
Turku Centre for Computer Science

TUCS Dissertations
No 208, December 2015

Simon Holmbacka

Energy Aware Software for
Many-Core Systems

Energy Aware Software for
Many-Core Systems

Simon Holmbacka

To be presented, with the permission of the Faculty of Science and
Engineering of the University of Åbo Akademi, for public criticism in

Auditorium Granö-sali on December 11, 2015, at 12 noon.

Åbo Akademi University
Faculty of Science and Engineering

LT1, Universitetsbacken, 20520 Åbo, Finland

2015

Supervisor

Professor Johan Lilius
Faculty of Science and Engineering
Åbo Akademi University
Joukahainengatan 3-5, 20520 Åbo
Finland

Advisor

Doc. Dr. Sébastien Lafond
Faculty of Science and Engineering
Åbo Akademi University
Joukahainengatan 3-5, 20520 Åbo
Finland

Reviewers

Professor Mats Brorsson
Avdelningen för Programvaruteknik och Datorsystem
Kungliga Tekniska Högskolan
SE-100 44 Stockholm
Sweden

Professor Jean-François Nezan
Institut d’Electronique et de Télécommunications de Rennes
Institut National des Sciences Appliquées
20 Avenue des Buttes de Coësmes, Rennes
France

Opponent

Professor Christoph Kessler
Department for Computer and Information Science
Linköping University
SE - 581 83 Linköping
Sweden

Painosalama Oy, Åbo
ISBN 978-952-12-3305-0
ISSN 1239-1883

bgt
Rectangle

“Wenn es Ihnen beim Studium der
Quantenmechanik nicht schwindelig wird, dann
haben Sie sie nicht wirklich verstanden.”

— Niels Bohr

i

ii

Abstract

Many-core systems provide a great potential in application performance with
the massively parallel structure. Such systems are currently being integrated
into most parts of daily life from high-end server farms to desktop systems,
laptops and mobile devices. Yet, these systems are facing increasing chal-
lenges such as high temperature causing physical damage, high electrical
bills both for servers and individual users, unpleasant noise levels due to
active cooling and unrealistic battery drainage in mobile devices; factors
caused directly by poor energy efficiency.

Power management has traditionally been an area of research providing
hardware solutions or runtime power management in the operating system
in form of frequency governors. Energy awareness in application software
is currently non-existent. This means that applications are not involved
in the power management decisions, nor does any interface between the
applications and the runtime system to provide such facilities exist. Power
management in the operating system is therefore performed purely based
on indirect implications of software execution, usually referred to as the
workload. It often results in over-allocation of resources, hence power waste.

This thesis discusses power management strategies in many-core systems
in the form of increasing application software awareness of energy efficiency.
The presented approach allows meta-data descriptions in the applications
and is manifested in two design recommendations:
1) Energy-aware mapping
2) Energy-aware execution
which allow the applications to directly influence the power management
decisions. The recommendations eliminate over-allocation of resources and
increase the energy efficiency of the computing system. Both recommenda-
tions are fully supported in a provided interface in combination with a novel
power management runtime system called Bricktop. The work presented in
this thesis allows both new- and legacy software to execute with the most
energy efficient mapping on a many-core CPU and with the most energy
efficient performance level. A set of case study examples demonstrate real-
world energy savings in a wide range of applications without performance
degradation.

iii

iv

Sammandrag
Mångkärniga datorsystem har en hög prestandapotential tack vare dess mas-
sivt parallella h̊ardvarustruktur. Dessa datorsystem integreras för tillfället
i de flesta delar av v̊art vardagliga liv. Allt fr̊an storskaliga serverfarmer
till persondatorer, bärbara datorer och mobila enheter. Utmaningarna för
s̊adana system har dock ökat i form av höga processortemperaturer som ökar
energikostnader, orsakar obekväma ljudniv̊aer p̊a grund av aktiv nerkylning
och orealistisk batterianvändning i mobila enheter. Dessa faktorer är en
direkt konsekvens av otillräcklig energieffektivitet.

