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Abstract 

Mesoporous silica nanoparticles (MSNs) have attracted substantial attention for their 

application in drug delivery and biomedicine. MSNs have been established as a promising and 

novel drug delivery vehicle due to their unique structural properties, such as high surface area, 

large pore volume, tunable pore diameter, and narrow pore size distribution. Furthermore, 

they provide the possibility to include various surface functions and are biocompatible. 

For efficient drug delivery using mesoporous silica nanocarriers, their physicochemical 

characteristics should be controlled to predict their behavior under physiological conditions. 

The surface function on the particles determines their fate in the physiological environment. 

Further, the surface functionalization needs to be tailored according to the cargo molecule to 

be delivered. In this thesis, various surface functionalization strategies of MSNs employing 

different polymers and lipids were utilized to fabricate novel drug delivery nanocarriers for 

hydrophobic and hydrophilic drugs, in order to improve the efficacy of poorly aqueous 

soluble drugs and to achieve sustained or triggered drug release. Adequate surface 

functionalizations provide colloidal stability and reduce protein adsorption on the particle 

surface. By the application of zwitterionic coating on the MSN surface, protein adsorption on 

the particle surface can be diminished. 

For intravenous delivery, first passive targeting (extravasation) of nanoparticles at the tumor 

site is required and then active targeting to cancer cells using small molecular targeting 

ligands can be achieved, which provides the advantage of lowering the dose and reducing the 

side effects imparted on healthy cells. In this thesis, MSNs were designed for active cellular 

targeting using glucose and folic acid as targeting ligands, and further loaded with anticancer 

drug molecules. Therapeutic efficacy of the drug molecules were significantly improved using 

MSNs compared to free drug in vitro and in vivo. 

For oral drug delivery, the drug molecule should be protected from degradation in the 

gastrointestinal (GI) tract and permeability through the mucus layer needed to be improved. In 

this thesis, MSNs were functionalized by polymeric surface grafts, which has facilitated drug 

transport through the mucosal barrier and enhanced intestinal cellular internalization. Drug 

targeting in different parts of the intestine could be tuned by surface modifications, and 

polyethylene glycosylation (PEGylation) of nanoparticles in combination with polyethylene 

imine (PEI) as particle surface coating enhanced the internalization of MSNs into intestinal 

epithelial cells. 



 

 
 

For the delivery of hydrophilic anticancer molecules after intravenous administration requires 

protection from non-specific uptake in healthy cells. In this thesis, hydrophilic molecules 

were loaded in MSNs, which were further coated with lipid bilayer for intracellular drug 

delivery. MSNs provided delivery to cancer cells without any observed toxicity to normal 

cells in vivo. 

The thesis reports the importance of a) surface modification needed with respect to the 

properties of the cargo molecules, and b) appropriate evaluation of biophysicochemical 

interactions of nanocarriers for their future drug delivery applications. This knowledge can 

facilitate the development of nanomedicines with desired properties for cancer therapy with 

reduced side effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Sammanfattning 

Mesoporösa kiseldioxid nanopartiklar (MSN) har etablerat sig som lovande läkemedelsbärare 

på grund av sina unika strukturella egenskaper, såsom stor ytarea och porvolym, justerbar 

pordiameter och snäv porstorleksfördelning. Dessutom är de biokompatibla, bionedbrytbara 

och kan flexibelt ytfunktionaliseras. 

För effektiv användning av MSN partiklar som läkemedelsbärare måste deras fysikalisk-

kemiska egenskaper vara välkontrollerade, för att kunna förutspå deras beteende under 

fysiologiska förhållanden. Partikelns ytfunktionalitet bestämmer dess öde i den fysiologiska 

miljön. Dessutom skall funktionaliseringen av partikelytan anpassas till den 

läkemedelsmolekyl som skall transporteras. I denna avhandling har olika 

ytfunktionaliseringsstrategier, som utnyttjar polymerer och lipider, använts för att tillverka 

nya nanoformuleringar för både hydrofoba och hydrofila läkemedelsmolekyler. Detta har 

gjorts i syfte att förbättra effektiviteten hos svårlösliga molekyler, och för att uppnå en jämn 

och kontrollerbar läkemedelsfrisättning. För vattenlösliga molekyler måste MSN partiklarna 

ytterligare beläggas med  ett lipiddubbelskikt, vilken fungerar som en ogenomsläpplig barriär 

för molekylerna under transporten, för att möjliggöra intracellulär läkemedelstillförsel. 

Lämplig ytfunktionalisering ger därutöver kolloidal stabilitet och minskar proteinadsorptionen 

på partikelytan. Genom att funktionalisera en zwitterjonisk beläggning på MSN partikelns yta 

kan proteinadsorptionen på partikelytan minskas.  

Vid intravenös tillförsel måste nanopartiklarna föst passivt föras till tumörområdet varefter det 

går att aktivt styra partiklarna till cancercellerna med hjälp av småmolekylära målsökande 

ligander. Detta ger fördelen att dosen kan minskas, och samtidigt minskar biverkningarna på 

de friska cellerna. I denna avhandling har MSN partiklar designats för aktiv cellulär styrning 

med hjälp av glukos och folsyra som målsökande ligander. Partiklarna fylldes därefter med 

anticancerläkemedel. Jämfört med fritt läkemedel, förbättrades den terapeutiska effekten av 

läkemedelsmolekylerna genom användning av MSN som bärarmaterial.  

För oral medicinering bör läkemedelsmolekylen skyddas från nedbrytning i mag-tarmkanalen. 

Samtidigt måste permeabiliteten genom slemhinnan förbättras. I denna avhandling har MSN 

partiklar funktionaliserats med hjälp av polymera ytbeläggningar, vilket har möjliggjort 

transport av läkemedlet genom slemhinnan och förbättrat upptaget i tarmcellerna. Läkemedlet 

kunde målstyras till olika delar av tarmen genom att modifiera partikelytan. 

Ytfunktionalisering med polyetylenglykol (PEGylering) av nanopartiklarna i kombination 



 

 
 

med användning av polyetylenimin (PEI) som ytbeläggning på partiklarna förbättrade 

upptaget av MSN i epitelcellerna i tarmen.  

Avhandlingen poängterar vikten av a) ytmodifieringen som måste anpassas till egenskaperna 

hos den läkemedelsmolekyl som skall transporteras och b) en noggrann undersökning av 

nanobärarnas fysikalisk-kemiska egenskaper och hur dessa växelverkar med biologiska 

system vid evaluering av deras användningspotential som läkemedelsbärare. Denna kunskap 

kan underlätta utvecklingen av nanoläkemedel, som har önskade egenskaper för cancerterapi 

och därmed även leder till mindre biverkningar. 
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1. Introduction 

Drug delivery systems have been designed to improve the pharmacological properties of drug 

molecules by modifying their pharmacokinetic profile and bio-distribution.
1
 The unfavorable 

physicochemical properties of many drug compounds affect their bioavailability and 

consequently the efficacy of the treatment. For example, for oral administration of poorly 

water- soluble drugs, the dissolution rate may be slower than the GI transit time, which results 

in therapeutically unacceptable bioavailability. Intravenous administration of poorly water-

soluble drugs is more complex, requiring the application of organic solvents to dissolve them 

prior to their administration. Delivery of peptides, proteins or other macromolecules suffers 

due to their degradation in the biological fluids, losing their therapeutic activity. Delivery of 

the chemotherapeutic agents faces additional challenge due to non-specificity, leading to 

deleterious off-target side effects and low therapeutic efficacy. For these reasons, drug 

delivery systems have been extensively used as tools for nanomedicine in the treatment of 

various ailments.
2
 

Nanomedicine is the application of nanotechnology to medicine for the prevention, diagnosis 

and treatment of diseases, for better understanding the complex underlying pathophysiology 

of diseases, and for improving the quality of life of patients. It is the most dynamic research 

area of nanotechnology.
3
 The nanoscale material’s physicochemical properties such as 

melting point, magnetic property, electrical conductivity, chemical reactivity change 

significantly from those at a larger scale due to their small size, which provides a larger 

surface area to interact with surrounding biological environments and hold pledge in the 

clinical field. The possibilities of various modifications in structure, surface properties and 

affinity ligand choices for nanoparticle systems provides useful advantages for drug delivery, 

imaging, and targeting in biological systems. 

There are a few nanomedicines that have been approved by the US Food and Drug 

Administration (FDA) for clinical applications, such as Doxil®, Abraxane®, Lipoplatin, and 

Marqibo®. However, there are several key barriers blocking the clinical translation of 

laboratory-developed nanomedicines,
4
 which include encapsulation of sufficient therapeutic 

agents with an activated release, delivery of the nanocarriers efficiently to the desired location 

in the framework of multiple in vivo physiological barriers, toxicity of the engineered 

nanomaterials, and scalable and cost-effective fabrication of well-dispersed nanocarriers. 

Great efforts are directed towards the development of new biocompatible and biodegradable 
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inorganic nanomaterials, which in turn, offer great versatility for the development of 

advanced drug delivery systems.  

Among inorganic nanomaterials, amorphous silica nanoparticles have unique adsorption 

capacity, low density, and biocompatibility, which make them potential candidates for various 

biomedical applications.
5
 Fumed silica (Aerosil®) has been widely employed in 

pharmaceutical formulations, cosmetics, and food products as an excipient and it is ‘generally 

recognized as safe’ by the US Food and Drug Administration (US FDA).
6
 Further, silica 

nanoparticles ‘Cornell Dots’ have received FDA safety approval for human clinical Phase I 

trials for targeted molecular imaging of cancer, and therefore, have become most promising 

inorganic nanomaterials for biomedical application.
7
 

Amongst silica materials, mesoporous silica nanoparticles (MSNs) offer numerous unique and 

expedient structural properties, such as high surface area (> 700 m
2
/g), large pore volume 

(>1cm
3
/g), tunable pore diameter (2 - 10 nm), stable mesostructure, modular morphology 

(sizes and shape) and three different functional domains (silica framework, exterior particle 

surface, and interior pore surfaces). The high surface area and pore volume are mostly 

beneficial for high drug loading. The loaded therapeutic agents, such as small molecules, 

enzymes, peptides, and oligonucleotides, can be efficiently protected in the mesopores from 

undesired degradation in harsh environments, such as stomach and intestine, before reaching 

the designated target.
8,9

 Further, the release of drug molecules from the highly ordered 

mesoporous structure can be fine-tuned to provide therapeutic local concentration at the 

targeted area, thus reducing the overall dose required for the treatment. The loading of guest 

molecules to MSNs can be done without adsorption of organic solvent molecules in 

mesopores that are often toxic to normal cells. Additionally, the external surface of MSNs can 

be functionalized with gated molecules for on-command drug delivery.
10

 

Mesoporous silica nanoparticles have increased application in the field of nanomedicine 

including drug delivery, targeting and diagnosis, due to their modular design characteristics. 

In this thesis, physicochemical characteristics of mesoporous silica nanoparticles have been 

modulated, evaluated and subsequently its potential in drug delivery application has been 

validated. 



Review of the literature 

3 
 

2. Review of the literature 

2.1. Nanopharmaceuticals 

Nanotechnology is an emerging multidisciplinary field based on the engineering of functional 

systems at the molecular scale. The convergence of nanotechnology and medicine has led to 

the interdisciplinary field of nanomedicine.
11

 Nanomedicine is the application of science and 

technology for diagnosing, treating and preventing disease and traumatic injury, for relieving 

pain, and for preserving and improving human health, using molecular tools and molecular 

knowledge of the human body.
3
 Nanopharmaceuticals include nanomaterials for delivery of 

drug molecules. Nanopharmaceuticals have been described as pharmaceuticals engineered on 

the nanoscale, i.e., pharmaceuticals where the nanomaterial plays the pivotal therapeutic role 

or adds additional functionality to the previous compound.
12

 

The highest causes of mortality in Europe are cardiovascular disease and cancer.
13

 According 

to the World Health Organization (WHO), there will be 15 million new cases of cancer 

worldwide in 2020. The main reason for an increase in the number of cancer deaths is the lack 

of selective delivery of anticancer compounds to cancer tissue, and further high systemic 

exposure of anticancer agents leads to dose-related toxicity and resistance to therapeutic 

agents. Hence, delivery of anticancer agents at the target site is required in order to overcome 

current limitations in cancer therapy. Nanomedicine is expected to contribute significantly to 

overcoming these limitations in cancer therapy and improving drug delivery, and thereby 

increasing efficacy while decreasing the side effects of anticancer drugs.
14

 A number of 

liposomal, polymeric, and inorganic nanomaterials based nanopharmaceuticals are currently 

undergoing clinical trials or have been clinically approved (Table 1). These therapeutic agents 

have reduced the adverse side effects associated with non-specific organ uptake of 

chemotherapeutic agents. 

For the cancer therapy, ideal features of nanopharmaceuticals include: (a) enhanced drug 

accumulation at the target site, (b) offering a high drug loading capacity and ability to 

efficiently carry poorly soluble drugs, (c) extended circulation or residence time, (d) 

controlled drug release profiles, (e) providing protection of drugs against enzymatic or 

hydrolytic degradation in the body, (f) minimum non-specific cellular and blood-protein 

binding properties, (g) biocompatibility and biodegradability, (h) long-term physical and 

chemical stability, and (i) ease of consistent, reproducible synthesis.
15

 To attain those 

properties, the fabrication design of nanoparticles should be chosen properly, and their 
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physicochemical properties must be thoroughly evaluated. 

Table. 1 Summary of cancer nanomedicines approved and undergoing clinical trial
16

 

Nanoparticle Name Cancer Target Status Reference 

Liposome Doxil Sarcoma Approved  

Liposome Lerafaon General Phase I NCT00024648 

Liposome Marqibo Leukemia Approved  

Liposome Lipoplatin Pacreatic/Head 

and Neck/breast 

Malignant pleural 

effusion 

Approved 

 

Phase I 

 

 

NCT02702700 

Liposome Onivyde Pancreatic Approved  

Liposome Myocet Breast Approved  

Albumin Abraxane General Approved  

Polymeric micelle NC-6004 Pancreatic Phase III NCT02043288 

Polymeric micelle Genexol-PM Metastatic Breast Approved  

Polymeric micelle Paclical Ovarian Phase III NCT00989131 

Carbon 

nanoparticle 

CH40 Gastric Phase III NCT02123407 

Silica nanoparticle Cornell dots Cancer Probe Phase I NCT02106598 

Gold nanoshell Aurolase Head & Neck Phase I NCT00848042 

Cyclodextrin CRLX101 General Phase II NCT00333502 

Polymeric micelle BIND-014 Prostate Phase II NCT01812746 

Gold nanoparticle Aurimmune Head & Neck Phase I NCT00356980 

 

2.2. Fabrication of nanoparticles 

Techniques used for the generation of nanoscale structures can be divided roughly into two 

groups: top-down and bottom-up approaches.
17

 The top-down approach initiates with large 

objects at least in one or two dimensions and reduces their lateral dimensions in order to 

achieve fine feature and nanoscale materials, whereas the bottom-up approach produces 

nanoscale structures as small building blocks and then assembles them into larger 

nanostructures via hierarchical synthesis. The bottom-up approach utilizes processes based on 

transformations in solution, e.g. sol-gel processing, co-precipitation, template synthesis, 

supercritical fluid synthesis, and ionic liquid synthesis. Common materials used in bottom-up 

approaches are block-copolymers, colloids, amphiphiles, and liquid crystals. The top-down 

approach introduces internal stress and surface defects (i.e. imperfections), and it is not cost-

effective. It has been stated that the bottom-up approach is more advantageous as it has a 

better chance of producing nanostructures with fewer defects, more homogenous chemical 

composition, and better short- or long- range ordering.
18

 However, scaling up remains a major 

challenge for the bottom-up approach. 
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Among the different bottom-up approaches, sol-gel process is expedient in terms of high 

chemical homogeneity, possibility of controlling size and morphology, and low processing 

temperatures.
 19

 The sol-gel process can be defined as the hydrolysis and condensation of a 

liquid precursor to a solid. The whole process can be characterized by several distinct steps: 

formation of stable solutions of precursors (the sol); further reaction of the sol with a bridged, 

rigid, porous network (the gel) enclosing a continuous liquid phase by gelation, drying (the 

removal of liquids from the gel network) and densification; and decomposition of the gels at 

high temperature. (Figure 1a) A suitable precursor and a solvent is the key to the synthesis of 

monodispersed nanoparticles by sol-gel processes.
20

 Molecular self-assembly is an intrinsic 

property of certain molecules such as surfactants, lipids, co-polymers, to spontaneously 

assemble without guidance from an outside source to various kinds of ordered structures. 

These amphiphilic systems are classified into single-phase (homogenous) and heterogeneous 

systems. The homogenous systems are further divided into isotropic solutions, solid phases, 

and liquid crystalline phases.
21

 Depending on the solution composition, spherical, cylindrical 

or rod-like micelles, hexagonally ordered or cubic crystals, lamellar phases, and inverse 

micellar liquid crystals can be formed. (Figure 1b) The liquid crystalline phases have the 

short-range (molecular) disorder but some distinct order over larger distances. 

 

Figure 1. (a) Typical steps in the sol-gel process (b) Schematic phase diagram of surfactant-

oil-water systems showing a variety of self-assembled structures that can be used as templates 

for nanostructured materials synthesis (Adapted from references 20,22) 

2.2.1.  Synthesis of mesoporous silica nanoparticles (MSNs) 

Ordered mesoporous materials are unique materials and they are defined by ordered, 

repetitive mesostructures of pores and disordered arrangement at the atomic level. They can 

be synthesized with various different pore sizes, structures and framework compositions. The 
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family of mesoporous silica materials was first discovered by Kresge et al.
23,24

 at the Mobil 

Oil Company in the early 1990s by employing surfactants as structure directing agents around 

which inorganic material can deposit through hydrolysis and condensation via sol-gel 

approach, and creating a mesoscopically ordered hybrid inorganic material. The ordered pore 

structure of inorganic silica materials is obtained after removal of surfactants by thermal 

calcination or chemical extraction. 

The formation of the mesoporous materials is governed by two phenomena- (a) the dynamics 

of surfactant molecules to form molecular assemblies, which lead to micelle formation and 

eventually formation of a liquid crystal, and (b) the ability of the inorganic oxide to undergo 

condensation reactions to form extended, thermally stable structures. The synthesis of 

mesoporous materials closely resembles the self-assembly process in biological systems. The 

four main components for the synthesis are a source of silica, structure-directing agent 

(surfactants), solvent, and a catalyst. In detail, the synthesis process is based on the 

dissolution of surfactant molecules into polar solvents to obtain liquid crystals. When the 

concentration of surfactant is above critical micelle concentration (cmc), the surfactant 

molecules aggregate to form micelles. The shape and size of the micelles depend on the type 

of surfactant, surfactant concentration, pH, temperature, and the presence of co-surfactants, 

etc.
25,26

 Depending on the experiment condition, the micelles aggregate forms supramicellar 

structures with hexagonal, cubic or laminar geometry, based on that geometry, the 

mesoporous framework is constructed. The porosity of ordered mesoporous materials also 

relies on the type of surfactant used during the liquid crystal templating mechanism.
27

 Then, 

the silica source is added which condenses around the supramicellar structures. The second 

mechanism is the cooperative liquid-crystal template, which suggests that it is also possible 

that the lyotropic liquid-crystalline phase is formed even at concentrations of surfactant 

molecules below the cmc, prevailing as a cooperative assembly of the surfactant and the silica 

precursor. (Figure 2) 
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Figure 2. Formation of mesoporous materials by structure-directing agents: (a) true liquid-

crystal template mechanism, (b) cooperative liquid-crystal template mechanism (Adapted 

from reference 25)
 

The MCM-type silica materials are synthesized by using cationic quaternary ammonium 

surfactant under basic conditions. The most well-known representatives of this class include 

MCM-41 with a 2D-hexagonal p6mm structure, MCM-50 with a lamellar p2 structure, and 

MCM-48 with a 3D-bicontinuous cubic Ia3d structure.
23,28

 (Figure 3) Depending on the 

predominant pore sizes, the porous solid materials are classified by IUPAC; pores with a 

diameter ranging from 2 to 50 nm are termed mesoporous material. The mesoporous MCM-

41 class of materials has well-defined pore size distribution with a pore diameter ranging from 

1.5 to 10 nm and with high surface areas (≥700 m
2
/g). In this thesis work, MCM-41-type 

hexagonally ordered nanoparticles were synthesized and studied. 

 

Figure 3. Schematic presentation of different mesoporous structures, including their pore 

symmetries (Adapted from reference 29) 
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2.2.2.  MSNs size, pore size, and template removal 

The silica source and nature of the surfactant decide the nature of the interaction.
30

 For the 

mesoporous silica synthesis, the fundamental condition is an attractive interaction between the 

head group of surfactant and the silica precursor to ensure inclusion of the structure-directing 

agent without phase separation taking place. Different interaction can take place between the 

inorganic precursor and the head group of structure directing agent which can be either 

electrostatic, counter-ion mediated or hydrogen-bonding interactions. Most common silica 

precursors used for mesoporous silica synthesis are alkoxysilanes, e.g. tetramethyl 

orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) and 

tetrabutyl orthosilicate (TBOS). The rate of hydrolysis decreases with increasing size of the 

alkoxy group of the silane, which is caused by steric hindrance (spatial effects) and observed 

particularly in branched, bulkier precursors.
20

 Alkaline and diluted conditions are generally 

utilized to synthesize negatively charged particles to avoid inter-particle aggregation. 

Monodisperse particles are obtained by template-directed alkaline synthesis and by using very 

dilute silane concentrations. The particle size of the MSNs can be modulated by controlling 

the pH of the reaction solution; decrease in pH leads to decrease in particle size
31

 and by 

varying the initial silicate and surfactant concentrations under dilute condition.
32

 For the 

synthesis of MSNs in alkaline conditions various approaches have been employed, such as 

use of water and EtOH as co-solvent in dilute condition, pH adjustment or dilution together 

with pH quenching, etc.
33

 Mann and co-workers have prepared MSNs by employing a pH-

quenching method. At higher pH, silica condensation is faster and electrostatic interactions 

between silica and cationic surfactants are stronger, which induces the fast simultaneous 

assembling and growth of the silica-surfactant nuclei and by rapidly lowering the pH, silica 

condensation rate becomes slower, which enables the synthesis of small (~15-23 nm) size 

particles.
34

 It has also been reported that organosilanes together with TEOS in the reaction 

mixture led to a smaller particle size compared to using only TEOS as a source of silica, 

which indicates that functional silanes also act as size quenchers. The addition of organosilane 

increases the number of nuclei formation during the nucleation process and smaller particle 

size is obtained.
33  

The most commonly used structure-directing agent/template for the synthesis of MCM-41 is 

cetyltrimethylammonium bromide (or chloride). It is a template with an alkyl chain containing 

sixteen -CH2 moieties. The in situ assembly of CTAB/CTAC micellar structures in the 

reaction medium can allow for the synthesis of silica structures containing interconnected 
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open pores. This template yields MCM-41 with a uniform pore size of approximately 2.7 nm. 

By using templates with longer or shorter alkyl chains, the pore size can be controlled. 

Nevertheless, due to the limited range of alkylammonium ions suitable for the preparation of 

MCM-41, the pore size can be adjusted to a small extent only. Some auxiliary organics like 

1,3,5-trimethylbenzene,
35

 hexane
36,37

 or N,N- dimethyl-hexadecylamine (DMHA)
38

 can be 

introduced to adjust the pore size of the material to a remarkable extent. Being apolar, these 

organics cannot be dissolved in water but they can be absorbed in the hydrophobic core of the 

template micelles. Due to this absorption, the micelles swell, thus increasing the average size 

of the mesopores in the MCM-41 up to values of approximately 8-10 nm in diameter. 

