnisteta. Lopuksi osoitetaan, että analyysin perustella on 

mahdollista tunnistaa yrityksiä, joilla on keskimääräistä suurempi riskiarvo, ja 

että tämä riskiarvo korreloi osakkeen todellisen arvonvähennyksen kanssa. 
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1. Introduction 

Information technology is revolutionizing products and has unleashed a new era 

of competition. Smart, connected products have the potential to shift rivalry, 

opening up numerous new avenues for differentiation and value-added services 

(Porter and Heppelmann 2014). This revolution impacts almost every area of 

every business, and at the center of this revolution lies analytics. 

Analytics can be defined in many ways; I have chosen to use a definition by Evans 

and Lindner (2012) and Davenport and Kim (2013) where analytics is divided 

into three different main areas. These three areas are descriptive analytics, 

predictive analytics, and prescriptive analytics. The same kind of division in 

analytics is used by the respected Informs web site ( "Analytics Informs" 2016; 

“What Analytics Is” 2016). Furthermore, when these three disciplines are 

combined, we unite them under the term advanced analytics as illustrated in 

Figure 1 (Gartner Advanced Analytics 2017). 

Analytics is used as an umbrella term to cover many types of methods, and is a 

continuation of operations research in the United Kingdom and management 

science which has a long history dating back to the Second World War and the 

early 1950’s (Rau 2005). Analytics is also related to decision support, executive 

support, online analytical processing, and business intelligence (Porter and 

Heppelmann 2014). Descriptive analytics consists of methods for understanding 

and visualizing data, predictive analytics consists of methods that predict future 

outcomes based on historical data using, for example, machine learning, and 

prescriptive analytics are methods that try to optimize the best possible outcome 

in situations when we have several options to choose from. In section 3, we go 

into more detail about the different analytics methods and define the ones used 

in our research. 

According to Gartner’s hype cycle ("Gartner’s Hype Cycle" 2015), analytics is one 

of the most important current trends. Furthermore, analytics is together with big 

data and the Internet of things, one of the fastest growing business areas of this 

decade (Kar 2016). 

Traditionally, companies have focused mostly on the parts of their businesses 

that they could directly reasonably assume would provide them competitive 

advantages. Businesses focused mainly on improved products, reduced cost of 
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materials, branding, marketing, and quality. Meanwhile, pioneering companies 

such as Amazon started using analytical methods to transform and dominate 

their fields. These pioneering companies started focusing on other areas such as 

efficiency, availability, easy access, fast shipping, and reduced storage costs. In 

other words, there was a change in paradigms and companies started competing 

on analytics. This came at a time when businesses in different fields were 

increasingly competing on a global market. In global markets, where developing 

countries have the labor cost advantage, one of the only ways left to compete is 

through business processes. (Davenport 2006) 

 

1.1. Background 

Information systems (IS), as a field of study, combines a wide array of topics 

(Checkland and Holwell 1997; Alter 1998). Information systems uses 

information and computation theory (Kullback 1997) to create and analyze links 

between business and computer science. Analytics can, depending on how it is 

approached, be considered a sub field of either information systems or computer 

science. Analytics falls into the domain of information systems when either the 

focus is business related, or when the outcome of the research has a link to 

business and/or economics. 

Analytics is the process of gathering data and analyzing the data to be able to 

improve manufacturing processes, optimize supply chains, increase software 

performance, improve performance of targeted ads, or a multitude of other 

efficiency improvements (Cooper et al. 2012). Analytics seems to have a 

compounding effect, where analytical capabilities derive customer value and 

create new information, which in turn may lead to more business opportunities. 

Figure 1 The different branches of analytics. When methods from several branches are 
combined, the term advanced analytics is used. 

Overview of Analytics 

 

 

Advanced Analytics 

Descriptive 

Analytics 

Predictive 

Analytics 

Prescriptive 

Analytics 
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The effectiveness of different algorithms has, during the last decade, improved 

to the point that new technologies have started emerging. In many cities, we need 

to look no further than to the roads to be able to see fully automatic cars driving 

around powered by big data analytics algorithms. 

At the same time, the use of analytics has spread to almost every sector of society 

in the form of practical applications (Davenport and Kim 2013; Raghupathi and 

Raghupathi 2014; Lee et al. 2014). Some example uses of analytics in industry 

are decision support systems for bank customers to help make investment 

decisions (Avriel et al. 2004); optimization of oil refineries that increase profits 

by helping in capital allocation decisions (Kutz et al. 2014); analytics used in 

baseball to improve chances of winning games (Lewis 2004); analytics used in 

health care to manage patient care (Bates et al. 2014). 

Analytics is now so widely used that most large and medium-sized companies 

must use it to be able to keep up with competition (Davenport 2006). In fact, 92% 

of all enterprises now use analytics to gain marketing insights, and 81% of 

enterprises rely on analytics to improve their understanding of customers 

(Columbus 2015). Additionally, 50% of U.S. companies report increased sales 

due to investments in analytics (Columbus 2015). Davenport and Kim (2013) go 

even further, they claim that it is now dangerous for companies to not invest in 

analytical capacity. To corroborate this, researchers have shown that there is a 

positive correlation between companies performing well and their analytical 

capabilities (Trkman et al. 2010). In a survey done by the Harvard Business 

Review (“Competing in 2020" 2017), 47% of the responders say their 

organization’s business model will be obsolete by 2020 due to the growing 

digital economy. Furthermore, they found that there is a significant gap in big 

data analytics usage and capabilities between companies. As many as 84% of the 

digital leaders, which are companies that rely on digital technology to deliver 

products, also use big data analytics, while among the companies that have few 

products digitally available, only 34% use analytics. Regarding artificial 

intelligence/machine learning solutions, 51% of the digital leaders report using 

such solutions, compared to only 7% of the followers. When asked which skills 

will be the most important in 2020, 69% of the survey responders answered the 

ability to work with data and analytics (“Competing in 2020" 2017). 

Davenport and Kim (2013) write that the financial crisis, which started unfolding 

in 2008, could have been prevented if companies or government institutions in 

the financial sector would have had greater analytical capabilities. The argument 

is that if key people in financial organizations would have had a better 

understanding of analytics, and if they would have had better tools available, 
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then the credit default swaps (CDS) used to insure debt holders against default 

would have been priced differently. The Financial Crisis Inquiry Commission 

(FCIC) has also written a report on the 2008 financial crisis. The conclusion that 

the FCIC reached is that the crisis could have been prevented, although the 

solution was slightly different than what Davenport and Kim (2013) suggested. 

The FCIC argues that while some financial institutions did sell questionable CDSs, 

the underlying problem was the mortgage lending policies. It argues that 

unsustainable lending policies would, regardless, at some point make the 

housing system unravel. The FCIC concluded that the policies, which could have 

been more strictly monitored by the Federal Reserve, were left unchecked. (FCIC 

2011) 

Personally, I would dare suggest that we have much yet to discover in the field of 

analytics. We have come far in certain areas such as some parts of optimizations 

(Gabrel et. al. 2014) and self-driving technology (Bojarski et. al. 2016). However, 

many areas of analytics such as in parts of content classifications and parts of 

financial analytics can still be improved. For example, the United Kingdom has 

implemented Internet filtering systems that are supposed to block unwanted 

pornographic and malicious content. When comparing the world’s top 100,000 

ranking web sites ("Alexa Top 500" 2016) to different available filters, it has been 

shown that these default filters block up to 12% of the web sites ("Report On 

Blocked Sites" 2016). Examples of unfairly censored sites are many, and some 

businesses are impacted directly because of these filters ("Personal Stories" 

2016). 

In this thesis, different methods and systems that could be used to help improve 

performance of content filtering systems are presented. Furthermore, tools and 

methods are here presented that could help financial experts better understand 

companies, sectors, and markets. The understanding comes in the form of a new 

valuation perspective, a new risk perspective, and new knowledge of the 

interconnectedness between different components in the financial markets. 

 

1.2. Business Relevance 

In this part, two fictional characters will be presented. They are meant to offer 

insights into some of the practical uses of the research presented in the thesis. 

While these characters are not one-to-one representations of real people, the 

problems that they face are real-world problems that people working in the 

industries want to solve. We will refer to these characters throughout the thesis 
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to highlight the link between research and practical applications. The characters 

are modelled after real people I have been in contact with during my career as a 

researcher and the needs of people in the respective industries.  

The first character, which I in the future will refer to as Neil, is modelled after an 

expert from the Data to Intelligence (D2I) project that I will be talking more 

about in section 1.2.2. Neil represents a person working in a company that 

provides security solutions and services. The typical person that Neil represents 

is a technical security expert with a degree in computer science and/or data 

analysis. He has knowledge of programming and an in-depth knowledge of how 

the Internet works. He could, for instance, be working at a company that offers 

security products, such as parental control systems that filter and/or block 

sensitive data on their customer’s devices. Practical applications of such systems 

could either be preventing people from accessing harmful pages from their work 

computers, or filtering adult, violent, racist, and hateful content for minors. Part 

of the job that Neil is performing is evaluating web sites using different means, 

and deciding whether web sites should be filtered. In practice, this translates into 

a need to develop systems that can perform filtering automatically. The objective 

of Neil’s work is to categorize websites as accurately as possible, and the most 

important part is to not categorize a web site as harmful when it really is not.  

The second fictional character, which I in the future will refer to as Jenna, is 

modelled after an investment professional, a person that invests people’s 

savings. Jenna represents a person that works in the finance industry and is a 

person with a degree in economics and/or data analysis. She could be working 

at a hedge fund as a money manager or at an institution such as the European 

Central Bank. Essentially, she has skills that are relevant at any place that keeps 

track of economic developments and the markets. Part of Jenna’s duties is 

following different economic indicators, analyzing asset values, and finding new 

indicators that show the health of the economy, specific sectors, and individual 

companies. Part of her tasks could also be analyzing portfolio risks using 

different risk models. The objective of Jenna’s work is to use different 

quantitative and qualitative measures to support decisions on investment 

allocations. 

 

1.2.1. Industry Challenges and Opportunities 

At the start of the century, companies started competing by gathering and 

analyzing data. This data driven approach then evolved into what now is known 

as “Big Data”. Big data is the name used for gathering, creating, and analyzing 
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massive amounts of data where the dimensions of data themselves lead to new 

challenges. Many different companies and institutions are facing situations 

where they have gathered and/or created so much data that they need to come 

up with new methods to even be able to store and process the data efficiently, let 

alone make sense of the content. In this part, the discussion will be about 

different challenges that the relevant industries are facing, the opportunities 

hidden in these challenges, and the solutions that analytics offer. 

The different big data challenges that companies and industries now are facing 

have aptly been described as the five Vs. The four main challenges are the 

following: volume, which refers to the scale of the data; variety, which refers to 

the different forms of data; velocity, which refers to the speed of gathering or 

creation of data; veracity, which refers to the uncertainty of the quality of the 

data. The fifth V has been added later and stands for value, which refers to how 

businesses can gain value out of the big data that is being processed. ("The 5 Vs 

of Big Data" 2016) 

The challenges relating to volume that exist today are many and vary greatly 

between industries. Essentially, most of the big data challenges revolve around 

needing the processing power and/or storage capacity of many computers in all 

parts of gathering, creating, and processing data. Splitting data between different 

computing entities is already a non-trivial task. For this purpose, many 

companies such as Google, Amazon, Microsoft, and Oracle have created different 

big data storage solutions that have become widely used. To solve the problem 

of processing large volumes of data, different types of new processing solutions 

had to be developed. Hadoop and Spark are two of the currently popular 

solutions. Hadoop was developed as a distributed file system that becomes 

shared between all the computers added to the system (Shvachko et al. 2010). 

Spark is an engine for large-scale data processing that can run on top of different 

types of architectures, including Hadoop ("Apache Spark" 2016). 

The variety of data is another big data challenge. The different types of data that 

can be gathered and created are many and they all come with their own 

challenges. Working with numerical data can vary from analyzing historical bank 

transaction data to complex tasks such as streaming and processing sensor data 

from autonomous vehicles or space shuttles. Textual data handling tasks can 

range from processing customer reviews to filtering spam messages to massive 

tasks such as keyword indexing the entire Internet for search engine use. To 

provide an idea of the changing scale of text processing tasks, the Internet 

consisted of about 350 million web sites in 2011, and in 2016 consisted of over 

a billion active web sites ("Total Number of Websites" 2016). This is a growth of 
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about 150 million web pages per year, which would be impossible to keep track 

of without sophisticated automated systems. Companies today also face many 

new challenges regarding media content such as audio and video. Most of these 

challenges stem from having to stream the content to users, at any time and to 

any location, with varying quality. Compare this to traditional broadcast systems, 

such as cable TV or radio, which send the same content to all their customers at 

simultaneously, limited to certain locations, and with a predefined quality. 

That takes us to the third type of challenge that big data has brought with it, the 

velocity. Since the inception of the Internet, there has been a constant need for 

improvements in the underlying infrastructure to be able to handle the growing 

data consumption across the globe. This naturally also translates to storage 

capacity growth needs and data processing problems. With the introduction of 

streaming services such as YouTube, Netflix, Twitch, and SoundCloud, the 

magnitude of data transferred over the Internet has increased almost 

exponentially. Cisco Systems has estimated that IP traffic will surpass 2.3 

zettabyte per year by 2020, and video is estimated to take up 82% of the total 

load with most of the traffic coming at certain peak hours ("The Zettabyte Era" 

2016). On another front, security companies are in constant battles against 

spammers, virus creators, and malicious sites. Kaspersky Labs reported that 

email spam was over 56% of the total email traffic in the beginning of 2016 

("Spam and Phishing Securelist" 2016). The constant improvement in automated 

detection of these types of threats is what keeps us from being overloaded by 

spam emails. 

Veracity of data is the fourth and last of the original big data challenges. Veracity 

refers to the quality of data, the possibility of missing values and having data 

containing incorrect values, incorrect value types, and unstructured data. The 

veracity quality challenges generally start appearing once the gathering, 

creation, and processing is of such a magnitude that it becomes difficult to keep 

the data in a structured format. Companies started to notice that in certain 

scenarios, such as when indexing the entire Internet, the SQL databases they 

were using could no longer be used to process the data efficiently. To solve such 

challenges, companies had to create new types of databases that are simpler, less 

structured, and because of that cannot perform the full set of calculations that 

SQL databases do. These types of databases were given the name NoSQL 

databases.  

Value of data, the fifth V, should be approached more from a business process 

perspective. Companies need to ascertain that the data that is being processed 

can be turned into insights, otherwise the data gathering and creation is not 
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useful. In this thesis, we will see examples of how processing data can be turned 

into new insights. 

Let us examine some statistics to help highlight some of the challenges that 

companies and professionals are facing related to financial news and automatic 

classifications. While it is difficult to estimate exactly how many news articles 

that are published daily, Thomson Reuters has released a few corpuses 

containing articles that can be used to put the number of articles in perspective. 

The TRC2 corpus was gathered over a thirteen-month period between 2008 and 

2009 and contains over 1.8 million articles (Reuters Corpora 2016). This shows 

us that experts who would be interested in keeping up with the news are easily 

overwhelmed by the content published by one single news agency. Add to this 

the thousands of different news agencies worldwide and the news flow is of such 

magnitude that even scores of workers would have problems covering 

everything of interest. This touches upon the concept of having too much 

information available, also known as information overload. Information 

overload can be a serious problem both for businesses and for individuals and 

has been researched extensively (O’Reilly 1980; Edmunds and Morris 2000). 

To effectively keep up with news in their work environment, some professionals, 

such as Jenna that I described earlier, need to come up with strategies to filter 

and find relevant content. Some professionals simply limit the content that they 

take in before making decisions. These limits can, for instance, be following only 

a subsector of sites that post relevant content, limiting content by sectors, 

limiting by news about certain companies, or even limiting consumed content to 

certain experts. Alternatives would be to use existing tools to help filter content 

in different ways or creating tools that could help find the content that is 

relevant. For this purpose, companies have started to develop products that help 

with filtering data for consumption for certain niche markets. Here follows a few 

different examples of such products: AlphaSense.com is a financial search 

engine; Stocktwits.com is a short messaging platform like Twitter that focuses 

on financial news only; TipRanks.com is a platform that focuses on keeping track 

of financial analyst’s opinions and predictions. 

As the internet grows and new technologies are developed, it affects society in 

different ways. If we consider the kind of situations that security experts like Neil 

deal with, we find a set of different challenges. A clear example of the type of 

challenges that companies can have to face, after introducing new technologies, 

is the battle that Twitter is fighting against violent extremism and racism on their 

platform. Twitter reported in August 2016 having banned 360, 000 accounts for 

promoting terrorism since 2015. A quote taken straight from their blog sums up 
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the problems they are having: “There is no one “magic algorithm” for identifying 

terrorist content on the Internet.” ("An Update on Violent Extremism" 2016) 

They use spam filtering tools that have helped them automatically identify about 

a third of these accounts. This has left them with the manual work of identifying 

240,000 accounts on their platform alone. The problems they are facing are 

obviously manifold and relating to all five types of big data challenges. Terrorist 

and violent content can come in the form of text, images, video, and audio. Five 

hundred million tweets are sent daily on the Twitter platform as of October 2016 

("Twitter Usage Statistics" 2016). Furthermore, people write in different 

languages and writing can be of a satirical nature, which makes the identification 

complicated.  

Those are a few examples of challenges and opportunities that companies and 

individual experts are facing daily in their work, and it puts the need of the 

research we have been conducting somewhat into perspective. The Finnish 

government also recognized these challenges that the information age has 

brought with it. The government funded a major research project that aimed to 

find solutions to these types of challenges. The project participants were 

industry partners and research institutions from all over Finland. The project 

was named Data to Intelligence (D2I) (“Data to Intelligence Program”, Tekes 

project number 340/12) and will be discussed further in the next section. 

 

1.2.2. Data to Intelligence 

Four of the six research publications [1, 2, 3, 6] that are part of this thesis are the 

results of real-world needs identified by Finnish companies. Three of these four 

publications [1, 2, 3], were developed as part of the D2I project. Publications [4] 

and [5] have come out of a collaboration with Dr. Peter Sarlin. The last 

publication [6] was started as a solo project after D2I ended. 

D2I was a cooperative project (2012 – 2015), backed by the Finnish government, 

consisting of 17 research institutions, 27 large enterprises, and 26 small and 

medium sized companies from various industries in Finland. The research focus 

in the D2I project was big data and user-centric service development. The aim of 

the program was to develop intelligent tools and methods to be able to innovate 

in services and in business models. The project was split into seven different 

areas: Traffic, Multimedia, Security, Industry, Customer Intelligence, Be-well, and 

Forest Big Data. In total, the project has resulted in over 310 publications such 

as conference papers, journal articles, books, and reports.  ("Data to Intelligence 

Program" 2016)  
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Analytics was in the center of many approaches used in the D2I project. Several 

research groups used analytics to try and solve different problems that the 

involved partner companies had identified. These problems have a wide range: 

improving classifications of web content; recognizing audio data through audio 

analytics; categorizing social media users based on hobbies and interests; 

creating new image classification algorithms; using analytics to extract relevant 

information from incident reports and much more. 

Our research team in the D2I project consisted of Dr. Shuhua Liu and myself. Our 

team was part of and worked in the D2I project in two areas: security and 

multimedia. For the most part, we worked together with two companies: F-

Secure Corporation, which is one of the larger companies in the online security 

business, and PacketVideo, which is a medium sized media company.  

Our research in the project consisted mainly of text-analytics methods. These are 

key-word-extraction methods, feature-extraction methods, and machine 

learning algorithms. Together with F-Secure, we worked on using analytical 

methods to improve text classification results. We also developed analytical 

methods for searching through social media content, and we worked on 

extracting text information relevant to social media content with PacketVideo. 

 

1.2.3. Relevance of the Thesis 

The research in this thesis is focused on two areas of text analytics: automatic 

classification and financial news analytics. In automatic classifications, machine 

learning is used to classify text in web pages. In financial news analytics, we use 

network theory (Özgür et al. 2008), centrality measures (Stephenson and Zelen 

1989), risk measures (Mezei and Sarlin 2017), and visualizations to uncover 

useful information about companies.  

Classification can be done for many purposes and in many different areas. Some 

of the best known applications are classification of objects in images such as 

recognizing faces or fingerprints (Marr and Hildreth 1980), classifications used 

in movie recommendations and targeted ads (Cortes and Vapnik 1995; Specht 

1990), and classifications and summarization of text documents (Salton and 

Buckley 1988). Text classifications can also be used to create parental control 

systems and have also been used to filter spam messages in messaging services 

(Androutsopoulos et al. 2000). 

Financial news analytics has also been used in practical applications. Among the 

best known applications, are automated trading systems (Gately 1995), 
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identification of money laundering transactions (Reuter 2004; Kingdon 2004), 

and methods for detection of systemic risks (Schwaab et al. 2011).  

From a business perspective, there is much to be gained from advances in both 

areas. By increasing performance of web content classification (Sun et al. 2002), 

we can improve web filtering techniques. We could also improve malicious web 

site filtering (Du et al. 2003), and if we are able to achieve high performance we 

could maybe find totally new business opportunities that previously required 

humans to perform tasks. One example of this could be automatic link 

aggregation. Automatic link aggregation would be different from static link 

aggregation sites, such as Reddit.com, by not needing humans to manually 

submit content. In 2013, researchers (Frey and Osborne 2013) postulated that 

in the years leading up to year 2033, up to 47% of all current jobs are at-risk jobs 

that have a chance of being automated. Improvements in classifications and 

automatic text-processing methods, such as the ones discussed in this thesis, 

represent two of the approaches that could be used in automating repetitive text 

processing tasks. 

The business importance of the research presented in financial analytics can 

provide investors a better understanding of the underlying conditions of 

different markets, it can provide an increased understanding of the relationships 

between different companies, and it can help uncover risks that were previously 

unknown. Understanding risks and the relationships between companies could 

be crucial in avoiding losses in investments. According to researchers 

(Dell’Ariccia et al. 2008), a banking crisis can reduce GDP for a country by 

between 15% to 25%. Being able to prevent or avoid any type of larger crisis 

through analytical methods would then have a positive effect on the economy. 

 

1.3. State of the Art 

Here follows a discussion about the current state-of-the-art methods in the fields 

automatic classifications and financial analytics. In the field of automatic 

classifications, we are interested in research in text classifications, as well as any 

type of classifications done on violent and hateful content. In the field of financial 

analytics, the research is generally more qualitative, which makes it difficult to 

directly compare results. Nonetheless, the state-of-the-art comparisons will be 

done against research that contains elements similar to the research presented 

in this thesis. 
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1.3.1. Information Extraction 

In every publication presented in this thesis, we have some form of information 

extraction. The relevant research in information extraction starts with automatic 

processing of both structured and unstructured text data (Cowie and Lehnert 

1996; Soderland 1999; Banko et al. 2007; Aggarwal and Zhai 2012). Another part 

of information extraction is named entity recognition (Toutanova et al. 2003; 

Ratinov and Roth 2009). Named entity recognition (NER) is part of one of the 

publications presented [1] and has, for example, previously been successfully 

used in extracting and identifying entities in social media (Ritter et al. 2011; Liu 

et al. 2011). NER has also been used to find disaster related messages in social 

media (Imran 2013). Researchers have also used extracted information to rank 

products (Zhang et al. 2010), and extracted tags for categorization from social 

media (Cantador et al. 2011). We used a similar approach to extract people’s 

hobbies and interests from social media [1]. Extracting company names from 

news (Rau 1991) can be useful for research in finance. In our publications in 

financial analytics [4, 5], we extract company names using methods similar to 

those described by Bullinaria and Levy (2012) in combination with methods 

from publication [1]. For the automatic classification publications [2, 3, 6], we 

use extraction methods that are based on popular feature extraction and text 

mining techniques (Lewis 1992; Aggarwal and Zhai 2012) in combination with 

the methods from publication [1]. 

 

1.3.2. Automatic Classification 

Automatic classification is part of the information retrieval domain. In 

classifications, different types of methods are used depending on the type of data 

that needs to be classified. Methods used in text classifications differ from 

methods used in image, video, and audio classifications. The classification 

contributions in this thesis consist of text classification research, which is why 

the state of the art discussions focuses mainly on methods used in text 

classifications. 

Automatic text classifications, also known as text categorization and document 

categorization, became popular in the early 1990s (Sebastiani 2002). It has since 

developed into subcategories with specific methods that work well for some 

areas and some categories of text. No single method has yet been shown to work 

well in all possible text classification tasks. Text classification has because of that, 

during the last two decades, evolved into a field with a multitude of approaches 

that work well for a subset of classification tasks.  
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One of the early and successful word-ranking methods, which is still used in 

many classification approaches, is one that uses term frequency and inverse 

document frequency (TF-IDF) (Salton and Buckley 1988; Joachims 1996; Han 

and Karypis 2000). TF-IDF-based classifications have been shown to be robust 

and reliable also in recent research (Zhang et al. 2011; Trstenjak et al. 2014; Ko 

2012). 