Strömhantering har traditionellt sett varit en forskningsfr̊aga för h̊ardvaru-
omr̊aden, eller som en inbyggd funktionalitet i operativsystemet. Energimed-
vetenhet i applikationer som s̊adan existerar inte. Detta betyder att app-
likationerna inte deltar i beslut som fattas inom strömhanteringen. Det
finns för tillfället inte heller n̊agot gränssnitt mellan applikationerna och
operativsystemet som kunde erbjuda en s̊adan tjänst. Strömhantering i
operativsystemet genomförs därför endast baserad p̊a indirekta implika-
tioner orsakad av mjukvaruexekveringen, som hänvisas till som systemets
arbetsbörda (workload). Detta sätt att genomföra strömhantering resulterar
ofta i överallokering av resurser och därmed i slöseri med ström.

Denna avhandling framlägger strömhanteringsstrategier i m̊angkärniga
datorsystem genom energimedveten mjukvara. Strategierna tillsammans
med direkta implementationer l̊ater applikationer inkludera meta-data som
används för att göra beslut för strömhanteringen. Avhandlingen konkretis-
erar detta med hjälp av tv̊a designrekommendationer:
1) Energimedveten applikationsfördelning
2) Energimedveten applikationsexekvering
som l̊ater applikationerna medverka i beslut som fattas för strömhantering.
Rekommendationerna minimerar överallokering av resurser och ökar energi-
effektiviteten i datorsystemet. B̊ada rekommendationerna stöds till fullo
genom ett implementerat gränssnitt ihopkopplat med en ny typ av strömhan-
terare kallad Bricktop. Arbetet som presenteras i denna avhandling l̊ater
b̊ade nya och redan implementerade applikationer exekvera p̊a ett optimalt
antal processeringselement, och med optimal prestanda för att minimera
energikonsumtionen. Exempel fr̊an fallstudier visar energiinbesparingar vid
användning av olika typer av applikationer utan att prestandadegradering.

v

vi

Acknowledgements

The work in this thesis was carried out in the Faculty of Science and Engi-
neering at Åbo Akademi University between April 2011 and April 2015.

Firstly, I would give my most expression of gratitude to my supervisor
and friend Johan Lilius for believing in my efforts and who has given me
motivation and excellent support for completing this thesis. I would like
to thank my opponent Christoph Kessler and reviewers Mats Brorsson and
Jean-François Nezan for giving me constructive and helpful pointers to my
work, and for great discussions outside of the work of my thesis.

I am very grateful to my co-workers and co-authors. First and foremost
my advisor Sébastien Lafond who has, with great patience, consulted my
research to continuously improve the material. The field of computer en-
gineering always requires programming and people who know how systems
actually work. For helping me in this effort, I would like to give thanks to
Wictor Lund, Stefan Grönroos and Dag Ågren who have saved me many
Google hours by sharing their expertise.

Cooperation is the key to success, and I would like to thank all my
co-authors who contributed to my publications making this thesis possible:
My French friends in the signal processing team: Erwan Nouges, Maxime
Pelcat and Daniel Menard. My German power management colleagues in
Hagen: Jörg Keller and Patrick Eitschberger. My Spanish safety-critical
experts: Jose-Luis Gutierrez and Javier Diaz. My former in-house Linux
hackers Fredric Hällis and Robert Slotte. My System-on-Chip colleagues
from the Finnish side of the glass door in the ICT building Amir-Mohammad
Rahmani-Sane and Mohammad Fattah. To all other people in the ESlab,
thanks for a great time, let’s keep up this kind of atmosphere!

I would like to thank the very competent and friendly administration in
the ICT building handling everything between fixing traveling arrangements
and providing SD cards. The thanks goes to Nina Hultholm, Christel En-
gblom, Tove Österroos, Joakim Storrank, Karl Rönnholm, Marat Vagapov,
Tomi Mäntylä, Susanne Ramstedt and Solveig Vaherkylä. No task is too
small or too big for these guys.

Many thanks goes to the former IT-department at Åbo Akademi and the
TUCS platform for graduate students. I would like to acknowledge Tekni-

vii

ikan edistämissäätiö, Svenska tekniska vetenskapsakademien i Finland and
Otto A. Malms donationsfond for external funding leading to the completion
of this thesis.