Mixtures of two surfactants can also be used to fine-tune the pore size of MCM-41 material.
39

 

The template can be removed after the silica network has obtained a sufficient degree of 

condensation to create the porous structure. The conventional method of surfactant removal is 

by calcination, in which the as-synthetized dried materials are subjected to heat in air at 

heating rates of 1 °C /min up to at least 550 °C, followed by isothermal heating for 4-8 

hours.
40 

The calcination of the as-synthesized MCM-type material affects the surface area, 

pore size, and pore volume of the material. The heat treatment leads to contraction of the 

silica structure compared to the as-synthetized material, which is due to an increased degree 

of condensation of the silica network. The calcination procedure may also influence particle 

aggregation/agglomeration in aqueous media, as calcination results in a more hydrophobic 

surface. The alternative template extraction methods include acid treatment, liquid extraction, 

and supercritical fluid extraction depending on the synthesis employed. 
41,42

 For the MCM-41 

type of materials prepared under basic conditions, strong electrostatic interactions occur 

between the negatively charged silica network and the cationic surfactant head groups. An ion 

exchange process by using acids or cationic proton donors is required to remove the template. 

Extraction procedures employed for this kind of materials involve extraction using ethanolic 

solution of ammonium nitrate or acidic ethanol. The extraction process can be enhanced by 

heating up of the particle dispersion up to 60-70 °C or simultaneous sonication treatment 

during the template removal. For the materials synthesized by co-condensation procedure, the 

calcination can cause decomposition of the organic functions of the material, and therefore, 

template removal by ion exchange or extraction method is preferred. 
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2.3. Surface functionalization of MSNs 

Surface functionalization of inorganic mesoporous materials with organic moieties provides 

organic-inorganic hybrids, where the inorganic and organic components are linked via 

different interactions. MSNs prepared by surfactant-templated sol-gel techniques are highly 

versatile substrates for the formation of functional materials. The advantage of MSNs is the 

possibility to obtain three functional domains - the silica framework, external particle surface, 

and interior pore surfaces.
43,44

 Functional groups which are on the exterior surface of the 

particles are more accessible and therefore they can be easily functionalized as compared to 

internal pore surface. Surface silanol (both free Si-OH and geminal Si(OH)2) groups act as 

expedient anchoring points for organic functionalization. For the high coverage of silica 

surface with functional groups, a large number of surface silanols needs to be present after 

surfactant removal. 

Organic functionalization of mesoporous silica permits tuning of the surface properties 

(hydrophilicity, hydrophobicity, binding with guest molecules), modulation of surface 

reactivity, protection of the surface, and alteration of the optical (e.g. fluorophores)
45

 and the 

electrical properties (e.g. conducting polymers)
46

. The surface modification of the particles 

should be decided according to aimed application as surface characteristics play a key role in 

determining its interaction with the surrounding media, dispersion stability in the 

physiological environment, and it also provides access to introduce additional functions (such 

as ‘smart gatekeeper’ polymers) for a specific application. Additionally, particle surface can 

be engineered with targeting moieties such as small molecules, peptides or antibodies to 

achieve specific interactions with cells/tissue. The overall composition of the MSN surface 

has a high impact on the pharmacokinetics of the particles in a physiological environment. 

Generally, the functionalization of MSNs can be accomplished by co-condensation or by post-

synthetic modification (i.e., grafting or surface polymerization).
25,43,47 

(Figure 4) 
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Figure 4. Schematic representation showing functionalization of mesoporous silica particles 

by co-condensation and by post-grafting methods (Adapted from reference 48) 

2.3.1. Direct functionalization by co-condensation 
25, 43, 49

  

In co-condensation approach, a condensable precursor having the desired functional group is 

added to the mixture containing components for the formation of the mesoporous silica, 

which leads to materials with organic residues anchored covalently to the pore walls. In most 

cases, organoalkoxysilanes of type R–Si(OR′)3 are used as precursors. The reason for that is 

co-condensation of tetraalkoxysilanes ((RO)4Si) with terminal trialkoxyorganosilanes of the 

type R–Si(OR′)3 forms Si–C bonds facilitating incorporation of a variety of organic groups 

into the material. The co-condensation method has the advantages of homogeneous surface 

coverage in one pot synthesis, better control over the amount of organoalkoxysilanes groups 

incorporated in the MSNs compared to post-grafting method, and the opportunity of using a 

wide variety of organofunctional groups. Further, organic functionalities are usually 

introduced during the synthesis stage; hence, the problem of pore blocking does not occur. 

However, this approach has a limitation for amount of organoalkoxysilanes groups that can be 

incorporated in the materials, as they can have a pronounced effect on the pore structure and 

morphology of the mesoporous material. High functionalization degrees often lead to a 

decrease in mesoscopic order and a reduction in the pore diameter, pore volume, and specific 

surface areas. Further, the structure-directing agent must be removed by extraction 

procedures, as template removal by calcination would destroy the organic moieties. Co-

condensation approach provides an opportunity to prepare inherently fluorescent particles 

during the synthesis in one-step. Usually, this is conducted by pre-reacting a fluorophore-

containing reactive group (e.g. isothiocyanate group; fluorescein isothiocyanate or 

tetramethylrhodamine isothiocyanate) with an organosilane that is subsequently used in the 



Review of the literature 

12 
 

co-condensation synthesis, yielding inherently fluorescent silica nanoparticles. In this thesis 

work, fluorophores have been introduced via co-condensation approach. 

2.3.2. Functionalization by post-synthetic modification 
25,43,50

 

Post-synthesis modification of a pre-fabricated mesoporous material by attachment of 

functional molecules on the surface of the mesopores is usually carried out after surfactant 

removal, by chemical conjugation (grafting), surface polymerization or by adsorption of the 

functional groups. The original structure of the mesoporous support is maintained after the 

grafting procedure. In the grafting process, surface silanol (both free Si-OH and geminal 

Si(OH)2) groups act as expedient anchoring points for organic functionalization via 

elimination reactions. For the high coverage of silica surface with functional groups, a large 

number of surface silanols needs to be present after surfactant removal. In the case of high-

density organosilanes grafting, reactions at the pore opening might result in the 

inhomogeneous distribution of functional groups, and cause blocking of the pores.
51

 The 

reaction conditions such as polarity and dielectric constants of the solvents strongly affect the 

concentration of grafted organic groups.
52

 Anhydrous functionalization conditions are crucial 

to prevent reaction of the organosilanes with water and for hierarchical polymerization of the 

organosilanes inside the pores. 

Post-synthesis modification by surface polymerization is another technique to increase the 

number of outer functional groups. Covalently anchored polymer brushes were usually 

prepared using the ‘grafting to’ and ‘grafting from’ techniques.
53,54 

In the ‘grafting to’ 

approach, only end-functionalized polymer chains tethers to the SiO2 surface under 

appropriate conditions. The polymer layer obtained by the ‘grafting to’ approach is thinner 

compared to ‘grafting from’ approach and has low grafting density. In the ‘grafting from’ 

approach, first an initiator molecule is assembled directly onto the SiO2 surface, which is then 

used to initiate the free radical or living polymerization. High grafting densities polymer 

brushes is attained by ‘grafting from’ approach and it also allows the creation of polymer 

chains of a dendritic nature, which increases the number of outmost functional groups 

available for further modification.
55

 (Figure 5) This approach allows higher control of 

functionality, density, and thickness of the polymer layers. For instance, the hyperbranching 

ring opening polymerization of aziridine initiated on silica surface produces hyperbranched 

polyethylene imine (PEI) functionalized particle surfaces resulting in highly positively 

charged particles with increased electrostatic stability in physiological conditions.
47,55 

PEI 

surface coating on mesoporous silica surface facilitates binding with negatively charged cell 
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surfaces, leading to increased cellular internalization. Pure PEI has been shown to result in 

toxic side effects directly related to the molecular weight of branched PEI
56

 but charge 

capping or derivatization of PEI with other functional groups can restrain the drawbacks of 

pure PEI.
57,58  

 

Figure 5. Schematic representation of surface functionalization by hyper branching 

polymerization of aziridine (Adapted from reference 59) 

In this work, PEI functionalization has been carried out by employing the ‘grafting from’ 

approach. For functionalization with Polyethylene glycol (PEG), the ‘grafting to’ approach 

has been employed. The methoxy form of PEG, generally used for conjugation applications, 

has a single hydroxyl group that can be coupled with different entities such as MSN surface, 

small drugs, proteins, polymers, etc.
60

 PEG, a hydrophilic and inert polymer, imparts a steric 

barrier to the surface of nanoparticles and reduces their protein binding which is the principal 

mechanism for the reticuloendothelial system (RES) to recognize the nanoparticles.
61

 PEG 

has been widely used in biomedical drug delivery applications because it provides stealth 

effect by avoiding uptake of nanoparticles into the mononuclear phagocyte system (MPS), 

offers good particle dispersion in aqueous solvents. PEG has been reported as mucoadhesive 

agent, which aids to avoid binding with intestinal mucin networks and enhances penetration 

of nanoparticles through the mucin barrier.
62

 In this work, PEGylation was achieved by 

attaching PEG either directly to the particle surface or via a grafted PEI layer. 

Another technique that has also been used for the post-synthesis functionalization of particles 

is the adsorption method. Different surface modifiers such as small molecules, natural 

polymers and synthetic copolymers can be used for surface functionalization by adsorption 

method. The prerequisite for this technique is sufficient interaction between the particle 

surface and adsorbent compounds. However, in many cases, the formation of covalent bonds 

with the surface atoms is crucial for efficient functionalization, and hence the adsorption 
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method is less beneficial. Nonetheless, polymer adsorption onto surfaces is a widely used 

approach of surface functionalization. In this study, covalent surface grafting and surface 

polymerization were employed for the post-synthetic modification of MSNs. 

2.3.3. Gate keeping mechanism for on-command drug delivery 
10,63,64

 

On-command stimuli-responsive drug delivery systems provide a convenient approach to 

deliver drugs in spatial-, temporal-, and dosage-controlled fashions. Compared with the 

sustained release system, the stimuli-responsive system can achieve drug release in a site-

selective and controlled-release pattern, which can improve the therapeutic efficacy of the 

drug delivery system. Mesoporous silica supports provide possibility of including gate-like 

ensembles on the external surface for the design of nanosystems for on-command delivery 

applications. Implementation of such systems requires two subunits: First, a porous inorganic 

support, which is chemically inert material under a wide range of conditions, in which cargo 

is loaded, and second, certain molecular or supramolecular entities, attached to the external 

surface, which can control mass transport from the pores. The grafted entities on the outer 

layer should be biocompatible materials, which are susceptible to a specific physical 

incitement such as temperature,
65

 light,
66

 magnetic field and ultrasound,
67

 or, in response to a 

specific stimulus such as pH,
68

 redox potential,
69

 enzymatic activities,
70

 undergo a 

protonation, a hydrolytic cleavage, the rupture/formation of covalent bonds or a 

supramolecular conformational change. (Figure 6) Therefore, upon stimulation by an external 

stimulus, the release of drug molecules is thereby achieved. For the diagnosis and therapy, in 

combination referred as ‘theranostic’ applications, nanometer sized porous inorganic 

materials can be loaded with a therapeutic agent, together with an indicator molecule or a 

diagnostic marker.  
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Figure 6. Schematic representation showing various gate keeping mechanisms on 

mesoporous silica nanocarrier 

For temperature-gated delivery systems, porous materials have been capped with 

thermosensitive polymers which were able to deliver cargo after temperature dependent phase 

transition.
65

 Existence of different temperatures are the characteristic in inflammatory diseases 

or in the tumoral tissues, which can be used to specifically deliver selected cargos. 

Thermosensitive polymer poly(N-isopropylacrylamide (PNIPAAm) and its derivative which 

shows lower critical solution temperature (LCST) around body temperature are usually 

employed.
71

 Lopez and co-workers have used PNIPAAm as temperature-responsive cap 

grown on the inner pores of the mesoporous support. At a low temperature (below the LCST, 

~32 °C), the polymer was hydrated and extended, closes the pores, and inhibits cargo 

(fluorescein, Rh6G) release, whereas at high temperatures (above the LCST, ~50 °C), the 

polymer was in a hydrophobic collapsed form, allows delivery of cargo.
72

 

In light-driven gated systems, cargo release can be controlled spatially and temporally by 

fine-tuning the time and the area of light stimulus. (Figure 7) Light has the advantage of being 

applicable from outside of the patient in a noninvasive manner (usually near infrared radiation 

NIR radiation). The cargo release is usually triggered by light due to photodimerizations, 

photo cleavage of a chemical bond or photo induced heating of gold nanoparticles.
66 

Lin and 

coworkers have developed photo responsive gold nanoparticle (AuNP) capped MSNs (PR-

AuNPs-MSNs) based intracellular delivery system, the surface of the AuNP has been 

functionalized with a photoresponsive linker (thioundecyl-tetraethyleneglycolester-o-
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nitrobenzylethyldimethyl ammonium bromide). The developed system showed zero 

premature release and controlled drug release by the application of low-power photo-

irradiation under physiological conditions. Cell viability studies resulted in enhanced 

cytotoxicity of paclitaxel delivered using PR-AuNP-MSNs in human fibroblast and liver cells 

after photo-irradiation.
73

 

 

Figure 7. NIR light cleavable molecular switches on mesoporous silica nanocontainers 

(Adapted from reference 74) 

Other physical stimuli such as magnetic fields and ultrasound can also be used for opening up 

molecular gates for controlled drug delivery by changing frequency, cycles, power, and time 

of application. It has been reported that magnetically activated systems have the advantage to 

provide extra control and to provide the guidance to the supported material with the use of 

external magnet, e.g. accumulation in selected tumor area.
75

 Guo et al. have prepared core (a 

magnetic core of Fe3O4) - shell (mesoporous silica shell) nanoparticles by the Stöber method. 

The outer surface was decorated with diblock-thermosensitive copolymer poly((ethylene 

glycol)-co-(L-lactide)) and doxorubicin (DOX) was loaded as a model drug. The system was 

activated by heating or acidification, and the application of an alternating magnetic field 

(AMF) resulted in cargo delivery. Cell viability studies resulted in enhanced cell death when 

cells were treated with magnetic nanoparticles together with the application of AMF.
67 

Wang 

et al. coated hollow MSNs with AuNPs, and loaded them with pyrene dye (as a model drug) 

and ultrasound-sensitive liquid perfluorohexane (PFH). The thiol-functional PEG was grafted 

onto the surface of the attached AuNPs. Application of ordinary ultrasound irradiation 

triggered the release of the loaded drug through the alteration of acoustic and thermal 

properties of the attached AuNPs. The authors have showed that MSNC@Au-PFH-PEG can 
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be used as a theranostic platform for contrast-intensified ultrasound imaging and combined 

chemotherapy.
76

 Above reported approaches for triggered release are mostly based on 

temperature change. 

Redox potential is another stimulus for controlled drug delivery since endogenous reducing 

agents found at the intracellular level can be used as triggers. (Figure 8) For some diseases, 

such as cancer, an increase in the concentration of redox-active species has been established. 

For example, disulfide bonds can be reduced by glutathione (GSH), the most abundant 

reducing agent in vivo. The GSH level in extracellular (2 μM) and intracellular (10 μM) 

environment is significantly different, furthermore, intracellular GSH levels in the tumor 

tissues are at least 4-fold higher than those in normal tissues. However, GSH is also present in 

healthy cells, so some amount of drug release will most likely also occur in healthy cells. The 

redox responsive systems employ disulfide bonds as a linker between porous support 

materials and capping agents (such as polymers, biomolecules or inorganic nanoparticles), 

which act as a stimulus to achieve ‘on-demand’ drug release. Wang and co-workers have 

modified MSN surface with PEG through biodegradable disulfide bonds. In their system, they 

have employed PEG chains as the gatekeepers that block the drug within mesopores and 

following the addition of glutathione, they have observed removal of gatekeepers and release 

of encapsulated drug (Rhodamine B).
77

 However, some amount of drug release has also taken 

place without GSH, and GSH primarily accelerate the drug release.
77

 

 

Figure 8. (A) Schematic representation showing structure of Redox responsive and RGD 

peptide targeted, DOX loaded mesoporous silica nanoparticles (B) Cell uptake through RGD 

mediated interaction, glutathione mediated drug release, drug diffusing in to cytoplasm and 

cancer cells apoptosis (Reference 78) 
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pH-responsive gates are a promising tool to develop delivery systems for nanomedicine. 

(Figure 9) The pH-responsive drug delivery can be achieved at the level of (a) organs 

(differential drug uptake along the gastrointestinal tract), (b) tissues (the pH gradients that 

exist in tumor microenvironments to achieve high local drug concentrations), and (c) 

intracellular level (to escape acidic endo-lysosomal compartments for cytoplasmic drug 

release). Wide varieties of imaginative ensembles including amines, different polymers, lipid 

bilayers, metallic complexes, and inorganic nanoparticles have been studied to control the 

release of selected cargos. Acrylic-based polymers such as poly(methacrylic acid) (PMAA) 

exhibit pH-dependent swelling, they retain a hydrophobic, collapsed state in the stomach due 

to the protonation of carboxyl groups whereas an increase in pH leads to their swelling due to 

carboxyl ionization and hydrogen bond breakage. N.Peppas has developed P(MAA-g-EG) 

hydrogels containing PEG grafts, which shows pH-dependent insulin release.
79

 

 

Figure 9. Schematic illustration showing DOX-loaded PHis-functionalized MSNs and pH-

triggered controlled drug release (Adapted from reference 80) 

Lipid bilayer (LB) deposition on the surface of MSNs acts as a diffusional barrier for the 

loaded drug and prevents premature drug leakage. Brinker and co-workers
81

 have developed 

such ‘protocells’ by liposome fusion on MSNs, simultaneously with the loading of the cargo. 

They have prepared different materials by varying the liposome composition using 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine 

(DOPS), and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) lipids. For the 

nanocarriers prepared with the DOTAP lipid, drug release was faster at pH 4 compared to that 

at pH 8. However, with their system loading capacity was quite low. In another study by the 

Brinker group
82

, they have performed electrostatically mediated liposome fusion and lipid 

exchange with a nanoparticle supported bilayer after cargo loading using DOPS and DOTAP 

lipids to reduce premature drug release. This procedure involves tedious lipid exchange steps 

and produces electrostatically induced lipid bilayer defects. In another work, Ashley and 
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Brinker et al. have developed MSNs loaded with several cargos (DOX, 5-fluorouracil, or 

cisplatin, siRNA, diphtheria toxin, and quantum dots), and fused them with liposomes made 

of DOPC/ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/ 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE)/Cholesterol lipids. This supported lipid bilayer has been 

functionalized with a targeting peptide (SP94), with a fusogenic peptide (H5WYG) and with 

PEG moieties. These nanoparticles were internalized by human hepatocellular carcinoma cells 

(in vitro), and have released the entrapped cargo into the cytosol due to disruption of the lipid 

bilayer upon the protonation of imidazole subunits in the fusogenic peptide.
83

 Bein and co-

workers have prepared MSNs, coated with different lipid bilayers to release an entrapped 

cargo upon addition of small molecules. In this study, the pores of the MSNs were loaded 

with fluorescein or colchicine and capped by the formation of a lipid bilayer shell using 

DOPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), or a mixture of 

DOTAP/DOPC lipids.
84

 However, low loading capacity of negatively charged guests 

observed for this system. The physically supported membrane is not thermodynamically and 

mechanically stable from the proximity of other lipophilic agents and defects in the supported 

lipid bilayer produced due to high surface porosity leading to premature drug leakage. 

Therefore, an intermediate lubricating layer between porous support and lipid bilayer, which 

provides opportunity for covalent conjugation of the inner leaflet of lipid bilayer with porous 

support would be beneficial for the site-specific delivery of hydrophilic molecules. 

2.3.4. Functionalization with targeting ligands
85,86,87

 

Targeting approaches can be broadly classified into two areas; passive and active targeting. 

Passive targeting exploits the normal bio-distribution that unadorned nanoparticles will take 

within the body. Upon intravenous delivery, plain nanoparticles are rapidly removed from 

circulation by opsonization, and they accumulate in the liver and spleen. Therefore, this 

clearance can be exploited to treat hepatic disorders such as liver fibrosis, hepatocellular 

carcinoma or liver cirrhosis. Tumor targeting requires circumvention of this clearance 

mechanism. Nanoparticles surface can be functionalized or coated with hydrophilic polymers 

to suppress opsonization and subsequent phagocytosis. Passive targeting at tumor sites is due 

to the enhanced permeability and retention (EPR) effect. The tumor vasculature has increased 

permeability due to disordered epithelial cell junctions; hence, tumor vessels are more 

permeable to nanoparticles than the well-defined vasculature found in normal tissue.
88

 

Moreover, tumors have poor lymphatic drainage, leading to further accumulation of the 
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nanoparticles at the diseased site.
89

 A drawback of passive targeting is the extravasation of the 

delivery systems in off-targeting organs, such as liver, spleen, or bone marrow. 

Active targeting involves the modification of the nanoparticle surface with a targeting ligands 

specific to cell surface components that are unique to, or upregulated in, dysplastic and 

pathologic tissues. Targeted delivery can potentially increase the efficacy and reduce the 

toxicity of therapeutic agents. Anchoring a biological targeting moiety onto an external 

surface allows homing, binding and internalization of the nanoparticles to the targeted sites 

such as cells and tissues, which contain overexpressed receptors.
90

 (Figure 10) However, to 

achieve efficient in vivo active targeting, protein adsorption on the nanoparticles should be 

low and their blood circulation times should be high. As molecular targets are usually situated 

in the extravascular space of the tumor, nanoparticles rely on the EPR effect to reach their 

targets. Protein adsorption shields the targeting ligand and thus reduces the active targeting 

yield.
91 Targeting ligand does not increase tumor localization, but instead functions primarily 

in the uptake of the nanoparticle by the tumor cells.
92

 The other advantage of actively (cancer 

cell-) targeted nanoformulations over passively targeted formulations is that they are taken up 

by cancer cells much more efficiently.
93

 Targeting ligands fall into several classes: small 

molecules (vitamins, carbohydrate), peptides, monoclonal antibodies, and nucleic acids based 

aptamers.
94

 For the conjugation of targeting ligands to nanoparticles, the surface of the 

nanoparticles is modified with an appropriate chemistry to introduce reactive moieties with 

functional groups. It is also important that the selected targeting ligand have a functional 

group that can be used for conjugation. Most of the conjugation chemistries involve covalent 

reactions that use amine reactive group, sulfhydryl reactive groups or carbonyl reactive 

groups. Non-covalent interaction between streptavidin and biotin is also commonly used.
95

 

Small molecule folic acid (Vitamin B9) is a high affinity ligand of endogenous folate 

receptor, which is frequently up regulated in many types of human cancers.
96

 Nanoparticles 

conjugated with folic acid can be actively internalized via receptor-mediated endocytosis and 

effectively directed to folate receptor-positive cancer cells.
97 

Different research groups have 

prepared folic acid modified MSNs for cellular targeted drug delivery and observed enhanced 

uptake of folic acid modified nanoparticles in folate receptor positive cells.
98,99,100

 

Carbohydrates, which interact weakly with some cell surface receptors, can also serve as 

small molecule targeting ligands. Carbohydrates permit nanoparticle glycotargeting, which is 

based on endogenous lectin interactions with carbohydrates. Galactose modified nanoparticles 

can be internalized via asialoglycoprotein receptors,
101

 mannose targeted nanoparticles 
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internalized via mannose receptors, which are highly expressed in the immune system for the 

treatment of diseases localized in macrophages,
102

 and glucose conjugated nanoparticles 

internalized via glucose transporters (Gluts) overexpressed in tumor cells.
103

 The major 

advantages of using small molecules as targeting ligand is their stability, ease of conjugation 

with nanoparticles, and the potential low cost.  

