
Turku Centre for Computer Science

TUCS Dissertations
No 222, May 2017

Tewodros Deneke

Proactive Management of
Video Transcoding Services

Proactive Management of Video
Transcoding Services

Tewodros Deneke

To be presented, with the permission of the Faculty of Science and
Engineering of the Åbo Akademi University, for public criticism in

Auditorium XX on May 4, 2017, at 12 noon.

Åbo Akademi University
Faculty of Science and Engineering

LT1, Universitetsbacken, 20520 Åbo, Finland

2017

Supervisors

Docent Sébastien Lafond
Åbo Akademi University
Faculty of Science and Engineering
LT1, Universitetsbacken, 20520 Åbo
Finland

Reviewers

Professor Jean-François Nezan
Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coësmes - CS 70839
35708 Rennes Cedex 7
France

Assistant Professor Jarno Vanne
Department of Pervasive Computing
Tampere University of Technology
Korkeakoulunkatu 10, 33720 Tampere
Finland

Opponent

Professor Jean-François Nezan
Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coësmes - CS 70839
35708 Rennes Cedex 7
France

ISBN 978-952-12-3536-8
ISSN 1239-1883

Abstract

The consumption of digital video has tremendously increased in the last
decade due to advances in information technology, computational capability
and communication networks. Following that, video processing applications
such as video encoding, transmuxing and transcoding are increasingly being
deployed as a service in cloud-based environments. However, these services
exhibit high variations in required computational power depending on input
video characteristics, processing parameters and request arrival rate pat-
terns. Such differences critically affect the efficient management of comput-
ing resources and in turn the running cost of these services. Also, since cloud
and distributed computing infrastructures are made up of modern multicore
processors, multimedia processing services running on top of them need to
be parallelized to enhance overall system utilization further. The primary
focus of this thesis is thus the proactive management of multimedia process-
ing services and their parallelization. A solution has been sought to these
problems in the context of video transcoding services.

To obtain enough information on the characteristics of real world videos
and their transcoding parameters needed to model transcoding workload,
a video characteristics dataset was built using data collected from a large
video-on-demand system, YouTube. The dataset contains a million ran-
domly sampled video instances listing various fundamental video features.
Analysis of the dataset provides insightful statistics on the main online video
characteristics that can be further exploited to optimize or model compo-
nents of a multimedia processing systems. Driven by the insight gained from
our datasets an approach to predict transcoding workload of a video given
transcoding parameters was proposed. The approach treats video transcod-
ing time as a target variable and predicts it using a model learned from past
observations. These observations are divided into training and validation
sets while learning the prediction models. The method predicts the transcod-
ing time as a function of several parameters of the input and output video
streams. The effectiveness of the method is shown via comparing the result-
ing predictions with the actual transcoding times on unseen video streams. A
squared correlation (predicted vs. measured) of 0.958 has been achieved by
the best prediction model on 20-second video segments. Furthermore, simu-

i

lation results show that the proposed prediction method enables significantly
better resource management approaches. More specifically, a proactive load
balancing method for transcoding jobs across virtual machines is presented
and compared with standard load balancing methods in terms of total system
utilization and quality of service. Up to 15% improvement has been achieved
in terms of system throughput over the round robin and queue length ap-
proaches on a fixed server capacity. Also, a proactive provisioning method
that enables provisioning of the right amount of transcoding servers for a
given quality of service was presented and evaluated. An Experiment has
shown that using proactive provisioning rather than fixed worst case based
provisioning saves up to (86%) in terms of virtual machine (VM) hours over
the course of a week. Also up to 8% in VM hours has been shown to be saved
when augmenting proactive provisioning with proactive load balancing.

In addition to the proactive management of computing resources proper,
parallelization of the video transcoding application is important in order to
ensure efficient utilization of modern multicore processing units that consti-
tute modern cloud and distributed computing infrastructures. To this end,
this thesis provides a solution that allows convenient integration of fine-
grained parallel dataflow based implementations of video processing compo-
nents into existing transcoding frameworks. The primary aim of this pro-
posed solution was to facilitate fine-grained parallelization of video process-
ing components better. Course grained parallelization approaches for video
transcoding applications at a group of pictures level and based on a message
passing programming model are also presented and evaluated in terms of
scalability and throughput. Results show that the proposed parallelization
approach scales almost linearly to the number of cores.

ii

Sammanfattning

Konsumtionen av digital video har ökat oerhört under det senaste decen-
niet som ett resultat av framsteg inom informationsteknologi, beräkningska-
pacitet och kommunikationsnät. Till följd av detta används videobearbet-
ningsapplikationer såsom videokodning, transmuxning och transkodning allt-
mer som tjänster i molnbaserade miljöer. Dessa tjänster uppvisar dock höga
variationer i beräkningskraft som behövs beroende påegenskaper hos in-
gångsvideon, processeringsparametrar och ankomstmönster påbegäran. Så-
dana variationer har en betydande inverkan påeffektiviteten av använda da-
torresurser och därmed ocksådriftskostnaderna för dessa tjänster. Eftersom
moln och distribuerade datorinfrastrukturer består av moderna flerkärniga
processorer, måste multimedia bearbetningstjänster som körs pådem paral-
lelliseras för att ytterligare förbättra det totala systemutnyttjandet. Tyn-
gdpunkten i denna avhandling handlar alltsåom de olika forskningsfrågorna
relaterade till proaktiv hantering av multimediabearbetning och deras par-
allellisering. Vi söker lösningar pådessa problem i samband med videotran-
skodningstjänster.

För att fåtillräckligt med information om egenskaperna hos verkliga filmer
och de transkodningsparametrar som behövs för att modellera transkod-
ningens arbetsbelastning, byggde vi en ett dataset med videoegenskaper
med hjälp av data som samlats in från ett stort video-på-begäran-system.
Datamängden innehåller en miljon slumpmässigt utvalda videor som up-
pvisar olika grundläggande videoegenskaperna. Analys av datasettet ger
intressant statistik om grundläggande egenskaper hos online videor som kan
utnyttjas ytterligare för att optimera eller modellera komponenter i ett mul-
timediabehandlingssystem. Grundat påinsikterna från vår datamängd föres-
logs en metod för att förutsäga transkodningens arbetsbelastning från en
video till en annan med givna transkodningsparametrar. Tillvägagångssät-
tet behandlar videotranskodningstiden som en stokastisk variabel och förut-
säger den från statistik av tidigare observationer. Metoden förutsäger tran-
skodningstiden som en funktion av flera parametrar hos ingångs- och ut-
gångsvideo strämmar. Effektiviteten av metoden visas genom att jämföra de
resulterande förutsägelserna med de faktiska transkodningstidena påosedda
video strömmar. Simuleringsresultat visar att vår förutsägningsmetod möjlig-

iii

gör betydligt bättre resurshanteringsmetoder. Närmare bestämt presenteras
proaktiv lastbalansering strategin för transkodning över virtuella maskiner
och jämförs med klassiska lastbalansering metoder när det gäller total sys-
temutnyttjande och kvaliteten påtjänsterna.

Förutom proaktiv hantering av datorresurser är en lämplig parallellis-
ering av videotranskodningsprogrammen viktig för att garantera en effek-
tiv användning av moderna multikärnarkitekturer som utgör moln och dis-
tribuerade datorinfrastrukturer. För det här ändamålet presenterar avhan-
dlingen en lösning som möjliggör bekväma fingranulära parallella imple-
menteringar av videobearbetningskomponenter med hjälp av dataflödes pro-
grammeringsspråk. Grovgranulära parallella metoder för videotranskodningap-
plikationer pågroup of picture nivån, baserade påmessage passing program-
meringsmodellen, presenteras ocksåoch utvärderas med avseende påskalbarhet
och kapacitet.

iv

Acknowledgements

This thesis has resulted from efforts and support of many people and it is my
pleasure to express my sincere gratitude to all those who have contributed
in one form or another towards its completion.

Firstly, I would like to thank my supervisor Sébastien Lafond for believ-
ing in my efforts and giving me the constant support need to continuously
improve my research and finally complete this thesis. At the same time, I
would like to thank Professor Johan Lilius for giving me the opportunity to
pursue doctoral studies and to work at the Embedded Systems Lab.

I also wish to thank Professor Jean-François Nezan and Assistant Pro-
fessor Jarno Vanne for their time and efforts in reviewing my thesis and pro-
viding valuable and constructive comments, which helped in preparing the
thesis into its current form. I am also grateful to Professor Jean-Francois
Nezanand for his kind acceptance to act as the opponent at my doctoral
defense.

The research work presented in this thesis including the collection of
papers is a result of several peoples’ ideas and efforts. I am especially grateful
to all my co-authors: Fareed Jokhio, Habtegebreil Haile, Adnan Ashraf,
Lionel Morel, Sébastien Lafond, Johan Lilius. Also, I would like to thank
everyone for the efforts related to the various open source projects such as
FFMPEG and Orcc that have been essential for this work to be possible.

I would like to extend my gratitude to my teachers at the Department of
Information Technologies, especially Mats Aspnäs, Jerker Björkqvist, Hannu
Toivonen, Nybom, Kristian and Ivan Porres. I also wish to thank my col-
leagues in the Embedded Systems Laboratory, particularly Fareed Jokhio,
Johan Ersfolk, Wictor Lund, Sudeep Kanur and Georgios Georgakarakos.

Furthermore, I want to acknowledge the support of the administrative
and technical personnel at the Department of Information Technologies.
Among others, I would like thank: Christel Engblom, Tove Österroos, Karl
Rönnholm, Tomi M äntylä, Nina Rytkönen, Pia Kallio, Joachim Storrank
and Niklas Grönblom.

I am highly grateful and honored to receive generous scholarships and
grants from Turku Centre for Computer Science (TUCS), Åbo Akademi Uni-
versity, European digital innovation and entrepreneurial (EIT Digital), and

v

Ulla Tuominen Foundation. Without such support, this work would not have
been possible.

Last but not least, I thank my family for their endless love and support
throughout my long journey leading to now. I wish to express my deepest
gratitude to my late mother and father for their selfless love and profound
dedication in creating the ideal environment. I would like to also thank my
sisters and brother for their constant encouragement and support. I would
also like to thank Faezeh Siavashi which I consider my family for her love
and understanding and filling my days in Finland with joy.

Tewodros Deneke
Åbo, February 2016

vi

List of Original Publications

1. Tewodros Deneke, Sébastien Lafond, Johan Lilius. Analysis and
Transcoding Time Prediction of Online Videos. In Proceedings of
the IEEE International Symposium on Multimedia, 2015 IEEE Inter-
national Conference, pages 319–322. Miami, Florida.

2. Tewodors Deneke, Habtegebreil Haile, Sébastien Lafond, Johan Lilius.
Video Transcoding Time Prediction for Proactive Load Balancing. In
Proceedings of the International Conference on Multimedia and Expo ,
2014 IEEE International Conference, pages 1–6. Chengdu,China.

3. Tewodros Deneke, Lionel Morel, Sébastien Lafond, Johan Lilius. Inte-
gration of Dataflow Components Within a Legacy Video Transcoding
Framework. In Proceedings of the International Workshop on Signal
Processing Systems, 2015 IEEE International Conference, pages 1–6.
Hangzhou,China.

4. Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien Lafond, Johan Lil-
ius. Bit Rate Reduction Video Transcoding with Distributed Comput-
ing. In Proceedings of the 20th International Euromicro Conference on
Parallel, Distributed and Network-based Processing, 2012, pages 206–
212. Munich, Germany.

5. Tewodros Deneke, Sébastien Lafond, Johan Lilius. Proactive Man-
agement of Video Transcoding Services. Submitted to ACM Trans.
Multimedia Comput. Commun. Appl., 2016, pages 1–19. NY, USA

vii

viii

Contents

I Research Summary 1

1 Introduction 3
1.1 State of the Art . 4
1.2 Research Questions . 6
1.3 Research Contributions . 7
1.4 Research Methods . 9
1.5 Thesis Organization . 10

2 Background and Related Work 11
2.1 Video Transcoding . 11
2.2 Cloud Computing . 14
2.3 Machine Learning . 16
2.4 Transcoding Workload Understanding 19
2.5 Transcoding Workload Modeling and Prediction 21
2.6 Proactive Transcoding Resource Management 23
2.7 Transcoding Parallelization 24

3 Contributions of the Thesis 27
3.1 Analysis and Characterization of Online Video 27
3.2 Prediction of Video Transcoding Time 30
3.3 Proactive Management of Transcoding Services 35
3.4 Parallelization of Transcoding 38
3.5 Interfacing Dataflow with Imperative Code 39

4 Overview of Original Publications 47
4.1 Overview of Original Publications 47
4.2 Discussion . 50

5 Conclusions and Future Work 53

II Original Publications

ix

x

Part I

Research Summary

1

Chapter 1

Introduction

Creation of multimedia content and the ability to exchange it seamlessly
across space and time has brought convenience to our lives and altered our
ways of communication. Currently, we can create rich multimedia content
and share it globally in an instant. This development can be attributed to
advances in information technology, computational capability and commu-
nication networks.

Multimedia systems are inherently composed of components which are
directly related to processes of content creation, compression, storage and
distribution. Multimedia content creation involves capturing and digitiz-
ing of media such as video and audio. Advances in information technology
have provided us with inexpensive and easy to use capturing and render-
ing devices which are suitable for various scenarios. With the availability of
such devices, we are now capturing enormous amounts of multimedia con-
tent which require significant amount of storage. Storage and compression
of multimedia involve the process of saving and archiving media content for
later use. State-of-the-art compression algorithms and standards have been
developed to minimize necessities for storage and distribution. Multimedia
distribution involves the process of moving media content via cables, optical
networks, wireless networks, satellites and any combination of them. Recent
advances in digital communication networks and protocols have brought the
possibility of instant access and real-time interactivity to media content.

Even though technological advances have brought us the convenience and
easy of use in capturing, processing and distributing multimedia content,
they have also brought an ever-growing variety of capturing devices, ren-
dering devices, compression standards and transport protocols. This means
content producers and video on demand service providers need a way of
adapting their content to fit various devices and standards so that end users
doesn’t have to care how the content is delivered to their devices.

3

Transcoding is currently the principal method used for changing one en-
coded media format into another to adopt the media content to various
standards, device resolutions, network protocols and bandwidth. However,
transcoding is a computationally intensive process and requires a cluster of
servers to operate. Infrastructure as a service (IaaS) clouds such as Amazon
Elastic Compute Cloud (EC2), Google Compute Engine and Azure Com-
pute provide virtual machines (VMs) based on pay as you go pricing model.
Transcoding services such as Zencoder and Amazon Elastic Transcoder have
been developed on top of these public IaaS clouds and other private ones
[1, 2, 3]. These transcoding services are then presented to consumers as soft-
ware as a service (SaaS) using pay as you go model. Managing and effective
utilization of IaaS resources is, therefore, vital for transcoding services as it
reflects on their overall running cost and performance and is the main topic
of this thesis.

1.1 State of the Art

One form of multimedia which has recently gained a lot of popularity is
video. The consumption of video by individuals has become more heteroge-
neous considering content requested, network connections, and display de-
vices. Video transcoding together with adaptive streaming solutions aims to
address this growing heterogeneity by offering users with multiple versions
of a given video tailored to their various devices and network connections.
This means, each version of a given video is encoded at a different bitrate,
resolution and with a different codec so that the user is served with the most
suitable format for his choice of device and network connection. Currently,
video transcoding is being utilized for such purposes as a bit-rate reduction
to meet network bandwidth availability, resolution reduction for display size
adoption, temporal transcoding for frame rate reduction and error resilience
transcoding for ensuring high quality of service (QoS) [4, 5, 6, 7, 8].

To design an efficient and well-founded video transcoding system, one
needs to understand the current state of consumption of video content.
Lately there has been significant research on understanding the workloads
of new generation video services. These research especially focus on the
social aspect of videos and traffic characterization such as popularity, ac-
tive lifespan, user access pattern, growth pattern, request patterns and their
implication on the design of large-scale video-on-demand services such as
caching and networking [9, 10, 11, 12, 13]. On the other hand collecting
statistics of lower level video characteristics such as video length, size, bi-
trate, framerate, codec type and resolution besides the social aspect and
traffic characterization of such services is becoming necessary as it can guide
the efficient management of processing capacity of large-scale video process-

4

ing services [14, 15].
Because video transcoding is a computationally intensive process and

requires expert knowledge, it can not usually be done on the consumer side.
Transcoding video content at different screen sizes, bitrates and quality levels
requires not only time, expertise and equipment but also storage capacity
and extensive planning in the design and automation of video transcoding
workflows. Therefore, content providers, such as YouTube, rely on private
and public cloud computing services for large scale video transcoding. As
a result, cloud-based transcoding services have emerged to automate and
virtualize the complex and cumbersome process of video transcoding for
content providers and individuals [2, 1, 16].

Cloud computing is a form of on-demand computing and a way to use
dynamically scalable and configurable virtual shared pool of resources as a
service through an on-demand request over the internet. The main char-
acteristics of the cloud include high scalability and availability. Scalability
means that the cloud infrastructure can be expanded to large scale with sev-
eral resources. Availability means that the services are available even when
quite a number of nodes fail. In addition to such features, the cloud brings a
new kind of business model to the IT industry where users pay for only the
time they require the service (resource). Services such as video transcoding
can use cloud resources and be presented as a pay as you go cloud services
[17].

Managing cloud computing resources efficiently is necessary for service
providers as it directly affects the cost of running the service. To proactively
manage a cloud based video transcoding service, one needs to know the com-
putational load it will encounter in the future. This load among other things
depend on the amount of incoming transcoding tasks and their sizes. Previ-
ous research in the area has proposed algorithms that provide mechanisms
for allocation and deallocation of resources based on a regression model that
tracks and predicts aggregated target transcoding rate of videos in a system
[18, 19].

In addition to high-level optimization and management of transcoding
services, it is also important to explore the possibility of more fine-grained
parallelism inherent in the transcoding operation itself. The need for paral-
lelization is becoming more apparent as computer architectures are moving
towards multi and many core concepts rather than pushing the speed (fre-
quency) of a single core. New parallel programming models and tools have
been developed to utilize this opportunity. Parallel computing concepts and
methodologies have been around for decades and have evolved depending
on available hardware platforms. However, the foundation is still the same.
In general, parallel computing is mostly based on data parallelism and task
parallelism concepts. In data parallelism, a set of program instances work
on a different portion of an input data in parallel. On the other hand in task

5

parallelism, a program is divided into tasks which can operate in parallel
and pipelined manner. Currently, several parallel programming models exist
as an abstraction over hardware and memory architectures. Among others,
the most notable one is the threads model. Threads are the smallest and
most basic unit of execution consisting of a set of instructions that can be
managed by a runtime (operating) system’s scheduler. Using threads pro-
grammers express explicitly the parallelism that exists in a given program
on a shared memory. The programmer also needs to explicitly manage the
synchronization among threads working on a shared memory to avoid any
resulting non-determinism. This is, of course, challenging, time-consuming
and error-prone process as threading becomes essentially a way to only prune
non-determinism after its introduction. More abstract programming models
have been developed to enable programmers to express parallelism implicitly.
Dataflow is one model of computation that can be used to express program
parallelism implicitly. Among others, the main advantages of using dataflow
as the main programming model include ease of use, flexibility, automatic
analyzability, automatic parallelizability, visual presentability and above all
side-effect-freeness [20, 21, 22].

1.2 Research Questions

Video transcoding services are becoming important as the variety of video
coding formats, end user devices and delivery networks are growing. In this
thesis work, the primary focus is on the research issues related to 1) proac-
tive management of transcoding service resources and 2) parallelization of
the transcoding operation. Proactive management of transcoding service
resources leads to an optimal provisioning and utilization of computing re-
sources for a given quality of service (e.g. transcoding task waiting time or
delay). Parallelization of the transcoding operation enables efficient utiliza-
tion of the state of the art parallel hardware architectures that are used to
host the transcoding services.

To be able to proactively manage resources needed in a video transcoding
system one needs to first answer the question what is the current state
of video consumption from such perspectives as device resolution
and bandwidth? Analysis and understanding of the usage (consumption)
of video from various perspectives such as popularity of codecs, popularity of
device resolutions and bandwidth requirements is necessary to understand
and simulate real world workload patterns in video transcoding services.
Transcoding services require various types of resources which include com-
puting, storage and bandwidth. Proper management and efficient utilization
of these resources will lead to lower cost and better quality of service. This
means, one needs to make sure that just the right amount of resources are

6

being provisioned for the required quality of service at the right time. And
since being proactive requires ahead of time knowledge of the system load, it
thus becomes crucial to answer the question Is it possible to accurately
anticipate the resource requirements of a transcoding service ahead
of time? This means predicting video transcoding workload. Then the next
research question is How to design novel resource management algo-
rithms exploiting the transcoding workload predictions? Finally,
to efficiently utilize modern multi-core heterogeneous computing platforms
used to build current computing infrastructures, the question of how is it
possible to parallelize the transcoding operation itself? needed to be
addressed. The contributions of this thesis follow directly from the questions
paused in this section and are presented in the next section.

1.3 Research Contributions

In this thesis, approaches for proactive management of video transcoding
services and parallelization of video transcoding operation have been devel-
oped. To understand and model real world video transcoding workloads,
we mine the web for video resources and analyze the state of current on-
line video [23, 24]. Based on the insight gained from the data we propose
and show how a video transcoding prediction model can be built [23, 24].
Further more we show how the transcoding time prediction models can be
used in resource management algorithms such as load balancing, provisioning
and admission control [25].To further ensure efficient utilization of resources
we propose course grained parallelization approaches for video transcoding
[26, 27]. We also show how dataflow programming paradigm can be utilized
to facilitate fine-grained parallelism in video transcoding applications [28].
A brief overview of the main contributions is presented in the following sec-
tions and in part II the contributions are presented in detail as part of the
original Publications.

1.3.1 Understanding State of Online Videos

As previously mentioned, proactive management of video transcoding ser-
vices requires understanding the state of online videos in terms of their fun-
damental characteristics such as bitrate, framerate, coding standard and
resolution. Knowledge of these basic video characteristics is an important
first step in modeling and characterizing expected workload of transcoding
services. In this thesis, the first contribution is thus a video characteristics
dataset and descriptive statistics that summarizes the current state of on-
line videos [23, 24]. The dataset was built using data collected from a large

7

video-on-demand system, YouTube1. The dataset contains a million ran-
domly sampled video instances listing ten fundamental video characteristics.
We report our analysis of the dataset which provides insightful statistics
on fundamental online video characteristics that can be further exploited
to optimize or model components of a multimedia processing systems. In
comparison to other benchmarking video datasets such as HD-VideoBench
[29], Mediabench [30], and Berkeley Multimedia workload [31], which are
very brief for a realistic workload on large scale systems and are only meant
for accessing the performance of video codecs; The dataset presented in this
thesis is randomly sampled from a real world UGC (user generated content)
system and covers wider range of video formats.

1.3.2 Transcoding Time Prediction

Prediction of video transcoding time is useful for several reasons. For exam-
ple, resource management algorithms deployed on a large scale transcoding
service such as [2] can utilize this prediction to increase system utilization
through proper load balancing and provisioning. It can also enable them
to provide a more detailed service level agreement (SLA) which includes
processing time and cost estimates. Thus as the second contribution of
this thesis, we present an approach for the prediction of video transcoding
time given transcoding parameters and an input video [23, 24]. Our pre-
diction approach treats video transcoding as a random variable and it is
statistically predicted from past observations. The method predicts video
transcoding time as a function of several parameters of the input and out-
put video streams. In comparison to previous works [14, 15] which have
proposed transcoding or decoding time prediction models for specific coding
standards, our approach [23, 24, 25] accounts for variability of video coding
algorithms and various fundamental video characteristics such as bitrate and
resolution. Its modelling is also driven by an insight obtained from the online
video characteristics dataset presented in the last section.

1.3.3 Proactive Resource Management

Efficient utilization of cloud resources such as VMs requires effective ways
of management which include proper VM provisioning, load balancing and
admission control. As our next contribution of this thesis, we propose new
proactive resource management algorithms that utilize our transcoding time
predictions presented in the previous section [25, 32]. This contribution
addresses the challenges exposed when managing computing resources in
modern online video transcoding services. We design a proactive computing
resource management scheme to aid throughput and quality of service in

1https://www.youtube.com/

8

terms of waiting time of jobs. Our method explores the opportunities pro-
vided by trends in transcoding workload of a given transcoding service. Due
to the correlation between transcoding time and transcoding parameters, we
can predict the transcoding time of a video given the fundamental charac-
teristics of the input video and the transcoding parameters. The prediction
is in turn used to correctly provision the right number of transcoding servers
and load balance video transcoding requests across servers. The final result
is thus better waiting time and the throughput of the system.

1.3.4 Parallelization

Besides proactive cloud resource management, one needs to exploit applica-
tion level parallelism to further maximize utilization of individual running
resource instances such as VMs. Therefore as the last contribution of this
thesis we provide parallelization approaches for video transcoding. In [26]
and [27] we present a group of pictures (GOP) level parallelization approach
implemented based on message passing interface (MPI). Also, various video
data segmentation methods are explored and presented. The use of such
data parallelization approach enables transcoding service providers to pro-
cess a given video on multiple VMs or using multiple processor cores that
exist in VMs. In [28] we presented an approach allowing the integration of
dataflow components within an imperative code. The approach makes use
of a generic interface definition that allows seamless interaction between I/O
components and data processing components. I/O components are mostly
state operations and are best implemented in imperative languages. On the
other hand, data processing components are mostly stateless dataflow op-
erations and are best implemented in dataflow languages. The advantage
of the approach is the ease of development by allowing each language to be
used on those parts of the application that it is most appropriate for. The
functionality of the approach is demonstrated by using the generic interface
to add a new dataflow based components (MPEG and HEVC decoders) into
an existing video transcoding framework written in an imperative language.

1.4 Research Methods

The research approach we followed in this thesis work is a mixture of design
science, which is more concerned with building artifacts, and grounded the-
ory which is concerned with creation of theory and models from gathered
row data. We followed such an approach as we believe research work should
serve both science and practice as well as due to the complementary nature
of theory and practise [33, 34].

The research work presented in this thesis was carried as part of three
Finnish research projects: Cloud Software, ParallaX, and EASYTRANS.

9

Cloud Software was a national Finnish research program, whose main aim
was to significantly improve the competitive position of the Finnish software
intensive industry in the global markets with a particular focus on cloud com-
puting. ParallaX was a project concerned with the efficient use of many-core
processors. The goal of the project was to develop methods for the develop-
ment of efficient applications with low energy consumption. EasyTrans was
a commercialization project having as its primary purpose the development
of an efficient media transcoding platform.

In our research process, we followed the approach presented by [33, 35,
36], where one continually builds and evaluates. In the build phase we di-
agnose, plan and implement an idea. In the evaluate phase we assess and
learn to improve on the next cycle until a satisfactory (research saturation)
is reached.

Our research outputs are then classified according to the research output
types presented in [33] which can be constructs, models, methods, instanti-
ations and proofs. In this thesis our main outcomes are in the form of data
collection methodologies, transcoding prediction models, proactive resource
management algorithms, parallelization methods, and their instantiations
(implementation).

1.5 Thesis Organization

The thesis consists of two parts. Part I provides a research summary, while
Part II presents the original publications. Part I consists of five chapters.
Chapter 1 starts by providing the motivation for this thesis followed by
a brief discussion on the research contributions and methods used. Chap-
ter 2 provides background material and discusses important related works.
Chapter 3 presents a summary of the main contributions while focusing on
the problems that they address. Chapter 4 provides a description and or-
ganization of the original publications and provides a mapping between the
publications and the problems addressed. Finally, we present our conclusions
and some future directions in the last chapter.

10

Chapter 2

Background and Related Work

In this chapter, a brief overview of the background concepts and technolo-
gies related to this thesis are presented. These main concepts include video
transcoding, cloud computing and machine learning. Finally various specific
concepts related to resource management are presented.

2.1 Video Transcoding

As mentioned earlier, digital video processing, transmission and storage tech-
nologies have progressed a lot in the past decades. Specifically, the progress
in video compression technologies is driven by practical applications that play
a key role in bridging the gap between the massive amount of data needed
for video and the limited amount of storage, bandwidth and hardware ca-
pabilities. These practical applications include techniques such as motion
compensation and residual coding which are useful for removing redundant
information and reduce final coded video size.

In order to understand video compression we first need to understand
how video is represented digitally. Fundamentally video can be seen as a
discrete representation of the real world sampled in the spatial and temporal
domain. In the temporal domain the real world is often sampled at 25-
30 frames (images) per second or more. Each of these frames is in turn
consist of spatial samples of the world in terms of pixels. Each pixel is then
represented and stored using a number of bits. If we for example consider a
typical high definition video of 1920x1080 pixels resolution, where each pixel
is represented by 24 bits, then it can be calculated that an hour long video
requires about 625GB of storage. This imply imply an enormous amount of
storage requirement and certainly needs a huge bandwidth to be transmitted.
The solution for this is video compression.

Fundamentally video compression can be thought of as a way of reducing
the number of bits needed to represent a video. A software, a hardware or

11

a specification that is used to compress (encode) and decompress (decode) a
video is called a codec. An encoder essentially represents an original video
with a model (coded representation) having as few bits as possible and with
as high quality as possible. A typical modern video encoder therefore consists
of three main components which include a temporal model, spatial model
and statistical model that correspondingly exploit the temporal, spatial and
statistical redundancies in videos to reduce the amount of bits needed to
represent it.

The temporal model reduces redundancy by predicting the current frame
from past and future ones while compensating for motion in the scene. This
means a video encoded with most modern codecs contain different types
of frames such as I (intra), P (predicted), and B (bidirectional predicted).
An I frame is an independent reference frame that does not require any
other frame while processing it (e.g. decoding it). On the other hand,
both P and B frames require data from other frames while processing. This
is because video compression algorithms only try to encode the difference
between consecutive frames which apparently share certain similar content
that can be referenced and reused allowing for more compression.

The spatial model further reduces the redundancies that exist in the
residual (i.e. the difference between actual and predicted frame) by exploit-
ing the similarities between neighboring pixels inside a frame. It achieves
this by transforming the residual into a set of representative transform coef-
ficients in another suitable domain and quantizing them so as to remove the
least significant ones.

Finally the statistical model assigns shorter codes to represent more fre-
quently occurring parameters from the spatial and temporal models to out-
put the final compressed video. A video decoder does the reverse of the
encoder to reconstruct the video.

In general video compression is a trade-off between quality and the amount
of bits used to represent a video. In practical situations, this means that
video content providers or video on demand (VOD) sites can decide on the
most suitable encoding parameters that will result in a certain amount of
video bitrate (size) that is tailored for a resource a user might have. These
resources include bandwidth, device display resolution, and etc..

The difference in device resources, network bandwidth and video repre-
sentation types results in the need for a mechanism enabling video content
adoption. This mechanism, called transcoding is currently being used for
such purposes as bitrate reduction in order to meet network bandwidth avail-
ability, resolution reduction for display size adoption, temporal transcoding
for frame rate reduction and error resilience transcoding for insuring high
quality of service (QoS) [37, 38].

As can be noted from Figure 2.1 a generic video transcoder contains five
main parts, each having a set of components depicted as blocks. The five

12

Decoder

Encoder

Spacial and
Temporal
Processing

+

stream
copy

Entropy
Decoder

Demux
Inverse
Quant.

Inverse
Transform

Prediction Frame
Buffer

−

+

Entropy
Coding

Quant. Transform

Inverse
Transform

Inverse
Quant.

Prediction
Refinment

Spatial/
Temporal
Processing

Spatial/
Temporal
processing

Mux

Prediction
(ME)

Prediction
(MC)

Frame
Buffer

Figure 2.1: A complete overview of video transcoding. It shows the main
blocks a transcoder constitutes and the different options of doing transcoding
depending on the required type of conversion operation, acceptable quality
and complexity. Note that not all the blocks need to be executed all the time.
The transcoder tends to use information from the input video to simplify and
skip blocks of operations.

main parts include a demuxer, a decoder, spatial and temporal processors,
an encoder and a muxer. The demuxer is used to read interleaved streams
(e.g. one audio, one video and a subtitle stream) from a network or a file.
Usually a set of streams is encapsulated in a container format such as MP4.
Packets which are read by the demuxer and contain compressed audio/video
frames are then passed to the appropriate decoder to be decompressed. The
decompressed audio/video frames are then spatially or temporally processed
to adapt the video/audio to a particular framerate and/or resolution. Spa-
tially and temporally processed uncompressed frames are then passed on to
the encoder to be compressed via removing temporal, spatial and statistical
redundancy that exists inside and among uncompressed frames.