Finally, I must thank my parents Inga and Dennis and their everlasting
support. You have always been my motivating factor no matter the task.
To my grandmother, I must announce that my studies are finally completed:
böv int sita nameir i skolbentschin! Most importantly, my dedicated support
comes from my wife Selina; not only by her motivation but also with her
insight into the importance of energy efficiency and ecologically sustainable
development. I hope that my thesis will contribute to these areas not only
for my own interest but also for future generations.

Simon Holmbacka
Åbo

November 2, 2015

viii

List of Original Publications

1. Simon Holmbacka, Sébastien Lafond, Johan Lilius. Power Propor-
tional Characteristics of an Energy Manager for Web Clusters. In
Proceedings on Embedded Computer Systems: Architecture, Modeling
and Simulation, 2011 IEEE International Conference, pages 51–58,
Samos, Greece.

2. Simon Holmbacka, Sébastien Lafond, Johan Lilius. A PID-Controlled
Power Manager for Energy Efficient Web Clusters. In Proceedings of
the International Conference on Cloud and Green Computing, 2011
IEEE International Conference, pages 712–728, Sydney, Australia.

3. Simon Holmbacka, Mohammad Fattah, Wictor Lund, Amir-Mohammad
Rahmani, Sébastien Lafond, Johan Lilius. A Task Migration Mecha-
nism for Distributed Many-Core Operating Systems. In The Journal
of Supercomputing, 2014 Springer, pages 1141–1162.

4. Fredric Hällis, Simon Holmbacka, Wictor Lund, Robert Slotte, Sébastien
Lafond, Johan Lilius. Thermal Influence on the Energy Efficiency of
Workload Consolidation in Many-Core Architectures. In Proceedings
of the 24th Tyrrhenian International Workshop on Digital Communi-
cations, 2013 IEEE International Conference, Genoa, Italy.

5. Simon Holmbacka, Dag Ågren, Sébastien Lafond, Johan Lilius. QoS
Manager for Energy Efficient Many-Core Operating Systems. In Pro-
ceedings of the 21st International Euromicro Conference on Parallel,
Distributed and Network-based Processing, 2013, IEEE International
Conference, pages 318–322 Belfast, UK.

6. Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond,
Johan Lilius. Energy Efficiency and Performance Management of
Parallel Dataflow Applications. In The 2014 Conference on Design
& Architectures for Signal & Image Processing [BEST PAPER], ECSI
International Conference, pages 133–141. Madrid, Spain.

ix

7. Simon Holmbacka, Jörg Keller, Patrick Eitschberger, Johan Lilius.
Accurate Energy Modelling for Many-Core Static Schedules. In Pro-
ceedings of the 23rd International Euromicro Conference on Parallel,
Distributed and Network-based Processing, 2015, IEEE International
Conference, pages 525–532 Turku, Finland.

8. Simon Holmbacka, Sébastien Lafond, Johan Lilius. Performance Mon-
itor Based Power Management for big.LITTLE Platforms. In Pro-
ceedings of the HIPEAC Workshop on Energy Efficiency with Hetero-
geneous Computing, 2015, pages 1–6 Amsterdam, Netherlands.

x

Contents

I Research Summary 1

1 Overview of Original Publications 3
1.1 Paper I: Power Proportional Characteristics of an Energy

Manager for Web Clusters . 3
1.2 Paper II: A PID-Controlled Power Manager for Energy Effi-

cient Web Clusters . 4
1.3 Paper III: A Task Migration Mechanism for Distributed Many-

Core Operating Systems . 5
1.4 Paper IV: Thermal Influence on the Energy Efficiency of Work-

load Consolidation in Many-Core Architectures 6
1.5 Paper V: QoS Manager for Energy Efficient Many-Core Op-

erating Systems . 7
1.6 Paper VI: Energy Efficiency and Performance Management

of Parallel Dataflow Applications 8
1.7 Paper VII: Accurate Energy Modeling for Many-Core Static