 

Figure 10. Schematic presentation showing design of MSNs functionalized with targeting 

ligand, their receptor mediated endocytosis and drug release (Adapted from Supp.Paper II) 

Targeting peptides, discovered via phage display, binds to specific target protein typically 

expressed on the cell surface. For example, arginine-glycine-aspartic acid (RGD) peptide is 

used as a targeting ligand for αvβ3 integrin. Xiao and co-workers have employed RGD 

peptide functionalized dual responsive (pH and redox) tumor targeting MSNs for delivery of 

DOX.
104

 As a targeting ligand, peptides provide smaller size compared to antibodies, as well 

as high specificity and affinity. Antibodies are used as targeting ligands due to their ability to 

target tumor-associated cell surface antigens. Tsai et al. have developed anti-HER2/neu mAb 

conjugated MSNs for selective targeting to breast cancer cells.
105

 Wang et al. have prepared 

cetuximab (anti-EGFR monoclonal antibody) modified MSNs for efficient treatment of 

epidermal growth factor receptor (EGFR)-mutant lung cancer. Major issues of antibody 

targeting ligands include immunogenicity (production of unwanted immune response), 

stability, and difficulty for site-specific conjugation with nanoparticles.
106

 Aptamers are short 

single-stranded nucleic acids (RNA or DNA) capable of displaying diverse structures, and 

they can bind with biochemical targets. Zhang et al. have developed aptamer-targeted drug 

nanocarriers, by capping mesoporous silica-coated quantum dots with a programmable DNA 

hybrid (an aptamer and antisense oligonucleotide of miR-2). The nanocarriers have been 
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delivered by aptamer-mediated recognition and endocytosis into HeLa cells, and controlled 

drug release was achieved, which led to a sustained lethality of the HeLa cells.
107

 

 

2.4. Drug incorporation and release 

2.4.1. Drug incorporation 

MSNs have been established as a promising and novel drug delivery vehicles due to their 

unique structural properties, possibility to include various surface functionalities and 

biocompatibility, to ensure the controlled release and targeted drug delivery of a variety of 

drug molecules.
108,109,110 

By loading drugs into the porous structures of these particles, it is 

possible to control drug release or deliver the appropriate concentrations of therapeutic 

molecules to the suitable locations.
111,112

 The porous matrix may also protect biomolecules 

from enzymatic degradation. MSNs possess high specific surface area and large pore 

volumes, which allow incorporation of large quantities of drug molecules.
113

 

In addition to the critical parameters associated with the carrier system, such as pore size, 

surface chemistry and hydrophilicity/hydrophobicity of MSNs, physicochemical properties of 

the drug molecule and loading methods can also affect the drug release profiles. The most 

common methods for loading drugs within the MSNs include physical adsorption into the 

inner pore walls by impregnation method (adsorption of drug in mesopores using highly 

saturated drug solution), and covalent bonding (conjugation of drug with nanoparticles).
114

 

The silica matrix remains intact in organic solvents; hence, different types of solvents can be 

employed in the drug loading steps. The solvent can be selected in terms of the drug’s 

solubility in order to facilitate the drug adsorption to the pore walls over solvent-drug 

interactions. A hydrophobic solvent having low affinity for the drug molecule can be 

employed for high adsorption of the hydrophobic molecules. When the drug is hydrophilic/ 

water soluble, loading can be performed in aqueous solution employing different pH 

conditions and utilizing electrostatic interactions/ surface charge. The non-functionalized 

MSN particles are negatively charged, thus they can spontaneously adsorb positively charged 

molecules whereas amine functionalized MSNs have positively charged surface, which allows 

loading of negatively charged drug molecules. The adsorption of drug molecules to the silica 

matrix usually leads to monolayer formation, which can be demonstrated using a Langmuir 

isotherm.
115

 Loading of drug compounds such as ibuprofen, vancomycin, alendronate, 
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gentamycin, camptothecin, paclitaxel, DNA, calcein, vitamin-B2, cyclic AMP into the 

mesopores have been reported using impregnation methods.
113,114

 

Covalent bonding is another technique for loading of drug molecules into the porous 

structures; it provides e.g. enzyme responsive drug release. MSNs with surface functions such 

as thiol or amine groups can be directly employed for covalent based drug loading and be 

cleaved in the presence of an enzyme on tumor surfaces. Loading of cysteine, pro drug 

sulfasalazine, and paclitaxel have been reported using covalent bonding.
116,117,118 

The main 

advantage of the covalent conjugation method is that it prevents undesired leaching of the 

cargo before it reaches the target site and payload release can occur after breakage of the 

covalent bonds. However, after covalent conjugation drug molecule may convert to inactive 

form; therefore, it is important to perform an appropriate assay to confirm the activity of the 

drugs following the release process.
118

 Due to the following drawback, covalent bonding is 

not commonly employed for the drug loading in mesoporous silica nanocarriers. 

2.4.2. Drug release 

The drug loading inside the mesoporous nanocarrier can provide the opportunity for 

controlled drug release in order to maintain a drug concentration within the therapeutic 

window. The drug release can be either due to simple diffusion, pH driven release, photo-

induced, temperature-driven or enzyme responsive release. In general, water-soluble drugs 

that are incorporated into a porous matrix are mainly released by diffusion, whereas for the 

poorly water-soluble drugs main release mechanism is through self-erosion of the matrix.
119

 

Additionally, the dissolution mechanism of carrier/matrix also depends on surface 

functionalization, type of drug and loading degree, thermal history, surfactant extraction 

method, particle size and pore size of mesoporous particles. One approach to obtaining on-

demand release profile of drug molecule is to use gating materials attached to the pore 

entrances or inside the pores themselves, which can be triggered by an external stimulus.
10 

(As 

explained in section 2.2.3) von Haartman et al. have studied the intracellular release 

mechanism of hydrophobic drug molecules from functionalized MSNs in relation to the 

biodegradation of the nanocarrier. They have observed that the cargo release was primarily 

dependent on the degradation of the nanocarrier in pure aqueous media, while in media 

mimicking intracellular conditions, the physicochemical properties of the cargo molecule and 

its interaction with the carrier and/or surrounding media were main release-governing 

factors.
120

 Further, the physical state of the incorporated drugs: amorphous, crystalline or a 

combination of them, has an influence on the dissolution rate of drugs.
121
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2.5. Biomedical applications of MSNs 

In the past few decades, various types of multifunctional nanomaterials for diagnosis and 

therapy referred as ‘theranostics’ have been developed. Numerous benefits in using these 

nanometer-sized delivery platforms include the ability to control the drug release rate, the 

accumulation at the targeted region of interest without damaging normal cells, and the 

possibility of achieving specific drug release upon activation by various external/internal 

stimuli, such as light, temperature, pH, and redox potential.
122

 

Silicon is the second most abundant element on Earth’s crust, where it is chiefly found in the 

form of silicon dioxide (silica). Silicic acid is profuse in bone, cartilage, and other supporting 

tissue, and is necessary for growth and health of the body’s connective tissue.
123

 Silica is 

widely used in pharmaceutical formulations, cosmetics, and food products as an excipient and 

it is ‘generally recognized as safe by US FDA.
6
 Many different amorphous silica materials 

have been proposed as drug delivery matrixes. Among them, the utility of mesoporous silica 

as a reservoir for drug delivery has been introduced for the first time by Vallet-Regi et al.
124

 

in 2001. The characteristic properties of MSNs include high surface area-to-volume ratio, 

easily modified surface properties, and high porosity, which allow high loading capacity (up 

to 100 wt%) without destabilization of the silica framework. Besides, surface of these 

nanocarriers can be functionalized with stimuli-responsive groups for the controlled drug 

release; all of this introduces them as a novel platform for various biomedical applications. 

 

Figure 11. Mesoporous silica nanoparticle functionalization, morphology, drug loading and 

bio-distribution (A) Post-synthesis surface modification (e.g. targeting/tracking moiety 
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conjugation, PEGylation, stimuli responsive shell, or polymer coating), (B) Size and charge 

of MSNs can be precisely tailored to gratify application-specific needs (e.g. passive 

targeting); (C) Variation of synthesis and post-synthesis modifications result in unique, 

designer-specified bio-distribution and elimination profiles and (D) Cargo loading (e.g. 

siRNA, therapeutic drug and dye) (Adapted from reference 125) 

After the discovery by Vallet-Regi et al., mesoporous silica materials have been widely 

explored as drug delivery carrier in biomedical research. In 2003, Lai et al. have demonstrated 

modified MSNs to facilitate the stimuli-responsive controlled release of neurotransmitters and 

drugs.
126

 However, the first report on the in vivo application of MSNs as diagnostic tools and 

therapeutic drug carrier was reported by Mou and coworkers in 2008.
127

 Despite the existence 

of various in vitro and in vivo reports using MSNs as drug carriers available in the literature, 

there are many discrepancies in the obtained in vivo bio-distribution and toxicity results. 

These differences should be addressed by thorough physicochemical characterization of 

nanoparticles such as size, surface charge, pore structure, aggregation state, dispersibility, and 

biodegradability under biological conditions before administration, by careful evaluation of 

the relationship between physicochemical property and biological response of nanoparticles, 

and by the use of comparable testing platforms and model systems. 

2.5.1. Cellular interactions 

The cell membrane is a lipid-based membrane that envelops the cytoplasm and preserves the 

local chemical composition of a cell; it also plays an active role in the interaction with foreign 

macromolecules, including nanoparticles. To be internalized inside the cells, nanoparticles 

have to overcome the cell membrane barrier. The physicochemical properties of 

nanoparticles, such as size, shape, surface charge, hydrophobicity/hydrophilicity and surface 

chemistry or functionality, comprehensively determine the interactions of nanoparticles with 

biological systems.
128

 Correlation of the surface physicochemical properties of nanoparticles 

with their interactions with biological systems provides key foundational data for 

nanomedicine. Depending on the property of the transported particle, different types of 

endocytosis pathways, which vary in the involved internalization machinery, cargo properties 

and the size of the transport vesicle, may mediate the cellular uptake.
129

 Agglomeration of 

nanoparticles in physiological buffers or in plasma cause fast clearance of nanoparticles due to 

phagocytosis by macrophages of the MPS, which can be due to recognition of the 

plasmaproteins (opsonins) that bind on the surface of the nanoparticles. Thus, cellular 

internalization routes determine the fate and intracellular localization of nanoparticles, which 
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suggests that proper strategies to control the nanoparticle cellular internalization route can 

hugely augment their therapeutic outcome.
130

 For example, it is currently approved that while 

large particles penetrate into the cells via phagocytosis, the cellular uptake of small particles 

occurs via different non-phagocytic mechanisms. Thus, it is important to evaluate 

physicochemical properties of MSNs properly to predict their behavior in vitro and in vivo. 

2.5.1.1. Effect of MSNs’ size 

The particle size is an important parameter for designing suitable drug-carrier nanoparticle 

systems. One of the benefits of the nanoparticles is their ability to enter into the cells via 

endocytosis because of their similarity to many biomolecules or viruses in terms of size. This 

internalization can be energy dependent or via the engagement of caveolin or clathrin-coated 

pits, or other pathways independent of these proteins. (Figure 12) 

 

Figure 12. The cellular internalization pathways for the nanoparticles: (A) Larger 

nanoparticles are internalized via phagocytosis. Smaller particles can be internalized through 

several mechanisms, such as clathrin-mediated endocytosis (B), caveolae-mediated 

endocytosis (C), macropinocytosis (D), and clathrin-independent and caveolae-independent 

endocytosis (E). (Adapted from reference 131). 

In the literature, different studies with MSNs have been carried out in order to determine the 

effect of size on cellular internalization. Rejman et al. have reported that internalization of 

nanoparticles smaller than 200 nm was mediated through active clathrin-coated pits, for 

nanoparticles with a size of 500 nm caveolae-mediated pathway became dominant.
132

 Gao and 

coworkers have studied uptake mechanism of 60- 600 nm size negatively charged FITC-SiO2 

nanoparticles in HepG2 cells and observed that nanoparticles enter into the HepG2 via 

clathrin-mediated pathway and particle size showed no influence on the distribution and 

uptake mechanism of the silica nanoparticles.
133

 However, Mou and coworkers have also 
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developed MSNs with different average sizes between 30-280 nm, and they have observed 

that cellular uptake is particle size dependent in the order of 50>30>110>250>170 nm and 50 

nm is an optimal particle size to reach the maximum uptake of MSNs by HeLa cells.
31

 

However, authors have not explained the reason behind this finding. Nonetheless, Jiang et. al 

have reported that 40- and 50- nm particles demonstrate greatest effect to alter signaling 

processes essential for basic cell functions, which might be a reason for higher uptake of 50 

nm particles.
134

 Thus, the particle size is a crucial parameter for designing nanocarrier 

systems. In this study, we have used approx.70 nm and approx. 250 nm sized MSNs for 

delivery of different cargoes. 

2.5.1.2. Effect of MSNs’ surface charge  

Various factors have been outlined to influence the kinetics and efficiency of intracellular 

endocytosis of MSN materials. One of the factors that can significantly affect nanoparticles’ 

stability, cellular interactions, opsonization, phagocytosis, and bio-distribution is the surface 

charge of the nanoparticles.
135

  

 

Figure 13. Cellular uptake and intracellular distribution of nanoparticles with different 

surface charges (Adapted from reference 136) 

The cellular interaction of various nanoparticles is affected by the surface charge (positive, 

neutral or negative) of the nanoparticles.
136

 (Figure 13) Usually, cellular internalization of 

positively charged nanoparticles is higher than the respective anionic nanoparticles; however, 

charge density and hydrophobicity of the particles are also important. Different studies have 

been performed to identify surface charge dependent uptake mechanisms, but still no general 

rule has been identified. Furthermore, the screening of the intracellular distribution of 

nanoparticles has indicated that some positively charged nanoparticles possess endosomal 

escape ability after being internalized into cells, whereas neutrally and negatively charged 
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nanoparticles prefer the lysosomal co-localization.
136

 A plausible explanation for this 

phenomenon is that the abundant positive charge of the nanoparticles can cause additional 

pumping of protons into the endosome, with the influx of chloride ions to maintain the neutral 

charge, leading to increases ionic strength inside the endosome.
137

 This then causes the 

physical rupture of the endosomal membrane because of the osmotic swelling, a phenomenon 

known as the ‘proton-sponge’ effect, resulting in the escape of the nanoparticles from the 

degradative lysosomal trafficking pathway. This behavior can increase the cytoplasmic 

localization of the positively charged nanoparticles and enhance the drug concentration 

around the nucleus. Slowing et al., have reported that surface functionalities regulate the 

uptake of MSNs in HeLa cells, with positive zeta-potentials can be taken up more compared 

to their counterparts with negative zeta-potential, owing to a higher electrostatic affinity to the 

negatively charged cell membranes.
138

 Chung et al., have developed unmodified, weakly 

positive, moderately positive and strongly positively charged MSNs and studied their cellular 

internalization in 3T3-L1 cells and human mesenchymal stem cells (hMSC). They have 

observed a positive correlation between positive surface charge and the number of labeled 

cells for 3T3-L1 cells. Further, the charge effect on cellular uptake mechanism is cell type and 

surface charge (low, moderate or high) dependent. At a low surface charge, the normal 

clathrin- and actin-dependent mechanisms operate, above a certain threshold of surface charge 

unidentified charge-dependent mechanism starts to be effective for hMSC.
105 

However, the 

above-mentioned studies were performed in vitro only, and for in vivo delivery, depending on 

the surface charge of the nanoparticles, formation of a protein corona occurs, which can 

change the fate of the nanoparticles.
139

 Henceforth it is imperative to study the influence of 

surface charge together with charge density and a surface coating on MSNs’ internalization 

pathway. 

2.5.1.3. Effect of MSNs’ hydrophobicity and surface properties 

Another important aspect of nanoparticles for potential biomedical application is surface 

hydrophobicity. Nanoparticles require hydrophilicity for stable dispersion in water or aqueous 

environment. However, hydrophobicity is also required to enhance the interaction of 

nanoparticles with the cellular membrane to encourage uptake into cells. Since the 

nanoparticles’ surface comes in direct contact with the cells during in vitro condition, and the 

cell membrane is rich in alkyl lipids and cholesterol, imparting a partially hydrophobic 

character to the cell surface. Hydrophobic nanoparticles have high affinity for the lipid bilayer 

of the cells and thus, the uptake of hydrophobic particles is more pronounced compared to the 
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hydrophilic particles. However, when hydrophobic nanoparticles within the cell membrane 

penetrate into the cytosol, the surface of the nanoparticle should become hydrophilic to allow 

facile permeation. The hydrophobic nanoparticles are more pronounced to opsonization after 

intravenous administration. The surface properties of nanoparticles are also important for 

further modification through electrostatic or hydrophilic/hydrophobic interactions. Shashtri 

and co-workers have shown that by balancing between lipophilicity and charge characteristics 

of lipid nanoparticles, they can be targeted to cholesterol-rich caveolae domains on the cell 

surface and thus exhibiting high specificity towards endothelial cells.
140 

Thus, it is crucial to 

study internalization pathway and intracellular localization of MSNs in presence of different 

surface coatings such as polymeric or lipid bilayer coating.  

2.5.2. Biocompatibility and bio-distribution 

To evaluate the potential of MSNs as drug delivery carrier, properties such as bio-distribution, 

biocompatibility, and clearance from cellular systems are very important.
 
For the nanocarrier 

system, a critical challenge is to have the capacity to deliver sufficient amount of drug to the 

desired location with less acute or chronic toxicity to the healthy cells than conventional 

therapies.
14

 The other important concern for the nanocarrier is information concerning its in 

vivo bio-distribution.  

Recent investigations on the in vivo bio-distribution and excretion of MSNs by different 

researchers have shown that MSNs accumulate mainly in the liver, kidney and urinary bladder 

after intravenous injection, and partially excrete through the renal route.
141,142 

Further, bio-

distribution of MSNs in tumor bearing mice is different than animal without any tumor, as 

passive accumulation of MSNs occurs in tumors due to their leaky nature and influence 

overall bio-distribution of MSNs. Hyeon and coworkers have applied dually active 

(fluorescent and magnetic) core-shell structured PEGylated MSNs of less than 100 nm and 

observed their accumulation in tumor 24 hours after intravenous administration, which is 

probably due to an EPR effect. No short-term toxicity effect of MSNs was observed in mice at 

a dosage below 200 mg kg
-1

, which is significantly higher than the required dosage for drug 

delivery applications.
143

 In another study, the same group have used PEGylated MSNs of 70 

nm size, passively targeted to xenoimplanted MCF-7 tumors, and observed that MSNs also 

accumulate in the liver, spleen, and lungs, due to phagocytosis by macrophages.
144

 Jie Lu et 

al. have studied biocompatibility and bio-distribution of 100-130 nm size MSNs using human 

cancer xenografts, and observed that MSNs are well tolerated up to 100 mg kg
-1

 dose and 

preferentially accumulate in tumors. Further, they have treated mice with camptothecin-
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loaded MSNs, which showed suppression in tumor growth.
145

 However, in this study the 

authors have employed fluorescence spectroscopy and ICP-MS techniques for the 

quantification of the amount of particles distributed in different organs. Nevertheless, they 

have not employed adequate controls (without nanoparticles) for background correction. For 

example, for the FITC particles (in green channel) background fluorescence in different 

tissues is very high, which is not taken into account, and different tissues have varying 

amount of endogenous silicon levels. The blood circulation time of the nanoparticles varies 

depending on their particle size, shape, surface charge and surface properties and functional 

groups
142,146

 and therefore, detailed information on the bio-distribution, biocompatibility and 

drug delivery efficiency of MSNs with different surface functionalizations still needs further 

investigations. 

2.5.3. Barriers for drug delivery 

For any therapeutic agent to be effective, it must accumulate in target cells in optimal 

concentrations for a required duration of time. However, physiological and biochemical 

barriers prevent successful accumulation of nanopharmaceuticals at the disease sites. The 

physiological barriers for oral drug delivery include intestinal epithelium, which is highly 

absorptive and is composed of villi, covered with enterocytes, goblet cells, and mucus layer. 

Additionally, biochemical barriers such as low acidic pH in the stomach, metabolizing 

enzymes and efflux pump; makes drug delivery to GI tract more difficult.
147

 Using 

intravenous administration route, these limitations of the oral route can be circumvented as 

the entire dose is distributed in the systemic circulation. Furthermore, even if a drug is in the 

bloodstream, treatment of certain diseases such as cancer or brain diseases requires 

overcoming other obstacles and crossing of other physiological barriers such as opsonization 

and subsequent sequestration by the MPS, nonspecific distribution, tumor microenvironment, 

cellular internalization, escape from endosomal and lysosomal compartments. After 

intravenous administration, nanoparticles undergo opsonization, involving the adsorption of 

plasma proteins, including serum albumin, apolipoproteins, complement components and 

immunoglobulins, onto the surface of circulating nanoparticles, and subsequent uptake by 

resident macrophages of the MPS. This results in high accumulation of nanoparticles in 

organs, such as the spleen and the liver, contributing to nonspecific distribution of 

nanotherapeutics to healthy organs.
148

 As mentioned in Section 2.3.4., EPR effect allows 

delivery to the tumor cells using nanocarriers, as nanoparticles due to leaky tumor vasculature 

are able to passively target tumor cells, and due to the poor lymphatic drainage of tumors their 
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residence time also increases. However, a number of barriers still exist, which can prevent the 

efficient extravasation of nanoparticles. These include the tumor interstitium barrier, 

physiological factors such as low pH, low oxygenation and high interstitial fluid pressure in 

the tumor microenvironment. Further, the tumor cell membrane and intracellular organelles 

represent another barrier for the nanoparticles to conquer, for the effective intracellular 

delivery of drug cargo.
149,150

 For the treatment of brain diseases, blood brain barrier (BBB) is 

a diffusion barrier, consists of the endothelial cells lining the blood vessels in the brain, which 

impedes influx of most compounds from blood to brain. The cerebral endothelial cells form 

the tight junctions and create a diffusion barrier, which selectively excludes most blood-borne 

substances from entering the brain.
151

 To overcome these limitations, nanoparticle 

formulations should possess the ability to encapsulate and protect drugs and release them in a 

temporally or spatially controlled manner. 

2.5.4. Endosomal escape 

Endocytosis is the main uptake mechanism of cells for the internalization of any biological 

agents, such as DNA, siRNA, and proteins.
137

 After endocytosis, these molecules become 

entrapped inside the endosomes from which they transported to the lysosome, and they are 

degraded by specific enzymes in the lysosome. Thus, another barrier to achieve an effective 

intracellular drug release is endosomal entrapment. Hence, to facilitate the endosomal escape 

and ensure cytosolic delivery of the therapeutic molecules, different approaches are required. 

For example, bacteria and viruses use various mechanisms to penetrate the membranes of 

their target cells and escape the endosomal pathway. For the carrier-mediated delivery, 

different approaches can be employed to facilitate the endosomal escape such as pore 

formation in the endosomal membrane using different peptides, the pH-buffering effect of 

protonable groups such as PEI and fusion into the lipid bilayer of endosomes.
152

 

2.5.5. Drug delivery 

A drug delivery system can be defined as a formulation that controls the rate and period of 

drug delivery (time-release dosage) and targets it to specific areas of the body.
153

 Hence, only 

the pharmacological target is being exposed to the drug, in order to maximize the response 

and minimize the collateral effects.
154

 

2.5.5.1. Oral route 

Drugs substances are intended for use in the diagnosis, treatment, or prevention of diseases. 

Drug therapy is envisioned to result in a specific pharmacologic response of desired intensity 
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and duration at the same time avoiding adverse drug reactions.
155

 The drug response is 

dependent on the availability of the active drug at the receptor site, which is influenced by the 

plasma drug concentrations. The solubility and permeability of a compound are therefore a 

crucial parameter for the drug to be effective at the target site. According to 

Biopharmaceutical Classification System (BCS), a drug substance is considered highly 

soluble when the highest dose strength is soluble in 250 ml or less of aqueous media over the 

pH range of l-7.5. The FDA criterion for solubility classification of a drug in BCS is based on 

the highest dose strength in an immediate release (IR) oral product.
156

 The ability of a 

compound to diffuse across lipid membranes is termed permeation and it is directly correlated 

with compound’s lipophilicity. The permeability is calculated based on measurements of the 

rate of mass transfer across the human intestinal membrane. A drug substance is considered to 

be highly permeable when the extent of absorption in humans is determined to be 90% or 

more of an administered dose when there was no evidence suggesting instability of the 

compound in the GI tract. BCS is the fundamental tool in drug development, especially in the 

development of oral drug products. According to the BCS, drug substances are classified as 

follows (Figure 14)
157,158

: 

  

Figure 14. BCS classification of drug molecules. 

