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giving increasing attention to the dependence of major losses. Recently, there has been

growing interest among insurance and investment experts to focus on the relationship of

major claims in insurance or major losses in investment worlds. In this paper we throw

light upon the relationship of two claims when both exceed certain thresholds. We in-

troduce the concept of Upper Tail Covariance, a covariance of two claims conditional on

both exceeding some thresholds. We investigate the Upper Tail Covariance in log-elliptical

cases. The log-elliptical distributions are a family of distributions that include the more fa-

miliar log-normal distribution. The class of log-elliptical distributions has been introduced

in the applications in insurance and actuarial science. There is a fair amount of discussion

of this important class as a tool for modelling risk dependencies. We derive expressions

of Upper Tail Covariance for log-elliptical distributions. The theoretical results are illus-

trated by considering log-normal distributions. Numerical examples illustrate the concept

in log-normal settings. The new concept Upper Tail Covariance can be a risk measure or

part of capital allocation principles.
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Abstract

For my Licentiate thesis, I conducted research on risk measures. Continuing with this

research, I now focus on capital allocation. In the proportional capital allocation principle,

the choice of risk measure plays a very important part.

In the chapters Introduction and Basic concepts, we introduce three definitions of eco-

nomic capital, discuss the purpose of capital allocation, give different viewpoints of capital

allocation and present an overview of relevant literature. Risk measures are defined and

the concept of coherent risk measure is introduced. Examples of important risk measures

are given, e. g., Value at Risk (VaR), Tail Value at Risk (TVaR). We also discuss the

implications of dependence and review some important distributions.

In the following chapter on Capital allocation we introduce different principles for allocat-

ing capital. We prefer to work with the proportional allocation method.

In the following chapter, Capital allocation based on tails, we focus on insurance business

lines with heavy-tailed loss distribution. To emphasize capital allocation based on tails, we

define the following risk measures: Conditional Expectation, Upper Tail Covariance and

Tail Covariance Premium Adjusted (TCPA).

In the final chapter, called Illustrative case study, we simulate two sets of data with five

insurance business lines using Normal copulas and Cauchy copulas. The proportional cap-

ital allocation is calculated using TCPA as risk measure. It is compared with the result

when VaR is used as risk measure and with covariance capital allocation.

In this thesis, it is emphasized that no single allocation principle is perfect for all purposes.

When focusing on the tail of losses, the allocation based on TCPA is a good one, since

TCPA in a sense includes features of TVaR and Tail covariance.
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Sammanfattning

Föreliggande avhandling behandlar riskhantering, riskmått och allokering av riskkapital p̊a

olika affärsomr̊aden inom bolag som är speciellt riskbenägna, t.ex. försäkringsbolag.

I min licentiatavhandling studerade jag begreppet riskmått. I min fortsatta forskning har

huvudintresset legat p̊a allokering av kapital. Härvid kan konstateras att valet av specifikt

riskmått har en mycket stor betydelse, i synnerhet om man väljer den s.k. proportionella

allokeringsmetoden.

I kapitlen 1 och 2 introduceras definitionen av ekonomiskt kapital, diskuteras för- och nack-

delarna med ett dylikt begrepp ur olika synvinklar samt ges en översikt av relevant litter-

atur. Riskmått definieras och det viktiga begreppet koherent riskmått diskuteras och exem-

plifieras. Viktiga riskmått som används i praktisk bank- och försäkringsverksamhet är bl.a.

Value at Risk (VaR) och Tail Value at Risk (TVaR). Problem som sammanhänger med

beroende mellan skadetyper diskuteras och ett antal ofta använda sannolikhetsfördelningar

presenteras.

I kapitel 3 presenteras olika typer av principer som används för kapitalallokering. I denna

avhandling arbetas företrädesvis med den s.k. proportionella allokeringsmetoden.

Kapitel 4 behandlar allokeringsmetoder baserade p̊a fördelningens ”svans”, dvs. p̊a stora

värden p̊a utfallet/skadan. Fokus ligger p̊a försäkringsslag med s.k. tjocksvansade fördelningar.

Karakteristiska för dessa är att mycket stora utfall kan förekomma med rätt stor sanno-

likhet. Riskmått som bygger p̊a fördelningarnas svans är t.ex. Conditional Expectation,

Upper Tail Covariance och Tail Covariance Premium Adjusted (TCPA).

I kapitel 5 illustreras teorin med n̊agra simulerade fallstudier där beroendeförh̊allanden mel-

lan olika försäkringsslag uttrycks genom s.k. copulas. Proportionella allokeringsprincipen

med TCPA som riskmått tillämpas. Det fallet jämförs med VaR som riskmått och ko-

variansallokering. D̊a tyngdpunkten ligger p̊a extrema utfall är TCPA ett bra verktyg,

eftersom den kombinerar drag av Tail Covariance och VaR. N̊agot riskmått som är bäst i

alla situationer finns dock inte.
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Chapter 1

Introduction

1.1 Main problem of the research

The main problem of the research is how to allocate economic capital to different business

lines. There are many different methods of allocation proposed in research papers. This

thesis will put emphasis on capital allocation based on tails, since the major losses by

definition are tail events. The thesis will start with the basic concepts of economic capital

and allocation.

1.2 Economic capital

A bank or an insurance company always faces some risks that could cause a financial loss.

Economic capital is the realistic amount of capital that is needed to cover losses at a certain

risk tolerance level (Shaw et al. (2010) [51]).
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1.2.1 What is the economic capital?

In the Specialty Guide on Economic Capital [52] (2004), the authors found that there is

no one consistent definition of economic capital in use in the marketplace. Definitions in

use are numerous, but the following three main definitions, based on 77 responses to EC

survey (2002), demonstrate the main themes of the various practical alternatives currently

in use.

• Definition 1

Economic capital is defined as sufficient surplus to meet potential negative cash flows

and reductions in value of assets or increases in value of liabilities at a given level of

risk tolerance, over a specified time horizon.

• Definition 2

Economic capital is defined as the excess of the market value of the assets over the

fair value of liabilities required to ensure that obligations can be satisfied at a given

level of risk tolerance, over a specified time horizon.

• Definition 3

Economic capital is defined as sufficient surplus to maintain solvency at a given level

of risk tolerance, over a specified time horizon.

Valdez (2012) [65] thinks that it is the amount set aside, usually in excess of assets backing

all liabilities, so that the company:

• could withstand and absorb ”unexpected losses” from all risks it is facing;

• would remain solvent with high probability; and

• is able to cover obligations to its customers as promised.

It captures a wide spectrum of risks such as insurance risk, market risk, credit risk and

operational risk, as well as dependencies between them and various other complexities such

as transferability of capital, and expresses all of this as a single number.
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1.2.2 The purpose of economic capital

Calculating the economic capital for a firm has its many purposes, see the list from the

Specialty Guide on Economic Capital [52] (2004). The list is not intended to be exhaus-

tive, but it does capture the major uses of economic capital in today’s insurance industry

environment:

1. Determination of the company or product risk profile

2. Capital budgeting

3. Evaluation of required capital in merger and acquisition situations

4. Insurance product pricing

5. Risk tolerances and constants

6. Asset/liability management

7. Calculating Risk-Adjusted Return on Capital

8. Performance Measurement

9. Incentive Compensation

10. Rating agency and regulatory discussions

A company may do an economic capital calculation according to external criteria laid down

by the regulators for regulatory capital purposes or other criteria, e.g., to satisfy specific

standards prescribed by a rating agency.

Currently the most popular risk measure used in banking and insurance is the one-year

99.5% Value at Risk (VaR). For example, under the UK’s Individual Capital Assessment

(ICA) regime and Solvency II, an insurance company needs to hold enough capital such

that there is a probability of 99.5% of survival over a one-year time horizon, or in other

words, the probability of insolvency over 12 months is no more than 0.5%.

Economic capital plays a central role in supervision, product pricing, risk assessment,
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risk management and hedging, capital allocation, performance management and financial

reporting, see Corrigan et al. (2009) [10].

Economic capital can be calculated by risk measures. This is very important part in risk

management.

1.3 Capital allocation

Dhaene et al. (2011) [19] and Valdez (2012) [65] give a definition of capital allocation, the

term typically referring to the subdivision of the aggregate capital held by the firm across

its various constituents, e.g.

• lines of business

• its subsidiaries

• product types within line of business

• types of risks: e.g. market, credit, pricing/underwriting, operational

• territories, e.g. distribution channels

In the slides from Valdez (2012) [65], capital allocation is a very important component of

enterprise risk management, such as, identifying, measuring, pricing and controlling risks.

1.3.1 Why allocate?

There are many opinions about why to allocate capital. Most agree that allocation to

different business lines is a risk management for pricing or performance measurement, see

Corrigan et al. (2009) [10], DiCaro (2010) [21] and Dhaene et al. (2011) [19].

Holding economic capital is a cost. The cost needs to be allocated across business lines.

At the same time, the allocated cost also makes the return of business lines more clear.

That can be used to judge the performance of the different lines.
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In Venter (2004) [66], capital allocation is generally not an end in itself, but rather an

intermediate step in a decision-making process. In Bodoff (2009) [7], how a firm allocates

capital, similar to other cost allocation decisions, can significantly affect the measured

profitability of a particular line of business. Moreover, allocating capital can affect target

pricing margins and the volume of business the company writes in each line of business

and product type. As a result, the topic is critically important and often the subject of

contentious debate among the heads of the firm’s various business units.

DiCaro (2010) [21] answered why we are allocating capital as follows:

• Determine which business units are most profitable relative to the risk they bring to

the enterprise

• Include a risk charge in pricing

• Compensation/performance management

• Regulatory/Rating compliance?

• Enterprise Risk Management (ERM) processes allocate capital to risk categories:

catastrophe risk, market risk, counterparty risk ...

1.3.2 Different viewpoints

In Dhaene et al. (2011) [19], there are some different viewpoints about capital allocation.

• Owners’ i.e. shareholders’

Allocating capital may help to identify areas of risk consumption within a given orga-

nization and support the decision making concerning business expansions, reductions

or even eliminations.

• Business line managers’

A good allocation helps evaluate performance of his own business line and compare

with other business lines. It allows one to distinguish the most profitable business

lines and hence may assist in remunerating the business line managers.
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• Regulators’

The regulator, primarily sharing the interests of depositors and policyholders, estab-

lishes rules to determine the required capital to be held by the company. From a

capital allocation perspective, the regulators will be concerned to see that capital is

optimally used within the business to ensure security for policyholders.

In this thesis, the regulator’s viewpoints are used.

1.3.3 Overview of literature

Dhaene et al. (2011) [19] give a very good overview of the literature. There are many

different approaches to allocate the aggregate capital of a company to its different business

units. Mutual dependencies that may exist between the performances of the various busi-

ness units make capital allocation a non-trivial exercise. Accordingly, there is an extensive

amount of literature on this subject with a wide number of proposed capital allocation

algorithms. Cummins (2000) [11] provides an overview of several methods suggested for

capital allocation in the insurance industry and relates capital allocation to management

decision making tools such as RAROC (risk-adjusted return on capital) and EVA (eco-

nomic value added). Myers and Read Jr. (2001) [44] consider capital allocation principles

based on the marginal contribution of each business unit to the company’s default op-

tion. The default value is the present value of the insurance company’s option to default.