Schedules . 10
1.8 Paper VIII: Performance Monitor Based Power Management

for big.LITTLE Platforms . 10
1.9 Paper cohesion . 11

2 Introduction 13
2.1 Software Coordination . 15
2.2 Research Area . 16
2.3 Contribution of the Thesis . 17

3 Energy Efficiency in Many-Core Systems 19
3.1 Power Breakdown and Energy Consumption 19

3.1.1 Dynamic power . 20
3.1.2 Static power . 20
3.1.3 Thermal Influence . 21
3.1.4 Energy consumption 23

3.2 Power Proportionality . 24

xi

3.3 Hardware-Based Power Management 25
3.3.1 Dynamic Voltage and Frequency Scaling (DVFS) . . . 25
3.3.2 Dynamic Power Management (DPM) 28

3.4 Summary . 30

4 Workload Mapping 31
4.1 Relation to Energy Efficiency 31
4.2 Task Migration . 33

4.2.1 Linux run-queue selection 33
4.2.2 Platform dependence 34

4.3 Workload Consolidation . 36
4.3.1 Experimental results 38

4.4 Summary . 39

5 Generic Performance Metric 41
5.1 The Definition of Workload 41
5.2 Problems with Workload . 43

5.2.1 Race-to-Idle . 44
5.3 QoS – The Generic Performance Parameter 45

5.3.1 QoS-aware execution 46
5.3.2 Power management with QoS metadata 47
5.3.3 Related performance metrics 47

5.4 Summary . 48

6 Bricktop:
The QoS Manager 49
6.1 Declaring the QoS Metric . 50
6.2 Structure of the Runtime System 50

6.2.1 The Bricktop structure 50
6.2.2 The Bricktop controller 52
6.2.3 Related runtime systems 53

7 System Identification 57
7.1 Modelling Power . 57

7.1.1 Previous work: Bottom-Up Approaches 58
7.1.2 Top-Down Modelling 59

7.2 Modelling Performance . 62
7.2.1 Speed-up response of actuators 62
7.2.2 Techniques for Obtaining Parallelism 63

7.3 Summary . 66

xii

8 Multi-Criteria Power Optimization 67
8.1 Related Work . 67
8.2 NLP-Optimization . 68

8.2.1 Identification of optimization problem 69
8.2.2 Response time evaluation 71

8.3 Simulation Based Evaluations 73
8.3.1 Actuator response . 73
8.3.2 Energy consumption 74
8.3.3 Discussion . 76

8.4 Switching Latency in Power Management 76
8.4.1 Latency Measurements 77

8.5 Summary . 80

9 Case Studies 81
9.0.1 MPlayer . 83
9.0.2 LDPC Decoder . 85
9.0.3 Face Detection Software 87

10 Discussion and Conclusions 89
10.0.4 Future directions . 91

II Original Publications

xiii

xiv

Part I

Research Summary

1

Chapter 1

Overview of Original
Publications

“I can make it painless and perfect.”
— Dr. John W. Thackery, The Knick - 2014

1.1 Paper I: Power Proportional Characteristics
of an Energy Manager for Web Clusters

The paper primarily focused on the problem of increased energy consump-
tion in modern server infrastructures. Computer systems in data centers
alone stands for 1.5% of the European energy consumption and is steadily
increasing. Measurements indicate a double in energy consumption between
the years 2006 and 2011, and by 2020 the energy consumption increase in
data centers in Western Europe is projected to over 100 TWh per year.

The idea in the paper, is to regulate resource usage in data centers ac-
cording to the incoming request rate in order to make power dissipation
proportional to the workload. The introduced term power proportionality
is a measurement on the ability to regulate resources according to resource
needs. Focus was put on sleep state based power management rather than
DVFS because of the large scale system in mind and the ability to enable/dis-
able any number of computing nodes at runtime. In order to increase the
workload granularity and to enable better power proportionality, mobile
CPUs were evaluated rather than high-end CPUs. By using smaller-but-
many mobile CPUs, the same performance can be obtained as when using
high-end CPUs, but the power dissipation of the running nodes can be more
precisely tuned.