Currently existing transcoders such as FFmpeg1 constitute libraries cor-
responding to each block. For example, FFmpeg contains multiple codec
implementations including H264, HEVC, MPEG4. A video codec is a hard-
ware or software implementation of video compression and decompression
algorithms. A variety of video coding standards have thus been estab-
lished through the years. These standards are broadly categorized into three
groups: a) the H.26x video standard family developed by the ITU (Inter-

1urlhttps://ffmpeg.org/

13

national Telecommunication Union), b) the MPEG standards developed by
the ISO (International Organization for Standardization), and c) other codec
standards such as On2 (vp8) developed by large corporations like Google and
Microsoft. All these standards define only a compressed bit stream so that
any standards based decoder can decode the bit stream. However, the com-
pression algorithms followed in the encoders are completely dependent on
the proprietary technology implemented by the encoder manufacturer. Each
new standard from these groups is initiated with an objective to support an
application with a new research and development technology.

Similarly, FFmpeg contains multiple implementations of muxers and de-
muxers that can be used to read, write and transmit multiple video and
audio streams in one container. Some of these formats include MP4, MKV,
FLV, MP3, WAV and DASH. Among these formats DASH (Dynamic adap-
tive streaming over HTTP) is the most notable one and is used for adaptive
streaming of video content. DASH is an adaptive streaming technique where
videos are segmented into multiple small chunks and are encoded in several
formats which are presented to a client. The client then decides which format
of a particular segment to consume depending on its available resources.

2.2 Cloud Computing

As the Information and Communication Technology (ICT) advances we be-
gin to witness computing becoming the 5th utility following water, electric-
ity, gas, and telephony. Similar to the other utilities, computing has become
essential for our society which requires access to virtually unlimited, unin-
terrupted and reliable access to computing resources. Computing as a utility
relies on an on-demand service provisioning model where we won’t any longer
compute on our local computers but on a rented, centralized and remote fa-
cilities provided by a third-party who makes computing resources available
as needed charging only for a specific usage on pay as you go basis. The idea
of utility computing has been around since 1960s, where John McCarthy,
Leonard Kleinrock and others predicted that computation may someday be-
come a public utility [39, 40] [41, 42]. By 1990s Grid computing was proposed
and several instances were implemented including TeraGrid and Open Sci-
ence Grid [43, 44]. Since then Grids have provided on-demand computing
resources mostly for scientific institutions. However, they lacked a reliable
and easy to use business model required for public and commercial susses.
Also, Grids have elaborate overall architecture and resource management
system due to their support for a heterogeneous pool of resources across dif-
ferent domains [45, 40]. Cloud Computing in its modern sense has emerged
as a popular paradigm during the 2000s. In some sense, Cloud Computing
has evolved from Grid Computing where the focus is shifted from purely in-

14

frastructure building and application oriented towards an economics of scale,
abstraction and service oriented [40, 39].

As an emerging paradigm, Cloud computing is defined in a variety of
ways [46, 39, 47, 40]. Among others [40] defined cloud as:

" A large-scale distributed computing paradigm that is driven
by economies of scale, in which a pool of abstracted, virtual-
ized, dynamically scalable, managed computing power, storage,
platforms, and services are delivered on demand to external cus-
tomers over the Internet."

The National Institute of Standards and Technology (NIST) defines cloud
computing as [47]:

"Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. This
cloud model is composed of five essential characteristics, three
service models, and four deployment models."

Where the five essential characteristics include on-demand self-service,
broad network access, resource pooling, rapid elasticity, and measured ser-
vice. The service models include Infrastructure as a service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). And the deployment
models include private cloud, community cloud, public cloud, and hybrid
cloud [47].

From the previous Cloud Computing definitions, we can note the main
distinguishing features as its: 1) scalability where users can request seemingly
unlimited resources, 2) abstract interfaces which are based on WEB 2.0
protocols that enable natural interaction for users, 3) economics of scale
where a pool of resources are utilized more efficiently by many users as per
demand leading to cost reduction, 4) dynamic configureability where users
are provided with a simple measuring unit that they can utilize to easily and
dynamically reconfigure required Cloud resources.

In recent years Cloud Computing has become attractive for the IT in-
dustry. This is in particular due to its pay-as-you-go business model which
allows small start-ups or private users to gain access to high-quality IT infras-
tructure for a small cost. With such a business model, start-ups and private
users will avoid investing in their own infrastructure before they prove their
business model while cloud providers will benefit from the economics of scale.

Among other applications, video transcoding is one application that can
exploit the benefits of Cloud [1, 2, 3]. Video transcoding is a computa-
tionally expensive process and requires large-scale computing infrastructure.

15

At the same time, media content producers and other entities that require
transcoding services would be better off concentrating on creation of original
content where their expertise lie than building and maintaining their own
computing infrastructure. Just like these media content producing compa-
nies don’t own their electric power plants, they now do not need to own
datacenters as it has become a utility that can be bought readily online
when needed. Currently, there are multiple cloud-based transcoding service
providers. Transcoding services utilize the cloud infrastructure (IaaS) to pro-
vide their services as Platform as a service (PaaS) or Software as a Service
(SaaS). Various research studies are being carried out in the area of large-
scale video transcoding in the cloud which will allow efficient management
of resources and better usability[48, 49, 50].

2.3 Machine Learning

Advances in computer technology have enabled us to acquire, store and ana-
lyze large amounts of data. For example, imagine the many Cloud providers
that have several data centers across the globe with thousands of servers
hosting millions of virtual machines that are utilized by millions of users.
These Cloud providers record details of the usage of their virtual machines
including CPU utilization, disk read-write operations, network input-output
packet flow, and so forth. This typically amounts to gigabytes of data every
day. This data will become useful when it is analyzed and turned in to in-
formation from which one can make predictions, for example, future usage
pattern of users to enable efficient resource utilization.

Even though we do not know exactly how a Cloud user utilizes virtual
machines in the cloud we are aware that their usage pattern is not random.
This means that even if we may not be able to identify the process entirely,
we can still construct a good and useful approximation. This is the niche
problem that machine learning tries to solve. Machine learning can be seen
in general as the use of a set of observations to uncover an underlying process
that produces the observations. This is especially useful if the problem is
less specified and one can not analytically derive the underlying process
(function) and needs to rely on data obtained from process to approximate
the target function that produces it. The basic premise of machine learning
is, therefore, the use of a set of observations to uncover an underlying process.

Machine learning is broadly divided into three types which include su-
pervised, reinforcement, and unsupervised learning. In supervised learning,
we generally have a training data that contains explicit examples of which
the correct output for given input is provided. In reinforcement learning, the
training data does not contain the correct output for each input. Instead,
for each input, we have some output and an associated grade for that output

16

which provides a measure of how good the output is. Finally, in unsuper-
vised learning, the training data only contains input examples. It is mostly
used to spontaneously find patterns and structure in the input.

As an academic discipline, Machine learning grew out of the quest for
artificial intelligence (AI). Already in the 1940s and 1950s, researchers were
interested in building general purpose learning systems that start with lit-
tle or no initial structure or task specific knowledge. They attempted to
approach the problem through the application of symbolic logic which they
used to model nervous system activities and termed it as neural networks and
showed how it could learn [51, 52, 53]. After its first establishment as a sep-
arate field, AI has shown real promise and enthusiasm. Several applications
have been developed [54, 55]. However, challenges such as limited compu-
tational power, combinatorial explosion and some fundamental limitation in
the underlying structure of the smallest units of learning (perceptions) has
made the advances in AI to slow down [56, 57] and led to the popularity of
expert systems until the reinvention of backpropagation in the 1960s [52, 58].

Machine learning was reorganized as a separate field and started to ad-
vance in the 1990s. As a separate field, it focused its goal from general
purpose learning system to tackling solvable practical learning problems. It
also shifted its focus away from the symbolic approaches it had inherited
from AI towards methods and models borrowed from statistics and proba-
bility theory. In addition to that, it also exploited the benefits gained from
the increased availability of digitized information usable for training and the
availability of better computing power [58].

One of the contributions of this thesis work is the prediction of video
transcoding workload. To predict the transcoding workload of a video two
of the most widely used supervised machine learning algorithms were used,
the SVR and Neural Net. The general idea behind any regression problem
in machine learning can be summarized as given a set of t observations
with n features (bitrate, framerate, codec, etc.) each and a target variable
(transcoding time) y as {(x1, y1), (x2, y2), ..., (xt, yt)} where x ∈ <n, y ∈ <
the objective is to find a function (model)

f(x) = 〈ω, x〉+ b = w · x+ b with ω ∈ <n, b ∈ < (2.1)

with the best fit.

Neural nets The idea of neural networks was first inspired by the ner-
vous system of human beings which consists of many simple processing units
called neurons. Each neuron receives some input signals from outside or from
other neurons and processes them with an activation function to produce its
output and sends it to other neurons. These neurons can be understood as a
mathematical function that take n element input vector and scale each data
element xi, by a weight wj . The scaled data is offset by some bias b and

17

Figure 2.2: Multilayer Neural network as applied to video transcoding pre-
diction.

put through a differentiable activation function f . The output of a neuron
can be analytically viewed as in Equation 2.1. The impact of Each input
is weighted differently from other inputs; Thus the neuron can interpret the
data differently depending on the weight and bias. Consequently the more
is the weight, the stronger would the connection be allowing that data point
to influence the output more and vice versa. The activation function f can
be linear or non-linear. Non-linear activation functions are useful in map-
ping non-linear relationships. One such function is called sigmoid which is
represented as:

1

1 + exp(−f) (2.2)

A network of these neurons forms a feedforward multilayer neural networks
as shown in Figure 2.2. These networks are made of layers of neurons. The
first layer is the layer connected to the input data. After that there could
be one or more middle layers called hidden layers. The last layer is the
output layer which shows the results. One of the learning methods in mul-
tilayer perception Neural Networks is the error back propagation in which
the network learns the pattern in a data set and justifies the weight of the
connections in the reverse direction with respect to the gradient vector of an
error function. The error function is usually a regularized sum of squared er-
ror. The back propagation method picks a training vector from the training
data set and moves it from the input layer toward the output layer. In the
output layer, the error is calculated and propagated backward, so the weight
of the connections will be corrected. This will usually go on until the error
reaches a predefined value. It’s proved that we can approximate any continu-
ous function with a three layer feedback network with any precision [59, 60] .

18

x

+ε

−ε
0+ε

−ε
0

Input to feature space mapping

y

ϕ(x)

y

y = wϕ(x) + b

Figure 2.3: Support Vector Regression.

Support vector machines treats the regression problem as a convex op-
timization problem where the main idea is to minimize error for a given
constraint in terms of error margin:

minimize
1

2
‖ω‖2 (2.3)

subject to =

{
yi − ‖w, xi‖ − b ≤ ε
‖w, xi‖+ b− yi ≤ ε (2.4)

For non-linear problems, a non-linear SVR can be used. In non-linear
SVR the training data is first mapped into higher dimensional feature space
via a non-linear kernel function as shown in Figure 2.3. One such kernel is
the radial basis function (RBF) which is represented as

exp(− 1

2σ2
‖f‖2)

2.4 Transcoding Workload Understanding

Currently, there are only a few research works in analysis and modelling
of video transcoding workloads specifically, but there has been significant
research on understanding the workloads of new generation video servers
in general. These research especially focus on the social aspect of videos
and traffic characterization such as popularity, active lifespan, user access
pattern, growth pattern and request patterns [9, 10, 11, 12, 61, 13]. Recent
works; however, are showing interest in understanding video transcoding
workloads especially for determining optimal video representation sets and
just-in-time transcoding bitrate selection [62, 63, 64].

19

Yu et al. [9] studied user behavior, content access pattern and their im-
plications on the design large-scale video-on-demand systems. Based on
measurements collected from a large video on demand (VOD) system they
were able to model the arrival pattern of users and provide an explanation on
the various factors that contribute towards the popularity of videos in VOD
sites. Such type of models and understanding are useful when modeling,
simulation and further understanding of large-scale VOD systems. Possi-
ble improvements on UGC design were proposed by Cha et al. [10] after
analyzing traces containing various video information from YouTube and
Daum, a popular UGC in Korea. The main improvements proposed include
better caching schemes and a peer-assisted video delivery system that save
storage and bandwidth. Analysis of the traces also provided insights such
as the relationship between video age and requests made. After tracking
YouTube transactions from a network edge, Gill et al. [11] were able to an-
alyze YouTube traffic characteristics and discuss the implications of their
observation on key concepts such as caching. In their work Gill et al. [11]
collected YouTube traffic locally in a campus and examined over time the
most popular videos on the site. Based on the collected data they were able
to draw insights such as the need for caching and relation between local
and global popularity. The caching problem in YouTube have been fur-
ther studied by Zink et al. [12]. In their work, they collected and analyzed
Youtube traffic from a network edge. Taking their analysis result into ac-
count, which showed that users usually tend to view a video more than once,
they proposed and analyzed the benefits of client side caching mechanism.
Furthermore, they showed the benefits of P2P based caching mechanism due
to the observation that similar videos are accessed from the same locality.
The social networking among videos was studied in the works of Halvey and
Keane [61] and [13]. Mislove et al. [13] crawled social networking sites for
their user graphs and confirmed the power-law, small-world, and scale free
properties of online social networks. They also observed that the graphs con-
tain a densely connected core of high-degree nodes which links small groups
of strongly clustered low-degree nodes. Such findings about structural prop-
erties of social networks can lead to better information dissemination and
search algorithms.

After noting the drawback of transcoding video segments into all possible
bitrates on wasting computing and storage resources, Krishnappa et al. [64]
proposed several just-in-time transcoding polices. In order to materialize
their proposed just-in-time transcoding mechanism they first constructed a
Markov model for accurately predicting the bitrate of the next video seg-
ment that will be requested by a user. Their prediction model is built based
on a dataset collected from Akamai’s video content delivery network (CDN)
containing users video access pattern. In [63] datasets characterizing the
popular live streaming provider (Twitch) and its computing resource needs

20

for transcoding videos are presented. Based on the dataset they proposed
solutions for the optimal number of video representations required to max-
imize the average user quality of viewing experience and the corresponding
encoding parameters required for creating the representations such as reso-
lution and bit-rate. The optimization problem and its solution is presented
in detail in [62].

Rather than only focusing on the social aspect and traffic characterization
of such services, our works [23, 24] in this area focus on collecting detailed
statistics of video characteristics such as video length, size, bitrate, frame
rate, codec type, resolution, etc. This contribution will thus fill some of
the gap in video characterization from the view of computational workload
modeling of large-scale video processing systems.

2.5 Transcoding Workload Modeling and Predic-
tion

Several workload prediction models for video processing applications have
been proposed in the literature. The existing models can be classified into
two categories: models based on history and models relaying on information
extracted from the video bitstream. In the history based methods, the work-
load of the current work item (e.g. a frame) is predicted as a weighted average
of previous work items [65, 66, 14, 18]. However, due to the large variability
in video processing workload of consecutive work items, the history-based
models often suffer in terms of accuracy. Consequently, research in this area
focus on improving prediction accuracy. On the other hand, models based on
information extracted from video bitstream predict future workload based on
models constructed from predictive features obtainable from the bitstream
[67, 68, 69, 15]. These models often tend to be more accurate but incur more
overhead due to the time required for video bitstream parsing. Research in
this area thus mostly focus on finding less expensive yet predictive features.

In Choi et al. [65] the decoding time of a current frame is predicted based
on a moving average over past frames of a similar type. This means that
decoding time prediction of I, P and B are done separately. The resulting
prediction is then used for scaling the processor voltage and frequency in
order to provision the proper amount of computing power required to decode
a frame.

Bavier et al. [66] proposed a model which can predict video decoding
workload at frame and network packet level. They utilized linear regres-
sion analysis to gain insight on the relationship between MPEG bitstream
components and decoding time of a frame or a packet. Their frame level pre-
dictor uses running average of past frames of similar type while taking into
account the byte length of the frames. Similarly their packet level predictor

21

uses a running average of past frames of similar type taking into account the
number of blocks of the packets. Their prediction approach is designed to
be computationally cheap and usable for real-time multimedia application
scheduling.

Guo and Bhuyan [14] determined the necessity of predicting the CPU
load of transcoding tasks in order to schedule them on a cluster of computing
nodes. They, therefore, proposed an online prediction algorithm that can
dynamically predict the processing time of video segments (GOPs). Their
predictor is a linear model where its slope is incrementally approximated
according to the difference between accumulated regional and global means
of GOP transcoding times and sizes.

Huang et al. [68] proposed a workload prediction technique for video
decoding which is based on an offline bitstream analysis of a video. The
predictions are then used to insert metadata information, a sequence of fre-
quency values, with which the processor needs to run while decoding various
segment of the video. The ultimate goal of their work is saving energy while
decoding video streams. In a later work [69] they proposed a new workload-
scalable transcoding scheme which converts a pre-recorded video bitstream
into a new video bitstream that satisfies a given playback device workload
constraint while keeping the transcoding distortion minimal as measured in
terms of their proposed compressed domain distortion measure, a function
of frames per second and bits per frame.

Roitzsch and Pohlack [15] presented the design and implementation of a
per-frame decoding time prediction method for MPEG based video decoders.
In order to find useful prediction metrics, they divided the decoding process
into logical steps and established metrics from the video bitstream that are
useful to get reasonable execution time estimates for each step. They then
modeled the prediction problem as linear least square problem and solved the
model coefficients using a training dataset collected over test video sequences.

Most of the related works in the area of multimedia workload modelling
and prediction focus on one coding algorithm and use only a brief set of
videos to train their prediction models. The proposed transcoding workload
modeling and prediction approach in this thesis is designed to work across
multiple coding algorithms [23, 24]. It is also modeled based on the video
dataset presented in the previous section having a realistic distribution of
online video characteristics.

The effectiveness the transcoding workload prediction method is shown
via comparing the resulting transcoding time predictions with the actual
transcoding times on unseen video streams.

22

2.6 Proactive Transcoding Resource Management

Most of the research work in proactive management of computing resources
for video transcoding applications and services focus on load balancing, pro-
visioning and task migration. These works often follow from workload mod-
elling and prediction works presented in subsection 2.5.

Choi et al. [65] used a moving average based frame decoding workload
prediction for scaling the processor voltage and frequency so that they provi-
sion the proper amount of computing power required to decode a frame. In
[18] prediction-based dynamic resource allocation algorithm to scale video
transcoding service on a given Infrastructure as a Service cloud were dis-
cussed. The proposed algorithm provides mechanisms for allocation and
deallocation of virtual machines based on a regression model that tracks and
predicts the aggregate target transcoding rate required by the service. In
Huang et al. [68] and Huang et al. [69] the authors applied frequency scaling
for proper provisioning of computing resources for decoding and transcod-
ing applications. The frequency value at which the processor should run at
specific times during the video playback or transcoding is inserted into the
video bitstream.

In [14] the authors proposed a load balancing scheme based on predic-
tion of video transcoding workload at GOP level. Their main aim was to
minimize the total processing time while maintaining the order of media
units for each outgoing stream. In their work, they designed and evalu-
ated algorithms such as First Fit (FF) and Adoptive Load sharing (ALS).
Kuang et al. [70] proposed and evaluated a power-efficient and traffic aware
transcoding system for multicore servers. The approach manages computing
resources by adjusting processor operating levels that match the incoming
traffic rate. More specifically their approach is capable of configuring the
number of active cores and core frequency on-the-fly according to varying
traffic rate.

In this thesis work, transcoding workload prediction models that rely on
information extracted from the bitstream are proposed and used. The main
reason for the use of such approaches is the need for capturing the high
variability in terms of transcoding workload among a sequence of frames in
a video stream. Based on these prediction models it is then shown how it is
possible to manage computing resources efficiently. The idea is demonstrated
through evaluation of proactive provisioning and load balancing approaches.

The effectiveness of the proposed proactive load balancing approach for
transcoding jobs across virtual machines is evaluated by comparing it with
classical load balancing methods in terms of total system utilization and
quality of service. Also, a proactive provisioning method that enables pro-
visioning of the right amount of transcoding servers for a given quality of
service was presented and evaluated.

23

2.7 Transcoding Parallelization

Most of the research work around parallelization of video processing appli-
cations including video decoding, encoding and transcoding can be broadly
divided into three main areas: problem decomposition, process interaction
and resource management mechanisms. Video processing applications are
among the most compute intensive applications in computer systems, and
various ways of partitioning these applications have been employed to be able
to deploy them on multi-processor architectures and distributed systems effi-
ciently. The most commonly used problem decomposition approaches include
task, data and implicit parallelism [71, 72, 73, 74, 75]. Research related to
process interaction, on the other hand deal with the mechanisms by which
parallel processes that make up the applications communicate with each
other. These interaction mechanisms include message passing, shared mem-
ory and implicit interaction approaches [76, 77, 78]. Resource management
research in the context of video transcoding application parallelization in-
clude runtime and compiler works that try to map applications efficiently;
that are, decomposed into parallel entities and their interaction is expressed
in a certain way into various physical hardware architectures. Note that
quite a few of the research works in these categories are interrelated and are
often approached together.

As the computational complexity of video codecs grows more paralleliza-
tion approaches are being proposed and integrated into newer coding stan-
dards. In [71] a data parallel problem decomposition approach for H264
on a 64 core shared memory architecture is presented. The approach shows
how macroblocks (MBs) can be processed in parallel both at intra-frame and
inter-frame levels. They also presented a scheduling approach that avoids the
latency and large memory requirements associated with processing a large
number of MBs spanning over multiple frames. In [72] a more detailed dis-
cussion and comparison of data parallel problem decomposition approaches
for H264 video codec are presented. Chi et al. [73] have nicely presented
efficient implementations of the most promising parallelization proposals for
HEVC which include tiles and wavefront parallel processing. HEVC [79] is
currently the newest video coding algorithm where parallelism was a fore-
thought in contrast to previous video coding algorithms. This fact further
shows the relative importance of parallelization in the recent years.

In [74] and [75] an implicit problem decomposition approach for MPEG
type video coding standards is presented. Janneck et al. [74] noted the
current C/C++ based monolithic video coding standard specifications hide
the inherent data flow structure found in video coding algorithms. Their
observation led them to propose the Reconfigurable Video Coding (RVC)
standard which attempts to address this issue by building a framework that
supports the construction of video standards as libraries of coding tools.

24

These libraries can be incrementally updated and extended, and the tools
can be aggregated to form complete codecs using a streaming (or dataflow)
programming model, which preserves the inherent parallelism of the cod-
ing algorithm. Along with that they provided a tool-chain to develop and
compile video coding algorithms on various heterogeneous and multi-core
architectures.

While problem decompositions is usually an important first dimension
in parallelization of video coding applications, an equally important next
dimension is the interaction mechanism among program partitions. Barbosa
et al. [76] proposed a simple shared-memory parallelization approach for
MPEG video encoding based on simultaneous execution of different coarse-
grained and hierarchical tasks including reading, writing and encoding. To
facilitate interaction among task partitions they used a fork-join and a bag
of tasks synchronization approaches. In [77] a new adaptive slice-size selec-
tion technique for efficient slice-level parallelism of H.264/AVC encoding on
a multi-core processor is proposed. A fast MB mode selection method as a
pre-processing step was also used to decrease the overhead of fine-grained MB
based parallelism. Sambe et al. [78] proposed a distributed video transcod-
ing system that can simultaneously transcode an MPEG- 2 video file into
various video coding formats with different rates. The transcoder divides the
MPEG-2 file into small segments along the time axis and transcodes them
in parallel. They also propose efficient video segment handling methods that
minimize the inter-processor communication overhead and eliminate tempo-
ral discontinuities from the re-encoded video. Tian et al. [80] proposed a
distributed video transcoding approach similar to [78] while improving on
the segmentation approach to obtain a better total transcoding time. On
the other hand in [81] a similar distributed video transcoding approach was
proposed for active routers. Lao et al. [82] proposed a map/reduce based
cloud transcoder. They also proposed a heuristic load balancing algorithm
which minimize the total transcoding time of videos under the assumption
that transcoding complexity of segments is known in advance somehow. In
[74] and [75] similarly to the implicit nature of the problem decomposition,
the interaction among tasks has been made implicit to the programmer. An
ever increase in complexity of video coding means an ever growing necessity
for automating the parallelization of video coding algorithms.

Parallelization is done on various level of granularity. In [26] and [27]
a distributed video transcoding approach where multiple processing nodes
transcode GOP level video segments in parallel has been proposed. Transcod-
ing processes executing on different nodes interact with each other using a
message passing interface. This thesis work mostly relates to [78] and Tian
et al. [80] and focus on coarse-grained parallelism to minimize communica-
tion overhead across nodes of a typical distributed system. In contrast to
others; in this thesis work, multiple types of segmentations strategies have

25

been considered to reduce the total transcoding time of videos. In [28] we
have proposed a new approach that allows the integration of dataflow compo-
nents written in dataflow language within an existing transcoding framework
written in an imperative language. The approach makes use of a generic in-
terface definition that allows seamless interaction between an existing code
written in an imperative language with highly parallel data flow components
written in a dataflow language. The advantage of the approach is the ease
of development that allows the use of different languages for different parts
of an application.

26

Chapter 3

Contributions of the Thesis

In this thesis work, the problem of efficient computing resource utilization for
large scale distributed video processing is addressed based on proactive man-
agement and parallelization approaches. Solution to the problem is mainly
sought in the context of a video transcoding application.

In order to understand the state of online video being produced and con-
sumed today, we mined YouTube and performed a descriptive statistics on
various important video characteristics. Based on the insight gained from the
dataset mined from YouTube and our domain knowledge we have selected a
set of features (metrics) that are useful in predicting the transcoding work-
load of videos. We showed how a transcoding workload prediction model can
be built based on our dataset and some of the widely used supervised ma-
chine learning algorithms [24, 23]. Furthermore, we show how the workload
prediction model can be used to load balance transcoding jobs across servers
proactively [23]. We also present analysis and implementation of a course
level parallelization approach for video transcoding [27, 26]. In addition,
we introduces a new approach that allows the integration of dataflow com-
ponents within imperative code. The approach makes the development of
fine-grained parallelism of video coding components easy and intuitive [28].

In the following sections, we provide a summary of the main contribution
of this thesis along with a brief overview of some of the most important
challenges they address. The details of our contributions are presented in
the original publications found in part II.

3.1 Analysis and Characterization of Online Video

To obtain enough information on the characteristics of real world online
videos needed to model video processing workloads, researchers need datasets
obtained from real world video on demand services. As our first contribution
of this thesis, we built a video characteristics dataset, using data collected

27

from a large video-on-demand system, YouTube. The dataset contains a
million randomly sampled video instances listing 10 fundamental video char-
acteristics [83, 23]. The data was collected based on an unbiased sampling
method, the random prefix sampling [84]. Our analysis of the dataset pro-
vides insightful statistics on fundamental video characteristics and can be
further exploited to optimize or model components of a multimedia process-
ing systems.

3.1.1 Crawling YouTube and Collecting Data

We collected our dataset systematically from YouTube, the largest user gen-
erated content (UGC) video website. By 2011 YouTube is estimated to have
over half a billion videos and accounts for a significant percentage of the
world’s bandwidth utilization [84]. YouTube organizes its videos as a di-
rected graph, where each video is considered as a node and edges represent
links to a set of related videos.

There are several known ways of crawling YouTube’s video graph [84, 85].
In this thesis, we used the random prefix sampling method from [84]. Ran-
dom prefix sampling over YouTube video ID space is done through utilizing
a unique property of the YouTube’s API which allows searching videos using
a randomly generated prefix of a possible YouTube video ID. YouTube video
ID consists of 11 characters drawn from a set S = {0− 9, A− Z, a− z,,−}.
Providing a search string of "v=abc..." where "abc..." is a randomly gener-
ated string of length less than or equal to eleven returns a list of video IDs
which start with this string. This fact enables one to avoid the impossible
task of uniform random sampling over the extremely large id space of the or-
der 6411. Sampling YouTube’s video graph through random prefix sampling
rather than breadth-first search or other graph based sampling techniques
produces a more unbiased sample. In our experiment, we used a randomly
generated four character prefix to sample the YouTube’s video graph. Ex-
periments show that a prefix larger than four often returns an empty list
indicating the fact that YouTube’s video ID space is randomly generated.

In order to collect our online video characteristics dataset we imple-
mented a small wrapper tool in Java over other well known open source
tools, ffprobe [86] and youtube-dl [87] . Our tool first generates a four char-
acter random prefix from YouTube’s video ID space and searches YouTube
through its API. The API will return a list of valid video IDs starting with
the random prefix. A video ID is then selected randomly from the returned
list. Then, a set of direct links for all stored file formats of the video with
that ID is fetched by the open source tool, youtube-dl. Each of these video
links are then probed by ffprobe, a video analysis tool that can be used to
collect video characteristics such as bitrate, framerate, resolution, container
format, codec, duration and frame types.

28

The dataset contains ten columns of fundamental video characteristics;
Duration, video codec, framerate, estimated framerate, total bitrate (audio
plus video bitrate), video bitrate, resolution ,category, direct video link and
video ID. This dataset can be used to gain insight in characteristics of videos
on UGC.

3.1.2 Analysis of online Video Characteristics

A video has several fundamental characteristics that define its behavior in
terms of quality, storage, bandwidth requirement and processing time. Some
of these fundamental video characteristics include its duration, video codec,
framerate, bitrate, resolution and category. A descriptive analysis and more
detailed analysis of these characteristics as obtained from our dataset are
presented in [24, 23] and a brief overview of some of these properties is
presented below. Such statistics is useful in modeling different parts of a
video processing service.

Bitrate One of the most important characteristics of a video file is de-
fined by its bitrate. It indicates the number of bits being processed per unit
time. Video-on-demand sites such as YouTube should select a set of opti-
mal bitrates for their videos considering quality of service and bandwidth
availability. Larger bitrates enable higher quality but will require larger
bandwidth and processing power.

Framerate Another important video characteristic is the framerate. It
indicates the number of frames (pictures) produced by a given video source
per unit time. The human vision system perceives a sequence of pictures as
a video if it has a framerate of 25 frames per second (fps) or more. Video-on-
demand sites select a set of optimal frame rate for their videos considering
quality of service, bandwidth and processing power availability.

Resolution of a video is defined by the number of pixels in its two dimen-
sions. Video-on-demand sites should select a set of optimal resolutions for
their videos considering quality of service, bandwidth and more importantly
the types of displays owned by their users.

Codec A video codec is a hardware or software implementation of video
compression and decompression algorithms. A variety of video coding stan-
dards have thus been established through the years. Each new standard is de-
veloped with an objective to support an application with a new research and
development technology. Thus, earlier standards have very limited scope,
whereas the later standards tend to include more advanced algorithms and
techniques. This makes a codec one of the most important characteristics in
determining the workload of a video transcoding task in terms of processing
time.

Frame Types Depending on the type of codec used and its parameters,
encoded videos contain different types of frames such as I (Intra), P (Pre-

29

dicted), and B (Bidirectional predicted). The proportion of each frame types
in a video is an important characteristic as it correlates well with video size
and processing time.

Formats YouTube stores its videos in several formats. These formats
enable YouTube to provide its services to wide range of devices having dif-
ferent resolution, supported codec and connected through various types of
networks.

3.2 Prediction of Video Transcoding Time

Prediction of video transcoding time is important for several reasons. For ex-
ample, resource management algorithms deployed on a large scale transcod-
ing service such as [88] can utilize this prediction to increase system utiliza-
tion through proper load balancing and provisioning. Previous works such
as [14] has proposed to model the prediction problem by characterizing a
video using simple and few features (e.g. size alone). However, such models
did not account for variability of video coding algorithms and other factors
that make prediction more complex.

In this thesis, as our second contribution, we propose the use of more
video characteristics and machine learning for better accuracy and gener-
ality over a range of coding algorithms. Machine learning techniques are
often used as decision-making mechanisms for a variety of systems. Ba-
sically, machine learning allows computers to evolve behaviours based on
empirical data, in our case, this is a collection of samples with important
video characteristics, transcoding parameter sets and measured transcoding
times. This means video transcoding time is treated as a random variable
and is statistically predicted from past observations. More specifically our
proposed method predicts the transcoding time as a function of several pa-
rameters of the input and output video stream. The details of the approach
and experiments on its prediction accuracy are presented in [24, 23, 25] and
a brief overview is presented in the following subsections.

3.2.1 Transcoding Time Prediction Model

The prediction model used in this thesis is depicted in Figure 3.1. We
refer this model as a transcoding time predictor. It takes as input a video
characterization C = {c1, c2, ..., cn} and transcoding parameter sequences
P = {p1, p2, ..., pn}, and it outputs the predicted transcoding time.

A general formulation of the transcoding time prediction problem is to
construct a function that takes as input easily extractable characteristics of
a video together with input parameters that specify the characteristics of the
output video and generate an estimated transcoding time of the video on a
given platform.

30

Figure 3.1: Transcoding time prediction.

3.2.2 Input Video Characterization

We have seen from the Section 3.1 that online videos can be characterized
by a number of basic characteristics such as bitrate, framerate, codec and
resolution. We have also shown their distribution as obtained from random
sampling of YouTube videos in [23, 24]. To characterize an input video we
collect all features listed in Table 3.1. This list of video characteristic features
are selected through expert analysis of the problem and the insight gained
from the dataset presented in Section 3.1 and [23, 24].