From TF-IDF-based classifications emerged n-gram-based classifications 

(Cavnar et al. 1994). The main contribution from n-gram analysis was that word 

order became important where it had not been considered before. A study by 

Fürnkranz (1998) showed that 2-grams and 3-grams could improve results, but 

that going above that also could decrease performance while classifying the 

Reuters 20 news groups corpus. Some of the situations that n-gram-based 

analysis have been shown to work well in are detecting malicious code and 

viruses (Abou-Assaleh et al. 2004; Reddy and Pujari 2006) and language 

independent classification of texts using n-grams (Damashek 1995). In another 

study (Khreisat 2006), n-gram analysis on the Arabic language was shown to 

outperform previous approaches that had performed well using English. Other 

studies have successfully used n-grams to identify authors of texts (Kešelj et al. 

2003; Houvardas and Stamatatos 2006). In web page classifications, a study 

based on n-grams and URL information showed improvements over an unigram 

approach (Kan and Thi 2005). 

Soft computing using fuzzy sets and fuzzy logic (Klir and Yuan 1995) is one of the 

methods that has had some success in text classifications. It has been used 

together with support vector machines (Wang and Chiang 2007; Abe 2015), 

neural networks (Pal and Mitra 1992), and genetic algorithms (Yuan et al. 1997). 

Other approaches in soft computing have also been proposed (Lewis and Gale 

1994; Jiang et al. 2011). 

Another text processing method gained popularity when Blei et al. (2003) 

created topic models through latent dirichlet allocation (LDA), and has since 

become widely used. Further developments in topic models range from 

unsupervised models (Blei and Lafferty 2006; Blei 2012) to supervised models 

(Mcauliffe and Blei 2008). Topic model classifications have been successfully 

used in: tag recommendations (Krestel et al. 2009); web spam filtering (Bíró et 

al. 2008); and automatic transcriptions (Morchid et al. 2014). Research using 

LDA has also shown that it can improve performance over cluster-based 

approaches in information retrieval (Wei and Croft 2006), and a derived 

implementation DiscLDA has shown potential in reducing the error rate in 
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classifications compared to features extracted with LDA (Lacoste-Julien et al. 

2009). 

Sentiment analysis is another research area in information retrieval that has 

gained traction during the last two decades. Most of the research in the field 

started out with extraction of sentiment polarity and opinions in different types 

of reviews (Pang et al. 2002; Turney 2002; Dave et al. 2003; Hu and Liu 2004). 

From there, the research started covering also other parts of text classifications 

(Turney and Littman 2003), and further research added new improved methods 

(Pang and Lee 2005; Liu 2012). SentiWordNet was then developed as a freely 

available lexical resource for unsupervised sentiment analysis (Baccianella et al. 

2010). Both supervised (Go, Bhayani, and Huang 2009), unsupervised (Thelwall 

et al. 2010), and semi-supervised (Maas et al. 2011) sentiment analysis 

algorithms have been developed. Sentiment analysis has also been used to 

classify Twitter tweets and messages on message boards like Yahoo! (Thelwall 

et al. 2011; Das and Chen 2007; Pak and Paroubek 2010; Kouloumpis et al. 2011). 

Other relevant approaches have been researched that do not directly fall under 

any of the methods mapped so far. Self-organizing maps (SOM) have been used 

to classify texts (Merkl 1998), and researchers have used SOMs to organize 

patents into clusters (T. Kohonen et al. 2000). Another study used WordNet text 

classification with hypernyms instead of using a bag-of-words approach (Scott 

and Matwin 1998). Culotta and Sorensen (2004) used dependency tree kernels 

in classifications. Lastly, we have classifications done with features taken from 

co-occurring words (Figueiredo et al. 2011). Co-occurrences are network 

methods, which we will go more into detail about in the financial analytics part 

of the thesis. There are also a couple of relevant studies on feature selection in 

text classifications (Scott and Matwin 1999; Forman 2003). 

In state-of-the-art methods, researchers have shown that combining features 

from different approaches in automatic classifications can improve performance 

over features based on any single method. Wallach (2006) combined a bag-of-

words approach with n-gram to show increased classification performance. A 

study by Melville, Gryc, and Lawrence (2009) combined sentiment with text 

classification, which showed promising results. Others have also combined 

sentiment analysis with LDA (Lin and He 2009), and sentiment analysis with n-

gram classification  (Bespalov et al. 2011). More recently, Kusner et al. (2015) 

built classification models using word embedding’s and the 𝑘-nearest neighbors 

algorithm. 
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Specific research into violent and hateful text content classification is quite 

limited. This was one of the areas that the companies in the D2I project had 

identified as problematic classification categories. Thus far, research on violent 

text content has been done through voting ensemble classification (Guermazi et 

al. 2007). Violent event extraction from news has also been studied (Piskorski et 

al. 2007). Basic classification research on textual hate content, which often also 

covers racism, has been published for web content (Warner and Hirschberg 

2012), on twitter content (Kwok and Wang 2013), and on web page comments 

(Djuric et al. 2015). Specific techniques for web content classifications have also 

been researched in depth (Lee et al. 2002; Du et al. 2003). 

After having mapped the current state of the art research, we can see that there 

is a clear lack of advanced research into classifying violent and hateful text 

content. More specifically, there is a lack of research into using combinations of 

features from different algorithms. This is where three of the publications 

presented in this thesis fit in the research landscape [2,3, 6]. Our research in this 

area focuses on combining different methods such as TF-IDF similarity analysis, 

n-gram analysis, and sentiment features to classify hateful and violent content. 

We then extend the research to see if majority voting ensembles can increase 

classification performance (Dietterich 2000).  After that we further extend the 

research into what can be called a multi-gram classification approach, which has 

some similarities to (Shen et al. 2006) and (Wallach 2006). Finally, we examine 

the performance of the different models on datasets with imbalanced 

distributions. 

 

1.3.3. Financial Analytics 

Finance is a wide field even when limited to only research in analytics. The 

relevant state of the art research that will be mapped here is research that was 

done on text data. In the financial analytics part of the thesis, we will review 

methods that can be used to automate parsing of financial texts. Thus, we will 

here review previous research done using network theory, sentiment, and risks. 

Later we will cover how we can combine all three areas into a single text 

processing approach. However, mapping the entire state of the art financial 

research in risks, networks, and sentiment is still too broad. To further limit the 

scope, we will only consider methods that combine two or more of the areas 

(sentiment, network theory, and risks), and we are specifically interested in the 

methods that are applied on text data. 
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Before the millennium shift and the dot com crash, the majority of quantitative 

research in finance was done using numerical data gathered from different 

company metrics, different reported country numbers, and market data. Around 

the same time analytics started to gain traction (“Analytics Informs” 2016). One 

of the seemingly eternal debates in economics is whether the market should be 

seen as efficient or not (Fama et al. 1969; Malkiel and Fama 1970; Jensen 1978; 

Grossman and Stiglitz 1980; Malkiel 2003). The hypothesis that hidden in 

financial statements, and other financial texts, is information that has not yet 

been taken into account by the markets is one of the ideas that has impacted the 

research using text in finance (Bloomfield 2002).  

While the market can still be seen as efficient over a long period of time, as shown 

by (Malkiel 2005; Tóth and Kertész 2006), the research into the efficient market 

hypothesis has continued and markets have been shown to be inefficient in many 

specific ways (Timmermann and Granger 2004; Baker and Wurgler 2007). For 

example, in 2009 researchers were able to show that market predictions can be 

done through textual representations (Schumaker and Chen 2009). A year later 

a study was able to prove that psychology has an impact on the markets, and that 

investor mood actually can be used to predict the movements in the market 

based on text (Pak and Paroubek 2010). However, we should also remember that 

financial research is about more than just market movements. Researchers have 

used text analytics to predict company revenues (Asur and Huberman 2010), 

market risk analysis has been done based on text (Groth and Muntermann 2011), 

and bank risks have been analyzed based on text (Rönnqvist and Sarlin 2014). 

In two publications that are part of this thesis [4] and [5], we have built networks 

from news content. These networks have a basis in network theory (Davis et al. 

1979; Ahuja et al. 1993) and in financial theory (Allen and Babus 2008). More 

specifically, in our research we use co-occurrence networks (Lund and Burgess 

1995; Veling and Van Der Weerd 1999; Leydesdorff and Vaughan 2006) and 

weighted networks (Newman 2004). To be able to quantify nodes in a network, 

researchers have developed different types of centrality measures (Stephenson 

and Zelen 1989; Borgatti 2005; Estrada and Rodríguez-Velázquez 2005; Brandes 

and Fleischer 2005; Bonacich 2007). Using network theory, the following studies 

have been conducted: in one study, researchers built co-occurrences of people 

identified in the Reuters news corpus (Özgür et al. 2008); in another series of 

studies, researchers build a ranking of company co-occurrences based on social 

media content (Jin et al. 2009); researchers have from texts built networks of 

banks (Boss et al. 2004; Rönnqvist and Sarlin 2015).  
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When it comes to sentiment research in finance, the roots are the same as the 

sentiment research presented in automatic classifications. However, the 

applications of sentiment analysis is slightly different, as sentiment in finance 

does not necessarily have the same tonality as in, for example, classifications of 

positive and negative texts (Loughran and McDonald 2011). Nonetheless, news 

and investor sentiment have been shown to have an impact on markets (Brown 

and Cliff 2004; Baker and Wurgler 2007; Tetlock 2007). Researchers have shown 

that sentiment in finance can be structured into several categories, such as 

market wide sentiment, industry wide sentiment, and company sentiment (Mitra 

and Mitra 2011). This is further explored in our research. Studies have 

quantitatively shown that sentiment measures can predict markets (Schmeling 

2009). In the fourth publication presented in this thesis [4], we build upon ideas 

on network theory and sentiment to create different company sentiment 

rankings. This is an avenue in finance that has not been widely explored before. 

Risks in economics and financial markets have been widely studied and are at 

this point fairly well defined (Jorion 1997; Campbell et al. 1997). There are 

several studies that combine risks and networks, such as, for example, banking 

risks (Garratt et al. 2011) and systemic risks in financial systems (Eisenberg and 

Noe 2001). There are also books that cover most of the subject (Lando 2009; 

Allen and Gale 2009). Other studies that uses text data to measure risks consists 

of (Battiston et al. 2012; Duca and Peltonen 2013; Mezei and Sarlin 2017). In the 

fifth publication [5], we further develop the network and sentiment research 

from the fourth [4] publication to quantitatively measure the networks. 
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2. Research Methodology and Research Questions 

In this chapter, the publications that the thesis consist of are presented. 

Following that we briefly review the different research methodologies used in 

information systems. Based on these methodologies follows a table that shows 

which methodologies we follow in the different publications. At the end of the 

chapter, the delimitations of the thesis are defined, and lastly the research 

questions that the thesis addresses are formulated.  

 

2.1. Outline of Thesis Publications 

[1] Forss T., Liu S., and Bjork K. M. (2014). Extracting People's Hobby and Interest 

Information from Social Media Content. Presented at the Terminology and 

Knowledge Engineering Conference, TKE 2014, 19 – 21 June 2014, Berlin, 

Germany. 

We developed methods for extracting hobbies and interests from social media 

profiles through key word analysis using named entities, term weighting, stop 

words, and regular expressions. My part of the work was performing all the 

technical work and writing half of the article as first author. 

[2] Liu S. and Forss T. (2014). Web Content Classification based on Topic and 
Sentiment Analysis of Text. Presented at the International Conference on 
Knowledge Discovery and Information Retrieval, KDIR 2014, 21-24 October 
2014, Rome, Italy. 
 
We did our first classification work on the problematic hate and violence 
categories using a naïve Bayes algorithm with similarity and sentiment features 
individually and combined. My part of this work was performing the software 
development work and feature extraction. 
  
[3] Liu S. and Forss T. (2014). Combining N-gram based Similarity Analysis with 

Sentiment Analysis in Web Content Classification. Presented at the International 

Conference on Knowledge Discovery and Information Retrieval, KDIR 2014, 21-

24 October 2014, Rome, Italy. 

We extended our previous classification work to n-gram models for all categories 

in the dataset using a naïve Bayes classifier combining n-gram similarity and 

sentiment features. My part of this work was performing software development 

work and feature extraction. 
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[4] Forss T. and Sarlin P. (2016). From News to Company Networks: Co-

occurrence, sentiment, and information centrality. Presented at the IEEE 

Symposium Series on Computational Intelligence, SSCI 2016, 6-9 Dec 2016, 

Athens, Greece. 

We gathered a financial news dataset and used network analytics to create 

networks and rankings out of components in the dataset. My part of the research 

was the technical work and writing the article as first author. 

[5] Forss T. and Sarlin P. (2017). News-sentiment networks as a company risk 

indicator. Under review at Journal of Network Theory in Finance. 

We continue our work on networks by applying risk analysis to the networks 

and extracting risks for individual companies. We then show that high risk 

increases chance of stock price decrease. My part of the research was the 

software development and writing the article as first author. 

[6] Forss T. (2018). Feature Enrichment through Multi-gram Models. 

Proceedings of the 51st Annual Hawaii International Conference on System 

Sciences. Paper accepted and presented during the conference, 3–7 Dec 2018, 

Big Island, Hawaii. 

Introducing a new multi-gram classification model that enriches the feature set. 

This is done by combining different order n-gram models with sentiment 

analysis into one model. I did the both the research and the article on my own. 

 

2.1.1. Other Relevant Publications 

In section 2.1, I selected the six most relevant publications to be part of the thesis. 

Below follows a list the other relevant publications in analytics that I have been 

part of, but chose to not include in the thesis. The first two research articles were 

part of our automatic classification research. In these articles, the focus was on 

improving performance on imbalanced datasets, however, the methods tested 

did not perform as we hoped and were replaced by publication [6]. In the third 

publication, we extract text tags related to images, which is not included in the 

thesis as it does not have any direct link to either of the automation approaches. 

Liu, S., & Forss, T. (2015). Text Classification Models for Web Content Filtering 

and Online Safety. Presented at the International Conference on Data Mining 

Workshop, ICDMW 2015, pp. 961-968, 14-17 November 2015, Atlantic City, USA. 
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Liu, S., & Forss, T. (2015). New classification models for detecting Hate and 

Violence web content. Presented at the 7th International Joint Conference on 

Knowledge Discovery, Knowledge Engineering and Knowledge Management, 

IC3K 2015, Vol. 1, pp. 487-495, 12-14 November 2015, Lisbon, Portugal. 

Liu, S., & Forss, T. (2015). Automatic tag extraction from social media for visual 

labeling. Presented at the 7th International Joint Conference on Knowledge 

Discovery, Knowledge Engineering and Knowledge Management, IC3K 2015, Vol. 

1, pp. 504-510, 12-14 November 2015, Lisbon, Portugal. 

 

2.2. Research Methodology 

Research methodologies in Information Systems (IS) are based on six categories 

introduced by (Jarvinen 2000): mathematical approaches, conceptual analytical 

approaches, theory-testing approaches, theory-creating approaches, artifact 

building approaches, and artifact evaluating approaches. All publications in this 

thesis are worked out as Mathematical approaches, Artifact building approaches, 

and/or artifact evaluation approaches. 

(Von Alan et al. 2004) defines the used of design science in IS as “a purposeful IT 

artifact created to address an important organizational problem.” They define 

design science as the following seven steps: 1) Provide a viable artifact; 2) 

Develop a technology-based solution; 3) Rigorous demonstration of artifact via 

evaluation; 4) Provide clear and verifiable contributions; 5) The research must 

rely on rigorous methods; 6) Satisfy laws in the problem environment; 7) The 

research must be effectively presented to technology-oriented and management-

oriented audiences. Based on their definition, the publications included in the 

thesis can be labelled as applications (implementations) of design science. (Von 

Alan et al. 2004) 

Iivari (2007) argues that Information Systems is an applied science and that this 

is now widely accepted. Iivari continues by saying that IS as a design science 

should be based on a sound typology of IT artifacts, especially research 

consisting of IT applications. He goes on to define seven categories that IS 

applications should fall into: to automate, to augment, to mediate, to inform, to 

entertain, to artisticize, and to accompany. Applications using design science in 

IS research can be a combination of the seven different artifacts. The publications 

in this thesis mainly belong to the categories to automate, to augment, and to 

inform. Finally, he suggests defining design research in IS as constructive 

research and that we should follow constructive methods. Constructive research 
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generally means testing the research contribution analytically, with some 

predetermined criteria. These criteria can range from surveys sent to 

participants to statistical benchmarks or comparisons of results from different 

methods on the same datasets. Our quantitative tests are compared to baselines 

and benchmarks that we define. (Iivari 2007) 

There are also a set of guidelines for when research in IS design science can be 

considered novel contributions. These guidelines specify that the research has to 

either be research that has not been done before, or the research should improve 

upon existing results in some way (Von Alan et al. 2004; Hevner and Chatterjee 

2010). As part of action design research (ADR), a new artifact, the ensemble 

artifact, was defined (Sein et al. 2011). The ensemble artifact also accounts for 

the organizational domain. ADR consists of two steps: problem formulation and 

building, intervention, and evaluation (Sein et al. 2011). The problem 

formulation step can come from a practical problem perceived by either the 

researchers or an industry. The second step is a continued building and 

evaluation process based on step one. Using that definition, both the automation 

tasks that will be presented are considered action design research. The text 

classification research problem was identified by our security industry partner, 

and the financial news automation research problem was identified by us, the 

researchers. 

The state of the art in Information Systems research methodology moves the 

discussion to what Grover and Lyytinen (2015) calls the mid-range script, and 

how most innovations in the field currently are done by applying mid-level 

modifications of theories from other fields onto Information Systems problem 

formulations. Grover and Lyytinen (2015) suggests two approaches that can 

move IS research forward and enable ground breaking research studies. They 

call the two approaches working on the left edge and working on the right edge. 

Working on the right edge is defined as building new innovative IS theories 

through thought experiments. Working on the left edge is defined as 

identification of patterns, observations, and descriptions. The left edge refers to 

observing the world as-is, will-be, and situations that not necessarily yet have 

theories that match them. In my opinion, the research that we have been 

conducting in financial news analytics falls into the left edge category. (Grover 

and Lyytinen 2015) 

If we change perspective, we can also split research methodologies in IS into 

deductive and inductive research. Deductive research is used to test an existing 

theory using, for example, some form of Information System. Usually, it is done 

through some form of quantitative evaluation method. Inductive research is 
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generally used to test theory with some form of qualitative evaluation method 

(Strauss, et al., 1990; Glaser, 1992). In practice, we can also combine both 

qualitative and quantitative approaches into what can be labelled as mixed 

method research (Bryman 2006). 

Research in IS can also be considered either prescriptive or descriptive. In 

prescriptive research, we identify and recommend solutions. This can be done 

by either showing which methods improve results or by pointing out where 

further research into the subject could improve results. Descriptive research, on 

the other hand, describes characteristics without trying to answer questions of 

why the results are showing what they do. We take a prescriptive approach in all 

our research, trying to improve results and find further improvements that can 

be implemented in the future. (March and Smith 1995) 

 

2.2.1. Methodology in Publications 

The research methodologies previously described are here specified for each 

publication and listed in Table 1. The Research methodology column describes 

which type of research was followed.  The Artifact column describes what the 

research accomplished.  The Evaluation method column describes which kind of 

result validation we used in the publication. 

 

2.2.2. Mathematical Methods 

Researchers often use quantitative mathematical methods to be able to evaluate 

research in Information Systems, especially research in analytics. There are 

many different mathematical methods that can be used to solve problems 

(McLeod and Schell 2001). The evaluation methods need to be robust enough to 

satisfy the research methodologies chosen in the research. In this section, we will 

first review different relevant mathematical evaluation methods, then in section 

2.2.2.5 there is a summary explaining which of the methods that are used in our 

research. Through discussing both the methods used and some not used, we 

explain why the mathematical methods were chosen in the research papers. 
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Table 1. Research methodologies, artifacts, and evaluation method for each publication. 

Paper Research 

Methodology 

Artifact Evaluation 

method 

1 Constructive ADR, 

deductive research, 

prescriptive 

research 

Social media 

extraction 

information 

system 

Survey with 

user feedback 

2 Constructive ADR, 

deductive research, 

prescriptive 

research 

Text classification 

models for hate 

and violence in 

text 

Cross- 

validation with 

labelled 

dataset 

3 Constructive ADR, 

deductive research, 

prescriptive 

research 

Text n-gram 

classification 

models for 20 

category types 

Cross- 

validation with 

labelled 

dataset 

4 Constructive ADR, 

prescriptive, 

quantitative, and 

qualitative 

research 

Two different 

rankings of 

companies: one 

absolute and one 

normalized 

Qualitative and 

quantitative 

analysis of the 

rankings and 

networks 

5 Constructive ADR, 

prescriptive, 

quantitative, and 

qualitative 

research 

Extracting 

individual, direct, 

and indirect 

sentiment risks 

for individual 

companies  

Quantitative 

analysis of 

network risks 

and individual 

risk compared 

to benchmark 

6 Constructive ADR, 

deductive research, 

prescriptive 

research 

Ensemble and 

multi-gram 

classification 

models 

Cross- 

validation with 

labelled 

dataset 

compared to 

baseline 
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2.2.2.1. Machine Learning 

Machine learning algorithms are data driven approaches that focus on the 

predictive side of analytics. This means that machine learning algorithms, such 

as support vector machines (SVM) (Hearst et al. 1998), artificial neural networks 

(ANN) (Schalkoff 1997), decision trees (DT) (Quinlan, 1986), 𝑘-nearest 

neighbors (k-NN) (Larose 2005), and naïve Bayes (NB) (McCallum et al. 1998), 

which we will be using, do not have any starting proposition that they try to 

verify. Instead, the algorithms are used to find patterns in data based on features 

that describe the different data points. These patterns can then be used to predict 

where new data points belong. If we use the same data to test different 

approaches and machine learning algorithms on, we can statistically compare 

performance and generalize conclusions. 

 

2.2.2.1.1. Naïve Bayes 

The naïve Bayes (NB) algorithms used in automatic classifications are based on 

Bayes’ theorem. Naïve algorithms assume that each feature used is independent 

of other features. There are several different types of distributions that naïve 

algorithms can use: Gaussian, Multinomial, and Bernoulli. Gaussian distribution 

is the same as normal distribution and is used when dealing with theoretically 

infinite data. Multinomial algorithms are used when there is a finite number of 

categories and a finite number of instances to be classified. Bernoulli distribution 

is used when feature vectors are binary, which means values can either be 0 or 

1. In our experiments, we use the NB classifier as a baseline due to its simplicity. 

We have a limited number of categories and instances, which means we use the 

multinomial distribution. NB satisfies the equation defined in (1) when we are 

performing binary classifications, and the multinomial distribution is defined in 

equation (2). 𝐶𝑘 is the class, 𝑝 is the probability, 𝑘 represents the multinomials 

(can be ignored for binary classifications), and 𝑓 is the feature set: (Russell and 

Norvig 2002) 

𝑝(𝑓1, … , 𝑓𝑛) ∝ 𝑝(𝑐)𝑝(𝑓1|𝑐)…𝑝(𝑓𝑛|𝑐)                                       (1)     

log(𝑝(𝐶𝑘)) + ∑ 𝑓𝑖log (𝑝𝑘𝑖)
𝑛
𝑖=1                                              (2)     

 

2.2.2.1.2. Decision Trees 

Decision trees (DT) used in classification problems are called classification trees 

where binary trees are built. Trees are built to contain decision rules where 
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moving from one node to the next always includes a decision as in an if-else 

statement. Decision trees are simple in nature, and can be trained and applied 

fast. (Russell and Norvig 2002) 

 

2.2.2.1.3. 𝑘-Nearest Neighbors 

𝑘-nearest neighbors (k-NN) is a classification and regression algorithm that uses 

instance-based learning. This means that training data is stored, and unclassified 

data points are compared to the data points in the training set. This means that 

to classify instances using k-NN we need to have a distance measure to compare 

data points. The distance function we will use is Euclidean distance, which is 

used for non-categorical attributes as shown in equation (3), where x, y, and z 

represent features of the data point, and where the distance d satisfies the 

restrictions (4)-(6): (Larose 2005) 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
2

𝑖                                        (3)     

 𝑑(𝑥, 𝑦) ≥ 0, 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) = 0, if 𝑥 = 𝑦                                    (4)       

 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)                                                      (5)       

 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)                                             (6)       

 

2.2.2.1.4. Support Vector Machines 

Support vector machines (SVM) are models that use hyperplanes for 

classifications, clustering, and regressions. Here we will only cover 

classifications. SVM models can be either non-probabilistic linear classifiers or 

non-linear classifiers using kernel functions. For non-kernel versions of SVM, a 

hyperplane is a subspace of one dimension less than the space that the task is 

defined in. The algorithms try to find the hyperplane that offers the largest 

margin between classes or clusters, which leads to lower generalization errors. 

In our research, we use the linear SVM model.  