The oral route is the most widely employed route of drug administration because of its 

simplicity and patient compliance. In drug discovery, the number of insoluble drug candidates 

has increased in recent years, with almost 70% of new molecular entities showing poor water 

solubility.
159

 Further, newly designed drugs that are based on biomolecules, such as peptides, 

oligonucleotides, proteins and DNA often exhibit low bioavailability and require protection 

against enzymatic breakdown.
160

 The major hurdles for oral delivery of many drugs are low 

aqueous solubility, inadequate penetration through mucosal barriers, low dissolution in the GI 

fluids, and poor stability in the gastric environment resulting in poor oral bioavailability.
161

 In 

order to overcome these problems associated with drug delivery, and for the reappraisal of 

drugs that were previously disqualified due to their unfavorable pharmacokinetic properties 

numerous strategies can be employed.
162

 From the various available approaches, carrier-
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mediated delivery is a promising method of improving drug bioavailability, in which the drug 

molecule can be confined within the carrier agent and targeted to its specific site of action and 

at the same time being shielded from any unwanted degradation.
121,160

 Biodegradable 

mesoporous silica nanomaterials have been widely used as novel drug delivery systems 

holding promise for oral drug delivery.
163,164

 

2.5.5.2. Intravenous route 

Compared to oral administration, intravenous route provides advantage such that the entire 

administered dose reaches the systemic circulation after administration. However, a major 

challenge to achieve better treatment of disease such as cancer, infection and inflammation is 

the difficulty of delivering the drug only at a target site after injection, thus reducing severe 

toxic effects on peripheral tissues and organs. Further, intravenous administration of many 

newly developed drugs consists of peptides or other bio-macromolecules, which often suffer 

from degradation in the biological fluids, thus losing their activity. The capability of the 

targeting ligands or antibodies against cell surface receptors or antigens by active or ligand-

mediated cellular targeting can be utilized to increase site-specific actions of drug delivery 

systems.
165

 Thus, drug delivery system along with the therapeutic moiety would be delivered 

to the interior of the specific cells. Efficient in vivo drug delivery and bio-distribution of 

MSNs after intravenous administration were reported by many research groups.
166,167 

Functionalized mesoporous silica nanomaterials are thus possible carriers for targeting 

therapeutic compounds by intravenous route in order to increase the compound's effectiveness 

in the diseased tissue and reduce general toxicity. 
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3. Aim of the study 

In spite of the advances in the field of controlled drug delivery, great efforts are still needed 

for the formulation of poorly soluble drugs, especially chemotherapeutic drug molecules, in 

order to improve their bio-distribution and pharmacokinetic properties. MSNs have 

demonstrated beneficial properties for drug delivery; however, the effect of physicochemical 

properties on drug delivery proficiency and the efficient control of drug release are still being 

explored. 

In this dissertation, MSNs were designed with respect to the cargo molecule to be delivered 

taking into account its hydrophobicity/hydrophilicity. For hydrophobic (cargo) molecules, 

surface functionalizations of MSNs with polymers (e.g. different combinations of PEI or 

PEG) in combination with small-molecular targeting moieties (e.g. folic acid, glucose) were 

optimized to cross different biological barriers such as the cell membrane (to maximize 

cellular uptake) or mucosal layers in the GI tract to arrive at its target site. For hydrophilic 

cargo molecules, lipid bilayers were used as a diffusion barrier to prevent premature release of 

the water-soluble cargo molecules. This lipid composition was optimized for maximal cellular 

uptake and proper intracellular trafficking (endosomal escape). To enhance the cellular 

affinity, targeting moiety (i.e. folic acid) has been employed. 

 

The specific objectives of this dissertation are: 

 To evaluate the effect of different surface modifications on the physicochemical 

properties, and bio-interactions such as protein adsorption, cellular uptake extent, 

internalization pathways and cytotoxicity in vitro (I, IV) 

 To improve the therapeutic effect of hydrophobic drug molecules by mesoporous silica 

nanoparticle-mediated delivery and specific cellular targeting in vitro, and intestinal 

targeting in vivo via oral route (I, II, III) 

 To develop lipid bilayer gated mesoporous silica nanocarriers for controlled release and 

improved therapeutic efficacy of hydrophilic drugs in vitro, and to provide in vivo 

delivery to tumor via intravenous route (IV,V) 
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4. Characterization techniques 

The standard characterization of periodically-ordered mesoporous silica nanoparticles include 

use of electron microscopies (scanning electron microscopy; SEM, transmission electron 

microscopy; TEM), small angle X-ray diffraction (SAXD), gas adsorption analysis, 

thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The particle 

morphology is typically studied by SEM, while the ordered arrangement of pores can be 

detected by TEM. SAXD can be used to determine the periodic-ordered structure of the 

material. Gas adsorption measurements are used to determine surface area, pore volume, and 

pore size distributions. DLS is used to confirm redispersibility of the particles in aqueous 

solution. TG analysis is used to measure the amount of organic content added on the particle 

surface. Ultraviolet-Visible (UV-Vis) spectroscopy and high performance liquid 

chromatography (HPLC) are employed to detect and quantify drug amount incorporated into 

the particles. Important characterization techniques to study fluorescently labeled particles’ 

fate in biological environments are confocal laser scanning microscopy (CLSM) and flow 

cytometry, were used to evaluate their extent of uptake and specificity towards the target 

cells.  

In the following section, the characterization techniques used will be discussed at a level that 

is required for understanding the results that will be discussed. 

4.1. Electron microscopy 

The electron microscope is a type of microscope that uses a beam of electrons to create an 

image of the specimen; it operates according to the same basic principles as the light 

microscope but uses electrons instead of light. It is capable of much higher magnifications and 

has a greater resolving power than a light microscope, allowing it to see much smaller objects 

in finer detail. 

4.1.1. Transmission electron microscopy (TEM)
168,169,170,171

 

TEM involves a high voltage electron beam generated by an electron gun that has been 

focused into a small, thin, coherent beam by condenser lens. The electron beam is restricted 

by the condenser aperture to remove high angle electrons before it reaches the specimen. It is 

important that the specimen is thin enough to allow some electrons to transmit through the 

sample. Electrons that are transmitted through the specimen carry information about the 

structure of the specimen. The spatial variation in the ‘image’ is then magnified by a series of 

magnetic lenses until it is recorded by hitting a fluorescent screen, or light sensitive sensor 
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such as a CCD (charge-coupled device) camera, which provides a ‘shadow image’ of the 

specimen with its different parts displayed in varied darkness according to the atom density in 

the sample. (Figure 15) Heavy atoms having high electron density result in more interactions 

between the electrons in the primary beam and those in the sample, which in turn provides a 

higher contrast in the resultant image. Transmission electron microscopes produce two-

dimensional, black and white images.  

The successful imaging of nanoparticles using TEM relies on the contrast of the sample 

relative to the background. Samples are prepared for imaging by drying nanoparticles on a 

copper grid. Materials which have electron densities significantly higher than amorphous 

carbon are easy to image. 

TEM allows gathering information about particle size, shape, surface coating on the particle 

e.g. lipid bilayer or polymer coating, and it also provides information about small details of 

biological structure, such as a cell. Thus, it is an imperative tool in biomedical research. TEM 

images of the samples in this work were taken by JEM 1400-Plus, JEOL Ltd operated at 200 

kV. TEM was also used (under slight underfocus) to verify the presence and arrangement of 

the pores. 

 

Figure 15. A principal picture of TEM and SEM devices (References 172,173)
 

4.1.2. Scanning electron microscopy (SEM)
170,174,175

 

SEM uses a focused beam of high-energy electrons to generate a variety of signals at the 

surface of solid specimens. The high voltage electron beam is generated at the top of the 

microscope by an electron gun and accelerated down the column toward the specimen. The 
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beam is further focused and directed by electrostatic and electromagnetic lenses, as it moves 

down the column. (Figure 15) When the beam reaches the specimen, primary electrons of the 

electron beam can enter the sample and interact with electrons of the atom, and excites the 

sample by an unchanged energy called backscattered electrons. Some electrons are knocked 

loose from the surface of the specimen and are referred as secondary electrons. These 

electrons are ‘seen’ by a detector that amplifies the signal and sends it to a monitor. The 

electron beam scans back and forth across the sample and builds up an image from the 

number of electrons emitted from each spot on the sample. The signals that derive from 

electron-sample interactions reveal information about the sample, including external 

morphology, topography, and crystalline structure of the specimen’s surface. 

Samples to be viewed with the SEM and TEM must be able to withstand a vacuum. For SEM 

imaging, samples need to be conductive. Samples that are not conductive can be coated with a 

thin layer of conductive material by a process called sputter coating. SEM images of the 

samples in this work were captured with LEO Gemini 1530, Leo Ltd. with a Thermo 

Scientific UltraDry Silicon Drift Detector (SDD). 

4.2. Nitrogen sorption analysis
176,177,178,179,180

 

Gas adsorption measurements are of major importance for the characterization of various 

porous materials, as specific surface area, specific pore volume, pore size and its distribution 

can be determined using this technique. The nitrogen physisorption process is described 

quantitatively by an adsorption/desorption isotherm, representing the amount of 

adsorbed/desorbed Nitrogen at a fixed temperature as a function of partial pressure of N2.  

According to IUPAC, the pores can be classified according to their sizes
176

: 

(i) macropores: pore width > 50 nm 

(ii) mesopores: pore width 2 - 50 nm 

(iii) micropores: pore width 0.7 - 2 nm 

(iv) ultramicropores: pore width < 0.7 nm 

The amount of gas adsorbed by the mass of solid is dependent on the equilibrium pressure, 

the temperature, and the nature of the gas-solid system. These relationships are represented in 

what is called the adsorption isotherm. The adsorption isotherms are displayed in graphical 

form with the amount adsorbed (na in mol g
-1

) plotted against the equilibrium relative pressure 

(ρ/ρ0). The majority of physisorption isotherms are grouped into the six types according to the 
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IUPAC classification shown in Figure 16. The shape of these isotherms is based on the 

strength of the adsorbent–adsorbate interactions and the type of porosity (or porosities) of the 

adsorbent. 

 

Figure 16. IUPAC classification of physisorption isotherms of porous solids (Reference 176) 

Type I isotherms show steep uptake of nitrogen in low relative pressure, which is associated 

with the microporosity of the material. Adsorption is limited to a few molecular layers, and 

dependent on the available micropore volume. Type I isotherms can be described by the 

Langmuir equation, which was developed on the assumption that adsorption was limited to at 

most one monolayer. Type II isotherms are indicative of solids that are non-porous and 

macroporous. Point B indicates the relative pressure at which monolayer coverage is 

complete. Type III isotherms are characteristic for solids where hardly any adsorption occurs 

due to weak adsorbate-adsorbent interactions. The difference between Type II and III 

isotherms are in terms of strong or weak adsorbent–adsorbate interactions, respectively. 

Characteristic features of Type IV isotherms are the hysteresis loop, the lower branch of which 

represents measurements obtained by progressive addition and the upper branch by 

progressive withdrawal of gas of the adsorbent. The shape of the hysteresis loop is associated 

with the filling and emptying of mesopores by capillary condensation, which reveals 

additional information about the pore structure. This specific hysteresis loop is of type H1 and 

is caused by a narrow distribution of uniform pores, such as ordered mesoporous materials. 

Type V isotherms are indicative of weak adsorbent-adsorbate interactions. The hysteresis loop 

of type H2 is observed, which is common for many inorganic oxides, such as amorphous 

silica gels. The type VI isotherms are associated with layer-by-layer adsorption on a uniform 

surface. Usually non-polar molecules on uniform surfaces give rise to such isotherms. The 
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samples prepared in this study are MCM-41 mesoporous materials expressing the type IV 

isotherms. 

The Langmuir equation describes microporus material exhibiting Type I Isotherms. The 

Langmuir model assumes adsorption is limited to one monolayer. The Brunauer-Emmett-

Teller (BET) gas adsorption model is the most widely employed procedure for the 

determination of the specific surface area of finely divided and porous materials using the 

physisorption isotherm data. For this it is necessary to draw the BET plot and the monolayer 

volume (Vm) can be derived from the plot.
177 

𝒑

𝑽 (𝒑𝟎−𝒑)
=  

𝟏

𝑽𝒎𝑪
+

𝒄−𝟏

𝑽𝒎𝑪
 
𝒑

𝒑
       eq  (1) 

where V is volume adsorbed, p sample pressure, p0 saturation pressure and C constant related 

to the enthalpy of adsorption (BET constant). The constant C is related to the sharpness of 

point B (Figure 16) and the value is sensitive to both surface polarity and to the presence of 

microporosity. The C-value for nitrogen adsorption at 77 K on porous silica is normally in the 

range of 50 to 200. The specific surface area (SBET) is then calculated from Vm by the 

following equation- 

𝑺𝑩𝑬𝑻 =   
𝑽𝒎𝑵𝒂𝒂𝒎

 𝒎 𝑽𝑳
        eq (2) 

where Na is Avogadro constant, am the cross sectional area occupied by each nitrogen 

molecule (0.162 nm
2
), m weight of the sample and VL the molar volume of nitrogen gas 

(22414 cm
3
). The BET surface area can be calculated as long as the BET plot is linear and 

does not cut the y-axis at x=0 at y-values below zero. The theory is based on the assumption 

that only monomolecular adsorption takes place, adsorption is localized onto surface sites and 

the energy of adsorption is independent of the surface coverage. Single point BET involves 

determining specific surface area using a single point on the isotherm and multipoint BET 

involves a minimum of three data points. 

The pore size can be determined from either the adsorption branch or the desorption branch of 

the nitrogen isotherm. The Kelvin equation with a correction for the multilayer thickness in 

the pore walls can be used to evaluate the pore width, or more precisely the pore size 

distribution, from the pore filling pressure.  



Characterization techniques 

41 
 

𝒍𝒏
𝒑

𝒑𝟎
=  −

𝟐𝜸𝑽𝑳

𝒓𝑹𝑻
       eq (3) 

where p/p0 is the relative pressure, r is the mean radius of curvature of liquid in a pore, γ 

surface tension of the liquid, VL molar volume of the liquid, R the gas constant and T absolute 

temperature. 

The most common model for pore size distribution analysis is the Barrett-Joyner-Halenda 

(BJH) model,
179

 which is based on the Kelvin equation. The limitation of the BJH model is 

that it underestimates the pore size by ~1 nm in the pore size range of 2 - 4 nm. Hence, a 

model based on the statistical mechanics rather than the Kelvin equation, such as Non local 

density function theory (NLDFT), provides a more accurate way of determining pore size 

distribution. NLDFT allows calculation of the pore size distribution in the entire range of 

micro- and mesopores, i.e. from 0.5 nm to 40 nm. However, NLDFT method is not perfect, 

the drawback of standard NLDFT method is that it does not take into account chemical and 

geometrical heterogeneity of the pore walls, instead assume it as a structureless, chemically 

and geometrically smooth surface. Hence, theoretical NLDFT adsorption isotherms exhibit 

multiple steps.
181

 

Degassing is an important step before measurement of surface area or pore size/volume to 

clean the surfaces from physisorbed molecules (water/organic vapors). All nitrogen sorption 

measurements in this work were performed with Autosorb-1 Sorptometer and autosorb 

software (Quantachrome instruments) was employed to determine surface area using BET 

theory, and NLDFT theory was used to calculate pore size and the pore size distribution. 

4.3. Small angle x-ray diffraction (SAXD) 

The technique is based on diffraction of x-rays by the electron clouds of the atoms. In the 

absence of absorption effects, the intensity of the scattered radiation is directly proportional to 

the electron density differences in the system. When an x-ray beam with wavelength λ strikes 

a material with periodic long-range order, characteristic reflections of intensity for planes will 

be observed in a diffractogram as a result of the constructive interference when the scattering 

angle (θ) satisfies Bragg’s law. 

𝒏𝝀 =  𝟐𝒅𝒔𝒊𝒏𝜽       eq (4) 

where n- integer number of wavelengths (order of diffraction), λ- wavelength, d- repeating 

distance between reflecting planes and θ- scattering angle. 
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Bragg’s law shows the relationship between crystal lattices (d) and the observed scattering 

angle. In Bragg’s law, the scattered intensity is measured as a function of scattering angle. In 

a crystal, a set of crystallographic planes hkl can be defined as the set of parallel equidistant 

planes, one of which passes through the origin, and the next nearest makes intercepts of a/h, 

b/k, and c/l on the three crystallographic axes, where a, b, and c are the dimensions of the 

smallest repeat unit of the crystal (the unit cell). The spacing between diffracting planes is 

called the d-spacing. Compounds with different unit cells have different assemblies of lattice 

spacings and hence will lead to different diffraction patterns. Thus, the combination of d-

spacings and intensities are characteristic for each structure. Consequently, analyzing the 

positions of the reflected beams information about the size and symmetry of the lattice 

dimensions can be obtained. In MCM-41, there is no repeat unit in the c axis and so only 

reflections from the hk planes, in two dimensions, are seen. MCM-41 can be indexed to a 

hexagonal hk0 lattice and are therefore, indexed as (100), (110), (200), (210) and (300). The 

repeating distance d directly gives the unit cell (lattice) parameter, a. Center to center distance 

(a) between the hexagonally arranged channels in MCM-41 is 2/√3 times the d-spacing for a 

hexagonal system. (Figure 17) 

 

Figure 17. (A) TEM image of MCM-41, (B) illustration of the 2D hexagonally-ordered lattice 

with d100 spacing and unit cell parameter a (Adapted from reference 40) 

SAXD experiments were performed on a modified Kratky compact small-angle system 

(MBraun, Nottinghampshire). 

4.4. Thermogravimetric analysis (TGA)
182,183,184

 

Thermogravimetric analysis (TGA) measures weight changes in a material as a function of 

temperature (or time) under a controlled atmosphere. The method offers valuable information 

for quality control, development and research. TGA can be used to study thermal stability and 

composition of materials.  
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A TGA is performed by gradually raising the temperature of a sample in a furnace as its 

weight is measured on a balance that remains outside of the furnace. The TGA program can 

be run in different modes- heating or cooling (dynamic), or holding the temperature constant 

(isothermal), or any combination of these. The measurement can be run up to 2000°C 

temperatures in controlled gas atmospheres. Changes in the mass of a sample are studied 

while the sample is subjected to the program. These changes in temperature affect the sample 

such as e.g. sublimation, vaporization, oxidation, reduction, and decomposition bring a drastic 

change in mass of the sample. The weight/mass of the sample is plotted against temperature 

or time to illustrate transformations in the material, and the plot is called thermogram. The 

thermogram gives information about the changes in sample composition, combustion of 

and/or evaporation of substances from the sample. The shape of the thermogram is dependent 

on the rate of heating; therefore, the same temperature program should be chosen in order to 

compare different samples.  

All the TGA measurements in this work were performed using Netzsch STA 449 F1 Jupiter 

and the data was analyzed by using Netzsch Proteus® Thermal Analysis Software v.5.2.1. 

4.5. Dynamic light scattering (DLS)
185,186,187,189

 

Dynamic light scattering (DLS) is a non-invasive technique for measuring the size and size 

distribution of molecules and particles typically in the submicron region. DLS is applied for 

the characterization of particles, emulsions or molecules, which have been dispersed or 

dissolved in a liquid. The technique of dynamic light scattering measures the speed of 

particles undergoing Brownian motion. Smaller particles fluctuate more rapidly than large 

particles. (Figure 18) 

 

Figure 18. Intensity fluctuation due to Brownian motion (Reference 189) 
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Analysis of these intensity fluctuations yields the velocity of the Brownian motion (defined 

by the diffusion coefficient (D)) and hence the particle size can be obtained using the Stokes-

Einstein equation. 

𝑫 =  
𝒌𝑻

𝟔𝝅𝜼𝑹
        eq (5) 

where D= diffusion coefficient, k= Boltzmann constant, T= absolute temperature, η= 

viscosity of the solvent, and R= hydrodynamic radius of the particle. 

When a sample is illuminated by a light source, such as a laser, it scatters light in all 

directions. In this study, DLS measurements were performed at 298 K, using a 

monochromatic laser (He-Ne), with a working wavelength of 632.8 nm and a non-invasive 

backscatter (NIBS), with the detector that is positioned at 173° relative to the laser beam. The 

speckle pattern is measured in relation to time, first within a certain time point t, next showing 

the fluctuation in scattering intensity at the time point (t+δ) continuing this way, always 

correlating the measured data to the previous one. After the determination of the correlation 

function (Figure 19), it is possible to calculate the particle-size distribution.  

 

Figure 19. Correlation function (Reference 189) 

DLS gives an intensity-weighted distribution, where the contribution of each particle in the 

distribution relates to the intensity of light scattered by the particle. Rayleigh approximation, 

which describes the intensity of scattering to be proportional to the sixth power of the particle 

diameter, for the sample consisting of particles in two size classes equal in number, the bigger 

particles scatter more light resulting in larger peak area by intensity. When comparing particle 

size data for the same sample obtained by different techniques, it is important to realize that 
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the types of distribution being measured and reported can produce very different particle size 

results. (Figure 20) 

 

Figure 20. Example of number, volume and intensity weighted particle size distributions for 

the same sample (Reference 189) 

Cumulants analysis has been used for fitting the correlation function. This analysis gives a 

mean particle size (z-average) and an estimate of the width of the distribution (polydispersity 

index, PDI). PDI is a dimensionless measure of the broadness of the size distribution. In the 

Zetasizer software, it ranges from 0 to 1. Low PDI values (lower than 0.1) might be associated 

with a high homogeneity and high PDI values (greater than 0.7) indicate that the sample has a 

very broad size distribution and it is not suitable for the DLS measurement. 

The diameter measured in DLS is called the hydrodynamic diameter and refers to the way a 

particle diffuses within a fluid. The diameter obtained by this technique will depend not only 

on the size of the particle ‘core’, but also on any surface structure, as well as the concentration 

and type of ions in the medium. Thus, the size obtained by DLS will be larger than when 

measured by electron microscopy, where the particle is removed from its native environment. 

4.6. Electrokinetic zeta potential measurement
188,189

 

Zeta (ζ) potential is a measure of the magnitude of the electrostatic or charge 

repulsion/attraction between particles, and is one of the fundamental parameters known to 

affect the stability of a colloidal system. When charged particles are dispersed in aqueous 

liquid, ions of opposite charge will be attracted to the surface of the particle. The net charge at 

the particle surface affects the distribution of ions in the surrounding interfacial region, 

creating an increased concentration of counter ions (ions of opposite charge) close to the 

surface of the particles and hence creating an electrical double layer around each particle. The 

liquid layer surrounding the particle consists of two parts: an inner region, or the Stern layer, 
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where counter ions are strongly bound and an outer region or the diffuse layer, where ions are 

less firmly attached. Within the outer region or diffuse layer, there is a notional boundary 

inside which the adsorbed ions and the particle form a stable entity, which implies that when 

the particle moves in the liquid due to e.g. gravity, the ions within this boundary travels along 

with the particle, but any ions beyond the boundary do not  move with the particle. This 

boundary is called the surface of hydrodynamic shear or the slipping plane. The potential at 

the slipping plane (or close to the surface) is known as the zeta (ζ) potential. The potential at 

this region decays as the distance increases from the surface until it reaches a distance at 

which the value becomes the same as in the bulk solution, which is conventionally assumed to 

be zero. It is imperative to note that the ζ potential is an experimentally determined value, an 

uncertainty arises in that it is not clear at what location within the double layer it is measured, 

as the precise quantitative meaning of ‘close’ cannot be defined.
188

 

ζ potential magnitude gives a prediction of the colloidal stability of the system. When the 

particles in the dispersion system have a large negative or positive ζ potential, repulsion exists 

between them and hence dispersion has no tendency to flocculate and the colloidal system 

will be stable. The magnitude of the ζ potential around ± 30 mV generally provides 

electrostatically stabilized systems. The ζ potential varies strongly within the pH and, 

therefore, the ζ potential should always be noted together with measured pH. As the ζ 

potential varies with the pH electrokinetic titration, measurements can be exploited to 

determine the isoelectric point (IEP), which is the pH where the net effective surface charge 

i.e. the ζ potential is zero, and which means the pH where the colloidal system is least stable. 

Moreover, the electrolyte concentration should also be taken into consideration, as the added 

electrolyte will screen the surface charges (reduce the thickness of the double layer) and 

hence suppress the absolute value of the ζ potential. 