Characteristics Description
Codec Coding standard used
Resolution(W,H) Width and height in pixels
Bitrate Bits processed per second
Framerate Frames per second
Frmaes (I,P,B, Total) Number of frames per type
Size (I,P,B, Total) Size in byte per type

Table 3.1: Video characteristics features.

Figure 3.2 shows the effect of some of the input and output video char-
acteristics listed in Table 3.1 and Table 3.2 on the transcoding time of 20
second video segments from randomly sampled online YouTube videos from
our dataset. The figure shows the relationship between the dependent and
independent variables under a controlled experiment where only one inde-
pendent variable (i.e. predictive feature) is monitored while the rest are kept
constant. Even though the plots show the correlation between our indepen-
dent variables and transcoding time, the relationship is often non-linear.
This means we either need to pre-process (be able to apply a proper trans-
formation) of our predictive features to achieve a linear relationship with our
target variable or use a non-linear learning algorithm to build our prediction
models.

31

In this thesis we choose the later as 1) our primary aim is to predict rather
than explain and 2) as the number of our predictive features are considerable
due to the need to support multiple video coding algorithms [89, 90].

3.2.3 Building and Using Prediction Model.

Collecting Transcoding Time Table 3.2 gives the list of the transcoding
parameters that are used to create our transcoding search space. When con-
sidering all the possible combination of all transcoding options, the transcod-
ing space can lead to a large set of possibilities. We reduced the search space
size using expert pruning based on the insight gained from the online video
characterization results presented in Section 3.1 and [23, 24], but we still
have 840 of combinations to consider, see Table 3.2. We then collected
the transcoding time obtained for each transcoding sequence on a set of 80
randomly selected 20 second YouTube videos. The resulting training data
contains 67200 transcoding measurements (instances). All possible combi-
nations of video transcoding parameters from Table 3.2 have been applied
to each video when collecting the training data.

Parameter Value
Codec H264, Mpeg4, Vp8, H263
Resolution 144p, 240p, 360p, 480p, 720p, 1080p
Bitrate 56k,109k, 242k, 539k, 820k, 3000k, 5000k
Framerate 12, 15, 24, 25, 29.97

Table 3.2: Transcoding parameter space.

The process of collecting transcoding time for each sequence is shown in
Figure 3.3. The characterization of each online video along with a transcod-
ing parameter and the corresponding measured transcoding time makes up
an instance of our training data. We used Ffmpeg and Ffprobe to collect
video transcoding time and video characteristics of each video in our training
set.

Constructing the Model Once the training data is constructed, it can
be fed to a learning algorithm that will automatically learn a prediction
model as shown in Figure 3.4. We used support vector regression (SVR),
linear regression (LR) and multilayer perceptron (MLP) to construct our
prediction models. Details of the setups used for these learning algorithms
can be found in [23, 24].

32

1
4

4

2
4

0

3
6

0

4
8

0

7
2

0

1
0

8
0

30

40

50

60

70

80

90

Resolution [Height pixles]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

 f
lv

 h
2

6
4

 m
p

e
g

4

 v
p

8

0

20

40

60

80

Codec

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

5
6

1
0

9

2
4

2

5
3

9

8
2

0

1
5

0
0

3
0

0
0

20

40

60

80

Bitrate [kbps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

1
2

1
5

2
4

2
5

2
9

30

40

50

60

70

80

Framerate [fps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

(a) Effect of input video characteristics on transcoding time of a set of 80
Youtube videos when transcoding using a fixed transcoding parameter set.
Transcoding parameters are fixed to 3000 kbps bitrate, 25 fps framerate,
720p resolution and h264 codec. In this case the transcoding parameters
are fixed to show the effect of each input video characteristics on the total
transcoding time.

1
4

4

2
4

0

3
6

0

4
8

0

7
2

0

1
0

8
0

0

20

40

60

80

100

Resolution [Height pixles]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

fl
v

h
2

6
4

m
p

e
g

4

v
p

8

0

10

20

30

40

50

60

Codec

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

5
6

1
0

9

2
4

2

5
3

9

8
2

0

3
0

0
0

5
0

0
0

20

40

60

80

100

120

Bitrate [kbps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

1
2

1
5

2
4

2
5

2
9

.9
7

10

20

30

40

50

60

Framerate [fps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

(b) Effect of transcoding parameters on transcoding time of a set of 80
YouTube videos. The effect of each transcoding parameter is shown while
keeping the other parameters fixed. Each box plot corresponds to transcod-
ing time values of the 80 randomly selected YouTube videos. The set videos
is fixed and all transcoding parameters except the controlled parameters is
fixed.

Figure 3.2: Effect of input video characteristics and transcoding parameters.

33

Figure 3.3: Collecting transcoding time.

Figure 3.4: Constructing the model.

Model on Unseen Video Figure 3.5 illustrates how the model obtained
from the learning algorithms can be used on an unseen video to get an esti-
mation of the transcoding time of a video, which can be exploited by a load
balancing algorithm on a large scale distributed video transcoding service.

34

We train and validate our models using 2/3 of the training data we have
collected and the rest 1/3 portion is left for testing and evaluation of the
models.

Figure 3.5: Using model on unseen video.

3.3 Proactive Management of Transcoding Services

Our third contribution in this thesis is a proactive management approach for
video transcoding in the cloud [25]. The proposed proactive resource man-
agement approach relies on the transcoding workload prediction approach
presented in Section 3.2.

Figure 3.6 presents the system architecture of our proposed approach. It
mainly consists of a predictor, a manager and transcoding servers. When
transcoding requests are made to the system, they will be routed to the
predictor which will predict the workload of the request before the actual
transcoding. The requests, augmented with their workload prediction are
then sent to the manager which consists of various sub-components that are
important in decision making regarding efficient system utilization.

The main components that constitute the manager include the admission
controller, the load balancer (dispatcher) and the provisioner. The admis-
sion controller is responsible for making the decision whether there is enough
transcoding capacity at the moment to accept the request for a certain SLA
(e.g. estimated response time). The load balancer is responsible for decid-
ing which transcoding server to use for the request such that the waiting
and time total utilization of the system is optimized. The provisioner is
responsible for allocating and deallocating transcoding resources according
to the total predicted workload of the system. Once the request is accepted
it is routed to a selected transcoding node where it is transcoded, and all
the information required by the predictor including the transcoding time are
logged for retraining and learning a better prediction model.

35

Manager

Provisioner

Dispatcher

Admission
Controler

{(x1
1...x

n
1 ,y1),

(x1
2...x

n
2 ,y2),

...
(x1

t ...x
n
t ,yt)}

Learning
Algorithm

PredictorRequest
f(x) = 〈ω, x〉+ b = w · x+ b

Figure 3.6: System Architecture.

In this thesis we particularly focus on proactive provisioning and load
balancing and the following sections presents these topics briefly. Detail of
our work on proactive provisioning and load balancing approaches can be
found in [25, 32].

3.3.1 Proactive Load Balancing of Transcoding Jobs

Without a workload prediction mechanism, current large-scale video process-
ing platforms use one of the two basic and widely used algorithms; queue
length based load balancing where the load is being balanced based on queue
length associated with each server or round robin approach where transcod-
ing requests are routed to transcoding servers in a round robin fashion.

As can be noted from Algorithm 1 our load balancing approach uses

36

1: server ← servers(0)
2: for all req in requests do
3: for all s in servers do
4: if predLoad(s) < predLoad(server) then
5: server ← s
6: end if
7: end for
8: send(req, server)
9: load(req)← predictTranscodingT ime(req, algo)

10: predLoad(server)← predLoad(server) + load(req)
11: end for

Algorithm 1: Proactive load balancing algorithm

the transcoding time prediction as a load measure rather than queue length
which often is not indicative of the actual workload. In a nutshell, what our
algorithm does is to look for a server with the least total predicted load and
send the current transcoding request to it.

3.3.2 Proactive Provisioning of Transcoding Servers

Due to the variability of individual video transcoding jobs and the variable
transcoding requests made towards transcoding services, it is important to
have a mechanism for proactive provisioning of transcoding servers. With-
out such mechanism, video transcoding services would have to resort to a
fixed computing capacity which leads to either over-provisioning or under-
provisioning of computing resources for a required level of Quality of Service.

In this thesis, we contribute towards a proactive provisioning approach
based on ahead of time transcoding workload prediction. Our approach
calculates the right required amount of transcoding servers based on the
formula:

(⌈ predLoad(servers)

α ∗ slaWaitingT ime

⌉
− 1

)
∗ len(servers) (3.1)

where predLoad(servers) is the average predicted load of servers,
slaWaitingT ime is the required system-wide average waiting time for transcod-
ing jobs and α is an adjusting parameter that can be used to compensate
prediction errors. The average predicted load of servers for a given period
is calculated by summing up workload predictions of all transcoding tasks
assigned to servers and dividing that by the number of servers at the same
period. Averages from past and current period are then smoothed using ex-
ponential moving average technique and are used by simple regression model
to predict the average predicted load of the next period. The average pre-
dicted load is used in our formula for calculating the number of VMs.

37

The formula calculates the number of servers to add or remove in order
for the average load on each server get as close as possible to the waiting
time specified by the SLA of the service. This ensures provisioning the right
amount of servers for the Quality of Services agreed. Note that a negative
result from the formula indicates the number of servers that needed to be
removed while a positive number indicates the number of servers that needed
to be added.

Since most cloud providers that host transcoding services charge for their
virtual machines on an hourly basis, the provisioning algorithm checks the
servers renting time before removal. Servers are removed only if they are near
to the end of their renting time and has no job under processing. Servers that
have running jobs and are near to the end of their renting time are flagged. A
flagged server will not receive any more jobs and until it is removed later or
become unflagged due to system load increase in which case it’s renting time
will is renewed. Similarly when the system needs to add servers, it will start
first by unflagging flagged servers. This allows the servers to receive new
jobs and their renting time be renewed. Therefore the algorithm provisions
new servers only when there are no flagged servers at disposal.

3.4 Parallelization of Transcoding

Beside properly managing computing resources of a given distributed video
processing platform, one needs to parallelize the applications that run on
top of it to further ensure efficient utilization of modern multi-core architec-
tures used to build the infrastructure. Therefore, as our forth contribution
of this thesis, we present a parallelization approach for a video transcoding
application. The approach shows how a high performance distributed video
transcoder can be built using multiple processing units and a Message Pass-
ing Interface programming model. The problem decomposition and process
interaction approaches used are briefly presented in the following subsections
and the details of the approach are presented in [26].

3.4.1 Problem Decomposition

A video stream consists of several independent units called as video sequences
where every sequence has its own headers. The video sequence consists of
several groups of pictures (GOP). The group of pictures consists of frames.
There are different types of frames; I (Intra) frame, P (Predictive) frame and
B (Bidirectional) frame. The frame is further divided into slices; each slice
consists of macro blocks and every macro block consists of blocks. Figure
3.7 shows the video stream structure down to the MB level.

At each of these levels, there is a potential for data level parallelization
of any video processing application including video transcoding. In our case,

38

Seq1

Seq2

Seq1 Seq2 Seqn

MB
Header

Data

GOP
Header Frame1 Framen

Video Stream

Video Sequence

Group of Pictures

Macroblock

Seq
Header

GOP 1 GOPn

Frame
Header

Slice1 Slicen
Frame

Slice
Header

MB1 MBn

Slice

Figure 3.7: Video Stream Structure.

we use GOP level data parallelization where a video stream is segmented into
parts containing one or more GOPs. Such course grain parallelism at GOP
level is interesting because VODs often used pseudo streaming techniques
such as DASH [91]. This makes parallel video processing at GOP even more
attractive. Further fine-grained parallelism and approaches for implementing
them are discussed in the next section as our next contribution of this thesis.

3.4.2 Process Interaction

Our parallel transcoder is implemented based on Message Passing Interface
(MPI) and a master worker design pattern. The parallel transcoder consists
of a manager node and a set of worker nodes. The manager node is respon-
sible for splitting, merging and assigning video segments to worker nodes. A
worker node runs a full video transcoder and its task is to transcode video
segments sent to it by the manager node. The master and the worker pro-
cesses interact with each other based on tagged messages.

3.5 Interfacing Dataflow with Imperative Code

Implementing fine-grained parallelism using such programming model is more
complicated and error prone as the programmer needs to explicitly express

39

the parallelism in the program including managing and synchronization of
processes which is required to avoid non-determinism. Recently more ab-
stract programming models have been developed to enable programmers to
express program parallelism implicitly. Dataflow is one model of compu-
tation that can be used to implicitly express program parallelism. In this
section, as our last contribution, we introduce a new approach allowing the
integration of dataflow components within a imperative code. The approach
makes use of a generic interface definition that allows seamless interaction
between I/O components and data processing components. I/O components
are mostly state operations and are best implemented in imperative lan-
guages. On the other hand, data processing components are mostly stateless
dataflow operations and are best implemented in dataflow languages.

Ideally we would need to find the most transparent way to accomplish
the interfacing. It should be done in such a way that enables code in both
languages to remain natural. There are two possible approaches to interface
imperative code with dataflow code. One possible approach, adopted by
current RVC-CAL application developments, is based on the interface driven
by the dataflow code. The I/O imperative functions are called from the
dataflow program using CAL procedures which are ad-hoc mechanisms put
in place to accommodate imperative code into dataflow components.

The approach proposed in this thesis is also based on the use of an
imperative code for I/O. However, in this approach it is the imperative code
that calls the dataflow code with an input data to be processed. The main
advantage of this approach is the ease of development. Each language is
used to implement those parts of the code for which the language is most
appropriate for, without the need to accommodate the languages to each
other (as in RVC-CAL procedures). This enables independent prototyping
and reuse of code already written. It also permits existing libraries to access
dataflow components and helps adoption of dataflow programming.

3.5.1 Interface Definition

The interface is designed to be generic enough such that any new dataflow
component, like a decoder, encoder or filter, can be added to any existing
or legacy video processing library written in an imperative language. The
proposed interface consists of three functions and a data structure which are
explained and implemented as follows.

init_component

This interfacing function is used to launch the dataflow component. Launch-
ing a dataflow component can be conceived as starting a conveyor belt system
in a factory. Once a conveyor belt along with the processing units connected

40

to it are started, a factory is ready to receive a stream of items to be pro-
cessed. In our case, the initialization function starts the dataflow runtime
system. The RVC-CAL runtime mainly consists of mapping, scheduling and
other utility routines. The runtime takes in a set of actors, their network
and user-supplied parameters such as an input data and maps, schedules and
executes actors on a number of processing units. Mapping is either done by
simply assigning actors to available processing units in a round-robin manner
or via more complex post-profiling weight-based methods [92]. Once actors
are mapped to a processing unit, they are scheduled using round-robin or
more advanced data-driven methods [93].

Data: context
Result: success

1 set_component_context(context);
2 success = thread_create(launcher, launch, context, tid);

Algorithm 2: Dataflow component initialization

The pseudocode in Algorithm 2 shows the implementation of the init_component
function. Context is any information that is needed to start the component.
It contains the runtime options of the dataflow component such as mapping
policy, scheduling policy, the number of cores to be used and the dataflow
network itself. Once the desired context of the component is set, the dataflow
component is launched with a new thread which ensures the init_component
function returns control to the imperative code immediately. This allows the
caller to continue its execution by sending row data and receiving processed
data from the dataflow component.

process

This function is responsible for feeding the already initialized dataflow com-
ponent with input data and grabbing the output data if available. Every call
to this function from the imperative transcoder might fill the input FIFO of
the dataflow component or get tokens from the output FIFO of the compo-
nent, or both.

As shown in Algorithm 3, the process function takes in the context of the
dataflow component which contains the network information and the data
to be processed in ipkt. It then returns any result that might be available
from the dataflow component in opkt. Note that this function also returns
the size of the data consumed by the component through the variable sent.
Any unconsumed data on the input FIFO of the dataflow component should
be re-supplied to this function. got_result is used to tell a calling function
if the dataflow component resulted in a valid output via opkt.

41

Data: context, ipkt
Result: sent, opkt, got_result

1 tosend=ipkt.size;
2 sent = 0;
/* send input to dataflow */

3 sent += send(context,ipkt, tosend);
4 last_processed=processed;
/* recive processed data */

5 processed += recv(context,opkt);
6 if last_processed < processed then

/* we have got data */
7 got_result = 1;
8 else
9 got_result = 0;

10 end
11 ipkt.size -= sent;
12 ipkt.data += sent;

Algorithm 3: Dataflow processing

close_component

This interface function is used to end the already running dataflow compo-
nent. More specifically it ends the runtime of the component by joining all
created threads that were responsible for executing the component’s actors.

Data: context
Result: success

1 thread_join(launcher);
2 success = free_component_context(context);

Algorithm 4: Dataflow component termination

Algorithm 4 shows the close_component function.

Component Structure

This structure definition enables the use of multiple dataflow components
and ensures the generic nature of the interface.

As can be noted from Algorithm 5, the component definition allows mul-
tiple dataflow components to be identified by a name or id.

42

1 typedef struct component {
2 const char name;
3 enum type component_type;
4 enum id component_id;
5 struct component *next;
6 int (*init_component)(context *);
7 int (*process)(context *, opkt*, ipkt*, *got_result);
8 int (*close_component)(context *);
9 }

Algorithm 5: Component Structure

CAL Actors CAL Network

Orcc

C Backend

Interface
(component.h)

Makefile &
Package config

files

Dataflow
Component

Library
(component.a)

Figure 3.8: Generation of the dataflow component library and its interface.

It also contains pointer to the three functions that are used to initiate, use
and close a given dataflow component.

3.5.2 Generating Interface and Dataflow Component

To have an automated workflow for integrating dataflow components into a
transcoding framework, we propose generating the interface automatically
from the ORCC backend.

As shown in figure 3.8 we have modified the ORCC C backend to generate
the dataflow components as a library along with a header file instead of
stand alone executable. In addition, we have added generation of package
configuration files so that the library can be installed and be used easily.

43

Parser Enropy
Decoder Spliter

IQ 4x4 IT 4x4

IQ 8x8 IT 8x8

Merger

Intra Pre-
diction

Inter Pre-
diction

Select

Deblock
Filter

Frame
Buffer

Generate
InterInfo

Figure 3.9: Dataflow Decoder Implementation from ORCC.

3.5.3 Using the Interface

To demonstrate the functionality of the approach we have generated MPEG
and HEVC video decoders form the corresponding dataflow descriptions,
written in RVC-CAL and obtained from [20], using our modified C backend.
Figure 3.9 shows the structure of the HEVC dataflow decoder.

The dataflow decoder descriptions are then compiled into libraries with
proper interfaces and are installed in our system. Following that we have in-
cluded the header files of the generated dataflow components into an existing
video transcoding framework written in a procedural language and linked to
the installed component libraries during its compilation.

Algorithm 6 shows the use of a dataflow decoder component by the ex-
isting video transcoder FFmpeg written in a procedural language. Three
main points can be noted from the pseudo-code. The first is the register_all
function that is used to register the available formats, codec and filters in
a given system. This function is from FFmpeg libraries and we have also
used it to register our new dataflow decoder component. The second point
to note is the use of our interface which constitutes the three functions,
init_component, process and close_component. This interface can be used
to abstract the various types of dataflow components that can be imple-
mented and integrated to FFmpeg or any other transcoder. Finally one can
note that the FFmpeg libraries supply the I/O (read/write) functions which
are capable of parsing almost any known video container format efficiently.
In addition to the I/O functions, data processing functionalities such as video
scalers and encoders that are yet to be implemented by dataflow approach
can also be used.

Using our interface we were, therefore, able to provide FFmpeg, an ex-
isting video transcoding framework written in an imperative language with
dataflow components that implement fine-grained parallelism. Note from
Figure 3.9 that the dataflow decoder component provides a fine-grained par-
allelism by implementing functional blocks as separate actors.

44

Data: vs (source video), context
Result: vp (processed video)

1 register_all();
2 init_component(context) ; // initialize component e.g.

decoder/filter/encoder
3 while read(context, vs, ipkt) do
4 process(context, opkt, ipkt, got_result) ; // e.g.

decode/filter/encoder
5 if got_result then
6 rescale_frame (context, fpkt, opkt, got_result);
7 end
8 if got_result then
9 encode_frame (context, opkt, fpkt, got_result);

10 end
11 if got_result then
12 write(context, opkt);
13 end
14 ipkt.data += ret;
15 ipkt.size -= ret;
16 end
17 flush();
18 close_component(context) ; // close component e.g.

decoder/filter/encoder
Algorithm 6: FFmpeg overview

45

46

Chapter 4

Overview of Original
Publications

In this chapter we present a summary of our original publications, the con-
tribution of the authors towards these publications, the relationship among
the publications and with the research questions posed in Section 1.2.

4.1 Overview of Original Publications

4.1.1 Paper I: Analysis and Transcoding Time Prediction of
Online Videos

Paper I presents an analysis of the fundamental characteristics of online
videos and their application in multimedia processing workload modelling.
Its main contribution is to provide insightful statistics and a dataset on
fundamental characteristics of online videos that can be further exploited to
optimize or model components of a multimedia processing systems. The use-
fulness of dataset along with its summary statistics is demonstrated through
its use in modelling and prediction of video transcoding time. The outputs
of this research thus include a dataset, a tool used to extract it and a method
of modelling transcoding time based on the dataset.

Author’s contribution: The main idea presented in this paper was
developed by the under the guidance of Dr. Sébastien Lafond and Professor
Johan Lilius. Tewodros Deneke is the primary author of this paper. The
tools used to extract the dataset and build the transcoding prediction model
are also developed by Tewodros Deneke. The dataset presented in the paper
can be found in [83].

47

4.1.2 Paper II: Video Transcoding Time Prediction for Proac-
tive Load Balancing

Paper II presents the details of our transcoding time prediction method and
its use for proactive load balancing of transcoding jobs across VMs in the
cloud. Its main contribution is thus a proactive load balancing approach that
utilizes transcoding prediction models built based on past observations and
generic learning algorithms. The results obtained in this paper are based
on an extended version of CloudSim, an open source discrete event cloud
simulator. In the paper, we also provided a comparison of our approach
with existing basic load balancing algorithms.

Author’s contribution: The main idea presented in this paper was
developed by the author under the guidance of Dr. Sébastien Lafond and
Professor Johan Lilius. Tewodros Deneke is the main author of this pa-
per. The extensions to the cloud simulator are also developed by Tewodros
Deneke. Co-author Habtegebreil Haile made the initial setup of the simulator
and provided ideas on how the required extensions can be integrated.

4.1.3 Paper III: Integration of Dataflow Components Within
a Legacy Video Transcoding Framework

Recently the RVC-CAL dataflow language has enabled video codecs to be
specified in a more natural way than imperative languages by allowing im-
plicit expression of parallelism and side-effect-freeness. The tools developed
for RVCCAL have also enabled the automatic generation of parallel C code,
among others, from dataflow specifications. The main contribution of paper
III is thus the introduction of a new approach allowing the integration of
dataflow components within an existing or legacy. The approach makes use
of a generic interface definition that allows seamless interaction between I/O
components and data processing components. I/O components are mostly
state operations and are best implemented in imperative languages. On the
other hand, data processing components are mostly stateless dataflow opera-
tions and are best implemented in dataflow languages. The advantage of the
approach is the ease of development by allowing each language to be used
on those parts of the application that it is most appropriate for. The func-
tionality of the approach is demonstrated1 through using the automatically
generated generic interface to add new dataflow based MPEG and HEVC
decoders into an existing video transcoding library FFmpeg.

Author’s contribution: The main idea presented in this paper was
developed by the co-authors Tewodros Deneke and Dr. Lionel Morel under
the guidance of Dr. Sébastien Lafond and Professor Johan Lilius. Tewodros

1https://github.com/tdeneke/ffmpeg-2.5.3, https://github.com/tdeneke/orcc
and https://github.com/tdeneke/orc-apps

48

Deneke is the main author of this paper. The compiler extensions and the
generic interface were designed and developed by Tewodros Deneke.

4.1.4 Paper IV: Bit Rate Reduction Video Transcoding with
Distributed Computing

Paper IV presents an approach to perform a distributed video bit rate re-
duction transcoding. The approach is based on video segmentation at group
of pictures level and message passing programming model for inter-process
interaction. The main contribution of the paper is thus to show how a high
performance distributed video transcoder can be built using multiple pro-
cessing units and a Message Passing Interface programming model. Perfor-
mance and scalability results are presented based on a real implementation
of the approach. Also, comparison of the different group of pictures level
segmentation strategies and their effect on the performance of the approach
is presented.

Author’s contribution: The main idea presented in this paper was
developed by the co-authors Fareed Jokhio and Tewodros Deneke under the
guidance of Dr. Sébastien Lafond and Professor Johan Lilius. Fareed Jokhio
is the main author of this paper. The paper is written jointly by co-authors
Fareed Jokhio and Tewodros Deneke. The implementation is mostly done
by Tewodros Deneke and the experiments are done by Fareed Jokhio.

4.1.5 Paper V: Proactive Management of Video Transcoding
Services

Paper V ties together most of the contributions in this thesis. It presents
a proactive transcoding service management approach based on transcoding
task size prediction to optimize the usage of cloud platforms. The proposed
approach uses machine learning based task size prediction to enable more
efficient resource management in terms of auto-scaling and load balancing.
It also allows for a clear definition of service level agreement (SLA) in terms
of average waiting time of transcoding jobs. Simulation results show that
our proactive transcoding service management methods based on transcoding
task prediction enable a significantly better resource utilization for a given
quality of service.

Author’s contribution: The main idea presented in this paper was
developed by the author under the guidance of Dr. Sébastien Lafond and
Professor Johan Lilius. Tewodros Deneke is the main author of this paper.
The tools and simulation programs2 used in this work are all developed by
Tewodros Deneke.

2https://github.com/tdeneke/cloudsim/

49

4.2 Discussion

In section 1.2, we have presented four research questions this thesis tries
to address. The first research question is concerned with understanding
the current state of videos in large scale video on demand systems. The
question is raised due to the need to understand, model and optimize video
processing workload on such systems. This question is addressed in Paper
I. Paper I provide an insightful descriptive statistics on the various video
characteristics based on a dataset mined from a large scale video on demand
system, Youtube. More summary statistics and associated insights than
covered in the first paper can be found in [24].

The second research question is concerned with the possibility of accu-
rately predicting computational workload of video processing applications
such as video transcoding. Parts of Paper I and V present how video
transcoding time can be modeled and predicted based on historical data
and generic learning algorithms.

The third research question addressed in this thesis is concerned with
the design of novel resource management algorithms driven by the workload
prediction mechanisms. Paper II addresses this research question by demon-
strating how video transcoding workload can be efficiently distributed across
VMs such that the total utilization of a distributed transcoding system can
be maximized.

Our final research question of the thesis is concerned with the possibili-
ties of parallelizing video processing applications to ensure efficient utiliza-
tion of modern multi and many core architectures that make up the cloud
and distributed computing infrastructures. To this end, Paper III provides
one possible solution that allows fine-grained parallel implementations of
video processing components in dataflow languages. Paper IV addresses the
possibility of coarse-grained parallelization approaches for video transcoding
applications.

Figure 4.1 illustrates how the papers found in part II correspond to the
various parts of the system architecture. Papers I, II and V are related to
understanding video processing workload and efficient management of com-
puting resources based on workload predictions. Papers III and IV are re-
lated to efficient utilization of computing resources that make up large-scale
cloud and distributed computing platforms. Paper I provide a summary and
descriptive statistics that give insight on the current state of online videos
and show how the insight can be used to model workloads of large-scale
video processing platforms. An extended summary and explanation of how
to model video transcoding workload can be found [24]. Paper II extends
the work of Paper I and IV to provide a proactive load balancing and man-
agement approach for cloud based distributed transcoding services.

50

Request Paper IV

Paper I

Paper V

Paper III

Paper II

{(x1
1...x

n
1 ,y1),

(x1
2...x

n
2 ,y2),

...
(x1

t ...x
n
t ,yt)}

Learning
Algorithm

Predictor
f(x) = 〈ω, x〉+ b = w · x+ b

Manager

Provisioner

Dispatcher

Admission
Controler

Figure 4.1: Illustration of how the papers correspond to the various parts of
the system architecture

Paper IV provides a course grained parallelization approach for video transcod-
ing while Paper III shows how to facilitate the use of dataflow programming
approaches for fine grained parallelization of video processing approaches in
the context of video transcoding. Paper V ties most of the contributions
together and provide methods such as provisioning and load balancing to
manage computing resources in video transcoding services proactively.

51

52

Chapter 5

Conclusions and Future Work

The primary focus of this thesis work was the different research issues related
to proactive management of transcoding services and transcoding paralleliza-
tion. To this end, we have systematically collected a dataset containing a set
of relevant video characteristics and presented a descriptive statistics over
them. The insight gained from these statistics enables proper design and
test of large-scale video processing services such as video transcoding. The
dataset was obtained through random sampling of the most popular video
UGC site, YouTube. Such random sampling enabled us to construct an un-
biased dataset. The data collection was done through extending open source
tools and libraries such as Ffmpeg. Our benchmark results showed how
the datasets can be used in constructing models to predict video process-
ing workloads with a very good accuracy. A squared correlation (predicted
vs measured) of 0.958 has been achieved by the best prediction model on
20-second video segments.

The next challenge we have addressed was the design of proactive com-
puting resource management algorithms such as load balancing and provi-
sioning. We designed a proactive load balancing scheme to improve through-
put and quality of service of video transcoding services. Our method explored
the opportunities provided by trends obtainable from transcoding workload
logs of past requests. We were able to predict transcoding time of a video
given its fundamental characteristics and the transcoding parameters used.
Based on such prediction can we were able to design a proactive load balanc-
ing approach that can be used to properly load balance video transcoding
requests across servers. In our experiment, we have used real-world data and
designed the simulation scenario imitating real world Internet transactions.
Our proactive load balancing algorithm showed a significant improvement
over the traditional methods in terms of total system throughput and waiting
time. More specifically up to 15% improvement has been achieved in terms
of system throughput over the round robin and queue length approaches on

53

a fixed server capacity. Also, a proactive provisioning method that enables
provisioning of the right amount of transcoding servers for a given quality
of service was presented and evaluated. Experiment has shown that using
proactive provisioning rather than fixed worst case based provisioning saves
up to (86%) in terms of VM hours over the course of a week. Also up to
8% in VM hours has been shown to be saved when augmenting proactive
provisioning with proactive load balancing.

Another dimension towards efficient computing utilization besides effi-
cient management is parallelization applications. In this thesis, work we ex-
plored parallelization opportunities at both coarse-grained and fine-grained
level. First, we have proposed a scalable distributed MPI based transcoder
implementation. In this implementation, a master node (workstation) par-
titions a given input video file into segments and distributes them among
worker nodes. The actual transcoding is performed by worker machines in
parallel to get more speedup of overall transcoding process. The worker
machines send back the transcoded video to master for merging. We were
able to see a considerable performance gain with MPI based transcoder as
the number of worker machines or cores increases. It was observed that the
segmentation with an equal number of Intra frames is more efficient than
equal size segmentation. The unequal size segmentation is better for hav-
ing short startup time. Then, in order to address the need for fine-grained
parallelism, we have proposed the use of a generic interface for integrating
dataflow components such as decoders, encoders and filters with existing
transcoding libraries written in imperative languages. The interface enables
seamless interaction between dataflow and existing imperative code allowing
each programming approach to implement components for which it is appro-
priate for. We have also tested and shown the proper functionality of our
approach. Scalability evaluations also show the gain that can be obtained
from using dataflow components via the proposed interface. In the future we
would like to further explore the effect of the dataflow component runtime
and transcoding framework runtime on each other.

As a future work we encourage other researchers to use our dataset in
discovering more interesting information about video characteristics on the
web and test their own algorithms to build similar predictive models [83, 23].
It is also good to incorporate more video data sources which could help in
building more insight, especially on niche sources. In this thesis we gave more
attention towards prediction accuracy when modelling our workload predic-
tion algorithms, in the future researchers could also look towards modelling
for understanding. In this thesis load balancing has been used to highlight
the use of data to drive management of system resources, however, other
components such as resource provisioner could use similar approaches to be
come proactive and effective. In the direction of multimedia application par-
allelization researchers could more deeply look at the benefits and drawbacks

54

of the various programming models in order to tailor programming models
for multimedia applications that makes it easy for programmers to utilize all
system resources.

55

56

Bibliography

[1] Zencoder Inc. Zencoder cloud transcoder, August 2013. URL http:
//zencoder.com/en/.

[2] Amazon Inc. Amazon elastic transcoder, August 2013. URL http:
//aws.amazon.com/elastictranscoder/.

[3] Bitmovin Inc. Bitmovin cloud encoding, May 2016. URL https://
bitmovin.com/encoding/.

[4] Shih fu Chang, Shih fu Chang, and Anthony Vetro. Video adaptation:
Concepts, technologies, and open issues. Proceedings of IEEE, January
2005.