In the case that classes in the dataset are linearly separable, two hyperplanes 

that are parallel can be selected to maximize margin (known as hard-margin) 

and separate classes as far as possible from each other. Such hyperplanes are 

represented as in equation (7) and (8), where 𝑤 is the normal vector to the 

hyperplane, 𝑥 is from the dataset 𝜒 = {𝑥1, … , 𝑥𝑖}, and b is a scalar value that 

determines the offset (bias) of the hyperplane. Expressing these as a linear 
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function 𝑓(𝑥), we can minimize the optimization problem that arises as in 

equations (9) - (11), where 𝜒 is the dataset and 𝑦𝑖  indicates the class that 𝑥𝑖 

belongs to. In the case that the points are not linearly separable (known as soft-

margin), we need a hinge loss function, and the minimization problem then 

changes to how it is represented in equation (12), where 𝜆 determines the 

margin size (Boser et al. 1992; Cortes and Vapnik 1995; Schölkopf et al. 2000): 

𝑤 ∙ 𝑥 − 𝑏 =     1                                                      (7)     

𝑤 ∙ 𝑥 − 𝑏 = −1                                                      (8)     

𝑓(𝑥) = (𝑤 ∙ 𝑥) + 𝑏,      𝑤, 𝑥 ∈  𝑅𝑁, 𝑏 ∈ 𝑅                          (9)     

min{|𝑓(𝑥)|: 𝑥 ∈ 𝜒} = 1,      where 𝜒 = {𝑥1, … , 𝑥𝑖}                       (10)     

(𝑥1, 𝑦1), … , (𝑥𝑖, 𝑦𝑖) ∈ 𝜒 × {±1}                                         (11)     

[
1

𝑛
∑ max (0,1 − 𝑦𝑖(𝑤 ∙ 𝑥 − 𝑏))𝑛

𝑖=1 ] + 𝜆‖𝑤‖2                         (12)     

If we are dealing with large datasets and/or sparse data, there is also the 

possibility of using a non-linear sub-gradient descent approach or a coordinate 

descent approach. These approaches can reduce training times depending on the 

implementation of the algorithm used, the number of features, and the number 

of instances used in the model (Shalev-Shwartz et al. 2010). However, neither of 

these approaches are used in our experiments as we do not have problems with 

training times. The calculation for a sub-gradient descent approach is as follows, 

where 𝑓 is a convex function of 𝑤⃗⃗  and 𝑏:  

𝑓(𝑤⃗⃗ , 𝑏) = [
1

𝑛
∑ max(0, 1 − 𝑦𝑖(𝑤𝑥𝑖 + 𝑏))] +𝑛

𝑖=1  𝜆‖𝑤‖2              (13)     

A coordinate descent approach can be appropriate if a large set of features are 

used in the training. Equation (14) shows the formula for the coordinate descent 

approach, where 𝑐𝑖 is the coefficent that is adjusted iteratively and projected 

onto the nearest vector that satisfies equation (15). The iterative process is 

repeated until close-to-optimal coefficients are found: (Hsieh et al. 2008)  

𝑓(𝑐1 …𝑐𝑛) = ∑ 𝑐𝑖
𝑛
𝑖=1 −

1

2
∑ ∑ 𝑦𝑖𝑐𝑖(𝑥𝑖𝑥𝑗)𝑦𝑗𝑐𝑗

𝑛
𝑗=1

𝑛
𝑖=1                    (14)     

The function is maximized and subject the following two restrictions for all 𝑖: 

∑ 𝑐𝑖𝑦𝑖 = 0, and   0 ≤ 𝑐𝑖 ≤ 
1

2𝑛𝜆
𝑛
𝑖=1                                      (15)     
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2.2.2.1.5. Artificial Neural Networks 

Artificial neural networks (ANN) can be split into the following groups: dynamic 

neural networks, static neural networks, memory networks, and a number of 

smaller groups (Gupta et al. 2004; Weston et al. 2014). The type of neural 

networks that we use are from the dynamic group. Out of these, we use multi-

level feedforward neural networks with back propagation (Hornik et. al. 1989). 

Recurrent neural networks (RNN) (Schuster and Paliwal 1997) is another of the 

well-known neural networks that has been used in, for example, handwriting 

recognition, speech recognition, and time series prediction. Long short-term 

memory (LSTM) is a form of RNN that more recently has shown promise also in 

text classifications (Hochreiter and Schmidhuber 1997). 

Feedforward neural networks are those where connections between neurons do 

not form directed cycles, which is the main difference to the RNNs that can 

process data in cycles. As the connections do not form circles, the information 

only flows in one direction: from input nodes to hidden nodes and finally to the 

output nodes. The networks can consist of one or many different layers of 

perceptrons. A perceptron is a function 𝑓(𝑥) that is used to decide whether input 

belongs to a specific class or not, and can mathematically be described as in 

equation (16), where 𝑤 is the weight, 𝑥 is the input value, and b is the bias. A 

perceptron’s output is binary, and it takes input in the form of vectors of 

numbers. In multi-layer perceptron networks (MLP), a back-propagation 

algorithm is used to recalibrate weights during training. This means that there is 

a weight update phase added to the network to help improve classification 

performance. Training a two-class classification with MLPs is usually done by 

minimizing a criterion 𝑄(𝑓𝜃(. ), . ), which usually is either mean square error 

criterion or cross-entropy criterion, over the training data as in equation (17) 

using gradient descent until reaching a local optimum. Where 𝜃 is the vector 

parameters (𝑤, 𝑏) and 𝑥𝑙 is the 𝑙𝑡ℎ example of a training set (𝑥𝑙,𝑦𝑙)𝑙=1..𝐿 with 

(𝑥𝑙,𝑦𝑙) ∈ ℝ𝑛 × {−1, 1}: (Collobert and Bengio 2004) 

𝑓(𝑥) = {
1  if  𝑤 ∙ 𝑥 + 𝑏 > 0
0  otherwise          

                                           (16)     

𝜃 ⟶
1

𝐿
∑ 𝑄(𝑓𝜃(𝑥𝑙), 𝑦𝑙)

𝐿
𝑙=1                                             (17)     

Each perceptron contains an activation function (usually a sigmoid) that decides 

the output of that neuron. The two general formulas to choose from in MLP 

activation functions are the following (Russell and Norvig 2002; Haykin and 

Simon 2004): 
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𝑓(𝑥) = tanh(𝑥)     and     𝑓(𝑥) = (1 + 𝑒−𝑥)−1                        (18)     

The first uses a hyperbolic tangent with an output from -1 to 1, and the second is 

a logistic function with an output that ranges from 0 to 1. In order to increase 

performance through back propagation, we need to measure and minimize the 

error 𝜖(𝑛) in equation (19). Changes in weight based on the error for the learning 

algorithm can then be found through a gradient descent algorithm (20), where 𝜂 

is step size, 𝑤𝑗𝑖 is the synaptic weight connecting neuron i to neuron j, and 𝑦𝑖  is 

the class (Haykin and Simon 2004): 

𝜀(𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)𝑗                                                  (19)     

∆𝑤𝑗𝑖(𝑛) =  −𝜂
𝜕ℇ(𝑛)

𝜕𝑣𝑗(𝑛)
𝑦𝑖(𝑛)                                         (20)     

 

2.2.2.1.6. Ensemble Classifications 

Ensemble classifications are statistical machine learning methods that combine 

several classification algorithms to increase the performance over single 

classifiers. Some common ensemble classifiers are bagging, boosting, and 

stacking. The Bayes optimal classifier has been shown to on average outperform 

all other ensemble classifiers (Hoeting et al. 1999), but is in practice seldom 

suitable due to computational requirements, and because the output of 

algorithms are generally a single class value, when the algorithm would need 

probabilities for all classes to function. 

The bagging algorithms are voting algorithms that give equal weights to 

classifiers. Boosting algorithms train algorithms in series where later algorithms 

try to reclassify instances that the previous algorithms failed to classify correctly. 

The stacking algorithm trains a classifier on the combined output of the other 

models.  

We will be using the majority voting algorithm that gives equal weight to all 

classification algorithms ensembled. Majority voting can be mathematically 

represented as in equation (21), where 𝑦𝑘(𝑥) is the classification of classifier 

number k and 𝑔(𝑦, 𝑐) in equation (22) is an indicator function: (Rokach 2010) 

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑎𝑟𝑔𝑐𝑖∈𝑑𝑜𝑚(𝑦)max (∑ 𝑔𝑘 (𝑦𝑘(𝑥), 𝑐𝑖))                        (21)     

𝑔(𝑦, 𝑐) = {
1, 𝑤ℎ𝑒𝑛 𝑦 = 𝑐
0, 𝑤ℎ𝑒𝑛 𝑦 ≠ 𝑐

                                            (22)     
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2.2.2.2. Fuzzy Logic and Evolutionary Computing 

Soft computing was introduced by Zadeh (1994) and is a field that has evolved 

and matured during the last twenty years. Soft computing consists of different 

machine learning algorithms, but also covers methods using fuzzy logic and 

evolutionary computation.  The aim of soft computing is to be able to model 

complex and dynamic situations such as, for example, human behavior or 

adaptive systems (Björk 2009). Soft computing models have a wide space that 

they can model. Soft computing models approaches problems by adding a scale 

of preciseness. Other methods in classifications and clustering normally say that 

instances belong to one class or the other. Fuzzy methods, on the other hand, use 

degree of belonging, which means that instead of saying an instance belongs to 

class A or class B, they determine a degree of belonging to all available classes.  

Each instance that is being clustered or classified is given a value between zero 

and one representing belonging to each cluster or class, and is normally said to 

belong to the one that has the highest degree of belonging (Klir and Yuan 1995). 

Evolutionary computation is another type of method that comes from soft 

computing and can be used to build models and, for example, test classifications. 

Conceptually, evolutionary algorithms can be seen as the Darwinian process of 

evolution where better performing algorithms continue evolving and worse 

algorithms are discarded. However, both technically and in practice, the process 

is better described as following a trial and error approach (Eiben and Smith 

2003). Neither fuzzy methods nor evolutionary algorithms have been used in the 

scope of our research.  

Genetic algorithms are the most widely used type of algorithm in evolutionary 

computing. They work by defining a fitness function for the problem that 

compares performance between different simulations. After each simulation, the 

worst performing algorithms are discarded. From the remaining algorithms, new 

ones are then created through a process called crossover, where two algorithms 

are combined into one new algorithm that again is sent for evaluation. The 

process is then repeated until a best performing algorithm is found. 

 

2.2.2.3. Self-Organizing Maps 

Self-organizing maps (SOM) are unsupervised algorithms for clustering different 

types of data (Kohonen and Somervuo 1998). Unsupervised algorithms are suited 

for grouping of data into clusters that are not predetermined. This means that 

SOMs are not the best choice in situations where we would be interested in 
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labelling data into predetermined categories. This makes SOMs inappropriate for 

the supervised classification tasks researched in this thesis. 

 

2.2.2.4. Network Measures 

Network measures are quantitative methods for measuring and analyzing nodes 

and edges in networks. Nodes are also known as vertices and edges are also 

known as links. There are several different types of network measures that are 

applicable in different situations, depending on the network and what we are 

interested in analyzing. In some situations, it can be appropriate to find the 

shortest path between two nodes. In other situations, it could be appropriate to 

search for the longest path. In many situations, such as in our financial news 

research, we are interested in measuring how different nodes are connected to 

each other, as well as how information propagates through the different links in 

the networks at the same time. In these situations, the shortest path and longest 

path algorithms are not suitable.  

Borgatti (2005) showed that not all types of centrality measures are suitable for 

all types of networks. His work has also been further extended to test more 

measures (Amrit and ter Maat 2016). There are several different algorithms that 

can be used to measure information flow between nodes, the ones that we 

examine are degree centrality, closeness centrality, betweenness centrality, and 

eigenvector centrality. Next, we will review these four different types of network 

measures in more detail. 

 

2.2.2.4.1. Degree Centrality 

Degree centrality is simply the number of links a node in the network has. In 

directed networks, there are two different degree measures for each node: in-

degree is the edges coming in to a node and out-degree is the edges going out 

from a node. This is the simplest centrality measure. In our research, degree 

centrality would simply provide us an absolute order of media attention, which 

we are not especially interested in. Degree centrality for a node in a network is 

mathematically represented as in (23), where 𝑣 is the node in question and 𝐶𝐷(𝑣) 

is the degree centrality value (Friedkin 1991): 

𝐶𝐷(𝑣) = deg (𝑣)                                                (23)     
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2.2.2.4.2. Eigenvector Centrality 

Eigenvector centrality measures influence of nodes in a network and is a more 

complex version of degree centrality. The links between nodes, also known as 

edges, is what Eigen centrality measures. Edges to higher scoring nodes are given 

greater influence than edges to lower scoring nodes. The relative eigenvector 

value for a node can be calculated using equation (24), for a graph 𝐺 ≔ (𝑉, 𝐸) 

with |𝑉| vertices and the adjacency matrix 𝐴 = (𝑎𝑣,𝑡), where 𝑀(𝑣) is the 

neighbors of node 𝑣 and 𝜆 is a constant: (Bonacich 2007) 

𝑥𝑣 =
1

𝜆
∑ 𝑥𝑡𝑡∈𝑀(𝑣)                                                 (24)     

PageRank is related to eigenvector centrality, but has an added scaling factor. 

PageRank is the original algorithm behind Googles search engine and is 

calculated as in (25), where i and j are nodes in the network and 𝐿(𝑗) = ∑ 𝑎𝑗𝑖𝑗  is 

the number of neighbours to the node 𝑗: (Page et al. 1999) 

𝑥𝑖 = ∑ 𝑎𝑗𝑖
𝑥𝑗

𝐿(𝑗)
+

1−𝛼

𝑁𝑗                                              (25)     

 

2.2.2.4.3. Closeness Centrality 

Closeness centrality measures the distance between nodes. Between all nodes in 

a network there is a shortest path. Closeness centrality is measured as the 

average shortest path from one node to all other nodes in that network. The 

assumption that closeness centrality follows is that information is transferred 

along only the shortest path (Brandes and Fleischer 2005), which also 

disqualifies closeness centrality from being used in our research, as we are 

interested in measuring information spreading in all directions at the same time. 

Mathematically, we can represent closeness centrality for a node as in equation 

(26), where 𝑑(𝑗, 𝑖) is the distance between two nodes 𝑗 and 𝑖 in the network 

(Brandes and Fleischer 2005): 

𝐶(𝑖) =  
1

∑ 𝑑(𝑗,𝑖)𝑗
                                                    (26)     

Information centrality is another closeness measure that was defined by 

(Stephenson and Zelen 1989). Information centrality calculates the harmonic 

mean of edges instead of the average shortest path. This allows information to 

flow through each node in a network simultaneously. Information centrality is 

thus better suited to model flow through multiple paths throughout a network 

than the standard closeness measure. Information centrality for a node in a 
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network is calculated as in equation (27), where the pseudo adjacency matrix 𝐴 

is defined as in (28), 𝑆(𝑖) is the strength of node i, w is the edge weight, and B is 

the matrix. We will be going more into detail into the method in section 4.3.5. 

(Stephenson and Zelen 1989): 

𝐶(𝑖) =
𝑛

𝑛𝐴𝑖𝑖+∑ 𝐴𝑗𝑗−2∑ 𝐴𝑖𝑗
𝑛
𝑗=1

𝑛
𝑗=1

                                         (27)     

𝐴 =  𝐵−1, 𝐵𝑖𝑗 = {
1 + 𝑆(𝑖),   𝑖𝑓 𝑖 = 𝑗
1 − 𝑤𝑖𝑗,           else

                                (28)     

 

2.2.2.4.4. Betweenness Centrality 

Betweenness centrality is a measure that quantifies the number of times a node 

is found among the shortest path between other nodes. Betweenness has been 

used in studying human communication in social networks. Nodes that often are 

found in the shortest path between other nodes are given a higher betweenness 

value. Betweenness centrality has the same limitation that closeness centrality 

has, it does not model multiple paths simultaneously (Brandes and Fleischer 

2005). The formula for calculating betweenness centrality for a node is as in 

equation (29), where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 to 

node 𝑡 and 𝜎𝑠𝑡(𝑣) is the number of paths that pass through the node 𝑣 (Brandes 

and Fleischer 2005):  

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡∈𝑉                                               (29)     

 

2.2.2.4.5. RiskRank 

RiskRank is a network measure that can measure risks. The model has some 

similarities to information centrality in the sense that it also accounts for 

multiple flows through a network. The calculation of the RiskRank measure 𝑅𝑅 

is a combination of the Choquet integral and the Shapley index 𝑣(𝑐𝑖) by Tarashev 

et al. (2010), and is defined in equation (30). It has a limitation, which is that 

interlinkages 𝐼(𝑐𝑖 , 𝑐𝑗) between nodes are limited to pairs of nodes. 𝑣(𝑐)𝑥𝑐  is the 

individual node risk. We will be using RiskRank in our last experiment and we 

will discuss the method in more detail in section 3.3.2.1 (Mezei and Sarlin 2017; 

Tarashev et al. 2010) 
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𝑅𝑅(𝑥1, … , 𝑥𝑛, 𝑥𝑐) =                                                             

𝑣(𝑐)𝑥𝑐 + ∑ (𝑣(𝑐𝑖) −
1

2
 ∑ 𝐼(𝑐𝑖, 𝑐𝑗

𝑗≠𝑖
))𝑥𝑖

𝑛

𝑖=1
                   (30)     

+ ∑ ∑ 𝐼(𝑐𝑖 , 𝑐𝑗)∏(𝑥𝑖, 𝑥𝑗)
𝑛
𝑗≠𝑖

𝑛
𝑖   

 

2.2.2.5. Summary of Methods 

In our automatic classification research, we begin by comparing different pre-

processing approaches using the NB machine learning algorithm (section 

2.2.2.1.1), mainly because the algorithm is fast for testing and training, and 

because we are interested in defining a baseline performance that can be used to 

compare the relative performance between approaches. By using NB, we save 

some time on training models and have the possibility of testing many 

approaches before we start optimizing the classifications. We then extend our 

methods and compare the performance between the individual classification 

algorithms DT, SVM, ANN, and k-NN (sections 2.2.2.1.2 – 2.2.2.1.5). The last 

mathematical method we work with in classifications is the majority voting 

ensemble (section 2.2.2.1.6). While ensemble classifications increase the 

computational requirements both for training and prediction, they can in some 

cases increase performance. 

The human cognitive abilities are limited, and there is a limit to the amount of 

information that we can process without getting overloaded and losing focus. 

Centrality measures can be used as a means of reducing the noise by pointing us 

to the most important nodes in networks. In our financial news research, we start 

by using information centrality (section 2.2.2.4.3) to analyze the networks 

quantitatively and qualitatively, as it allows information to flow through multiple 

paths. In the last part of the financial research, we change to using RiskRank 

(section 2.2.2.4.5) as our evaluation approach, which allows us to statistically 

compare different risk thresholds.  

Table 2 shows an overview of the mathematical methods that were used in the 

different publications.  
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Paper Method used Result 

1 Key word extraction 

based on TF-IDF 

weighting, NER 

No quantitative data 

output, evaluation done 

through survey 

2 Machine learning 

algorithm: naïve Bayes  

The classification 

models offer improved 

performance over the 

baseline 

3 Machine learning 

algorithms: naïve Bayes 

The classification model 

is compared to previous 

models and shows 

improvements 

4 Information centrality 

measure used to rank 

companies 

Quantitative measures 

in the form of ranked 

information centrality 

news flow, no baseline 

comparison available 

5 Individual and 

aggregated risk 

measures through 

RiskRank 

Individual and 

aggregated risks 

evaluated against 

benchmarks  

6 Machine learning 

algorithms: SVM, NN, 

DT, k-NN, ensemble 

voting 

The classification 

models are compared to 

the previous results and 

show improvements 

Table 2. Mathematical methods used in the different publications. 
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2.3. Research Context and Analytical Methods 

The research in this thesis is limited to two areas of analytics: automatic 

classifications and financial analytics. The research is based on analyzing and 

processing text and structural content. In this thesis, feature extraction is done 

based on text content and structural content. The dataset used in text 

classifications was provided by a security industry partner and is labelled into 

20 categories, where one web page is labelled as belonging to only one category, 

and the total number of labelled pages is roughly 79,000. The focus of the 

research in this area is constructing methods for classifications of violent and 

hateful text content. 

For the financial analytics part of the research, a dataset of roughly 18,300 

articles were gathered and labelled in two distinct ways. First, the author of the 

article labels the article as either short or long. The label represents the author’s 

expectations for the targeted company, index, or commodity. A short label could 

suggest that the author of the article has a negative sentiment toward the 

discussed components. A long label could suggest that the author has a positive 

sentiment toward to the components. Second, the articles are split and labelled 

into 7 subsectors. These sectors are technology, health care, consumer related, 

transportation, finance, energy, and others. In our research, we are mainly 

interested in examining different network effects that can be found and extracted 

from news. 

 

2.4. The Research Questions 

Four research questions are answered in this thesis. The point is to first broadly 

offer generalizable answers, and then narrow the focus with each successive 

research question until we have an understanding of the contributions. The first 

two research questions are general questions and are answered through both 

automation approaches. The first one was chosen to show that there is more than 

one approach in analytics to automating processing tasks. The second question 

was chosen to show how sentiment can be used in different ways to improve 

performance, to gain insights, and to show the similarities between the two 

automation approaches. 

The third research question is specifically aimed at the first automation 

approach to provide in-depth knowledge of the methods used. The question was 

chosen to show that the state-of-the-art classification approaches can be used on 

hate and violence texts and to show how our methods go beyond the state of the 
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art. The fourth question is specifically aimed at the second automation approach, 

and aims to provide in-depth knowledge of the methods used. The question was 

chosen because the second automation approach is exploratory. By answering 

the fourth research question, we can show that the approach is valid. Without 

answering the fourth question, the approach could be questioned as it has not 

been done before. 

The research questions are the following: 

1. How can we use analytics to automate text processing tasks? 

2. In which ways can sentiment analysis be useful when automating 

processing tasks? 

3. What can be done to improve unigram classification performance for 

hate and violence texts? 

4. Can risks extracted from sentiment networks predict company stock 

price movements? 
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3. Analytics 

We have so far reviewed the state of the art in the relevant fields, the 

mathematical models used in the research, and the research questions that will 

be answered in the thesis. We now move on to define the different parts of 

analytics, how these parts are used in our research, how different types of 

methods can be useful to Neil and Jenna, and last in the chapter, we will go into 

more detail about the methods used in our research.  

 

3.1. Overview 

Analytics is a wide field that contains statistical analysis, data handling, 

visualization of data, exploratory modelling, predictive modelling based on 

historical data, recommendations based on different types optimizations, 

simulations, and more (Kohavi et al. 2002). Not only is analytics a wide field with 

many different areas of research, within each subfield there are also different 

processing methods used for different types of data. The methods used need to 

be modified to fit the right type of data: numerical data, textual data, image data, 

structural data, video data, and audio data to name a few. Furthermore, when the 

datasets that are analyzed increase in size, velocity, and/or complexity, we also 

need to consider the big data dimensions that were discussed earlier, which in 

turn can require that we use yet another set of analytical methods (Russom et al. 

2011). 

 

3.1.1. Descriptive Analytics 

Descriptive analytics is the first of three major branches of analytics. Descriptive 

analytics comprises a set of methods focusing on analyzing and visualizing data. 

Most data gathered today are of such proportion and/or variety that they are 

difficult and sometimes even impossible for a human to understand the data 

without support from algorithms and visualization. Statistical methods and 

algorithms that help us understand, organize, and handle data are labelled as 

descriptive analytics (Evans and Lindner 2012). Some examples of visualization 

are histograms, diagrams, and graphs. Today, many companies have descriptive 

analytics capabilities, which help them make sense of the data they already have 

or already are creating. Descriptive analytics is quite common and companies 

that provide these types of services number in the thousands. Google analytics, 
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IMB Watson Analytics, and Microsoft Cortana Intelligence Suit are example 

products from some of the largest providers.  

Generally, when taking analytics into use, the first part is to try and understand 

the available data through visualization and statistical analysis. In this thesis, 

both the research in classifications and financial news analytics falls partly under 

the descriptive analytics, mainly because we are exploring the available data 

using visualization techniques (graphs, plots, figures), to uncover new 

information and find trends. Descriptive methods can be useful for both Neil and 

Jenna as a means of understanding trends and obtaining an overview of the data. 

 

3.1.2. Predictive Analytics 

Predictive analytics is the second major branch of analytics. Predictive methods 

create models from historical data, also known as training data, and apply these 

models on new data to predict labels or behavior of new data. In other words, 

predictive analytics uses models built on historical data to predict how new data 

will behave. (Siegel 2013) 

Once we understand the data, we can use different predictive models or 

algorithms to process the data into meaningful information. This can include 

building regression models, clustering data, creating classification models, or 

building models for optimization or simulation (Rasmussen and Williams 2006). 

There are many algorithms that can be used in predictive analytics. The machine 

learning algorithms naïve Bayes, artificial neural networks, support vector 

machines, decision trees, and 𝑘-nearest neighbors were already briefly 

explained in section 2.2, and are part of the set of algorithms that are widely used 

in predictive analytics. Big-data-analytics methods, such as extreme learning 

machines (ELM), also fall under the predictive analytics branch (Huang et al. 

2006).  

The automatic classifications work presented in this thesis is part of the 

predictive analytics domain. We use historical textual data to train machine 

learning algorithms and test their predictive performance on sub sets of data that 

were not included in the learning process. We first use the training set to 

evaluate the performance of the classifications in what is known as cross-

validation, then we test the performance using balanced sets (Browne 2000). 

When we have all our models built, we further test the best performing models 

using imbalanced test sets to see how the performance holds up. For Neil, 

predictive models can help reduce manual workload in web site classifications. 
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For Jenna, and in the finance industry in general, predictive models have higher 

uncertainty due to ever changing economic conditions, and can be used to help 

with investment decisions.  

As a guiding rule, a model in automatic text classifications needs an F-measure 

of about 0.9 to be considered successful. The 0.9 F-measure performance was 

decided upon as an acceptable level after consulting our security industry 

partner for performance requirements. Predicting stock price movements, on 

the other hand, can be successful already at a hit rate of 0.54 (Hellström 1998).  