When an electric field is applied across an electrolyte solution, charged particles suspended in 

the electrolyte solution are attracted towards the electrode of opposite charge. Viscous forces 

acting on the particles tend to oppose this movement. When equilibrium is reached between 

these two opposing forces, the particles move with constant velocity. The velocity of a 

particle in an electric field is commonly referred to as its Electrophoretic mobility. The 

electrophoretic mobility can be determined by performing an electrophoresis measurement 

using Laser Doppler Velocimetry. Laser Doppler Micro-electrophoresis is used to measure 

zeta potential.  
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ζ potential can be measured by determining the electrophoretic mobility and then by applying 

the Henry equation:  

𝑼𝑬 =  
𝟐ɛ𝜻

𝟐𝜼
 𝒇(𝑲𝒂)      eq (6) 

where ε= dielectric constant of the liquid, η=viscosity, UE= electrophoretic mobility, and 

f(Ka) = Henry’s function.  

Two values are generally used as approximations of f(Ka): either 1.5 (the Smoluchowski 

approximation) or 1.0 (the Hückel approximation). The Smoluchowski approximation is used 

for the folded capillary cell and the universal dip cell when used with aqueous samples. The 

Smoluchowski approximation was used throughout this study. 

All the ζ potential and DLS measurements in this study were performed using a Zetasizer 

Nano ZS instrument (Malvern Instruments).  

4.7. Fluorescence spectroscopy
190

 

Fluorescence spectroscopy measures the intensity of photons emitted from a sample after it 

has absorbed photons. Fluorescence is an imperative investigation tool in analytical sciences 

due to its high sensitivity and selectivity.  

A photon of an excitation light is absorbed by an electron of a fluorescent particle, which 

raises the energy level of the electron to an excited state. During this short excitation period, 

some of the energy is dissipated by molecular collisions or transferred to a proximal molecule, 

and then the remaining energy is emitted as a photon to relax the electron back to the ground 

state. Because the emitted photon usually carries less energy and therefore has a longer 

wavelength than the excitation photon, the emitted fluorescence can be distinguished from the 

excitation light. (Figure 21) The excitation and photon emission from a fluorophore is 

recurrent, and until the fluorophore is irreversibly damaged, it can be repeatedly excited.
191

 

The fluorescence spectrometer instrument has a light source (xenon lamp), equipped with 

monochromators to select both the excitation and emission wavelengths. The fluorescence is 

detected with photomultiplier tubes and quantified with the appropriate electronic devices. 

The output is usually presented in graphical form. 
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Figure 21. Jablonski energy diagram of fluorescence (Reference 191) 

The brightness of a given fluorophore is determined by the molar extinction coefficient and 

quantum yield. The molar extinction coefficient (ε) is defined as the quantity of light that can 

be absorbed by a fluorophore at a given wavelength and is measured in M
-1

 cm
-1

. The 

quantum yield (Φ) is calculated as the number of photons that are emitted by the fluorophore 

divided by the number of photons that are absorbed, maximum value of it can be 1. 

The fluorescence measurements are sensitive to change in temperature, solvent viscosity, and 

solvent pH. Quantum yield of fluorescence decreases with increasing temperature. As the 

temperature increases, the frequency of the collision increases which increases the probability 

of deactivation by external conversion. Solvents with lower viscosity also increase the 

possibility of deactivation by external conversion. The fluorescence of aromatic compound 

with basic or acid substituent rings is pH dependent. For example, fluorescein exists in 

various ionic (cation, monoanion, dianion), neutral and lactone forms depending on the pH of 

the solution. The monoanion and neutral forms of fluorescein have similar fluorescence 

spectra in aqueous solution. The dianion form shows a narrower emission band. The lactonic 

form does not contribute to the fluorescence much, since it does not absorb in the visible 

spectrum.
192

 

Fluorescence measurements in this work are performed on Perkin Elmer LS 50B instrument 

and data has been analyzed using FLWinLab software.  

4.8. Ultraviolet-Visible (UV-Vis) spectroscopy
193,194

 

UV-Vis spectroscopy is the most ubiquitous analytical and characterization techniques in 

qualitative and quantitative analysis. There is a linear relationship between absorbance and 
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absorber concentration, which makes UV-Vis spectroscopy particularly attractive for making 

quantitative measurements. 

UV-Vis absorption spectroscopy is the measurement of the attenuation of a beam of light after 

it passes through a sample or after reflection from a sample surface. Absorption 

measurements can be at a single wavelength or over an extended spectral range. Absorption 

spectra arise from the transition of electrons within a molecule from a lower level to a higher 

level. A spectrometer records the degree of absorption by a sample at different wavelengths 

and the resulting plot of absorbance (A) versus wavelength (λ) is known as spectrum. 

In the double beam UV-Vis spectrophotometer, the light is split into two parallel beams, each 

of which passes through a cell; one cell contains the sample dissolved in a solvent and the 

other cell contains the solvent alone. The detector measures the intensity of the light 

transmitted through the solvent alone (I0) and compares it to the intensity of light transmitted 

through the sample cell (I). 

𝑻 =  
𝑰

𝑰𝟎
       eq (7) 

The absorbance is then calculated from transmittance. The relationship between transmittance 

(T) and absorbance (A) can be expressed by the following equation: 

𝑨 =  −𝒍𝒐𝒈𝟏𝟎 𝑻      eq (8) 

The Beer-Lambert law defines the relationship between the concentration of a solution and 

the amount of light absorbed by the solution. The absorbance of a solution is directly 

proportional to the path length (length of the cell containing the solution) and the 

concentration of the absorbing molecule (in moles per liter), according to the equation: 

𝑨 =  ɛ𝒃𝒄       eq (9) 

where, A= absorbance of the sample, ɛ = molar absorptivity (liter mol
-1

 cm
-1

), b = length of 

the light path through the sample (cm), c = the concentration of the sample (mol liter
-1

).  

The Beer-Lambert law can be applied to dilute solutions, concentrations ≤0.01 M. At high 

concentrations, deviations from the law can be observed due to changes in the absorbing 

species or the properties of the bulk solution. Other causes of nonlinearity include- a 

scattering of light due to particulates in the sample, fluoresecence or phosphorescence of the 
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sample, changes in refractive index at high analyte concentration, shifts in chemical equilibria 

as a function of concentration and stray light. 

The equipment used in this work was a Nanodrop 2000c Thermo Scientific 

Spectrophotometer. 

4.9. High performance liquid chromatography (HPLC)
195

 

Chromatography is a separation technique which is used to separate a mixture of compounds 

into its individual components based on their molecular structure and molecular composition. 

The HPLC instrument consists of a separation column (stationary phase), a reservoir of a 

mobile phase, a pump, an injector, and a detector. In normal phase HPLC, the stationary 

phase is polar and the mobile phase is non-polar. In reversed phase HPLC, the stationary 

phase is non-polar, generally, silica surface modified with long hydrocarbon chain (8 or 18 

carbon atoms), and a polar mobile phase, usually water and alcohol or acetonitrile mixture. 

Reversed phase HPLC is the most commonly used form of HPLC. The process involves the 

interaction of the compounds in the analyte across an immobile stationary phase. The mobile 

phase flows through the stationary phase and carries the components of the mixture to be 

separated with it. Sample components based on their physical and chemical properties (such 

as polarity, charge, molecular weight and functional group) display stronger/weaker 

interactions with the stationary phase and they will move slow/fast through the column. These 

differences in the rates cause the separation of various components. Mobile phase 

composition and temperature play a major role in the separation process by influencing the 

interactions taking place between sample components and stationary phase. The separated 

components pass through the detector located at the end of the column, which detects and 

quantifies the analytes as they elute from the chromatographic column. Most commonly used 

detectors are UV-Vis, fluorescence, and mass-spectrometric detectors. The detector provides 

an output to a computer that result in the chromatogram. (Figure 22) 

 

Figure 22. Schematic representation of HPLC instrumentation. 
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HPLC experiments in the study were performed using an Agilent HPLC system. 

4.10. Confocal laser scanning microscopy (CLSM)
196,197

 

Confocal laser scanning microscopy (CLSM) is a valuable tool for obtaining high-

resolution images and 3-D reconstructions of fluorescent samples. It offers several advantages 

over conventional optical microscopy, including shallow depth of field, elimination of out-of-

focus glare, and the ability to collect serial optical sections from thick specimens. In the 

biomedical sciences, a major application of confocal microscopy involves imaging of either 

fixed or living cells and tissues that have usually been labeled with one or more fluorescent 

probes. 

 

Figure 23. Schematic of light path in confocal microscope (Reference 198) 

In the confocal optical system, the objective lens is used to focus a laser beam onto the 

specimen where it illuminates a small section of the sample. The specimen in a CLSM is 

irradiated in a pointwise fashion and the physical interaction between the laser beam and the 

specimen is measured point by point. It is necessary to guide the laser beam across the 

specimen to obtain information about the entire specimen, and this process is known as 

‘scanning’. Light proceeds from the illuminated spot on the specimen to the objective where it 

is directed by a dichroic beam splitter toward the confocal pinhole aperture. (Figure 23) This 

pinhole positioned in front of the detector, on a plane conjugate to the focal plane of the 

objective lens, gives the system its confocal property by rejecting light originating from 

neighboring focal planes. The light coming from planes above or below the focal plane is out 

of focus when it hits the pinhole, so most of it cannot pass the pinhole and, therefore, does not 

contribute to forming the image. However, all light rays originating from the plane of focus 

pass through the pinhole aperture and are collected by the detector. The ability of confocal 
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microscopes to closely discriminate between light originating at the focal plane from that 

originating from above or below the focal plane enables known as ‘optical sectioning’, makes 

it possible to scan a sample at various x-y planes corresponding to different depths, and, by 

ordering these planes into a vertical stack, reconstruct a 3-dimensional image of the specimen. 

Since it does not require physical sectioning of thick samples and precludes the need for 

extensive specimen processing, CLSM is one of the most efficient methods available to gain 

three-dimensional information on living biological specimens and biomaterials. In CLSM, 

instead of a tungsten or mercury lamp, a laser is used as a light source, and is combined with a 

sensitive photomultiplier tube (PMT) detector, and a computer to control the scanning mirrors 

or other scanning devices and to facilitate the collection and display of images. 

The main goal of confocal microscopy is to explore the structure and structural relationship 

along the optical (z) axis as well in the x-y plane. For this, preservation of the cells and tissue 

structure during the preparation of the sample is necessary to obtain a reliable image. It is 

important to use low laser power for studies of living cells, because it can cause 

photodynamic damage and consequent alteration in normal cell behavior. 

Multiple fluorescent probes within single cells can be incorporated to define the differential 

distribution of more than one labeled structure or molecular species. Confocal microscopy 

with a sample containing living cells is dependent on the properties of fluorescent probes, 

which are the strong signal, high stability in biological environment (e.g. effect of pH and 

temperature), slow bleaching, and cytocompatibility leading to a high signal-to-noise ratio. 

The use of nanoparticles as imaging agents has the potential to provide remarkably higher 

photostability and signal, compared to that of single fluorophores. 

Confocal microscopy experiments in this work were performed using Leica TCS SP5 matrix, 

Leica TCS SP5 STED and Zeiss LSM 510 Meta Confocal microscope and data analysis has 

been performed using BioImage XD and ImageJ software. 

4.11. Flow cytometry
199,200

 

Flow cytometry is a well-established technique that integrates light scattering and 

fluorescence measurements to gather information regarding size, relative granularity or 

internal complexity of cells and fluorescent intensity, as they flow in a fluid stream through a 

beam of (laser) light. This technique permits simultaneous multiparametric analysis of the 

physical and chemical characteristics of up to thousands of particles per second. By using 

fluorescently labeled nanoparticles it is possible to quantify their internalization in cell 
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subpopulations, which are identified by specific markers exposed on the cell membrane. 

Additionally, changes in cell parameters such as side scattering of cells in the presence of 

specific nanoparticles can be used to recognize cellular internalization. 

In flow cytometry, a beam of laser light is directed at a hydrodynamically focused stream of 

fluid that carries the cells (which may range in size from 0.2 to 150 μm). The optics system 

consists of lasers to illuminate the particles in the sample stream and optical filters to direct 

the resulting light to detectors. Several detectors are carefully placed around the stream, at the 

point where the fluid passes through the light beam. One of these detectors is in line with the 

light beam and is used to measure Forward Scatter (FSC), and it distinguishes live and dead 

cells from each other. Another detector is placed perpendicular to the stream and is used to 

measure Side Scatter (SSC), it detects the granularity of the cells. Fluorescence detectors are 

used to detect fluorescence signal from different components. The electronics system converts 

the detected light into electronic data that can be processed by the computer. (Figure 24) 

 

 

Figure 24. Schematic diagram of a flow cytometer, showing focusing of fluid sheath, laser, 

optical systems and detectors (Reference 201) 

The processing steps should be performed at 4 °C (on ice) and possibly in the dark to reduce 

negative effects of higher temperatures and lights on the fluorescence. Further, the 

cytotoxicity of the nanoparticle dose used for the internalization experiments should be 

empirically tested beforehand. The disadvantages of this technique concern the need of 

working with monodisperse samples and the inability to localize the site of origin of the 

fluorescence signal (i.e. different cellular compartments). It also has a limitation in the choice 
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of fluorochromes to be used in combination because the wavelength of the emission bands 

must be sufficiently separated to allow their appropriate measurement. 

CLSM and flow cytometry are often combined to obtain quantitative data on particle 

association with cells, and qualitative data on internalization. 

Flow cytometry experiments in this work were performed using BD FACSCalibur analyzer 

and data analysis has been performed using CellQuest Pro
TM

 and Flowing software. 

 

Table 2. Summary table showing phenomena studied using above-mentioned techniques: 

Phenomena studied Technique used Publication No 

Particle size TEM, SEM, DLS 1-5 

Net surface charge Zeta potential measurement 1-5 

Pore size, surface area, pore 

volume 
Nitrogen sorption analysis 2-4 

Arrangement of pores SAXD 1,3,4 

Amount of organic surface 

function 
TGA 2-4 

Amount of targeting ligand  UV-Vis Spectroscopy, TGA 2-3 

Drug loading  UV-Vis Spectroscopy, HPLC 2-5, Supp. Paper 3 

Particle fluorescence Fluorescence spectroscopy 1-4 

Particle surface conjugation FTIR 4 

Protein adsorption UV-Vis Spectroscopy 1 

Cytotoxicity WST-1 assay 1-5 

Cellular uptake 
CLSM 1-5 

Flow cytometry 1-4 

Translocation CLSM unpublished 

Route of uptake Flow cytometry 1,5 

Permeability HPLC unpublished 

Heat shock response of 

celastrol 
Western blot analysis 2 

In vitro apoptotic effect of 

celastrol 
Flow cytometry 2 

In vivo bio-distribution CLSM 3 

Stability of particles and cargo 

in simulated fluids 
TEM, HPLC 3 

In vivo efficacy of DAPT Light microscopy, RT-PCR 3 

Bone density 
pQCT (Peripheral quantitative 

computed tomography) 
5 

In vivo efficacy of ZOL 
Measurement of tumor size, light 

microscopy 
5 
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5. Summary of the results 

5.1. Mesoporous nanocarriers for delivery of hydrophobic cargoes 

In this thesis, different surface functionalized MSNs of moderate size (250-300 nm) have 

been developed and step-by-step evaluations of their biophysicochemical interactions have 

been conducted to arrive at the best particle design for the specific purpose. Further, drug-

carrier interactions have been assessed to obtain suitable carrier functionality for the drug 

delivery application. As observed in our previous studies, MSNs of size 250-300 nm can be 

employed as an efficient carrier for hydrophobic drug molecules to cancer cells in vitro
55

 and 

in vivo; via peritumoral and oral routes of administration.
202

 These results were promising 

and, therefore, the same MSN platform has been used for further investigation in this thesis. 

However, in-depth analysis of surface modification variations on physicochemical aspects as 

well as bio-interactions was still lacking to some degree in the earlier studies.  

In order to fill these gaps, 250-300 nm sized MSNs were thus synthesized using the same 

protocol as in the previous studies and further functionalized with different polymers and/or 

targeting ligands (e.g. folic acid and glucose) for drug delivery application. To show the 

applicability of the MSN platform to deliver various hydrophobic cargoes, and to study the 

interaction of particles (based on surface charges) with cargo molecules, different 

hydrophobic molecules were loaded to the MSNs, such as furosemide, celastrol, curcumin and 

DAPT (γ-secretase inhibitor) and their loading as well as release studies were performed. To 

evaluate interaction between nanocarriers and cellular environment, the prepared nanocarriers 

were evaluated for their biocompatibility as well as for their cellular uptake after different 

surface modifications, and their exocytosis of nanocarriers have been studied. Further, effects 

of surface charge and surface properties of MSNs on cellular uptake have been examined. 

MSNs’ potential in improving drug permeability across epithelial monolayers has been 

evaluated. The therapeutic efficacy of drug-loaded MSNs in cancerous cells was studied. 

Considering the oral delivery application, the stability of drug loaded MSNs in simulated 

gastric fluid has been assessed. Finally, in vivo bio-distribution and efficacy of drug loaded 

MSNs after oral administration has been studied. The formulation under study and their 

respective purposes have been summarized in Table 3. 
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Table 3. Overview of the studied formulations for the delivery of hydrophobic cargoes: 

MSN Surface function 
Targeting 

ligand 
Cargo Main purpose of the study 

Co-condensed 

with 10 % 

APTES 

FITC 

labelled
55,59,202 

 

PEI-, PEG-, 

Succ-, PEG-PEI-, 

Succ-PEI- 

- - 

To study effect of surface 

coating on protein adsorption 

To study influence of 

surface charge on the route 

of uptake 

PEI-, GAorg-, 

GAaq-, Gluc-, 

GAorg-PEI-, 

GAaq-PEI-, Gluc-

PEI- 

Glucuronic 

acid (GA), 

Glucose 

(Gluc) 

Celastrol 

To study effect of glucose 

targeting on cellular uptake 

To study apoptosis induction-

efficacy of celastrol-loaded 

MSNs 

PEI-, Succ-PEI-, 

ACA-PEI- 
- Curcumin 

To measure effect of surface 

charge on the fluorescence 

property of curcumin 

PEI-, PEG-PEI-, 

FA-PEG-, FA-

PEG-PEI- 

Folic acid Furosemide 

To study effect on  

permeability of furosemide 

after loading into MSNs. 

FA-PEI-, FA-

PEG-PEI- 
Folic acid DAPT 

To study in vivo oral drug 

delivery efficiency of MSNs 

 

5.1.1.  Design and characterization of mesoporous nanoparticles 

Monodisperse mesoporous silica nanoparticles with an average diameter of 250-300 nm were 

synthesized. Fluorescent MSNs were created by incorporation of fluorophore (FITC), already 

in the synthesis step via co-condensation approach. Synthesized MSNs were further modified 

by various surface functionalization routes. 

5.1.1.1. Functionalization of MSNs 

To investigate the effect of surface functionalization on the interaction between the carrier and 

drug as well as carrier and environment, amino groups were successfully introduced onto the 

surface of mesoporous silica nanoparticles in the form of a surface-grown poly(ethylene 

imine) (PEI) by the method described in the literature section. The monomer aziridine has 

been used for the polymerization, which is highly reactive and a very small molecule, making 

it a promising candidate for successful polymer functionalization of porous materials in the 

nanometer range. PEI is a highly polycationic synthetic polymer which exhibits the highest 

charge density when fully protonated in aqueous solution.
203

 PEI has been mostly investigated 

and used in nanomedicine due to its ability to deliver DNA with high efficiency and its 
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excellent performance as a vehicle for gene delivery.
56

 The positive charge of PEI facilitates 

binding to the cell surfaces which are negatively charged, leading to cellular internalization 

and also enables endosomal release of the particles through their action as ‘proton 

sponges’.
204

 PEI has toxic side effects that are directly related to its molecular weight, which 

would hinder its application for therapeutic drug delivery, but ‘charge capping’ of PEI with 

other functional moiety can moderate the toxic effect of pure PEI.
58

 To utilize PEI mediated 

increased cellular internalization PEI-MSNs were synthesized. (PAPER I, II and III) 

MSN and PEI-MSNs were further modified with poly (ethylene glycol; PEG), a non-ionic 

hydrophilic polymer. PEG coating has shown to reduce RES uptake, and increase circulation 

time in the bloodstream,
61

 and therefore, it has been used in drug delivery applications. PEG 

decreases the particle aggregation by steric stabilization and diminishes association with non-

targeted serum and tissue proteins, resulting in so-called ‘stealth’ behavior. PEG is non-toxic, 

inexpensive, versatile and approved by US FDA for many pharmaceutical applications.
205

 

Hence, to evaluate its potential in oral drug delivery hybrid PEG-PEI-MSNs were 

constructed. (PAPER III) 

Further, hyperbranched PEI layer was derivatized with succinic acid to yield terminal 

carboxylic acid groups, which resulted in a zwitterionic coating containing tertiary, 

secondary, and probably residual primary amines as basic/positively charged groups and 

carboxylic acid groups as acidic/negatively charged groups. PEI layer was also capped with 

acetic acid to provide net neutral charge on the surface. Thus to introduce negative and neutral 

charge on MSNs’ surface, in order to assess surface charge mediated differences in bio-

interactions succinic and acetic anhydride modified MSNs were synthesized. (PAPER I, 

SUPP. PAPER I) 

Folate receptors are overexpressed on the surface of several cancer cells, such as ovarian, 

colorectal, breast, lung, brain metastases derived from epithelial cancer, and neuroendocrine 

carcinoma.
96

 Because of this distinguishing feature between normal and cancer cells, folic 

acid (FA) was conjugated to the MSNs as a potential affinity ligand for targeted drug delivery 

to cancerous cells. Further, cancer cells have significantly elevated metabolism, they utilize 

higher amount of glucose than the normal cells.
206

 Therefore, to exploit this phenomenon, 

MSNs were modified with sugar moiety (glucose) on the surface as targeting strategy. Three 

different conjugation strategies were employed for coupling of glucose molecules on MSNs’ 

surface. (PAPER II and III, SUPP. PAPER II) 
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5.1.1.2. Physicochemical characterization of the synthesized MSNs 

The synthesized MSNs were characterized by different techniques such as SEM to confirm 

their size, monodispersity, morphology and non-aggregated state of the particles. (Figure 

25A) The mesoscopic ordering of the MSNs was further confirmed by TEM. (Figure 25B) 

Full redispersibility of dried, extracted and surface-functionalized particles was confirmed by 

redispersion of dry particles in physiological buffer (HEPES buffer pH 7.2) and subsequent 

DLS measurements. (Figure 25C) 

To determine structural parameters related to the mesoporosity (surface area, pore size, pore 

volume) N2-sorption measurements have been performed. (Figure 25D) Ordered arrangement 

of mesopores was confirmed by SAXD. (Figure 25E) TGA has been used to determine the 

amount of organic residues or polymers such as PEI, PEG added on the particle surface. 

(Figure 25F) Effective modification of particles’ surface with PEI and further derivatization 

with PEG, succinic acid or acetyl groups were confirmed by zeta potential measurements. 
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Figure 25. Characterization of the MSNs: (A) SEM and (B) TEM images of the synthesized 

MSNs, (C) size distribution measured by DLS, (D) N2-sorption isotherm for MSN (SBET=905 

m
2
/g, Vp=0.79 cc/g, Dp=3.5 nm by nonlocal density functional theory), (E) Powder X-ray 

diffraction pattern of a typical MSN structure with radially arranged pores (lattice spacing 

=4.34 nm), (F) TGA analysis of MSNs (green), PEI-MSNs (red), PEG-MSNs (blue). (PAPER 

I and III) 

Further, to confirm successful conjugation of targeting ligand FA, its amount in weight % 

with respect to the whole particle system was determined by the spectrophotometric method. 
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The particles were dissolved in 1 M sodium hydroxide by sonication and overnight stirring. 

The absorbance of the solution was measured by UV-Vis spectroscopy at λ=285 nm. To 

estimate the amount of glucose molecules on the particle surface in weight%, the resorcinol 

sulfuric acid assay method has been employed with slight modifications. MSNs were first 

dissolved in 1 M sodium hydroxide and diluted with HEPES buffer. Subsequently, the sample 

has been reacted with resorcinol in presence of sulfuric acid and incubated for 30 minutes. 