In order to manage the power dissipation and to evaluate the power
proportionality, a simulation framework containing a PID controller is pre-

3

sented in the paper. The simulation framework is capable of generating web
request patters either by using a synthetic pattern generator or by using
real-world input. The framework uses the PID controller to determine how
many nodes (since single-core systems are used; how many cores) should be
used in order to handle all web requests within an acceptable time limit.
The output of the PID controller determines the number of cores to wake
up or shut down while taking the transition delay into account.

The results indicate that the tuning of the PID parameters are crucial
to the efficiency of the controller with respect to the load patterns. The
load patterns should therefore be analyzed in order to efficiently tune the
controller at runtime with dynamic PID parameters. An example of runtime
updatable parameters was presented in the work of Holmbacka [31], in which
a PID controller in a video player is used for regulating the framerate. The
PID parameters in the controller were updated during runtime to obtain a
more stable playback. This paper is however not part of this thesis. In future
work, more work was planned on the automatic tuning of PID parameters
and the whether a combination of DVFS and sleep states can increase the
power proportionality further.

Author’s contribution: The co-authors suggested a single metric, power
proportionality, to determine the relation between power dissipation and
work executed. Based on the ideas and problem statements by the co-
authors, the PID controller and the simulation framework was implemented
by the author in order to simulate the level of power proportionality. The
author and the co-author Sébastien Lafond discussed different use cases and
scenarios for simulation after which the author performed the simulations.
All authors interpreted the results of the simulations as well as drawing the
concluding remarks on dynamic PID parameters. The author contributed
with the paper write-up and presentation.

1.2 Paper II: A PID-Controlled Power Manager
for Energy Efficient Web Clusters

From the directions in Paper I, the work continues in the field of energy
efficient web clusters. Based on the fact that web servers operate on a 10
to 50 percent utilization rate, system level power management is crucial for
future large scale web server installations.

The focus is, similarly to Paper I, set on low power nodes which offer
a finer granularity of system level power control. The PID controlled man-
ager is further developed, and more focus is put on the tuning of the PID
parameters. Two different tuning methods are presented and evaluated in a
multi-node simulation framework. Evaluations present both the energy re-

4

duction compared to a system using DVFS, and the impact on application
QoS (Quality of Service) with respect to the tuning methods used.

The paper introduces the concept of application performance and how
the metric is used to ensure sufficient QoS in applications. A web server
was executed on a real platform to determine the possible request rate as a
function of request size. The metric used measure performance was requests
per second, according to which the power manager allocates the resources.
From this concept we initiated the investigation on a generic performance
parameter to which any application can relate its QoS, and what information
is needed for a generic power manager controlling any kind of application.

Author’s contribution: Based on received feedback in Paper I, the au-
thor investigated the parameter tuning and suggested two common tuning
methods for evaluation. The author and co-authors concluded in frequent
discussions that a parameter describing performance is required in order
to drive the controller efficiently and in a more generic setting. The author
contributed with the simulations and the paper write-up while the co-author
Sébastien Lafond presented the paper.

1.3 Paper III: A Task Migration Mechanism for
Distributed Many-Core Operating Systems

From the earlier work focusing on system level control, Paper III shifts focus
to OS level control. While still targeting power management in a multi-node
system, the OS level view offers a more detailed research in task execution
on chip level, and its impact power dissipation. An executing task on a
multi-core CPU will impose a certain workload level (usually expressed in
the percentage of the core’s capacity) on the core, which in turn dissipates
power. The amount of power dissipated by a core depends primarily on the
clock frequency, load level and temperature of the core.

The research focus on the practical aspects on moving tasks (called task
migration) in a many-core system, and how to find a task distribution which
dissipates the minimum amount of power with sufficient performance. Pa-
per III is a journal extension to an earlier publication [32], in which the
notion of network-on-chip processors were considered in addition to simple
bus-based systems. In order to gain more knowledge of the mechanisms
behind task migration, we implemented a task migrator on a multi-core
real-time OS called FreeRTOS. In contrast to normal desktop OSes such
as Linux or Windows, FreeRTOS is completely asynchronous and utilizes
separate schedulers on each core. With a non-symmetric OS view, the state
transfer of tasks is handled explicitly such as the transfer of task stack, heap,
function references etc.