 

3.1.3. Prescriptive Analytics 

Prescriptive analytics is the third major branch of analytics and builds partly on 

the previous two parts of analytics. Prescriptive analytics focuses on choosing 

the best possible future outcome based on a set of predefined criteria. The 

predefined criteria are extracted and formatted through descriptive analytics. 

Based on the extracted data we can determine different outcomes. Prescriptive 

systems chooses the best possible outcome, often based on optimizations or 

simulations built on top of predictive models (Bell and Raiffa 1988).  

Recommender systems and decision support systems are examples of 

prescriptive systems. These kinds of systems suggest the action to take based on 

available information. For example, companies can use such systems to help 

determine if an investment is sound. The outcome of research presented in the 

thesis, both in classifications and financial news analytics, can be used as the 

basis for prescriptive analytics systems (Haas et al. 2011). Haas et al. (2011) 

argue that people developing analytics systems should strive to create 

prescriptive systems to take full advantage of the methods. 

For Neil and Jenna, prescriptive methods are the easiest type of system to use as 

at that level the methods are sophisticated enough to generate recommendations 

without themselves having to analyze the data further. However, from a model 

development perspective, these methods take the longest to create as they often 

build upon the previous branches of analytics.  

 

3.1.4. Advanced Analytics 

The work in this thesis falls, per definition, under advanced analytics. The 

definition that Gartner provides is the following: “Autonomous or semi-

autonomous examination of data or content using sophisticated techniques and 
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tools, typically beyond those of traditional business intelligence, to discover 

deeper insights, make predictions, or generate recommendations. Advanced 

analytics techniques include methods such as data and text mining, machine 

learning, pattern matching, forecasting, visualization, semantic analysis, 

sentiment analysis, network and cluster analysis, multivariate statistics, graph 

analysis, simulation, complex event processing, neural networks.” Both our text 

classification research and the financial news research are combinations of the 

different mentioned methods, which is why the research in this thesis is 

considered advanced analytics. ("Advanced Analytics" 2017) 

The optimal solution for Neil would be an autonomous, predictive classification 

system that has high precision so that the predictions can be trusted without any 

additional work required, while at the same time maintaining a high coverage, 

which here means maintaining a high F-measure. Essentially, being able to 

conclude “if the classification system says the web page is violent, then it is 

violent.” The optimal solution for Jenna would be tools based on methods that 

have been shown to have statistically predictive power in some regard, for 

instance, in predicting stock movements. These tools would become optimal 

when they contain prescriptive functionality that optimizes the outcome. In the 

case of stock predictions, a tool would be optimal when it can tell Jenna the 

following: “investing in these stocks at this time will offer us the highest return 

on investment of the known alternatives.” 

 

3.2. Text Classifications 

Knowing the type of data we will be working on is also important, because 

different feature-extraction methods are used on different types of data. For 

example, an algorithm for classification of text content will have a different 

approach than an image classification algorithm (Wilcock 2009; Javidi 2002). 

The work presented in this thesis is limited to methods in text analytics and 

numerical methods, which means that the models and methods presented are 

suitable for text content and structural content.  

 

3.2.1. Automatic Classifications  

Classification, also known as categorization, is the process of assigning 

predefined labels to data. One classic example of text classification is dividing 

documents by language, region, and/or subject (Jajuga et al. 2012). Classification 

for a human is considered an easy task, it is an ability that we have been 
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practicing our entire lives. However, it is a complicated task for a computer to 

perform. 

In order to perform automatic classifications, whether we have text data or some 

other form of data, we need to first create classification models. These models 

can then be used to perform classifications of unlabeled data. Classification of 

unlabeled data falls under predictive analytics and is often referred to as 

predicting classes. The classifiers covered in this thesis are based on the machine 

learning algorithms NB, DT, SVM, ANN, and k-NN, the mathematical inner 

workings of which were covered in section 2.2.2.1. The different machine 

learning algorithms perform differently on different types of data and datasets. 

Therefore, it is common in research to compare performance between different 

types of machine learning algorithms. This is also why the results of several 

algorithms will be compared in this thesis. 

To create classification models, we first need to extract features from the training 

sets. The features can at the start be textual or numerical. However, most 

machine learning approaches can only process numerical values. This means 

that the feature sets need to be converted into numbers to be usable in 

comparisons between the algorithms.  

There are many different algorithms used to extract features in text 

classifications. Among the most widely used text-feature-extraction methods, are 

approaches such as TF-IDF weighting (Luhn 1958), cosine similarity analysis 

(Markov and Larose 2007), topic modelling (Papadimitriou et al. 1998), and 

sentiment analysis (Pang and Lee 2008). We will be going through all in greater 

detail in this chapter, except for topic modelling. 

When performing topic similarity analysis, there are several different 

approaches that can be used. The vector space model that cosine similarity uses 

is simply one of the available options. Some other alternatives include using 

Wikipedia knowledge as a way of enriching available text data and generate 

features (Gabrilovich and Markovitch 2006) and corpus-based semantic 

similarity using SVD (Landauer et al. 1998).  

Once we have extracted features for the labelled datasets, we feed these features 

into models that are based on the different machine learning algorithms. The 

algorithms then follow their respective approaches to generate a model for the 

input data. As our research does not include improving the machine learning 

algorithms themselves, there is no gain in re-implementing the machine learning 

algorithms. Because of that, all classifications and predictions in this thesis are 



42 

 

done using the free data science platform Rapid Miner (“Data Science Platform” 

2016). 

Once we have built models using the training data, we can use the classifiers on 

labelled or unlabeled data. To be able to evaluate a classifiers performance, we 

need to have labelled data that was not part of the training input data. This means 

that we need to split the data we work on into two parts: an in-sample part and 

an out of sample part. Henceforth, the two parts will be referred to as the training 

set and the testing set. Furthermore, to make the results more robust and to 

ascertain we are not generating unstable models, we use tenfold stratified cross-

validation when developing the models. Cross-validation splits between five and 

ten have been shown to be sufficient in averaging variance (Arlot and Celisse 

2010). This means that we split data in ten parts during training and use one 

tenth of the data as a validation set at the time. This is then repeated for each of 

the ten runs so that each instance appears once in the testing set and nine times 

in the training set. The cross-validated result is then calculated as the average 

performance for each of the ten classification runs. To test the performance once 

we have built the models, we then do further tests first on balanced data and 

later on imbalanced data. 

 

3.2.1.1. TF-IDF and Cosine Similarity 

TF-IDF and cosine similarity are text-feature-extraction algorithms. TF-IDF 

weighting means multiplying term frequency (TF) in a text with inverse 

document frequency (IDF). First, we count the number of the occurrences of each 

term in the document to generate the term frequency 𝑡𝑓𝑡,𝑑 , as shown in equation  

(31), where 𝑓𝑡,𝑑 is the term count (Luhn 1958). Second, dividing the total number 

of documents available by the number of documents that the term is found in, 

and calculating the logarithm of the result provides us the inverse document 

frequency  𝑖𝑑𝑓𝑡, as shown in equation (32). The formula for TF-IDF can then be 

calculated as the multiplication in equation (33): (Salton and Buckley 1988) 

𝑡𝑓𝑡,𝑑 =
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′∈𝑑
                                                (31)     

𝑖𝑑𝑓𝑡 = log (
𝑁

1 + 𝑛𝑡
)                                             (32)     

𝑡𝑓𝑖𝑑𝑓𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 ∗ 𝑖𝑑𝑓𝑡                                              (33)     
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Cosine similarity is a way of calculating the statistical similarity between two 

vectors, generally measured in a positive value space between zero and one 

(Markov and Larose 2007). A value of 0 means the vectors are at a 90-degree 

angle. When processing text, a value of 0 means that the two texts that are 

compared are not at all similar. A cosine similarity value of one means that the 

two vectors that are compared have an angle of zero. If we are talking about 

comparing texts, then the compared texts contain all the same words at an angle 

of zero, however, the words do not have to be in the same order in the text. We 

use this method to calculate the similarity between a single text and all texts in a 

training category, to extract features that are useful for text classification. After 

converting both the text that is being classified into a vector using equation (33) 

and converting the category texts into a vector for each category using equation 

(33), we calculate the similarity between the categories and the single text that 

we want to predict. The mathematical formula for calculating cosine similarity is 

defined in (34), where 𝑑𝑖  is the document vector for web page 𝑖, and 𝑐𝑗 is the 

category vector 𝑗 (Markov and Larose 2007):  

𝑠𝑖𝑚(𝑑𝑖 , 𝑐𝑗) =
𝑑𝑖∙𝑐𝑗

‖𝑑𝑖‖‖𝑐𝑗‖
                                               (34)     

 

3.2.1.2. Word-Based Analysis vs. N-gram-Based Analysis 

When we are performing text analysis with TF-IDF and calculate cosine 

similarity, we need to decide whether we want to be using a word-based 

approach or an n-gram approach that considers word order. While n-gram 

approaches can increase classification performance, we also need to consider 

that extracting n-grams can increase computation time manifold due to the 

increase in calculation complexity. 

A word-based approach, also known as a unigram approach, means that we 

extract a list of single words. The approach described in 3.2.1.1 was such an 

approach. This means that when calculating TF-IDF values, we count the term 

frequency of each word individually, and when calculating cosine similarity, we 

compare a vector of unigrams from the web page to a collection of unigrams from 

each category, so that we have one cosine similarity feature for each category. 

In an n-gram approach, we extract features from n-grams, which means we take 

word combinations of 𝑛 number of words as they appear in the texts. The higher 

numbered n-grams that we extract, the stricter the word order in the text 

becomes. For example, if we use two-gram feature extraction we extract words 
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in pairs, which means that when calculating cosine similarity, the text order will 

be important on a pair-wise level. Texts with the same words in different order 

will then be dissimilar and does not containing the same n-grams. Here should 

also be noted that we use a stop-word list where we remove n-grams that start 

or end with any of the words in the stop word list, the stop words are 

prepositions and other common words. 

The formula used in cosine similarity calculations does not change between 

unigram and n-gram models. The difference between unigram and n-gram 

models is instead during the term frequency 𝑡𝑓𝑡,𝑑  extraction and the inverse 

document frequency 𝑖𝑑𝑓𝑡 extraction. For unigrams, we considered only single 

words 𝑡 =  𝑊1. For n-grams, we take into account 𝑛 subsequent words, 

expressed as t in equation (35), where 𝑛 is the order of n-gram we are extracting, 

𝑊 is the words in the text, and 𝑖 is the position of the starting term in the text: 

(Cavnar et al. 1994) 

                               𝑡 =  𝑡𝑖(𝑊𝑖 …𝑊𝑖+𝑛)                                                   (35)     

 

3.2.2. Sentiment Analysis 

Sentiment analysis, also known as opinion mining, is the process of extracting 

sentiment from a written text (Pang and Lee 2008). Sentiment can be expressed 

in different ways. Normally, sentiment is expressed as either 

negative/neutral/positive or in a numerical range. In our financial analytics 

research, we have sentiment defined as the author’s own self-reported 

expectations of a company’s performance, either positive or negative. In our 

automatic classification research, we use and extend the model presented by 

Thelwall et al. (2010), where sentiment is defined by a numerical range from -5 

to 5, where -5 means a strongly negative word, and +5 is a highly positive word.  

In sentiment analysis we try to find the general opinion in a text, for example, in 

a paragraph or a sentence. When writing a text, we generally convey a mood or 

opinion. Sentiment analysis is the process of trying to identify and quantify that 

mood. While many texts contain a general mood or opinion, there are specific 

areas such as financial news that can contain information that is positive or 

negative towards a company, but does not necessary convey a general tone in 

the text. This means that sentences and words can have different sentiment 

depending on the context (Loughran and McDonald 2011).  
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3.2.2.1. Supervised vs. Unsupervised vs. Semi-supervised 

Sentiment analysis is further divided into three different types: supervised 

sentiment analysis, unsupervised sentiment analysis, and semi-supervised 

sentiment analysis. 

Supervised models means that we have a labelled dataset, in which elements 

have common attributes (Mohri, Rostamizadeh, and Talwalkar 2012). In the case 

of sentiment analysis, a supervised model would need labelled data where a label 

represents a group of positive, negative, or neutral texts or words. To be able to 

create a supervised model, we also need a machine learning algorithm to train 

on the data. An example of supervised sentiment analysis is found in Rapid Miner 

("Data Science Platform" 2016). Another example of supervised sentiment model 

was developed by Socher et al. (2013). 

Unsupervised models, on the other hand, do not need a dataset for training 

purposes, but still needs work when set up or created. Once unsupervised 

models are created they can be used on any text without reconfiguration. This is 

because most unsupervised models use predefined dictionaries of negative and 

positive words. However, note that someone must create these dictionaries. 

They can also contain other more advanced features, such as negating words and 

boosting words that change sentiment values of other words. The SentiStrength 

model that we use has ten components for determining the sentiment value of a 

text on a sentence, paragraph, and document level. The ten components are the 

following: (Thelwall et al. 2011) 

- A sentiment word list containing polarity that is made by human experts 

- A spelling correction algorithm 

- A list of booster words that strengthen or weaken sentiment of words 

- A list of idioms that overrides sentiment in common English phrases 

- A list of negating words that invert sentiment 

- Repeated letters in words increase sentiment value for the word by 1 

- A list of emoticons with polarities is used to convert emoticons to 

sentiment 

- Exclamation marks give a sentence a minimum sentiment of 2 unless 

negative 

- Repeated punctuation boosts the strength of preceding sentiment words 

by 1 

- Negative sentiment is ignored in questions 

Semi-supervised sentiment analysis is the third type of model which combine the 

use of unsupervised models with the structural use of supervised models (Zhu 
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and Goldberg 2009). Generally, semi-supervised models use a small set of 

labelled data and a large set of unlabeled data. Studies by Goldberg and Zhu 

(2006) and Sindhwani and Melville (2008) are examples of research in semi-

supervised models for sentiment analysis are. 

 

3.3. Financial News Analytics 

News analytics can be interpreted as the process of extracting and processing 

relevant data from any news source. Part of the process is trying to uncover new 

relevant information from collections of news that previously were unavailable. 

Network analytics, also known as social network data analytics (Aggarwal 2011), 

can be seen as the process of extracting and processing links between different 

nodes in a network. A node in a network can be anything measurable. Nodes can 

be human beings posting about their lives on Facebook, different banking 

entities communicating with each other through financial systems, or satellites 

orbiting earth communicating with each other. Links between different nodes in 

networks are representations of how the nodes are related to each other. Two 

banks can, for instance, be connected by transactions sent from customers. 

Researchers and companies have through network analytics been able to 

develop new powerful products. An example of such a product is Googles 

PageRank (Page et al. 1999) that was the basis for Googles search business. 

Combining those two areas of analytics (news and networks) brings us the field 

of financial news analytics. Our focus in this research field is different types of 

networks that appear in news, and automatically processing news articles. 

 

3.3.1. Interconnectedness and Co-occurrence 

Relationships between entities do not exist in isolation (T. Ritter 2000). Take 

companies, for example. One of the first types of relationships that come to mind 

is business relations, such as relationships to suppliers and customers. However, 

a relationship can be anything that link entities together. If we study market 

movements, we can see that stock prices of competitors and sectors move 

together. If one company reports a positive quarterly result, then we can expect 

that the company’s direct competitors also are affected by the reported result 

somehow. This indirect link between these companies can be interpreted as a 

relationship. This type of effect where changes to one entity affects other entities 
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is a type of economic interconnectedness and the spread of the effects, in our 

case the spread of news, can be calculated through different network measures. 

There are several ways that we can represent economic networks. The type of 

network that we have been researching is known as co-occurrence network 

(Veling and Van Der Weerd 1999). In these types of networks, we first define a 

type of entity that we try to identify. We then search for all entities of that type 

in a collection of data and register the co-occurring entities as networks. To 

explain the concept in more practical terms, let us consider that the entities we 

will be searching for are companies in the form of company names and company 

tickers (e.g. Apple Inc. and AAPL), and the data that we are searching is financial 

news articles. The co-occurrences that we identify become representations of 

which companies are mentioned together in financial news (Veling and Van Der 

Weerd 1999). This type of co-occurrence relation R, in a text t, can be defined as 

the number of company matches 𝑀 ⊂ 𝑁. The relation can be described as in 

equation (36), where ∧ is the exterior product: (Rönnqvist and Sarlin 2015) 

    𝑅𝑡 = {𝑟|𝑟 ∈ 𝑀𝑡 × 𝑀𝑡  ∧  𝑟𝑖 < 𝑟2}                                  (36)     

If we extract the co-occurrence relations for all articles in our collection over a 

given period of time, and combine these co-occurrences into a matrix formation, 

we develop a structure known as a co-occurrence matrix (Leydesdorff and 

Vaughan 2006). The information contained in such a structure represents how 

many times each entity was mentioned together with the other entities in the 

matrix. Co-occurrence matrices can be interpreted and visualized as networks. 

By mapping entities that are co-occurring, we define a network structure that 

has the potential of uncovering information that was previously unknown.  

If we continue with the example of companies co-occurring in articles, and create 

networks from these co-occurrences, we could find indirect links between 

companies that we previously thought were unrelated. This could happen, for 

example, if a company A and a company B are not directly co-occurring, but both 

companies are mentioned in combination with a company C. Company C could, 

for example, be a supplier or a competitor to both company A and B. Extracting 

relationships could be valuable in many parts of economics, especially in 

situations where network effects apply. Risk analysis and/or identifying 

undervalued or overvalued assets are two of the possible areas that could benefit 

from uncovering such information. For instance, mapping relationships between 

banks has been used in risk analysis to predict crises (Rönnqvist and Sarlin 

2014), and in the next section we will cover a way of identifying company 
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sentiment risks through relationships in texts. Risks that we later show can 

predict when company stock prices are at increased risk of falling. 

With the rise of social networks, researchers identified a need to further explore 

network theory and measuring different nodes in networks. One of the goals 

many researchers have had is to try and identify which nodes are the most 

central in a network, depending on either connections or information that flow 

through the connections (Borgatti 2005). The different mathematical centrality 

measures that are of relevance were already discussed in section 2.2.2. Out of 

these we will start by using information centrality in our financial news research. 

 

3.3.2. Quantitative Risks 

Different types of risks have for decades been part of that which businesses, 

institutions, and governments need to plan for and prepare for. Failing to identify 

a risk can in the worst case for a business mean bankruptcy and/or accidents.  

Much of the quantitative risk research has been well documented (Haimes 2015; 

McNeil, Frey, and Embrechts 2015). The risk research that has gained popularity 

recently is research into systemic risks such as early warning models, cyclical 

risks research, and cross-sectional risk research. Many of these have come as a 

response to the regulation created after the great recession of 2008-2009 (Bisias 

et al. 2012). The motivation behind much of the research in this field is that the 

last crisis could have been prevented and that similar situations should not 

happen again.  

Cross-sectional systemic risk and cyclical risks are the two distinct tracks along 

which systemic risk research develops (Borio 2011). Cross-sectional research 

analyzes collections of data and further examines specific points in time. Cyclical 

risks are recurring risks that stem from business cycles, also known as boom-

and-bust cycles. The research in early-warning models has generally been done 

through combining different data sources into models. These models then 

produce probabilistic output (Scheffer et al. 2009). The output of such models 

can, for example, be some form of crisis probability indicator (Bussiere and 

Fratzscher 2006). A large part of the cyclical systemic risk studies that are 

conducted consists of network effects and how risks spread through different 

systems (Cabrales et al. 2014). 
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3.3.2.1. RiskRank 

The two ways of quantitatively measuring risks (cross-sectional and cyclical 

risk) have individually been extensively studied. However, different ways of 

combining these tracks have not been widely studied. To be able to combine 

individual-entity risks in a network, with network-wide risk, Mezei and Sarlin 

(2017) introduced a model called RiskRank. In our risk research, we will be 

extending the use of RiskRank to components of the financial news networks that 

were discussed in the previous section. We use sentiment in the networks to 

quantify the individual, direct, and indirect links to determine whether risks can 

be measured based on news sentiment. A previous study into the effects of news 

sentiment on company stock prices has shown that negative sentiment affects 

volatility more than positive sentiment (Ho et al. 2013). 

RiskRank measures both cross-sectional systemic risk and cyclical risks, and 

outputs a combined result. The main goal of the model is to provide a measure 

of systemic risk, and at the same time estimate the vulnerability in individual 

components in the network. The RiskRank equation in (37) consists of three 

parts: an individual risk component, a direct neighbor risk component, and one 

indirect market-wide effect component: (Mezei and Sarlin 2017) 

𝑅𝑅(𝑥1, … , 𝑥𝑛, 𝑥𝑐) = 𝑟𝑜𝑤𝑛 + 𝑟𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑟𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡                          (37)     

𝑟𝑜𝑤𝑛 = 𝑣(𝑐)𝑥𝑐                                                       (38)     

𝑟𝑑𝑖𝑟𝑒𝑐𝑡 = ∑ (𝑣(𝑐𝑖) −
1

2
 ∑ 𝐼(𝑐𝑖, 𝑐𝑗𝑗≠𝑖 ))𝑥𝑖

𝑛
𝑖=1                              (39)     

𝑟𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = ∑ ∑ 𝐼(𝑐𝑖, 𝑐𝑗)∏(𝑥𝑖 , 𝑥𝑗)
𝑛
𝑗≠𝑖

𝑛
𝑖                                (40)     

Where the variable 𝐼(𝑐𝑖, 𝑐𝑗) is the interlinkage between nodes and 𝑥𝑖, 𝑥𝑗  are the 

nodes being compared. In this context, 𝑣 represents the Shapley index, which in 

our case translates to the risk a company transfers to other companies that it is 

connected to. 𝑣(𝑐)𝑥𝑐 in equation (38) is the individual risk inputted into the 

model for single components, which in our case translates to individual company 

sentiment risk and will be discussed further in section 4.3.5. In equation (39), we 

calculate the risk transferred from direct neighbors in the networks, which in 

our case means risk transferred from other companies that are mentioned 

together with the company that we are analyzing. In equation (40), we calculate 

system-wide risk, which in our case can be seen as an overall sentiment risk in 

the market. (Mezei and Sarlin 2017) 
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3.4. Summary and Relevance 

In section 2.4, the research questions that will be answered in the thesis were 

defined. To show their relevance, the questions will now be connected to the 

methods presented in this chapter.  

The first research question: ”How can we use analytics to automate text 

processing tasks?” is a general question that is answered throughout sections 4.2 

and 4.3. We answer it by going through two approaches to automation: a 

machine learning approach as defined in sections 3.2.1.1 – 3.2.2, where we use 

TF-IDF weighing, cosine similarity, and sentiment analysis to extract features 

that are used in automatic classifications; a network risk extraction approach as 

defined in sections 3.3.2 and 3.3.2.1, where we use co-occurrence, sentiment, and 

network analytics to automate news processing. 

The second research question: “In which ways can sentiment analysis be useful 

when automating processing tasks?” is answered in sections 4.2.3 – 4.2.8 and 

4.3.3 – 4.3.6. We answer it by going through what other researchers have done 

and by showing how we use sentiment analysis in both automation approaches. 

The third research question: “What can be done to improve unigram 

classification performance for hate and violence texts?” is answered in sections 

4.2.3 – 4.2.8. We answer it by combining sentiment analysis features with 

different unigram and n-gram models, and then going beyond the state of the art 

by extending to multi-gram analysis. The method definitions are found in 3.2.1.2 

and continued in section 4.2.7. 

The fourth research question: “Can risks extracted from sentiment networks 

predict company stock price movements?” is answered in sections 4.3.4 - 4.3.6. 

We answer it by extracting company risks based on sentiment and co-occurrence 

networks, and by statistically comparing subsets of data points against a 

baseline. The methods are defined in section 3.3.2.1 and continued in section 

4.3.6.  
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4. Tools and Results 

In this chapter, we review the research contributions and the different tools and 

information systems that these contributions could be further developed into. 

The characters Jenna and Neil who were presented earlier will be referenced 

throughout the chapter to show the practical uses of the tools. 

 

4.1. Text Extraction 

In all methods presented in this chapter, we use text-extraction methods. The 

text-extraction methods we use can be defined as different types of key word 

extractions and a more in-depth analysis is found in the first research paper [1], 

which was listed among contributions in section 2.1 and is found in its entirety 

in the appendix with the other papers. We use pre-processing steps including 

tokenization of texts through regular expressions, segmentation of texts through 

paragraph and sentence parsing, stop word removal through dictionaries of 

English words, named entity recognition, and machine translation. The 

extraction steps consist of TF-IDF weighting as was discussed in section 3.2.1.1 

and functionality for modifying the weights to either increase or decrease 

importance of words of specific categories. 

 

4.1.1. Key Word Extraction 

Key word extraction is a central concept in text analytics. One approach to 

extracting key words from texts is using regular expressions to match certain 

pre-defined criteria. We use such an approach in our financial research when 

extracting material on companies from texts. Key word extraction becomes more 

complex when we do not have predefined expressions that we are searching for. 