[5] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun. Digital video transcoding.
Proceedings of the IEEE, January 2005.

[6] Iraj Sodagar. The mpeg-dash standard for multimedia streaming over
the internet. IEEE MultiMedia, 18(4):62–67, October 2011.

[7] Thomas Stockhammer. Dynamic adaptive streaming over HTTP –:
Standards and design principles. In Proceedings of the Second Annual
ACM Conference on Multimedia Systems, MMSys ’11, pages 133–144,
New York, NY, USA, 2011. ACM.

[8] Laura Toni, Ramon Aparicio-Pardo, Gwendal Simon, Alberto Blanc,
and Pascal Frossard. Optimal set of video representations in adaptive
streaming. In Proceedings of the 5th ACM Multimedia Systems Confer-
ence, MMSys ’14, pages 271–282, New York, NY, USA, 2014. ACM.

[9] Hongliang Yu, Dongdong Zheng, Ben Y. Zhao, and Weimin Zheng.
Understanding user behavior in large-scale video-on-demand systems.
SIGOPS Oper. Syst. Rev., April 2006.

[10] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and
Sue Moon. I tube, you tube, everybody tubes: analyzing the world’s
largest user generated content video system. IMC ’07, San Diego, Cali-
fornia, USA.

57

[11] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti.
Youtube traffic characterization: a view from the edge. IMC ’07, San
Diego, California, USA.

[12] Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose. Watch global,
cache local: YouTube network traffic at a campus network - measure-
ments and implications. Technical report, 2008.

[13] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Measurement and analysis of online
social networks. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, IMC ’07, page 29–42, New York, NY, USA,
2007. ACM.

[14] Jiani Guo and Laxmi Narayan Bhuyan. Load balancing in a cluster-
based web server for multimedia applications. IEEE Trans. Parallel
Distrib. Syst., 17(11):1321–1334, November 2006.

[15] M. Roitzsch and M. Pohlack. Principles for the prediction of video
decoding times applied to MPEG-1/2 and MPEG-4 part 2 video. In
Real-Time Systems Symposium, 2006. RTSS ’06. 27th IEEE Interna-
tional, pages 271–280, 2006.

[16] Zhenhua Li, Yan Huang, Gang Liu, Fuchen Wang, Zhi-Li Zhang, and
Yafei Dai. Cloud transcoder: Bridging the format and resolution gap
between internet videos and mobile devices. In 22nd ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video,
2012.

[17] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei"i Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, April 2010.

[18] Fareed Ahmed Jokhio, Adnan Ashraf, Sebastien Lafond, Ivan Porres,
and Johan Lilius. Prediction-based dynamic resource allocation for
video transcoding in cloud computing. In PDP, 2013, 2013.

[19] Adnan Ashraf, Fareed Jokhio, Tewodros Deneke, Sebastien Lafond, Ivan
Porres, and Johan Lilius. Stream-based admission control and schedul-
ing for video transcoding in cloud computing. In Pavan Balaji, Dick
Epema, and Thomas Fahringer, editors, 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages
482–489. IEEE Computer Society, 2013.

[20] Orcc. Open RVC-CAL compiler, 2009. URL http://orcc.
sourceforge.net/.

58

[21] Matthieu Wipliez. Compilation infrastructure for dataow programs.
PhD thesis, INSA Rennes, September 2010.

[22] H Yviquel. From Dataflow-based Video Coding Tools to Dedicated Em-
bedded. PhD thesis, UNIVERSITE DE RENNES 1, October 2013.

[23] T. Deneke, S. Lafond, and J. Lilius. Analysis and transcoding time
prediction of online videos. In 2015 IEEE International Symposium on
Multimedia (ISM), pages 319–322, Dec 2015.

[24] Tewodros Deneke, Sebastien Lafond, and Johan Lilius. Analysis and
transcoding time prediction of online videos. Technical Report 1145,
2015.

[25] T. Deneke, H. Haile, S. Lafond, and J. Lilius. Video transcoding time
prediction for proactive load balancing. In 2014 IEEE International
Conference on Multimedia and Expo (ICME), pages 1–6, July 2014.

[26] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius. Bit rate reduction video
transcoding with distributed computing. In PDP, 2012 20th Euromicro
International Conference, February 2012.

[27] Fareed A. Jokhio, Tewodros Deneke, Sébastien Lafond, and Johan Lil-
ius. Analysis of video segmentation for spatial resolution reduction video
transcoding. In ISPACS, 2011 International Symposiuml, December
2011.

[28] T. Deneke, L. Morel, S. Lafond, and J. Lilius. Integration of dataflow
components within a legacy video transcoding framework. In Signal
Processing Systems (SiPS), 2015 IEEE Workshop on, pages 1–6, Oct
2015.

[29] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. HD-VideoBench.
A benchmark for evaluating high definition digital video applications.
In Workload Characterization, 2007. IISWC 2007. IEEE 10th Interna-
tional Symposium on, pages 120–125, 2007. doi: 10.1109/IISWC.2007.
4362188.

[30] MediaBench: a tool for evaluating and synthesizing multimedia and
communicatons systems. In Proceedings of the 30th annual ACM/IEEE,
MICRO 30, page 330–335, Washington, DC, USA.

[31] Nathan T. Slingerland and Alan Jay Smith. Design and characterization
of the berkeley multimedia workload. Multimedia Syst., 8(4):315–327,
July 2002.

59

[32] Tewodros Deneke, Sebastien Lafond, and Johan Lilius. Proactive man-
agement of video transcoding services. ACM Trans. Multimedia Com-
put. Commun. Appl., August Submitted.

[33] P. Järvinen. On research methods. Opinpajan Kirja, 2001.

[34] A.L. Strauss and J.M. Corbin. Basics of qualitative research: grounded
theory procedures and techniques. Sage Publications, 1990.

[35] Salvatore T. March and Gerald F. Smith. Design and natural science
research on information technology. Decis. Support Syst., 15(4):251–266,
December 1995.

[36] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS Q., 28(1):75–105,
March 2004.

[37] Shih fu Chang, Shih fu Chang, Anthony Vetro, Anthony Vetro, and
Senior Member. Video adaptation: Concepts, technologies, and open
issues. In Proc. IEEE, pages 148–158, 2005.

[38] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun. Digital video transcoding.
Proceedings of the IEEE, 93(1):84–97, 2005.

[39] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud consumputing and emerging it platforms:
Vision, hype, and reality for delivering computing as the 5th utility.
Future Gener. Comput. Syst., 25(6):599–616, June 2009.

[40] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid com-
puting 360-degree compared. In 2008 Grid Computing Environments
Workshop, pages 1–10, Nov 2008.

[41] Simson Garfinkel and Harold Abelson. Architects of the Information
Society: 35 Years of the Laboratory for Computer Science at Mit. MIT
Press, Cambridge, MA, USA, 1999.

[42] L. Kleinrock. A vision for the Internet. ST Journal for Research, 2(1):
4–5, November 2005.

[43] Charlie Catlett. The philosophy of teragrid: Building an open, extensi-
ble, distributed terascale facility. In Proceedings of the 2Nd IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID
’02, pages 8–, Washington, DC, USA, 2002. IEEE Computer Society.

[44] Dennis Gannon2005, Beth Plale, Marcus Christie, Liang Fang,
Yi Huang, Scott Jensen, Gopi Kandaswamy, Suresh Marru, Sangmi Lee

60

Pallickara, Satoshi Shirasuna, Yogesh Simmhan, Aleksander Slominski,
and Yiming Sun. Service-Oriented Computing - ICSOC 2005: Third In-
ternational Conference, Amsterdam, The Netherlands, December 12-15,
2005. Proceedings, chapter Service Oriented Architectures for Science
Gateways on Grid Systems, pages 21–32. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[45] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-
puting in practice: The condor experience: Research articles. Concurr.
Comput. : Pract. Exper., 17(2-4):323–356, February 2005.

[46] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the clouds: Towards a cloud definition. SIGCOMM Comput.
Commun. Rev., 39(1):50–55, December 2008.

[47] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of
cloud computing. Technical report, Gaithersburg, MD, United States,
2011.

[48] Adriana Garcia, Hari Kalva, and Borko Furht. A study of transcoding
on cloud environments for video content delivery. In Proceedings of the
2010 ACM Multimedia Workshop on Mobile Cloud Media Computing,
MCMC ’10, pages 13–18, New York, NY, USA, 2010. ACM.

[49] Seungcheol Ko, Seongsoo Park, and Hwansoo Han. Design analysis for
real-time video transcoding on cloud systems. In Proceedings of the
28th Annual ACM Symposium on Applied Computing, SAC ’13, pages
1610–1615, New York, NY, USA, 2013. ACM.

[50] Ramon Aparicio-Pardo, Karine Pires, Alberto Blanc, and Gwendal Si-
mon. Transcoding live adaptive video streams at a massive scale in the
cloud. In Proceedings of the 6th ACM Multimedia Systems Conference,
MMSys ’15, pages 49–60, New York, NY, USA, 2015. ACM.

[51] Warren S. McCulloch and Walter Pitts. Neurocomputing: Foundations
of research. chapter A Logical Calculus of the Ideas Immanent in Ner-
vous Activity, pages 15–27. MIT Press, Cambridge, MA, USA, 1988.

[52] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,
2009.

[53] Donald O. Hebb. Neurocomputing: Foundations of research. chapter
The Organization of Behavior, pages 43–54. MIT Press, Cambridge,
MA, USA, 1988.

61

[54] Terry Winograd. Procedures as a representation for data in a computer
program for understanding natural language. Technical report, DTIC
Document, 1971.

[55] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E
Shannon. A proposal for the dartmouth summer research project on
artificial intelligence, august 31, 1955. AI Magazine, 27(4):12, 2006.

[56] . Perceptrons: An Introduction to Computational Geometry. The MIT
Press, 1969.

[57] Science Research Council (Great Britain). Artificial Intelligence: A
Paper Symposium. Science Research Council, 1973.

[58] Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell. Read-
ings from the ai magazine. chapter Machine Learning: A Historical and
Methodological Analysis, pages 400–408. American Association for Ar-
tificial Intelligence, Menlo Park, CA, USA, 1988.

[59] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural Netw., 2(5):359–366, July
1989.

[60] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[61] Martin J. Halvey and Mark T. Keane. Exploring social dynamics in
online media sharing. WWW ’07, Banff, Alberta, Canada.

[62] Ramon Aparicio-Pardo, Karine Pires, Alberto Blanc, and Gwendal Si-
mon. Transcoding live adaptive video streams at a massive scale in the
cloud. In Proceedings of the 6th ACM Multimedia Systems Conference,
MMSys ’15, pages 49–60, New York, NY, USA, 2015. ACM.

[63] Laura Toni, Ramon Aparicio-Pardo, Gwendal Simon, Alberto Blanc,
and Pascal Frossard. Optimal set of video representations in adaptive
streaming. In Proceedings of the 5th ACM Multimedia Systems Confer-
ence, MMSys ’14, pages 271–282, New York, NY, USA, 2014. ACM.

[64] Dilip Kumar Krishnappa, Michael Zink, and Ramesh K. Sitaraman.
Optimizing the video transcoding workflow in content delivery networks.
In Proceedings of the 6th ACM Multimedia Systems Conference, MMSys
’15, pages 37–48, New York, NY, USA, 2015. ACM.

[65] Kihwan Choi, K. Dantu, Wei-Chung Cheng, and M. Pedram. Frame-
based dynamic voltage and frequency scaling for a mpeg decoder. In
Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International
Conference on, pages 732–737, Nov 2002.

62

[66] Andy C. Bavier, A. Brady Montz, and Larry L. Peterson. Predicting
mpeg execution times. In Proceedings of the 1998 ACM SIGMETRICS
Joint International Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS ’98/PERFORMANCE ’98, pages 131–
140, New York, NY, USA, 1998. ACM.

[67] Marco Mattavelli and Sylvain Brunetton. Real-time constraints and
prediction of video decoding time for multimedia systems, pages 425–
438. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[68] Yicheng Huang, Samarjit Chakraborty, and Ye Wang. Using offline
bitstream analysis for power-aware video decoding in portable devices.
In Proceedings of the 13th Annual ACM International Conference on
Multimedia, MULTIMEDIA ’05, pages 299–302, New York, NY, USA,
2005. ACM.

[69] Yicheng Huang, An Vu Tran, and Ye Wang. A workload prediction
model for decoding mpeg video and its application to workload-scalable
transcoding. In Proceedings of the 15th ACM International Conference
on Multimedia, MM ’07, pages 952–961, New York, NY, USA, 2007.
ACM.

[70] J. Kuang, D. Guo, and L. Bhuyan. Power optimization for multimedia
transcoding on multicore servers. In Architectures for Networking and
Communications Systems (ANCS), 2010 ACM/IEEE Symposium on,
pages 1–2, Oct 2010.

[71] Arnaldo Azevedo, Ben Juurlink, Cor Meenderinck, Andrei Terechko,
Jan Hoogerbrugge, Mauricio Alvarez, Alex Ramirez, and Mateo Valero.
A Highly Scalable Parallel Implementation of H.264, pages 111–134.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[72] Cor Meenderinck, Arnaldo Azevedo, Mauricio Alvarez, Ben Juurlink,
and Alex Ramirez. Parallel Scalability of H.264.

[73] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,
and T. Schierl. Parallel scalability and efficiency of hevc paralleliza-
tion approaches. IEEE Transactions on Circuits and Systems for Video
Technology, 22(12):1827–1838, Dec 2012.

[74] Jörn W. Janneck, Marco Mattavelli, Mickael Raulet, and Matthieu
Wipliez. Reconfigurable video coding: A stream programming approach
to the specification of new video coding standards. In Proceedings of the
First Annual ACM SIGMM Conference on Multimedia Systems, MMSys
’10, pages 223–234, New York, NY, USA, 2010. ACM.

63

[75] Ghislain Roquier, Matthieu Wipliez, Mickael Raulet, Jörn W. Janneck,
Ian D. Miller, and David B. Parlour. Automatic software synthesis of
dataflow program: An MPEG-4 simple profile decoder case study. In
Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pages
281 – 286, Washington, United States, October 2008.

[76] D. M. Barbosa, J. P. Kitajima, and W. Weira. Parallelizing mpeg video
encoding using multiprocessors. In Computer Graphics and Image Pro-
cessing, 1999. Proceedings. XII Brazilian Symposium on, pages 215–222,
1999.

[77] Bongsoo Jung and Byeungwoo Jeon. Adaptive slice-level parallelism
for h.264/avc encoding using pre macroblock mode selection. J. Vis.
Comun. Image Represent., 19(8):558–572, December 2008. doi: 10.
1016/j.jvcir.2008.09.004.

[78] Yasuo Sambe, Shintaro Watanabe, Dong Yu, Taichi Nakamura, and
Naoki Wakamiya. High-speed distributed video transcoding for multi-
ple rates and formats. IEICE - Trans. Inf. Syst., E88-D(8):1923–1931,
August 2005. ISSN 0916-8532. doi: 10.1093/ietisy/e88-d.8.1923. URL
http://dx.doi.org/10.1093/ietisy/e88-d.8.1923.

[79] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. Overview of
the high efficiency video coding (hevc) standard. IEEE Transactions
on Circuits and Systems for Video Technology, 22(12):1649–1668, Dec
2012.

[80] Zhiqiang Tian, Jianru Xue, Wei Hu, Tao Xu, and Nanning Zheng. High
performance cluster-based transcoder. In 2010 International Confer-
ence on Computer Application and System Modeling (ICCASM 2010),
volume 2, pages V2–48–V2–52, Oct 2010.

[81] Jiani Guo, Fang Chen, L. Bhuyan, and R. Kumar. A cluster-based active
router architecture supporting video/audio stream transcoding service.
In Parallel and Distributed Processing Symposium, 2003. Proceedings.
International, pages 8 pp.–, April 2003.

[82] F. Lao, X. Zhang, and Z. Guo. Parallelizing video transcoding using
map-reduce-based cloud computing. In 2012 IEEE International Sym-
posium on Circuits and Systems, pages 2905–2908, May 2012.

[83] T Deneke. Online video characteristics and transcoding time dataset
data set, 2015. URL https://archive.ics.uci.edu/ml/datasets/
Online+Video+Characteristics+and+Transcoding+Time+Dataset.

64

[84] Jia Zhou, Yanhua Li, Vijay Kumar Adhikari, and Zhi-Li Zhang. Count-
ing YouTube videos via random prefix sampling. In Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement con-
ference, IMC ’11, page 371–380, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-1013-0. doi: 10.1145/2068816.2068851. URL http:
//doi.acm.org/10.1145/2068816.2068851.

[85] Xu Cheng, Cameron Dale, and Jiangchuan Liu. Statistics and social
network of YouTube videos. In in Proc. of IEEE IWQoS, 2008.

[86] Stefano Sabatini. Ffprobe. August 2013. URL http://ffmpeg.org/
ffprobe.html.

[87] Ricardo Garcia Gonzalez. youtube-dl. September 2013. URL http:
//rg3.github.io/youtube-dl/.

[88] Amazon Inc. Amazon EC2 instance types, August 2013. URL http:
//aws.amazon.com/ec2/instance-types/.

[89] Galit Shmueli. To explain or to predict? Statist. Sci., 25(3):289–310,
08 2010. doi: 10.1214/10-STS330.

[90] Leo Breiman. Statistical modeling: The two cultures. Statistical Sci-
ence, 2001.

[91] I MPEG. Information technology-dynamic adaptive streaming over http
(dash)-part 1: Media presentation description and segment formats.
ISO/IEC MPEG, Tech. Rep, 2012.

[92] H. Yviquel, E. Casseau, M. Raulet, P. Jaaskelainen, and J. Takala.
Towards run-time actor mapping of dynamic dataflow programs onto
multi-core platforms. pages 732–737, Sept 2013.

[93] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet. Efficient multicore
scheduling of dataflow process networks. In SiPS, pages 198–203, Oct
2011.

Part II

Original Publications

Paper I

Analysis and Transcoding Time Pre-
diction of Online Videos

Tewodros Deneke, Sébastien Lafond, Johan Lilius

Originally published Proceedings of the IEEE International Symposium
on Multimedia, 2015 IEEE International Conference, pages 319–322.
Miami, Florida.

c©2015 IEEE. Reprinted with permission.

Analysis and Transcoding Time Prediction of
Online Videos

Tewodors Deneke1,2, Sébastien Lafond1, Johan Lilius1
1TUCS - Turku Centre for Computer Science, Finland

2Åbo Akademi University, Finland
Email: firstname.lastname@abo.fi

Abstract—Today, video content is delivered to a myriad of
devices over different communication networks. Video delivery
must be adapted to the available bandwidth, screen size, resolu-
tion and the decoding capability of the end user devices. In this
work we present an approach to predict the transcoding time of
a video into another given transcoding parameters and an input
video. To obtain enough information on the characteristics of real
world online videos and their transcoding parameters needed to
model transcoding time, we built a video characteristics dataset,
using data collected from a large video-on-demand system,
YouTube. The dataset contains a million randomly sampled
video instances listing 10 fundamental video characteristics. We
report our analysis on the dataset which provides insightful
statistics on fundamental online video characteristics that can
be further exploited to optimize or model components of a
multimedia processing systems. We also present experimental
results on transcoding time prediction models, based on support
vector machines, linear regression and multi-layer perceptron
feed forward artificial neural network.

Keywords-Transcoding; Prediction; Measurement;

I. INTRODUCTION

Since Internet clients may vary greatly in their hardware
resources, software sophistication, and quality of connectivity,
different clients require different media format from streaming
services. Transcoding is a method which is used to convert
one multimedia format to another [1], [2]. However different
formats require different transcoding operations and, therefore,
produce variety of individual transcoding jobs to be sched-
uled among computing servers. In order to provide efficient
transcoding service, a good resource management algorithm
needs to be employed to pro-actively predict the CPU load
for each job.

In this paper, we first present a large-scale video char-
acteristics dataset useful to assess, model and optimize the
performance of large-scale video processing services such as
video transcoding. The dataset contains fundamental video
characteristics for YouTubevideos.We first crawled YouTube
for a period of one and half months and obtained a video
dataset containing over a million distinct videos. This dataset
contains 10 features representing ten fundamental characteris-
tics of videos such as duration, bitrate, framerate, resolution,
etc. We then make a systematic and in-depth statistical analysis
of these characteristics to identify useful statistics. Based on
the insight and the statistics gained from the dataset we then
build a video transcoding time prediction model.

II. RELATED WORK

Among others our work relates to web video characteriza-
tion and video transcoding time prediction. In this section, we
briefly summarize the related work on each topic.

There have been significant researches on understanding the
workloads of new generation video servers. These research
especially focus on the social aspect of videos and traffic
characterization such as popularity, active life span, user access
pattern, growth pattern and request patterns. Yu et al. [3] study
user behaviour, content access pattern and their implications on
the design of large-scale video-on-demand systems. Possible
improvements on UGC design were proposed by Cha et al. [4]
after studying YouTube and Daum, a popular UGC in Korea.
After tracking YouTube transactions from a network edge,
Gill et al. [5] have studied YouTube traffic characteristics and
discuss the implications of their observation on key concepts
such as caching. The caching problem in YouTube have been
further studied by Zink et al. [6]. The social networking among
videos was studied in the works of Halvey et al. [7] and
Mislove et al. [8]. Our work is however focused on collecting
statistics of video characteristics such as video length, size,
bitrate, frame rate, codec type and resolution rather than the
social aspect and traffic characterization of such services.

A method to predict decoding and transcoding time of
videos is presented by Roitzsch et al [9] and Jiani et al [10].
These works focus on one coding algorithm and used only
a brief set of videos to train their prediction model. Our
dataset provides such systems with a video dataset having
a realistic distribution of video characteristics. It also works
across multiple coding algorithms.

III. DETAIL OF THE PROPOSED METHOD

A. Crawling YouTube and Collecting Data

We collected our dataset systematically from YouTube, the
largest user generated content (UGC) video website. By 2011
YouTube is estimated to have over half a billion videos and
accounts for a significant percentage of the worlds bandwidth
utilization [11]. YouTube organizes its videos as a directed
graph, where each video is considered as a node and edges
represent links to a set of related videos. There are several
known ways of crawling YouTube’s video graph [11], [12]. In
this paper we used the random prefix sampling method from
[11]. Random prefix sampling over YouTube video ID space is

done through utilizing a unique property of the YouTube’s API
which allows searching videos using a randomly generated
prefix of a possible YouTube video ID. YouTube video ID
consists of 11 characters drawn from a set S = {0 − 9, A −
Z, a− z,,−}. Providing a search string of ”v=abc...c” where
”ab...c” is a randomly generated string of length less than or
equal to eleven returns a list of video IDs which start with this
string. This fact enables one to avoid the impossible task of
uniform random sampling over the extremely large id space
of the order 6411. Sampling YouTube’s video graph through
random prefix sampling rather than breadth first search or
other graph based sampling techniques produces an unbiased
sample. In our experiment we used a randomly generated
4 character prefix to sample the YouTube’s video graph.
Experiments show that a prefix larger than 4 often returns an
empty list indicating the fact that YouTube’s video ID space
is randomly generated.

In order to collect our online video characteristics dataset
we implemented a small wrapper tool in Java over other well
known open source tools, ffprobe [13] and youtube-dl [14].
Our tool first generates a four character random prefix from
YouTube’s video ID space and searches YouTube through its
API. The API will return a list of valid video IDs starting with
the random prefix. A video ID is then selected randomly from
the returned list. Then, a set of direct links for all stored file
formats of the video with that ID is fetched by the open source
tool, youtube-dl. Each of these video links are then probed by
ffprobe, a video analysis tool that can be used to collect video
characteristics such as bitrate, framerate, resolution, container
format, codec, duration and frame types.

The dataset contains 10 columns of fundamental video
characteristics; Duration, video codec, framrate, estimated
framerate, total bitrate, video bitrate, resolution ,category,
direct video link and video ID. This dataset can be used to
gain insight in characteristics of videos on UGC. Analysis of
the dataset will be presented in section IV-A.

B. Transcoding Time Prediction Model

Prediction of video transcoding time is important for sev-
eral reasons. For example, resource management algorithms
deployed on a large scale transcoding service such as [15] can
utilize this prediction to increase system utilization through
proper load balancing and provisioning. Previous work [10]
has proposed to model the prediction problem by character-
izing a video using its size alone. However that model did
not account for variability of video coding algorithms. In this
work we will use more video characteristics features for better
accuracy and generality over a range of coding algorithms.

An initial stage in building any prediction model is to
understand the process itself, in our case video transcoding.
The basic idea of video transcoding is to convert unsupported
video formats in to supported ones. Unsupported videos in-
clude videos that are not playable by a given device due to
lack of format support or those that require relatively higher
system resources than the device can offer. The main types
of video transcoding include, resolution transcoding, bitrate

transcoding, temporal transcoding, codec transcoding , error
reliance transcoding and any combination of these (see Figure
1).

Fig. 1. Basic description of video transcoding. Demuxer and Muxer are
I/O components used to read/write compressed video and the rest are video
processing components which encode, decode and scale video

A general formulation of the transcoding time prediction
problem is to construct a function that takes as input easily
extractable characteristics of a video together with transcoding
parameters specifying the characteristics of the output video
and generate an estimated transcoding time of the video
on a given platform. Given a set of t observations with
n features (i.e. easily extractable input video characteristics
such as bitrate, framerate, codec and transcoding parame-
ters) each and a target variable (i.e. transcoding time) y as
{(x1, y1), (x2, y2), ..., (xt, yt)} where x ∈ <n, y ∈ < we used
supervised machine learning algorithm NN and SVR to find
a model f(x) = 〈ω, x〉 + b = w · x + b with ω ∈ <n, b ∈ <
with the best fit.

C. Input Video Characterization

To characterize an input video we collected features which
include, bitrate, framerate, resolution, codec, number of i
frames, number of p frames, number of b frames, size of i
frames, size of p frames and size of b frames. This list of video
characteristic features is selected through expert analysis of
the problem and the insight gained from the dataset presented
in section IV-A. These features along with the transcoding
parameters listed in table I constitute the full list of our features
used in our transcoding time prediction model.

IV. EXPERIMENTS

A. Analysis of Video Characteristics

A video has several fundamental characteristics that define
its behaviour in-terms of quality, storage, bandwidth require-
ment and processing time. In this section we will present a
statistical analysis of some of these characteristics obtained
from our dataset.
Bitrate Figure 2a shows the bitrate distribution of videos
from our dataset. Most of the videos have a bitrate of around
56kbps or 109kbps. Other popular bitrates lay around 260kbps,
520kbps, 600kbps, 800kbps and 1150kbps. In addition we can
notice that about 80% of the videos have a bitrate of less than
650kbps, 40% of the videos have a bitrate between 260kbps
and 650kbps and another 10% of the videos have a bitrate
between 109kbps and 260kbps. There are about 15% videos
that have bitrate between 109kbps and 56kbps. This statistics
indicates that YouTube uses a moderate bitrate for most of its

(a) (b) (c)

(d) (e) (f)

Fig. 2. Youtube videos characteristics

videos and a low or very high bitrate for only small portion
of its videos.
Framerate Figure 2b shows the frame rate distribution of
videos from our dataset in which about 15% of videos have a
framerate of 12. Experiments show that these videos are older
videos with mpeg4 codec. The figure also depicts that 40% of
the videos have 30 fps and around 20% of the videos have 25
fps.
Resolution Figure 2c shows the resolution distribution of
videos in pixels from the crawled data. Most popular video
height measures include 240, 144, 360, 480, 720 and 1080
pixels. Similarly Figure 2c shows the width distribution of
videos. This indicates that about 90% of videos in our dataset
are of (standard) SD quality and the remaining 10% are of
(high definition) HD videos. However the trend of storing
videos in HD quality is increasing as the resolution of displays
of users is increasing.
Video Duration Figure 2d shows the distribution of duration
of YouTube videos. It confirms that indeed YouTube videos
are short with the exception of some. The spikes at 600 sec
and 900 second show the previous and the current limits
that are imposed by YouTube as a maximum video length.
However YouTube has currently allowed one to increase the
video length limit through additional registration, a fact that
can be noticed from the same figure.
Codec Figure 2e shows the distribution of the codecs used by
YouTube for their compression. The figure shows most of the
videos are encoded in h.264 format followed by mpeg4, vp8
and flv (h.263).
Frame Types Depending on the type of codec used and its
parameters, encoded videos contain different types of frames
such as I (intra), P (predicted), and B (bi-directional predicted).
The proportion and size of each frame types in a video are
important characteristics as they correlates well with video
size and processing time. For our dataset the frame types are
dominated by P frames followed by I frames.

Formats YouTube stores its videos in several formats. These
formats enable YouTube to provide its services to wide range
of devices having different resolution, supported codec and
connected through different types of networks. Figure 2f shows
the proportion for all number of formats YouTube uses to store
its videos. As can be noted from the figure, most of the videos
are stored mostly in 5 formats. However sometimes up to 12
formats are used and rarely more than 20 formats are used.

Detailed report of our analysis on the dataset can be found
in [16], which is an extended technical report associated with
this paper.

B. Building and Using a Prediction Model

In this section we present the experimental set-up, including
the machine configurations and tools used in our modelling
experiment. The training data used for modelling transcoding
time contains 19 columns which include input video charac-
teristics, transcoding parameters and the measured transcoding
time as a label. This training data was collected on an Intel
i7-3720QM CPU through randomly picking a video from our
YouTube dataset (see section IV-A) and transcoding parameter
space from table I.
Collecting Transcoding Time Table I gives the list of the
transcoding parameters that are used to create our transcoding
parameter space. When considering all the possible combi-
nation of all transcoding options, the transcoding parameter
space can lead to a very large set of possibilities. We reduced
the parameter space size using expert pruning based on the
insight gained from the online video characterization results
presented in section IV-A, but as seen in table I we still have
840 combinations to consider. We collected the transcoding
time obtained for each transcoding combination on a set of 80
randomly selected 20 second YouTube videos. The resulting
training data contains 67200 transcoding measurements. All
possible combinations of video transcoding parameters from
table I has been applied to each video when collecting the

training data. The characterization of each online video along

Parameter Value
Codec H264, Mpeg4, Vp8, H263
Resolution 144p, 240p, 360p, 480p, 720p, 1080p
Bitrate 56k,109k, 242k, 539k, 820k, 3000k, 5000k
Framerate 12, 15, 24, 25, 29.97

TABLE I
TRANSCODING PARAMETER SPACE

with a transcoding parameter and the corresponding measured
transcoding time makes up an instance of our training data.
We used Ffmpeg [?] and Ffprobe to collect video transcoding
time and video characteristics of each video in our training
set.
Constructing the Model Once the training data is constructed,
it can be fed to a learning algorithm that will automatically
learn a prediction model. We used support vector regres-
sion (SVR), linear regression (LR) and multilayer perceptron
(MLP) to construct our prediction models. In our experiments
we used LibSVM package from RapidMiner [17] with radial
basis function (RBF) kernel, γ set to 0.125 and error penalty
term C set to 1024. We found these parameter settings using
grid search method [18]. In this work we used feed-forward
neural network trained by a back propagation algorithm (multi-
layer perceptron) from RapidMiner [17] to model transcoding
time of online videos. The training cycle, the learning rate and
the momentum are set to 500, 0.3 and 0.2 respectively.

Finally we used a linear regression model mostly to demon-
strates the relationship between dependent and independent
variables. Even though our problem has non linear compo-
nents, we used this model to observe the dependent variables
according to the change of given independent variables.
Model on Unseen Video We train and validate our models
using 2/3 of the training data we have collected and the
remaining 1/3 portion is left for testing and evaluation of the
models.

C. Prediction Accuracy and Overhead

We used our training dataset to build and test a transcoding
time prediction model based on Neural Network, SVR and LR.
Table II shows squared correlation (predicted vs measured)
of 0.958 for NN, 0.942 for SVM and 0.411 for LR. This
result shows that NN and SVR perform very good in terms
of prediction accuracy. We report in table II the training and

Algorithm R2 Absolute error Training time Testing time
NN 0.958 1.757± 2.834 7± 2 min 5± 2sec
SVR 0.942 1.484± 3.594 40± 3 min 13± 6sec
LR 0.411 7.233± 9.997 15± 2 sec 2± 1sec

TABLE II
COMPARISON OF PREDICTION ALGORITHMS

testing time for the 3 ML algorithms we have used. The
three algorithms show different training and testing times over
the whole of the training and test set instances. The NN

model outperforms the others when we consider accuracy and
training overhead.

V. CONCLUSIONS

We have presented a dataset that contains a set of important
video characteristics and a summary of basic statistics of these
characteristics. The knowledge of these characteristics will
enable a proper design and test of large-scale video processing
services such as video transcoding.

The dataset was obtained through random sampling of
the most popular video UGC cite, YouTube. Such random
sampling enabled us to construct an unbiased dataset. The data
collection was done using a simple java based tool built on
top of other open source tools, the Ffprobe and youtube-dl.