LeMaire (1984) [42] and Denault (2001) [13] consider that in the language of game theory,

the risk capital allocation problem is modelled as a game between the constituents of the

firm. The allocation of the overall capital costs to the policies has to be fair, which means

that no subportfolio of policies, would be better off on their own. Tasche (2000) [54] cal-

culates the risk contribution by the marginal (’Euler’) principle and argues by means of

portfolio steering/performance measurement. The risk contribution should be calculated

in such a way that it rewards policies with a positive contribution to the overall result,

and punishes policies with a negative contribution. Further approaches to capital allo-

cation include Kalkbrener (2005) [35], where an axiomatic allocation framework is used,

formulating desirable properties. Further, there is an extension of this approach to spectral
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measures of risk, see Overbeck (2004) [46]. A commentary on the various approaches to

allocating capital has appeared in Venter (2004) [66]. Another very general approach to

capital allocation using different methods is found in Denneberg and Maass (2006) [14].

A recent work by Kim and Hardy (2008) [38] proposed a method based on an insolvency

exchange option (default option) and which explicitly accommodates the notion of limited

liability of the shareholders and can further decompose the allocated capital.

Panjer (2001) [48] considers the particular case of multivariate normally distributed risks

and provides an explicit expression of marginal cost based allocations, when the risk mea-

sure used is Tail Value at Risk (TVaR). Landsman and Valdez (2003) [41] extends these

explicit capital allocation formulas to the case where risks belong to the class of multi-

variate elliptical distributions, for which the class of multivariate normal is a special case.

Dhaene et al. (2008) [16] derive the results of Landsman and Valdez (2003) [41] in a

rather more straightforward manner and apply these to sums that involve normal as well

as lognormal risks. In Valdez and Chernih (2003) [60], expressions for covariance-based

allocations are derived for multivariate elliptical risks. Tsanakas (2004) [55] studies allo-

cations where the relevant risk measure belongs to the class of distortion risk measures,

while Tsanakas (2008) [57] extends these allocation principles to the more general class of

convex risk measures including the exponential risk measures. Furman and Zitikis (2008)

[26] introduce the class of weighted risk capital allocations ”which stems from the weighted

premium calculation principle”.

The multitude of allocation methods proposed in the literature is complicated. Allocation

methods are sometimes proposed in an ad hoc fashion usually lacking much economic jus-

tification and are thereby viewed as arbitrary. This motivated some authors to doubt the

legitimate purpose of the exercise itself of allocating capital e.g. Gründl and Schmeiser

(2007) [29]. Gründl and Schmeiser (2007) [29] point out this importance because accord-

ingly, certain allocation techniques can dangerously lead to wrong financial decisions. For

example, they think that that capital allocation to lines of business based on the Myers

and Read approach is either not necessary for insurance rate making (in the case of no

frictional costs) or even leads to incorrect loadings (when frictional costs are considered).

The following references are taken from the literature list in Valdez (2012) [65].

Good overview of methods:
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• Cummins (2000) [11]; Venter (2004) [66]

Some methods based on decision making tools:

• Cummins (2000) [11] - Risk-adjusted return on capital (RAROC), economic value

added (EVA)

• LeMaire (1984) [42] and Denault (2001) [13] - game theory

• Tasche (2000) [54] - marginal costs

• Kim and Hardy (2008) [38] - solvency exchange option with limited liability

Some methods based on risk measures/distributions:

• Panjer (2001) [48] - TVaR, multivariate normal

• Landsman and Valdez (2003) [41] - TVaR, multivariate elliptical

• Valdez and Chernih (2003) [60] - covariance-based allocation, multivariate elliptical

• Tsanakas (2004) [55] and (2008) [57] - distortion risk measures, convex risk measures

• Furman and Zitikis (2008) [26] - weighted risk capital allocation

Methods also based on an optimality principle:

• Dhaene et al. (2003) [20]; Laeven and Goovaerts (2004) [39]; Zaks, Forstig and

Levikson (2006) [24]

• Biard (2010) [6] study the optimal allocation to minimize the asymptotic ruin prob-

ability.

Methods special emphasis on heavy-tailed distribution
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• Hult and Lindskog (2006) [32] analyze the impact of rules for transfer of capital on

the ruin probability and they draw conclusions about possible benefits from diversi-

fication;

• Asimit et al. (2011) [3] - TVaR, distributions from Maximum Domain of Attraction

(MDA)

• Asimit et ai. (2013) [4] - the distortion and weighted risk measures and allocations,

as well as their special cases such as the conditional layer expectation, tail value

at risk, and the truncated tail value at risk, multivariate Pareto distribution of the

second kind
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Chapter 2

Basic concepts

2.1 Risk measures

Economic capital and capital allocation are calculated based on risk measures. An intro-

duction to the theory of risk measures may be found in Wang (2009) [67].

According to Hardy (2006) [30], in actuarial applications we often work with loss distri-

butions for insurance products. For example, in Property & Casualty insurance, we can

develop a compound Poisson model for the losses under a single policy or a whole portfolio

of policies. In life insurance, we can develop a loss distribution for a portfolio of policies,

often by stochastic simulation.

In addition, it is usually appropriate to assume, in insurance contexts, that the loss X is

non-negative. It is not essential however, and the risk measures that we describe can be

applied (perhaps after some adaptation) to random variables with possible values in any

part of the real line.

Following Dhaene et al. (2008) [17], we consider a set Γ of real-valued random variables

defined on a given measurable space (Ω,F ,P). We will assume that X, Y ∈ Γ implies that

X + Y ∈ Γ, and also aX ∈ Γ for any a > 0 and X + b ∈ Γ for any real b. A functional

ρ : Γ→ R,
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mapping every element of a loss (or profit) distribution in Γ to the real numbers, is called

a risk measure (with domain Γ). The risk measure is assumed in some way to encapsulate

the risk associated with a loss distribution.

In this thesis, we will interpret Ω as the set of all possible states of nature at the end of some

fixed reference period, for instance one year. The set Γ will be interpreted as the extended

set of financial losses under consideration at the end of the reference period, related to

insurance and investment portfolios that a particular regulatory authority controls.

Let X be an element of Γ. In case all claims of the corresponding insurance and investment

portfolio are settled at the end of the reference period and all premiums are paid at the

beginning of the reference period, the (aggregate) loss X can be defined as claims minus the

sum of premiums and investment income. In a general setting, we can define X as the sum

of the claims to be paid out over the reference period and the provisions to be set up at the

end of the reference period, minus the sum of the provisions available at the beginning of

the reference period, the investment income, and the premiums received over the reference

period. Here, claims, premiums and provisions are understood as gross amounts, i.e.,

including expenses. The valuation principles, on the basis of which the value of the assets

(represented by the provisions available, the premiums received and the investment income

generated) and in particular the liabilities (represented by the provisions to be set up and

the claims to be paid out) are determined, are left unspecified in this thesis; our set-up is

compatible with any particular valuation basis.

2.1.1 Coherent risk measure

Corrigan et al. (2009) [10] agreed that a good allocation method should be coherent.

In Artzner et al. (1999) [2], a risk measure ρ is called a coherent risk measure, if it

satisfies the following axioms: monotonicity, positive homogeneity, translation invariance

and subadditivity.

Axiom 2.1. Monotonicity: for any X and Y ∈ Γ with X ≤ Y , we have ρ[X] ≤ ρ[Y ].

This rules out the risk measure, ρ[X] = E[X] + ασ[X], where α > 0 and σ denotes the

standard deviation operator.
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Axiom 2.2. Positive homogeneity: for any λ > 0 and X ∈ Γ, ρ[λX] = λρ[X].

If position size directly influences risk (for example, if positions are large enough that

the time required to liquidate them depends on their sizes) then we should consider the

consequences of a lack of liquidity when computing the future net worth of a position.

Axiom 2.3. Translation invariance: for any X ∈ Γ and all real numbers b, we have

ρ[X + b] = ρ[X] + b.

This says that a sure loss of amount b simply increases the risk by b and it is an axiom for

accounting-based risk measures. For many external risk measures, such as a margin deposit,

the accounting-based risk measures seem to be reasonable. For internal risk measures,

attitude-based measures may be preferred.

Axiom 2.4. Subadditivity: for all X and Y ∈ Γ, ρ[X + Y ] ≤ ρ[X] + ρ[Y ].

We argue that a subadditivity property, which reflects the diversification of portfolios (see

Meyers (2000) [43]), or that ‘a merger does not create extra risk,’ is a natural requirement.

In the following, risk measure can also be a function of a vector. For example, if X =

(X1, . . . , Xn)T , ρ[X] = (ρ[X1], . . . , ρ[Xn])T .

Note 1. Example of non-coherent risk measure, Value at Risk

It is well known that value at risk is not, in general, a coherent risk measure as it does

not respect the sub-additivity property, see the example in the next section. An immediate

consequence is that value at risk might discourage diversification.

Value at risk is, however, coherent, under the assumption of elliptically distributed losses

(e.g. normally distributed).

Comparing different risk measures, Value at Risk is very much used and robust.
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2.1.2 Important risk measures

2.1.2.1 Value at Risk - the quantile risk measure

According to Hardy (2006) [30], the Value at Risk, or VaR risk measure was actually in use

by actuaries long before it was reinvented for investment banking. In actuarial contexts

it is known as the quantile risk measure or quantile premium principle. VaR is always

specified with a given confidence level α - typically α = 95% or 99%.

In broad terms, the α-VaR represents the loss that, with probability α, will not be exceeded.

Since that may not define a unique value, for example, if there is a probability mass around

the value, we define the α-VaR more specifically.

Definition 2.1. For a given probability level α, Value at Risk (VaR) is denoted by Qα[X],

or alternatively V aRα[X], and defined as the α-quantile of X, i.e.,

Qα[X] = inf{x ∈ R|Pr[X ≤ x] ≥ α} for α ∈ (0, 1). (2.1)

For continuous distributions this simplifies to Qα[X] such that

Pr[X ≤ Qα] = α. (2.2)

That is, Qα[X] = F−1
X (α) if FX(α) is continuous and strictly monotone, where FX(α) is

the cumulative distribution function of the loss random variable X. The reason for the

’inf’ term in the Definition 2.1 is that for loss random variables that are discrete or mixed

continuous and discrete, we may not have a value that exactly matches equation (2.2).

The following lemma expresses the quantiles of a function of a random variable in terms

of the quantiles of the random variable.

Lemma 2.5. Quantiles of transformed random variables Let X be a real-valued

random variable, and α ∈ (0, 1). For any non-decreasing and left continuous function g, it

holds that

Qα[g(X)] = g(Qα[X]).

A proof of this result can be found in Dhaene et al. (2002) [15].
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Example 2.6. It is very easy to create an example of a violation of VaR subadditivity: for

example, consider two different bonds A and B with nonoverlapping default probabilities (if

one defaults the other will not and vice versa). A portfolio that contains both bonds may

have a global VaR which is greater than the sum of the two VaRs. For instance, consider

the following numerical example. Each bond has a default with a probability of 4%, and we

receive recovery value at 70 if a default occurs. Otherwise they will redeem at 100.

The 95% VaR of each bond is therefore 70, so V aR95%[A] = V aR95%[B] = 70, V aR95%[A]+

V aR95%[B] = 140. Defaults are independent. Elementary calculations then establish that

we receive a value at 140 with a probability of 0.16%, a value at 170 with a probability

of 4% × 96% × 2 = 7.68%, and a value at 200 with a probability of 92.16%. Hence

V aR95%[A + B] = 170. Thus, V aR95%[A] + V aR95%[B] < V aR95%[A + B], and the VaR

violates subadditivity.