In these cases, we can use methods such as TF-IDF weighting (Salton and Buckley 

1988) to find key words and we can combine these approaches with named 

entity recognition (X. Liu et al. 2011) and/or dictionary-based approaches, 

depending on the context of the extraction. In our classification research, we 

extend the TF-IDF key word extraction work from [1] in several ways (n-grams, 

two different IDF extraction approaches, and multi-grams). We have also 

researched extractions that use different topic models, however, these 

approaches were not included in the thesis as they did not prove fruitful in the 

format they were used.  
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4.2. Automatic Classification Results 

In the first part of the thesis, two hypothetical people Jenna and Neil were 

introduced. In this part of the thesis, the contributions that we have made in 

automatic classifications are discussed, as well as the possible uses of these 

contributions. In this section, we will refer to Neil on occasion to provide an 

overview of the practical uses and how the contributions could positively affect 

his workday and workflow. 

We first use tenfold stratified cross-validation when developing the models in 

sections 4.2.1 – 4.2.7 and report results using balanced test sets. In section 4.2.8, 

we further test the models we have built on imbalanced test sets and discuss our 

findings. We find that the F-measure performance drops significantly when we 

move to imbalanced test sets. 

 

4.2.1. Violence and Hate Content Classification 

Some content categories are easier to classify than others. Adult content is one 

of the categories that has been successfully categorized using both text features 

and image features. Other categories such as violence, racism, and hate speech 

often contain more abstract concepts that algorithms find difficult to classify. In 

these categories, we also find borderline cases, which humans also find difficult 

to categorize.  

If we start analyzing language use, we realize how nuanced languages are. First, 

different people use different words to describe the same situations. This step is 

generally not a problem for computers to handle, as long as the grammar is 

understandable. However, humans also tend to write indirectly and reference 

back to recent events and/or common knowledge that is not necessarily found 

in the current text. Algorithms in general have problems understanding indirect 

references as they cannot yet understand context the way that humans do. To be 

able to understand concepts not directly stated, we humans have knowledge 

gathered from experiences that we can draw upon. This type of context 

knowledge is generally not available to the current state of the art classification 

algorithms. There are some algorithms, such as RNNs (Schuster and Paliwal 

1997), that have memory and show promise. However, we are still some way 

from having algorithms that can effectively link contexts the way humans do. 

Image classification can be used as an example of illustrating the problems that 

algorithms face when classifying content. Let us entertain the thought that we 

are using a computer algorithm to classify images as violent or non-violent. 
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Consider the following scenario: we have a picture of two humans standing next 

to each other. Current algorithms should be able to classify this picture as non-

violent. Consider now that in the next picture one of the people in the photo is 

pointing a knife towards the other person. The current algorithms would be able 

to label this picture as violent with some level of certainty. However, a human 

would not decide whether it is violent only based on that. Imagine that the 

person holding the knife is the famous chef Jamie Oliver. This changes the 

context, and the current generation of classification algorithms do not account 

for such factors, no matter what type of data used. This brings the discussion to 

datasets, and more specifically, the data that we have used to perform our 

automatic classification research on. 

 

4.2.2. Dataset 

The dataset used in our automatic classification research, papers [2], [3] and [6], 

consists of text gathered from web pages labelled into 20 categories using a 

single labelling system. The labelled dataset contains a total of 79,063 web pages 

split unevenly over the 20 categories. For different parts of our research, we have 

experimented with different categories, different sized categories, and different 

balances between true and false labelled pages in binary classifications. One of 

the real-world problems identified by the security industry that automatic 

classifications face are highly imbalanced data skews. No matter which content 

category we choose to categorize, the category is only a small subset of the whole 

textual content found on the Internet. Because of this, we also perform 

experiment validations in section 4.2.8. with skewed datasets (5% positive and 

95% negative instances). 

Each page in the dataset follows a structure based on HTML tags. From the web 

sites, the content of 31 different HTML tags was gathered. These 31 elements are, 

for example, the URL of the page, links to other pages, the whole page content, 

each paragraph found in the page, and metadata such as search keywords.  

The categories in the dataset have been manually labelled and the sizes of the 

different categories vary from 400 web pages to about 6,800 web pages. 

Descriptions and sizes of the 20 categories can be found in Table 3. As the 

categories were labelled using a single label annotation, some of the categories 

ended up having related and overlapping content. This is a constraint that can 

reduce performance, although, in practice it might not matter if a page is labelled 

as being part of, for example, the “cigars” category or the “cigarette” category, as 

they both will be handled in the same manner. The categories in Table 3 that we 
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are conducting our research on is the violence category (17) and the racism and 

hate categories (8, 12, and 13). Henceforth, these three categories together will 

be referred to as the hate categories.  

 

4.2.3. Baseline Classifications 

In this section, we start developing automatic classification models. The final 

models in this section will serve as the basis for the tool that the security industry 

expert Neil could use to reduce his workload. To be practically useful, the tool 

requires high performance. As a guiding rule, for these types of problems 

performance can be considered practically acceptable at an F-measure of 0.9 or 

Category Description 
Labelled 

Pages 

1 Adult 6,801 

2 Beer 5,913 

3 Casino and gambling 3,651 

4 Cigars 1,939 

5 Cigarette 3,845 

6 Cults 3,282 

7 Dating 4,703 

8 Hate, anti-Semitism 3,479 

9 Prescription drugs 5,397 

10 Occult 5,105 

11 Marijuana 6,042 

12 Racism, white supremacy 400 

13 Racism, againt minorities 4,667 

14 Religion 5,438 

15 Sports betting 2,820 

16 Spirits and liquor 3,671 

17 Violence 1,919 

18 Unknown 3,432 

19 Wine 4,095 

20 Weapons 2,464 

Total   79,063 

Table 3. List of the 20 categories in the classification dataset. Taken from publication [6]. 
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higher. If we can achieve this, we further want to maximize either precision or 

recall in the models depending on the classification problem. As high 

performance is easier to achieve on balanced datasets, we will also be testing 

highly imbalanced datasets. 

Previously, it was mentioned that in the publications included in the thesis, we 

have experimented with different sized datasets, different categories, and 

different feature sets. However, to obtain generalizable results between our 

research publications all experiment results in the thesis are re-run using the 

same datasets for each extension of the baseline system. Furthermore, feature 

selection is not included in the thesis experiments. Due to re-running 

experiments without feature selection, performance of the early extensions is 

slightly lower than as reported in the research publications where we used 

feature selection. The reason for not performing feature selection in the thesis 

extensions is that when this was tested, it was shown that we would have to do 

separate feature selections for each extension to find the optimal performance.  

In our baseline models for violence and hate content classification, we only 

account for text content and create classification models consisting of text 

similarity features and unsupervised sentiment features. The similarity 

measures used are calculated using cosine similarity, as defined in 3.2.1.1, where 

we compare the text content of one web page to the text content of an entire 

category of pages. The unsupervised sentiment features are extracted using a 

modified version of SentiStrength (Thelwall et al. 2010), as defined in 3.2.2.1. We 

can represent the full similarity feature set for one text through equation (41), 

where 𝑑 is the web page, 𝑐 is the category, and 𝑖 is the n-gram order: 

𝑦𝑠𝑖𝑚(𝑖) = {𝑠𝑖𝑚(𝑑𝑖, 𝑐1), … , sim(𝑑𝑖, 𝑐20)}                            (41)     

We create vectors of unigrams from words in each page that we want to classify, 

as well as one vector of words from each category that we are trying to identify. 

To decide which words are the most important, and to choose which ones should 

be included in the limited sized word vectors, we use the TF-IDF weighting 

method described in 3.2.1.1 together with a generalized IDF dictionary from 

(Radev et al. 2004). This approach will be referred to as the unigram approach. 

We then compare similarity between each category and the text from each web 

page, by comparing the word vector from the page against the 20 different 

category vectors. Through this process, we convert each web page into 20 

features where the feature values take a number between 0 and 1, where one 

feature represents the page similarity to one category. A similarity feature value 

of 0 means the web page is dissimilar to pages in the category, and would 
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essentially mean that none of the words found in the web page were found in the 

combined TF-IDF values of the category we compare it to. A similarity feature 

value close to one would mean that almost all words in the web page are relevant 

to the category we compare it to. We then experiment with different limits on the 

sizes of the word vectors to see the effect the limits have on classification 

performance. The different sized word vectors that we test for unigram are 500, 

10,000, and 15,000 top weighted words (both for the categories and the 

individual pages).  

In our research leading up to building the baseline classifications, which can be 

found in publication [2], we tried different classifications using different parts of 

web content found in web pages. The following have been tried: 1) using all 

textual web content that is retained after stripping out HTML tags (referred to as 

the full-text content); 2) using only part of the content such as the URL, 

keywords, and meta text content; 3) using combinations of full-text content and 

meta content, which means lengthening the text beyond those in the original web 

page. By lengthening the text, we can emphasize some parts of the text and 

change weights in the calculations. We found that using the third approach 

where we include all the text in the web site and emphasize some parts, by 

adding them a second time to the text, performs better for violence and hate 

classifications. 

Out of the 31 HTML text types that are available in the dataset, we use the 

uniform resource locator (URL), the full text content of the page, the meta-text 

content, and the keywords as input to our classification system. To define a 

baseline performance, we use binary naïve Bayes classifiers, which was 

previously discussed in section 2.2.2.1.1. The positive instances used are all the 

labelled instances in the chosen category and the negative instances used are 

spread evenly over the other 19 categories in the dataset, but randomized within 

each category. When building the baseline models, we use close to balanced 

datasets. For example, the violence category contains 1915 usable positive 

samples after pre-processing. Notice that pre-processing (stop word removal 

and TF-IDF weighting) slightly reduced the number of positive instances. To 

have a balanced set to input into the machine learning algorithm, we split the 

negative samples evenly among all other categories, and randomly pick 1/19 of 

the number of positive samples from each of the other categories.  

In binary classifications, the results are measured through the following four 

counts: true positive (𝑇𝑃), true negative (𝑇𝑁), false positive (𝐹𝑃), and false 

negative (𝐹𝑁). True positive and true negative are the instances that were 

correctly predicted. False positives, also known as false flags, are instances that 
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were labelled as negative, but classified by the algorithm as positive. False 

negatives are instances that are labelled as positive but classified as negative. 

From these values, we can calculate the performance of the classifier if we have 

labelled data. The performance measures calculated are accuracy, F-measure, 

precision, and recall. The formulas for the different calculations are as follows 

(Powers 2011):    

accuracy = (𝑇𝑃 + 𝑇𝑁) /(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)                            (42)     

precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (43)     

recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                         (44)     

F-measure = (2 ∗
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗

𝑇𝑃

𝑇𝑃+𝐹𝑁
)/(

𝑇𝑃

𝑇𝑃+𝐹𝑃
+

𝑇𝑃

𝑇𝑃+𝐹𝑁
)                          (45)     

The baseline classification results are found in Table 4. We can see that the 

violence category 17 performance and the minority hate category 12 

performance is generally lower than the performance of the other two 

categories. The overall performance of the unigram baseline is quite poor. 

We continue defining the baseline performance by extracting unsupervised 

sentiment features and classifying the same datasets using unsupervised 

sentiment features only. The base version of SentiStrength, which was described 

in section 3.2.2, outputs sentiment features as the number of words found 

containing a sentiment value. The program uses a scale of -5 to +5, where a 

negative value (-1 to -5) means the word has a negative sentiment, and a positive 

value (+1 to +5) means the word has a positive sentiment. A value of -5 

represents the words with the most negative sentiment and +5 represents the 

words with the most positive sentiment. For each web page, we count the 

number of sentiment words (-5 to +5) and group them by value strength (words 

that have value 0 are neutral and not counted). Furthermore, the program also 

Unigram Similarity-Based Classification Performance 

Category Accuracy Precision Recall F-measure 

8 80.83% 0.78 0.86 0.82 

12 69.51% 0.64 0.88 0.74 

13 74.95% 0.71 0.85 0.77 

17 65.62% 0.62 0.78 0.69 

Table 4. The baseline centroid based unigram classification performance for violence and 
hate was achieved using all 20 similarity features. Method taken from publication [2], 

experiments were re-run to match the dataset and features of later extensions. 
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outputs a page-wide sentiment value, which is calculated as the highest and the 

lowest sentiment value found in the text. 

Here we recognize an opportunity to extend the unsupervised sentiment feature 

extraction, by further developing the algorithm to fit our needs. In publication 

[2], we define two new sentiment features that we calculate and output together 

with the existing features. These features are named NewScale1 and NewScale2. 

NewScale1 is calculated as a sum of sentiment values in a text, normalized by the 

total number of sentiment words. NewScale2 is calculated as a count of positive 

minus negative sentiment words, where only the polarity (positive or negative) 

of the word is considered. This means that a page containing more negative 

words should end up with a negative number for the NewScale2 value, and pages 

containing more positive words end up with a positive number. Pages containing 

the same amount of negative and positive words can still be either negative or 

positive for the NewScale1 feature, depending on the sentiment strength of the 

words in the text, but would end up as zero for the NewScale2 feature. 

To better understand how the sentiment is represented in different categories in 

our dataset, we plot the different average sentiment scores for 8 categories from 

our dataset of 20 categories, these are categories that our industry partners 

identified as problematic categories. The plot is done using different 

compression rates, which means that we compress pages by taking a subset of 

the highest ranked TF-IDF words. Figure 2 shows the average category 

sentiment for the NewScale1 feature when using compression between 10% and 

100% of highest weighted TF-IDF words as input to the sentiment analysis.  

From Figure 2, we see that there is a clear split between sentiment polarities in 

different categories. We can see that the three hate categories, the violence 

category, and the religion category all have an average sentiment always below 

-1, which also gradually decreases when more of the TF-IDF words are included. 

On the other side of the spectrum, we see the categories unknown, cults, and 

occults start around a neutral sentiment and move toward a positive average 

sentiment when we include more of the textual data.  

After we developed two new sentiment features, we have 13 sentiment features 

that we can use as our sentiment classification baseline. We use all 13 sentiment 

features in our generalizing re-run, while in publication [2] we ended up using 

eight of the thirteen features. After testing different compression levels, we end 
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up using top 30% of the TF-IDF weighted words from each page as the input to 

the sentiment feature extractions. We tested using higher compression rates, but 

it did not affect performance in any meaningful way above 30%. The set of 13 

sentiment features is represented in equation (46) as 𝑦𝑠𝑒𝑛𝑡, where 𝑦 represents 

the individual sentiment features. 𝑦1 − 𝑦10 are the counts of sentiment strengths 

(-5 to +5), 𝑦11 is the page total value, 𝑦12 is NewScale1 and 𝑦13 is NewScale2: 

   𝑦𝑠𝑒𝑛𝑡 = {𝑦1, … , 𝑦13}                                                   (46)     

Table 5 shows the performance measures for the different sentiment 

classifications. We see that the performance is lower than the unigram 

classifications. Based on the results in publication [2], we find that classifications 

using only similarity features seems to perform slightly better than sentiment 

features on violence and hate content also when incorporating feature selection.  

 

4.2.4. Combining Similarity and Sentiment Features 

After having defined the baseline performance of both similarity classifications 

and sentiment classifications for hate and violence, we start applying state-of-

the-art methods on the data to see if that can improve performance. We start by 

Sentiment polarization between problematic categories 

Figure 2. Visualization of average sentiment polarization between 8 categories starting 
from 10% of top weighted words going up to 100% weighted words. Some categories 

become more positive when including more top weighted words and others become more 
negative. Figure taken from publication [2]. 
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using an approach containing some similarities to the one done by Melville et al. 

(2009) and Bespalov et al. (2011). In this approach, we take features of both the 

similarity and sentiment approaches, and run a classification using a 

combination of these features. Here we partly answer the second and third 

research questions by showing how sentiment features can improve 

classifications when using a naïve Bayes classifier. 

The combination of features is simple as we already have the feature extraction 

in place. We combine the sentiment features 𝑦𝑠𝑒𝑛𝑡 with the unigram features 𝑦𝑠𝑖𝑚 

as represented in equation (47), where 𝑖 is the page. We then run the features 

through the same naïve Bayes classifier we used before to see comparable 

results. As shown in Table 6, this offers us an overall improvement in F-measure 

results over the sentiment results and for category 13 over similarity features. 

Performance is still quite poor. We have now answered the first part of the 

research questions two and three. 

 𝑦𝑡𝑜𝑡(𝑖) = {𝑦𝑠𝑖𝑚(𝑖), 𝑦𝑠𝑒𝑛𝑡(𝑖)}                                         (47)       

Unsupervised Sentiment Classification Performance 

Category Accuracy Precision Recall F-measure 
8 52.93% 0.51 0.99 0.68 

12 52.44% 0.51 1.00 0.67 

13 68.09% 0.64 0.81 0.72 

17 61.46% 0.86 0.27 0.41 

Combined Similarity + Sentiment Classification Performance (Naïve Bayes) 

Category Accuracy Precision Recall F-measure 
8 71.10% 0.65 0.92 0.76 

12 58.54% 0.54 0.98 0.70 

13 75.16% 0.70 0.87 0.78 

17 64.06% 0.32 0.88 0.47 

Table 5. Baseline unsupervised sentiment classification performance for violence and 
hate. Method taken from publication [2], experiments were re-run to match the dataset 

and features of later extension models. 

 

Table 6. Classification results from combining unigram cosine similarity features with 
unsupervised sentiment features. Method taken from publication [2], experiments were re-

run to match the dataset and features of later extension models. 
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In cases where it is not clear that both precision and recall is improved, it might 

be better to use the F-measure of the classification to see if there was an overall 

improvement. Accuracy and F-measure both express an overall classification 

performance, but accuracy becomes less useful when the sets we use are 

imbalanced, which we will see later. Systemic risk models and early warning 

models are examples of when maximizing recall would be of interest. We would 

in such models rather flag all possible shock situations than miss one. On the 

other hand, in parental control system or other filtering systems, we would not 

want to filter out legitimate sites due to errors in the classification, because 

filtering legitimate sites erodes user confidence in the system. If not accidentally 

filtering sites is the goal, then we would rather maximize the precision. Creating 

algorithms that have both a high precision and a high recall in real-world 

scenarios is uncommon. 

 

4.2.5. Combining N-gram and Sentiment Features 

Next, we extend our experiments to an n-gram-based approach for the cosine 

similarity feature extraction. In this part of the research, we will cover one-gram, 

tri-gram and five-gram similarity analysis and then combine the n-grams with 

the same sentiment features that we used with the unigram classifications. To do 

n-gram analysis, we start by creating IDF dictionaries for the different n-grams, 

as in publication [3], because the dictionary we have been using so far is 

unigram-based and cannot be applied to the higher order n-grams. The unigram 

and the one-gram approaches are identical, except that we create a new word-

based IDF dictionary from our dataset for the one-gram approach, and used an 

existing dictionary for the unigram approach. The theory behind using n-grams 

is that taking word order into account in texts can improve classification 

performance (Khreisat 2006; Bespalov et al. 2011). As we limit the analysis to 

one-grams, tri-grams, and five-grams it means that we decide that either one, 

three, or five-word combinations found in the texts are of interest to us. We are 

also interested in testing the performance of the different n-grams against each 

other. In theory, an n-gram approach can lead to either better or worse 

performance. In texts where there are few tri-grams or five-grams, there is a 

possibility that the performance will go down due to no matches.  Previous 

studies using n-grams have shown that using higher than tri-grams will not 

necessarily increase classification performance (Fürnkranz 1998). Our approach 

here has some similarities to the approach used by (Bespalov et al. 2011). 

Here we will partly answer the second and third research questions by showing 

that combining sentiment features with n-gram features can improve 
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performance with the naïve Bayes classifier, however, we also show that it is not 

always the case. 

Changing to higher n-gram analysis also raises the computational requirements 

due to the manifold increased sizes of dictionaries and the increased number of 

category TF-IDF values that need to be calculated and compared. In the unigram 

models, we worked with different top weighted TF-IDF words and ended up 

using top 15,000 weighted words, as our experiments showed that performance 

was only marginally increased beyond that point. Our research in [3] found that 

we needed to increase the number of weighted words per category above the 

15,000 when performing n-gram classifications, because the n-gram words in a 

category can be over two million, while most unigrams categories contained only 

around 100,000 words. We tested a couple of different sizes and ended up using 

top 100,000 TF-IDF weighted category words for tri-grams, and top 120,000 TF-

IDF weighted category words for the five-gram analysis. This was done to scale 

the number of words per category with the order of n-grams. 

Table 7 shows the performance of the one-gram classification that uses IDF 

calculated based on our dataset. Table 8 shows the tri-gram classification results. 

Table 9 shows the performance of the five-gram classification. The classification 

performance when adding sentiment feature increases for category 13 over 

using only similarity features. Unigram classification still has the best 

performance for category 8, while category 12 has the best performance using  

One-gram Similarity Classification Performance (Naïve Bayes) 

Category Accuracy     Precision  Recall F-measure 
8 77.83%     0.75 0.82  0.79 

12 80.49%     0.77 0.85  0.81 

13 74.73%     0.73 0.79  0.76 

17 71.35%     0.81 0.56  0.66 

Combined One-gram + Sentiment Performance (Naïve Bayes) 

Category Accuracy     Precision  Recall F-measure 
8 70.53%     0.64 0.92 0.76 

12 68.29%     0.61 1.00 0.75 

13 76.23%     0.74 0.82 0.78 

17 67.19%     0.88 0.39 0.54 

Table 7. One-gram classification performance using an IDF dictionary created from the 
dataset. Method taken from publication [3], experiments were extended to cover one-

grams with our own IDF-dictionary for comparison. 
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one-grams. Category 17 has the best performance using five-grams with 

sentiment, and for category 13 the performance is even between models. 

Contrary to the study by Fürnkranz (1998), the five-gram performance seems to 

so far be better than the tri-gram classifications on average. 

 

Tri-gram Similarity Classification Performance (Naïve Bayes) 
Category     Accuracy  Precision  Recall F-measure 
        8 68.96%  0.63 0.92   0.75 
       12 73.17%  0.65 0.98   0.78 
       13 70.56%  0.64 0.95   0.76 
       17 67.45%  0.62 0.92   0.74 

Combined Tri-gram + Sentiment Performance (Naïve Bayes) 
Category     Accuracy  Precision  Recall F-measure 
        8 67.81%  0.62 0.94   0.74 
       12 64.63%  0.58 1.00   0.73 
       13 71.84%  0.65 0.94   0.77 
       17 79.17%  0.94 0.62   0.75 

Five-gram Similarity Classification Performance (Naïve Bayes) 

Category       Accuracy Precision Recall F-measure 
8 73.25% 0.66 0.93 0.78 

12 73.17% 0.65 0.98 0.78 

13 68.42% 0.62 0.94 0.75 

17 69.27% 0.63 0.92 0.75 

Combined Five-gram + Sentiment Performance (Naïve Bayes) 

Category Accuracy Precision Recall F-measure 
8 71.67% 0.65 0.95 0.77 

12 64.63% 0.58 1.00 0.73 

13 69.91% 0.64 0.92 0.75 

17 83.33% 0.94 0.71 0.81 

Table 8. Tri-gram classification performance using the IDF dictionary created from the 

dataset. Method taken from publication [3], experiments were re-run to match the 

dataset and features of later extension models. 

 

Table 9. Five-gram classification performance using IDF dictionary developed from the 
dataset. Method taken from publication [3], but experiments were re-run to match the 

dataset and features of later extension models. 
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The performance of the models is at this point still quite far from practically 

usable as we defined the practically usable performance threshold as an F-

measure of 0.9 or higher. The highest reached so far is 0.82 for category 8. 

 

4.2.6. Extending to Other Machine Learning Algorithms 

To see if we can further raise performance of the automatic classifications, we 

extend our research to other machine learning algorithms. By using more 

sophisticated algorithms, such as SVM and ANN, we should be able to raise the 

performance, however, using them also significantly increases the training times. 

We now continue the research by testing decision trees, 𝑘-nearest neighbors, 

support vector machines, and feedforward artificial neural networks, which 

were introduced in sections 2.2.2.1.2 to 2.2.2.1.5, on each of the four categories 

for the unigram, one-gram, tri-gram, and five-gram features. Each set of n-gram 

features are combined with sentiment features. The ANNs have the overall best 

performance as can be seen from Tables 10 – 13. Using ANNs, we are able to 

break over 90% accuracy and 0.9 F-measure for all four categories using both 

tri-gram and five-gram features. Tri-gram and five-gram classification 

performance is now mixed when comparing F-measures, better when using tri-

grams for category 17 and worse in majority of algorithms for category 8. When 

comparing accuracy, we have similar mixed results between classes.  

Comparing runs with sentiment features against runs without, we find that the 

performance here is also mixed. For most classifiers tested, category 

performance 13 increases with sentiment features, for other categories the 

performance is mixed. This could be because category 13 had better 

performance with sentiment features in section 4.2.3 than the other categories. 

Sentiment features seem to have an overall negative effect when using k-NN.  

Using research from paper [6], we partly answer research questions two and 

three by showing that sentiment features can improve performance when using 

SVM, ANN, and DT. However, when using k-NN performance did not improve. 