Our benchmark results show how the datasets can be used
in constructing models to predict transcoding time with a very
good accuracy. We finally encourage other researchers to use
our dataset in discovering more interesting information about
video characteristics on the web and test their own algorithms
to build similar predictive models. For further details on this
work readers are encouraged to take a look at [16]

REFERENCES

[1] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architectures
and techniques: An overview,” in Signal Processing Magazine, IEEE,
2003.

[2] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceed-
ings of the IEEE, 2005.

[3] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding user
behavior in large-scale video-on-demand systems,” SIGOPS Oper. Syst.
Rev., 2006.

[4] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” ser. IMC, 2007.

[5] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: a view from the edge,” ser. IMC, 2007.

[6] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local:
Youtube network traffic at a campus network - measurements and
implications,” Tech. Rep., 2008.

[7] M. J. Halvey and M. T. Keane, “Exploring social dynamics in online
media sharing,” in Proceedings of the 16th international conference on
World Wide Web, 2007.

[8] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” ser. IMC,
2007.

[9] M. Roitzsch and M. Pohlack, “Principles for the prediction of video
decoding times applied to mpeg-1/2 and mpeg-4 part 2 video,” in RTSS,
2006.

[10] J. Guo and L. N. Bhuyan, “Load balancing in a cluster-based web
server for multimedia applications,” IEEE Transactions on Parallel and
Distributed Systems.

[11] J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang, “Counting youtube
videos via random prefix sampling,” ser. IMC, 2011.

[12] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of youtube
videos,” in in Proc. of IEEE IWQoS, 2008.

[13] S. Sabatini, “Ffprobe,” August 2013. [Online]. Available:
http://ffmpeg.org/ffprobe.html

[14] R. G. Gonzalez, “youtube-dl,” September 2013. [Online]. Available:
http://rg3.github.io/youtube-dl/

[15] “Amazon elastic transcoder,” August 2013. [Online]. Available:
http://aws.amazon.com/elastictranscoder/

[16] T. Deneke, S. Lafond, and J. Lilius, “Analysis and transcoding time
prediction of online videos,” Tech. Rep. 1145, 2015.

[17] “RapidMiner,” Online, Apr. 2012. [Online]. Available: http://rapid-
i.com/content/view/181/190/

[18] C. wei Hsu, C. chung Chang, and C. jen Lin, “A practical guide to
support vector classification,” 2010.

Paper II

Video Transcoding Time Prediction
for Proactive Load Balancing

Tewodors Deneke, Habtegebreil Haile, Sébastien Lafond, Jo-
han Lilius

Originally published Proceedings of the International Conference on
Multimedia and Expo , 2014 IEEE International Conference, pages 1–
6. Chengdu,China.

c©2014 IEEE. Reprinted with permission.

VIDEO TRANSCODING TIME PREDICTION FOR PROACTIVE LOAD BALANCING

Tewodors Deneke1,3, Habtegebreil Haile1, Sébastien Lafond1, Johan Lilius1

1Åbo Akademi University, Finland
3Turku Centre for Computer Science, Finland

ABSTRACT

In this paper, we present a method for predicting the transcoding
time of videos given an input video stream and its transcoding pa-
rameters. Video transcoding time is treated as a random variable
and is statistically predicted from past observations. Our pro-
posed method predicts the transcoding time as a function of sev-
eral parameters of the input and output video streams, and does
not require any detailed information about the codec used. We
show the effectiveness of our method via comparing the result-
ing predictions with the actual transcoding times on unseen video
streams. Simulation results show that our prediction method en-
ables a significantly better load balancing of transcoding jobs
than classical load balancing methods.

Index Terms— Transcoding, Prediction, Machine Learning,
Load Balancing

1. INTRODUCTION

Video content is being produced, transported and consumed in
more ways and devices than ever. Meanwhile a seamless inter-
action is required between video content producing, transport-
ing and consuming devices. The difference in device resources,
network bandwidth and video representation types results in the
necessary requirements for a mechanism for video content adop-
tion. One such mechanism is called video transcoding. Video
transcoding is a process of converting one compressed video rep-
resentation to another. Currently transcoding is being utilized
for such purposes as: bit-rate reduction in order to meet net-
work bandwidth availability, resolution reduction for display size
adoption, temporal transcoding for frame rate reduction and error
resilience transcoding for insuring high quality of service (QoS)
[1, 2].

Transcoding is a computationally heavy process and several
methods has been proposed in order to increase its efficiency
[3, 4]. Among them many attempts have been made to decrease
its computational complexity through reusing information like
DCT coefficients and the motion vectors extracted from the orig-
inal coded data instead of fully re-encoding the video content.
On the other hand to realize multiple transcoding and speed up,
studies has been done to integrate multiple processors to fully de-
code and re-encode incoming video [5]. And more recently, new
large-scale cloud based elastic transcoding architectures and ser-
vices are emerging [6, 7, 8].

Runtime scheduling of transcoding jobs in multicore and
cloud environments is hard as their resource requirements may
not be known before hand. Currently for video transcoding jobs

one has to rely on worst-case values which lead to an over provi-
sioning of resources to maintain satisfactory QoS. This is due
to the fact that the resource requirement of a transcoding job
is highly dependent on the video data to be converted and its
conversion parameters. In order to allow such distributed and
multicore systems overcome the problem of over provisioning
a method for predicting the resource requirement of each job is
required.

Today, computing systems vary significantly from one an-
other and range from very small (e.g. cellphones, tablets, note-
books) to very large (servers, data centres, cloud). However,
at the heart of each of these systems there are resource manage-
ment components that decide how to schedule the execution of
different tasks over time (i.e., ensuring high system utilization or
efficient energy use [9, 10]) or allocate program resources such
as memory, storage and networking (i.e., ensuring a long battery
life or fair resource allocation). These management components
typically must be able to predict how a given task will perform
depending on its size and its other characteristics, so as to decide
how best to plan for the future. For example, considering a sim-
ple scenario in a cloud transcoding service with a set of two types
of transcoding requests, fast transcoding jobs in set A and slow
transcoding jobs in set B, A scheduler is often faced with the
decision of whether to run each set on different CPU resources,
potentially taking longer to execute; or to interleave between the
two sets and distribute the job fairly, potentially executing the
tasks much faster. If the scheduler can predict accurately how
long each job would take to execute on a given platform, it can
make an optimal decision, returning results faster, possibly mini-
mizing energy, waiting time and maximizing throughput. Figure
1 shows an example distribution of video transcoding times on a
set of randomly selected YouTube videos with randomly selected
but valid transcoding parameters. Notice the heavy-tailed distri-
bution in transcoding time values which will have a large impact
on the performance of the system if scheduled improperly [11].

Fig. 1. Transcoding Time Distribution Over Randomly Se-
lected YouTube Video Dataset

In order to leverage such opportunities, use of low over-
head and accurate prediction mechanism is required. In this pa-
per we present such prediction models trained based on an ex-
pert selected and easily obtainable video meta-data and transcod-
ing (conversion) parameters. By basing scheduling decisions on
such ahead of time knowledge, better resource utilization can be
achieved.

2. RELATED WORK

Among others our work relates to video transcoding and predic-
tion. In this section, we briefly summarize the related work on
each topic.

2.1. Video Transcoding and Scheduling

Zhenhua Li et al. [12] implemented a cloud transcoder which
requires a user to provide a video link and other transcoding
parameters such as format, resolution, etc. Once a user pro-
vides the video link and other parameters, the required video is
downloaded from the Internet and transcoded in a Cloud. Af-
ter transcoding, the video is sent to the user. A copy of video
is stored in a cloud cache to avoid repeated transcoding opera-
tions. The paper mainly focus on providing video transcoding
service, and it does not talk about how such transcoding jobs are
scheduled.

In [13] a distributed video transcoding was implemented with
Message Passing Interface programming model. The video was
segmented statically at Group of Pictures (GOP) level. The main
focus of the paper was on parallelization and data distribution
among computing units for bit rate reduction video transcod-
ing. Although the paper provided a distributed video transcod-
ing, however job scheduling was not the main topic.

In [8] prediction-based dynamic resource allocation algo-
rithm to scale video transcoding service on a given Infrastructure
as a Service cloud were discussed. The proposed algorithm pro-
vides mechanisms for allocation and deallocation of virtual ma-
chines based on a regression model that tracks and predicts the
aggregate target transcoding rate required by the service. This
work only uses queue length when load balancing transcoding
jobs probably because tracking transcoding progress of individ-
ual streams is very expensive.

2.2. Machine Learning and Prediction

Roitzsch et al. [14] have presented per-frame decoding time pre-
diction for modern video decoding algorithms. In this work they
used expert selected metric to train and predict decoding time of
videos encoded in MPEG. This work is specific to the MPEG
family of codec and can not be applied directly to our problem
as transcoding application should support a set of codecs from
different codec families.

2.3. video characterization

There has been significant research on understanding the work-
loads of new generation video servers. These researches espe-
cially focus on the social aspect of videos and traffic character-

ization such as popularity, active life span, user access pattern,
growth pattern, request patterns, etc.

Yu et al. [15] study user behaviour, content access pattern
and their implications on the design of large-scale video-on-
demand systems. Possible improvements on UGC design were
proposed by Cha et al. [16] after studying YouTube and Daum,
a popular UGC in Korea. After tracking YouTube transactions
from a network edge, Gill et al. [17] have tried to understand
video access characteristics and discuss the implications of their
observation on key concepts such as caching. The caching prob-
lem in YouTube has been further studied by Zink et al. [18].
The social networking among videos was studied in the works of
Halvey et al. [19] and Mislove et al. [20].

In this work we will reuse the traffic model from [15] to drive
our experiments but further focus on collecting the missing statis-
tics on video characteristics such as video length, size, bitrate,
frame rate, codec type, resolution and etc that will be useful in
our experiments.

3. SYSTEM OVERVIEW

Our work provides an approach for transcoding time prediction
and shows its application in load balancing transcoding requests
of a transcoding service. The main contribution of our work
is to design an automated system that predicts the transcoding
time of videos given an input video and a transcoding param-
eter set. These predictions can then be used for load balanc-
ing and QoS predictions by the service provider. Our system
provides the opportunity for transcoding service providers to es-
timate the transcoding time of requests, and more intelligently
manage their transcoding servers through proactive load balanc-
ing. We employ the idea of machine learning to design a frame-
work that learns to predict transcoding time of videos. The key
component of our work is to select fundamental video features
that enable building precise transcoding time prediction model,
and then use the resulting model on unseen videos to strategically
load balance transcoding requests across multiple nodes. Figure
2 presents the overview of our framework. Typically transcoding
service providers possess a log about transcoding requests (i.e.
both transcoding parameter sets and the original video). Based
on these traces, we can build a training dataset listing samples
containing transcoding parameter set, the original video (or its
fundamental characteristics such as resolution and bitrate) and
measured transcoding time. Using such a dataset a prediction
model can be trained via machine learning algorithms such as
neural network and support vector machines (SVM). The model
can then be used to predict and properly distribute load across
transcoding nodes. The same prediction model can further be
used to estimate the cost of transcoding a video and the QoS to
be expected by the user.

4. TRANSCODING TIME PREDICTION

Machine learning techniques are often used as decision making
mechanisms for a variety of systems. Basically, machine learn-
ing allows computers to evolve behaviours based on empirical
data, in our case, this is a collection of samples with important
video characteristics, transcoding parameter sets and measured

Fig. 2. Architecture of the prediction system

transcoding times. In this section, we present the detailed design
of the proposed transcoding time prediction method based on the
machine learning approaches.

4.1. Video Transcoding

An initial stage in building any prediction model is to understand
the process itself, in our case video transcoding. The basic idea
of video transcoding is to convert unsupported video formats
in to supported ones. Unsupported videos include videos that
are not playable by a given device due to luck of format support
or those that require relatively higher system resources than
the device can offer. The main types of video transcoding
include, resolution transcoding, bitrate transcoding, temporal
transcoding, container transcoding, codec transcoding , error
reliance transcoding and any combination of these.

Resolution transcoding enables change of resolution of a
given video allowing devices with lower or higher resolution
to get served with the most appropriate resolution depending
on the size of their display. Resolution of a video is defined
by the number of pixels in its two dimensions. Transcoding
rate and resolution have a clear correlation, the higher the
resolution difference between the input and output video the
more processing is needed and thus the lower the transcoding
rate becomes.

Bitrate transcoding enables change of bitrate of the video
allowing a given video to be served with the appropriate
bitrate depending on the bandwidth capacity of the network the
consumer device is connected to or storage media it has. Bitrate
is one of the most important characteristics of a video stream.
It indicates the number of bits in a video per unit time. Video
transcoding rate correlates with the bitrate of the input and

output video as it is directly proportional to the amount of bit
that need to be processed. Larger bitrates enable higher quality
but will require larger bandwidth and more processing power.

Temporal transcoding enables change of frame rate of a
given video. The human visual system can perceives a sequence
of more than 25 pictures per second as a video. This type of
transcoding is sometimes used by video on demand providers to
provide service with a lower frame rate (quality) in case of live
events where encoding resources can become scares. Framerate
indicates the number of frames (pictures) in a given video per
unit time. The framerate of a video has a correlation with the
transcoding rate of the video, the higher the framerate of the
input or output video the lower the transcoding rate becomes.

Container transcoding also known as format transcoding
is used to change the container (header) of a compressed video.
Several container types such as flv and mp4 has been developed
over the years to package video, audio and subtitle streams into
one file. Each of these containers have some useful features that
serve different purposes or are associated with a specific codec.

Codec transcoding Over the years different codecs (com-
pression algorithms) have been developed. Usually the newer
the codec the more advanced the algorithm it uses, allowing an
ever increasing compression efficiency and quality. Example
codecs that are being used today include h264, h263, vp8, and
mpeg4. Backward (forward) compatibility with devices and
infrastructures based on older (newer) codecs is maintained
through codec transcoding. A video codec is a hardware or soft-
ware implementation of video compression and decompression
algorithms.

Video transcoding services provide parameters that control
each of the transcoding types listed before. In addition to those
parameters such applications (services) take the original video
as an input which among others have fundamental characteris-
tics such as bitrate, framerate, resolution, video duration, codec,
frame types and count.

4.2. Dataset preparation and understanding

In order to build our model we need a training data. As we have
discussed in the previous subsection transcoding time of a video
is mainly dependent on a set of input and output video features.
Based on expert knowledge we have partly presented in the pre-
vious subsection we have picked a set of features (metrics) that
can be used in building our prediction model. This features in-
clude, bitrate, framerate, resolution, codec, number of i frames,
number of p frames, number of b frames, size of i frames, size of p
frames and size of b frames of the input video and the desired bi-
trate, framerate, resolution and codec of the output video which
are given as a parameter to a transcoding service.

4.3. Modelling

To predict the transcoding time of a video, we use two of the
most widely used supervised machine learning algorithms, the
support vector regression (SVR) and Neural net. The fundamen-
tal idea behind any regression problem in machine learning al-

gorithms such as SVR and the Neural Net can be summarized
as: given a set of t observations with n features (in our case the
input and output bitrate, framerate, codec, etc) each and a target
variable (transcoding time) y as {(x1, y1), (x2, y2), ..., (xt, yt)}
where x ∈ <n, y ∈ < the objective is to find a function (model)

f(x) = 〈ω, x〉+ b = w · x+ b with ω ∈ <n, b ∈ < (1)

with the best fit as in equation 1.

Neural nets The idea of neural networks was first inspired
by nervous system of human beings which consists of a number
of simple processing units called neuron. Each neuron receives
some input signals from outside or from other neurons and
processes them with an activation function to produce its output
and sends it to other neurons. These neurons can be understood
as a mathematical function that take n element input vector and
scale each data element xi, by a weight wj . The scaled data is
offset by some bias b and put through a differentiable activation
function such as equation 2. The output of a neuron can be
analytically viewed as equation 1. The impact of Each input is
weighted differently from other inputs thus a neuron is able to
interpret the data differently depending on the weight and bias.
Consequently the more is the weight the stronger the connection
would be allowing that data point to influence the output
more. The activation function f can be linear or non-linear.
Non-linear activation functions are useful in mapping non-linear
relationships. One such function is called sigmoid which is
represented as

1

1 + exp(−f) (2)

A network of these neurons forms a feed forward multilayer
neural networks as in 3. These networks are made of layers
of neurons. The first layer is the layer connected to the input
data. After that there could be one or more middle layers called
hidden layers. The last layer is the output layer which shows the
results. One of the learning methods in multilayer perception

Fig. 3. Mluti-layer neural network used in our prediction

Neural Networks is the error back propagation in which the
network learns the pattern in data set and justifies the weight
of the connections in the reverse direction with respect to the
gradient vector of Error function which is usually regularized
sum of squared error.

Support vector machines treats the regression problem as
a convex optimization problem:

minimize
1

2
‖ω‖2 (3)

subject to =

{
yi − ‖w, xi‖ − b ≤ ε
‖w, xi‖+ b− yi ≤ ε (4)

Similar to the neural net the SVR allows for non-linear solution
through the use of radial basis function (RBF) kernels which are
represented as

exp(− 1

2σ2
‖f‖2) (5)

5. EVALUATION

5.1. Experimental Setup

To evaluate our proactive load balancing scheme, we simulate
the throughput and job waiting time performance in CloudSim
[21]. Every transcoding service provider has traces from its own
log at its disposal. Although we do not possess such data, there
are a number of sources (such as [15]) that provide information
about web traffic in large-scale video-on-demand systems. In or-
der to draw a realistic scenario, we imitate the video transcoding
service request patterns with a shifted Poisson distribution as in
[15]. We attempt to evaluate our proactive load balancing al-
gorithm in a cloud environment. The largest provider of cloud
infrastructure services in the world, Amazon, has published its
virtual machine types, CPU types and the costs associated with
them [22]. Under our CloudSim simulation environment, we de-
ploy nodes, assign link capacities, and specify CPU and virtual
machine characteristics according to data published by Amazon.
The instance we used to base the characteristics of our CloudSim
nodes is the c1.xlarge which is a 64-bit Intel Xeon E5-2680 ma-
chine with 8 virtual cores [22]. For generating the transcoding
parameters and input source video associated with each request
we used video characteristics data collected from YouTube.

5.1.1. YouTube Video Data Collection

For obtaining a realistic online video content statistics we use
YouTube, the largest video sharing portal in the world. It is one
of the most well known and widely used UGC (user generated
content) website allowing users to upload, tag and share videos
effortlessly. Users can also view, rate and comment on videos
which brings a powerful social aspect to the site and in turn
to its success. YouTube provides some statistics for its videos.
Such information as view-count, number of likes/dislikes, dura-
tion and comments are public. However, more detailed statistics
about fundamental video characteristics such as video bitrate,
framerate, resolution and codec, which are essential to our ex-
periment for generating realistic transcoding request parameters
are not made publicly available by YouTube or any other simi-
lar service. Therefore we have implemented a crawler that uses
the random prefix sampling method presented in [23] to sample
over a million YouTube videos. For each video we sampled, we
have probed, analysed and collected its fundamental character-
istics using Ffprobe [24]. These collected video characteristics

are then used to generate valid transcoding parameters associ-
ated with our requests. For each transcoding request we simulate
we obtained its actual transcoding time through measurement on
a cloud instance (c1.xlarge) provided by Amazon EC2. Note that
the characteristics of c1.xlarge is used to instantiate the nodes in
our simulation environment.

5.2. Evaluating Prediction Accuracy

We evaluate the performance of our prediction accuracy by com-
paring it with measured transcoding time. First we have built
a dataset containing input video, video transcoding parameters,
and a measured transcoding time while transcoding the input
video with the parameters on an Amazon EC2 c1.xlarge instance.
The input video and the transcoding parameters are obtained
through randomly picking videos from our crawled data from
YouTube. Our dataset contains 2733 instances. We have di-
vided this set into 2/3 training plus validation set and 1/3 test set.
This means we have 820 instances of unseen test set. Finally we
trained two prediction models based on neural network and SVR
using the training and the validation set. In our Neural net model
we have used 12 nodes in the hidden layer and the input layer
takes 19 input attributes, 1 id and 1 label. The number of itera-
tion for the back-propagation is set to 500. For our SVM model
we used the grid search method to search for hyper-parameters
using training and validation set. The number of support vectors
used is 1795.

Figure 4 shows the prediction accuracy as compared to the
actual transcoding time on the unseen test set. The result shows a
mean absolute percentage error of 8.78% for our neural network
model and a mean absolute percentage error mean absolute error
of 18.64% for our SVR model.

Fig. 4. Prediction Performance. Only 100 out of 820 results
for figure readability

5.3. Evaluating Proactive Loadbalancing

We evaluate our proactive load balancing algorithms (see algo-
rithm 1)in comparison with two widely used algorithms in video
service systems. 1) queue length based load balancing. Load
is being balanced based on queue length associated with each
server. 2) Round robin approach, where transcoding requests are
routed to transcoding servers in a round robin fashion.

Algorithm 1 Proactive load balancing algorithm
1: server ← servers(0)
2: for all req in requests do
3: for all s in servers do
4: if predLoad(s) < predLoad(server) then
5: server ← s
6: end if
7: end for
8: send(req, server)
9: load(req)← predictTranscodingT ime(req, algo)

10: predLoad(server) ← predLoad(server) +
load(req)

11: end for

Transcoding rate which measured in frames per second (fps)
is defined as the number of frames transcoded per unit time (sec).
Higher transcoding rate indicates better throughput, reduced de-
lay and total cost of the system. Figure 5 illustrates the total
transcoding rate of the system for a three hour load modelled
from a realistic scenario described so far.

We observe that our proactive load balancing algorithms
based on predicted load with our Neural Net and SVR models
can achieve up to 15% improvement in terms of system through-
put over the round robin and The queue length approaches before
over provisioning occurs (i.e. 300 servers). One can also note
that use of queue length or round robin produces the same result
as the curves for these approaches overlap all the way.

Fig. 5. Throughput

Average waiting time reflects the average waiting time of a
transcoding request before it is given a resource and start being
processed. Figure 6 shows the results from the simulation on
the average waiting time of a job. Our proactive load balancing
approaches enables reduction of average waiting time of a job by
up to 18% enabling a better QoS.

6. CONCLUSION

This paper addresses the challenges exposed by the modern on-
line video transcoding services. We design a proactive load bal-
ancing scheme to aid throughput and quality of service for video
transcoding services. Our novel method explores the opportuni-
ties provided by trends from transcoding load of requests. Due

Fig. 6. Average waiting time for different load balancing ap-
proaches

to the correlation between transcoding time and transcoding pa-
rameters, we can predict transcoding time of a video given the
fundamental characteristics of the input video and the transcod-
ing parameters which in turn is used to properly load balance
video transcoding requests across servers. In our experiment,
we have used real-world data and designed the simulation sce-
nario imitating real world Internet transactions. Our proactive
load balancing algorithm shows effectiveness and significant im-
provement over the traditional methods. For the future work, we
would like to further explore the effect of our load balancing on
dynamic resource provisioning.

Acknowledgment
This work was supported by the Cloud Software Finland research
project and by an Amazon Web Services research grant.

7. REFERENCES

[1] S. F. Chang and A. Vetro, “Video adaptation: Concepts,
technologies, and open issues,” Proceedings of IEEE, 2005.

[2] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcod-
ing,” Proceedings of the IEEE, 2005.

[3] G. Morrison, “Video transcoders with low delay,” 1997.

[4] Jeongnam Y., Ming-Ting S., and Chia-Wen L., “Motion
vector refinement for high-performance transcoding,” IEEE
Transactions on Multimedia, 1999.

[5] Y. Sambe, S. Watanabe, Dong Yu, Taichi N., and Naoki
W., “High-speed distributed video transcoding for multiple
rates and formats,” IEICE - Trans. Inf. Syst., 2005.

[6] Amazon Inc., “Amazon elastic transcoder,” August 2013.

[7] Zencoder Inc., “Zencoder cloud transcoder,” August 2013.

[8] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius,
“Prediction-based dynamic resource allocation for video
transcoding in cloud computing,” in PDP, 2013.

[9] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion, Springer, aug 2003.

[10] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg, “Quincy: fair scheduling for distributed
computing clusters,” SOSP 2009.

[11] Mor Harchol-balter, “The effect of heavy-tailed job size
distributions on computer system design,” in In Proc. of
ASA-IMS Conf. on Applications of Heavy Tailed Distribu-
tions in Economics, 1999.

[12] Z. Li, Y. Huang, G. Liu, F. Wang, Z. Zhang, and Y. Dai,
“Cloud transcoder: Bridging the format and resolution gap
between internet videos and mobile devices,” in 22nd ACM
Workshop on Network and Operating Systems Support for
Digital Audio and Video, 2012.

[13] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Bit rate
reduction video transcoding with distributed computing,”
in PDP, 2012.

[14] M. Roitzsch and M. Pohlack, “Principles for the prediction
of video decoding times applied to mpeg-1/2 and mpeg-4
part 2 video,” in RTSS, 2006.

[15] H. Yu, D. Zheng, B. Zhao, and W. Zheng, “Understand-
ing user behavior in large-scale video-on-demand systems,”
SIGOPS Oper. Syst. Rev., 2006.

[16] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon,
“I tube, you tube, everybody tubes: analyzing the world’s
largest user generated content video system,” IMC 2007.

[17] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic
characterization: a view from the edge,” IMC 2007.

[18] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global,
cache local: Youtube network traffic at a campus network -
measurements and implications,” Tech. Rep., 2008.

[19] M. Halvey and M. Keane, “Exploring social dynamics in
online media sharing,” WWW 2007.

[20] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online so-
cial networks,” IMC 2007.

[21] R. Calheiros, R. Ranjan, A. Beloglazov, A. De Rose, and
R. Buyya, “Cloudsim: A toolkit for modeling and sim-
ulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Softw. Pract. Exper.,
2011.

[22] Amazon Inc., “Amazon ec2 instance types,” August 2013.

[23] J. Zhou, Y. Li, V. Adhikari, and Z. Zhang, “Counting
youtube videos via random prefix sampling,” IMC 2011,
ACM.

[24] Stefano Sabatini, “Ffprobe,” August 2013.

Paper III

Integration of Dataflow Components
Within a Legacy Video Transcoding
Framework

Tewodros Deneke, Lionel Morel, Sébastien Lafond, Johan Lil-
ius

Originally published Proceedings of the International Workshop on Sig-
nal Processing Systems, 2015 IEEE International Conference, pages
1–6. Hangzhou,China.
c©2015 IEEE. Reprinted with permission.

Integration of Dataflow Components Within a
Legacy Video Transcoding Framework

Tewodros Deneke1, 2, Lionel Morel3, Sébastien Lafond2 and Johan Lilius2
1TUCS - Turku Centre for Computer Science, Finland

2Åbo Akademi University, Finland
3Universite de Lyon, Inria INSA-Lyon, CITI, F-69621, France

Abstract—Recently the RVC-CAL dataflow language has
enabled video codecs to be specified in a more natural way
than imperative languages by allowing implicit expression of
parallelism and side effect freeness. The tools developed for RVC-
CAL have also enabled the automatic generation of parallel C
code, among others, from dataflow specifications.

This paper introduces a new approach allowing the integra-
tion of dataflow components within legacy code. The approach
makes use of a generic interface definition that allows seamless
interaction between I/O components, which are mostly state op-
erations and are best implemented in imperative languages with
data processing components which are mostly stateless dataflow
operations and are best implemented in dataflow languages. The
advantage of the approach is the ease of development by allowing
each language to be used on those parts of the application that
it is most appropriate for.

The functionality of the approach is demonstrated by using
the generic interface to add a new dataflow based MPEG and
HEVC decoder into the legacy video transcoding library FFmpeg.

I. INTRODUCTION

Video is becoming an important medium of communication
and accounts for a significant portion of the available band-
width in the world. Today video is being consumed through
various devices and networks. These devices and networks
have varying capabilities in terms of screen resolution, storage
space, processor speed and bandwidth. Video transcoding is
needed to enable seamless exchange of videos among various
devices on heterogeneous networks like the internet. Video
transcoding is the process of transforming one video format
with certain characteristics such as bitrate, framerate and res-
olution to another video with different characteristics that will
better fit the target device. One typical scenario of transcoding
would be the delivery of video content by video on demand
(VOD) systems, like YouTube, to customers connected trough
wireless or wireline using their mobile phone, tablet or IPTV.
In order to reach such a wide range of consumer segments,
VODs transcode and store videos in several formats that are
tailored to each segment.

As presented in figure 1, the components of a video
transcoder can be roughly categorized in to two: I/O and video
processing components. The I/O components are responsible
for reading/writing video/audio in different formats to/from a
disk or network (e.g. Muxers and Demuxers). The video pro-
cessing components are mainly responsible for manipulating
the video/audio content (e.g, encoder and decoder). While the
I/O components are inherently serial and implemented as state
operations, the video processing components are parallelizable
and compute intensive and are more naturally expressed with

a dataflow programming model. For example a video codec,
which is one of the video processing components, is a soft-
ware that enables compression and decompression of digital
multimedia content. The main use of a codec is to compress
video so that it uses less resources during transmission and
storage and later to decompress it for viewing.

Over the years video codecs have become more efficient
in terms of their compression ability while becoming more
compute intensive. Until recently the increase in computational
complexity of codecs has not been a real concern because
computer speed has been doubling every other year following
Moore’s law. However due to physics constraints like power
dissipation and transistor scaling, multi-core architectures have
become the solution to allow performance to keep increas-
ing. Programming codecs for multi-cores is currently done
using imperative languages such as C/C++ using threads to
explicitly express parallelism. This is obviously a challenging,
time consuming and error prone process as multi-threading
is essentially a way to only prune non-determinism after its
introduction [1]. Research in dataflow programming shows the
advantages of using dataflow languages such as RVC-CAL for
the purpose of video codec specification and implementation.
Among others, the main advantages of using dataflow as the
main programming method include ease of use, flexibility,
automatic analyzability, automatic parallelizability, visual pre-
sentability and above all side effect freeness [2], [3], [4].

Demuxer Decoder

Spatial
Temporal
Processing

Encoder Muxer

10 sec, 300 frames,
480p, 36Mb

10 sec, 240 frames,
240p, 12Mb

10 sec, 240 frames,
240p, 292Kb

10 sec, 300 frames,
480p, 527Kb

Fig. 1. Basic description of video transcoding. Demuxer and Muxer are
I/O components used to read/write compressed video and the rest are video
processing components which encode, decode and scale video.

While programming video processing components of a
video transcoder (e.g. codecs) entirely in dataflow is an at-
tractive idea, programming the I/O components in dataflow
is unnatural on Von-Neumann architecture. I/O operations
have been introduced as state operations in the Von-Neumann
architecture as a convenient and clean way of reading in data
into programs. On the other hand the absence of side effects
which is fundamental to dataflow programs does not allow
state operations and makes dataflow implementation of I/O
operations difficult.

In this paper we propose an approach based on the defini-

tion of a generic interface that enables video/audio processing
system designers to write dataflow components in a dataflow
language and interface them with existing legacy video/audio
applications such as a transcoder. The proposed approach
allows the splitting of the development of video processing
applications in two parts: one part which uses dataflow lan-
guage and implements parallel sections and another, which
uses imperative languages and implements the I/O sections. It
combines the advantages of using dataflow languages with the
features of legacy imperative code and helps quicker adoption
of dataflow languages.

The rest of the paper is organised as follows. Section II
introduces the reader with necessary background knowledge.
Section III reports on related works. Section IV actually
describes the body of work of our proposition. Section V
presents experimental results evaluating the benefits in terms of
performance and the seemingless integration of a substantial
dataflow application into the FFmpeg transcoding platform.
Finally, section VI concludes and gives few perspectives to
this work.

II. BACKGROUND

A. Video Transcoding and FFmpeg

The difference in device resources, network bandwidth
and video representation types results in the need for a
mechanism enabling video content adoption. This mechanism,
called transcoding is currently being used for such purposes
as: bitrate reduction in order to meet network bandwidth
availability, resolution reduction for display size adoption, tem-
poral transcoding for frame rate reduction and error resilience
transcoding for insuring high quality of service (QoS) [5], [6].

As can be noted from figure 2 a generic video transcoder
contains five main parts, each having a set of components
depicted as blocks. The five main parts include a demuxer,
a decoder, spatial and temporal processors, an encoder and
a muxer. The demuxer is used to read interleaved streams
(e.g. one audio, one video and a subtitle stream) from a
network or a file. Usually a set of streams are encapsulated
in a container format such as MP4. Packets which are read by
the demuxer and contain compressed audio/video frames are
then passed to the appropriate decoder to be decompressed.
The decompressed audio/video frames are then spatially or
temporally processed to adapt the video/audio to a particular
framerate and/or resolution. Spatially and temporally processed
uncompressed frames are then passed on to the encoder to
be compressed via removing temporal, spatial and statistical
redundancy that exists inside and among uncompressed frames.