Final Event A B A+B Prob

1 70 70 140 4%× 4% = 0.16%

2 70 100 170 4%× 96% = 3.84%

3 100 70 170 96%× 4% = 3.84%

4 100 100 200 96%× 96% = 92.16%

V aR95% 70 70 170

According to Heyde, et al. (2006) [31], VaR has been criticized because of its lack of

subadditivity. However, VaR is subadditive for elliptically distributed, En(µ,Σ, φ) random

vectors (defined in 2.3.1 below) as shown by see Embrechts (2002) [22].

Theorem 2.7. Subadditivity of VaR. Suppose Xi ∼ En(µ,Σ, φ) with σ2[Xi] < ∞ for

all i. Let

P =

{
Z =

n∑

i=1

λiXi|λi ∈ R

}

be the set of all linear portfolios. Then for any two portfolios Z1, Z2 ∈ Γ and α ∈ [0.5, 1),

Qα[Z1 + Z2] ≤ Qα[Z1] +Qα[Z2].

Proof. Marginal distributions Xi for all i are elliptical so linear combinations of Z1, Z2, Z1+
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Z2 have distributions of the same type. Let qα be the α-quantile of the standardized

distribution of this type. Then

Qα[Z1] = E[Z1] + σ[Z1]qα,

Qα[Z2] = E[Z2] + σ[Z2]qα,

Qα[Z1 + Z2] = E[Z1 + Z2] + σ[Z1 + Z2]qα,

Since σ [Z1 + Z2] ≤ σ [Z1] + σ [Z2] and qα ≥ 0 the result follows. �
Let us consider when the equality holds.

σ [Z1 + Z2] = σ [Z1] + σ [Z2] if and only if

σ2 [Z1] + σ2 [Z2] + 2Cov[Z1, Z2] = σ2 [Z1] + σ2 [Z2] + 2σ [Z1]σ [Z2] if and only if

Cov[Z1, Z2] = σ [Z1]σ [Z2] .

That also means the correlation coefficient ρ = 1. It is reasonable that if Z1, Z2 is a perfect

positive linear relationship, then the VaR will satisfy additivity.

In the article I, there are some comments about VaR and additivity.

Although in the center of the distributions VaR may violate the subadditivity, Dańıelsson

et al. (2005) [12] questioned whether the violation is merely a technical issue, at least if

one focuses on the tail regions which are the most relevant regions for risk management.

Indeed they showed that VaR is subadditive in the tail regions, provided that the tails in

the joint distribution are not extremely fat (with tail index less than one). They also carried

out simulations showing that VaR is indeed subadditive for most practical applications.

Distributions with tail index less than one have very fat tails. They are difficult to find and

easy to identify. Dańıelsson et al. (2005) [12] argued that they can be treated as special

cases in financial modelling.

Uryasev (2010) [59] presents some pros and cons for VaR.

VaR: Pros

1. VaR is a relatively simple risk management concept and has a clear interpretation

2. Specifying VaR for all confidence levels completely defines the distribution
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3. VaR focuses on the part of the distribution specified by the confidence level

4. Estimation procedures are stable

5. VaR can be estimated with parametric models

VaR: Cons

1. VaR does not account for properties of the distribution beyond the confidence level

2. Risk control using VaR may lead to undesirable results for skewed distributions

3. VaR is a non-convex and discontinuous function for discrete distributions

2.1.2.2 Tail Value at Risk

Following Dhaene et al. (2004) [18], a single quantile risk measure of a predetermined level

α assesses the ‘worst case’ loss, where worst case is defined as the event with a (1 − α)

probability. One problem with the quantile risk measure is that it does not take into

consideration what the loss will be if that (1 − α) worst case event actually occurs and

does not give any information about the thickness of the upper tail of the distribution

function from Qα[X] on. The loss distribution above the quantile does not affect the risk

measure. A regulator is not only concerned with the frequency of default, but also about

the severity of default. Also shareholders and management should be concerned with the

question ‘how bad is bad?’ when they want to evaluate the risks at hand in a good way.

Therefore, we also use another risk measure which is called the Tail Value at Risk (TVaR)

at level α. It is denoted by TV aRα[X] and defined by

TV aRα[X] =
1

1− α

∫ 1

α

Qq[X]dq, α ∈ (0, 1). (2.3)

It is the arithmetic average of the quantiles of X, from α on. Note that the TVaR is

always larger than the corresponding quantile. From the equation (2.3) definition it follows

immediately that the Tail Value at Risk is a non-decreasing function of α.
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Let X again denote the aggregate claims of an insurance and investment portfolio over

a given reference period. We could define ‘bad times’ as those where X takes a value in

the interval [Qα[X], TV aRα[X]]. Hence, ‘bad times’ are those where the aggregate claims

exceed the threshold Qα[X], but not using up all the available capital. The width of the

interval is a ‘cushion’ that is used in case of ‘bad times’. For more details, see Overbeck

(2000) [47].

The Expected Shortfall (ESF) at level α will be denoted by ESFα[X], and is defined as

ESFα[X] = E[(X −Qα[X])+], α ∈ (0.5, 1). (2.4)

This risk measure can be interpreted as the expected value of the shortfall of X and the

quantile Qα[X], (X −Qα[X])+ := max(X −Qα[X], 0).

Figure 2.1: Graphical derivation of stop-loss E[(X − d)+] for a discrete cumulative
distribution function from Karniychuk (2006) [36].

The following relation holds between these risk measures defined above.
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Theorem 2.8. Relation between Quantiles, TVaR and ESF. For α ∈ (0, 1), we

have that

TV aRα[X] = Qα[X] +
1

1− αESFα[X]. (2.5)

Proof. Expression (2.5) follows from

ESFα[X] =

∫ 1

0

(Qq[X]−Qα[X])+dq =

∫ 1

α

Qq[X]dq − (1− α)Qα[X].

�
Uryasev (2010) [59] presents some pros and cons for TVaR and the some observations for

VaR and TVaR.

TVaR: Pros

1. TVaR has a clear engineering interpretation

2. Specifying TVaR for all confidence levels completely defines the distribution

3. TVaR is a coherent risk measure

4. TVaR is continuous.

5. TVaR is a convex function.

TVaR: Cons

1. TVaR is more sensitive than VaR to estimation errors.

2. TVaR accuracy is heavily affected by accuracy of tail modelling

Some observations for VaR and TVaR.

1. VaR does not control scenarios exceeding VaR and may lead to bearing high uncon-

trollable risk
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2. VaR estimates are statistically more stable than TVaR estimates

3. TVaR is more sensitive than VaR to estimation errors

4. TVaR accuracy is heavily affected by accuracy of tail modelling

2.2 Dependence

If risks are independent, the calculation of risk mesure is simple,. Mathematically it is

easy to deal with independence. However in most real life situations we are not confronted

with independent risks. Usually the risks from different business lines are dependent. For

instance, business cycles affect different business lines in some way.

2.2.1 Correlation

2.2.1.1 Pearson’s correlation

The most familiar measure of dependence between two quantities is the Pearson product-

moment correlation coefficient, or ”Pearson’s correlation.” It is obtained by dividing the

covariance of the two variables by the product of their standard deviations.

The population correlation coefficient ρX,Y between two random variables X and Y with

expected values µX and µY and standard deviations σX and σY is defined as:

ρ[X, Y ] = Cor(X, Y ) =
Cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
, (2.6)

where E is the expected value operator, cov means covariance, and, cor a widely used

alternative notation for Pearson’s correlation.
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2.2.1.2 Rank correlation

Rank correlation is an alternative to the use of Pearson correlation as a measure of depen-

dence. The two common types of rank correlation ρrank are:

1. Spearman coefficient; and

2. Kendall Tau correlation.

Definition 2.2. The Spearman coefficient is defined as the Pearson correlation coefficient

between the ranked variables.

If we are given two vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) that present observa-

tions of the random variables X and Y , then Spearman coefficient ρS between X and Y is

a Pearson correlation between the vectors of ranks of Xi and Yi.

Definition 2.3. Let (X1, Y1) and (X2, Y2) be independent and identically distributed ran-

dom vectors. Then the population version of Kendall’s tau is defined as:

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].

The following property holds for rank correlation:

ρrank[T (X), T (Y )] = ρrank[X, Y ] (2.7)

for any non-linear monotonic transformation T .

2.2.2 Copula

In recent years, it is more and more popular to describe dependence by copula. Shaw

et al. (2010) [49] comment that the copula approach is different from comparing with

the covariance matrix. It involves a Monte Carlo simulation with the full marginal risk

distribution of each risk and a copula function to produce a meaningful aggregate risk

distribution. The copula is a convenient method for combining individual distributions

into a multivariate distribution.
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2.2.2.1 Introduction

Shaw et al. (2010) [49] give a very good introduction to the copula theory. Copulas are very

flexible in that one can combine a varied number of marginal risk distributions together

with a varying number of copula distributions.

In a simple case of two risks X1 and X2, a copula C(u, v) is part of a mathematical

expression of their joint distribution function F (x1, x2) in terms of the individual marginal

risk distributions F1(x1) and F2(x2):

F (x1, x2) = C(F1(x1), F2(x2)). (2.8)

Sklar’s Theorem provides the theoretical foundation for the application of copulas.

Theorem 2.9. Sklar’s theorem

If F (x1, . . . , xn) is a joint distribution function with marginal distributions F1(x1), . . . , Fn(xn),

then there exists a copula C such that

F1(x1), . . . , Fn(xn) = C(F1(x1), . . . , Fn(xn)).

2.2.2.2 Tail dependence

The following approach, as provided in the monograph of Joe (1997) [33], represents one

of many possible definitions of tail dependence, see Schmidt [50].

Let X = (X1, X2)T be a two-dimensional random vector. We say that X is (bivariate)

upper tail-dependent if:

λU = lim
v→1−1

P{X1 > F−1
1 (v)|X2 > F−1

2 (v)} > 0, (2.9)

in case the limit exists. F−1
1 and F−1

2 denote the generalized inverse distribution functions

of X1 and X2, respectively. Consequently, we say X = (X1, X2)T is upper tail-independent

if λU equals 0. Further, we call λU the upper tail-dependence coefficient (upper TDC).
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In case X = (X1, X2)T is standard normally or t-distributed, formula (2.9) simplifies to:

λU = lim
v→1−1

λU(v) = lim
v→1−1

2P{X1 > F−1
1 (v)|X2 = F−1

2 (v)}. (2.10)

Figure 2.2: The function λU (v) = limv→1−1 2P{X1 > F−1
1 (v)|X2 = F−1

2 (v)} for a bi-
variate normal distribution with correlation coefficients ρ = −0.8,−0.6, ..., 0.6, 0.8. Note
that λU = 0 for all ρ ∈ (−1, 1). The normal distribution fails to catch the tail dependence.

The figure is from Schmidt [50].

Figures 2.2 and 2.3 illustrate tail dependence for a bivariate normal and t- distribution.

Irrespectively of the correlation coefficient ρ, the bivariate normal distribution is (upper)

tail independent. In contrast, the bivariate t-distribution exhibits (upper) tail dependence

and the degree of tail dependence is affected by the correlation coefficient ρ.

Example 2.10. Normal distribution

If X and Y are jointly normal and uncorrelated, then they are independent. The require-

ment that X and Y should be jointly normal is essential, without it the property does not

hold. For non-normal random variables uncorrelated does not imply independence.

For the case corr[X] 6= ±1, the normal distribution X is tail-independent. Thus, the upper
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Figure 2.3: The function λU (v) = limv→1−1 2P{X1 > F−1
1 (v)|X2 = F−1

2 (v)} for a
bivariate t-distribution with correlation coefficients ρ = −0.8,−0.6, ..., 0.6, 0.8. The figure

is from Schmidt [50].

tail covariance TCp[X] = 0.