Furthermore, changing from NB to other algorithms improve the results with or 

without sentiment features. 
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Category 8 Unigram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 79.54% 0.83 0.74 0.78 

SVM 83.83% 0.84 0.84 0.84 

ANN 87.70% 0.86 0.90 0.88 

K-NN 78.97% 0.76 0.84 0.80 

Category 8 One-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 76.25% 0.64 0.85 0.73 

SVM 84.69% 0.87 0.82 0.84 

ANN 87.98% 0.90 0.85 0.88 

K-NN 78.54% 0.75 0.85 0.80 

Category 8 Tri-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 88.84% 0.89 0.88 0.89 

SVM 89.70% 0.91 0.88 0.89 

ANN 92.85% 0.91 0.95 0.93 

K-NN 82.69% 0.80 0.87 0.83 

Category 8 Fivegram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 90.99% 0.86 0.96 0.90 

SVM 89.99% 0.95 0.84 0.89 

         ANN          92.85% 0.95 0.90 0.93 

K-NN 81.83% 0.79 0.87 0.83 

Table 10. Classifications for category 8 (anti-Semitism) using the combined similarity and 
sentiment features with other machine learning algorithms. Results from publication [6]. 
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Category 12 Unigram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 68.29% 0.61 0.98 0.75 

SVM 80.49% 0.75 0.90 0.82 

ANN 86.59% 0.85 0.88 0.86 

K-NN 68.49% 0.67 0.72 0.70 

Category 12 One-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 85.37% 0.78 0.98 0.87 

SVM 90.24% 0.86 0.95 0.90 

ANN 87.80% 0.89 0.85 0.87 

K-NN 69.53% 0.68 0.74 0.71 

Category 12 Tri-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 86.59% 0.87 0.85 0.86 

SVM 81.71% 0.96 0.65 0.78 

ANN 93.90% 0.95 0.93 0.94 

K-NN 74.48% 0.74 0.75 0.75 

Category 12 Fivegram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 86.59% 0.87 0.85 0.86 

SVM 82.93% 1.00 0.65 0.79 

ANN 93.90% 0.97 0.90 0.94 

K-NN 73.70% 0.76 0.69 0.72 

Table 11. Classifications for category 12 (white supremacy) using the combined similarity 
and sentiment features with other machine learning algorithms. Results taken from 

publication [6]. 
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After having tested the performance of individual classifiers, the next step is to 

try an ensemble of classifications on different n-grams to see if a majority voting 

algorithm can offer further performance increases. Ensemble classifications 

combine the results of different classifications. The ensemble method used in our 

experiments is the majority voting algorithm (Rokach 2010). We try three 

different voting ensemble combinations on the different n-grams: 

DT/SVM/ANN/k-NN, DT/SVM/ANN, and SVM/ANN. Tables 14 – 17 show the 

ensemble performances for the different n-gram classifications.  

Comparing them to the best performing ANN results we find that overall ANN 

performs best on balanced data. The ensemble performance using DT/SVM/ANN 

is better than ANN alone on category 8 using five-grams, but not the other 

Category 13 Unigram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 71.52% 0.66 0.87 0.75 

SVM 80.51% 0.79 0.82 0.81 

ANN 83.30% 0.82 0.85 0.84 

K-NN 80.09% 0.78 0.84 0.81 

Category 13 One-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 73.98% 0.55 0.88 0.68 

SVM 83.30% 0.84 0.83 0.83 

ANN 87.15% 0.86 0.89 0.87 

K-NN 78.05% 0.75 0.84 0.79 

Category 13 Tri-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 85.97% 0.86 0.86 0.86 

SVM 82.55% 0.92 0.71 0.80 

ANN 89.51% 0.88 0.91 0.90 

K-NN 89.40% 0.88 0.91 0.90 

Category 13 Fivegram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 83.73% 0.93 0.73 0.82 

SVM 81.48% 0.96 0.66 0.78 

ANN 91.22% 0.91 0.92 0.91 

K-NN 81.37% 0.80 0.83 0.82 

Table 12. Classifications for category 13 (racism against minority groups) using the 
combined similarity and sentiment features with other machine learning algorithms. 

Results taken from publication [6]. 
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categories. Furthermore, the ensemble models improve precision in several 

cases. For category 12, we are able to achieve a 100% precision on the balanced 

test set. Using ensembles, we also find that tri-gram and five-gram performance 

is mixed, but better than the performance of unigram and one-gram 

classifications. 

 

Category 17 Unigram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 60.94% 0.98 0.22 0.36 

SVM 82.29% 0.93 0.70 0.80 

ANN 83.33% 0.85 0.80 0.83 

K-NN 68.49% 0.67 0.72 0.70 

Category 17 One-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 64.32% 0.95 0.30 0.45 

SVM 82.81% 0.95 0.69 0.82 
ANN 88.02% 0.89 0.87 0.88 

K-NN 69.53% 0.68 0.74 0.71 

Category 17 Tri-gram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 89.06% 0.95 0.83 0.88 

SVM 86.20% 0.99 0.73 0.84 

ANN 91.67% 0.89 0.95 0.92 

K-NN 74.48% 0.74 0.75 0.75 

Category 17 Fivegram Performance Other Algorithms 

ML-algorithm Accuracy Precision Recall F-measure 
DT 86.20% 0.93 0.79 0.85 

SVM 86.20% 0.99 0.73 0.84 

ANN 90.36% 0.85 0.98 0.91 

K-NN 73.70% 0.76 0.69 0.72 

Table 13. Classifications for category 17 (violence) using the combined similarity and 
sentiment features with other machine learning algorithms. Results taken from 

publication [6]. 
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 Table 14. Ensemble classification performance for category 08 (anti-Semitism). Results 
taken from publication [6]. 

Category 8 Unigram Ensemble Classification Performance 

ML-algorithm Accuracy Precision Recall F-measure 
SVM/ANN 84.98% 0.80 0.93 0.86 

DT/SVM/ANN 85.98% 0.89 0.82 0.85 

DT/SVM/ANN/k-NN 86.98% 0.84 0.91 0.87 

Category 8 One-gram Ensemble Classification Performance 
SVM/ANN 87.70% 0.85 0.92 0.88 

DT/SVM/ANN 85.84% 0.89 0.82 0.85 

DT/SVM/ANN/k-NN 87.98% 0.86 0.90 0.88 

Category 8 Tri-gram Ensemble Classification Performance 
SVM/ANN 90.84% 0.88 0.95 0.91 

DT/SVM/ANN 92.70% 0.94 0.91 0.93 

DT/SVM/ANN/k-NN 92.56% 0.91 0.95 0.93 

Category 8 Five-gram Ensemble Classification Performance 
SVM/ANN 91.99% 0.92 0.92 0.92 

DT/SVM/ANN 93.13% 0.98 0.88 0.93 

DT/SVM/ANN/k-NN 92.85% 0.95 0.91 0.93 

Category 12 Unigram Ensemble Classification Performance 

ML-algorithm Accuracy Precision Recall F-measure 
SVM/ANN 85.37% 0.85 0.85 0.85 

DT/SVM/ANN 79.27% 0.73 0.90 0.81 

DT/SVM/ANN/k-NN 86.59% 0.82 0.93 0.87 

Category 12 One-gram Ensemble Classification Performance 
SVM/ANN 90.24% 0.94 0.85 0.89 

DT/SVM/ANN 90.24% 0.86 0.95 0.90 

DT/SVM/ANN/k-NN 91.46% 0.92 0.90 0.91 

Category 12 Tri-gram Ensemble Classification Performance 
SVM/ANN 90.84% 0.88 0.95 0.91 

DT/SVM/ANN 91.46% 0.97 0.85 0.91 

DT/SVM/ANN/k-NN 87.80% 0.97 0.78 0.86 

Category 12 Five-gram Ensemble Classification Performance 
SVM/ANN 91.99% 0.92 0.92 0.92 

DT/SVM/ANN 90.24% 0.97 0.83 0.89 

DT/SVM/ANN/k-NN 90.24% 1.00 0.80 0.89 

Table 15. Ensemble classification performance for category 12 (white supremacy). 
Results taken from publication [6]. 
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Table 16. Ensemble classification performance for category 13 (racism against 
minorities). Results taken from publication [6]. 

Table 17. Ensemble classification performance for category 17 (Violence). Results taken 
from publication [6]. 

Category 13 Unigram Ensemble Classification Performance 

ML-algorithm Accuracy Precision Recall  F-measure 
SVM/ANN   81.58% 0.87   0.74      0.80 

DT/SVM/ANN   81.91% 0.80   0.85      0.82 

DT/SVM/ANN/k-NN   83.73% 0.84   0.84 0.84 

Category 13 One-gram Ensemble Classification Performance 
SVM/ANN   85.44% 0.90   0.79 0.84 

DT/SVM/ANN   85.22% 0.88   0.81 0.85 

DT/SVM/ANN/k-NN   84.58% 0.92   0.76 0.83 

Category 13 Tri-gram Ensemble Classification Performance 
SVM/ANN   83.08% 0.96   0.69 0.80 

DT/SVM/ANN   88.22% 0.90   0.86 0.88 

DT/SVM/ANN/k-NN   87.47% 0.94   0.80 0.86 

Category 13 Five-gram Ensemble Classification Performance 
SVM/ANN   81.48% 0.97   0.65 0.78 

DT/SVM/ANN   86.19% 0.95   0.76 0.85 

DT/SVM/ANN/k-NN   85.65% 0.96   0.74 0.84 

Category 17 Unigram Ensemble Classification Performance 

ML-algorithm Accuracy Precision Recall F-measure 
SVM/ANN 83.07%      0.96   0.69  0.80 

DT/SVM/ANN 81.51%      0.82   0.81  0.81 

DT/SVM/ANN/k-NN 76.56%      0.95   0.55  0.70 

Category 17 One-gram Ensemble Classification Performance 
SVM/ANN 82.81%      0.96   0.68  0.80 

DT/SVM/ANN 82.55%      0.96   0.68  0.80 

DT/SVM/ANN/k-NN 77.86%      0.95   0.59  0.72 

Category 17 Tri-gram Ensemble Classification Performance 
SVM/ANN 86.20%      0.99   0.73  0.84 

DT/SVM/ANN 90.10%      0.99   0.81  0.89 

DT/SVM/ANN/k-NN 88.54%      1.00   0.77  0.87 

Category 17 Five-gram Ensemble Classification Performance 
SVM/ANN 84.11%      1.00   0.68  0.81 

DT/SVM/ANN 88.02%      0.97   0.79  0.87 

DT/SVM/ANN/k-NN 86.46%      0.99   0.74  0.84 
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4.2.6.1. Parameters of the Models 

Here follows a list of parameters used to run the machine learning algorithms in 

4.2.6. These parameters are listed for experiment reproducibility. 

SVM (Linear) 

- Kernel cache: 200 

- Complexity constant: 0 

- Convergence epsilon: 0.001 

- Max iterations: 100,000 

ANN 

- Training cycles: 500 

- Learning rate: 0.3 

- Momentum: 0.2 

- Error epsilon: 0.00001 

- Decay: false 

- Hidden layers: 1 

- Hidden nodes: 19 for n-grams, 42 and 49 for multi-grams 

DT 

- Criterion: gain ratio 

- Maximal depth: 20 

- Confidence: 0.25 

- Minimal gain: 0.1 

- Minimal leaf size: 2 

- Minimal size for split: 4 

- Number of prepruning alternatives: 3 

k-NN 

- Number of neighbors k: 1 

- Measure type: Mixed Euclidean Distance 

 

4.2.7. Extending Models to Multi-gram Analysis 

In section 3.4, one more extension to the methods was mentioned, which we now 

will cover. This last extension is a full aggregation of all the steps presented so 

far, aggregating features into an approach that we call a multi-gram 

classification. In the previous classifications, we have extracted features for 
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specific sized n-grams and combined these features with unsupervised 

sentiment features. Using 33 features (sentiment + similarity) we ran 

classifications using several other machine learning algorithms and ensemble 

classifications.  In this section, we partly answer the third research question by 

showing that multi-gram extraction improves balanced results over the other 

models tested so far. 

In section 4.2.5, I mentioned that we could be missing vital information by 

choosing to only do the experiments on one type of n-gram at the time. Therefore, 

in this section we will perform experiments to try to validate that claim. This is 

done by combining all the n-gram features we have together with unsupervised 

sentiment features, as done in research paper [6]. This becomes a multi-gram 

classification with a up to 93 features. Thus, we increase the variety of features 

that are used in the algorithm instead of using feature selection that reduces the 

already limited number of features, as was done in the earlier research papers 

[2] and [3] with limited success. The generalized multi-gram feature set for a web 

page can be represented as in equation (48), where n is the n-gram used, 𝑦𝑠𝑖𝑚 is 

from equation (41), and 𝑦𝑠𝑒𝑛𝑡 is from equation (46). We test two combinations 

to stay consistent with the different n-gram models used so far in our 

experiment: one including features from unigram, one-gram, tri-gram, and five-

gram as in equation (49), and one that also includes sentiment features as in 

equation (50): 

  𝑦𝑚𝑔(𝑛) = {𝑦𝑠𝑖𝑚(1), … , 𝑦𝑠𝑖𝑚(𝑛)}                                           (48) 

𝑦𝑚𝑔1
= {𝑦𝑠𝑖𝑚(𝑢𝑛𝑖), 𝑦𝑠𝑖𝑚(1), 𝑦𝑠𝑖𝑚(3), 𝑦𝑠𝑖𝑚(5)}                            (49) 

𝑦𝑚𝑔2
= {𝑦𝑠𝑖𝑚(𝑢𝑛𝑖), 𝑦𝑠𝑖𝑚(1), 𝑦𝑠𝑖𝑚(3), 𝑦𝑠𝑖𝑚(5), 𝑦𝑠𝑒𝑛𝑡}                      (50) 

Using up to 93 features we then repeat our classification experiments to see if 

the classification performance can be further improved. This multi-gram 

approach has some similarities to the models used by Shen et al. (2006) and 

Wallach (2006). 

Table 18 shows a summary of the best performing classification models that we 

have tested using multi-gram classifications. We can see that the multi-gram 

extension to the model with 93 features provides us an overall increase for most 

algorithms that were tested, with ANNs having F-measures above 0.93 for each 

of the categories and outperforming all other algorithms. Furthermore, we can 

see that the ensemble of DT/SVM/ANN/k-NN achieves a precision of 100% for 

the violence category while maintaining an F-measure of 0.92. We also tested 
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running the experiments without sentiment features in publication [6]. We found 

that it varies between categories and algorithms whether adding sentiment 

features to multi-gram models increase performance or not. This seems to 

suggest that feature selection algorithms could further improve the results, and 

that there is further room for fine-tuning the algorithms.  

The performance difference between previous models and the multi-gram 

models could be explained by either underfitting, overfitting, or a combination 

Category 8 Multi-gram + Sentiment Classification Performance 

ML-algorithm Accuracy Precision Recall F-measure 
SVM 92.56% 0.95 0.90 0.92 

ANN 95.28% 0.96 0.95 0.95 

SVM/ANN 93.85% 0.93 0.95 0.94 

DT/SVM/ANN 94.56% 0.96 0.93 0.94 

DT/SVM/ANN/k-NN 94.42% 0.94 0.95 0.94 

Category 12 Multi-gram Classification Performance 

ML-algorithm Accuracy Precision Recall F-measure 
SVM 91.46% 0.92 0.90 0.91 

ANN 96.34% 0.95 0.98 0.96 

SVM/ANN 92.68% 0.97 0.88 0.92 

DT/SVM/ANN 93.90% 0.91 0.98 0.94 

DT/SVM/ANN/k-NN 95.12% 0.97 0.93 0.95 

Category 13 Multi-gram Classification Performance 

ML-algorithm Accuracy Precision Recall F-measure 
SVM 86.72% 0.94 0.78 0.85 

ANN 93.04% 0.92 0.94 0.93 

SVM/ANN 89.83% 0.96 0.83 0.89 

DT/SVM/ANN 91.33% 0.92 0.90 0.91 

DT/SVM/ANN/k-NN 90.58% 0.94 0.87 0.90 

Category 17 Multi-gram Classification Performance 

ML-algorithm Accuracy Precision Recall F-measure 
SVM 90.89% 1.00 0.82 0.90 

ANN 94.79% 0.95 0.94 0.95 

SVM/ANN 90.89% 1.00 0.82 0.90 

DT/SVM/ANN 93.75% 0.99 0.88 0.93 

DT/SVM/ANN/k-NN 92.45% 1.00 0.85 0.92 

Table 18. Multi-gram classification performances for all four categories using 80 
similarity features and 13 sentiment features. Results taken from publication [6]. 
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of both. Underfitting means that a model and its features does not represent the 

data fully and have reduced predictive performance. In our case, it could be that 

the previous models (unigram and n-gram) were underfitting the data and that 

the multi-gram models simply are a better representation of the data. On the 

other hand, it can also be that the multi-gram models overfit the data, giving 

models that show excellent performance with the data they are trained on, but 

the performance not translating well to future data. 

 

4.2.8. Imbalanced Testing 

In a final experiment on automatic text classifications, we will test the 

performance of the models on test sets that better represents the natural skew 

between classes in real-world scenarios. We will here see that performance 

drops significantly, for all models, on highly imbalanced data, with multi-gram 

ensemble performance holding up better than other models. Here we also 

answer the last part of research question three. 

As the number of violent and hateful web pages on the Internet are few 

compared to the total number of web pages, we should account for that in our 

experiments to see whether the results can be applied in practice. To do this, we 

test the models that we have developed on imbalanced labelled test sets. Here 

we need to note that the imbalance skews the dynamic of the datasets. 

Understanding the performance is no longer as clear as when we used the 

negative under-sampling approach to have roughly 50% positive and 50% 

negative distributions in sections 4.2.3 – 4.2.7. 

Accuracy, precision, and recall are not necessarily descriptive measures of 

performance for imbalanced datasets (Jeni et al. 2013). We use test sets with 

imbalances close to 5% positive and 95% negative instances, which gives us a 

skew of 20 (Jeni et al. 2013). A classifier classifying a dataset with 95% negative 

samples would be able to have a 95% classification accuracy simply by 

predicting all pages as negative, which is why we should use the F-measure 

instead to understand the performance. The imbalance was chosen to reflect an 

even spread between the 20 categories in the training set, mainly because we do 

not know the real-world category distributions. We do know that the 20 

categories we have used do not represent all types of text content on the Internet, 

and because of that it is likely that even when tested with an imbalance factor of 

20, our tests will not be equivalent to real-world performance. 
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We only show tests for the best performing models. This test is performed by 

training the algorithms using balanced datasets with the same parameters as we 

defined through using cross-validation. The performance tests for the four 

categories are done using imbalanced test sets consisting of instances that were 

not included in the training. Using research paper [6], we provide the final part 

of the answer to research question three by showing that multi-gram models 

combined with sentiment, on average, does not improve classification 

performance. We also find that the voting ensemble using ANN/SVM improves 

our results over individual classifiers at high class imbalances. 

Tables 19 and 20 show the performance of our multi-gram algorithms when run 

on the imbalanced test sets. Looking at the F-measures, we can see that 

performance for all categories drop. The four categories have an F-measure 

performance of between 0.71 to 0.83 when not including sentiment features, and 

a range of 0.69 to 0.82 when including sentiment features. We compare this 

range to that of tri-grams and five-grams with sentiment features, which were 

the best performing among the other models tested. The tri-gram models have 

an F-measure range of 0.44 to 0.68. The five-gram models have an F-measure 

range of 0.57 - 0.68, both significantly lower than the multi-gram models.  

Using the 95-to-5 imbalance, the multi-gram models without sentiment features 

outperformed those with sentiment features, however, when testing other sized 

imbalances, we noticed that this was not always the case. In Tables 19 and 20, 

we can see that the ensemble classification that uses ANN/SVM outperform the 

other classifiers, except for category 17 where the ensemble classification using 

ANN/SVM/DT/k-NN provide the best overall results.  

If we want to compare these results to those of other models that have been 

applied on similar problems, we can examine a problem with similar context 

(web pages) and similar imbalances between classes. While the results should 

not be directly compared without running on the exact same data, we can at least 

determine whether these multi-gram models perform in the same ranges as 

other models. We find one study that uses a similar 95-to-5 imbalance on web 

pages, one from the web spam challenge (Erdélyi et al. 2011). However, they 

report performance results using the area under the receiver operating 

characteristic (AUROC). To compare performance against their results, we need 

to know our AUROC performance as well. The best performing models presented 

on the web spam filtering challenge have shown an average AUROC of 0.892. The 

average AUROC for our multi-gram models without sentiment features is 0.950, 

and 0.952 with sentiment features, which equals higher performance. The 

conclusion 
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Multi-gram with Sentiment Imbalanced Performance  

Category 8 5.1 % / 94.9 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 95.60 % 0.53 0.88 0.66 

ANN 95.43 % 0.52 0.92 0.66 

SVM/ANN 93.48 % 0.42 0.94 0.58 

DT/SVM/ANN 96.10 % 0.56 0.90 0.69 

DT/SVM/ANN/k-NN 94.35 % 0.46 0.94 0.62 

Category 12 5.3 % / 94.7 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 96.16 % 0.57 0.93 0.71 

ANN 97.07 % 0.64 0.98 0.77 

SVM/ANN 97.90 % 0.73 0.93 0.82 

DT/SVM/ANN 95.61 % 0.54 0.96 0.69 

DT/SVM/ANN/k-NN 96.61 % 0.61 0.93 0.73 

Category 13 5.1 % / 94.9 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 94.25 % 0.45 0.82 0.58 

ANN 93.17 % 0.41 0.92 0.57 

SVM/ANN 96.82 % 0.64 0.80 0.71 

DT/SVM/ANN 96.16 % 0.57 0.84 0.68 

DT/SVM/ANN/k-NN 96.85 % 0.64 0.80 0.71 

Category 17 4.9 % / 95.1 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 96.85 % 0.62 0.83 0.71 

ANN 79.70 % 0.18 0.99 0.31 

SVM/ANN 96.95 % 0.63 0.83 0.72 

DT/SVM/ANN 95.70 % 0.52 0.88 0.65 

DT/SVM/ANN/k-NN 96.57 % 0.59 0.86 0.70 

Table 19. Testing the performance of the best performing multi-gram models with 80 
similarity features on natural sized datasets. Results taken from publication [6]. 
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we can draw from this comparison is that the multi-gram models seem 

promising and should be tested on other datasets as well. 

While the performance does not quite meet the requirements for practical use 

that were defined earlier (F-measure of 0.9), the performance of the 

classification can still be acceptable in practice. The reason is that we generally 

Multi-gram Imbalanced Performance 

Category 8 5.1 % / 94.9 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 95.81 % 0.54 0.88 0.67 

ANN 96.72 % 0.61 0.90 0.73 

SVM/ANN 94.50 % 0.47 0.93 0.62 

DT/SVM/ANN 96.50 % 0.49 0.92 0.64 

DT/SVM/ANN/k-NN 95.06 % 0.49 0.92 0.64 

Category 12 5.3 % / 94.7 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 96.89 % 0.63 0.91 0.75 

ANN 97.16 % 0.96 0.65 0.77 

SVM/ANN 98.08 % 0.76 0.91 0.83 

DT/SVM/ANN 96.43 % 0.59 0.95 0.73 

DT/SVM/ANN/k-NN 97.26 % 0.95 0.66 0.78 

Category 13 5.1 % / 94.9 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 94.28 % 0.45 0.81 0.58 

ANN 94.41 % 0.46 0.91 0.61 

SVM/ANN 96.95 % 0.63 0.80 0.71 

DT/SVM/ANN 95.18 % 0.50 0.86 0.63 

DT/SVM/ANN/k-NN 96.60 % 0.61 0.85 0.71 

Category 17 4.9 % / 95.1 % Imbalanced Performance 

ML-algorithm Accuracy Precision Recall F-measure 

SVM 95.94 % 0.54 0.86 0.66 

ANN 94.64 % 0.46 0.95 0.62 

SVM/ANN 97.38 % 0.67 0.85 0.75 

DT/SVM/ANN 96.53 % 0.58 0.89 0.70 

DT/SVM/ANN/k-NN 97.40 % 0.67 0.87 0.76 

Table 20. Testing the performance of the best performing multi-gram models with 80 
similarity features and 13 sentiment features on natural sized datasets. Results taken 

from publication [6]. 
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are not concerned about sub-categories in practical applications. If we take 

parental control systems, for example, we will want to filter all hate categories. 

In this practical application, we do not care whether we have classified them into 

the correct hate sub-group. As we are not concerned whether we misclassify one 

hate or violent category as another hate category, hate content is either filtered 

out correctly or it is not filtered. 

Using category 12, we can show that the classifications have practically 

acceptable performance also on the imbalanced dataset, if we relax the 

classification conditions to account for overlap. Let us further examine the 16 

false positives web pages that we have in the best performing category 12 

NN/SVM ensemble classification, which showed an F-measure of 0.83. As can be 

seen in Table 21, 13 of those 16 false positives belong to another hate category 

(category 13), which means that in a practical system we want these filtered out, 

and they should not be considered false positives. If we exclude these 13 false 

positives from the result classification and recalculate performance, as shown in 

Table 21, we reach an F-measure of 0.93. 

 

4.2.9. Uses and Practical Relevance 

In the beginning of the chapter, I mentioned Neil the security expert. Here we 

will discuss the practical uses this research could have in his line of work. As of 

October 2016, the Internet consisted of over 4.81 billion web pages 

("WorldWideWebSize" 2016). The pages are so many that the human mind can 

List of False Positive Classifications Category 12 

Category 16 False Positives 

Casino (3) 1 

Racism (13) 13 

Sports betting (15) 2 

Recalculated Imbalanced Performance Category 12 

ML-algorithm Accuracy Precision Recall F-measure 

SVM/ANN 99.26 % 0.94 0.91 0.93 

Table 21. Recalculated performance for category 12 when category limitations are 
relaxed to fit a real-world scenario. In a parental control application, the pages would 

either be filtered or not, meaning the 13 false positive web pages from category 13 are in 
practical terms not false positives as they should be filtered. We then only have 3 false 
positives in the classification if the ones from category 13 are excluded. Results from 

publication [6]. 
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barely grasp the number’s significance, let alone manually working through and 

classifying all of them.  