5

The evaluations were performed on two separate use-cases; the first of
which used task migration to distribute high-resolution video player tasks to
all cores in order to gain performance due to parallelization. The second use-
case collected low-resolution video player tasks onto a single core in order
to save power and still keep a steady framerate of 25 frames per second.

The main part of the publication is, however, the evaluation of the task
migration overhead, i.e. the latency of migrating a task to another core.
In our extended study we used both bus-based systems with a relatively
predictable overhead and network-on-chip architectures with a more un-
predictable overhead. Task migration in a network-on-chip simulator was
executed to determine the confidence interval of the overhead with respect
to migration distance and cache utilization. In the following papers, task mi-
gration will be used as one of the primary mechanisms for achieving energy
efficiency on many-core systems.

Author’s contribution: The task migration issue was discussed frequent-
ly by the author and co-authors in terms of OS scalability and power man-
agement. The decision to investigate the functionality behind task migra-
tion was made by the co-authors Johan Lilius and Sébastien Lafond, and
the practical implementation on FreeRTOS was made by co-author Wic-
tor Lund. The author mainly contributed to the theoretical foundation
and the investigation of scalability in future many-core operating systems
heavily reliant on task migration. Co-authors Mohammad Fattah and Amir-
Mohammad Rahmani from University of Turku contributed to the journal
extension and the network-on-chip simulations and measurements. The au-
thor contributed with the journal write-up.

1.4 Paper IV: Thermal Influence on the Energy
Efficiency of Workload Consolidation in Many-
Core Architectures

With under utilized computer systems, much CPU time is spend in idle
mode with no workload to execute. While the cores are active but not
executing workload, the system is simply wasting power keeping the core
running while waiting for work to arrive. On the other hand, shutting down
CPU cores can degrade the performance of the system during bursts of high
workload. Optimally, the system should activate as many cores as needed
while keeping the rest of the cores shut down.

The approach in Paper IV was to consolidate the workload onto as few
cores as possible while keeping the rest of the cores shut down in order to
save power. A new Linux scheduler (the Overlord Guided Scheduler) was im-
plemented, which consolidated tasks to the highest loaded, non-overloaded

6

core. With such an approach it is simple to disable the unused cores since the
cores contain either high or no workload. Consolidating tasks onto few cores
instead of distributing them improves on the locality in terms of task com-
munication which involves less memory accesses. Less task migrations are
also performed since the system is not forced to keep an evenly distributed
schedule.

The scheduler was evaluated against the default CFS (Completely Fair
Scheduler) in terms of energy consumption and performance. The evalu-
ations consisted of applying a selected load level in several tasks on the
system after which the energy was measured and the total execution time of
the tasks. Results indicate that neither full load consolidation or completely
fair scheduling is always the best approach depending on the workload. The
optimal number of cores and the clock frequency is use is thus dependent
on the type of tasks and their type of workload applied on the system.

Author’s contribution: Load consolidation as an idea was suggested
by the co-authors as shutting down the unused cores would improve on
energy efficiency. The OGS scheduler was implemented and tested by the
co-authors Fredric Hällis and Robert Slotte, who also contributed to the
main writing part of the publication. The benchmark Spurg-Bench used in
the evaluation of the scheduler was implemented by co-author Wictor Lund,
and the evaluations were executed by co-author Fredric Hällis. The author
created the main structure of the publication and wrote the discussions
regarding power and energy in Section III and the workload mapping and
task migration in Section IV. The paper was presented by co-author Fredric
Hällis.

1.5 Paper V: QoS Manager for Energy Efficient
Many-Core Operating Systems

Resource allocation in modern operating systems is usually based purely on
the workload level. As the this level exceed a certain value, more resources
are allocated in terms of clock frequency, number of cores etc. While the
metric is generic to any type of application, it does not describe what kind of
resources to allocate. For example an application could either use a higher
clock frequency or an increased number of cores to increase performance.
In order for the runtime system to perform the most energy efficient alloca-
tion, applications should describe what resources they are able to use most
efficiently.