The Pearson correlation is +1 in the case of a perfect positive (increasing) linear rela-

tionship (correlation), -1 in the case of a perfect decreasing (negative) linear relationship

(anticorrelation), and some value between -1 and 1 in all other cases, indicating the degree

of linear dependence between the variables.

Assume that σ1 = σ2 = 1. If correlation is 1, we can think X2 = X1 + b, the upper tail

covariance

TCp[X] = Cov[X1, X1 + b|X1 > F−1
X1

(p), X2 > F−1
X2

(p)] = 1, p ∈ (0, 1). (2.11)

2.2.2.3 FGM copula

A dependence structure for (X1, X2) based on the FGM copula is introduced.

Theorem 2.11. Sklar’s theorem. For any bivariate distribution function H(x, y), let

F (x) = H(x,∞) and G(y) = H(∞, y) be the univariate marginal probability distribution
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functions. Then there exists a copula C such that

H(x, y) = C(F (x), G(y)).

The copulas of the Farlie-Gumbel-Morgenstern family are defined by

Cθ(u1, u2) = u1u2(1 + θ(1− u1)(1− u2))

for ui ∈ [0, 1], i = 1, 2, and dependence parameter θ ∈ [−1, 1]. We simulated 500 obser-

vations from the two extreme members (θ = −1 and θ = 1) of this family using the R

package copula, see Figure 2.4.
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Figure 2.4: Scatter-plots for FGM copulas

Definition 2.4. Let (X1, Y1) and (X2, Y2) be independent and identically distributed ran-

dom vectors. Then the population version of Kendall’s tau is defined as:

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].
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For FGM copulas, τθ = 2θ/9 ∈ [−2/9, 2/9]. The details can be found in Nelsen (2006) [45],

p. 162.

Definition 2.5. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent and identically

distributed random vectors. Then the population version of Spearman’s rho is defined as:

ρX,Y = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]).

For FGM copulas, ρθ = θ/3 ∈ [−1/3, 1/3]. The details can be found in Nelsen (2006) [45],

p. 168.

Proposition 2.12. Let X1 and X2 be two exponentially distributed with λ1 and λ2, respec-

tively. Suppose that the dependence is defined by the FGM copula with parameter θ. Then

the correlation between X1 and X2 is ρX1,X2 = θ/4 ∈ [−1/4, 1/4].

Proof. Pearson’s correlation is

ρX1,X2 =
Cov[X1, X2]√
V ar[X1]V ar[X2]

=
E[X1X2]− E[X1]E[X2]√

V ar[X1]V ar[X2]
. (2.12)

To calculate E[X1X2], we need know that the joint cdf of (X1, X2) is

FX1,X2(x1, x2) = H(x1, x2) = FX1(x1)FX2(x2)(1 + θ(1− FX1(x1))(1− FX2(x2)))

and the joint pdf

fX1,X2(x1, x2) =
∂2FX1,X2(x1, x2)

∂x∂y
=
∂2Cθ(u1, u2)

∂u1∂u2

∂u1∂u2

∂x∂y

=
∂2Cθ(u1, u2)

∂u1∂u2

fX1(x1)fX2(x2)

= (1 + θ(1− 2u1)(1− 2u2))fX1(x1)fX2(x2)

= (1 + θ(1− 2FX1(x1))(1− 2FX2(x2)))fX1(x1)fX2(x2)

= (1 + θ(1− 2(1− e−λ1x1))(1− 2(1− e−λ2x2)))λ1e
−λ1x1λ2e

−λ2x2

= (1 + θ)λ1e
−λ1x1λ2e

−λ2x2 + θ2λ1e
−2λ1x12λ2e

−2λ2x2

−θ(2λ1e
−2λ1x1λ2e

−λ2x2 + λ1e
−λ1x12λ2e

−2λ2x2)
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Thus, the expectation of X1X2 is

E[X1X2] =

∫ +∞

0

∫ +∞

0

x1x2fX1,X2(x1, x2)dx1dx2

=

∫ +∞

0

∫ +∞

0

x1x2((1 + θ)λ1e
−λ1x1λ2e

−λ2x2 + θ2λ1e
−2λ1x12λ2e

−2λ2x2

−θ(2λ1e
−2λ1x1λ2e

−λ2x2 + λ1e
−λ1x12λ2e

−2λ2x2))dx1dx2.

Since

∫ +∞

0

∫ +∞

0

x1x2λ1e
−λ1x1λ2e

−λ2x2dx1dx2 =

∫ +∞

0

x1λ1e
−λ1x1dx1

∫ +∞

0

x2λ2e
−λ2x2dx2

(2.13)

and we know ∫ +∞

0

xλe−λxdx =
1

λ
,

then ∫ +∞

0

∫ +∞

0

x1x2λ1e
−λ1x1λ2e

−λ2x2dx1dx2 =
1

λ1λ2

.

So

E[X1X2] =
1 + θ

λ1λ2

+
θ

2λ12λ2

− θ
(

1

2λ1λ2

+
1

λ12λ2

)

=
1 + θ

λ1λ2

+
θ

4λ1λ2

− θ

λ1λ2

=
4 + θ

4λ1λ2

.

From equation (2.12), the correlation

ρX1,X2 =
E[X1X2]− E[X1]E[X2]√

V ar[X1]V ar[X2]
=

4+θ
4λ1λ2

− 1
λ1λ2

1
λ1λ2

=
θ

4
.

Thus ρX1,X2 ∈ [−1/4, 1/4]. �
Even if the FGM copula introduces only weak dependence, it can include positive as well

as negative dependence and independence by choosing different θ. It is also known that

the FGM copula is a Taylor approximation of order one of the Frank copula (see Nelsen

(2006) [45], page 133), Ali-Mikhail-Haq copula and Plackett copula (see Nelsen (2006) [45],

page 100).
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2.2.3 Right Joint Excess Probability

In modelling a loss, there is usually considerable concern about the chance and sizes of

large claims - in particular, the study of the (right) tail, see Boland (2007) [8]. In Shaw et

al. (2010) [49], there is a description of the Right Joint Excess Probability (RJEP).

Definition 2.6. For a pair of risks, the Right Joint Excess Probability is the joint proba-

bility that two risks are greater than some deemed threshold.

RJEP (p) = P [FX(x) > p, FY (y) > p] = P [x > F−1
X (p), y > F−1

Y (p)]. (2.14)

For independent random variables, the value of RJEP (p) is (1− p)2.

2.3 Distributions

In this section, we present some of the classic distributions used to model losses in insurance

and finance. Some of these distributions such as the exponential and gamma are frequently

used in survival analysis and engineering application, see Boland (2007) [8]. We will also

consider distributions such as Pareto and lognormal which are particularly appropriate for

studying losses.

Here we are interested in heavy-tailed distributions from theoretical point of view. The

empirical point of view was studied by Kaasik (2009) [34]. When dealing with some

empirical data, which seem to be heavy-tailed, Kaasik (2009) [34] investigated how to

find the right distribution with suitable parameters.

2.3.1 Elliptical and Log-Elliptical distributions

According to Valdez (2005) [64], the class of elliptical loss distribution models provides a

generalization of the class of normal loss models. The class of elliptical distributions has

been introduced in the statistical literature by Kelker (1970) [37] and widely discussed in
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Fang et al. (1990) [23], see also Landsman and Valdez (2003) [41], Valdez and Dhaene

(2003) [62], and Valdez and Chernih (2003) [61] for applications in insurance and actuarial

science. Embrechts et al. (2002) [22] also provides a fair amount of discussion of this

important class as a tool for modelling risk dependencies.

Definition 2.7. The random vector Y = (Y1, Y2, . . . , Yn)T is said to have an elliptical

distribution, written as Y ∼ En(µ,Σ, ψ), if its characteristic function can be expressed as

ϕY (t) = E[exp(itTY)] = exp(itTµ)ψ
(

1
2
tTΣt

)
, tT = (t1, t2, . . . , tn), (2.15)

for some n-dimensional column-vector µ, some n× n semi positive-definite matrix Σ and

scalar function ψ(t), which is called the characteristic generator.

An elliptical distributed random vector Y ∼ En(µ,Σ, ψ) does not necessarily have a prob-

ability density. A necessary condition for Y to possess a density is that rank(Σ) = n. If

Y has a density fY (y), then it has the following form:

fY (y) =
cn√
|Σ|

gn

[
1
2

(y − µ)T Σ−1 (y − µ)
]
, (2.16)

for some non-negative function gn (·), which is called the density generator. The condition

∫ ∞

0

yn/2−1gn(y)dy <∞ (2.17)

guarantees that gn(·) is a density generator, see Fang et al. (1990) [23].

The normalizing constant cn in (2.16) is given by

cn =
Γ (n/2)

(2π)n/2

[∫ ∞

0

yn/2−1gn(y)dy

]−1

, (2.18)

which is assumed to be finite. More details on the elliptical family of distributions can be

found in [23], [41], amongst others.

Example 2.13. The n-dimensional random vector Y has the multivariate normal dis-

tribution with parameters µ and Σ, notation Y ∼ Nn (µ,Σ), if its characteristic function
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is given by

E[exp(itTY)] = exp(itTµ) exp
(
−1

2
tTΣt

)
. (2.19)

From (2.15) we see that Nn (µ,Σ) has an elliptical distribution with characteristic generator

ψ given by

ψ(t) = exp(−t). (2.20)

Since ψ′ (0) = −1 the matrix Σ in (2.19) is the covariance matrix of Y. In case Σ is

positive definite, the random vector Y ∼ Nn (µ,Σ) has a density which is given by

fY (y) =
1

(2π)n/2
√
|Σ|

exp
[
−1

2
(y − µ)T Σ−1 (y − µ)

]
. (2.21)

Comparing with (2.16), we find that the density generator gn and the normalising constant

cn of Nn (µ,Σ) are given by

gn(y) = exp(−y) and cn = 1
(2π)n/2

(2.22)

respectively.

Definition 2.8. The random vector X = (X1, X2, . . . , Xn)T is said to have a log-elliptical

distribution, written as X ∼ LEn(µ,Σ, ψ), if Y = ln X = (lnX1, lnX2, . . . , lnXn)T ∼
En(µ,Σ, ψ) with expectations µ, generalized covariance matrix Σ and characteristic gen-

erator ψ.

If the density of Y = ln X ∼ En(µ,Σ, ψ) exists, then the density of X ∼ LEn(µ,Σ, ψ) also

exists. From (2.16), it follows that the density of X is equal to

fX(x) =
cn√
|Σ|

(
n∏

k=1

x−1
k

)
gn
[

1
2
(ln x− µ)TΣ−1(ln x− µ)

]
, (2.23)

see Fang et al. (1990).
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2.3.2 Exponential distribution

In Boland (2007) [8], the exponential distribution is one of the simplest and most basic

distributions used in modelling. The random variable X is exponential distributed with

parameter λ. Its density function is

fX(x) = λe−λx (2.24)

and the survival function is

F̄X(x) = e−λx (2.25)

for x > 0.

An exponential random variable X has the memoryless property in that for any M,x > 0,

P (X > M + x|X > M) = P (X > x). (2.26)

For an exponential distribution X, the tail probability F̄X(x) = P (X > x) = e−λx converge

to 0 exponentially fast. In many situations, it may be appropriate to try and model a

slower vanishing tail distribution. For example, if P (X > x) is of the form aα/(bx+ c)α for

certain positive constant a, b, c and α, then the tail probability of X goes to 0 at a slower

polynomial rate. For a function of the form aα/(bx + c)α to be the survival function of a

positive random variable, one must have that p(X > 0) = (a/c)α = 1. This gives rise to

the Pareto family of distributions.