Automatic systems must be developed to be able to keep up with the growing 

web. For professionals such as Neil, the optimal solution would be systems with 

performance at such a level that the results can be relied on without manual 

work. The research that was presented on automatic classifications is an 

approach that comes close to achieving that. Using our methods, practically 

acceptable performance was presented for all four categories with balanced 

datasets, and one example was shown of how that performance can be practically 

acceptable using highly imbalanced datasets. Still, these numbers were achieved 

in an experimental setting and might not fully translate to real world 

performance. We saw performance drops when we changed distributions and 

can expect further changes in performances in real-world settings.  

Regardless, the automatic classification performance shown in our experiments 

could already in their current state be used in many applications. The first most 

obvious practical use could be to replace existing filtering systems, in parental 

control systems and/or other web site filtering systems, in cases where our 

algorithms provide better overall performance than what is currently in use. 

These algorithms could reduce problems for Internet users by reducing the 

number of sites that become incorrectly blocked by Internet Service Providers.  

Other possible uses would be in other types of text classifications such as event 

detection, spam detection, or automatization of manual text processing tasks. 

Even in situations where our model performance is not directly usable in 

practice, the algorithms could be used to reduce the manual workload needed by 

functioning as a filter. In situations where we want to minimize false positives, 

the manual workload would be focused on going through positive label 

predictions, and in situations where we minimize false negatives, the manual 

workload would be focused on going through negative label predictions. 

 

4.2.10. Reflections on Classifications 

The automatization of classifications that was presented shows potential and 

could be adapted into a practically useful tool used by people like Neil, who 

otherwise would need to process large amounts of text through other solutions. 

Google Safe-browsing is an example of a competing product, however, the 

functionality is limited to web site URLs only, which means it cannot be used for 

general text classification (“Google Safe Browsing” 2017). ANNs performed well 
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on the balanced training data, however, we saw a significant performance drop 

when tested on imbalanced data. The ensemble performance and specifically the 

ensemble vote using SVM/ANN did well and had a lower performance drop on 

imbalanced data. 

I have two specific insights that I would like to offer regarding the performance. 

The first insight was gained from the experiments done in research papers [2] 

and [3]. Sampling the negative training data evenly between the different 19 

categories had the largest positive impact on performance of everything we did 

in our classifications, compared to fully randomized negative sampling. Even 

though we used binary classifiers, it was useful to extract features for many other 

categories. Creating more sub-categories could further increase performance. 

The second insight is one gained from publication [6], which is that multi-gram 

classifications stabilize results while increasing performance across the board.  

Going from unigram to multi-gram classifications increased our pre-processing 

and training times, however, when the difference is between having practically 

usable results and not having them, the multi-gram route becomes the obvious 

choice. 

 

4.3. Financial Analytics Results 

In this part of the chapter, we will review the financial news analytics 

contributions that are part of the thesis. We will also discuss practical tools that 

the contributions could be turned into that could directly affect Jenna’s work 

positively. People in Jenna’s line of work, such as money managers and 

institutional investors, are interested in tools that can help them decide on when 

to re-allocate portfolio holdings. Professional investors rely more on 

quantitative models and are less likely to invest based on what they see in news 

(Barber and Odean 2008). They need to keep up to date on a wide array of 

companies, both the ones they currently have holdings in and potential other 

companies. Any tools that can help them do that can be of use. Optimal tools 

should be able to recommend an action based on the data so that Jenna will not 

need to put time into analyzing the data herself. 

 

4.3.1. Dataset 

The dataset used in our financial news research was gathered at the start of the 

project by scraping web pages of the Internet. We gathered a set of roughly 

18,300 financial news articles written by about 3,600 unique authors from the 
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news site Seeking Alpha ("Stock Market Insights" 2016). The articles in the 

dataset are labelled by the authors themselves as either positive or negative. The 

label can be interpreted as a self-reported sentiment value. About 75% of the 

articles in the dataset were labelled as positive, and about 25% were labelled as 

negative. The articles gathered were published between the start of 2006 and the 

end of the second quarter of 2016. The content of each article is an analysis made 

by the author of the article about companies, commodities, indexes, sectors, or a 

combination of components. We treat the positive and negative sentiment values 

given to the articles as a reflection of the author’s expectations. The basic 

assumption made regarding author sentiment is that when an author writes an 

article about Apple Inc, and provides it a positive label, he or she predicts that 

Apple will perform better than the average company in the market, either in the 

immediate future or over the long term. This assumption also means that a 

negative label is an expectation of worse than average performance in the stock 

market. 

We can split financial news into different categories depending on the 

requirements that come with the type of news. Authors have different 

perspectives and different incentives to why they are publishing news content. 

There can also be biases in news depending on how authors are positioned 

relative to what they are writing about. For example, a gold proponent will most 

likely write positive articles about gold when he or she has the opportunity to 

voice opinions.  

If we split financial news into categories based on the requirements, the first type 

of news that needs mentioning is reports mandated by different governments or 

bodies of authority. Most governments require publicly traded companies to 

annually submit a set of financial reports that explain the state of the business. 

Misrepresenting information in such reports is illegal. The second type of 

financial news articles are reports published by registered analysts. These 

analysts have a mandate to stay objective and can also be held accountable for 

information that they publish, although that rarely happens. Registered analysts 

post suggestions and expectations regarding company performances based on 

the numbers that the companies present. Many analysts use scales of sell, hold, 

and buy to rate companies. The third type is the main source of financial news. 

Here we have journalists and industry professionals that publish articles, for 

example, at Reuters or Bloomberg’s. These types of articles can contain opinions 

and the authors are held accountable by the company’s internal ethics guidelines 

and policies. Lastly, we have crowd sourced news, such as the dataset that we 

have gathered. Crowd sourced news are news sites where anyone can post their 
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own analysis, opinions, and ideas. The only requirement to post content to such 

sites is that the post follows the guidelines of the site.  

The intent behind posts on crowd sourced news sites is not vetted, and because 

of that it would be fully possible for a person to intentionally deceive or 

manipulate others through their articles. Yet, the popularity of these types of 

sites have steadily grown over the last decade. Grown to the extent that many of 

the sites now are considered widely successful. We find this dynamic interesting 

and that is part of the reason why we chose to focus our research on this type of 

financial data. Furthermore, comparatively little research has been done on 

crowd sourced news, especially in comparison to the research done on the 

standard financial news datasets, such as the different Reuters news corpuses. 

 

4.3.2. Economic Measures and Equity Valuations 

Publicly traded markets, and the price movements of indexes and individual 

components in these markets, are a central part of most of the economies on the 

globe. While reading news, we are bombarded by different opinions, views, and 

conclusions. When we try to turn the news into investable or tradable actions, 

we are just as likely to lose money as we are of increasing our returns, unless we 

are following a rigorous approach when interpreting news. Therefore, many 

money managers, risk managers, and successful investors turn to different 

market measures to understand the markets and the investment environment. 

There are thousands of different economic measures available to choose from 

depending on what we are searching for. There are differences in measures 

depending on strategy, time frame, data types, seasonality, and many other 

factors. All measures aim to offer more information or new information about a 

specific part of the economy, for example, to help managers have more 

information available when the time comes to make decisions.  

Different economic measures are useful in different situations. Some of the best-

known metrics used to value publicly traded companies are the following: 

discounted cash flow analysis (DCF), free cash flow to equity (FCFE), price-to-

earnings ratio (P/E), price-earnings-growth ratio (PEG), enterprise value to 

EBITDA multiple (EBITDA/EV), price-to-book ratio (P/B), revenue multiples, 

and sales multiples (Damodaran 2012). These are relative measures and 

whether a company is considered overvalued or undervalued depends on what 

we are comparing the methods to. A company can be considered undervalued 

relative to its peers but overvalued relative to the broader market (Henry et al. 
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2010). Furthermore, if we are talking about size of companies, then the most 

widely used measure is market capitalization. It is the total value of the shares 

outstanding of a publicly traded company. 

In our research into financial news analytics, we are interested in developing 

new measures that could be of practical use and that could help automate news 

processing tasks. We are also interested in defining new measures that could be 

further developed into tools used inside the finance industry. This research is 

part exploratory and part quantitative. In this part, we combine our previous text 

extraction and text analytics knowledge with different types of network analytics 

to explore the relationships between companies in news. We introduce two new 

ways of measuring companies: methods for ranking companies based on news 

flow and a way of measuring sentiment-based company risks. Worth noting here 

is that we are not trying to replace traditional valuation approaches, instead we 

are developing new measures to complement the existing methods or provide 

new insights into trends, investment periods, and risks. The markets can stay 

irrational for long periods of time (Shiller 2015), which means that valuations do 

not always return to the expected valuation in the short term. Hence, we will 

cover developing methods that can help Jenna and her peers decide when to 

move in or out of positions. 

 

4.3.3. Sentiment in Finance 

Sentiment in finance differs somewhat from sentiment in violence and hate 

classifications. Sentiment refers to the tone of a text and through sentiment 

analysis we try to find either emotionally loaded words or a general tonality in 

sentences, paragraphs, or entire texts. Sentiment in finance is more complex for 

two reasons. First, the tonality and meaning of some words have been shown to 

be different in finance (Loughran and McDonald 2011). This means that we need 

additional knowledge in the form of different dictionaries or training sets when 

working on financial sentiment analysis. Second, sentiment in finance is not 

useful unless we know the specifics of what the sentiment is referring to. 

Knowing that a text is positive or negative does not add much value in finance, 

unless we know, for instance, which company or commodity the text is referring 

to. Essentially, for sentiment analysis in finance to be deemed useful, we need 

more information than general sentiment analysis offers. 

In the dataset that we gathered, we have those necessary components. We have 

the articles labelled with an author reported sentiment value, and from the texts 

we use our text-extraction methods from [1] and [4] to link the sentiment to 
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companies that are mentioned. The documents in the dataset follow a general 

structure where companies mentioned are followed by the company’s trading 

ticker in parentheses, for example, “Apple Inc. (AAPL).” That makes it easy for us 

to reliably extract all the companies tagged by the authors in the texts using 

regular expressions. Furthermore, we use a list of the company names found in 

the Standard & Poor 500 index during May 2016 to search for companies that 

the authors have mentioned but not appropriately tagged in the texts. To identify 

such companies, we search for full company name matches or partial matches in 

cases where the name contains several words. For example, in the case of 

“American Airlines Group Inc.”, we accept a match of “American Airlines” with or 

without “Group” and “Inc.” found in the text. The number of non-tagged 

companies that we find are marginal to the total number of identified company 

mentioning’s in the texts. This means that thanks to the structure of the articles, 

the identification of companies in the articles is highly accurate. 

 

4.3.4. Sentiment-based Co-occurrence Networks 

Once we have extracted the different company occurrences for each article in the 

dataset, we want to extract new information by examining relationships between 

different companies. We are also interested in finding out whether these 

relationships are different if we group the dataset into subsets based on 

sentiment polarization. 

Before we start examining the relationships between companies, we choose to 

limit the scope of our research to the companies found in the Standard & Poor 

500 index. Thus far we have extracted companies that are mentioned in the news 

articles, and now we continue building networks out of the identified companies. 

We do that, by creating co-occurrence networks of companies as described in 

section 3.3.1, the same approach as in research paper [4]. A co-occurrence is here 

defined as two companies mentioned in the same article. The basic idea is that if 

two companies often are mentioned together, then these two companies have 

formed some type of relationship. When positive or negative situations affect one 

of the companies, these situations will also influence the other company. We can 

find companies that are linked together through news by creating co-occurrence 

networks. Competitors and strategic partners are often mentioned together, 

however, it is worth noting that the two relationships are opposite. 

We start by building one co-occurrence network for each quarter, consisting of 

all the S&P 500 companies mentioned in the dataset starting from Q1 2011 and 

ending in Q2 2016. We name the networks that consist of all articles in a quarter 
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the mixed sentiment networks. As we do not have more information about the 

dynamic of the relationships between companies in the networks, we decide to 

create undirected weighted networks. With more information, we could have 

created directed graphs. Each S&P 500 company becomes a node in the networks 

and we measure the edges between nodes as the number of times the companies 

that the nodes represent were mentioned together with the other companies 

during the quarter. Two companies that occurred in articles but were never 

mentioned together in the same article would not have an edge between their 

respective nodes in the network. Figure 3 shows an example of the whole 

network structure for Q1 2011. The size of nodes in a network reflects the total 

number of co-occurrences that company had during the quarter. The length of 

the edges in the networks means nothing, the algorithm used places nodes to be 

easily visualized. From Figure 3, we find that ranking and/or filtering nodes will 

be necessary for the visualizations to be useful as it is not understandable in its 

current format. 

From there, we continue by splitting the dataset into two parts treated as 

subsets: the articles that have a positive sentiment label and the articles that 

have a negative sentiment label. We repeat the process of constructing co-

occurrence networks of companies for both subsets. We then have three 

different types of networks: mixed sentiment networks that consist of all articles 

for each quarter; positive sentiment networks that consist of all the articles with 

positive labels, which translates to about 75% of articles for each quarter; 

negative sentiment networks that consist of negative sentiment articles for each 

quarter, which translates to about 25% of articles each quarter.  

Here we partly answer research question two by showing how sentiment can be 

used to extract co-occurrence networks. Creating the mixed sentiment networks 

is the starting point to answering the fourth research question. 

 

4.3.5. Company Sentiment Rankings from News 

Now that we have converted the news articles into networks of nodes and edges 

with weights between nodes, we have enough information to start measuring 

and comparing the components in different ways. Here we come to the first 

measures used to rank companies by news flow, which could be of use to people 

like Jenna that are working in the finance industry. The methods were introduced 

in research paper [4]. 
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As mentioned in section 2.2.2.4, different centrality measures are normally used 

to quantitatively measure network components. We use the information 

centrality measure as defined in section 2.2.2.4.3, because we are interested in 

measuring the total flow through nodes by letting the flow take walks (traverse 

multiple paths), rather than just calculating the shortest path between nodes. In 

other words, by calculating information centrality we can compare the total flow 

of news through the different companies, and with the help of that we can find 

companies that have a large news presence.  

Information centrality is a relative measure where the sizes of the values depend 

on the information that is processed. By using information centrality, we can 

both rank the nodes in the networks by value and determine which components 

to filter out to make visualizations techniques useful. However, information 

centrality calculations in our networks are only useful if the graphs are fully 

connected. Nodes need to have at least one edge that connect them to the rest of 

Cluttered graph example 
          

 

Figure 3. Cluttered graph showing all S&P 500 components from Q1 2011. The figure 
illustrates why we need to filter and reduce the number of components for the 

visualizations to add any value. 
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the nodes or their information centrality values will not be comparable to each 

other. This means that the information centrality measure would not be useful 

in situations where we have several sub-networks inside a quarterly network. 

To pre-emptively remedy that problem, we need to first add a Laplace smoothing 

(Chen and Goodman 1996) to each connection between the nodes in the 

network. Laplace smoothing is an additive smoothing technique where we give 

each data point the same added smoothing value (in our case we test adding 

values 0.1 and 1). This allows us to connect all nodes and compare them to each 

other, instead of only comparing inside sub-networks. The value that we give the 

smoothing can be seen as representing unknown relationships between different 

components in the networks (Rönnqvist and Sarlin 2015). Essentially, a higher 

smoothing value would mean that we assume a higher degree of uncertainty due 

to unknown factors, such as missing data, and a low smoothing value would 

assume that the networks are less affected by unknown factors. 

We define the formula for calculating node values as a slightly modified version 

of the formula used by Rönnqvist and Sarlin (2015). Here we need to consider 

different types of networks as we earlier split the dataset into three types of 

networks (mixed, positive, negative). The formula for information centrality (51) 

is the same as in section 2.2.2.4.3, with the modification that 𝑛 is decided by the 

nodes from the different networks sets: positive network nodes (52), negative 

network nodes (53), or mixed network nodes (54): 

𝐼(𝑖) =
𝑛

𝑛𝐶𝑖𝑗+∑ 𝐶𝑗𝑗−2𝑛
𝑗=1 ∑ 𝐶𝑖𝑗

𝑛
𝑗=1

                                            (51)     

𝑛 = 𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒                                                                        (52)     

𝑛 = 𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒                                                                       (53)     

    𝑛 = 𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒                                                  (54)     

To gain an understanding of how the smoothing parameter affects the centrality 

calculations, we try two different experiments: first we calculate information 

centrality in all networks using a Laplace smoothing of 0.1, and based on these 

measures we calculate the average rank of companies over all quarters for all 

three networks. Second, we calculate information centrality using a higher 

Laplace smoothing of one and repeat the calculation of the average rank using 

this smoothing. Table 22 shows the effect that changing smoothing has on the 

average basic ranking of the S&P 500 index companies. Due to the relatively low 

average edge count in all networks (1.76 mixed, 1.64 positive, 1.49 negative), we 
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decide to continue using Laplace smoothing of 0.1 for the rest of our 

experiments.  

With the help of the information centrality measure, we can now filter which 

nodes to visualize. If we want to filter the nodes based on centrality, we have the 

option of examining companies in each network with either the highest or the 

lowest centrality values. However, analyzing nodes with the lowest centrality 

values does not make sense in this context, because there are several companies 

that are not found co-occurring in any given quarter. Visualizing and comparing 

the nodes with the lowest centrality values, would simply be an exercise in 

analyzing companies that were not mentioned. As that does not interest us in the 

context of this research, we continue by analyzing nodes based on the highest 

centrality values. 

Studying the first ranking in Table 22 tells us that it consists mostly of large 

corporations with consumer oriented products, where Apple Inc. places first in 

all rankings, and Netflix Inc. is the only company to move up many positions 

between rankings, coming into top 5 of the negative ranking. The knowledge that 

the ranking contains mostly larger companies provides us an incentive to further 

develop the ranking methods. From here on, I will refer to the ranking with 

Laplace smoothing 0.1 as the absolute ranking.  We now become interested in 

finding companies that have a high news flow relative to their size. To do that, 

we need to normalize the information centrality calculations. 

To better understand the rankings, we try two different normalizations. The first 

normalization 𝐽(𝑖), which is defined in equation (55), divides the quarterly 

centrality values by market capitalization 𝑚. The average top 25 components 

that use this single normalization are shown in Table 23, to the left. In the second 

normalization, we start by normalizing information centrality to values between 

0 and 1, this is done because the centrality measure is not linear.  Because of the 

nonlinearity, we expect ending up favoring small companies in the single-

normalized ranking. After the centrality normalization, we apply the same 

market capitalization normalization as before. The second-double-normalized 

calculations are represented in equation (56), where 𝐼𝑚𝑖𝑛 is the lowest 

information centrality value and 𝐼𝑚𝑎𝑥 is the largest value in the network. In Table 

23, to the right, the average top 25 components in the second-double-normalized 

ranking can be seen. 

𝐽(𝑖) =  (𝐼(𝑖)) ∗
1

𝑚
                                                 (55)     
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𝐽(𝑖) =  (
𝐼(𝑖)−𝐼𝑚𝑖𝑛(𝑖)

𝐼𝑚𝑖𝑛(𝑖)+𝐼𝑚𝑎𝑥(𝑖)
) ∗

1

𝑚
                                          (56)     

Studying the normalized rankings in Table 23, we find that the first 

normalization, as expected, consists of mainly small companies and that the 

second double normalization consists of a mix of different-sized companies. 

Henceforth, I will refer to the double-normalized ranking as the normalized 

ranking, and will not continue analyzing the single normalized ranking. Netflix 

Inc. places first in all the normalized averaged rankings, which makes sense as it 

was already present in the absolute rankings and has a much lower market 

capitalization than for example Apple Inc. By using information centrality to rank 

companies, we have here partly answered research question two. We have 

                                  

Table 22. Top 25 average rank for all companies by ticker from the S&P 500 list over 
the 2011 – Q2 2016 period. Split into two sets of Laplace smoothing of 0.1 and 1. 

Differences in rank between especially negative and positive networks are evident. 
The relative rank of companies does not significantly change using different 

smoothing coefficients. Results taken from publication [4]. 

 

 

Pos. Positive Mixed Neg. Positive Mixed Neg.

1 AAPL AAPL AAPL AAPL AAPL AAPL

2 MSFT GOOG AMZN MSFT GOOG GOOG

3 GOOG MSFT GOOG GOOG MSFT AMZN

4 AMZN AMZN MSFT AMZN AMZN MSFT

5 INTC INTC NFLX INTC INTC NFLX

6 FB FB WMT FB FB WMT

7 IBM WMT FB IBM IBM FB

8 WMT IBM INTC WMT WMT INTC

9 BAC NFLX IBM BAC NFLX IBM

10 GS BAC YHOO HPQ BAC YHOO

11 HPQ YHOO MS WFC HPQ MS

12 WFC GS VZ CSCO CSCO VZ

13 CSCO HPQ TGT GS YHOO TGT

14 YHOO CSCO HPQ JPM GS HPQ

15 JPM MS ORCL YHOO ORCL ORCL

16 KO ORCL CSCO ORCL MS CSCO

17 ORCL JPM T IP JPM T

18 IP WFC GS KO VZ CRM

19 BRK IP CRM C WFC GS

20 NFLX KO JPM NFLX IP JPM

21 MS VZ QCOM GM KO QCOM

22 C QCOM DIS MS T DIS

23 GM C IP JNJ QCOM BBY

24 JNJ T BBY VZ C COST

25 QCOM GM COST BRK GM MCD

Average rank top 25

Laplace 0.1 Laplace 1.0
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shown that it is possible to automatically rank companies based on news flow 

and sentiment. 

As we determined earlier in Figure 3, we need to filter visualizations to be able 

to visually interpret the networks. Using the absolute ranking, we limit 

components in graphs and diagrams to the average top 25 nodes. Visualizations 

are here used as a way of exploring the data and giving us clues to what can be 

further quantitatively researched. One way of visualizing trends is to take cross-

sectional snapshots of the quarterly networks and comparing networks in 

succession. We are especially interested in finding quarters where the 

visualizations show trends that would move in opposition to our expectations, 

                                

Table 23. Top 25 average rank for all companies from the S&P 500 over the 2011 – Q2 

2016 period when normalized. We normalize by market cap to the left. To the right, we 

first normalize information centrality values between 0 and 1 and then we normalize by 

market cap. Results from publication [4]. 

 

Pos. Positive Mixed Neg. Positive Mixed Neg.

1 QRVO QRVO FSLR NFLX NFLX NFLX

2 WRK WRK DNB NVDA BBY BBY

3 URI FSLR PKI BBY NVDA NVDA

4 FSLR URI OI IP IP YHOO

5 DNB DNB GT QRVO YHOO IP

6 PKI PKI LM GPS GPS CMG

7 PBI PBI NFX DNB DNB DO

8 OI OI HBI YHOO SPLS SPLS

9 AIZ AIZ URBN JNPR JNPR AVGO

10 AVY AVY PHM FSLR AVGO M

11 ETFC FLIR SEE SPLS CMG CRM

12 FLIR ETFC MLM SEE FSLR JNPR

13 TE HAR SNA AVGO SEE MLM

14 HAR TE CVC DPS QRVO DNB

15 PDCO PDCO TSS UA DO TGT

16 LEG LEG GAS EA UA RIG

17 GT GT FTR MU EA KSS

18 LM LM FL HPQ MU AMZN

19 PBCT PBCT NDAQ GT M GPS

20 NFX ZION AN HRS GT HPQ

21 URBN NFX ENDP DO HPQ TWC

22 ZION URBN TSO AA CHK MS

23 HBI HBI LVLT CHK COH COH

24 PHM TGNA DO CMG CRM SEE

25 TGNA PHM SWKS HRB DPS CA

Average rank top 25 normalized

Norm. by market cap Double norm.



91 

 

or quarters where trends seem to be heading in different directions in the 

different network types. 

Using graphs, we identify a unique scenario in our data in three consecutive 

quarters from Q4 2013 to Q1 2014. The divergence between the quarters is 

visualized in Figures 4 - 6. At the start of Q4 2013, the oil commodity prices 

started falling and at the same time the information centrality values of energy 

companies started to go up, meaning that energy companies started to gain more 

news coverage. The interesting pattern here is that energy companies move into 

the top 25 of the positive absolute ranking, but not into the top 25 of the negative 

absolute ranking. 

We do a few tests and comparisons to have a better understanding of what the 

news ranking we have created represents. First, we are interested to see if there 

is a difference between the representations of top ranked companies in the three 

different absolute networks. We count the times that companies are found as top 

ranked and show the counts in Table 24. We find that Apple Inc. takes the top 

spot in 59 quarters of the absolute networks. In the normalized ranking, we find 

that Netflix Inc. is the most frequent company in first place with a count of 19, 

and NVidia places second with a count of 9.  