With Paper I and II primarily focusing on the controller, the exten-
sion of a generic interface between applications and resource allocation was
discussed in Paper V. The presented QoS manager is a runtime resource

7

allocator designed to intercept meta-data from applications in order to allo-
cate resources in the most energy efficient manner. Applications are able to
follow a declaration language to design a performance parameter specifically
related to the application. The performance parameter is used together with
a performance setpoint to steer the resource allocation. The QoS manager
monitors the applications’ performance periodically, and resource alloca-
tion/deallocation is performed in case of the performance is either under or
above the setpoint.

The proof-of-concept QoS runtime system was implemented on top of
FreeRTOS, and a multi-task jpeg decoder was evaluated. The jpeg decoder
was set to inject a setpoint value describing its desired rate of picture de-
coding. For a selected picture rate, the QoS manager used sleep states on a
multi-core platform to allocate resources. By adjusting the setpoint, the im-
pact on the power dissipation of the system was noticed as unused resources
could be shut down.

Author’s contribution: In order to extend Paper I and II with a more
generic performance parameter, the author suggested the more explicit dec-
laration language as a way of tailor applications to the resource allocation.
The author implemented the QoS runtime manager on FreeRTOS and the
communication interface to the applications. Co-author Dag Ågren con-
tributed with a FreeRTOS port for the multi-core ARM Cortex-A9 platform,
and a core-to-core communications infrastructure. Furthermore, the author
contributed with the necessary evaluations on the platform as well as the
writing of the paper and the presentation.

1.6 Paper VI: Energy Efficiency and Performance
Management of Parallel Dataflow Applications

Energy efficiency in computer systems is based on runtime allocation/deal-
location of resources. Modern processors usually provide two methods of
CPU resource allocation: Clock frequency scaling and CPU sleep states.
Allocating resources for applications is required in order for applications to
gain a desired performance. In contrast to the controller in Paper I and II
which assumes a single input, single output, we extend the work with the
notion of QoS requirements to allow the usage of both clock frequency scal-
ing and sleep states as suggested in Paper V. The new multi input, multi
output controller is minimizing the power dissipation of CPU by using a
model for the power required to reach a given performance setpoint for the
applications.

While clock frequency scaling increases performance relatively linear for
any application, using sleep states to activate/deactivate cores is only use-

8

ful if the application is programmed for parallel execution. To to reach a
good balance between clock frequency and the number of active cores, the
inherited parallelism in the applications must be known. A completely se-
quential application can only increase the speed-up by increasing the clock
frequency, but a parallel application also benefits from adding more cores.
The work in Paper VI presents an approach to find the optimal number of
cores and the optimal clock frequency for a set of applications with different
levels of parallelism. The controller includes a non-linear optimization solver
which firstly uses application performance as input parameter to determine
the QoS. Secondly, the controller uses application defined parallelism in or-
der to determine how many of the available cores are useful for providing
application speed-up if needed.

Since measuring application parallelism is usually not a trivial task,
dataflow tools are exploited for automatically extracting the level of par-
allelism. The dataflow tool PREESM was used to generate a signal process-
ing filter with different levels of parallelism per program phase; the filter
contained a completely sequential phase and a parallel phase for filtering
video frames. PREESM was then used to extract and inject the value of the
parallelism during runtime to the QoS manager.

Author’s contribution: The extension to allow multiple input, multiple
output control was discussed between the author and the co-authors. Based
on the recommendations from the co-authors, the author suggested to for-
mulate the clock frequency scaling and sleep state balance as a non-linear
optimization problem. The author integrated the solver and communica-
tions infrastructure of the QoS manager in the Linux environment. In order
to determine the power dissipation of the chip based on the current clock
frequency and sleep state setting, the author created an analytical power
model of the CPU. The author also created a mathematical model describ-
ing performance as a function of parallelism in the applications. This model
was then used to determine the level of speed-up when either increasing clock
frequency or increasing the number of cores. The extraction and injection of
the parallelism-value into the QoS manager was done by co-authors Erwan
Nouges and Maxime Pelcat from INSA de Rennes. The co-authors used
the already existing PREESM tool developed at INSA de Rennes to deter-
mine and extract parallelism, and to automatically generate c-code from the
dataflow program. The author contributed with the write-up and presenta-
tion.