2.3.3 Pareto distribution

We use the introduction of Pareto distribution from in Boland (2007) [8].

The random variable X is Pareto with positive parameters a and b if it has density function

f(x) =
aba

(x+ b)a+1
(2.27)
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or equivalently, survival function

F̄X(x) =

(
b

x+ b

)a
(2.28)

for x > 0. The Pareto distribution is names after Vilfredo Pareto (1848-1923) who used it

in modelling welfare economics. Today it is commonly used to model income distribution

in economics or claim-size distribution in insurance.

Like the exponential family of random variables, the Pareto distributions have density and

survival function which are very tractable. Pareto random variables have some nice preser-

vation properties. For example, if X ∼ Pareto(a, b) and k > 0, then kX ∼ Pareto(a, kb)

since

P (kX > x) = P (X > x/k) =

(
b

x/k + b

)a
=

(
kb

x+ kb

)a
. (2.29)

This property is useful in dealing with inflation in claims. Moreover, if M > 0, then

P (X > M + x|X > M) =

(
b

x+M + b

)a
/

(
b

M + b

)a
=

(
M + b

x+M + b

)a
, (2.30)

which implies that if X > M , then X −M (or the excess of X over M) is Pareto(a,M +

b). The property is useful in evaluating the effect of deductibles and/or excess levels for

insurance in handling losses.

2.3.4 Gamma distribution

The gamma family of probability distribution is both versatile and useful, in Boland (2007)

[8]. The gamma function is defined for any α > 0 by

Γ(α) =

∫ +∞

0

yα−1e−ydy, (2.31)

and has the properties that

Γ(n) = (n− 1)Γ(n− 1) (2.32)
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and Γ(1/2) =
√
pi.

The gamma distribution X can be parametrized in terms of a shape parameter α and an

inverse scale parameter β, called a rate parameter:

f(x;α, β) =
βα

Γ(α)
xα−1e−βx (2.33)

for x ≥ 0 and α, β > 0.

If X ∼ Γ(α, λ), then Moment-generating function (mgf) MX(t) = [β/(β − t)]α for t < β,

E[X] = α/β and V ar[X] = α/β2. In a Poisson process where events are occurring at the

rate of β per unit time, the waiting time Tα until the α-th event ”arrives” has a gamma

distribution with parameters α and β, Tα ∼ Γ(α, β).

when the shape parameter α = 1, we obtain the exponential distributions. Moreover,

the Γ(v/2, 1/2) distributions is the χ2 distribution with v degrees of freedom. Hence the

gamma family includes both the exponential and χ2 distributions.
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Chapter 3

Capital allocation

3.1 How to allocate?

Consider a portfolio of n individual losses as X = (X1, X2, . . . , Xn)T at a fixed date. Denote

each economic capital for loss Xi by ρ[Xi].

The aggregate loss is defined by the sum

S =
n∑

i=1

Xi, (3.1)

and the total economic capital K = ρ[S].

The allocation problem is to determine a capital Ki for each loss Xi and

n∑

i=1

Ki = K, Ki ≥ 0. (3.2)

Usually, the total economic capital is smaller than the sum of the economic capital for each

risk, K <
∑n

i=1 ρ[Xi] because there is diversification benefit. Allocating the total capital

back to the lower levels also means allocating the diversification benefit to individual risks.
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3.2 Different principles

The section will present different principles of capital allocation and illustrates with the

example from Corrigan et al. (2009) [10].

There are three portfolios of company X = (X1, X2, X3)T . Losses from portfolios are

assumed to be normally distributed, with mean µ = (50, 40, 70)T and standard deviation

σ = (10, 7, 12)T .

The following correlation are specified between the 3 portfolios:

Corr =




1 0.8 0.3

0.8 1 0.2

0.3 0.2 1


 (3.3)

V aR0.995 is used as a risk measure to determine the capital requirement for each of X1, X2

and X3 in this example; in practice, any risk measure can be used. The risk measures are :

ρ[X] = V aR0.995[X] = (75.9, 58.8, 102.7)T . (3.4)

We sum up the risk S = X1 + X2 + X3 and the total risk is a normal distribution with

mean µS = 50 + 40 + 70 = 160 and stand deviation

σS =
√
σ[X]T Corr σ[X] =

√√√√√√(10, 7, 12)




1 0.8 0.3

0.8 1 0.2

0.3 0.2 1







10

7

12


 = 22.6. (3.5)

The total economic capital is K = ρ[S] = V aR0.995[S] = 227.0.

The results presented in the table.

Note, the sum of parts
∑
ρ[Xi] = 237.4 is greater than the total portfolio capital require-

ment K = 227.0 . The aim of this example is to allocate the K = 227.0 back to portfolio

X1, X2 and X3.
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Table 3.1: Capital allocation

Portfolio µ σ V aR0.995

X1 50 10 75.9
X2 40 7 58.8
X3 70 12 102.7
Sum S 160 22.6 227.0

3.2.1 Proportional capital contribution

The total capital requirement is allocated linearly to each loss Xi. The capital for each

loss can be calculated by:

Ki =
K∑n

i=1 ρ[Xi]
ρ[Xi], i = 1, . . . , n. (3.6)

In this example, each receive the allocations of 28.2/44.7(15.8, 8.0, 20.9)T = (9.9, 5.1, 13.2)T ,

see the following table.

Table 3.2: Proportional capital allocation

Portfolio Capital required ρ[Xi] Proportional allocation
X1 75.9 72.5
X2 58.8 56.2
X3 102.7 98.2
Sum 237.4 227.0
Capital requirement K for S 227.0

The advantage is very simple. The disadvantage is that diversification benefit allocated is

in proportion to capital requirement but not correlation. Hence, the portfolio with higher

mean obtains greater diversification benefit. However, the portfolio with lower correlation

with the total portfolios should gain greater diversification benefit.

To improve the principle, we extend the risk measure ρ[Xi] to ρ[Xi, S], including the sum

S =
∑n

i=1 Xi.
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3.2.2 Covariance allocation principle

Covariance allocation principle is a special case of proportional capital allocation when

ρ[Xi, S] = Cov[Xi, S].

According to Dhaene et al. (2011) [19], the covariance allocation principle proposed by

e.g. Overbeck (2000) [47] is given by

Ki =
Cov[Xi, S]

V ar[S]
K, i = 1, . . . , n, (3.7)

where Cov[Xi;S] is the covariance between the individual loss Xi and the aggregate loss

S and V ar[S] is the variance of S. Because clearly the sum of these individual covariances

is equal to the variance of the aggregate loss,
∑
Cov[Xi, S] = V ar[S], the full allocation

requirement is automatically satisfied in this case,
∑
Ki = K.

The covariance allocation rule explicitly takes into account the dependence structure of

the random losses (X1, . . . , Xn). Business lines with a loss that is more correlated with the

aggregate loss S are penalised by requiring them to hold a larger amount of capital than

those which are less correlated.

The advantage of this principle is that it is easy to calculate and only need know the covari-

ances Cov[Xi, Xj] between different risks. The allocation percentage Cov[Xi, S]/V ar[S]

to a line of business is the sum of the appropriate row of the covariance matrix Cov[X]

divided by the sum of all elements, see the Covariance method from the website, Pricing

Wiki.

In this example, the covariance matrix

Cov[X] = σ[X]Corr σ[X]T =




10

7

12







1 0.8 0.3

0.8 1 0.2

0.3 0.2 1


 (10, 7, 12) =




10 56 36

56 49 16.8

36 16.8 144


 .

The allocation percentage ki = Cov[Xi,S]
V ar[S]

and allocation can be found in following Table.

Other allocation principles require more information, such as the joint distribution of the

X’s. Even knowing the distribution, it is usually difficult to find an explicit formula and so

we often need to calculate them from simulation data. The covariance allocation principle
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Table 3.3: Covariance capital allocation

Portfolio allocation percentage % Covariance allocation
X1 37.6 85.4
X2 23.9 54.1
X3 38.5 87.5
Sum 227.0

models dependence explicitly, which is an advantage.

The covariance allocation principle is, however, not a good way to allocate capital if the

role of our risk capital is to cover claims from all lines of business.

Let us assume that there are two losses, constant C and random variable X. The sum of

the two losses is S = C +X.

If the economic capital is K = V aRq[S] and q ∈ (0, 1), then the capital for this case is

K = V aRq[S] = V aRq[C +X] = C + V aRq[X]. (3.8)

According the covariance allocation principle, the allocation to the constant loss is

K1 =
Cov[C, S]

V ar[S]
K = 0 (3.9)

and for the other loss, allocation is all the capital K.

Non-risky loss still needs some share of the capital. Economic capital K should be sufficient

to pay the liabilities of the company, both risky ones and non-risky ones.

It can be noted that the allocation percentages Cov[Xi, S]/V ar[S] are not dependent on

the level q. The allocation Ki can be a function of the level q if the total allocated capital

K is the function of q, for instance, K = V aRq[S].

3.2.3 Discrete marginal contributions

Discrete marginal contribution of Xi = the capital requirement of the total portfolio K -

the capital requirement of the total portfolio excluding the portfolio Xi, denoted by Kī.
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For example, when considering X1, check the capital of portfolio K1̄ = S1̄ = X2 + X3. S1̄

is a normal distribution with mean µS1̄
= 40 + 70 = 110 and stand deviation

σS1̄
=
√
σ[X23]TCorrσ[X23] =

√√√√(7, 12)

(
1 0.2

0.2 1

)(
7

12

)
= 15.1. (3.10)

Aggregate the capital requirements of X2 and X3:

K1̄ = V aR0.995[S1̄] = 148.8. (3.11)

The required capital of X1X3 and X1X2 are 165.8 and 124.3 separately.

In next table, the discrete marginal contributions of portfolio X1, X2 and X3 are 227.0 −
148.8 = 78.2, 227.0− 165.8 = 61.2 and 227.0− 124.3 = 102.7 separately. Then scale them

with the sum as the capital requirement of total portfolio 227.0. For example, the scaled

marginal contribution of X1 is 78.2*227.0/242.1=73.3.

Table 3.4: Discrete marginal capital allocation

Capital requirement Discrete marginal Scaled marginal Proportional
Portfolio excluding this one Kī contribution K −Kī contribution allocation
X1 148.8 78.2 73.7 72.5
X2 165.8 61.2 57.3 56.2
X3 124.3 102.7 96.3 98.2
S 227.0 242.1 227.0 227.0

Compared with proportional allocation, the capital requirement of portfolio X1 and X3 is

more in scaled marginal contribution and X2 less. Comparably great positive correlation

between X1 and X2 makes X1 more allocation in marginal principles.

Note 2. If all the correlations between portfolios are equal to 1, discrete marginal contri-

bution, scaled marginal contribution and proportional allocation will be the same.

The advantage is that this is a more sophisticated approach. The disadvantage is that the

calculation may generate negative values for capital requirements, for example, if there is

one or more negative correlations between the portfolios.
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3.3 Optimal capital allocations

According to Dhaene et al. (2011) [19], consider a portfolio of n individual lossesX1, X2, . . . , Xn

at a fixed future date T . Assume that X = (X1, X2, . . . , Xn)T is a random vector on the

probability space (Ω,F ,P). We will always assume that any loss Xi has a finite mean.

The distribution function P [Xi ≤ x] of Xi will be denoted by FXi(x). We can look for a

method of allocation from the optimal capital allocation problem.