Finally, the sample absorbance was measured by UV-Vis spectroscopy at λ= 430 nm. 

(TABLE 4) 

Table 4. Physicochemical characterization of aqueous particle suspensions 

Type of 

Particle 

Zeta 

Potential 

(mV) 

FA 

content 

(weight%) 

Organic 

Portion 

added 

(weight%) 

Type of 

Particle 

Zeta 

Potential 

(mV) 

Glucose 

content 

(weight%) 

MSN 0.8 NA 12 MSN -5.5 - 

PEI-MSN 52 NA 28 MSN-GAaq -9.0 0.40 

PEG-MSN -2.1 NA 15 MSN-GAorg -6.1 0.70 

PEG-PEI-

MSN 

10 NA 35 MSN-Gluc -4.9 0.27 

FA-MSN -0.3 0.04 14 MSN-PEI 50.3 - 

FA-PEI-

MSN 

40 0.06 34 MSN-PEI-

GAaq 

49.6 1.44 

FA-PEG-

MSN 

-0.9 0.13 21 MSN-PEI-

GAorg 

52.4 0.95 

FA-PEG-

PEI-MSN 

26 0.05 34 MSN-PEI-

Gluc 

49.6 1.04 

5.1.1.3. Effect of surface coating on serum protein adsorption 

The main rationale for PEGylation of nanomaterials is its expected property in diminishing 

plasma protein adsorption on the particle surface, and reducing the likelihood of the body 

defense mechanisms (RES/MPS) of recognizing the particles as foreign substance and, thus, 

increasing the circulation time of particles in the blood stream.
61

 Zwitterionic surface coatings 

have also been suggested to provide similar ‘stealth’ properties as PEGylation. Thus, to 

estimate the effect of different surface charge on protein adsorption, MSNs were incubated at 

two different concentrations in 1% fecal calf serum (FCS) prepared in HEPES buffer for 4 h. 

It has been observed that large amounts of serum proteins were adsorbed on the PEI-MSNs, 

mainly due to highly positive surface charge of the particle surface, since the majority of 

serum proteins are negatively charged. (Figure 26) Further, the PEGylation of this particle 

(PEG-PEI-MSNs) led to a decrease in the protein adsorption, but it is not significant and the 
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effect of PEGylation of the pure MSN was also not drastic but discernible. For the SUCC-

PEI-MSNs observed serum protein adsorption was lowest of all samples. The surface charge 

of these particles was around -60 mV, which is in sharp contrast to the notation that high 

(both positive and negative) surface charge promotes protein adsorption. Thus, for the given 

MSNs employing the zwitterionic approach was drastically more efficient than PEGylation in 

diminishing serum protein adsorption. 

  

Figure 26. Relative serum protein adsorption on MSNs: Adsorption of serum proteins on 

different surface charged MSNs after 4 hours incubation at 0.5 and 1.0 mg/ml concentration. 

Error bar represents ± SEM. (PAPER I) 

Further, the particles were incubated with cell media containing 10% FCS for 2 hours, 

centrifuged and resuspended in HEPES buffer, to observe the difference in surface charge 

after incubation with serum proteins. It has been observed that for all studied particles, the 

surface charge decreased to more negative, except for SUCC-PEI-MSNs, which suggests that 

the small portion of proteins adsorbed to these particles. (TABLE 5) For the PEG-PEI-MSNs 

extent of protein adsorption does not reflect the decrease in zeta potential quite well, since 

high protein adsorption is observed but the reduction in zeta potential is only a few mV. Thus, 

PEGylated surface probably attracts different kinds of proteins as compared to the pure PEI 

surface, which makes it difficult to predict resulting surface charge, since no common ‘rule’ 

for such protein selection on adsorption to surfaces exists to date. 
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Table 5. Zeta potential measurements of MSN particle suspensions in HEPES before and 

after incubation in DMEM cell media containing 10% serum. 

Type of particle in HEPES  

(200 µg/ml) 

after 2 hours incubation 

in cell media 

redispersed in HEPES 

(200 µg/ml) 

MSN +5 -15 

PEI-MSN +48 +3 

PEG-MSN  0 -6 

PEG-PEI-MSN +15 +9 

SUCC-MSN -14 -17 

SUCC-PEI-MSN -62 -37 

 

5.1.2.  Drug loading and release experiments 

To evaluate MSNs’ potential as drug delivery carrier, various hydrophobic molecules have 

been loaded to differently surface functionalized MSNs. To estimate the maximum amount of 

hydrophobic drug possible to load in MSNs, furosemide has been loaded at various initial 

loading degrees and the final % drug loading has been calculated. Further, in another study, 

MSNs were loaded with celastrol at 3 weight % loading degree and in vitro release was 

carried out in HEPES buffer in order to investigate the effect of PEI layer on drug release. In 

the next study, curcumin has been loaded at 0.3 and 1.0 weight % loading degrees to positive, 

neutral and negative surface charged MSNs, and the change in fluorescence intensity as 

function of surface charge has been measured in order to study influence of surface 

modification on photophysical properties of curcumin. 

5.1.2.1. Loading of furosemide in different surface functionalized MSNs 

Furosemide has been adsorbed to four different types of MSNs: PEI-, PEG-, FA-PEG-, and 

FA-PEG-PEI-MSNs at initial loading degrees of 10, 25, 50, 100 and 125 weight percentages 

to the particulate system. For all the particle systems, the final loading degree is proportional 

to the initial drug loading. (Figure 27) It has been observed that it is possible to load up to 70 

weight % of furosemide to the particles. Further, information obtained from this study is that 

regardless of surface modification, similar loading degrees are achieved when a non-ideal 

organic solvent is used for the loading. This notion has been exploited in the following studies 

(Section 5.1.2.2 and 5.1.2.3) 
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Figure 27. Evaluation of drug loading property: % Furosemide loading in four differently 

functionalized MSNs at various initial loading degrees. 

5.1.2.2. Loading of celastrol and release in buffer 

MSN and MSN-PEI were loaded with celastrol at a loading degree of 3 weight %. In vitro 

release of celastrol was carried out in HEPES buffer pH 7.2 and compared to the dissolution 

of a corresponding amount of free celastrol. For the free celastrol, after 48 hours, 50% drug 

dissolution has been observed. For the celastrol loaded in MSN-PEI merely 3% cumulative 

release has been detected. (Figure 28) For the intracellular drug delivery, it is desirable that 

particles release their cargo once it has reached to the site of action, which is inside the cancer 

cells for the celastrol. The PEI layer provides protection against premature drug release as for 

the control MSNs a rapid burst release is observed which is initially faster than the dissolution 

rate of free drug and after 2 - 6 hours it became the same as free celastrol. After that re-

adsorption on to MSNs occurs, probably due to the static condition used, whereas free drug 

can continue to dissolve due to the absence of adsorbents. Owing to the largely differing 

conditions in this experiment as compared to biological/physiological situations (such as high 

drug concentrations used, close to but below the saturation limit of celastrol in an aqueous 

solvent), these results should be considered indicative only. However, from the observed trend 

it is evident that the PEI layer can serve as a ‘molecular gate’ preventing drug release from 

taking place extracellularly, as speculated previously
55 

but now shown in this study. Thus, 

harmful drug cargo will not be exposed to neighboring cells that do not efficiently internalize 

the carrier particles. Thus, in line with the results obtained by our group in a different study,
120

 

the release of cargo molecule in a pure aqueous media depends on the degradation of a silica 

carrier, whereas physicochemical properties of the cargo molecule and its interaction with 

surrounding media are the main factors governing release of cargo in media mimicking 

intracellular conditions. Further, the material degradation has been arrested after loading with 
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hydrophobic guest molecules, and thus the cargo could be efficiently delivered into live 

cancer cells and released intracellularly without premature release under extracellular 

conditions. 

   

Figure 28. Evaluation of drug release property: Release/dissolution kinetics of free celastrol, 

celastrol-loaded MSNs and celastrol-loaded MSN-PEI in HEPES buffer (pH 7.2) (PAPER II) 

5.1.2.3. Loading of curcumin and measurement of effect on particles fluorescence  

Curcumin is natural anti-oxidant and it has anti-inflammatory property. Curcumin is a 

fluorescent molecule in the visible region. The fluorescence property of curcumin depends on 

the surrounding environment and it can also be used for physicochemical characterization. 

MSNs with positive, negative, and neutral surface charge (PEI-MSN, SUCC-PEI-MSN and 

ACA-PEI-MSN) were loaded with curcumin at two loading degrees, 0.3 and 1.0 weight % 

with respect to the particles. (SUPP. PAPER III) At higher concentration, fluorescence 

quenching might occur, therefore, low loading degrees were used for the study. It has been 

observed that particle surface charge does not affect the loading degree, especially at such low 

concentrations; but the surface charge has significant influence on the emission spectrum of 

curcumin. (TABLE 6) 
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Table 6. Amount of curcumin loaded in different surface modified MSNs 

Starting concentration of 

curcumin/ MSNs (w/w%) 

Adsorbed 

Curcumin/MSNs 

(µg/mg) 

PEI-MSN/CUR-0.3 % 4.75 

PEI-MSN/CUR-1 % 8.75 

SUCC-PEI-MSN/CUR-0.3 % 2.6 

SUCC-PEI-MSN/CUR-1 % 9.42 

ACA-PEI-MSN/CUR-0.3 % 3.02 

ACA-PEI-MSN/CUR 1 % 13.15 

 

The fluorescence maximum of 0.1 % curcumin loaded MSNs was found at 18975 cm
-1

, 

whereas the fluorescence maximum of free curcumin in water was acquired at 18215 cm
-1

. 

The higher wave number of curcumin in MSNs might be due to completely different 

microenvironment inside the pores of MSNs by increasing the energy gap between the ground 

state and excited state. Different surface chemistries remarkably influence fluorescence of 

curcumin loaded in MSNs probably due to the local accumulation of protons in the vicinity of 

the surface. As seen in Figure 29A, neutral net surface charge of charge-capped ACA-PEI-

MSNs gave rise to longer wave number scale of curcumin compared to positive or negative 

net surface charge. The large energy gap between the ground and excited states of curcumin in 

neutral net surface charge could be due to the effect of pH on curcumin, as the fluorescence of 

surface modified MSNs is influenced by variation in local pH as opposed to surrounding pH. 

This trend was similar for both 0.3 and 1.0 weight % loading degrees of curcumin, and the % 

loading amount of curcumin did not influence appreciably the emission maximum of samples. 

However, for the neutral charge particles an increase in loading degree increases the 

fluorescence intensity of curcumin. (Figure 29B) Thus, surface modifications of MSNs 

influence the spectral behavior of curcumin due to local accumulation of protons. A similar 

effect of surface modification has been observed in the fluorescence behavior of fluorescein, 

which has been incorporated into the particles during the synthesis step in PAPER I. These 

properties are crucial to be aware of, for instance, when attempting to quantify and/or 

compare the intracellular amount of particles as well as quantifying the drug loading degree 

based on fluorescence. 
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Figure 29. Effect of surface charge on fluorescence property of loaded cargo: (A) Change 

in emission maximum of curcumin in wave number (γmax in cm
-1

) and (B) change in 

fluorescence intensity of curcumin as function of net charge on MSNs’ surface. (SUPP. 

PAPER II) 

 

5.1.3.  Cellular interactions 

In this part, the interaction of differently surface functionalized MSNs with their environment 

relevant to their prospective application as drug delivery carriers was investigated. 

5.1.3.1. Cytotoxicity assay 

Caco-2, human colon adenocarcinoma, cells have been widely used as an in vitro model for 

studying small intestinal epithelial cell function, because they undergo a process of 

spontaneous differentiation that leads to the formation of a monolayer of cells, expressing 

several morphological and functional characteristics of the mature enterocytes lining the small 

intestine.
207

 Enterocyte-like Caco-2 cells have been employed as a small intestine epithelial 

model, to evaluate possible toxicity of MSNs after oral exposure. 

The in vitro cytocompatibility of all produced MSNs was studied in colon cancer Caco-2 cells 

using a cell viability assay. All the synthesized MSNs were non-toxic to Caco-2 cells up to 50 

µg/ml concentrations, and at 100 µg/ml most of the particles were still non-toxic, except for 

PEG-PEI-MSNs and FA-PEG-PEI-MSNs, which showed a 20%–30% decrease in cell 

viability compared to the vehicle control DMSO. (Figure 30) This could be explained by a 

much higher uptake of these MSNs by the Caco-2 cells. The results show that all the 

produced MSNs are biocompatible at concentrations as high as 50 µg/ml. 
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Figure 30. Functionalized MSNs are nontoxic to Caco-2 cells: The viability of Caco-2 cells 

after 48 hours incubation with functionalized MSNs was assessed using the WST-1 assay at 

indicated MSN concentrations. All data sets were compared with a negative cytotoxicity 

control cell sample treated with particle vehicle DMSO alone (NC DMSO), and the toxin 

caliculin A was used as positive control (PC). Error bars represent ± SD (n≥ 3). ** P≤ 0.01, 

***P≤0.001 (PAPER III) 

5.1.3.2.  Influence of PEI coating on the cell viability 

It has been reported that cytotoxicity of PEI has been connected to its molecular weight, as 

well as the concentration of PEI. To date, we have not observed any adverse effects of PEI- 

coated MSNs in our previous studies. Thus, it has been speculated that the toxicity of PEI as 

part of a larger construct could be mitigated/suppressed. The dose-response curve of 25 kDa 

PEI using HeLa cells has been obtained to find out the LD50 dose of the PEI. (Figure 31A) 

Further, to investigate differences based on: (a) type of particle (non-degrading; polystyrene 

(PS), very slow degrading; non-porous Stöber, slow degrading; solvent-extracted, fast 

degrading; calcined), and (b) coating approach (adsorption, grafting), the same kind of PEI 

has been adsorbed onto PS particles (PEIads-PS)and three different silica particles (non-

porous; PEIads-Stöber, solvent-extracted; PEIads-MSNEx and calcined MSNs; PEIads-MSN-C) 

of comparable size via electrostatic interactions, and solvent-extracted particles were surface-

grafted with PEI (PEIgraft-MSN). The PEI concentration in the toxic range has been selected, 

in the present case 10 μg/ml of pure PEI. HeLa cells were incubated with pure PEI (10 μg/ml) 

and the amount of each particle that was coated with the equivalent amount of PEI as well as 

the corresponding amount of plain particles without PEI, to distinguish the PEI-induced 
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toxicity. We have speculated that silica dissolution/degradation partly neutralizes extremely 

high positive charge of PEI and contributes to lessening the toxic effect related to pure PEI. 

(Figure 31B) Further, the ‘biodegradation’ of the silica-material itself could create a 

concentration gradient of silicic acid, which could thus possibly counteract the PEI effect.
208

 

Thus, PEI mediated toxicity can be restrained by combining it with silica in the construction 

of hybrid material.  

 

Figure 31. MSNs restrains PEI mediated toxicity: Cell viability of HeLa cells incubated with 

(A) different concentrations of PEI (25 kD) for 24, 48 and 72 hours, (B) different particles 

with and without coated PEI equivalent to 10 μg/ml PEI (25 kD) for 24 and 72 hours, 

evaluated by the WST-1 assay. Polystyrene (PS) particles of similar size were included as 

particle control. Error bar represents ± SEM. *P≤0.05, ** P≤ 0.01, ***P≤0.001 (PAPER I) 

(broken line is a guide for the eye) 

5.1.3.3. Cellular uptake of differently functionalized MSNs  

To investigate the effect of (a) particle surface functionalization, and (b) FA as targeting 

ligand on the cellular internalization, cellular uptake was assessed by flow cytometry in two 

different colon cancer cell lines (HT-29 and Caco-2 cells) as model for epithelial cells, as both 

of them are folate receptor positive cells. Further, for Caco-2 cells, confluent and non-

confluent cells have been selected to assess the cellular uptake, as confluent Caco-2 cells can 

make the tight junctions and have less surface area, and further they can differentiate to form 

the monolayer of cells. The percent of cells that have internalized particles have been used as 

a measure of uptake efficiency. (Figure 32a,b) In Caco-2 cells, MSNs were more efficiently 

internalized in non-confluent cells as compared to confluent cells since more surface area is 

available for the internalization. (Figure 32b) For the HT-29 cells, MSNs uptake increases 

with the incubation time. (Figure 32a) Both Caco-2 and HT-29 are folate receptor positive cell 

lines, but the boosting effect of FA on cellular internalization was detected only in the case 
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when FA was linked to PEGylated particles (FA-PEG-MSN), where PEG was conjugated 

directly on the MSN surface, and for which the basal (inherent) cellular uptake was very low. 

Particles without any polymeric coating or only modified with PEG showed low uptake 

probably associated with their almost neutral charge as well as their tendency to aggregate at 

neutral conditions. Confocal microscopy further confirmed that PEG-MSN particles appeared 

to be aggregated, in contrast to PEI-modified particles which exhibited a more dispersed 

intracellular pattern. (Figure 32c-l) The combination of PEI and PEG proved most efficient in 

terms of maximizing the cellular internalization in the studied cell lines. 

 

 

Figure 32. Effects of surface functionalization, incubation time and confluency of the cells 

on uptake of MSNs in the HT-29 and Caco-2 colon cancer cells: (a,b) Flow cytometric 

analysis of the uptake of functionalized and FITC-labeled MSNs in HT-29 and Caco-2 cells. 

Error bars represent ± SD (n=4). (c-l) Confocal microscopy images of HT-29 and Caco-2 

cells incubated with PEI-MSN, PEG-MSN, PEG-PEI-MSN, FA-PEG-MSN and FA-PEG-PEI-

MSNs (green) for 12 hours. Nuclei were stained using PI (shown red in C-G; pseudo blue in 

h-l) and Caco-2 cell membrane stained with E-catherin Cy 5.0 (shown red in h-l) (Scale bar 

10 µm). (PAPER III) 
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To estimate the effect of glucose modification on cellular internalization of MSNs,  different 

glucose functionalized MSNs were incubated with three different types of cells: HeLa cells 

(human cervical carcinoma) and A549 cells (human lung carcinoma); both of them are cancer 

cells having high glucose consumption, and MEF cells, as representative normal cells with 

lower glucose consumption. It has been observed that PEI modification increases the uptake 

of MSNs in both cancer cells. (Figure 33A,B) The distinction between the different sugar 

functionalization was not possible to discern in terms of percentage uptake efficiency. 

Therefore, normalized mean fluorescence, i.e. intensity per 10,000 cells against the particle 

fluorescence, was obtained; from all the studied particles, the MSN-PEI-GAorg particles have 

provided the highest cellular uptake for HeLa and A549 cells. (Figure 33D,E) The uptake 

efficiency of PEI-modified MSNs on healthy MEF cells was four to five times lower than 

cancer cells. (Figure 33C) To confirm the intracellular localization as well as the enhanced 

affinity toward the cancer cells, MSN-PEI-GAorg was incubated with both MEF and HeLa 

cells at a concentration of 5µg/ml and imaged by CLSM. (Figure 33F,G) A very negligible 

fluorescence signal from the FITC channel was detected from the MSN-PEI-GAorg particles 

within the MEF cells, while bright fluorescence signals could be detected inside the HeLa 

cells. All fluorescence from the FITC channel was originating from inside the cells, as the cell 

membrane has been stained with rhodamine-lectin (visible in red channel), confirming that the 

particles had been internalized. To further confirm the observed differences, image analysis of 

approx. five hundred cells (FITC channel, Ex. 488 nm/Em. 500–550 nm) was conducted 

using the BioImageXD software. The MSN-PEI-GAorg particle resulted in the highest FITC 

intensity per cell, which was significantly higher than the MSN-PEI particle and higher than 

all other glucose functionalized MSNs. (Figure 33G) Thus, the hyperbranched PEI coating 

together with glucose moieties as targeting ligand facilitate cellular uptake of MSNs into the 

targeted cancer cells compared to normal cells. 
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Figure 33. Effects of surface functionalization, type and glucose consumption of the cells 

on uptake of MSNs in the HeLa, A549 and MEF cells: Flow cytometric analysis of uptake 

of the MSN particles with different glucose functionalization in (A) and (D) HeLa cells,(B) 

and (E) A549 cells, (C) MEF cells at 5 µg/ml conc. for 3 h. Confocal microscopic images 

showing endocytosis of MSN-PEI-GAorg particles in D) MEF cells and E) HeLa cells at 5 

µg/ml conc. for 3 h. Scale bar-10µm. Quantification of MSN’s uptake by using confocal 

microscopy and BioImageXD software. Normalized mean fluorescence intensity (MFI) of the 

FITC channel per HeLa cell using 30 µg/ml conc. of MSNs after 3 hours incubation. Error 

bar represents ± SEM. ** P≤ 0.01, ***P≤0.001 (PAPER II) 
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5.1.3.4. Exocytosis of nanoparticles  

An exocytosis study was conducted for the PEI-, PEG- and FA- functionalized MSNs to 

evaluate wether MSNs can be transported across a Caco-2 cell monolayer trans-cellularly 

without disturbing the integrity of the monolayer. As particles were readily taken up by cells 

within 12 hours, Caco-2 cells were co-cultured with pre-labelled (cell tracker CMAC blue) 

acceptor Caco-2 cells. As the exocytosis rate is significantly slower than endocytosis, the co-

cultures were incubated for 36 hours. At the end of the experiment, both populations of the 

cells were labelled with the nuclear dye DRAQ5® to visualize both types of cells, donor cells 

(red) and the acceptor (red and blue). The results show that both donor cells and acceptor cells 

contain fluorescent MSN particles, (Figure 34) confirming that the functionalized MSNs 

tested here can be exocytosed from one cell and taken up by the neighboring cell, and the 

studied MSNs can transport trans-cellularly through the Caco-2 cells. (UNPUBLISHED 

RESULTS) 

 

Figure 34.MSNs can exocytosed from Caco-2 cells: Confocal microscopy images of PEI-

MSNs, PEG-PEI-MSNs, FA-PEG-MSNs and FA-PEG-PEI-MSNs (green) exocytosed from 

donor Caco-2 cells (only red) and internalized by co-cultured acceptor Caco-2 cells (red and 

blue). All nuclei of acceptors and donors are stained using DRAQ5® (pseudo colored red). 

Scale bar = 10 µm.  

5.1.3.5. Influence of surface charge on route of uptake 

MSNs with different surface charge, highly positive, negative and close to the neutral charge, 

were investigated for their route of uptake to evaluate the effect of surface functionality and 

surface charge on intracellular trafficking. To determine whether the MSN uptake was an 

active or passive process, cells were energy depleted using sodium azide (NaN3), which is 

known to inhibit the respiratory chain in the mitochondria. Macropinocytosis has been 

inhibited by amiloride, which is a selective inhibitor of Na
+
/K

+
 exchange, which blocks 

macropinocytosis by lowering submembraneous pH (cytosolic pH close to the membrane). 

Clathrin-mediated endocytosis has been inhibited by potassium depletion, or by inhibitors 
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such as Phenyl arsine oxide and chlorpromazine. Phenyl arsine oxide, a trivalent arsenical, 

inhibits clathrin-mediated endocytosis by crosslinking the clathrin coat. Caveolae-mediated 

endocytosis inhibitors include filipin, nystatin, methyl-β-cyclodextrin and genistein, which is 

a tyrosine kinase inhibitor. The cellular uptake of all investigated MSNs, regardless of their 

surface charges, were inhibited by the addition of phenyl arsine oxide. (Figure 35) This 

indicates that all the MSNs were mainly internalized by the clathrin-mediated route regardless 

of surface functionality. Inhibition by the combination of phenyl arsine oxide and genistein 

was not further inhibiting the cellular uptake, but it was slightly increasing the total uptake, 

which indicates that there might be some other (clathrin- and caveolae- independent) pathway, 

which has been activated by inhibition of both internalization pathways. The indiscernible 

difference in route of uptake for different surface charge particles might be due to the effect of 

serum protein adsorption on MSNs, as the experiments were conducted in cell media with 

serum proteins and the proteins are charged species, which contribute to the overall surface 

charge of nanoparticles by shielding their surface, as, observed in TABLE 5. 