Legacy transcoders such as FFmpeg constitute libraries cor-
responding to each block. For example FFmpeg contains mul-
tiple codec implementations including H264, HVEC, MPEG4.
Similarly it contains multiple implementations of muxers and
demuxers that can be used to read and write several video and
audio file formats such as MP4, MKV, FLV, MP3, WAV, etc.

FFmpeg is an open-source, complete, cross-platform solu-
tion to record, convert and stream audio and video[7]. Among
others it includes libraries such as libavcodec, libavformat,
libavfilter, libavswscale which contain implementations of sev-
eral video and audio codecs, container formats, filters and
spacial processing functions. It is a large project with over
570k lines of code.

The FFmpeg transcoding framework implemented based on
FFmpeg libraries provides coarse-grained task (pipeline) and
data parallelism. The different components such as the decoder
and the encoder can run in a task-based parallel manner. The
data parallelism in FFmpeg is currently based on slice-level
and/or frame-level threading. In case of slice-level parallelism
multiple threads can decode slices (independent parts of a
frame) in parallel. In the case of frame-level parallelism
multiple threads processes multiple frames. However frames
have inter-dependencies and the number of slices in a frame is
usually limited to one. Therefore the parallelism implemented
in FFmpeg is obviously limited.

B. Dataflow Programming and RVC-CAL

A dataflow program is defined as a directed graph whose
vertices are actors (the basic computational units) and edges
are unidirectional FIFO channels with unbounded capacity. A
stream of data tokens, is processed by actors and passed on to
others actors via FIFOs. The advantage of such programming
model is its ability to implicitly express concurrency and
to enable analyzability. Dataflow graphs we consider here
respect the semantics of Dataflow Process Networks (DPNs)
[8], which are related to Kahn Process Networks (KPNs) [9].
The main difference between DPN and KPN is that DPN
allows actors to check the availability of tokens in the FIFOs.
Additionally to the KPN model, DPN introduces the notion of
firing. An actor firing, or action, is an indivisible quantum of
computation which corresponds to a mapping function of input
tokens to output tokens applied repeatedly and sequentially on
one or more data streams. This mapping is composed of three
steps: input data reading, then computation, and finally output
data writing. These functions are guarded by a set of firing
rules which specifies when an actor can be fired, i.e. if the
number and the values of tokens that are available on the input
ports are sufficient.

Dataflow has been used for naturally expressing digital
signal processing applications for decades. Currently it has
gained particular attention in expressing video processing ap-
plications. RVC-CAL is one domain specific dataflow language
for video coding based on the DPN model of computation [2],
[3], [4], [10]. It was originally developed for specifying video
coding standards in the most natural manner. This is due to
the fact that video coding is a data-oriented application and
can easily be visualized and specified as a dataflow graph
where actors correspond to functional units such as discrete
cosine transform (DCT) and motion compensation (MC), and
video bit stream flows among them via FIFOs. In addition
to providing a natural language for specifying video codecs
RVC-CAL provides a compilation framework called ORCC1.
ORCC is implemented as an eclipse plug-in and has backends
for C, VHDL and others and comes with various example
applications including MPEG4 and HEVC decoders.

An RVC-CAL dataflow program is described as a set
of interconnected actors via unidirectional FIFOs. Actors are
composed of a set of actions, I/O ports (FIFOs) and internal
state variables. Actors perform computation by firing actions
depending on the state of their I/O ports and their internal state
variables.

A multicore platform ideally runs an RVC-CAL program

1see http://orcc.sourceforge.net/

Decoder

Encoder

Spacial and
Temporal
Processing

+

stream
copy

Entropy
Decoder

Demux
Inverse
Quant.

Inverse
Transform

Prediction Frame
Buffer

−

+

Entropy
Coding

Quant. Transform

Inverse
Transform

Inverse
Quant.

Prediction
Refinment

Spatial/
Temporal
Processing

Spatial/
Temporal
processing

Mux

Prediction
(ME)

Prediction
(MC)

Frame
Buffer

Fig. 2. Complete picture of video transcoding showing the main blocks it constitutes and the different options of doing transcoding depending on the required
type of conversion operation, acceptable quality and complexity

by executing each actor in parallel as long as they are fireable.
However because the number of actors in a typical dataflow
application is usually much greater than the number of proces-
sors, several actors are usually executed on the same processor.
The RVC-CAL runtime therefore maps and schedules actors
using different approaches. Among others mapping is done
in a round-robin or in a weighted load balancing shame, and
scheduling is usually implemented using a round-robin or a
data driven algorithm[11], [12].

III. RELATED WORK

RVC-CAL [3], [4] uses CAL procedures to interface with
legacy code and more specifically to call the I/O imperative
functions such as file readers and display functions. CAL
procedures are included in the RVC-CAL language for this
particular purpose and can modify state variables and pa-
rameters passed to them by reference. Even though CAL
procedures defeat some purposes of the dataflow program-
ming approach such as side effect freeness they are, however
practical considering the Von-Neumann architecture. In our
work we propose an interface which can be used to call (use)
dataflow components from the legacy code. This is important
for legacy applications to tap in to dataflow components when
appropriate.

In [13], Mark Green et al. have shown two ways of
interfacing haskell which is a functional programming lan-
guage and java an imperative language. Their motivation for
their work was to provide each language an access to certain
missing language features from the other. As a use case they
showed how Java’s I/O and UI related libraries which require
imperative features that violate the referential transparency of
functional programs can be used in haskell. On the other side
they have also shown how the haskell features such as lazy
evaluation and higher-order functions can be used in Java
programs. In our work we explore a similar but more generic
interfacing approach on a dataflow language (RVC-CAL) and
the C imperative language using a more realistic application.

In [14], Chatterjee et al. presented the HCMPI program-
ming model and runtime for programming distributed systems,
which unifies asynchronous task parallelism at intra-node level
with MPIs message passing model at the inter-node level.
With HCMPI’s task parallel model, users can benefit from
MPI integration with structured task parallelism and dataflow
programming. Similarly, in [15] and other research works
around hybrid programming approaches, combining program-
ming models is proven to be useful in dealing with hierarchical
and various hardware designs.

In this paper, we propose the use of dataflow programming
to express the available concurrency in video transcoding
applications in a more natural way. At the same time, we
allow to keep the effective legacy components of current
transcoding applications. We enable this through the use of
a generic interface defined between components implemented
using different programming paradigms.

IV. INTERFACING DATAFLOW WITH LEGACY CODE

Ideally we would need to find the most transparent way
to accomplish the interfacing. It should be done in such a
way that enables code in both languages to remain natural.
There are two possible approaches to interface imperative code
with dataflow code. One possible approach, adopted by current
RVC-CAL application developments, is based on the interface
driven by the dataflow code. The I/O imperative functions are
called from the dataflow program using CAL procedures which
are ad-hoc mechanisms put in place to accomodate legacy code
in to dataflow components.

The approach proposed in this paper is also based on the
use of imperative code for I/O. However in this approach
it is the imperative code that calls the dataflow code with
an input data to be processed. The main advantage of this
approach is the ease of development. Each language is used
to implement those parts of code for which the language is
most appropriate for, without the need to accommodate the
languages to each other (as in RVC-CAL procedures). This

enables independent prototyping and reuse of code already
written. It also permits legacy libraries to access dataflow
components and helps adoption of dataflow programing.

A. Interface Definition

The interface is designed to be generic enough such that
any new dataflow component, like a decoder, encoder or
filter, can be added to any legacy video processing library.
The proposed interface consists of three functions and a data
structure which are explained and implemented as follows.

1) init component: This interfacing function is used to
launch the dataflow component. Launching a dataflow com-
ponent can be conceived as starting a conveyor belt system
in a factory. Once a conveyor belt along with the processing
units connected to it are started, a factory is ready to receive a
stream of items to be processed. In our case, the initialization
function starts the dataflow runtime system. The RVC-CAL
runtime mainly consists of mapping, scheduling and other
utility routines. The runtime takes in a set of actors, their
network and user-supplied parameters such as an input data
and maps, schedules and executes actors on a number of
processing units. Mapping is either done by simply assigning
actors to available processing units in a round-robin manner or
via more complex post-profiling weight-based methods [11].
Once actors are mapped to a processing unit they are scheduled
using round-robin or more advanced data-driven methods.[12].

Data: context
Result: success

1 set component context(context);
2 success =

thread create(launcher, launch, context, tid);
Algorithm 1: Dataflow component initialization

The pseudo-code in Algorithm 1 shows the implementation
of the init component function. context is any information
that is needed to start the component. It contains the runtime
options of the dataflow component such as mapping policy,
scheduling policy, number of cores to be used and the dataflow
network itself. Once the desired context of the component is
set, the dataflow component is launched with a new thread
which ensures the init component function returns control to
the legacy code immediately. This allows the caller to continue
its execution by sending row data and receiving processed data
from the dataflow component.

2) process: This function is responsible for feeding the
already initialized dataflow component with input data and
grubbing the output data if available. Every call to this function
from the legacy transcoder might fill the input FIFO of the
dataflow component or get tokens from the output FIFO of
the component, or both.

As shown in Algorithm 2, the process function takes in the
context of the dataflow component which contains the network
information and the data to be processed in ipkt. It then returns
any result that might be available from the dataflow component
in opkt. Note that this function also returns the size of the data
consumed by the component through the variable sent. Any
unconsumed data on the input FIFO of the dataflow component
should be re-supplied to this function. got result is used to tell
a calling function if the dataflow component resulted in a valid
output via opkt.

Data: context, ipkt
Result: sent, opkt, got result

1 tosend=ipkt.size;
2 sent = 0;
/* send input to dataflow */

3 sent += send(context,ipkt, tosend);
4 last processed=processed;
/* recive processed data */

5 processed += recv(context,opkt);
6 if last processed < processed then

/* we have got data */
7 got result = 1;
8 else
9 got result = 0;

10 end
11 ipkt.size -= sent;
12 ipkt.data += sent;

Algorithm 2: Dataflow processing

3) close component: This interface function is used to end
the already running dataflow component. More specifically
it ends the runtime of the component by joining all created
threads that were responsible for executing the component’s
actors.

Data: context
Result: success

1 thread join(launcher);
2 success = free component context(context);

Algorithm 3: Dataflow component termination

Algorithm 3 shows the close component function.

4) Component Structure: This structure definition enables
the use of multiple dataflow components and ensures the
generic nature of the interface.

1 typedef struct component {
2 const char name;
3 enum type component type;
4 enum id component id;
5 struct component *next;
6 int (*init component)(context *);
7 int (*process)(context *, opkt*, ipkt*, *got result);
8 int (*close component)(context *);
9 }

Algorithm 4: Component Structure

As can be noted from Algorithm 4, the component defini-
tion allows multiple dataflow components to be identified by a
name or id. It also contains pointer to the three functions that
are used to initiate, use and close a given dataflow component.

B. Generating Interface and Dataflow Component

In order to have an automated workflow for integrating
dataflow components into a transcoding framework, we pro-
pose generating the interface automatically from the ORCC
backend.

As shown in figure 3 we have modified the ORCC C
backend to generate the dataflow components as a library along
with a header file instead of stand alone executable. In addition

CAL Actors CAL Network

Orcc

C Backend

Interface
(component.h)

Makefile &
Package config

files

Dataflow
Component

Library
(component.a)

Fig. 3. Generation of the dataflow component library and its interface

we have added generation of package configuration files so that
the library can be installed and be used easily.

C. Using the Interface

In order to demonstrate the functionality of the approach
we have generated MPEG and HEVC video decoders form
the corresponding dataflow descriptions, written in RVC-CAL,
using our modified C backend. Figure 4 shows the structure
of the HEVC dataflow decoder.

Parser Enropy
Decoder Spliter

IQ 4x4 IT 4x4

IQ 8x8 IT 8x8

Merger

Intra Pre-
diction

Inter Pre-
diction

Select

Deblock
Filter

Frame
Buffer

Generate
InterInfo

Fig. 4. Dataflow Decoder Implementation from ORCC

The generated dataflow component libraries are then com-
piled and installed in our system. Following that we have
included the header files of the generated dataflow components
in our legacy video transcoding framework and linked to the
installed component libraries during its compilation.

Algorithm 5 shows the use of a dataflow decoder com-
ponent by the legacy video transcoder FFmpeg. Three main
points can be noted from the pseudo-code. The first is the
register_all function that is used to register the available
formats, codec and filters in a given system. This function is
from FFmpeg libraries and we have also used it to register
our new dataflow decoder component. The second point to
note is the use of our interface which constitutes the three
functions, init component, process and close component. This
interface can be used to abstract the various types of dataflow
components that can be implemented and integrated to FFmpeg
or any other legacy transcoder. Finally one can note that the
FFmpeg libraries supply the I/O (read/write) functions which
are capable of parsing almost any known video container for-
mat efficiently. In addition to the I/O functions, data processing
functionalities such as video scalers and encoders that are yet
to be implemented by dataflow approach can also be used.

Using our interface we were therefore able to provide
FFmpeg, a legacy video transcoding framework with dataflow
components that implement fine-grained parallelism. Note
from figure 4 that the dataflow decoder component provides a

Data: vs (source video), context
Result: vp (processed video)

1 register all();
2 init component(context) ; // initialize
component e.g. decoder/filter/encoder

3 while read(context, vs, ipkt) do
4 process(context, opkt, ipkt, got result) ; // e.g.

decode/filter/encoder
5 if got result then
6 rescale frame (context, fpkt, opkt, got result);
7 end
8 if got result then
9 encode frame (context, opkt, fpkt, got result);

10 end
11 if got result then
12 write(context, opkt);
13 end
14 ipkt.data += ret;
15 ipkt.size -= ret;
16 end
17 flush();
18 close component(context) ; // close component
e.g. decoder/filter/encoder

Algorithm 5: FFmpeg overview

fine grained parallelism by implementing functional blocks as
separate actors.

V. EXPERIMENTS

In order to check the proper operation and benefits of our
integration approach2 we have made two evaluations which
include quality and scalability measurements. In all of our
experiments we used four different input videos from different
categories with resolution of 1080p, bitrate of 1200kbps and
frame rate of either 24 or 30 or 50. The transcoding oper-
ation performed in the experiments are resolution reduction
transcoding. See result tables I and II for details on the input
video characteristics and the transcoding parameters.

A. Quality

First, we made a quality difference measure between video
transcoding operations which use the dataflow decoder and
the original legacy decoders that comes with the FFmpeg
transcoder. The original videos were of 1080p resolution and
were transcoded to 240p, 480p or 720p. The quality difference
were measured using three metrics, psnr,ssim, msssim [16],
[17]. The visual similarity matrices ssim, msssim are close to
1.00 and the structural similarity metrics psnr is inf for all tests
indicating that the resulting videos are similar. This means our
proposed interfacing works properly.

B. Evaluation of Scalability

Besides showing the proposed interface works correctly
we here present scalability measurements on a 6 core Intel(R)
Xeon(R) CPU E5-2620 0 @ 2.00GHz Machine. Table I shows
the speed up of 62-80% when using 4 cores for a dataflow
component (MPEG4 part 2 simple profile decoder) against a
single core. Similarly Table II shows the speed up of 48-65%

2https://github.com/tdeneke/ffmpeg-2.5.3, https://github.com/tdeneke/orcc
and https://github.com/tdeneke/orc-apps

when using 4 cores for the dataflow component (HEVC simple
profile decoder) against using a single core. The remaining 2
cores were assigned to the rest of the transcoding framework
components such as the encoder. The speed up is calculated
as (fps4−fps1)

fps1
∗ 100 where fps4 is the transcoding speed in

frames per second (fps) when using 4 cores for the dataflow
component and fps1 is the transcoding speed in fps when
using 1 core for the dataflow component. Each mesurment is
repeated 10 times to calculate the confidence intervals.

TABLE I. EXPERIMENTAL RESULTS SHOWING THE FRAME RATE (FPS)
OF THE DIFFERENT VIDEO STREAMS AND THE CONFIDENCE INTERVAL FOR

A 97.5% CONFIDENCE LEVEL. THE SPEEDUP FROM RUNNING THE
DATAFLOW COMPONENT OF THE TRANSCODER WITH A SINGLE CORE TO

RUNNING IT IN FOUR CORES IS GIVEN FOR EACH RESOLUTION AND VIDEO
SEQUENCE.

240p 480p 720p
Cartoon - Elephant Dreams - 24fps
1 3.456± 0.036 3.319± 0.027 3.075± 0.039
2 4.808± 0.011 4.529± 0.051 4.092± 0.027
4 6.085± 0.172 5.422± 0.537 4.995± 0.074
speedup 76.07% 63.36% 62.44%
Consumer Video - Old Town Cross - 50fps
1 3.432± 0.030 3.302± 0.029 3.065± 0.036
2 4.805± 0.012 4.535± 0.017 4.106± 0.011
4 6.180± 0.066 5.742± 0.050 4.996± 0.172
speedup 80.07% 73.89% 63.00%
Documentary - Snow mountain - 30 fps
1 3.487± 0.010 3.386± 0.040 3.191± 0.025
2 4.822± 0.028 4.607± 0.047 4.223± 0.020
G4 6.064± 0.380 5.863± 0.071 5.171± 0.292
speedup 73.90% 73.15% 62.05%
Sport - Touchdown Pass - 30 fps
1 3.373± 0.040 3.241± 0.031 2.975± 0.033
2 4.528± 0.382 4.383± 0.073 3.917± 0.022
4 5.508± 0.764 5.478± 0.250 4.519± 0.583
speedup 63.3% 69.02% 51.9%

TABLE II. EXPERIMENTAL RESULTS SHOWING THE FRAME RATE
(FPS) OF THE DIFFERENT VIDEO STREAMS AND THE CONFIDENCE

INTERVAL FOR A 97.5% CONFIDENCE LEVEL. THE SPEEDUP FROM
RUNNING THE DATAFLOW COMPONENT OF THE TRANSCODER WITH A

SINGLE CORE TO RUNNING IT IN FOUR CORES IS GIVEN FOR EACH
RESOLUTION AND VIDEO SEQUENCE.

240p 480p 720p
Cartoon - Elephant Dreams - 24fps
1 1.474± 0.001 1.473± 0.001 1.467± 0.002
2 1.800± 0.001 1.797± 0.003 1.791± 0.003
4 2.193± 0.089 2.185± 0.144 2.233± 0.033
speedup 48.78% 48.34% 52.22%
Consumer Video - Old Town Cross - 50fps
1 1.396± 0.001 1.394± 0.002 1.391± 0.001
2 1.729± 0.003 1.729± 0.004 1.723± 0.003
4 2.176± 0.025 2.136± 0.119 2.144± 0.084
speedup 55.87% 53.23% 54.13%
Documentary - Snow mountain - 30fps
1 1.493± 0.002 1.489± 0.003 1.482± 0.002
2 1.916± 0.011 1.916± 0.006 1.905± 0.001
4 2.461± 0.065 2.460± 0.044 2.273± 0.164
speedup 64.84% 65.21% 53.37%
Sport - Touchdown Pass - 30fps
1 1.307± 0.001 1.304± 0.001 1.299± 0.001
2 1.356± 0.673 1.595± 0.002 1.588± 0.003
4 1.993± 0.054 2.009± 0.023 2.004± 0.009
speedup 52.49% 54.06% 54.27%

VI. CONCLUSION

In this paper we have proposed the use of a generic
interface for integrating dataflow components such as decoders,
encoders and filters with legacy transcoding libraries. The
interface enables seamless interaction between dataflow and
legacy imperative code allowing each programming approach
to implement components for which it is appropriate for.

We have also tested and shown the proper functionality
of our approach. Scalability evaluations also show the gain
that can be obtained from using dataflow components via the
proposed interface.

In the future we would like to further explore the effect of
the dataflow component runtime and transcoding framework
runtime on each other.

REFERENCES

[1] E. A. Lee, “The problem with threads,” Computer, pp. 33–42, May
2006.

[2] Orcc, “Open RVC-CAL compiler,” 2009. [Online]. Available: http:
//orcc.sourceforge.net/

[3] M. Wipliez, “Compilation infrastructure for dataow programs,” Ph.D.
dissertation, INSA Rennes, Sep. 2010.

[4] H. Yviquel, “From dataflow-based video coding tools to dedicated
embedded,” Ph.D. dissertation, UNIVERSITE DE RENNES 1, Oct.
2013.

[5] S. F. Chang and A. Vetro, “Video adaptation: Concepts, technologies,
and open issues,” Proceedings of IEEE, Jan 2005.

[6] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceed-
ings of the IEEE, Jan. 2005.

[7] ffmpeg, “ffmpeg,” 2000. [Online]. Available: https://www.ffmpeg.org/

[8] E. A. Lee and T. M. Parks, “Readings in hardware/software co-design,”
Norwell, MA, USA, 2002, pp. 59–85.

[9] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information processing, J. L. Rosenfeld, Ed. Stockholm,
Sweden: North Holland, Amsterdam, Aug. 1974, pp. 471–475.

[10] J. Eker and J. W. Janneck, “Cal language report: Specification of
the cal actor language,” University of California, Berkeley, Berkeley,
California, USA, Tech. Rep., 2003.

[11] H. Yviquel, E. Casseau, M. Raulet, P. Jaaskelainen, and J. Takala,
“Towards run-time actor mapping of dynamic dataflow programs onto
multi-core platforms,” Sept 2013, pp. 732–737.

[12] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet, “Efficient multicore
scheduling of dataflow process networks,” in SiPS, Oct 2011, pp. 198–
203.

[13] M. Green and A. E. Abdallah, “Interfacing java with haskell.” in
Scottish Functional Programming Workshop, ser. Trends in Functional
Programming, vol. 1, 1999, pp. 79–88.

[14] S. Chatterjee, S. Tasrlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism
with mpi,” in IPDPS, May 2013, pp. 712–725.

[15] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes,” Feb 2009, pp. 427–
436.

[16] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” Image Pro-
cessing, IEEE Transactions on, 2004.

[17] vqmt, “vqmt,” 2013. [Online]. Available: http://mmspg.epfl.ch/vqmt

Paper IV

Bit Rate Reduction Video Transcod-
ing with Distributed Computing

Fareed Ahmed Jokhio, Tewodros Deneke, Sébastien Lafond,
Johan Lilius

Originally published Proceedings of the 20th International Euromicro
Conference on Parallel, Distributed and Network-based Processing, 2012,
IEEE International Conference, pages 206–212. Munich, Germany
c©2012 IEEE. Reprinted with permission.

Bit Rate Reduction Video Transcoding with Distributed Computing

Fareed Jokhio, Tewodros Deneke, Sébastien Lafond, Johan Lilius
Åbo Akademi University

Department of Information Technologies
Joukahainengatan 3-5, 20520 Turku, Finland

Email: {fjokhio, tdeneke, slafond, jolilius}@abo.fi

Abstract—This paper presents an approach to perform bit
rate reduction transcoding by video segmentation. The paper
shows how a high performance distributed video transcoder
can be built using multiple processing units and a Message
Passing Interface based parallel programming model. The
computation parallelization and data distribution among com-
puting units is discussed. For data distribution coarse grain
approach is used in which significant gain in terms of execution
speedup is obtained. The segmentation of video stream with
(1) equal size having unequal number of intra frames and
(2) unequal size having equal number of intra frames is
performed to achieve high performance. The results show that
the proposed distributed video transcoder provides very short
startup times.

Keywords-video Transcoding, Message Passing
Interface(MPI), Distributed computing

I. INTRODUCTION

Currently there is a diversity of multimedia applications
and there are several video formats available with different
characteristics. Users want to play a video in various formats
and on different devices. Some users demand for high defi-
nition video while others demand for low resolution video.
With the passage of time the number of video compression
standards is growing therefore it is not practically possible
to store a video in all possible formats to fulfill the end user
requirements. Also the channels through which a video is
distributed to the end user can have different capacities. The
compressed video stream needs to be re-encoded to meet the
bit rate of the communication channel. Video transcoding is
a popular technique to solve these issues [1], [2].

A video transcoder takes a compressed video signal as
input and produces another compressed video signal as out-
put. The output video can have different bit rates, different
frame rate, different frame size, any combination of these or
even an entirely different compression standard.

To get better quality video, the video transcoder should
decode the encoded video stream and then re-encode it
with new characteristics. Both video decoding and encoding
require a number of highly computational tasks hence this
seems a time consuming process and waste of computational
power. Other smart video transcoding techniques already
exist which transcode the video in desired format by just
partially decoding and reusing the motion vectors informa-
tion [3]. Even with existing fast transcoding techniques, the

process of transcoding still needs lot of computational power
while dealing with high resolution videos such as 4CIF,
16CIF, HD 1080, etc. In order to get better performance,
distributed video transcoding can be used to distribute the
computational burden among processing units [4].

The main contributions of the paper are:
• the analysis of video segmentation for transcoding in a

distributed environment
• the evaluation of the video startup time in such envi-

ronment
This work also puts special attention towards scalability of
the transcoder implementation. This means that we must be
able to run the same transcoder in a distributed environment
with any number of processing units.

In the next section, we briefly describe the background
and related work. Section III gives an overview of the
encoding, decoding and introduces the bit rate reduction
transcoding. The method for achieving the bit rate reduction
and motion vectors refinement is also discussed in this
section. In section IV video stream structure is described
briefly and then three different ways of video segmentation
are discussed. Section V presents the system overview
and describes the tasks performed by master and worker
machines. In section VI experimental setup is discussed and
results are provided in section VII. Finally conclusion and
future work is given in section VIII.

II. BACKGROUND AND RELATED WORK

Video transcoding has been studied and improved in the
past two decades. The quality of the transcoded video and
the speed of the transcoding process are main issues in video
transcoding. Distributed computing is a solution to get more
speedup in the transcoding process and keep the same quality
of video. However, how to optimally handle multiple video
streams, their startup times and how to scale the transcoding
architecture is still open research problem.

Jiani Guo [5] proposes a cluster based multimedia web
server. The work was related to dynamic generation of video
according to the requirements of bandwidth and bit rate for
many clients. The partitioning of jobs is done by a media
server and the computation is done on several nodes. The
proposed system was designed for seven nodes. Sambe [4]
worked on distributed transcoding of MPEG-2 to produce

output video with different bit rates. His work was concerned
to produce multiple formats and rates and he integrated
multiple processors to fully decode and re-encode incoming
video. He paid more attention on segment handling while
Jiani Guo paid more attention on load balancing of multiple
video streams. Neither author considered video startup time.

Among different methods of distributed computing we
have chosen to use MPI (message passing interface) because
of its maturity, support, open source nature, scalability and
ease of use. MPI is a message passing interface for MIMD
(multiple instructions multiple data) distributed memory
concurrent computers and workstations [6]. In this program-
ming model a set of tasks that use their own local memory
during computation can be performed on the same physical
machine and /or across an arbitrary number of machines.
Tasks exchange data through communication channels by
sending and receiving messages (i.e. message passing.).
This means that data transfer usually requires cooperative
operations to be performed by each process. That is for
example, a send operation must have a matching receive
operation. From programming perspective, message passing
implementations commonly comprise a library of subrou-
tines that are embedded in source code. The programmer is
thus responsible and free to express all parallelism involved
[6], [7].

III. BIT RATE REDUCTION VIDEO TRANSCODING

The main goal of bit rate reduction transcoding is to
reduce the bit rate while maintaining low complexity and
achieving the best quality possible. The bit rate reduction
video transcoding has wide range of applications such as
television broadcast and streaming of video over the internet.
In bit rate reduction video transcoding the compressed video
is decoded and then re-encoded with new bit rates.

Figure 1. Video decoder

The block diagram of a video decoder is shown in figure
Figure 1. Video decoding is a complex operation and it
consists of several other operations such as variable length
decoding, inverse quantization, inverse discrete cosine trans-
formation, motion compensation. The computation required
in decoding operation for low resolution video frames is
less as compared with the high resolution video frames.
The video decoder has a compressed bit stream as input
and produces an uncompressed video as output.

Figure 2 shows the block diagram of a video encoder.
As shown in the figure, the video encoding has even more
complex operations than video decoding. A video encoder
consists of a number of other operations such as discrete
cosine transform, quantization, variable length coding, and
motion compensation. A video encoder also performs the
decoding operation after the quantization operation and then
computes the difference between the original video frame
and the decoded frame after compression. This difference is
termed as a residual frame and is also sent with the com-
pressed bit stream. The information entropy for a residual
frame is usually less due to similarities in the nearby video
frames, and it requires fewer bits.

Figure 2. Video encoder

The different operations such as variable length encoding,
variable length decoding, quantization, inverse quantization,
discrete cosine transform, inverse discrete cosine transform,
motion estimation and motion compensation are performed
on the block level in a frame. Figure 3 shows the structure of
a video frame. The number of blocks in a frame depends on
its resolution. If the frame has high resolution, the number
of blocks will also be high and more computation will be
required during encoding and decoding process.

Figure 3. Video frame

In a bit rate reduction transcoder the video resolution
and the frames rate are unchanged. The bit rate reduction
is possible by compromising on the video quality [8], [9],
[10]. It is possible to reduce the bit rate by applying the

inverse quantization and then again applying the quantization
with increased quantization step at the encoder side in the
transcoder [11], [12], [13]. This operation will increase
the zero quantized coefficients and hence fewer bits will
be required to encode the data. In order to reduce the
complexity in bit rate reduction transcoding the motion
vectors computed at the original bit rate are reused in the
reduced rate bit stream. Using the same motion vectors will
lead to degraded video quality due to the mismatch between
prediction and residual components [3]. To overcome this
loss of quality motion vector refinement is needed. Video
frames contain objects and background. Successive video
frames may have similar objects and and these objects can
be displaced at another location. Motion estimation is used
to examine the movement of objects. In block based motion
estimation, the similar blocks are searched in the reference
frame. The estimated motion of a block is represented by a
motion vector. The motion estimation is performed within a
fixed search window and it may have size such as [-2, +2],
[-16, +16] or any other suitable size. In order to keep the
low complexity, motion vector refinement is performed with
small search window[1]. The size of the search window is
kept very small to reduce the computational load. Increase in
the search window size will give slightly better quality but
it will have more computational load. The [-2, +2] search
window achieves the majority of gain due to the fact that
the majority of macro blocks will have a best match within
this range.

IV. VIDEO STREAM STRUCTURE

A video stream consists of several independent units
called as video sequences where every sequence has its own
headers. The video sequence consists of several group of
pictures (GOP). The group of pictures consists of frames.
There are different types of frames; I (intra) frame, P
(Predictive) frame and B (bidirectional) frame. The frame is
further divided in slices, each slice consists of macro blocks
and every macro block consists of blocks. Figure 4 shows
the video stream structure down to the frame level.

Figure 4. Video stream structure

A. Segmentation of video sequence at Group of Picture
The first issue with distributed transcoding approach is

how to perform the segmentation of the source video so that
parts of video can be distributed among worker machines
to perform the transcoding operations. Compressed video
files contain different types of frames (I, P, B) which have
different compression rates and inter-dependencies among
them. Therefore one cannot split a given video at any
particular frame. Among the frame types a frame of type
I (intra) is independent and can be decoded without any
other reference frame. In a given video sequence a group of
frames containing one I frame followed by a number of other
B and P frames is called a group of pictures (GOP). Our
video sequence partitioning algorithm utilizes this concept
to divide a video file in to smaller parts. The master machine
divides the incoming video file into parts which contain a
number of GOPs and sends these parts to worker machines.

In any video sequence there are two kinds of group of
pictures, either the entire video sequence will consist of
open-GOP or it will consist of closed-GOP. In the case
of closed-GOP it is possible to decode the entire GOP
independently. In the case of open-GOP, the last I or P
frames of the previous GOP is needed as a reference frame
to decode the first B type frame. Segmentation of open-
GOP is further discussed in [4]. In the case of open-GOP
in every segment there will be one extra I or P frame from
the other GOP. This extra frame will be discarded by the
master machine while performing the merging. However
it will require some extra computation in the transcoding
process. In our experiments we used closed-GOPs in the
source video.

We segmented the video in three difference ways:
• each segment has equal number of intra frames but the

size of segment may be different due to the different
sizes of GOPs.

• each segment has equal size but the number of intra
frames may be different.

• each segment has unequal size and unequal number of
intra frames.

Most video sequences have different number of frames in
each GOP. The size of the source video sequence segments
for first two cases is shown in table I. The source video used
is big buck bunny, further details about the source video are
provided in the experimental setup.

The third method of video segmentation is used to get the
minimum video startup time. The video startup time is the
time at which the end user will be able to view the video.

The MPI based transcoder implementation can handle the
transcoding if the number of segments is more than the
number of workers.

B. Video segmentation with unequal load
Figure 5 shows the video segmentation of source video

with unequal load.

paritions equal size partitions Unequal size in Mega Bytes
2 39.95MB each 28, 51
3 26.63MB each 19, 21, 39
4 19.97MB each 14, 15, 19, 33
5 15.98MB each 11, 12, 13, 16, 29
6 13.32MB each 8.6, 9.0, 11, 12, 12, 27
7 11.41MB each 7.5, 7.8, 8.7, 8.8, 8.9, 11, 26

Table I
SIZE OF SEGMENTS FOR TRANSCODING

Figure 5. Video segmentation with unequal load

The MPI based transcoder with unequal size partitions is
designed in such a way that the master will produce a very
small size segment and will send it to the first worker. By
keeping the small size of first video segment, it will require
very less processing power for transcoding and hence the
video start up time will be very less.