Give the aggregate capital K > 0, allocate the capital Ki to business line i by solving

min
K1,...,Kn

n∑

j=1

1

vj
E
[
(Xj −Kj)

2g(X)
]
, such that

n∑

j=1

Kj = K, (3.12)

where the vj are non-negative real numbers such that
∑n

j=1 vj = 1, the g(X) are non-

negative random variables such that E[g(X)] = 1.

Dhaene et al. (2011) [19] explain vj as a measure of exposure or business volume of the

j-th unit, such as revenue, insurance premium, etc. These scalar quantities are chosen

such that they sum to 1. These vj are used as weights attached to the different values

of E [(Xj −Kj)
2g(X)] in the minimization problem (3.12), in order to reflect the relative

importance of the different business units. The non-negative function g(X) are used as

the portfolio performance weight factor to the outcomes of the deviations (Xj−Kj)
2. The

allocations based on g(X) will be called portfolio driven allocations.

Theorem 3.1. The optimal allocation problem (3.12) has the following unique solution:

Ki = E[Xig(X)] + vi(K −
n∑

j=1

E[Xjg(X)]), i = 1, . . . , n, (3.13)

where the vj are non-negative real numbers such that
∑n

j=1 vj = 1, the g(X) are non-

negative random variables such that E[g(X)] = 1.

We define the volumes vi by

vi =
E[Xig(X)]∑n
j=1E[Xjg(X)]

, i = 1, . . . , n,
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we find that the capital allocation principle (3.13) reduces to the proportional allocation

rule

Ki =
E[Xig(X)]∑n
j=1E[Xjg(X)]

K, i = 1, . . . , n. (3.14)

In Dhaene et al. (2011) [19], there are tables showing different E[Xjg(X)] by choosing

different g(X).

Table 3.5: Business lines driven risk measures

Risk measure g(Xi) E[Xig(Xi)]
Standard deviation principle

1 + aXi−E[Xi]
σXi

, a ≥ 0 E[Xi] + aσXiBühlmann (1970) [9]

Tail VaR 1
1−q1(Xi > F−1

Xi
(q)), q ∈ (0, 1) TV aR[Xi]Overbeck (2000) [47]

Distortion risk measure h′(F̄Xi(Xi)), h : [0, 1]→ [0, 1],
E[Xih

′(F̄Xi(Xi))]Wang (1996) [71], Acerbi (2002) [1] h′ > 0, h′′ < 0

Exponential principle ∫ 1

0
eγaXi

E[eγaXi ]
dγ, a > 0 1

a
lnE[eaXi ]

Gerber (1974) [27]

Esscher principle eaXi

E[eaXi ]
, a > 0 E[Xie

aXi ]

E[eaXi ]Gerber (1981) [28]

In this thesis, we will use the proportional allocation

Ki =
K∑n

i=1 ρ[Xi, S]
ρ[Xi, S], i = 1, . . . , n. (3.15)

By choosing different risk measures ρ[Xi, S], we can otain different capital allocations.
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Table 3.6: Aggregate portfolio driven allocations

Reference g(S) E[Xig(S)]

Overbeck (2000) [47] 1 + aS−E[S]
σXi

, a ≥ 0 E[Xi] + aCov[Xi,S]
σS

Overbeck (2000) [47] 1
1−q1(S > F−1

S (q)), q ∈ (0, 1) E[Xi|S > F−1
S (q)]

Tsanakas (2004) [56]
h′(F̄S(S)), h : [0, 1]→ [0, 1],

E[Xih
′(F̄S(S))]

h′ > 0, h′′ < 0

Tsanakas (2009) [58]
∫ 1

0
eγaS

E[eγaS ]
dγ, a > 0 E[Xi

∫ 1

0
eγaS

E[eγaS ]
dγ]

Wang (2007) [72] eaS

E[eaS ]
, a > 0 E[Xie

aS ]
E[eaS ]
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Chapter 4

Capital allocation based on tails

4.1 Conditional Expectation as Risk Measures

A risk measure is defined as a mapping ρ from a set Γ of random variables defined on a

probability space (Ω,F ,P) to the real numbers R:

ρ : Γ→ R : X ∈ Γ→ ρ[X]

This set of random variables X represents the losses associated with conducting a business.

The conditional Expectation

CE[Xi] = E
[
Xi| ∩nj=1 {Xj > F−1

Xj
(pj)}

]
, i = 1, . . . , . . . , n, pj ∈ (0, 1)

can be a risk measure. The probability on the condition is also called Right Joint Excess

Probability, see Definition 2.6..

It satisfies that the properties for coherent risk measure, see 2.1.1. Hence, the Conditional

Expectation CE[Xi] is a coherent risk measure.

Conditional Expectation can be a special case derived from optimal capital allocation

problem, see Theorem 3.1.. A particular choice of the random variable g(X) considered
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in (3.13) is given by

g(X) =
1⋂n

j=1 {Xj>F−1
Xj

(pj)}

P
(⋂n

j=1 {Xj > F−1
Xj

(pj)}
) ,

where 1A is the indicator function of event A. Here the event
⋂n
j=1 {Xj > F−1

Xj
(pj)} is when

each loss Xj exceeds some certain threshold, the quantile F−1
Xj

(pj) for some pj ∈ (0, 1). We

check

E[g(X)] = 1,

which satisfies the assumption. In this case, we find that

E[Xig(X)] = E
[
Xi| ∩nj=1 {Xj > F−1

Xj
(pj)}

]
, i = 1, . . . , . . . , n. (4.1)

The special case

E[Xig(X)] = E
[
Xi|Xi > F−1

Xi
(pi)
]

= CTEpi [Xi], i = 1, . . . , n,

is called the Tail Value at Risk (TVaR) or sometimes Conditional Tail Expectation (CTE)

of the loss Xi, see [47].

We can write the capital allocation (3.14) as follows

Ki =
E[Xig(X)]∑n
j=1 E[Xjg(X)]

K =
E
[
Xi| ∩nj=1 {Xj > F−1

Xj
(pj)}

]

∑n
j=1E

[
Xj| ∩nj=1 {Xj > F−1

Xj
(pj)}

]K

=
E
[
Xi| ∩nj=1 {Xj > F−1

Xj
(pj)}

]

E
[∑n

j=1 Xj| ∩nj=1 {Xj > F−1
Xj

(pj)}
]K, i = 1, . . . , n. (4.2)

Table 4.1: Conditional Expectation (CE) allocation

Risk measure g(X) E[Xig[X]]

CE
1⋂n

j=1
{Xj>F

−1
Xj

(pj)}

P
(⋂n

j=1 {Xj>F−1
Xj

(pj)}
) , pj ∈ (0, 1) E

[
Xi| ∩nj=1 {Xj > F−1

Xj
(pj)}

]
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The advantage is its simplicity.The disadvantage is not considering the tail variance.

There are results of the Conditional Expectation with Pareto distributions in Wang (2012)

[68].

4.2 Upper tail covariance

Consider the random variable (r.v.) X representing the claims related to an insurance

portfolio over a given period. The cumulative distribution function (cdf) and the proba-

bility density function (pdf) of X are denoted by FX(x) and fX(x), respectively. Suppose

that the insurer is concerned about the claims related X exceeding a certain threshold, e.g.

the quantile F−1
X (p), which is defined by

F−1
X (p) = inf{x ∈ R|FX(x) ≥ p}, p ∈ (0, 1). (4.3)

Valdez (2004) [63] defined the tail covariance between two random variables. For a bivariate

vector XT = (X1, X2), the tail covariance of XT , conditional on X2 > F−1
X2

(p) is

TCCp[X1|X2] = Cov[X1, X2|X2 > F−1
X2

(p)]. (4.4)

This gives the information about the relationship of two claims when one exceeding some

certain threshold.

We are also interested the relationship of two claims when both exceeding some certain

thresholds. Here we use the Right Joint Excess Probability (see Definition 2.6.) as the

condition. There is the definition of the Upper Tail Covariance as follows:

Definition 4.1. Consider a bivariate vector X = (X1, X2)T and a given probability level

p, the (Upper) Tail Covariance TCp[X] of X, conditional on X1 > F−1
X1

(p), X2 > F−1
X2

(p)

is defined to be

TCp[X] = Cov[X1, X2|X1 > F−1
X1

(p), X2 > F−1
X2

(p)], p ∈ (0, 1). (4.5)
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Note 3. From Theorem 2 in [40], if X is a comonotonic random vector and S is defined

by S = X1 +X2, then

Cov[X1, X2|X1 > F−1
X1

(p), X2 > F−1
X2

(p)] = Cov[X1, X2|S > F−1
S (p)]. (4.6)

We can extend the idea to

TC(p1,p2)[X] = Cov[X1, X2|X1 > F−1
X1

(p1), X2 > F−1
X2

(p2)], p1, p2 ∈ (0, 1). (4.7)

Here the probability levels p1 and p2 are not necessarily same.

Or when considering random variables X = (X1, X2, . . . , Xn)T , we can also set any condi-

tions from X1 > F−1
X1

(p1), X2 > F−1
X2

(p2), . . . , Xn > F−1
Xn

(pn), for example considering

Cov[Xi, Xj| ∩k Xk > F−1
Xk

(pk)], pk ∈ (0, 1), (4.8)

where i, j and k can be any natural numbers from 1 to n. This also makes Valde’s tail

covariance TCC a special case, see (4.4).

To keep the expression simple, in this thesis we investigate the Upper Tail Covariance from

the Definition 1. Later we can see that it is trivial to derive the expression for (4.8).

Landsman et al. (2013) [40] derive expressions for the Upper Tail Variance of univariate

log-elliptical distributions. In this theis, we will consider upper tail covariance within the

class of bivariate log-elliptical distributions.

4.2.1 The Upper Tail Covariance of bivariate log-elliptical dis-

tributions

Throughout this thesis we will only consider elliptical distributions which have a probability

density, and hence have a continuous cumulative distribution function.

We will use the notations fX, FX and FX to denote the probability density function (pdf),

the cumulative and the decumulative distribution function of the random vector X.
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Theorem 4.1. Let 2-dimensional random vector X = (X1, X2)T ∼ LE2(µ,Σ, ψ), with

µ = (µ1, µ2)T and the positive definite matrix Σ =

(
σ2

1 σ12

σ12 σ2
2

)
, then Y = (Y1, Y2)T

d
=

(lnX1 − µ1, lnX2 − µ2)T ∼ E2(0,Σ, ψ). The upper tail covariance can be expressed as

TCp[X] =
eµ1+µ2ψ

(
−σ2

1−2σ12−σ2
2

2

)
FY∗(F

−1
Y1

(p), F−1
Y2

(p))

FX1,X2

(
F−1
X1

(p), F−1
X2

(p)
)

−
eµ1+µ2ψ

(
−σ2

1

2

)
ψ
(
−σ2

2

2

)
FY∗1(F−1

Y1
(p), F−1

Y2
(p))FY∗2(F−1

Y1
(p), F−1

Y2
(p))

(FX1,X2

(
F−1
X1

(p), F−1
X2

(p)
)
)2

, (4.9)

where p ∈ (0, 1), Y∗, Y∗1 and Y∗2 are r.v. with the probability densities given by

fY∗(y1, y2) = ey1+y2

ψ

(
−σ2

1−2σ12−σ2
2

2

)fY1,Y2(y1, y2) and fY∗k(y1, y2) = eyk

ψ

(
−σ2

k

2

)fY1,Y2(y1, y2)

(4.10)

when ψ
(
−σ2

1−2σ12−σ2
2

2

)
and ψ

(
−σ2

k

2

)
exist with k = 1, 2. The decumulative distribution

functions

FY∗(F
−1
Y1

(p), F−1
Y2

(p)) =

∫ ∞

F−1
Y2

(p)

∫ ∞

F−1
Y1

(p)

fY∗(y1, y2)dy1dy2, (4.11)

FY∗k(F
−1
Y1

(p), F−1
Y2

(p)) =

∫ ∞

F−1
Y2

(p)

∫ ∞

F−1
Y1

(p)

fY∗k(y1, y2)dy1dy2, (4.12)

with k = 1, 2 and

FX1,X2(F−1
X1

(p), F−1
X2

(p)) =

∫ ∞

F−1
X2

(p)

∫ ∞

F−1
X1

(p)

fX1,X2(x1, x2)dx1dx2. (4.13)

Proof and more discussions see Wang (2012) [69].
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4.3 Definition of the Tail Covariance Premium Ad-

justed (TCPA) based allocation

The definition of the Tail Covariance Premium Adjusted (TCPA) is based on the Tail

Covariance Premium (TCovP), a risk measure introduced by Furman and Landsman (2006)

[25].