Next, we plot information centrality for the absolute ranking to better 

understand how information centrality moves quarter-to-quarter in the 

          

 

Figure 4. Quarter 4 2013. Co-occurrence networks for absolute top 25 positive and 
negative nodes. Health care sector companies are represented in the top 25 positive 

nodes, but not in the negative, indicating that news flow increased for that sector. Thicker 
edges represent more co-occurrences between two entities and larger sized nodes 

indicate larger total sum of company occurrences. Length of edges in the networks are 
not representing any added value. Figure from publication [4]. 

Graph of absolute ranking top 25 components Q4 2013 
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different rankings. We plot the results of the average top 25 components 

information centrality for the absolute network in Figures 7 - 9. From the plots, 

we can see that the different types of networks generally move in unison up and 

down, except for some isolated quarters when the information centrality seems 

to be moving at a steeper angle in either the negative or the positive figures. Two 

examples can be seen in Q1 2012 and Q2 2015. 

 

Figure 5. Quarter 1 2014. Co-occurrence networks for top 25 positive and negative nodes. 
4 nodes from energy sector jumps into top 25 of positive but not the negative network as a 

response to falling oil prices while health care sector falls from top 25. Our default 
assumption would have been that reduced performance of the energy sector due to lower 

oil prices would be more reflected in negative sentiment. Figure from publication [4]. 

 

 

                

 

Figure 6. Quarter 2 2014. Co-occurrence network of top 25 positive and negative 
companies. Oil related energy companies fall from the top 25 representations again and 

health care sector companies enter the negative top 25. PSX shown as alone in the 
network because the Laplace smoothing links of 0.1 are not drawn to reduce noise. This 
means that Phillips 66 (PSX) is only loosely connected to the larger network. Figure from 

publication [4]. 

 

 

Graph of absolute ranking top 25 components Q1 2014 

Graph of absolute ranking top 25 components Q2 2014 
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Quarterly Top Performing Absolute Components 

Company Positive Mixed Negative Total 

AAPL 21 22 16 59 

AMZN 0 0 4 4 

GOOG 0 0 1 1 

BAC 1 0 0 1 

NFLX 0 0 1 1 

Total 22 22 22 
 

Quarterly Top Performing Normalized Components 

Company Positive Mixed Negative Total 

NVDA 4 4 1 9 

NFLX 3 7 9 19 

QRVO 3 1 0 4 

FSLR 2 0 0 2 

MCO 1 0 0 1 

DO 1 1 2 4 

GT 1 1 0 2 

DNB 1 1 0 2 

IP 1 0 0 1 

SPLS 1 2 1 4 

SEE 1 2 1 4 

BBY 1 0 1 2 

XLNX 0 1 1 2 

AES 0 0 1 1 

WAT 0 0 1 1 

DRI 0 0 1 1 

PMH 0 0 1 1 

Total 20 20 20 
 

Table 24. Companies with highest information flow per network. Results partly taken 
from publication [4], and partly extended for the thesis. 

 



94 

 

In Figures 10 and 11, we plot the mixed network information centrality values 

for the top 25 companies in the absolute and the normalized ranking. This offers 

us an insight into how the two rankings differ from each other. We can in Figure 

10 see Apple’s dominance, while other companies change positions between 

quarters. We can see that as expected, the news flow values in Figure 11 are 

slightly lower on average, and we see how different companies place in the top 

at different times in the normalized ranking.  

This far we have created two news rankings that could be of use in finding trends. 

If we try to apply them to Jenna’s work, we can at this point state that the 

measures are not yet especially useful as she needs quantitative measures that 

statistically can be shown to help make decisions. At best, the methods would 

currently be able to help her recognize new investment companies, but she 

would still need other methods to analyze the companies. 

Figure 7. Line graph of information centrality for the average top 25 components in the 

mixed absolute network for each quarter. 

 

Mixed top 25 components information centrality spread 
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Figure 9. Line graph of information centrality for top 25 negative firms for each quarter. 

 

Figure 8. Line graph of information centrality for the average top 25 components in the 

positive absolute network for each quarter. 

 

Negative top 25 components information centrality spread 

Positive top 25 components information centrality spread 
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Figure 10. Line graph of information centrality for the average top 25 companies in the 

absolute ranking. Figure taken from publication [5]. 

Figure 11. Line graph of information centrality for the average top 25 companies in the 

normalized ranking. Notice that the graph ends after Q4 2015 as we lack market 

capitalization data for the last two quarters.  Figure taken from publication [5]. 

 

Absolute ranking top 25 companies’ news flow 

Normalized ranking top 25 companies’ news flow 
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4.3.6. Company Risks from News 

As a next step, we continue development of news-processing methods based on 

the same networks. The main problem that we so far identified in our ranking 

methods is that we have not been able verify that company co-occurrences, and 

in extension the rankings, contain any statistically significant information. 

Hence, we will now focus on quantitative measurements. The way we will 

achieve this is by using text-analytics methods to assess company sentiment risk 

from news. The method presented here is part of research paper [5].  

Together with the self-reported sentiment for news articles, we use the mixed 

co-occurrence networks to develop a method that can indicate if a company is at 

higher risk of stock price decrease than the average company. Furthermore, 

statistically we will show that our methods for automatically parsing news are 

extracting useful information.  

The risk model we use is based on RiskRank (Mezei and Sarlin 2017), as 

discussed in section 3.3.2.1. The general-purpose nature of the algorithm allows 

us to adapt it to our needs. As sentiment has previously been shown to move 

markets (Bollen et al. 2011; Checkley et al. 2017), we are interested in 

demonstrating that sentiment also can be used as a valuation indicator. In order 

to do that, we continue our work with co-occurrence networks. We need to first 

calculate individual sentiment values for each company. The assumption here is 

that if we aggregate mentionings of companies per quarter, we can from these 

mentionings extract additional information. We will use the ratio of number of 

negative mentionings 𝑠𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 to positive sentiment mentionings 𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 for a 

company, during the quarter, as the sentiment input. Thus, we define a relative 

sentiment variable 𝑠𝑟𝑒𝑙 as in equation (57): 

𝑠𝑟𝑒𝑙 =
𝑠𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑠𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                  (57)     

We then use the relative sentiment value as the individual risk for companies 

each quarter and feed it into the risk algorithm together with the co-occurrence 

links that we have previously extracted for each quarter. As an output from the 

risk algorithm, we have three risk measures for each company each quarter: 

individual risk, direct risk, and indirect risk. The individual risk output is always 

equal to 𝑠𝑟𝑒𝑙 for the company, the direct risk is the sentiment risk that is 

transferred from directly linked neighbors in the network up to a cardinality of 

2. Lastly, the indirect risk is a network-wide risk value, which we interpret as the 

current market-wide sentiment risk. When we aggregate the risk values 

together, the algorithm binds quarterly risk for a company to a value between 
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zero and one where the individual risk is always the relative measure we 

calculated in (57), and the other risk components are added to the individual 

risk, but bound at an upper value of 1, and a lower value of 0. 

We have now partly answered research question four by showing how we can 

extract sentiment-based risks from news networks. Next, we will answer the 

remaining part of the question by showing how high-risk values are correlated 

to stock price movements. This also answers the last part of research questions 

one and two by showing how sentiment can be used to automate risk extraction 

from news. 

Figure 12 illustrates our approach by plotting an example of the quarterly risk 

extracted for Apple Inc., and show it next to the company’s stock price for the 

same period. Next, we move to statistically showing that stock price is at higher 

chance of decreasing 11-70 days after the risk value was measured, when 

aggregated risk reaches the maximum value of 1. Examples of aggregated risk 

Figure 12.  Two subplots comparing Apple Inc. stock price to sentiment risk during the 

analyzed period 2011 – Q2 2016. The upper risk line represents aggregated risk, the 

lowest risk line represents the individual risk, and the middle  risk line aggregates 

individual and direct risk. Figure taken from publication [5]. 

Risk to stock price comparison 
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reaching one can be seen in Figure 12 when the tops reach the upper bound of 

the lower graph during 2011 and 2014. 

To statistically show that our approach is valid, we compare aggregated risk at 

risk threshold one against a benchmark, which consists of all the available 

quarterly data points in our analysis. We also compare aggregated risk against 

individual risk, mainly to determine whether the network effects add value over 

simply using the 𝑠𝑟𝑒𝑙 individual risks alone. Due to performance constraints 

introduced by the risk algorithm, we are only able to run the calculations on 50 

components at a time. However, as we have developed two rankings that we find 

interesting, the absolute ranking and the normalized ranking, we decide to run 

our risk analysis on the components that place on average in the top 50 in either 

ranking. Twelve companies are found in the top 50 of both rankings, leaving us 

with 88 unique companies and 22 quarters of data. Here we are forced to discard 

many quarters due to not having available stock price data. We have 1864 data 

points in total for the benchmark comparisons. The reason that we choose the 

top performing components in the rankings is that they have a demonstrably 

higher news flow each quarter, which should translate into more reliable results 

than picking random components. 

Figure 13 shows the number of data points for aggregated risk and individual 

risk at threshold intervals of 0.1. We can see that aggregating risk values 

considerably increases the number of data points for higher thresholds. For 

instance, at risk threshold 1, the individual data points number only 66, which is 

equal to about 3.5% of the total number of data points, while there are 176 

aggregated-risk data points, which is equal to about 9.4% of the total quarterly 

data points.  

Table 25 compares aggregated risk against the benchmark for different ranges 

of delays. The benchmark performance is used as a comparison instead of a 50% 

comparison, because of the upward bias that the stock market has shown since 

its inception. Comparing subsets of data points to all available data points 

provides us a way of proving statistical significance. In Table 25, we can see that 

the highest standard deviation intervals that we measured are found between 

21-50-day delays, where all ranges are more than 10 standard deviations above 

the benchmark. While further examining the data, we find that we have a 13.1 

percentage point higher risk of stock price decrease at a delay of 28 days, when 

the aggregated risk measure has reached one for a company.  
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Table 26 further compares the aggregated measures against the individual 

measures, and finds that the aggregated risks outperform individual risks for the 

period of 11-40 days. Lastly, as the sets are of different sizes, we calculate the 

standard errors for the comparisons. For the periods of 11-20 and 61-70-day 

delays, which show the least statistical outperformance over the benchmark, we 

calculate the probability error to 0.09 for both ranges. For the individual subsets, 

we have a higher probability error of 0.14 as the sets have fewer data points. The 

probability error between aggregated risk and individual risk, at threshold 1, is 

0.46 for the range between 11-50-day delays. We can conclude that all errors are 

lower than the standard deviation differences.  

Research using sentiment analysis in finance has shown different time horizons 

for the predictive power, ranging from minutes to days (Bollen et al. 2011; 

Checkley et al. 2017). These studies have been conducted on other types of data, 

such as tweets, and formatted differently. Our findings here lead us to believe 

that different data types such as, for example full length articles and micro blogs, 

show predictive potential during different time horizons, and that depending on 

the methods used when aggregating and formatting data, we change when 

predictive power materializes. Self-reported author sentiment could also be 

Figure 13. Comparison of data points available at different risk thresholds with intervals 

of 0.1. Aggregated risks greatly increase data points for all higher thresholds. Results 

taken from publication [5]. 

 

Data points at risk thresholds 
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changing the predictive time horizon compared to sentiment extracted from the 

text content. 

Finally, to see what could be further improved, let us compare the sentiment-risk 

methods described so far against the optimal solution that a finance professional 

like Jenna would use to support her work. As defined in section 3.1.4, optimal 

tools should contain prescriptive elements to reduce the work Jenna has to 

perform to a minimum. They should, for example, be able to say whether an asset 

should be added or removed from a portfolio. Our sentiment-risk models fall 

short of this goal as our work so far has not included portfolio strategies. This 

means that our methods could currently only be used as support to other 

investment strategies, such as those discussed in 4.3.2. For example, if we 

Stock price decrease at risk threshold 1 

Days 
delay 

Agg. dec. 
% 

Comp.  dec. 
% Abs. diff. 

Rel. diff. 
% St. dev. 

St.dev. 
diff. 

3 to 90 46.93 42.11 4.82 11.44 2.82 1.71 

3 to 45 50.74 43.71 7.03 16.09 3.09 2.28 

45 to 90 43.28 40.58 2.70 6.65 1.29 2.09 

3 to 10 50.21 45.29 4.92 10.86 5.36 0.92 

11 to 20 52.67 46.22 6.45 13.95 1.52 4.24 

21 to 30 51.59 42.00 9.59 22.83 0.72 13.41 

31 to 40 50.11 42.75 7.36 17.22 0.56 13.22 

41 to 50 47.33 41.52 5.81 13.98 0.56 10.41 

51 to 60 47.95 41.80 6.16 14.73 0.88 6.96 

61 to 70 41.99 40.14 1.85 4.61 0.66 2.82 

71 to 80 41.31 40.17 1.14 2.83 1.29 0.88 

81 to 90  39.83 39.73 0.10 0.26 1.22 0.08 

Average 47.00 42.17 4.83 11.29 1.66 4.92 

Table 25. Average stock price decrease for different periods of time after news risk has 
reached the maximum value of 1.0. We compare aggregated risk at threshold 1 against 

the baseline risk of all data points. Results taken from publication [5]. 
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through a book-to-market valuation analysis find that Walt Disney Co. fit wll to a 

portfolio, we could complement that analysis with our sentiment-risk analysis. 

This could help us determine whether now is an excellent time to invest or 

whether we should wait until the sentiment risk is reduced. 

 

4.3.7. Uses and Practical Relevance 

In sections 4.3.4 – 4.3.6, we saw how it is possible to combine text-analytics 

methods with network-analytics methods to automate news processing and 

develop new ways of extracting data from financial news. These new measures 

Aggregated vs. individual stock price decrease at risk threshold 1.0 

Days 
delay 

Agg. 
% 

decr.  

Ind. 
% 

dec. 

Comp. 
% 

decr. 

Agg. 

diff. 

Ind. 

diff. 

Comp. 

st.d. 

Agg.st. 

d.diff. 

Ind.st. 

d.diff. 
Agg. st.d. 
outperf. 

3 to 90 46.93 44.11 42.11 4.82 2.00 2.82 1.71 0.71 1.00 

3 to 45 50.74 45.42 43.71 7.03 1.71 3.09 2.28 0.55 1.72 

45 to 90 43.28 42.86 40.58 2.70 2.28 1.29 2.09 1.77 0.33 

3 to 10 50.21 41.86 45.29 4.92 -3.44 5.36 0.92 -0.64 1.56 

11 to 20 52.67 48.33 46.22 6.45 2.11 1.52 4.24 1.39 2.85 

21 to 30 51.59 45.91 42.00 9.59 3.91 0.72 13.41 5.46 7.95 

31 to 40 50.11 44.85 42.75 7.36 2.10 0.56 13.22 3.77 9.46 

41 to 50 47.33 45.91 41.52 5.81 4.39 0.56 10.41 7.87 2.55 

51 to 60 47.95 48.03 41.80 6.16 6.23 0.88 6.96 7.05 -0.09 

61 to 70 41.99 41.06 40.14 1.85 0.92 0.66 2.82 1.40 1.42 

71 to 80 41.31 41.52 40.17 1.14 1.34 1.29 0.88 1.04 -0.16 

81 to 90  39.83 39.09 39.73 0.10 -0.64 1.22 0.08 -0.52 0.61 

Average 47.00 44.08 42.17 4.83 1.91 1.66 4.919 2.487 2.432 

Table 26. Average stock price decrease for different periods of time after news risk has 
reached the maximum value of 1. We compare aggregated risk against individual risk. 

Results taken from publication [5]. 
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that we developed can be of practical use to financial industry portfolio 

managers, such as the fictional person Jenna and to traders, investors, and risk 

managers. We defined two ways of ranking companies based on news flow which 

could, for example, be of use to find companies whose stock prices are highly 

news driven. Building on these methods, we were able to define an algorithm for 

extracting sentiment risk for companies. These risk values could be of use to risk 

managers or portfolio managers when determining whether to invest in a new 

company or whether it would be a good idea to rotate out certain companies 

from a portfolio of stocks. Portfolio management is largely about minimizing 

risks and our methods have demonstrated how we automatically can extract 

measurable sentiment risks. These tools could, for example, be further 

developed to create new portfolio management strategies. They could also be 

used by investors and traders to develop investment strategies, and maybe 

further developed into machine learning based automatic investment strategies. 
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5. Conclusion 

At the start of the thesis, the goal was set to develop new methods using text 

analytics that could be used within the security and/or the financial industry to 

automate different types of text processing tasks. Two fictional people, Neil and 

Jenna, have been used as examples of industry experts to show how the methods 

developed could be used by similar people in real world scenarios. 

In section 1.1, statistics were provided on the differences between leaders and 

followers in the digital economy. A majority of survey responders said they 

believed that current business models would be obsolete by 2020. This further 

showed that the leaders in the digital economy have a strong presence in 

analytics and that a large number of companies are lagging in that regard, 

especially when analyzing the use of machine learning. In this thesis, two 

automation approaches that provide various new insights into these relevant 

points have been presented. Furthermore, we have seen how both approaches 

can serve as the foundations of systems solving practical problems. 

In the security industry, the battles against threats are many and continuous. One 

of the problems is keeping up to date with the expanding Internet. No economic 

way of manually keeping track of all the web sites available exists, and because 

of this there is a definite need for automatic systems that tag, filter, and keep 

track of security threats. We have developed new advanced analytics models for 

automatic classification, which show promise. These models use machine 

learning, ensemble learning, and state-of-the-art techniques by combining 

features extracted through sentiment analysis and multi-gram similarity 

extraction. Using these methods, we showed how we can, under certain 

conditions, reach performance that is applicable on highly imbalanced data. 

In the finance industry, there is an ever-present need for finding new methods, 

new tools, and new measures that can provide an edge over the competition, 

because there is always someone else on the other side of asset trades. In this 

thesis, an approach was presented as to how we can automate news parsing by 

using advanced-analytics methods that combine text analytics and network 

analytics techniques. Furthermore, it was shown how we, through text-analytics 

and network-analytics methods, can develop ways of extracting new information 

from financial news. We statistically showed that automated parsing of news can 

contain predictive power. Finally, we showed how the predictive power 

manifests using our automated news processing as a higher chance of stock price 

decrease at high sentiment risk. This could be used by industry professionals to 
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complement relative valuation approaches by adding information telling us 

when it is beneficial to enter or exit positions.  

 

5.1. Answering the Research Questions 

Research Question 1: How can we use analytics to automate text processing 

tasks? 

There are several different ways of automating text processing. Both methods 

presented in the thesis start with a generalized approach of extracting texts from 

a data source. The fundamentals for the text extractions are defined in research 

paper [1]: segmentation, tokenization, stop word removal, key word matching, 

and TF-IDF weighting. We then continue by converting the extracted texts into 

numerical measures using pre-processing steps. When using machine learning, 

we convert text into features and when performing news parsing, we convert 

texts to networks [2-6]. Lastly, we can apply different mathematical methods to 

the numerical measures to complete the automation of the processing tasks. In 

automatic classifications, we can use different machine learning algorithms such 

as the ones we tested (NB, DT, k-NN, SVM, ANN) or other similar algorithms. The 

machine learning algorithms can be applied either alone or in combination 

through ensemble classifications [2], [3], and [6]. In text parsing, we showed that 

we can also use centrality measures and/or network risk measures to extract 

information from networks. To achieve this, we use the networks created out of 

the texts. While we in our experiments used co-occurrence networks, there are 

also other network alternatives (Aggarwal 2011). Depending on the type of flow 

we want to measure, we choose either a network measure such as information 

centrality or eigenvector centrality, or a risk measure such as RiskRank. 

Research Question 2: In which ways can sentiment analysis be useful when 

automating processing tasks? 

In automatic classifications of violent and hateful content, we have seen that 

classification performance can be improved when sentiment features are added 

to the existing feature sets [2], [3]. However, this is not the case for all types of 

machine learning algorithms and all categories. The machine learning algorithms 

that in some cases showed improved F-measures when adding sentiment 

features were NB, SVM, ANN, and DT. When tested, we found that k-NN in most 

cases had reduced performance with sentiment features [6]. When using k-NN 

algorithms, attribute normalization could maybe improve the performance, as 
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the variance in the sentiment values is higher than the other features that are 

bound between 0 and 1. 

Researchers in finance have shown that sentiment can be used to predict 

movements of indexes in stock markets (Bollen, Mao, and Zeng 2011). Using 

network analytics and sentiment, we created new ways of ranking companies. 

Furthermore, we showed that it is possible to build and compare different types 

of networks using sentiment polarizations and co-occurrences and we can 

through network theory find interesting trends in the data [4].  We can also 

extract sentiment-based risks from news. These sentiment risks represent three 

different risk components in the networks: individual company risks, direct 

company risks, indirect company risks [5]. 

Research Question 3: What can be done to improve unigram classification 

performance for hate and violence texts? 

Sentiment features can improve classifications of NB classifiers when combined 

with unigram or n-gram features, but it depends on the category [2], [3]. We also 

found that performance can be improved when using sentiment features and 

ANN, SVM, and DT, but generally not when using k-NN [6]. When we do ensemble 

classification of different algorithms, it seems to be on a case-by-case basis 

whether sentiment features will improve classification performance on balanced 

data. Furthermore, we showed that multi-gram classifications that combine 

unigram, one-gram, tri-gram, five-gram, and sentiment features increases F-

measure performance in most cases to levels above other approaches tested [6]. 

However, whether sentiment features will increase performance when using 

multi-grams varies and needs to be tested for each category.  

While ANNs performed best on balanced sets, they seem to overfit, and did not 

perform as well on the imbalanced testing sets that better represents a real-

world setting. While testing on imbalanced data, we found that ensemble voting 

using SVM/ANN gave the best results for all categories except category 8, where 

the ensemble using SVM/ANN/DT performed better [6]. We also found that as 

concerns multi-gram classifications, sentiment features improve performance in 

some cases, but not the majority of those tested. We were not able to find a 

pattern to when they add value to multi-gram classification. As the ensemble 

algorithm of SVM/ANN did not perform exceptionally well on balanced datasets, 

this shows us that it is useful to test different ensemble combinations on different 

data skews and not only stick to the best performing for balanced sets. 
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Research Question 4: Can risks extracted from sentiment networks predict 

company stock price movements? 

We can make comparisons between subsets of quarters and determine whether 

high risk indicates higher chance of stock price decrease if we limit data points 

by risk threshold. Comparisons of stock price decrease probability at high risk 

values were performed using top 50 performing components in both the 

absolute and the normalized rankings [4, 5]. By taking a subset of data points at 

risk threshold of 1, which was the highest possible risk using our model, and 

comparing these quarters to a baseline, which consisted of all analyzed data 

points, we statistically showed that companies that register a risk value of one 

are at higher chance of stock price decline for a period of 11-70 days after a 

quarterly risk measurement [5]. At the same time, we managed to determine that 

aggregated network effects, using our dataset, on average had a higher chance of 

stock price decrease than individual sentiment risk, for the period of 11-50 days 

after a quarterly risk measurement [5]. Additionally, aggregating the three risk 

components in our comparisons significantly increased the number of quarters 

with high-risk values, going from 3.5% of the data points to 9.4% at risk 

threshold of one [5]. Finally, we found that the companies whose sentiment risks 

we analyzed in our experiment are 13.1 percentage points more likely to have 

reduced stock price at a delay of 28 days after a quarterly risk measurement of 

one [5]. However, we are only able to determine the probabilities for directional 

moves, not the magnitude. 

 

5.2. Limitations 

The automatic classification research has been tested to date only on hateful and 

violent text content. The methods can be applied on any type of text content, but 

the performance tests of the models have so far been limited to these categories. 

For the methods to be used on other types of text, a similar type of training set of 

text data would be needed. Furthermore, the classification research that was 

performed has been limited to binary classifications. The models would have to 

be modified to accept more than two labels. The models will not perform well in 

situations where the text content of categories regularly change, without also 

updating the models. The classification models will also only perform well in 

situations where the labelled training instances offer an accurate representation 

of future data that will be used. 
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Our approach to automating news processing has been limited to crowd sourced 

financial news data. For the methods to be applicable on other types of data, we 

need to be able to extract labels like the sentiment labels, negative and positive 

found in our dataset. To create networks out of a text dataset, we also need 

predefined entities that we search for in the text. The risk measures that we 

extracted are currently performance constrained, and because of that we cannot 

use more than 50 components in our current models at once even though we had 

a total of 500 components that we were ranking. 

 

5.3. Future Research 

Future work in automatic classifications will be divided into three different 

areas. As we were able to show that text classifications can be improved by 

including different types of feature extractions, we will consider comparing and 

possibly combining our approach with other relevant approaches, such as the 

approach presented by (Kusner et al. 2015). The second research avenue will be 

considering feature selection algorithms on the ensembles and multi-gram 

classifications that were presented. The third avenue will be considering more 

mathematical approaches, such as evolutionary computing, recurring neural 

networks, LSTMs, other ensemble algorithms, and feature normalization. The 

classification research will also be further extended to other types of datasets to 

see whether the performance is generalizable to other types of categories.  

In the financial news research, the research will continue in four directions. First, 

I am interested in portfolio allocation strategies using the sentiment risk as 

signals. Second, I will consider creating automated trading strategies using the 

sentiment risk. Third, I am interested in extending the sentiment measurements 

from quarterly measurements into rolling averages with different time periods. 

Fourth, the risk research so far was performed on top performing components 

in the rankings due to performance constraints. I will develop a risk algorithm 

that can support more simultaneous components, and research whether the 

normalized and absolute rankings contain different predictive power.  
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