The second segment will have slightly more number of
I frames and will be bigger in size than the first segment.
While producing the second segment the master machine
will already have the information about the first segment
size and type of frames inside it. The master will make
sure that the transcoding time of the second partition is less
than the play time of first segment. In the same way it will
keep record of the play time of the first n-1 segments while
making the nth segment. Since the transcoding operation
is performed in parallel the master machine will have a
choice to make bigger segments after sending some parts of
source video to workers. More care is required when sending
segments to the first few workers.

After sending small size segments to few workers, the
master will send bigger size segments to other workers. If the
segments size will be bigger, there will be better efficiency
in overall transcoding and there will be less traffic on the
network due to fewer messages between master and workers.

V. SYSTEM OVERVIEW

We selected the ffmpeg open source video transcoder
which is designed to work on a single machine as the basis
for our experiments. Further details about this transcoder can
be found in [14]. We modified this transcoder to execute on

multiple processing units in a distributed environment using
the MPI. In MPI based implementation we create multiple
processes of the transcoder and each process transcode its
own part of video stream.

We have two different scenarios for our transcoding sys-
tem. In the first case each worker will get only one segment
to perform the transcoding for one video sequence. Hence
we cannot have more partitions than number of available
workers. This scenario is used for the first two possible
ways of video segmentation i.e. equal size segmentation with
unequal number of intra frames and equal number of intra
frames with unequal segment size. The one to one mapping
of video segments to worker machines is helpful in getting
the overall high performance in transcoding.

The second scenario is used to get the shortest possible
startup time. In this case the number of video segments
is higher than the number of available workers. The video
segments are sent to workers in round robin fashion.

Figure 6. Distributed Video Transcoder with Message Passing Interface

Figure 6 shows the architecture of the distributed video
transcoder for a single video sequence. The source video
sequence header is attached to every GOP to make it a video
sequence so that the transcoder can transcode it according
to given parameter values.

In the MPI based implementation the number of total
worker machines for transcoding a given video stream is de-
cided by the master; video segmentation and load balancing
are performed according to the number of worker machines.

In MPI based systems every machine has its own ID
and the work is assigned according to their IDs. The
master machine will have ID zero and it will perform the
video sequence segmentation task first and then will send
the data to worker machines to perform the transcoding
operation. The master machine will wait until it gets back
the transcoded results from all workers. After receiving the
transcoded results it will perform the merging task. It is

also possible to make any other machine as a master with
ID other than zero. If the number of video streams to be
transcoded is high then multiple masters can also be created.

All worker machines perform the same kind of transcod-
ing operation. The instructions for transcoding the video
sequence are the same for all worker machines but they all
get different parts of the video stream. The worker machines
have to receive the part of video stream from the master
machine then perform transcoding operation and send back
the results to master machine.

VI. EXPERIMENTAL SETUP

The experimental system consists of AMD Opteron(tm)
Processor workstation and the configuration of the system
is shown in table II. Each core of the Dual-Core processor
is used as a processing element and takes part in the
transcoding operation. The same implementation of the MPI
based video transcoder can be mapped on a multi-core
system.

model name Dual-Core AMD Opteron(tm) Processor 2214 HE
cpu MHz 2194.498
cache size 1024 KB

address sizes 40 bits physical, 48 bits virtual

Table II
CONFIGURATION OF THE MACHINES IN CLUSTER

The big buck bunny video sequence [15] was used as
source video to perform transcoding operations. The source
video has H263 4CIF (704x576) format with 24 fps and
1125 kbps. The size of the source video is 79.9 MB and its
play time is 09 minutes and 56 seconds. The total number
of frames in this video sequence is 14314.

VII. RESULTS

To test our approach we transcode the video down to
lower bit rates. The original size of the video sequence was
79.9 Mega Bytes. We started transcoding video sequence at
982kbps and went down to 349kbps. With lower bit rates
the quality of video was degraded. Table III shows the file
size after transcoding with different bit rates.

Bit rate File size Bit rate File size
982 kbps 70Mb 518 kbps 44Mb
883 kbps 63Mb 428 kbps 38Mb
789 kbps 57Mb 359 kbps 31Mb
699 kbps 50Mb 349 kbps 25Mb
608 kbps 44Mb

Table III
FILE SIZE AFTER TRANSCODING FOR DIFFERENT BIT RATES

A. Transcoding time

The bit rate reduction transcoding requires the same
number of operations for transcoding the video sequence at
different bit rates hence the transcoding time is the same for
different bit rates. Figure 7 shows the transcoding time for
both equal size partitions having unequal number of intra(I)
frames and unequal size partitions having equal number of
intra (I) frames. The graph shows that there is gain in terms
of speed up when using more workers. With equal number
of intra (I) frame partitions the overall transcoding time is
less and the performance is better for a single video stream.

The quantization process requires more computation in bit
rate reduction transcoding; this process is performed only on
intra macro blocks. The intra frames have only intra macro
blocks and require more computational power as compared
with P and B frames having inter macro blocks. The P and
B frames may also have intra macroblocks but the number
of those intra macro blocks is very less as compared to the
macro blocks of intra frames.

The equal size segmentation with unequal number of intra
frames partitioning also provides speed up as the number
of workers is increased but is less efficient than the equal
number of intra frames and unequal size segmentation.

Figure 7. Bit rate reduction Transcoding Time

B. Startup time

The figure 8 shows the start up time for different sizes
of video segments. With unequal size segmentation having
small number of Intra frames, the startup time can be very
less. The results show that for 2 megabytes video segment
the transcoding time is less than 2 seconds. The number
of frames in 2 mega bytes video is more than 360. With
24 frames per second the play time for this video segment
will be 15 seconds. Hence the second worker will be able
to transcode a bigger size video segment and it has to send
back the transcoded result before the 15 seconds deadline so

that the user may able to see uninterrupted video. The third
worker will be able to transcode on even bigger size video
segment. The video segmentation time is small as compared
with transcoding time. It takes less than 1 second to perform
the video segmentation operation and send segments to
workers for transcoding.

Figure 8. Start up time for different sizes of video segements

C. Analysis

The Peak Signal to Noise Ratio (PSNR) is used to
measure the quality of compressed images. The Average
Peak Signal to Noise Ratio is used to measure the quality of
video. Here PSNR is calculated for all frames of video and
then finally Average of PSNR is calculated to get APSNR.

PSNR = 10× log10(
MaxErr2 ×W ×H
∑W,H

i=1,j=1(xij − yij)2
)

The xij and yij shows the pixel values of source image
and compressed image. The W and H indicate the width and
height of the image.

We performed the transcoding operation for different bit
rates. The Peak Signal to Noise Ratio at 349kbps is shown
in figure 9.

Figure 9. Peak Signal to Noise Ratio at 349kbps

Figure 10 shows the APSNR for different bit rates starting
from 349kbps to 982kbps. If the value of APSNR is above
30 it means the video quality is acceptable and if the value

of PSNR is higher it means the quality of the compressed
image is better. Maximum value of PSNR can be 100 and
in that case two images will be exactly identical.

Figure 10. Average PSNR for various bit rates

The transcoding experiment was performed several num-
ber of times starting with one master and one worker to one
master and seven workers. The output video quality was the
same with different number of workers hence the MPI based
transcoder did not degraded the video quality.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a scalable distributed MPI
based transcoder implementation. In this implementation a
master node (workstation) partitions a given input video file
into a number of parts and distributes among worker nodes.
The actual transcoding is performed by worker machines in
parallel to get more speedup of overall transcoding process.
The worker machines send back the transcoded video to
master for merging. We were able to see a considerable
performance gain with MPI based transcoder as number
of worker machines increases. It was observed that the
segmentation with equal number of intra frames is more
efficient than equal size segmentation. The unequal size
segmentation is better for having short startup time. The
video start up time can be as low as 2 seconds and then
uninterrupted service is possible for the end user. In addition
the MPI based transcoder needs no change in its design as
the number of processing units grows up. The MPI based
transcoder can handle any other type of video format but the
headers information needs to be handled while performing
segmentation. The MPI based transcoder can also be used
for other types of transcoding just like spatial and temporal
transcoding and further experiments can be performed on
both these types of transcoding.

The MapReduce can also be used to perform video
transcoding in a cloud computing environment. In future we

intend to perform distributed transcoding using the cloud
computing with both MPI and MapReduce and then see
which one of them provides better results.

REFERENCES

[1] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding
architectures and techniques: an overview,” Signal Processing
Magazine, IEEE, vol. 20, no. 2, pp. 18 – 29, mar 2003.

[2] S. F. Chang and A. Vetro, “Video adaptation: Concepts,
technologies, and open issues,” Proceedings of IEEE,
vol. 93, no. 1, pp. 148–158, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1109/JPROC.2004.839600

[3] N. Bjork and C. Christopoulos, “Transcoder architectures for
video coding,” Consumer Electronics, IEEE Transactions on,
vol. 44, no. 1, pp. 88 –98, feb 1998.

[4] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura, and
N. Wakamiya, “High-speed distributed video transcoding
for multiple rates and formats,” IEICE Transactions, vol.
88-D, no. 8, pp. 1923–1931, 2005. [Online]. Available:
http://dx.doi.org/10.1093/ietisy/e88-d.8.1923

[5] J. Guo, F. Chen, L. Bhuyan, and R. Kumar, “A cluster-
based active router architecture supporting video/audio stream
transcoding service,” in Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, april 2003, p.
8 pp.

[6] Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard. Knoxville, TN: University of Tennessee,
Jun. 1995.

[7] Gropp, W., Lusk, E., and Skjellum, A., Using MPI, Portable
Parallel Programming with the Message Passing Interface.
MIT Press.

[8] P. Assuncao and M. Ghanbari, “Transcoding of single-layer
mpeg video into lower rates,” Vision, Image and Signal
Processing, IEE Proceedings -, vol. 144, no. 6, pp. 377 –
383, dec 1997.

[9] T. Shanableh and M. Ghanbari, “Heterogeneous video
transcoding to lower spatio-temporal resolutions and different
encoding formats,” Multimedia, IEEE Transactions on, vol. 2,
no. 2, pp. 101 –110, jun 2000.

[10] H. Sun, W. Kwok, and J. Zdepski, “Architectures for mpeg
compressed bitstream scaling,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 6, no. 2, pp. 191 –
199, apr 1996.

[11] Y. Nakajima, H. Hori, and T. Kanoh, “Rate conversion
of mpeg coded video by re-quantization process,”
in Proceedings of the 1995 International Conference
on Image Processing (Vol. 3)-Volume 3 - Volume
3, ser. ICIP ’95. Washington, DC, USA: IEEE
Computer Society, 1995, pp. 3408–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=839284.841401

[12] M.-T. Sun, T.-D. Wu, and J.-N. Hwang, “Dynamic bit alloca-
tion in video combining for multipoint conferencing,” Circuits
and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on, vol. 45, no. 5, pp. 644 –648, may 1998.

[13] O. Werner, “Requantization for transcoding of mpeg-2 in-
traframes,” Image Processing, IEEE Transactions on, vol. 8,
no. 2, pp. 179 –191, feb 1999.

[14] “Ffmpeg project.” [Online]. Available:
http://www.ffmpeg.org/

[15] “Big buck bunny video sequence.” [Online]. Available:
http://www.bigbuckbunny.org/index.php/download/

Paper V

Proactive Management of Video Transcod-
ing Services

Tewodros Deneke, Sébastien Lafond, Johan Lilius

Submitted ACM Trans. Multimedia Comput. Commun. Appl., 2016,
pages 1–19. NY, USA
c©2016 ACMTOMM. Reprinted with permission.

Proactive Management of Video Transcoding Services

Tewodors Deneke, Department of Information Technologies, Åbo Akademi University
Sébastien Lafond, Department of Information Technologies, Åbo Akademi University
Johan Lilius, Department of Information Technologies, Åbo Akademi University

Following the explosion of digital video consumption over the Internet, video processing applications such
as encoding, transmuxing and transcoding are increasingly being deployed on cloud-based environments
as a service. However, these services exhibit high variations in their required computational power for two
reasons: 1) because transcoding jobs exhibit a heavy-tail or exponential service time distribution 2) because
transcoding job arrival rates to these services vary significantly based on time of the day.

In this paper we present a proactive transcoding service management approach based on transcoding
task size prediction to optimize the usage of cloud platforms. The proposed approach uses machine learning
based task size prediction to enable more efficient resource management in terms of load balancing and
auto-scaling algorithms. It also allows for a clear definition of service level agreement (SLA) in terms of
average waiting time of transcoding jobs. Simulation results show that our proactive transcoding service
management methods based on transcoding task prediction enables a significantly better resource utiliza-
tion for a given quality of service.

CCS Concepts: rComputer systems organization→ Cloud computing; rInformation systems→Mul-
timedia streaming;

Additional Key Words and Phrases: Video Transcoding, Prediction, Resource Management, Cloud Comput-
ing

ACM Reference Format:
Tewodros Deneke, Sébastien Lafond, Johan Lilius, 2016. Proactive Management of Video Transcoding Ser-
vices. ACM Trans. Multimedia Comput. Commun. Appl. , , Article (2016), 20 pages.
DOI: 0000001.0000001

1. INTRODUCTION
The consumption of online video by individuals has become more heterogeneous in
terms of requested content, network connections, and devices. Video transcoding to-
gether with adaptive streaming solutions aim to address this growing heterogeneity
by offering users multiple versions of a given video tailored to their various devices
and network connections. This means, each version of a given video is encoded at a
different bitrate, resolution and with a different codec so that the user is served with
the most suitable format for his choice of device and network connection. Currently
transcoding is being utilized for such purposes as: bit-rate reduction in order to meet
network bandwidth availability, resolution reduction for display size adoption, tempo-
ral transcoding for frame rate reduction and error resilience transcoding for insuring
high quality of service (QoS) [Chang and Vetro 2005; Xin et al. 2005; Sodagar 2011;
Stockhammer 2011; Toni et al. 2014].

Because video transcoding is a computationally intensive process and requires ex-
pert knowledge, transcoding operations can usually not be done on the consumer side.

Author’s addresses: Tewodros Deneke, Sébastien Lafond and Johan Lilius, Department of Information Tech-
nologies, Åbo Akademi University, Åbo, Finland.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 1551-6857/2016/-ART $15.00
DOI: 0000001.0000001

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:2 T. Deneke et al.

Transcoding Time

D
en

si
ty

0 200 400 600 800

0.
00

0
0.

01
5

0.
03

0

(a) Full videos

 Segment Transcoding Time

D
en

si
ty

0 20 40 60 80 100 120

0.
00

0.
04

0.
08

0.
12

(b) Video segments

Fig. 1. Video transcoding workload distribution of randomly sampled YouTube videos and their 20sec seg-
ments while applying valid YouTube transcoding parameters from [Deneke et al. 2015].

Transcoding video content at different resolutions, bitrates and quality levels requires
not only time, expertise and equipment but also storage capacity and extensive plan-
ning in the design and automation of video transcoding workflows. Therefore con-
tent providers, such as YouTube, rely on private and public cloud computing services
for large scale video transcoding. As a result, cloud based transcoding services have
emerged to automate and virtualize the complex and cumbersome process of video
transcoding for content providers and individuals [Inc 2013b; 2013c; Li et al. 2012].
At the heart of each transcoding service are resource management components which
decide how resources are allocated, efficiently used and insure service-level agreement
(SLA) terms are respected. These management components need to work with either
worst-case assumptions on system workload leading to over provisioning of resources
and poor management or be proactive and able to predict the workload of incoming
transcoding tasks. Such ahead of time predictions can then be used to provide efficient
provisioning and load balancing for a given SLA. Proactive management is especially
important for two reasons; 1) because service request rates vary over time (as shown
in Figure 6) and 2) because transcoding jobs follow a heavy-tailed or exponential dis-
tribution depending on whether videos are segmented before processing or not. For
example, if we consider the CPU requirement of transcoding jobs required by a video
on demand site like YouTube, it turns out that few jobs have relatively very high CPU
requirements leading to a heavy-tail or exponential job distribution, as shown on Fig-
ure 1. When job sizes are variable it is advantageous to estimate the task size and be
able to use dynamic resource management algorithms [Harchol-balter 1999].

In this work we propose a proactive resource management approach for video
transcoding services that optimize the usage of cloud platforms while safeguarding
their SLAs. Specifically we:

— propose a mechanism to predict the workload of transcoding requests and
— use these predictions to make provisioning and load balancing decisions for a re-

quired, agreed upon, quality of service defined as an average waiting time of
transcoding job.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :3

2. VIDEO TRANSCODING AND THE CLOUD
To set the scene for this paper, we begin with a brief overview of video transcoding
services, the cloud environment and machine learning techniques which are the basis
for our proactive resource management approach.

2.1. Video Transcoding
The basic idea of video transcoding is to convert unsupported video formats into sup-
ported ones. Unsupported videos include videos that are not playable by a given device
due to lack of format support or due to required system resources being limited (e.g.
device screen resolution and bandwidth). The main types of video transcoding include,
resolution transcoding, bitrate transcoding, temporal transcoding, container transcod-
ing, codec transcoding , error reliance transcoding and any combination of these [Vetro
et al. 2003].

10 sec, 300 frames,
480p, 36Mb

10 sec, 240 frames,
240p, 12Mb

10 sec, 240 frames,
240p, 292Kb

10 sec, 300 frames,
480p, 527Kb

Demuxer Decoder STP Encoder Muxer

Fig. 2. Basics of Video Transcoding

A typical video transcoding software consists of five main components. These include
the Demuxer, Decoder, Temporal Spatial Processor (STP), Encoder and Muxer. The
Demuxer is the first part of a transcoder and is responsible for reading the container
information of a compressed video content and unpacking the different streams (i.e.
audio, video and possible subtitle). The decoder reads one of the compressed streams
(e.g. video) and decompress it to remove interdependencies among consecutive frames.
The Temporal Spatial Processing component then takes the decompressed stream and
applies possible temporal and spatial processing (e.g. adjusts the resolution in pix-
els and/or the number of frame per second). After the stream has been adjusted both
spatially and temporally it will be re-compressed (i.e. unnecessary redundancies that
occur across a frame and among frames are removed) by the encoding component.
At the end, compressed audio, video and subtitle streams are interleaved and packed
together by the Muxer. Depending on the transcoding type a variable number of com-
ponents will be needed. For example in container transcoding, only the Demuxing and
Muxing components are needed while in resolution transcoding all components are re-
quired. This leads to a variable transcoding workload pattern as presented in Figure
1.

At this point two challenges can already be pointed out. The first is the complicated
and cumbersome nature of the transcoding work flow and the second is the apparent
variability of transcoding tasks in terms of required computing resources. This leads
to interesting and open research problems related to resource management. The first
challenge is currently being addressed by many through moving the transcoding oper-
ation into the cloud where it can be automated and virtualized form an end user and
content provider point of view. The second challenge however have not been addressed
fully and affects the overall cost of transcoding services. Our work tries to address the
second challenge by introducing a proactive computing resource managment approach
for video transcoding services.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:4 T. Deneke et al.

2.2. Cloud Environment
Cloud computing provides access to large amount of computing resources (e.g. CPU
and storage) in a fully virtualized manner, delivering computing as a utility based on
pay-as-you-go business model. This allows businesses and individuals to access ap-
plications such as video transcoding from anywhere in the world on demand without
being concerned about how and where it is done [Armbrust et al. 2010]. The main
distinguishing features of cloud computing are: 1) scalability where users can request
seemingly unlimited resources 2) abstract interface which are based on WEB 2.0 pro-
tocols that enable easy interaction for users 3) economics of scale where a pool of re-
sources are utilized more efficiently by many users as per demand leading to cost re-
duction 4) dynamic configureability where users are provided with a simple measuring
unit that they can utilize to easily and dynamically reconfigure Cloud resources they
require.

In recent years cloud computing has become attractive for the IT industry. This is
in particular due to its pay as you go business model which allows small start-ups or
private users to gain access to high quality IT infrastructure for a small cost. With
such a business model start-ups and private users will avoid building their own in-
frastructure before they prove the susses of their business model and cloud providers
will benefit from the economics of scale.

Among other applications video transcoding is one application that is utilizing the
benefits of Cloud [Inc 2013c; 2013b; 2016]. Video transcoding is a computationally ex-
pensive process and requires large scale computing infrastructure. At the same time
media content producers and other entities that require transcoding services would be
better off concentrating in creation of original content where their expertise lie than
building and maintaining their own computing infrastructure. Just like these media
content producing companies do not own their electric power plants they now do not
need to own their own datacenters as it has become a utility that can be bought read-
ily online when needed. Currently there are multiple cloud based transcoding service
providers. These transcoding services utilize the cloud infrastructure (IaaS) to provide
their services as Platform as a Service (PaaS) or Software as a Service (SaaS). Vari-
ous research studies are being carried out in the area of large scale video transcoding
in the cloud which will allow efficient management of resources and better usability
[Garcia et al. 2010; Ko et al. 2013; Aparicio-Pardo et al. 2015].

2.3. Machine Learning
Prediction of video transcoding time is important for several reasons. For example, re-
source management algorithms deployed on a large scale transcoding service such as
[Inc 2013a] can utilize this prediction to increase system utilization through proper
load balancing and provisioning. Previous works such as [Guo and Bhuyan 2006] has
proposed to model the prediction problem by characterizing a video using simple and
few features (e.g. size alone). However such models did not account for variability
of video coding algorithms and other factors that make prediction more complex. In
this paper we propose the use of more video characteristics and machine learning for
better accuracy and generality over a range of coding algorithms. Machine learning
techniques are often used as decision making mechanisms for a variety of systems.
Basically, machine learning allows computers to evolve behaviours based on empiri-
cal data, in our case, this is a collection of samples with important video characteris-
tics, transcoding parameter sets and measured transcoding times. This means video
transcoding time is treated as a random variable and is statistically predicted from
past observations. More specifically our proposed method predicts the transcoding time
as a function of several parameters of the input and output video stream.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :5

The fundamental idea behind any regression problem in machine learning algo-
rithms such as SVR and the Neural Net can be summarized as: given a set of t obser-
vations with n features (in our case the input and output bitrate, framerate, codec, etc)
each and a target variable (transcoding time) y as {(x1, y1), (x2, y2), ..., (xt, yt)} where
x ∈ <n, y ∈ < the objective is to find a function (model)

f(x) = 〈ω, x〉+ b = w · x+ b with ω ∈ <n, b ∈ < (1)

with the best fit as in equation 1.

Neural nets The idea of neural networks was first inspired by nervous system
of human beings which consists of a number of simple processing units called neuron.
Each neuron receives some input signals from outside or from other neurons and
processes them with an activation function to produce its output and sends it to other
neurons. These neurons can be understood as a mathematical function that take n
element input vector and scale each data element xi, by a weight wj . The scaled data
is offset by some bias b and put through a differentiable activation function such as
Equation 2. The output of a neuron can be analytically viewed as Equation 1. The
impact of each input is weighted differently from other inputs thus a neuron is able
to interpret the data differently depending on the weight and bias. Consequently the
more is the weight the stronger the connection would be allowing that data point
to influence the output more. The activation function f can be linear or non-linear.
Non-linear activation functions are useful in mapping non-linear relationships. One
such function is called sigmoid which is represented as:

1

1 + exp(−f) (2)

A network of these neurons forms a feed forward multilayer neural networks. These
networks are made of layers of neurons. The first layer is the layer connected to the
input data. After that there could be one or more middle layers called hidden layers.
The last layer is the output layer which shows the results. One of the learning methods
in multilayer perception Neural Networks is the error back propagation in which the
network learns the pattern in data set and justifies the weight of the connections in
the reverse direction with respect to the gradient vector of error function which is
usually the regularized sum of squared error.

Support vector machines treats the regression problem as a convex optimiza-
tion problem:

minimize
1

2
‖ω‖2 (3)

subject to =

{
yi − ‖w, xi‖ − b ≤ ε
‖w, xi‖+ b− yi ≤ ε (4)

Similar to the neural net the SVR allows for non-linear solution through the use of
radial basis function (RBF) kernels which are represented as

exp(− 1

2σ2
‖f‖2) (5)

3. PROACTIVE TRANSCODING SERVICE MANAGEMENT
In this work our main aim is to provide an approach for proactive management of
transcoding services driven by transcoding workload prediction. In order to achieve

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:6 T. Deneke et al.

our goal we first provide a machine learning based approach for predicting transcoding
time of videos from their basic characteristics and their desired transcoding parameter
set. Typically transcoding service providers possess a log about transcoding requests
(i.e. both transcoding parameter sets and the original video). Based on these traces, we
can build a training dataset listing samples containing transcoding parameter set, the
original video (or its fundamental characteristics such as resolution and bitrate) and
measured transcoding time. Using such a dataset a prediction model can be trained
via machine learning algorithms such as neural network and support vector machines
(SVM). Based on the predictions we can then design transcoding service management
components. In our case these components constitute a provisioner, load dispatcher
and admission controller. In the end our system is aimed at providing the opportunity
for transcoding service providers to estimate the transcoding time of requests, and
more intelligently manage their transcoding servers. Figure 3 presents the overview
of our framework.

Manager

Provisioner

Dispatcher

Admission
Controler

{(x1
1...x

n
1 ,y1),

(x1
2...x

n
2 ,y2),

...
(x1

t ...x
n
t ,yt)}

Learning
Algorithm

PredictorRequest
f(x) = 〈ω, x〉+ b = w · x+ b

Fig. 3. System Architecture

3.1. Transcoding workload modelling and Prediction
Transcoding Time Prediction Model. The prediction model used in this work is
depicted in Figure 4. We refer this model as a transcoding time predictor. It takes as
input a video characterization C = {c1, c2, ..., cn} and transcoding parameter sequences
P = {p1, p2, ..., pn}, and it outputs the predicted transcoding time.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :7

Fig. 4. Transcoding time prediction

A general formulation of the transcoding time prediction problem is to construct a
function that takes as input easily extractable characteristics of a video together with
input parameters that specify the characteristics of the output video and generate an
estimated transcoding time of the video on a given platform.

Input Video Characterization. A video can be characterized through a number
of basic characteristics such as bitrate, framerate, codec and resolution. To character-
ize an input video we collect and use all features listed in Table I. This list of video
characteristic features are selected through expert analysis of the problem.

Table I. Video characteristics features

Characteristics Description
Codec Coding standard used
Resolution(W,H) Width and height in pixels
Bitrate Bits processed per second
Framerate Frames per second
Frmaes (I,P,B, Total) Number of frames per type
Size (I,P,B, Total) Size in byte per type

Transcoding Parameters. Transcoding parameters specify the caracterstics of an
output video from a transcoder. Table II shows the list of parameters we used in
our work. This list is obtained through analysis of randomly mined videos from the
YouTube platform [Deneke et al. 2015].

Table II. Transcoding parameter space

Parameter Value
Codec H264, Mpeg4, Vp8, H263
Resolution 144p, 240p, 360p, 480p, 720p, 1080p
Bitrate 56k,109k, 242k, 539k, 820k, 3000k, 5000k
Framerate 12, 15, 24, 25, 29.97

Figure 5 shows the effect of some of the input and output video characteristics listed
in Table I and Table II on the transcoding time of video segments from randomly sam-
pled online YouTube videos. The figure shows the relationship between the dependent
and independent variables under a controlled experiment where only one independent
variable (i.e. predictive feature) is monitored while the rest are kept constant. Even
though the plots show correlation between our independent variables and transcoding
time, the relationship is often non linear. This means we either need to pre-process
(be able to apply a proper transformation) of our predictive features to achieve linear
relationship with our target variable or use a non-linear learning algorithm to build
our prediction models. In this work we choose the later as 1) our main aim is to pre-
dict rather than explain and 2) the number of our predictive features are considerable

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:8 T. Deneke et al.

due to the need to support multiple video coding algorithms [Shmueli 2010; Breiman
2001].

Collecting Transcoding Time. When considering all possible combination of the
transcoding parameters from Table II in constructing valid transcoding parameter se-
quences, we will end up with a set of 840 valid transcoding sequences. However in this
work we only use 90 of the most important and meaningful transcoding sequences. For
example we combined resolution and bitrate parameters in such a way that only the
most appropriate bitrate is used for a given resolution. We then collected the transcod-
ing time obtained for each transcoding sequence on a set of 84 randomly selected 60
second segment of YouTube videos. The resulting training data contains 7560 transcod-
ing measurements (instances).

The characterization of each online video along with a transcoding parameter and
the corresponding measured transcoding time makes up an instance of our training
data. We used Ffmpeg and Ffprobe (version N-73166-g72e98fa) built with gcc 4.7 and
runnning on an Intel i7-3720QM CPU to collect video transcoding time and video char-
acteristics of each video in our training set.

Constructing the Model. Once the training data is constructed, it can be fed to a
learning algorithm that will automatically learn a prediction model. We used support
vector regression (SVR) and multilayer perceptron (MLP) to construct our prediction
models. Support vector machines (SVR) is a supervised machine learning algorithm,
used for regression, which applies linear techniques to non-linear problems. The idea of
SVR is based on the computation of a linear regression function in a high dimensional
feature space where the training data are mapped via a non linear kernel function.
SVRs not only finds a regression function, but it also finds the best function, i.e., mini-
mize the generalized error bound so as to achieve generalized prediction performance.
In our experiments we used LibSVM package from RapidMiner [rap 2012] with ra-
dial basis function (RBF) kernel, γ set to 0.125 and error penalty term C set to 1024.
We found these parameter settings using grid search method [wei Hsu et al. 2010].
MLP (MultiLayer Perceptron) is also a supervised learning algorithm which learns a
model by means of a feed-forward neural network trained through a back propagation
algorithm (i.e. multi-layer perceptron). An artificial neural network (ANN or NN), is
a mathematical model or computational model that is inspired by the structure and
functional aspects of biological neural networks. A neural network consists of a set of
interconnected group of artificial neurons, and it processes information using a con-
nectionist approach to computation. In most cases an NN is an adaptive system that
changes its structure based on external or internal information that flows through the
network during the learning phase. Modern neural networks are usually used to model
complex relationships between inputs and outputs or to find patterns in data. In this
work we used feed-forward neural network trained by a back propagation algorithm
(multi-layer perceptron) from RapidMiner [rap 2012] to model transcoding time of on-
line videos. The training cycle, the learning rate and the momentum are set to 500, 0.3
and 0.2 respectively.

Model on Unseen Video. We train and validate our models using 2/3 of the train-
ing data we have collected and the rest 1/3 portion is left for testing and evaluation of
the models.

3.2. Proactive Provisioning
Due to the variability of individual video transcoding jobs (see Figure 1) and the vari-
able transcoding requests made towards transcoding services (see Figure 6), it is im-
portant to have a mechanism for proactive provisioning of transcoding servers. With-
out such mechanism, video transcoding services would have to resort to a fixed com-
puting capacity which leads to either over-provisioning or under-provisioning of com-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :9

1
4

4

2
4

0

3
6

0

4
8

0

7
2

0

1
0

8
0

30

40

50

60

70

80

90

Resolution [Height pixles]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

 f
lv

 h
2

6
4

 m
p

e
g

4

 v
p

8

0

20

40

60

80

Codec

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

5
6

1
0

9

2
4

2

5
3

9

8
2

0

1
5

0
0

3
0

0
0

20

40

60

80

Bitrate [kbps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

1
2

1
5

2
4

2
5

2
9

30

40

50

60

70

80

Framerate [fps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

(a) Effect of input video characteristics on transcoding time of a set of 80 Youtube video
segments when transcoding using a fixed transcoding parameter set. I.e. transcoding to 3000
kbps, 25 fps, 720p using h264 codec. In this case the transcoding parameters are fixed to show

the effect of each input video characteristics on the total transcoding time

1
4

4

2
4

0

3
6

0

4
8

0

7
2

0

1
0

8
0

0

20

40

60

80

100

Resolution [Height pixles]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

fl
v

h
2

6
4

m
p

e
g

4

v
p

8

0

10

20

30

40

50

60

Codec

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

5
6

1
0

9

2
4

2

5
3

9

8
2

0

3
0

0
0

5
0

0
0

20

40

60

80

100

120

Bitrate [kbps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

1
2

1
5

2
4

2
5

2
9

.9
7

10

20

30

40

50

60

Framerate [fps]

T
ra

n
s
c
o

d
in

g
 T

im
e

 [
s
e

c
]

(b) Effect of transcoding parameters on transcoding time of a set of 80 YouTube video segments.
The effect of each transcoding parameter is shown while keeping the other parameters fixed.
Each box plot corresponds to transcoding time values of the 80 randomly selected YouTube

videos. The set videos is fixed and all transcoding parameters except the controlled parameters
is fixed

Fig. 5. Effect of input video characteristics and transcoding parameters

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:10 T. Deneke et al.

puting resources for a required level of Quality of Service. In this paper we propose a
proactive provisioning approach based on ahead of time transcoding workload predic-
tion. Algorithm 1 shows our approach. It runs periodically and starts by calculating
the number of servers to provision. This number is calculated trough the formula:

(⌈ predLoad(servers)

α ∗ slaWaitingT ime

⌉
− 1

)
∗ len(servers) (6)

where predLoad(servers) is the average predicted load of servers, slaWaitingT ime is
the required system wide average waiting time for transcoding jobs and α is an adjust-
ing parameter that can be used to compensate prediction errors. The average predicted
load of servers for a given period is calculated by summing up workload predictions of
all transcoding tasks assigned to servers and dividing it by the number of servers at
the same period. Such averages from past and current period are then smoothed using
exponential moving average technique. They are used by simple regression model to
predict the average predicted load of the next period, which we use in our formula for
calculating the number of VMs. The formula calculates the number of servers to add
or remove in order to get an average load on each server as close as possible to the
waiting time specified by the SLA of the service. This ensures provisioning the right
amount of servers for the agreed Quality of Services. Note that a negative result from
the formula indicates the number of servers to be removed while a positive number
indicates the number of servers that needed to be added. Since most cloud providers
that host transcoding services charge for their virtual machines on hourly bases, the
provisioning algorithm checks the servers renting time before removal. Servers are
removed only if they are near to the end of their renting time and have no job under
processing. Servers that have running jobs and are near to the end of their renting
time are flagged. A flagged server will not receive any more jobs until it is removed or
become unflagged due to a system load increase, in which case its renting time will be
renewed. Similarly when the system needs to add servers, it will start first by unflag-
ging flagged servers. This allows the servers to receive new jobs and their renting time
to be renewed. Therefore the algorithm provisions new servers only when there are no
flagged servers at disposal.