Consider risk X to be a random variable with cumulative distribution (cdf) and probability

density function (pdf) FX(x) and fX(x), respectively.

The Value at Risk (VaR) at level q, 0 < q < 1, of X is defined by

V aRq(X) = inf{xq : FX(xq) ≥ q}. (4.14)

The Tail VaR (TVaR)is defined by

TV aRq(X) = E[X | X > xq]. (4.15)

This is the expectation of the right tail. We are also interested in the dispersion along the

right tail. Furman and Landsman (2006) [25] refer to this measure as Tail Variance (TV),

and it is the conditional variance of the risk X, i.e.,

TVq(X) = V ar[X | X > xq] (4.16)

Consider an n random variables X1, X2, . . . , Xn, where each random variable Xi represents

a risk associated with i-th business line of an insurance company or a loss from the i-th

asset in a portfolio of investment for an individual or an enterprise. The aggregate risk or

loss is defined by the sum

S =
n∑

i=1

Xi.

Furman and Landsman (2006) [25] defined the Tail Covariance Premium (TCovP) as

TCovPq(Xi | S) = TV aRq(Xi | S) + aTCovq(Xi | S), (4.17)
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where a is some non-negative constant, i = 1, 2, . . . n and

TV aRq(Xi | S) = E[Xi | S > sq] (4.18)

and Tail Covariance

TCovq(Xi | S) = Cov[Xi, S | S > sq]. (4.19)

In this risk measure the unit of tail covariance is money square. It would be more natural

to express it in the unit of money.

Inspired by the allocation from Overbeck (2000) [47],

E[Xi] + a
Cov[Xi, S]

σS
, (4.20)

we define the adjusted risk measure based on the Tail Covariance Premium (TCovP). The

adjusted one keeps the money unit.

Definition 4.2. Tail Covariance Premium Adjusted (TCPA) is

TCPAq(Xi | S) = TV aRq(Xi | S) + a
TCovq(Xi | S)√

TVq(S)
, (4.21)

where

TVq(S) = V ar[S | S > sq]. (4.22)

Furman and Landsman (2006) [25] have proved that

n∑

i=1

TV aRq(Xi | S) = TV aRq(S), (4.23)

and
n∑

i=1

TCovq(Xi | S) = TVq(S). (4.24)

So it is straightforward to obtain that

n∑

i=1

TCPAq(Xi | S) = TV aRq(S) + a
√
TVq(S) = TSDPq(S). (4.25)
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The sum is exactly the Tail Standard Deviation Premium (TSDP) defined by Furman and

Landsman (2006) [25].

Denote the capital allocation proportion to the business line i by ki, then ki

ki =
TCPAq(Xi | S)

TV Pq(S)
=
TV aRq(Xi | S) + aTCovq(Xi|S)√

TVq(S)

TV aRq(S) + a
√
TVq(S)

. (4.26)

The allocation principle is additivity.

The advantage of this method is considering both expectation and standard deviation on

tails. The total sum is a money unit.

The article, Wang (2012) [70] considers two business lines with the exponential loss distri-

butions linked by a Farlie-Gumbel- Morgenstern (FGM) copula, modelling the dependence

between them. As allocation principle we use the Tail Covariance Premium Adjusted

(TCPA) and obtain expressions for the allocation to the two business lines.

4.3.1 Calculation of the capital allocation

In this subsection, the capital allocation based the Tail Covariance Premium Adjusted

(TCPA), see the equation (4.26), will be calculated. Bargès et al. (2009) [5] have calculated

TV aRq(Xi | S) and TV aRq(S) and the results are presented in equation (4.27) and (4.28).

The proofs can be found from section 3.1 in Bargès et al. (2009) [5]. After that, we will

calculate the other parts of TCPA, such as TCovq(Xi | S) and TVq(S).

Let X1 and X2 be two exponentially distributed random variables with parameters λ1 and

λ2, respectively, and the dependence is defined by the FGM copula with parameter θ. Then

the TV aR of the aggregate risk S = X1 +X2 at level q, q ∈ (0, 1), is

TV aRq(S) = (1+θ)ζ(sq ;λ1;λ2)−θζ(sq ;2λ1;λ2)−θζ(sq ;λ1;2λ2)+θζ(sq ;2λ1;2λ2)

1−q , (4.27)

where ζ(x; γ1; γ2) = γ2

γ2−γ1
e−γ1x(x+ 1

γ1
) + γ1

γ1−γ2
e−γ2x(x+ 1

γ2
).

Then the TV aR-based contribution of risk i, i = 1, 2, to the aggregate risk S = X1 + X2
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at level q, q ∈ (0, 1), is

TV aRq(Xi|S) =
(1+θ)ξ(sq ;λi;λj)−θξ(sq ;2λi;λj)−θξ(sq ;λi;2λj)+θξ(sq ;2λi;2λj)

1−q , (4.28)

where ξ(x; γi; γj) =
γj

γj−γi e
−γix(x+ 1

γi
)− γje

−γix−γie−γjx
(γj−γi)2 and i 6= j.

The Tail covariance TCovq(Xi | S) is given in the following proposition.

Proposition 4.2. Let X1 and X2 be two exponentially distributed random variables with

dependence defined by the FGM copula. Then the TCovq(Xi | S) of risk i, i = 1, 2 is

TCovq(Xi|S)

=
1

1− q ((1 + θ)ς(sq;λi;λj)− θ(ς(sq; 2λi;λj) + ς(sq;λi; 2λj)− ς(sq; 2λi; 2λj)))

−TV aRq(S)TV aRq(X1|S), (4.29)

where

ς(x; γi; γj) =
γj

(
x2 + 2x

γi
+ 2

γ2
i

)
e−γix

γj − γi
−
γj

(
x+ 1

γi

)
e−γix − γi

(
x+ 1

γj

)
e−γjx

(γj − γi)2
, (4.30)

i 6= j, TV aRq(S) and TV aRq(Xi|S) from (4.27) and (4.28).

Proposition 4.3. Let X1 and X2 be two exponentials with dependence defined by the FGM

copula. Then the TVq(S) is

TVq(S) =
2∑

i=1

TCovq(Xi | S), (4.31)

where TV aRq(Xi | S) are obtained from (4.28).

Proposition 4.4. Let X1 and X2 be two exponentials with dependence defined by the FGM

copula. Then the TCPAq(Xi | S) of risk i, i = 1, 2 is

TCPAq(Xi | S) = TV aRq(Xi | S) + a
TCovq(Xi | S)√

TVq(S)
, (4.32)
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where a is some non-negative constant, and TV aRq(Xi | S), TCovq(Xi | S) and TVq(S)

are obtained from (4.28), (4.29) and (4.31), respectively.

Remark 4.1. Like (4.25), the Tail Variance Premium TV P of S is the sum of the TCPA

of Xi, i = 1, 2

2∑

i=1

TCPAq(Xi | S) = TV aRq(S) + a
√
TVq(S) = TV Pq(S). (4.33)
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Chapter 5

Illustrative case study

This chapter will present a case from Valdez (2012) [65].

For purpose of showing illustrations, we will consider an insurance company with five lines

of business:

• auto insurance - property damage

• auto insurance - liability

• household or home-owners’ insurance

• professional liability

• other lines of business

We will measure loss on a per premium basis, i.e. loss ratio and denote the random variable

by S for the entire company and Xi for the i-th line of business, i = 1, 2, 3, 4, 5.

We assume that the loss ratio distributions of different lines of business follow in the Table

5.1 and the dependence between lines of business in the correlation matrix.
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Table 5.1: The distributions of lines of business.

Line of Loss ratio Premium
business distribution share wi Parameters Mean Variance
Auto(PD) Gamma 30% α = 360, β = 600 0.60 0.001
Auto(liab) Lognormal 20% µ = −0.362, σ = 0.101 0.70 0.005
Household Gamma 15% α = 56.25, β = 75 0.75 0.01
Prof liab Pareto 15% a = 6.92, b = 4.74 0.8 0.9
Other Lognormal 20% µ = −0.784, σ = 0.427 0.5 0.05

Cor =




auto(PD) Auto(liab) Household Profliab Other

Auto(PD) 1

Auto(liab) 0.4 1

Household 0.1 0.1 1

Profliab 0.2 0.5 0.1 1

Other 0.05 0.2 0.1 0.4 1




(5.1)

The density functions of these distributions are in the table 5.2.

Table 5.2: The pdf, quantile and CTE for distributions of lines of business.

Distribution density fX(x) Quantile Qp(X) CTEp(X)

Gamma βα

Γ(α)
xα−1e−βx no explicit form FX(xp;α+1,β)

FX(xp;α,β)
α
β

Lognormal 1√
2πσx

e−
(log(x)−µ)2

2σ2 eµ+φ−1(p)σ φ(σ−φ−1(p))
1−p eµ+σ2

2

Pareto aba

(x+b)a+1 b[(1− p)− 1
a − 1] a

a−1
Qp[x] + b

a−1

We can see the pdf of lines of business in the figure 5.1.

We use the same method to simulate as one in the appendix from Tang and Valdez (2009)

[53].
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Figure 5.1: The pdf of lines of business.
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5.1 Simulation from Normal copula

The following algorithm simulate n observations of the loss ratios for each business lines

from normal copula.

1. Generate a data set with 5 columns of standard normal random variables Y =

(Y1, Y2, Y3, Y4, Y5) with correlation matrix Cor;

2. Set Ui = Φ(Yi);

3. Set Xi = F−1
Xi

(Ui);

For the step 1, it is not difficult to find some functions to simulate in some languages, for

example, R. We can obtain the random variables Y as following:

• Construct the lower triangular matrix L so that the covariance matrix Cor = LLT

using Choleski’s decomposition;
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• Generate a column vector of independent standard normal random variables Z =

(Z1, Z2, . . . , Zn)T ;

• Take the matrix product of L and Z, i.e. Y = LZ.

Using the procedure as outlined above, we generate 10000 observations of the loss ratios

for each business line.

Table 5.3 provides stand-alone capitals for each business line. Only the line of business,

Professional liability has quite different numbers for different allocation rules. The main

reason is that the loss of this line of business has heavier tail comparing other lines of

business. The last line is the weighted sum by premium share and the weight W =

(30%, 20%, 15%, 15%, 20%) are from Table 5.1. The weighted sum of TV aRq(Xi|S) and

TCPAq(Xi|S) are TV aRq(S) and TV Pq(S) respectively.