 

Figure 35. Effects of various cellular uptake inhibitors on uptake of MSNs in Caco-2 cells: 

Cellular uptake of differently functionalized MSNs after co-treatment with Sodium azide, 

Amiloride, Genistein, Phenyl arsine oxide and Genistein + Phenyl arsine oxide. Error bar 

represents ± SEM. * P≤ 0.05, ** P≤ 0.01, ***P≤0.001 (PAPER I) 

5.1.3.6. Influence of loading of hydrophobic cargo on intracellular pathway 

MSNs are hydrophilic in nature and by loading MSNs with hydrophobic cargo the properties 

of MSNs may be altered. To pinpoint if this assumption is true, the uptake of PEI-MSNs and 

DiD dye (lipophilic dye, used as model drug cargo for visualization using flurescence 
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microscopy) loaded PEI-MSNs have been evaluated in MDA-MB-231 cells. The early and 

late endosomes were transfected-using plasmids for EEA1 and Rab7. It has been observed 

that the intracellular pathways for MSNs before and after dye loading are different. For the 

PEI-MSNs, the co-localization of a signal with EEA1 or Rab7 has not been observed, whereas 

for DiD loaded PEI-MSNs a clear co-localization has been observed between signals from 

MSNs, DiD dye and early/late endosomes after 24 hours. (Figure 36) Further, some amount 

of dye release from particles has also been observed, which would be expected since cellular 

release of hydrophobic cargo is required to obtain the therapeutic effects observed in e.g. 

sections 5.1.3.8 and 5.1.4.3. (SUPP. PAPER IV) This indicates that the intracellular route of 

MSNs also changes with the loading of the cargo molecule and the physicochemical 

properties of the cargo molecule. (UNPUBLISHED RESULTS) 

 

Figure 36. Effect of drug loading / hydrophobicity of the particles on the intracellular 

pathway: MDA-MB-231 cells transfected with EEA1 and Rab7 plasmids to label early and 

late endosomes showing uptake of (a,c) PEI-MSN and (b,d) DiD/PEI-MSNs (blue) after 24 

hours. Early /late endosomes (green) and DiD dye (red). 

5.1.3.7. Effect on permeability of furosemide through Caco-2 monolayers  

Cultured human Caco-2 cell monolayers were considered representative models for drug 

permeability studies in the intestinal epithelium. The ability of selected MSNs from section 

5.1.3.3 (PEI-MSNs, PEG-PEI-MSNs, FA-PEG-MSNs and FA-PEI-PEG-MSNs) to deliver the 

model drug, furosemide, which has low solubility and permeability (BCS Class IV), across a 

Caco-2 monolayer has been evaluated. The permeability through Caco-2 monolayers by 
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furosemide alone or furosemide-loaded MSNs was tested by analyzing the level of transport 

of furosemide from the apical to the basal compartment. Caco-2 cells cultured for 21-28 days 

showed intact cell monolayers on membrane support and were evaluated by Trans Epithelial 

Electrical Resistance (TEER) measurement and Lucifer Yellow (LY) rejection. (Data not 

shown) The amount of drug permeation at different time points starting from 0 to 42 hours 

indicates a time-dependent increase in furosemide permeation, which was clearly increased by 

all the studied MSNs as compared to free furosemide. (Figure 37) PEG-PEI-MSNs and FA-

PEG-PEI-MSNs showed ~1.3- and ~1.4- fold increase in permeability, respectively, as 

compared to furosemide alone. Furosemide permeability was increased ~1.5-fold for the 

particles modified with PEI alone, whereas particles functionalized with FA-PEG-MSNs 

showed no increase in permeability. These results indicate that PEI-functionalization achieves 

better permeability than PEGylation, of which the latter has previously been regarded as a 

permeability enhancing agent, and that the combination of PEI and PEG constitutes a 

particularly good drug permeability enhancing surface coating. (UNPUBLISHED RESULTS) 

 

Figure 37. MSNs improve the permeability of Class IV drug: %Drug permeation of 

furosemide across Caco-2 monolayer loaded in different surface functionalized MSNs as 

function of time. 

5.1.3.8. Apoptotic effect of celastrol loaded MSNs on cancer cells 

To confirm a therapeutic response could be attained for drug loaded MSNs, the cytoprotective 

effect of free celastrol was first validated in HeLa and A549 cells by measuring the heat shock 

response using Western blot analysis. (Figure 38a,b) An apoptosis assay using propidium 

iodide staining was employed using different concentrations of free celastrol for 24 and 48 

hours to establish the drug dose as well as time point to evaluate the particle-mediated drug 

delivery. (PAPER II) The assay showed that 24 hours is enough time for celastrol to induce 
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apoptosis in HeLa cells. This is probably due to the mitotic rate of HeLa cells, which is about 

8-12 hours; therefore, 24 hours can be regarded as sufficient time for celastrol to induce 

apoptosis through microtubule destabilization. The optimal dose to induce apoptosis in HeLa 

cells found to be around 5.3 µM after 24 hours. The toxicity of empty-MSNs (without 

celastrol drug load) was evaluated after 24 hours incubation with HeLa cells, and it has been 

observed that at all the studied concentrations they are non-toxic. (Figure 38c)  Further, HeLa 

cells were incubated with celastrol loaded MSNs corresponding to 5.3 µM of celastrol to 

assess their potential anticancer properties. At the same celastrol concentrations, significant 

enhancement in drug efficacy (in terms of apoptosis) was observed for all PEI modified 

MSNs. For the MSN-PEI-GAaq particles, the effect was lower compared to the other particles 

at the studied concentration. This could  be due to structural changes of the porous matrix 

upon GA-conjugation, which was carried out in aqueous conditions and disordered structure 

of pores might have occurred due to exposure to water, as observed in PAPER I using X-ray 

diffraction, which may have repercussions on drug release.  

 

Figure 38.MSNs can improve the apoptotic effect of celastrol: Celastrol induces the heat 

shock response in (a) HeLa cells and (b) A549 cells at different concentrations. Expression of 

heat shock protein 70 (Hsp70) can be seen as band in western blot image, β-actin is used as 

standard. (c) Apoptotic effect of control, DMSO (vehicle), empty MSNs, celastrol and 

celastrol loaded MSNs after 24 hours incubation with HeLa cells at concentration 

corresponding to 5.3 µM of free celastrol. Error bar represents ± SEM. * P≤ 0.05, ** P≤ 

0.01, ***P≤0.001 (PAPER II) 
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5.1.4.  In vivo bio-distribution and pharmacodynamics studies 

After successful in vitro studies, selected particles were further tested in vivo to confirm their 

applicability in a more clinically relevant and complex setting. 

5.1.4.1. In vivo bio-distribution of fluorescent MSNs in the gastrointestinal tract 

Different techniques can be employed for tracking the bio-distribution of MSNs (i) by 

labelling the particles inherently with a fluorescent dye, and measuring fluorescence intensity 

using spectroscopy or microscopy; or (ii) coupling a radioisotope with particles and following 

the radioactivity, or (iii) by use of inductively coupled plasma mass spectrometry (ICP-MS) 

or inductively coupled plasma optical emission spectrometry (ICP-OES) to directly quantify 

the amount of metal (silicon) in each tissue sample. MRI can also be used for the tracking of 

MSNs, in case of iron oxide or gadolinium oxide core-shell nanoparticles or gadolinium ions 

doped MSNs.
209,210

 Two different techniques were employed to determine whether orally 

administered MSNs with different types of polymeric coatings were taken up by the intestinal 

epithelial cells in vivo. For in vivo uptake studies, eight adult male mice were orally gavaged 

with different MSN samples and a control daily for four consecutive days. The health of the 

mice was monitored each day and they were sacrificed at the end of the experiment by 

cervical dislocation. The whole GI tract was removed, and divided into stomach, small 

intestine corresponding to duodenum, jejunum, ileum, cecum, proximal colon and distal 

colon. The tissue samples of 6 μm thickness were imaged using confocal microscope. The 

tissue sections of the control mice gavaged with vehicle alone show only autofluorescence 

from the tissue in the green channel, whereas tissue sections from the mice fed with 

fluorescent MSNs showed brighter green particulate fluorescence from the FITC-labeled 

MSNs either attached to the mucosal barrier or internalized by epithelial cells. This was 

evident in all studied GI sections but easily discernible in the stomach and the small intestinal 

villi. (Figure 39a-p) 
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Figure 39. Internalization of fluorescent MSNs in intestinal epithelia: MSNs fed by oral 

gavage, tissue sections were excised, fixed in 4% paraformaldehyde and imaged. Confocal 

microscopy images of the tissue sections of stomach, duodenum, jejanum and ileum section of 

the mice fed with Control (HEPES)(a-d), PEI-MSNs(e-h), FA-PEG-MSNs(i-l) and PEG-PEI-

MSNs(m-p). Arrow indicated internalized nanoparticles. (Scale bar 25 µm) (PAPER III) 

The uptake of PEG-PEI-MSNs was further confirmed by staining for F-actin in tissue sections 

from mice to highlight epithelial apical microvilla toward the lumen and DRAQ5® to 

visualize nuclei. The frozen tissue sections were subsequently analyzed by fluorescence 

spectroscopy and inductively coupled plasma mass spectrometry to determine the amount of 

internalized MSNs. However, neither fluorescence spectroscopy of homogenized tissue 

samples nor quantification of elemental silicon by inductively coupled plasma measurements 

proved to be sensitive enough to detect changes in fluorescence or Silicon (Si) level in 
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different tissue samples in comparison with control mice gavaged with vehicle (HEPES) 

alone due to autofluorescence from the tissue samples and high endogenous Si background in 

the tissue. (PAPER III) 

5.1.4.2. Stability of drug loaded MSNs in simulated gastric fluid 

After oral administration, the nanocarriers encounter the harsh physicochemical environment 

of the GI tract. These biological fluids influence the stability of particles even before they 

come in to contact with the intestinal cells. Hence, in vitro tests in gastric and intestinal 

simulated fluids are important to investigate if particles are stable in the GI environment and 

if they are able to protect the incorporated drug/cargo. The PEG-PEI-MSNs and DAPT loaded 

PEG-PEI-MSNs were exposed to simulated gastric and intestinal fluids, thereafter the particle 

morphology was analyzed by transmission electron microscopy (TEM). The TEM images 

after treatments with simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) show 

that the MSNs were intact and the structure was virtually unaltered compared to the untreated 

particles. (Figure 40) In addition, to evaluate if MSNs can protect the loaded cargo/drug while 

passing the gastrointestinal fluids, the cargo (DAPT) has been eluted from MSNs samples 

collected before and after SGF and SIF treatment, and analyzed by high performance liquid 

chromatography, which showed that DAPT is intact and it has not been degraded by exposure 

to SGF and SIF, confirmed by no change in shape of HPLC chromatogram peak. (PAPER III) 

These results indicate that functionalized MSNs can serve as an effective carrier to deliver 

cargo to the target site without losing its integrity.  
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Figure 40. Functionalized and DAPT loaded MSNs are stable in simulated gastric and 

intestinal fluid: Transmission electron microscopy images of PEG-PEI-MSNs and 

DAPT/PEG-PEI-MSNs (n=2) (a-c) at time 0 hour in HEPES buffer, (d-f) after 2 hours 

incubation with SGF and (g-i) after further 6 hours incubation in SIF. Scale bar = 100 nm. 

(PAPER III) 

5.1.4.3. In vivo oral drug delivery efficiency 

The γ-secretase inhibitors block activation of the Notch pathway, which regulates a broad 

spectrum of cell fate decisions. The intestinal epithelium has stem cell and progenitor cell 

populations. Replicating crypt base columnar stem cells can self-renew or give rise to rapidly 

dividing transit-amplifying cells, which differentiate into mature cell types, including 

absorptive enterocytes, enteroendocrine cells, mucus-secreting goblet cells, antimicrobial 

peptide-secreting Paneth cells and chemosensing tuft cells. Notch signaling is a critical 

regulator of epithelial cell fate in the intestinal epithelium; with Notch promoting the 

absorptive cell fate over the secretory cell fate. Thus γ -secretase inhibitors by blocking the 

Notch pathway cause the transformation of proliferative intestinal crypt cells into post-mitotic 

goblet cells. To evaluate the therapeutic potential of MSNs as drug delivery vehicles in vivo 

for oral drug delivery to the intestinal epithelium, the effect on Notch activity by MSNs 

loaded with the γ-secretase inhibitor-DAPT was measured. Adult male mice were subjected to 

gastric gavage once a day for three consecutive days with different MSN particles and a 
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control. The uptake and effects were tested both in the small intestine, and in colon, which are 

the target tissues in most intestinal diseases. The readout of Notch mediated cell fate switches 

was monitored by counting the number of goblet cells using Periodic Acid-Schiff (PAS) 

staining, MUC2 mRNA analysis, and determining stool hydration. The DAPT alone (in 

vehicle buffer solution) increases the number of goblet cells in the colon as well as in the 

small intestine after oral gavage compared to controlled mice given vehicle buffer solution. 

The number of goblet cells in the colon of mice given DAPT/FA-PEG-PEI-MSNs was 

significantly higher than of those given DAPT alone or control particles without DAPT and 

they were also able to increase the expression of MUC2, a predominant intestinal mucin in the 

colon. (Figure 41) However, DAPT/FA-PEI-MSNs were not able to improve the colonic 

Notch inhibition. Goblet cell hyperplasia was observed in the small intestine, where 

DAPT/FA-PEI-MSNs showed a significantly better inhibition of Notch compared to DAPT 

alone. This effect was seen in both crypts and villi but more prominently in the villi, which 

have a bigger cell compartment and more goblet cells. The results were also confirmed by an 

increased level of stool hydration only in the mice fed with DAPT alone or DAPT/FA-PEG-

PEI-MSNs, which reflect the Notch inhibition-induced cell fate switch from water-absorbing 

colonocytes to mucus-producing goblet cells. (PAPER III) The inconsistency in drug effect 

between small intestine and colon could be associated with the fact that the particles come 

into contact with the small intestine first and might be exposed to it for a slightly longer time 

than the colon, and due to that DAPT/FA-PEI-MSNs were more efficiently internalized by the 

intestinal cells leading to a more efficient drug delivery. The other possible reason might be 

that differences in the colon and small intestine mucus layers influence particle penetration, 

for instance, the pore size and charge of mucin molecules may vary considerably along the GI 

tract. It has been observed that particles more easily penetrate the mucus in the small intestine 

and hence there might be no beneficial effect of PEGylation, while this modification may be 

necessary for the colon, which has a thicker mucus barrier than the small intestine. Since 

colorectal cancer and inflammatory bowel disease, the main intestinal disorders, occur in the 

colon and not in the small intestine, the PEGylation of MSNs should provide a useful tool for 

nanomedical drug development targeting the colon. The PEI coating provides surface charge 

for stabilization of particles, PEG facilitates the penetration of the particles through the mucus 

layer or increase residence time of the adhered fraction of particles in the mucosa, and FA acts 

as a targeting moiety for folate receptor expressed on the intestinal epithelial cells. 
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Figure 41. Notch Inhibitor loaded MSNs induce goblet cell differentiation and mucus 

secretion: Colon sections stained for Goblet cells by Periodic-Shiff (PAS)-staining from mice 

fed with (a) vehicle control, (c,e) control particles (FA-PEI-MSN, FA-PEG-PEI-MSN) and (b) 

Notch inhibitor;DAPT, (d,f) DAPT-loaded MSNs (DAPT/FA-PEI-MSN, DAPT/FA-PEG-PEI-

MSN) by oral gavage. (Scale bar 100µm). (g) Mucin-2 content in colon section was 

determined by RT-PCR and (h) goblet cells in colon were counted using Image J software. 

Student’s t-test. Error bars represent ± SEM (n= 3). *P≤ 0.05, ** P≤ 0.01, ***P≤0.001 

(PAPER III) 
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5.2. Mesoporous nanocarriers for delivery of hydrophilic cargoes 

As mentioned in the literature review, smaller particles may be more effectively taken up by 

the cells than larger particles. Therefore, mesoporous silica nanoparticles of approximately 70 

nm size were synthesized, as sub-100 nm size is reported to be an optimal particle size to 

reach maximum cellular uptake.
31

 For the delivery of hydrophobic molecules, they can be 

adsorbed to the pore walls and the release is mediated by degradation of the silica matrix, or 

by the physicochemical properties such as solubility and oil-in-water partition coefficient of 

the cargo molecule. However, for hydrophilic (BCS Class I) guest molecules, since their 

solubility is very high in an aqueous environment, drug release is achieved immediately by 

diffusion. Therefore, to prevent the immediate drug release in an aqueous medium and to 

achieve targeted intracellular drug delivery, the pore openings should be gated/ sealed after 

drug loading and it should be released after activation by a specific stimulus. Here, MSNs 

were coated with lipid bilayers as diffusion barriers, using DOPE lipid (a neutral lipid) as an 

inner leaflet of the bilayer, and POPG lipid (negatively charged lipid), DOPC lipid (neutrally 

charged lipid) and DOTAP lipid (positively charged lipid) were used as an outer leaflet of the 

bilayer. Different outer lipids were used to investigate the effect of different surface charges 

on cellular uptake and intracellular drug release. The MSNs have been loaded with 

hydrophilic molecules, such as calcein and zoledronic acid. The prepared lipid bilayer coated 

MSNs have been evaluated for their stability. The synthesized lipid bilayer coated MSNs 

were evaluated for their cytocompatibility as well as their cellular internalization. Further, the 

influence of the outer leaflet of the lipid layer on cellular uptake has been assessed. Efficacy 

of the MSNs loaded with zoledronic acid (ZOL) has been evaluated using breast cancer cells 

to find out the suitable candidate for in vivo studies. Finally, in vivo delivery and safety of the 

empty and zoledronic acid loaded MSNs have been studied. 

 

5.2.1.  Design and characterization of mesoporous nanoparticles 

Highly ordered, uniform, spherically shaped mesoporous silica nanoparticles with an average 

diameter of approx. 70 nm having radially aligned pore structure and pore sizes approx. 5 nm 

were synthesized. The pore size enlargement was achieved through joint incorporation of 

swelling agents 1,3,5-triisopropylbenzene (TMB) and decane in a CTAB templating system. 
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5.2.1.1. Surface functionalization and coating of MSNs with lipid bilayers 

Fluorescent MSNs were created by incorporation of FITC, already in the synthesis step via 

co-condensation approach, whereas amino groups were successfully introduced by 

hyperbranching polymerization of PEI, which improves the cargo loading by electrostatic 

adsorption to the pore surfaces, as calcein/ZOL both are negatively charged molecules. 

Further, the PEI layer provides a soft cushion to produce a defect-free and durable lipid 

bilayer on silica nanocarriers. (Figure 42) 

 

Figure 42. Scheme demonstrating the lipid bilayer (LB) tethering approach on MSN surface 

by hyperbranched PEI. Hyperbranched PEI (pink) was anchored onto the surface of amino 

group co-condensed MSN (MSN-NH2) for the subsequent loading of negatively charged drug 

(green dots). Thereafter, the conjugation of DOPE lipid as an inner leaflet of LB was realized 

by using a coupling agent N, N'-disuccinimidyl carbonate (DSC). The self-assembly of the 

outer leaflet of LB driven by hydrophobic interactions was carried out through a dual solvent 

exchange method in the final step. (PAPER IV) 

MSNs were further coated with a tethered lipid bilayer (tLB). Lipid bilayer gated MSNs can 

act as potential carriers for controlled drug delivery. The sophisticated architecture of those 

particles mimics the cell membrane’s property on the impermeability towards hydrophilic 

molecules by the hydrophobic bilayer.
211

The MSNs can carry high payloads of guest 
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molecules due to their high surface area and large accessible pore volumes, while the LB 

elegantly functions as a biomimetic cap and provides barrier formation towards hydrophilic 

drugs loaded in MSNs. This system offers an advantage for the retention of hydrophilic drugs 

in the mesopores without premature leakage and intracellular drug release. The inner leaflet of 

the LB has been composed of DOPE lipids, which was tethered via the covalent conjugation 

between primary amines of DOPE and that of the PEI. DOPE is commonly used as a helper 

lipid; it has reported to have an ability to reduce the cytotoxicity of cationic liposomes. The 

DOPE lipid obtains spherical micelle morphology above pH 9.0 and transforms to an inverted 

hexagonal (HII) morphology at acidic pH. The densely packed hydrophobic tails of DOPE 

lipids extending outwards therefore led to the self-assembly of another phospholipid driven by 

van der Waals interactions using a dual solvent exchange method, resulting in the formation 

of the outer leaflet of tLB. (Figure 42) The outer leaflet of the lipid bilayer is composed of 

either DOPC lipid, POPG lipid or DOTAP lipid. PC and PG lipids, accounting for a large 

portion of the phospholipids in most mammalian cells, are also common constituents of the 

widely used liposomal formulations in nanomedicine. The DOTAP lipid is the most popular 

cationic lipid used in lipoplex formation. The addition of PEG to the lipid bilayer can further 

decrease recognition by the reticuloendothelial system and hence extend the circulation time 

of MSNs in biological fluids. To improve delivery efficiency of the PEGylated nanoparticles 

comprising transient PEG coating, attachment of targeting ligands at the distal end of PEG 

moieties can be utilized. Therefore, a small fraction (2 mol%) of DOPC lipid was replaced 

with DSPE-PEG(2000)-Maleimide for the further conjugation with targeting ligand folic acid. 

5.2.1.2. Physicochemical characterization of the synthesized MSNs 

The SEM and TEM image reveals uniform spherical MSN-NH2 particles with an average 

diameter of 70 nm. (Figure 43A-B) The TEM image of the MSN-PEI particles stained with 

osmium shows the reduction in the contrast of the mesopores via the presence of a large 

amount of scattered black dots. (Figure 43C) These dots can be attributed to the 

hyperbranched polymers on the exterior and interior surface of particles; however, the 

thickness of the PEI modification layer on the mesopore surface is thinner than that on the 

exterior particle surface. The typical nitrogen adsorption-desorption type IV isotherm for 

MSN-NH2 and MSN-PEI confirmed the mesoporous nature of the particles. (Figure 43D) 

Compared with MSN-NH2, the isotherm of MSN-PEI displays an apparently decreased 

specific surface area (from 1043 m
2
g

-1
 to 566 m

2
g

-1
) and pore volume (from 0.85 cm

3
g

-1
 to 

0.58 cm
3
g

-1
), suggesting an efficient polymer modification. However, the peak position in the 
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pore size distribution remained virtually unchanged (4.8 nm). Substantial reduction in the 

intensity of X-ray diffraction peak (Figure 43E) and substantial weight loss (23 wt%) in the 

TGA curve further supports the efficacious surface polymerization. (Figure 44B) 

 

Figure 43. Characterization of the nanocarriers: (A) Representative SEM image of the 

small-MSN-NH2, (B) TEM images of MSN-NH2 and (C) the hyperbranched PEI modified 

MSNs (MSN-PEI) stained with osmium tetraoxide to show the presence of PEI. Scale bar 

represents 50 nm. (D) Typical nitrogen sorption isotherms, the corresponding pore size 

distributions (inset), (E) small angle X-ray diffraction patterns of MSN-NH2 and MSN-PEI. 