3.3. Proactive Load Balancing
Requests arriving to transcoding services need to be assigned to a specific transcoding
server for processing. We call this process load dispatching or load balancing. In this
paper we propose a proactive load dispatching algorithm driven by a transcoding time
prediction and is listed in Algorithm 2. The algorithm selects the server to dispatch
the current request to based on the predicted total load of transcoding servers in the
system. Specifically the current request is dispatched to a server with the least load.
However just before the request is dispatched, its load is predicted and is added to the
current load of the server it is being sent [Deneke et al. 2014].

3.4. Proactive Admission Control and SLA
SLA is mainly used to communicate the quality of service to be expected from a given
system. In this work we employ a fixed SLA in terms of average waiting time of
transcoding jobs and provision the required number of servers that satisfy the SLA. In
case the average waiting time used as SLA is defined to be much smaller than the time
it takes to initialize a new server an admission controller is required. This is a typical
case for realtime systems and we will not consider it in this particular work. However
since we predict the system load ahead of time through regression of past and current
average predicted loads, we are able to start provisioning of VMs in advance and avoid
the SLA violations that might occur in case of strict SLA.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :11

ALGORITHM 1: Proactive Provisioning Algorithm
Require: servers

1: toProvision←
(⌈ predLoad(servers)

α∗slaWaitingTime

⌉
− 1
)
∗ len(servers)

2: if !ratecentlyModified() then
3: if toProvision > 0 then
4: for all s in servers do
5: if toProvision == 0 then
6: break
7: end if
8: if isFlagged(s) then
9: unflag(s)
10: toProvision−−
11: end if
12: end for
13: servers.add(provision(toProvision))
14: else
15: for all s in servers do
16: if toProvision == 0 then
17: break
18: end if
19: if isNearEndOfRenting()and!hasJobs() then
20: server.remove(deprovision(s))
21: toProvision++
22: end if
23: end for
24: for all s in servers do
25: if toProvision == 0 then
26: break
27: end if
28: if isNearEndOfRenting() then
29: flag(s)
30: toProvision++
31: end if
32: end for
33: end if
34: end if

ALGORITHM 2: Proactive Load Balancing Algorithm
Require: requests, serverIds, algo
Ensure: serverId = id
1: server ← servers(0)
2: for all req in requests do
3: for all s in servers do
4: if predLoad(s) < predLoad(server) then
5: server ← s
6: end if
7: end for
8: send(req, server)
9: load(req)← predictTranscodingT ime(req, algo)
10: predLoad(server)← predLoad(server) + load(req)
11: end for

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:12 T. Deneke et al.

4. EXPERIMENTAL SETUP AND EVALUATION
4.1. Load Generation
Load of transcoding services is determined by two important variables, service time
distribution of transcoding tasks and the arrival rate of tasks in to the system. Figure
6 shows a scaled down form of a one week request arrival rate pattern for a typical
streaming service where the inter arrival time is 5 seconds [bam 2007]. We scaled the
arrival rate by a factor since streaming requests are often a factor of times more than
transcoding requests of a system. This means a transcoded version of a given video is
often streamed multiple times. We used this request pattern in our experiments in this
work. From the figure we can also note the daily periodicity of the request rate over
the week. The variation in terms of request rates are also apparent over the course
of a day which ranges from 5 requests to 30 requests in a 5 second interval. This can
be explained by the heavy used of streaming services in the evening as compared to
mornings and late nights. Such load variation leads to the need for proper resource
provisioning and utilization.

Fig. 6. 5sec user accesses distribution during the course of a single week.

The service time of transcoding jobs in our experiment is obtained from an experi-
mental data collected and described in Section 3.1.

4.2. Evaluation of Workload Prediction
We train and validate our prediction models using 2/3 of the training data we have col-
lected in Section 3.1. We then evaluated our prediction models using the remaining 1/3
portion of the transcoding time measurement data. Figure 7 shows the correlation be-
tween the prediction and the actual transcoding time based on a neural network and
support vector machine learning algorithms. More specifically it shows the squared

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :13

correlation (predicted vs measured) to be 0.955 for neural network and 0.945 for sup-
port vector machine. Our results also show a root mean absolute error to be 2.382 and
2.62 seconds for neural network and support vector machine respectively.

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

ooo
o o

o

ooo
o o

o

ooo
o o

o

ooo
o o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooo
o o

o

ooo
o o

o

ooo
o o

o

oo
oo

o

o

oo
oo

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

ooooo

o

ooooo

o

oooo
o

o

oooo
o

o

oooo
o

o

ooooo
o

ooooo
o

ooooo

o

ooooo

o

ooooo

o

ooo
o

o

o

oo
oo

o

o

oo
oo

o

o

oo
oo

o

o

oo
oo

o

o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
ooo

o
o

o

o

oo
o

o

o

o

o
o

o
o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooooo

o

oooo
o

o

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

ooooo

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o
o

o

o

o
o

o

o

o

o

oooo
o

o

oooo
o

o

ooo
o
o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

ooooo

o

ooo
oo

o

ooo
o
o

o

oo
oo

o

o

oo
oo

o

o

oo
o
o

o

o

ooooo

o

ooooo

o

oooo
o

o

oooo
o

o

oooo
o

o

ooooo
o

ooooo

o

ooooo

o

ooooo

o

ooooo

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o
o

o

o

o
o

o
o

o

o

o
o

o

o

o

o

ooo
o o

o

ooo
o o

o

ooo
o

o

o

ooo
o

o

o

oo
o o

o

o

oooo o

o

oooo o

o

oooo o

o

oooo o

o

ooo
o o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

ooooo

o

ooooo

o

ooo
o

o

o

ooo
o
o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooooo

o

oooo
o

o

oooo
o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooooo

o

oooo
o

o

ooo
o

o

o

ooo
o
o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

oo
oo

o

o

oo
oo

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

oooo
o

o

ooo
oo

o

ooo
o o

o

ooo
o o

o

ooo
o o

o

ooooo

o

oooo
o

o

oooo
o

o

oooo
o

o

oooo
o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o
o

o

o

o
o

o
o

o

o

o
o

o

o

o

o

ooo
o o

o

ooo
o o

o

ooo
o

o

o

ooo
o

o

o

oo
o o

o

o

oooo o

o

oooo o

o

ooo
o o

o

ooo
o o

o

ooo
o o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

oooo
o

o

oooo
o

o

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

ooooo

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

oooo
o

o

ooo
oo

o

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

ooooo

o

oooo
o

o

oooo
o

o

oooo
o

o

oooo
o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooooo

o

ooo
o
o

o

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

ooooo

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooo
o
o

o

ooo
o
o

o

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

ooooo

o

ooo
oo o

ooo
oo o

ooo
oo o

ooo
o o o

ooo
o o

o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o

ooooo
o
ooo
oo

o

ooo
oo

o

oo
oo

o

o

oo
oo

o

o

oo
oo

o

o

ooooo

o

ooooo

o

ooooo

o

ooooo

o

oooo
o

o

ooooo
o

ooooo
o

ooooo

o

ooooo

o

ooooo

o
oo
oo

o

o
oo
oo o

o

oo
oo

o
o

oo
oo

o o

ooo o

o

o

oooo
o

o

oooo
o

o

oooo

o

o

oooo

o

o

oooo

o
o

oooooooooooooooo
o

o
oooo
o

o
oooo
o

o
oo

o
o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

ooo
o o

o

ooo
o o

o

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

oooo o

o

oooo o

o

oooo o

o

oooo o

o

ooo
o o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooo
o

o

o

ooo
o
o

o

ooo
o

o

o

ooo
o

o

o

oo
o o

o

o

oooo
o

o

ooooo

o

oooo
o

o

oooo
o

o

oooo
o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooo
o o

o

ooo
o o

o

ooo
o

o

o

ooo
o

o

o

oo
o o

o

o

oooo o

o

oooo o

o

oooo o

o

oooo o

o

ooo
o o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

ooooo

o

ooooo

o

ooo
o
o

o

ooo
o
o

o

ooo
o
o

o

ooooo

o

oooo
o

o

ooooo

o

ooooo

o

ooooo

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o
o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooooo

o

ooooo

o

ooo o
o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

ooooo

o

ooooo

o

ooooo

o

ooooo

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

oooo
o

o

ooo
o
o

o

ooo
o

o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

oooo
o

o

oo
o

o

o

o

oo
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

ooo oo

o

ooo
oo

o

oooo
o

o

ooo
o

o

o

ooo
o

o

o

oooo
o

o

oooo
o

o

oooo
o

o

ooooo

o

ooooo

o

0 20 40 60 80

0
20

40
60

80

Mesured Time [sec]

P
re

di
ct

ed
 T

im
e

[s
ec

]

*

*

*

*

*

*

**
*

*

*

*

**
*

*

*

*

**
*

*

*

*

**
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

**
*

*

*

*

**
*

*

*

*

**
*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*** *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*

*

*

*

**

*

**

*

* *

*

* *

*

*

*

*

*

*

**

*

**

*

**

*

**
*

*

*

*

**
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*

*

**

*

**
*
*
*

*

**
*
*
*

*

**
*
*

*

*

**
*
*

*

*

**
*
*

*

*

*

*

**

*

**

*

**

*

*

*

*

*

*

**
*

*

*

*

**
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*** *
*

*

*** *
*

*

*** *
*

*

** * *
*

*

** * *
*

*

** * * *

*

** * * *

*

* * * * *

*

*

*

* *

*

* *

*

* *

*

*

*

**

*

**

*

**

*

**
*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

**

*

*

*

*

*
*

*

*

*

*

*

*

**

*

**

*

**

*

**
*
*

*

*

**
*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*** *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*** *
*

*

*** *
*

*

*** *
*

*

*** *
*

*

*** *
*

*

**
*

*

*

*

**
*

*

*

*

* *
*

*

*

*

**
*

*

*

*

*
*

*

*

*

*

*

*

* *

*

* *

*

* *

*

*

*

**

*

**

*

**

*

* *
*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

**

*

* *
*

*

*

*

**
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

**

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

**

*

* *
*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*
**

*

**
*
**

*

**
*
*
*

*

**
*
*
*

*

**
*
*
*

*

**

*

**

*

**

*

**

*

**

*

*

*

*

*

*

**** *
*

**** *
*

*** * *
*

*** * *
*

*** * *
*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

**
*

*

*

*

* *
*

*

*

*

* *
*

*

*

*

* *
*

*

*

*

*** *
*

*

*** *
*

*

*

*

*

*

*

*

*

*

*

*** *
*

*

*** *
*

*

*** *
*

*

*** *
*

*

*** *
*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

* *

*

*
*

*

**
*

*

*

*

**
*

*

*

*

**
*

*

*

*

**

*

**

*

*
*

*

*
*

*

*
*

*

* *
*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*** *
*

*

*** *
*

*

*** *
*

*

*** *
*

*

*** *
*

*

**
*

*

*

*

**
*

*

*

*

* *
*

*

*

*

* *
*

*

*

*

* *
*

*

*

*

*

*

**

*

**

*

**

*

*

*

**

*

**

*

**

*

**
*

*

*

*

**
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

**

*

*
*

*

*

*

*

*

*

*

*

*

**

*

**

*

**

*

* *
*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

**

*

**

*

* **
*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

**

*

o

*
nn: R−squared = 0.955 RMSE = 2.382
svm: R−squared = 0.945 RMSE = 2.62

Fig. 7. Prediction Performance

4.3. Evaluation of Proactive Provisioning
To evaluate our proactive provisioning and load balancing schemes, we simulate their
VM provisioning and job waiting time performances using CloudSim [Calheiros et al.
2011]. Under our CloudSim simulation environment, we deploy nodes and specify CPU
and virtual machine characteristics according to the machine we used for transcoding
time data collection (Intel i7-3720QM) in Section 3.1. Figure 8 shows the transcoding
server provisioning results for 1 minute interval based on the proactive provisioning
Algorithm 1 while using the neural net or support vector machine algorithms for pre-
diction of transcoding time of tasks. The performance of the provisioning algorithm is
mostly similar when using either of the two algorithms for task workload prediction.
This result can also be attributed to the similar workload prediction performance of
the two algorithms shown in Figure 7.

Note that without such proactive VM provisioning, we would need to provision based
on the worst case scenario which leads to over provisioning most of the time. In our
experiment the number of VM hours saved when using proactive provisioning rather

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:14 T. Deneke et al.

0 2000 4000 6000 8000

0
5

10
15

20
25

30

Time[1min Interval]

N
um

be
r

of
 V

M
s

nn
svm

Fig. 8. Proactive VM provisioning

than fixed worst case based provisioning was 3941 hours (86%) over the course of a
week.

4.4. Evaluation of Proactive Load Balancing
Figure 9 shows the effect of load balancing on proactive provisioning of VMs. Provi-
sioning VMs using our proactive approach results in the right amount of VMs for the
required SLA in terms of waiting time. This also insures that all servers are always
loaded with tasks requiring a CPU time equivalent to the average waiting time de-
fined in the SLA. In such a case, where all VMs are loaded all the time, the type of
load balancing used has limited effect on the number of VMs provisioned. Figure 9
also shows this fact, where the use of queue length as well as predicted queue load
based on neural network for load balancing as in Algorithm 2 results in similar VMs
provisioning except in certain pick load conditions where being proactive is better. In
our experiment the number of saved VM hours when using proactive load balancing
rather than queue length was 51 hours (8%) over the course of a week.

4.5. Evaluation of Proactive Admission Control and SLA
Figure 10 shows the average of the actual waiting time of jobs over 1 minute interval
along with the service level agreement. From the Figure we can note that almost all
jobs have respected the SLA set in terms of their average waiting time.

5. RELATED WORK
Among others our work is related to video transcoding workload prediction and proac-
tive management of computing resources. In this section we briefly summarize the
related works on each.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :15

0 2000 4000 6000 8000

0
5

10
15

20
25

30

Time[1min Interval]

N
um

be
r

of
 V

M
s

nn
qlen

Fig. 9. Comparison of Load Balancing Algorithms

0 2000 4000 6000 8000

0
50

10
0

15
0

20
0

Time[1min Interval]

W
ai

tin
g

 T

im
e[

se
c]

actual waiting time
SLA

Fig. 10. SLA and actual waiting time of Jobs

5.1. Transcoding workload prediction
Several workload prediction models for video processing applications have been pro-
posed in the literature. The existing models can be classified into two categories: mod-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:16 T. Deneke et al.

els based on history and models relaying on information extracted from the video bit-
stream. In the history based methods the workload of the current work item (e.g. a
frame) is predicted as weighted average of previous work items [Choi et al. 2002;
Bavier et al. 1998; Guo and Bhuyan 2006; Jokhio et al. 2013]. However due to the
large variability in video processing workload of consecutive work items, the history-
based models often suffer in terms of accuracy. Consequently research in this area fo-
cus on improving prediction accuracy. On the other hand models based on information
extracted from video bitstream predict future workload based on models constructed
from predictive features obtainable from the bitstream [Mattavelli and Brunetton
1998; Huang et al. 2005; Huang et al. 2007; Roitzsch and Pohlack 2006]. These models
often tend to be more accurate but incur more overhead due the time required for video
bitstream parsing. Research in this area thus mostly focus on finding less expensive
yet predictive features.

In [Choi et al. 2002] the decoding time of current frame is predicted based on a
moving-average over past frames of a similar type. This means that decoding time
prediction of I, P and B are done separately. The resulting prediction is then used for
scaling the processor voltage and frequency in order to provision the proper amount of
computing power required to decode a frame.

[Bavier et al. 1998] proposed a model which can predict video decoding workload at
frame and network packet level. They utilized linear regression analysis in order to
gain insight on relationship between MPEG bitstream components and decoding time
of a frame or a packet. Their frame level predictor uses running average of past frames
of similar type while taking in to account the byte length of the frames. Similarly their
packet level predictor uses a running average of past frames of similar type taking in to
account the number of blocks of the packets. Their prediction approach is designed to
be computationally cheap and usable for real-time multimedia application scheduling.

[Guo and Bhuyan 2006] determined the necessity of predicting the CPU load of
transcoding tasks in order to schedule them on a cluster of computing nodes. They,
therefore, proposed an online prediction algorithm that can dynamically predict the
processing time of video segments (GOPs). Their predictor is a linear model where its
slope is incrementally approximated according to the difference between accumulated
regional and global means of GOP transcoding times and sizes.

[Huang et al. 2005] proposed a workload prediction technique for video decoding
which is based on an offline bitstream analysis of a video. The predictions are then
used to insert metadata information, a sequence of frequency values, with which the
processor needs to run while decoding various segment of the video. The ultimate goal
of their work is saving energy while decoding video streams. In a later work [Huang
et al. 2007] further proposed a new workload-scalable transcoding scheme which con-
verts a pre-recorded video bitstream into a new video bitstream that satisfies a given
playback device workload constraint, while keeping the transcoding distortion mini-
mal as measured in terms of their proposed compressed domain distortion measure, a
function of frames per second and bits per frame.

[Roitzsch and Pohlack 2006] presented the design and implementation of per-frame
decoding time prediction method for MPEG based video decoders. In order to find use-
ful prediction metrics, they divided the decoding process in to logical steps and estab-
lished metrics from the video bitstream that are useful to get reasonable execution
time estimates for each step. They then modeled the prediction problem as linear least
square problem and solved the model coefficients using a training dataset collected
over test video sequences.

Most of the related works in the area of multimedia workload modelling and pre-
diction focus on one coding algorithm and use only a brief set of videos to train their
prediction models. Our transcoding workload modeling and prediction is designed to

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :17

work across multiple coding algorithms. It is also modeled based on our video dataset
having a realistic distribution of online video characteristics.

5.2. Proactive Transcoding Resource Management
Most of the research work in proactive management of computing resources for video
transcoding applications and services focus on such things as loadbalancing, provision-
ing and task migration. These works are based on and mostly follow from workload
modelling and prediction works presented in subsection 5.1.

[Choi et al. 2002] used a moving average based frame decoding workload pre-
diction for scaling the processor voltage and frequency so that they provision the
proper amount of computing power required to decode a frame. In [Jokhio et al. 2013]
prediction-based dynamic resource allocation algorithm to scale video transcoding ser-
vice on a given Infrastructure as a Service cloud were discussed. The proposed algo-
rithm provides mechanisms for allocation and deallocation of virtual machines based
on a regression model that tracks and predicts the aggregate target transcoding rate
required by the service. In [Huang et al. 2005] and [Huang et al. 2007] the authors
applied frequency scaling for proper provisioning of computing resources for decoding
and transcoding applications. The frequency value at which the processor should run
at specific times during the video play back or transcoding is inserted in to the video
bitstream.

In [Guo and Bhuyan 2006] the authors proposed a loadbalncing scheme based on
prediction of video transcoding workload at GOP level. Their main aim was to min-
imize the total processing time while maintaining the order of media units for each
outgoing stream. In their work they designed and evaluated algorithms such as First
Fit (FF) and Adoptive Load sharing (ALS). [Kuang et al. 2010] proposed and evalu-
ated a power-efficient and traffic aware transcoding system for multicore servers. The
approach manages computing resources by adjusting processor operating levels that
match the incoming traffic rate. More specifically their approach is capable of configur-
ing the number of active cores and core frequency on-the-fly according to the varying
traffic rate.

In our work we used transcoding workload prediction models that relay on informa-
tion extracted from the bitstream as the variability of the workload across a sequence
of frames is high. Based on these prediction models we then show how it is possible to
efficiently manage computing resources. We demonstrate our idea through evaluation
of a proactive loaadbalancing approach.

5.3. video characterization
There has been significant research on understanding the workloads of new genera-
tion video servers. These researches especially focus on the social aspect of videos and
traffic characterization such as popularity, active life span, user access pattern, growth
pattern, request patterns, etc.

Yu et al. [Yu et al. 2006] study user behaviour, content access pattern and their
implications on the design of large-scale video-on-demand systems. Possible improve-
ments on UGC design were proposed by Cha et al. [Cha et al.] after studying YouTube
and Daum, a popular UGC in Korea. After tracking YouTube transactions from a net-
work edge, Gill et al. [Gill et al.] have tried to understand video access characteristics
and discuss the implications of their observation on key concepts such as caching. The
caching problem in YouTube has been further studied by Zink et al. [Zink et al. 2008].
The social networking among videos was studied in the works of Halvey et al. [Halvey
and Keane] and Mislove et al. [Mislove et al. 2007].

In this work we will reuse the traffic model from [Yu et al. 2006] to drive our exper-
iments but further focus on collecting the missing statistics on video characteristics

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:18 T. Deneke et al.

such as video length, size, bitrate, frame rate, codec type, resolution and etc that will
be useful in our experiments.

6. CONCLUSION
The main focus of this work was the different research issues related to proactive man-
agement of transcoding services. First we showed how one can construct a transcoding
workload prediction model based on past transcoding measurements, a set of easily
extractable input video features and a set of transcoding parameters. Based on our
prediction models, we then designed proactive computing resource management algo-
rithms which mainly include provisioning and load balancing. The provisioning algo-
rithm enables transcoding services to always maintain just the right number of VMs
that are needed to maintain the required quality of service defined in terms of average
waiting time of jobs. The load balancing algorithm is useful to get beter performance
of the system in terms of worst waiting time of jobs. In our experiments, we have used
real-world data and designed the simulation scenario imitating real world Internet
transactions. Our proactive provisioning and load balancing algorithms showed a sig-
nificant improvement over the traditional methods in terms of number of VMs used
and worst case waiting time of jobs.

REFERENCES
2007. Bambuser. Online. (Sept. 2007). http://bambuser.com/
2012. RapidMiner. Online. (April 2012). http://rapid-i.com/content/view/181/190/
Ramon Aparicio-Pardo, Karine Pires, Alberto Blanc, and Gwendal Simon. 2015. Transcoding Live Adaptive

Video Streams at a Massive Scale in the Cloud. In Proceedings of the 6th ACM Multimedia Systems Con-
ference (MMSys ’15). ACM, New York, NY, USA, 49–60. DOI:http://dx.doi.org/10.1145/2713168.2713177

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei”i Zaharia. 2010. A View of Cloud Computing.
Commun. ACM 53, 4 (April 2010), 50–58. DOI:http://dx.doi.org/10.1145/1721654.1721672

Andy C. Bavier, A. Brady Montz, and Larry L. Peterson. 1998. Predicting MPEG Execution Times. In Pro-
ceedings of the 1998 ACM SIGMETRICS Joint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’98/PERFORMANCE ’98). ACM, New York, NY, USA, 131–140.
DOI:http://dx.doi.org/10.1145/277851.277892

Leo Breiman. 2001. Statistical modeling: The two cultures. Statist. Sci. (2001).
Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, De Rose ;sar A. F, and Rajkumar Buyya. 2011.

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms. Softw. Pract. Exper. (2011).

Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. I tube, you tube, every-
body tubes: analyzing the world’s largest user generated content video system (IMC ’07). San Diego,
California, USA.

S. F. Chang and A. Vetro. 2005. Video Adaptation: Concepts, Technologies, and Open Issues. Proceedings of
IEEE (Jan. 2005). http://dx.doi.org/10.1109/JPROC.2004.839600

Kihwan Choi, K. Dantu, Wei-Chung Cheng, and M. Pedram. 2002. Frame-based dynamic voltage and fre-
quency scaling for a MPEG decoder. In Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM Inter-
national Conference on. 732–737. DOI:http://dx.doi.org/10.1109/ICCAD.2002.1167613

T. Deneke, H. Haile, S. Lafond, and J. Lilius. 2014. Video transcoding time prediction for proactive
load balancing. In 2014 IEEE International Conference on Multimedia and Expo (ICME). 1–6.
DOI:http://dx.doi.org/10.1109/ICME.2014.6890256

T. Deneke, S. Lafond, and J. Lilius. 2015. Analysis and Transcoding Time Prediction of On-
line Videos. In 2015 IEEE International Symposium on Multimedia (ISM). 319–322.
DOI:http://dx.doi.org/10.1109/ISM.2015.100

Adriana Garcia, Hari Kalva, and Borko Furht. 2010. A Study of Transcoding on Cloud En-
vironments for Video Content Delivery. In Proceedings of the 2010 ACM Multimedia Work-
shop on Mobile Cloud Media Computing (MCMC ’10). ACM, New York, NY, USA, 13–18.
DOI:http://dx.doi.org/10.1145/1877953.1877959

Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube traffic characterization: a view
from the edge (IMC ’07). San Diego, California, USA.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Proactive Management of Video Transcoding Services :19

Jiani Guo and Laxmi Narayan Bhuyan. 2006. Load Balancing in a Cluster-Based Web Server for
Multimedia Applications. IEEE Trans. Parallel Distrib. Syst. 17, 11 (Nov. 2006), 1321–1334.
DOI:http://dx.doi.org/10.1109/TPDS.2006.159

Martin J. Halvey and Mark T. Keane. Exploring social dynamics in online media sharing (WWW ’07). Banff,
Alberta, Canada.

Mor Harchol-balter. 1999. The Effect of Heavy-Tailed Job Size Distributions on Computer System Design.
In In Proc. of ASA-IMS Conf. on Applications of Heavy Tailed Distributions in Economics.

Yicheng Huang, Samarjit Chakraborty, and Ye Wang. 2005. Using Offline Bitstream Analysis for
Power-aware Video Decoding in Portable Devices. In Proceedings of the 13th Annual ACM In-
ternational Conference on Multimedia (MULTIMEDIA ’05). ACM, New York, NY, USA, 299–302.
DOI:http://dx.doi.org/10.1145/1101149.1101209

Yicheng Huang, An Vu Tran, and Ye Wang. 2007. A Workload Prediction Model for Decoding
Mpeg Video and Its Application to Workload-scalable Transcoding. In Proceedings of the 15th
ACM International Conference on Multimedia (MM ’07). ACM, New York, NY, USA, 952–961.
DOI:http://dx.doi.org/10.1145/1291233.1291443

Amazon Inc. 2013a. Amazon EC2 Instance Types. (Aug. 2013). http://aws.amazon.com/ec2/instance-types/
Amazon Inc. 2013b. Amazon Elastic Transcoder. (Aug. 2013). http://aws.amazon.com/elastictranscoder/
Bitmovin Inc. 2016. Bitmovin Cloud Encoding. (May 2016). https://bitmovin.com/encoding/
Zencoder Inc. 2013c. Zencoder Cloud Transcoder. (Aug. 2013). http://zencoder.com/en/
Fareed Ahmed Jokhio, Adnan Ashraf, Sebastien Lafond, Ivan Porres, and Johan Lilius. 2013. Prediction-

Based Dynamic Resource Allocation for Video Transcoding in Cloud Computing. In PDP, 2013.
Seungcheol Ko, Seongsoo Park, and Hwansoo Han. 2013. Design Analysis for Real-time Video Transcoding

on Cloud Systems. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC
’13). ACM, New York, NY, USA, 1610–1615. DOI:http://dx.doi.org/10.1145/2480362.2480663

J. Kuang, D. Guo, and L. Bhuyan. 2010. Power optimization for multimedia transcoding on multicore servers.
In Architectures for Networking and Communications Systems (ANCS), 2010 ACM/IEEE Symposium
on. 1–2.

Zhenhua Li, Yan Huang, Gang Liu, Fuchen Wang, Zhi-Li Zhang, and Yafei Dai. 2012. Cloud Transcoder:
Bridging the Format and Resolution Gap between Internet Videos and Mobile Devices. In 22nd ACM
Workshop on Network and Operating Systems Support for Digital Audio and Video.

Marco Mattavelli and Sylvain Brunetton. 1998. Real-time constraints and prediction of video de-
coding time for multimedia systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 425–438.
DOI:http://dx.doi.org/10.1007/3-540-64594-2 113

Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhattachar-
jee. 2007. Measurement and analysis of online social networks. In Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement (IMC ’07). ACM, New York, NY, USA, 2942.
DOI:http://dx.doi.org/10.1145/1298306.1298311

M. Roitzsch and M. Pohlack. 2006. Principles for the Prediction of Video Decoding Times Applied to MPEG-
1/2 and MPEG-4 Part 2 Video. In Real-Time Systems Symposium, 2006. RTSS ’06. 27th IEEE Interna-
tional. 271–280. DOI:http://dx.doi.org/10.1109/RTSS.2006.36

Galit Shmueli. 2010. To Explain or to Predict? Statist. Sci. 25, 3 (08 2010), 289–310.
DOI:http://dx.doi.org/10.1214/10-STS330

I. Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. MultiMedia,
IEEE 18, 4 (April 2011), 62–67. DOI:http://dx.doi.org/10.1109/MMUL.2011.71

Thomas Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP –: Standards and Design Principles.
In Proceedings of the Second Annual ACM Conference on Multimedia Systems (MMSys ’11). ACM, New
York, NY, USA, 133–144. DOI:http://dx.doi.org/10.1145/1943552.1943572

Laura Toni, Ramon Aparicio-Pardo, Gwendal Simon, Alberto Blanc, and Pascal Frossard. 2014.
Optimal Set of Video Representations in Adaptive Streaming. In Proceedings of the 5th
ACM Multimedia Systems Conference (MMSys ’14). ACM, New York, NY, USA, 271–282.
DOI:http://dx.doi.org/10.1145/2557642.2557652

A. Vetro, C. Christopoulos, and H. Sun. 2003. Video transcoding architectures and techniques: An overview.
In Signal Processing Magazine, IEEE. 1829.

Chih wei Hsu, Chih chung Chang, and Chih jen Lin. 2010. A practical guide to support vector classification.
(2010).

J. Xin, C.-W. Lin, and M.-T. Sun. 2005. Digital Video Transcoding. Proc. IEEE (Jan. 2005).
DOI:http://dx.doi.org/10.1109/JPROC.2004.839620

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

:20 T. Deneke et al.

Hongliang Yu, Dongdong Zheng, Ben Y. Zhao, and Weimin Zheng. 2006. Understanding user behavior in
large-scale video-on-demand systems. SIGOPS Oper. Syst. Rev. (April 2006).

Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose. 2008. Watch global, cache local: YouTube network
traffic at a campus network - measurements and implications. Technical Report.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. , No. , Article , Submission date: 2016.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type
210. Mika Murtojärvi, Efficient Algorithms for Coastal Geographic Problems
211. Sami Mäkelä, Cohesion Metrics for Improving Software Quality
212. Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
213. Jetro Vesti, Rich Words and Balanced Words
214. Jarkko Peltomäki, Privileged Words and Sturmian Words
215. Fahimeh Farahnakian, Energy and Performance Management of Virtual

Machines: Provisioning, Placement and Consolidation
216. Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets
217. Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
218. Stefan Grönroos, Efficient and Low-Cost Software Defined Radio on Commodity
 Hardware
219. Noora Nieminen, Garbling Schemes and Applications
220. Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
 Design Thinking Methods
221. Johannes Holvitie, Technical Debt in Software Development – Examining
 Premises and Overcoming Implementation for Efficient Management
222. Tewodros Deneke, Proactive Management of Video Transcoding Services

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3536-8
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

Tew
odros D

eneke

Tew
odros D

eneke
Proactive M

anagem
ent of V

ideo Transcoding S
ervices

Proactive M
anagem

ent of V
ideo Transcoding S

ervices