Table 5.3: Some risk measure of loss distributions, q = 0.995

Line of business V aR0.995(Xi) TV aR0.995(Xi) TV aR0.995(Xi|S) TCPA0.995(Xi|S)
Auto (PD) 0.6853 0.6973 0.6182 0.6187
Auto(liab) 0.8995 0.9282 0.8078 0.8110
Household 1.0297 1.0710 0.7798 0.7802
Prof liab 5.6950 7.3293 7.2563 7.6997
Other 1.3235 1.4917 0.9321 0.9347
Weighted sum by 1.6589 1.9532 1.7389 1.8067
premium share TV aRq(S) TV Pq(S)

Note: we can see in the table, TV aRq(Xi|S) is smaller than the corresponding TV aRq(Xi).

The reason is that TV aRq(Xi) is the mean of the top (1− q) of Xi, and TV aRq(Xi|S) is

the mean of Xi when the sum S is on the top (1− q). So the Xi from TV aRq(Xi|S) can

not be greater than the Xi from TV aRq(Xi), at least the same.

Table 5.4 provides some important summary statistics of the aggregate loss distribution.

We can see the V aR0.995(S), 1.4795 is smaller than the weighted sum
∑
wiV aR0.995(Xi),

1.6589. In this case, the VaR is subadditive.
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Table 5.4: Summary statistics of the aggregate loss distribution

Statistic
Mean 0.6512
SD 0.1736
Mode 0.5704
Skewness 2.7361
Kurtosis 20.2716
Minimum 0.3967
1st quantile 0.5382
Median 0.6077
3rd quantile 0.7148
Maxim 3.5414
V aR0.995(S) 1.4795
TV aR0.995(S) 1.7389
TV P0.995(S) 1.8067

5.1.1 Proportional capital allocation

Table 5.5 is the comparing result of proportional allocations when ρ(Xi, S) takes different

risk measures, V aRq(Xi) and TCPAq(Xi|S) respectively. We calculated the allocation

percentages by ρ(Xi, S)/
∑n

i=1 ρ(Xi, S), then times the capital K = V aRq(S) to generate

the allocation amounts to different business lines.

Table 5.5: Proportional allocation when the risk measure ρ(Xi, S) is V aRq(Xi) and
TCPAq(Xi|S) respectively, q = 0.995.

ρ(Xi, S) = V aRq(Xi) TCPAq(Xi|S)
Percentage % allocation Percentage % allocation

Auto (PD) 12.4 0.1833 10.3 0.1520
Auto(liab) 10.9 0.1605 9.0 0.1328
Household 9.3 0.1378 6.5 0.0958
Prof liab 51.5 0.7619 63.9 0.9458
Other 16.0 0.2361 10.3 0.1531
Total V aRq[S] 1.4795 1.4795

67



5.1.2 Covariance capital allocation

For the covariance capital allocation, the covariance matrix is




auto(PD) Auto(liab) Household Profliab Other

Auto(PD) 9 5 1 27 2

Auto(liab) 5 20 2 101 13

Household 1 2 23 21 7

Profliab 27 101 21 2025 255

Other 2 13 7 255 200




10−5,

where the (i, j)-th element is the covariance Cov[wiXi, wjXj]. The allocation percentage

Cov[wiXi, S]/V ar[S] is the sum of the appropriate row of the matrix divided by the sum

of all elements. The allocation percentages for the business lines respectively are (1.4%,

4.5%, 1.7%, 77.2%, 15.1%). The corresponding allocation amounts are (0.0211, 0.0662,

0.0255, 1.1427, 0.2240).

5.2 Simulation from Cauchy copula

We generate 10,000 observations of the loss distributions for each business line from Cauchy

copula. The method of generating can be found in the appendix in Tang and Valdez (2009)

[53], the last part, Cauchy copula.

1. Generate a data set with 5 columns of standard normal random variables Y =

(Y1, Y2, Y3, Y4, Y5) with correlation matrix Cor;

2. Generate a chi-squared random variable S ∼ χ2(1) with 1 degree of freedom;

3. Set Ti =
√

1/SYi

4. Set Ui = t1(Ti);

5. Set Xi = F−1
Xi

(Ui);
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Table 5.6 firstly provides some risk measures of loss distributions without considering pre-

mium share. From the table, we can see that only the line of business, Prof liab has quite

different numbers for different allocation rules. The main reason is that the loss of this

line of business has heavier tail comparing other lines of business. For the business line,

Household, the difference of TV aR[Xi|S] and TV aR[Xi] is comparing greater. The reason

may be that the correlations between Household and other business lines are small.

Then the last line is the weighted sum by premium share,see the weightW=(30%,20%,15%,15%,20%)

from Table 5.1. The weighted sum of TV aRq[Xi|S] and TCPAq[Xi|S] are TV aRq[S] and

TV Pq[S] respectively. TV aRq[S] is 1.7290 and TV Pq[S] is 1.7701.

Table 5.6: Some risk measures of loss distributions, q = 0.995

Line of business V aRq[Xi] TV aRq[Xi] TV aRq[Xi|S] TCPAq[Xi|S]
Auto (PD) 0.6851 0.6933 0.6091 0.6089
Auto(liab) 0.8987 0.9251 0.8361 0.8397
Household 1.0375 1.0740 0.8641 0.8748
Prof liab 5.2863 6.8671 6.7211 6.9396
Other 1.3407 1.4837 1.2061 1.2364
Weighted sum by 1.6020 1.8809 1.7290 1.7701
premium share TV aRq[S] TV Pq[S]

The V aR0.995[S] from the simulation data is 1.4899. We can see that it is smaller than the

weighted sum
∑
wiV aR0.995[Xi], 1.6020. In this case, the VaR is subadditive, V aR0.995[

∑
w Xi i] <∑

wiV aR0.995[Xi].

5.2.1 Proportional capital allocation

Table 5.7 is the comparing result of proportional allocations when ρ[Xi, S] takes different

risk measures, V aRq[Xi] and TCPAq[Xi|S] respectively. We calculated the allocation

percentages by ρ[Xi, S]/
∑n

i=1 ρ[Xi, S], then times the capital K = V aRq[S] to generate

the allocation amounts to different business lines.
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Table 5.7: Proportional allocation when the risk measure ρ[Xi, S] is V aRq[Xi] and
TCPAq[Xi|S] respectively, q = 0.995.

ρ[Xi, S] = V aRq[Xi] TCPAq[Xi|S]
Percentage % allocation Percentage % allocation

Auto (PD) 12.8 0.1912 10.3 0.1538
Auto(liab) 11.2 0.1672 9.5 0.1414
Household 9.7 0.1447 7.4 0.1105
Prof liab 49.5 0.7375 58.8 0.8762
Other 16.7 0.2494 14.0 0.2081
Total V aRq[S] 1.4899 1.4899

5.2.2 Covariance capital allocation

For the covariance capital allocation, the allocation percentages Cov[wiXi, S]/V ar[S] keep

the same (1.4%, 4.5%, 1.7%, 77.2%, 15.1%), see the normal copula case. The correspond

allocation amounts are (0.0213, 0.0667, 0.0256, 1.1507, 0.2256).
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Chapter 6

Conclusion

The purpose of this thesis is to give a broad self-contained overview of risk measures and

capital allocation, in particular, allocation based on heavy-tailed risks.

In chapter 1, we discuss the concept of economic capital, the need for capital allocation,

different viewpoints and give an overview of the literature.

In chapter 2, basic concepts are presented. In the part on risk measures, we define coherent

risk measures and review a number of important risk measures used.

In chapter 3, we go through different principles of capital allocation and we choose to use

the proportional capital allocation.

In chapter 4, since our focus is on insurance, especially insurance products with heavy-tailed

distributions, we emphasize capital allocation based on tails. We define the concepts of

Conditional Expectation, Upper Tail Covariance and Tail Covariance Premium Adjusted.

Finally, in chapter 5, a simulation study is made for a portfolio with different insurance

products.

In this thesis, we want to state that one single allocation principle is not perfect for all

purposes. We adopt the point of view of insurance policyholders and regulators. The risk

capital should be sufficient to compensate clients with different kinds of insurance policies

in difficult, even catastrophic situations. This approach will rule out allocation only based

on covariance, since covariance allocation allocates nothing at all to no-risk business lines.

The risk measure Tail Covariance Premium Adjusted (TCPA) includes TVaR and Tail
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covariance. It is suited for heavy-tailed distributions. Thus the allocation principle based

on TCPA turns out to be well suited.
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[67] Min Wang. Risk measures. Åbo Akademi University, Licentiate Thesis, pages 1–79,

2009.

[68] Min Wang. Capital allocation with Pareto distribution. Manuscript, 2012.

[69] Min Wang. Upper tail covariance of elliptical and log-elliptical distributions.

Manuscript, 2012.

[70] Min Wang. Capital allocation based on the tail covariance premium adjusted. Insur-

ance: Mathematics and Economics, 57:125–131, 2014.

[71] Shaun S. Wang. Premium calculation by transforming the layer premium density.

ASTIN Bulletin, 26:71–92, 1996.

[72] Shaun S. Wang. Normalized exponential tilting: pricing and measuring multivariate

risks. North American Actuarial Journal, 11(3):89–99, 2007.

79



Min Wang

Economic Capital AllocationM
in W

ang | Econom
ic C

apital A
llocation | 2016

ISBN 978-952-12-3290-9

9 7 8 9 5 2 1 2 3 2 9 0 9


	Preface
	Contents
	List of papers
	Summary of included articles
	Abstract
	Sammanfattning
	Chapter 1
	Introduction
	1.1 Main problem of the research
	1.2 Economic capital
	1.2.1 What is the economic capital?
	1.2.2 The purpose of economic capital

	1.3 Capital allocation
	1.3.1 Why allocate?
	1.3.2 Different viewpoints
	1.3.3 Overview of literature



	Chapter 2
	Basic concepts
	2.1 Risk measures
	2.1.1 Coherent risk measure
	2.1.2 Important risk measures
	2.1.2.1 Value at Risk - the quantile risk measure
	2.1.2.2 Tail Value at Risk


	2.2 Dependence
	2.2.1 Correlation
	2.2.1.1 Pearson’s correlation
	2.2.1.2 Rank correlation

	2.2.2 Copula
	2.2.2.1 Introduction
	2.2.2.2 Tail dependence
	2.2.2.3 FGM copula

	2.2.3 Right Joint Excess Probability

	2.3 Distributions
	2.3.1 Elliptical and Log-Elliptical distributions
	2.3.2 Exponential distribution
	2.3.3 Pareto distribution
	2.3.4 Gamma distribution



	Chapter 3
	Capital allocation
	3.1 How to allocate?
	3.2 Different principles
	3.2.1 Proportional capital contribution
	3.2.2 Covariance allocation principle
	3.2.3 Discrete marginal contributions

	3.3 Optimal capital allocations


	Chapter 4
	Capital allocation based on tails
	4.1 Conditional Expectation as Risk Measures
	4.2 Upper tail covariance
	4.2.1 The Upper Tail Covariance of bivariate log-elliptical distributions

	4.3 Definition of the Tail Covariance Premium Adjusted (TCPA) based allocation
	4.3.1 Calculation of the capital allocation



	Chapter 5
	Illustrative case study
	5.1 Simulation from Normal copula
	5.1.1 Proportional capital allocation
	5.1.2 Covariance capital allocation

	5.2 Simulation from Cauchy copula
	5.2.1 Proportional capital allocation
	5.2.2 Covariance capital allocation



	Chapter 6
	Conclusion

	Bibliography