(PAPER IV) 

The tethering of NHS group activated DOPE lipids has been verified by a weight-loss 

increase of 8.4 wt% for the MSN-PEI@DOPE. (Figure 44B) Osmium-stained TEM image for 

the MSN-PEI@tLB particles approves the self-assembly of the outer leaflet of the LB. As 

shown in Figure 44A, individually encapsulated particles with typical core-shell morphology 

were obtained. The core region is darker than the shell, probably because of the penetration of 

osmium into the pores of MSN-PEI particles. The thickness of the shell is around 9 nm, which 

should be contributed by a PEI tether layer and a lipid bilayer. Furthermore, a weight-loss 

increase of 9.0 wt% in the TGA curve was found after the self-assembly step. This 

demonstrates that the outer leaflet of DOPC has the same molecular packing density as that of 

the inner leaflet of DOPE. (Figure 44B) The tethering of activated DOPE lipids with primary 

amines of PEI can be observed by the amide vibration peaks in the FTIR spectrum at 1650 

cm
-1

 and 1560 cm
-1

. (Figure 44C) 



Summary of the results 

87 
 

 

Figure 44.Confirmation of lipid bilayer coating on nanocarriers: (A) Lipid bilayer tethered 

nanocomposites (MSN@tLB) sample stained with osmium tetroxide to show the presence of 

LB. Scale bar represents 50 nm. (B) TGA curves of and (C) FT-IR spectra of (a) MSN-NH2, 

(b) MSN-PEI, (c) MSN-PEI@DOPE, and (d) MSN-PEI@tLB. The peaks at 1650 cm
-1

 and 

1560 cm
-1

 in FTIR spectrum for DOPE conjugated MSN-PEI can be ascribed to the 

vibrations of amide I and amide II from the conjugation between the primary amines of PEI 

and DOPE by DSC. The greatly enhanced bands at 2927 cm
-1

 and 2854 cm
-1

 correspond to 

the asymmetric and symmetric methylene stretching modes, respectively, from the alkyl tails 

of DOPE and DOPC. (PAPER IV) 

 

5.2.2.  Drug loading and release experiments 

5.2.2.1. Loading of calcein and zoledronic acid 

Before the conjugation of the DOPE inner leaflet, hydrophilic guests, either calcein or ZOL, 

were loaded in to MSN-NH2 and MSN-PEI particles. As the conjugation reaction was carried 

out in organic solvents, no escape of the hydrophilic cargos (calcein or ZOL) was observed in 

the tethering process due to their low solubility in these solvents. The use of hyperbranched 

PEI, which is positively charged in aqueous solutions below pH 10, allows for electrostatic 

adsorption of the negatively charged hydrophilic guest molecules onto the polyelectrolyte-

grafted substrate. The saturated loading degree of calcein and ZOL for MSN-PEI was 42 wt% 

and 9 wt% with respect to particle weight, obtained by adsorption from MES buffer (pH 5.0). 

(Figure 45) Then, calcein or ZOL adsorption capacities were normalized to the total amount 

of accessible primary amines, which gave calcein/primary amine molar ratios of 0.46 and 

0.099 for calcein and ZOL, respectively. The observed difference between loading capacity of 

calcein and ZOL might be due to the size as well as pKa of the molecules. 
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Figure 45. Evaluation of drug loading and release properties of the nanocarriers: (A) 

Typical adsorption isotherms of calcein on MSN-NH2 and MSN-PEI in MES buffer (pH 5) 

solution. The loading capacity is around 280 mg/g and 420 mg/g for MSN-NH2 and MSN-

PEI, respectively. (B) Typical adsorption isotherm of ZOL on MSN-PEI particles in MES 

buffer (pH 5) solution. The loading capacity calculated by the Langmuir model is 90 mg/g. 

(PAPER IV, V) 

5.2.2.2. Stability of lipid bilayer after drug loading and change in zeta potential as 

function of pH 

The advantage of tethered lipid bilayer coating results from their ability to retain the 

hydrophilic guest molecules. In the absence of tLB gating, calcein and ZOL loaded in MSN-

PEI was quickly replaced by anions in the release media, resulting in a complete premature 

release. The tLB approach encompasses generation of a closely packed outer leaflet of the LB 

with extended durability. Synthesis of tLB was done through dual solvent exchange method, 

by gradually changing the solvent from chloroform to DMSO to water, to generate a slow 

increase of solvent polarity for inducing the self-assembly. The volume ratio of water/DMSO 

was optimized to maximize the retention efficiency of hydrophilic drug and to testify the 

influence of solvent polarity on sealing efficiency of LB. By increasing the DMSO volume, 

the premature release of calcein was reduced dramatically by 77–100% compared to release 

from MSN-PEI without any lipid bilayer. (Figure 46A) Zero release was achieved by utilizing 

95 vol% water in the self-assembly process, indicative of an intact LB and high enough 

sequestering of hydrophilic guests at this polarity. Additionally, after one week of incubation 

in phosphate buffer indicated that there was still quite low release (less than 10%), confirming 

their long-term stability. The presence of a membrane-disrupting agent, Triton X-100, in the 

release medium did not lead to rapid and continuous release of the loaded cargo and suggests 

enhanced durability of the tethered lipid bilayer. (Figure 46B) ZOL loaded tLB@MSNs also 
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showed very little premature release. (Figure 46C) Interactions of cationic polymers like PEI 

with lipid bilayers and live cell membranes can induce two basic types of membrane 

disruption, by hole-formation and thinning via the re-orientation of lipids or the removal of a 

layer of lipid from the lipid bilayers. However, these kinds of LB disruption require a close 

spatial proximity (<1 nm) between the headgroups of phospholipids and polymer. In the case 

of tLB, the local interaction between PEI and the inner leaflet of LB was scheduled by 

covalent conjugation, whereas the interaction between the head group of outer lipid with the 

charged amine groups of PEI has been separated by the thickness of LB. More importantly, it 

has been observed that the Coulombic repulsion between amino groups would make the PEI 

chains in the external surface adopt a rigid-like conformation and be pushed away toward the 

pore openings, which would also be beneficial for the PEI tethered lipid bilayer to span over 

the pore openings in the self-assembly process. The combination of these factors may lead 

tethered lipid bilayer in this strategy to produce more defect-free and durable packing.  

Zeta potential measurements were performed to compare the surface properties of 

tLB@MSNs with different compositions, which may have implications for cellular uptake 

and intracellular trafficking and drug release. The LB coating shifted the isoelectric point 

(IEP) of MSN-PEI particles from 10.4 to approx. 7.5, 7.0 and 5.8 for DOTAP-, DOPC- and 

POPG-DOPE@MSNs, respectively. (Figure 46D) The inner PEI layer has influenced the 

charging of the whole particle by its strong ‘proton sponge’ ability. However, the outer 

surface of tLB@MSNs is composed of the lipids with high packing density, and thus 

difference in surface charge is most closely associated with outer lipid. The difference in the 

pH-dependent surface charging after LB tethering should be due to the long-range influence 

of the underlying PEI layer on the outer lipids. Monodispersity of all the lipid bilayer coated 

MSNs has been confirmed by hydrodynamic size measurement. (Figure 46E) 
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Figure 46. Characterization of nanocarriers: (A) Absorption spectra of the release 

supernatant from calcein loaded (a) PEI-MSN and tLB@PEI-MSN particles prepared by 

using different volume fractions of water in the phase transfer step of the LB self-assembly 

process: (b) 0 vol%, (c) 80 vol%, (d) 90 vol%, and (e) 95 vol%. Calcein was loaded into 

MSNs at a loading degree of 90 μg/mg and the particles were incubated in 20 mM phosphate 

buffer (pH 7.4) at a concentration of 0.5 mg/ml. (B) Long term calcein release evaluated by 

the absorbance at 497 nm for the supernatant from different calcein loaded particles in PB 

buffer with or without Triton X-100 (a membrane disrupting agent) after different time 

periods. (C) UV-vis spectra of the release supernatant from the model bisphosphonate drug 

loaded PEI-MSN particles with/without the presence of lipid bilayer coating. (D) Plots of zeta 

potential changing as a function of pH for tLB@ PEI-MSN with different composition of the 

outer leaflet (E) Hydrodynamic diameter distributions of PEI-MSNs, and tLB@ PEI-MSN 

with different composition. (PAPER IV and V) 
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5.2.3.  Cellular interactions 

In this section, the interaction of different lipid bilayer coated MSNs with cellular 

environment has been investigated. 

5.2.3.1. Cytotoxicity assay 

The cell viability in the presence of tLB@MSNs carriers have been confirmed by cell 

viability assay using HeLa cells, as they are most commonly used human cell lines. All the 

particles, PEI-MSN, DOPC-DOPE@MSN and POPG-DOPC@MSN demonstrated viability 

higher than 90% for HeLa cells at 10 µg/ml and 25 µg/ml concentrations. (Figure 47) 

 

Figure 47. Lipid bilayer gated MSNs are not toxic to HeLa cells: Cell viability assay after 

treating HeLa cells with Control (Vehicle), PEI-MSNs, DOPC-DOPE@MSN and POPG-

DOPE@MSNs for 24 hours. Error bars represents ± SEM (n≥3) (PAPER IV) 

5.2.3.2. Cellular uptake and effect of outer leaflet of lipid coating on cargo release  

The potential of tLB@MSN system to deliver hydrophilic guest molecules to cancer cells has 

been investigated by the degree of cellular internalization of hydrophilic cargo, calcein. 

Increase of PEI-MSNs concentration from 10 to 25 μg/ml did not lead to a significant 

enhancement of the mean fluorescence obtained from intracellular calcein in the HeLa cells. 

However, a significant particle-dose-dependent increase in the mean fluorescence intensity 

was found for both DOPC-DOPE@MSN and POPG-DOPC@MSNs. (Figure 48A) PEI-

MSNs without any lipid bilayer coating does not protect the calcein release in cell media, and 

the calcein molecule itself is not able to permeate the cell membrane; hence very little or no 

enhancement in mean fluorescence intensity has been observed for PEI-MSN/calcein 
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compared to the control without any treatment. However, DOPC- and POPG-DOPE@MSNs 

both are efficient to transport calcein inside the cell. (Figure 48B) 

 

Figure 48. Lipid bilayer gated MSNs are efficiently internalized by HeLa cells: (A) 

Determination of the mean fluorescence intensity of intracellular calcein from the flow 

cytometry of HeLa cells incubated with Vehicle alone (Control), PEI-MSN/calcein, DOPC-

DOPE@MSN/calcein and POPG-DOPE@MSNs/calcein for 24 hours. (B) Flow cytometry 

histogram of HeLa cells after incubating with 10 µg/ml of PEI-MSNs or tLB@MSNs loaded 

with calcein for 24 hours. Error bars represents ± SEM (n≥3) (PAPER IV) 

MSNs loaded with calcein were incubated with HeLa cells at 10 μg/ml
 
concentrations for 24 

hours and the fluorescence of calcein recorded in the green channel with a confocal 

fluorescence microscope. No green signal has been visible for PEI-MSNs suggesting that 

most of the calcein might have been released already outside the cells prior to the cellular 

uptake of particles. (Figure 49a-c) LB tethered particles produced a significantly strong 

fluorescence signal inside the cells, suggesting improved calcein retention before and during 

the cellular internalization of the carrier particles. For the POPG- and DOTAP-DOPE@PEI-

MSNs mostly co-localization of red signal from MSNs (TRITC-labelled, 

Tetramethylrhodamine-5-isothiocyanate) and green signal from calcein (visible as yellow 

signal) has been observed after 24 hours, whereas for DOPC-DOPE@PEI-MSNs some 

amount of calcein release from the MSNs (only green signal) has been observed mainly from 

the cytoplasm, suggesting it can provide endosomal escape and eventual delivery of the cargo 

to the cytoplasm. (Figure 49d-l) DOTAP has been used as fusogenic lipid in a liposomal 

preparation; however, in this system calcein release has not been observed from the DOTAP-

DOPE@PEI-MSNs even after 72 hours [Data not shown]. 
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Figure 49. Lipid bilayer coated MSNs efficiently deliver cargo intracellularly: Confocal 

fluorescence microscopy images of HeLa cells incubated with calcein-loaded PEI-MSNs (a-

c), POPG-DOPE@PEI-MSN (b-f), DOPC-DOPE@PEI-MSNs g-i), and DOTAP-

DOPE@PEI-MSNs (J-L) for 24 hours. Red channel shows MSNs (labelled with TRITC), 

green shows the presence of calcein and merged channel with bright field. (PAPER V) 
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5.2.3.3. Influence of outer leaflet of lipid coating on the route of uptake 

The influence of lipid bilayer coating and surface charge of the lipid from the outer leaflet of a 

lipid bilayer on the route of cellular uptake has been evaluated by measuring cellular 

internalization in the presence of different cellular uptake inhibitors. For the PEI-MSNs, as 

observed before for large approx. 250-300 nm MSNs, the cellular uptake was inhibited by 

phenylarsine oxide, which is the inhibitor of clathrin-mediated endocytosis. (Figure 50) 

However, when inhibited by both genistein and phenylarsine oxide cellular uptake has been 

slightly increased, which might be due to activation of other internalization pathways. 

 

Figure 50. Surface coating influence the route of internalization: The effects of various 

cellular uptake inhibitors on internalization of tLB@MSNs in MDA-MB-231cells. Cellular 

uptake of PEI-MSNs and different lipid bilayer coated MSNs after co-treatment with Sodium 

azide, Amiloride, Genistein, Phenyl arsine oxide and Genistein + Phenyl arsine oxide. Error 

bar represents ± SEM. (n≥3) *P<0.05, **P<0.01and ***P<0.001.(PAPER V) 

For all three lipid bilayer coated MSNs, the statistical significant uptake inhibition has been 

observed in the presence of amiloride and genistein, which are inhibitors of macropinocytosis 

and caveolae-mediated endocytosis, respectively. The cellular internalization has also been 

inhibited significantly by the presence of phenylarsine oxide alone and by the combination of 

genistein and phenylarsine oxide at the same extent. The discrepancy between different outer 

lipids of lipid bilayer is not evident, however, a clear difference between the route of uptake 

of PEI-MSNs and tLB@MSNs has been observed. In the literature, it has also been reported 

that lipid nanoparticles have high affinity for the lipid bilayer of the cells and they can be 

targeted to cholesterol rich caveolae domains on the cell surface, hence inhibition of caveolae-

mediated endocytosis has shown significant inhibition in percentage cellular uptake for lipid 
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bilayer coated MSNs.
140

 These results suggest that surface coating and surface properties such 

as hydrophobicity has a significant effect on the route of cellular internalization and further 

intracellular routing. 

5.2.3.4. Evaluation of in vitro efficacy of the drug loaded lipid bilayer coated MSNs in 

breast cancer cells 

The drug delivery competence of the ZOL loaded nanoparticles was evaluated using WST-1 

assay and Incucyte
TM

 instrument using toll-like receptor (TLR 9) transfected MDA-MB-231 

breast cancer cells, as they are more sensitive to the ZOL treatment.
212

 For the WST-1 assay, 

empty MSNs with different lipid bilayer coating, free ZOL and ZOL loaded MSNs at 

concentrations equivalent to 1, 10 and 20 μM of free ZOL were incubated with MDA-MB-

231 TLR9 transfected cells for 72 and 96 hours. At the end of the incubation period, 

cytotoxicity of samples was evaluated by employing WST-1 reagent. The obtained results 

indicate that indeed the ZOL loaded MSNs are effective to induce cytotoxicity in breast 

cancer cells. (Figure 51) Although, at lower concentrations there is no difference between the 

effect of free ZOL and ZOL loaded MSNs, a clear difference between the toxicity of free 

ZOL and ZOL loaded lipid bilayer coated MSNs has been observed at higher concentrations. 

To further confirm the influence of drug loaded MSNs on cell viability Incucyte
TM

 live cell 

imaging was performed. Cell growth was followed for one week after incubation with empty 

and ZOL loaded DOPC-DOPE@PEI-MSNs at concentrations equivalent to 1 and 10 μM of 

free ZOL. These results further approve efficient drug release and effectiveness of ZOL 

loaded MSNs on the reduction of cancer cells growth. (PAPER V) 

  

Figure 51. ZOL loaded lipid bilayer coated MSNs produce cytotoxic effect: The effect of ZOL 

loaded MSNs on MDA-MB-231 TLR9 siRNA cells. The cytotoxicity of ZOL/tLB@MSNs has 
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been evaluated after (a) 72 and (b) 96 hours incubation with MDA-MB-231 cells at different 

concentrations using the WST-1 assay. Error bars represent ± SD (n≥ 3) *P<0.05, 

**P<0.01and ***P<0.001 (PAPER V) 

5.2.4.  In vivo delivery and safety studies 

After successful in vitro studies, the selected particle was further applied in vivo to confirm its 

functionality and safety in more clinically relevant environment. 

5.2.4.1. In vivo delivery of the drug loaded lipid bilayer coated MSNs 

To evaluate the efficiency of FA-DOPC-DOPE@PEI-MSNs to deliver ZOL in vivo, 

ZOL/FA-DOPC-DOPE@PEI-MSNs at two different concentrations were intravenously 

injected to mice xenografted with MDA-MB-231 tumor cells. Mice were randomly 

distributed into three different groups and each group consisted of 8 mice. The mice were 

injected one week after the tumor cells’ inoculation, with vehicle alone:group 1, low dose 

ZOL/FA-DOPC-DOPE@PEI-MSNs:group 2 and high dose:group 3, three times a week for 

three weeks. Tumor growth was monitored for four weeks, at the end of the experiment mice 

were sacrificed by CO2 inhalation and cervical dislocation; further tumor and liver samples 

were collected for histology. Tumor volumes were calculated using the formula V = (π/6)(d1 × 

d2)
3/2

,
 
where d1 and d2 are the perpendicular tumor diameters. It has been observed that the 

tumor grew normally for mice injected with vehicle alone, whereas the tumor growth very 

marginally reduced for low dose ZOL loaded FA-DOPC-DOPE@PEI-MSNs and a 

statistically significant reduction in tumor growth has been observed for high dose ZOL 

loaded FA-DOPC-DOPE@PEI-MSNs. (Figure 52) In conclusion, it has been observed that 

ZOL loaded FA-DOPC-DOPE@PEI-MSNs were able to suppress tumor growth. 
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Figure 52. ZOL loaded lipid bilayer coated MSNs suppress tumor growth: Tumor size 

reduction followed for four weeks. Group 1:vehicle control, group 2:ZOL/FA-DOPC-
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DOPE@PEI-MSNs (0.1 mg/kg free ZOL) and group3: ZOL/FA-DOPC-DOPE@PEI-MSNs 

(0.3 mg/kg free ZOL). *P<0.05 (PAPER V) 

5.2.4.2. Safety evaluation of lipid bilayer coated MSNs after in vivo administration 

Since nanoparticles are typically prone to accumulate in liver and spleen after clearance from 

the circulation, the liver samples were collected from the mice injected with control, low and 

high dose ZOL loaded particles. The particles have not shown any necrotic effect on the liver. 

(Figure 53) Hence, the effects induced by ZOL loaded FA-DOPC-DOPE@PEI-MSNs were 

specifically observed in tumor tissues and were not observed in normal livers of the treated 

animals, indicating that the developed system can be used for in vivo drug delivery. 

 

Figure 53. ZOL loaded lipid bilayer coated MSNs are not toxic to liver cells: Hematoxylin 

eosin staining of the liver sections of (A) vehicle control, (B) low dose ZOL-loaded DOPC-

DOPE@PEI-MSNs and (C) high dose ZOL-loaded DOPC-DOPE@PEI-MSNs after 

intravenous administration showing no necrosis effect on the liver. (PAPER V) 
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6. Conclusions and future outlook 

In this dissertation, different surface functionalization strategies on MSNs employing different 

polymers and lipids were utilized to fabricate advanced drug delivery nanocarriers for 

hydrophobic and hydrophilic drugs, in order to improve the efficacy of poorly aqueous 

soluble drugs and to achieve sustained or triggered drug release. In addition, the potential of 

MSNs as drug delivery carriers via the oral route of administration was evaluated. The 

applicability of MSNs for cancer therapy was assessed in vitro and in vivo.  

Modification of the surface characteristics of MSNs possesses great impact on the fate of 

particles in physiological environment. Adequate surface functionalization as well as surface 

charge provide colloidal stability, and reduce protein adsorption on the particle surface, which 

determines the particles’ interaction with RES. In this study, it has been observed that 

application of the zwitterionic coating on the MSN surface diminishes protein adsorption on 

the particle surface. (PAPER I) Further, hydrophobic cargo has been loaded to the different 

functionalized MSNs and loading degrees up to 70 w/w% can be achieved, however, surface 

modification did not influence the loading efficiency when drug loading has been performed 

using non-ideal organic solvent conditions. In addition, surface coating with PEI layer serves 

as a ‘molecular gate’ and prevents drug release extracellularly; moreover, efficient 

intracellular drug release was subsequently achieved. (PAPER II)  

MSNs’ properties can also be exploited for diagnostic applications, for example, fluorescence 

imaging. The variation in fluorescence properties of fluorescent molecules upon incorporation 

into MSNs has not been devoted as proper attention in the literature as it should deserve. The 

effect of surface properties and different loading degrees on the fluorescent properties of 

fluorescent cargo molecules was studied in this thesis. The surface properties, the 

environment to which the fluorophore has been exposed due to their incorporation in MSN 

matrices, were determined to be the most critical parameter influencing the spectral behavior 

of fluorophore. (PAPER I, Supp Paper 3)  

Further, defect free and highly durable lipid bilayer coating on MSNs’ surface intended for 

the delivery of hydrophilic guest molecules was successfully produced, which successfully 

hindered drug leakage in physiological conditions. However, efficient drug/cargo release was 

achieved intracellularly, whereby the cytoplasmic release depended on the composition (net 

surface charge) of the lipid bilayer. (PAPER IV) 
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In additional to surface modification with different polymers, a small-molecular targeting 

moiety (glucose or folic acid) was successfully conjugated onto the particle surface, which 

provided better therapeutic efficacy and fewer side effects of drug loaded MSN nanocarriers 

towards cancer cells. (PAPER II,III) 

For delivery of hydrophilic anticancer drugs, lipid bilayer gated MSNs with DOPC lipid as an 

outer leaflet have provided efficient anticancer activity. The covalently coupled lipid bilayer 

coated nanocarriers provided good retention of the drug molecules and enabled them to be 

delivered to the cancer cells, and no hepatic toxicity has been observed. (PAPER V) 

For the oral administration, out of the different surface modifications explored, PEGylation in 

combination with PEI as the particle surface coating is superior to enhance the internalization 

of MSNs to intestinal epithelial cells. Additionally, MSNs were also able to be exocytosed 

after internalization, showing that they can transport across the Caco-2 monolayer without 

disturbing its integrity. The carrier MSNs are capable of protecting the loaded drug after 

exposure to the harsh conditions of the stomach and the intestine. The MSNs mediated drug 

delivery in vivo provided a significant therapeutic benefit after oral administration compared 

to an administered free drug. (PAPER III) 

In conclusion, the developed hybrid systems in this thesis represent a novel contribution to the 

field of drug delivery employing MSNs as a versatile drug delivery platform. The results 

presented in the thesis are assumed to provide importance of surface modification needed 

according to the properties of cargo molecule and appropriate evaluation of 

biophysicochemical interactions of nanocarriers for their future drug delivery applications. 

This knowledge facilitates preparation of nanocarriers with desired properties, and can be 

utilized further to prepare multidrug carrying nanoparticles for therapy of drug resistant 

cancer. For example, different hydrophobic molecules can be loaded in MSNs while 

hydrophilic therapeutic molecules can be conjugated on the surface, which can act as a 

targeting ligand simultaneously.  

Many aspects of the MSN mediated drug delivery still remain to be studied in future. The 

safety of the developed nanoformulations in systemic administration needs to be verified by 

thorough animal experiments. In addition to nanoparticle-tumor interactions, in-depth 

knowledge is required concerning how the materials behave in healthy tissues particularly the 

liver, spleen, and kidney, which are main factors affecting the ability of nanopharmaceuticals 

to circulate in the bloodstream. Further, evaluation of oral drug delivery efficiency of MSNs 

needs to be done using a proper disease model such as Crohn’s disease or ulcerative colitis. 
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In addition, more detailed knowledge is required regarding the transport of MSNs, to explore 

whether alternative routes, in which particles travel through instead of around endothelial 

cells lining the blood vessels, exist for reaching the tumor. Further information is needed 

regarding how nanoparticles leave tumor vessels, their extravasation and how they then 

interact with tumor tissues. How does particle design affect the penetration depth of these 

particles into tumor tissues? These obstacles due to non-uniform extravasation in the tumor 

interstitium are needed to be overcome for improved drug delivery by nanomedicines. For 

example, nanoparticles can be developed which are capable of lowering interstitial fluid 

pressure or modifying tumor vasculature together with carrying potent anticancer agents. 

Many other hurdles are to be overcome before MSNs could reach clinical use, such as scaling 

up the synthesis of the particles to meet Good Manufacturing Practice (GMP) and cost of the 

formulation. However, cancer is still the leading cause of death after heart diseases, and 

treatment of this condition requires improvements in efficacy, safety, and patient comfort, and 

thus, a smart drug delivery system is the need of current time.  
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