9

1.7 Paper VII: Accurate Energy Modeling for Many-
Core Static Schedules

According to the current trend the number of processing elements on a chip
increase, the manufacturing technology shrinks and the chip temperature
increases. All these factors contribute to increased static power, which can
only be reduced by shutting down parts of the chip dynamically. Sleep state
based power management is currently available, but the latency of utiliz-
ing such a mechanism is orders of magnitude larger than clock frequency
scaling. A significant latency when enabling/disabling cores on a multi-core
system can result in energy waste rather than energy savings because of
mispredictions in core wakeup/shutdown actions.

We investigate how the latency of sleep state based power management
systems affect the decision making and the energy consumption. The shut-
down and wakeup latency was measured with a set of parameters, under
different conditions and on different platforms. With the obtained results
we set up a static scheduler with an optimization solver to determine the
best power management strategy based on the given applications and time
resolution. The decisions are made based on a power model and the latency
measurements. Results indicate at which time granularity the feasibility of
using the current sleep state mechanism, and at which time granularity clock
frequency scaling is the more viable option.

Author’s contribution: The author implemented a benchmark frame-
work for measuring the elapsed time of shutting down and waking up a core
in the Linux environment. One kernel module and one user space application
was implemented to trigger the sleep state mechanism, and the timing re-
sults from several samples was obtained. Co-authors Jörg Keller and Patrick
Eitschberger from FernUniversität Hagen implemented the static schedule
optimizer to model the preferred power saving technique based on the ap-
plication and the timing granularity. By using a set of schedules, the author
executed real-world experiments with the same parameters as were used in
the schedule optimizer in order to verify the precision of the models used in
the optimizer. The author contributed with the write-up and presentation.

1.8 Paper VIII: Performance Monitor Based Power
Management for big.LITTLE Platforms

Recently new heterogeneous processors with one set of energy efficient cores
and one set of high-end cores called big.LITTLE have appeared on the mar-
ket. The purpose of such hardware is to allow applications with low perfor-
mance demands to execute on the small energy efficient cores, while appli-

10

cations requiring high throughput can use the big high-end cores. With this
approach, applications can be mapped on the most suitable core in order
for the system to save energy and still guarantee sufficient performance.

While the hardware offers means of energy savings, software is currently
not able to utilize the big.LITTLE architecture efficiently. Current power
managers are purely workload-based, which means that an increase in clock
frequency is issued as soon as the workload level reaches a given thresh-
old. Furthermore, as the clock frequency is increased beyond a limit, the
LITTLE cores are automatically switched to the big cores. Software is cur-
rently programmed to execute as fast as possible to allow high throughput.
In combination with current power managers, this results in an execution
strategy called “Race-to-Idle”. As applications are executed fastly in order
to reach idle state, the big cores are mainly used even if the LITTLE cores
would be sufficient to reach the desired throughput.

In Paper VIII we detail the drawbacks of the Race-to-Idle strategy in
big.LITTLE systems. A general case video decoder is used to demonstrate
the increased energy efficiency of regulating the clock frequency according to
application performance rather than workload. The QoS manager presented
in Paper V and VI is used to regulate the decoder framerate according to
the user QoS requirements and the energy savings is evaluated.

Author’s contribution: The paper was written in order to stress the im-
portance of proper resource allocation especially in heterogeneous big.LITTLE
systems. The author adapted the controller implementation presented in
previous papers for the big.LITTLE architecture. A new power model was
derived by the author and an interface for application priorities was also
adopted by the author. The author contributed with the write-up and pre-
sentation.

1.9 Paper cohesion

The origin of the research problem is presented in Paper I and a simple
example on how to reach power proportionality is stated. Paper II further
evaluates the control methods proposed in Paper I and extends the focus on
the controller. From this point, the evaluated results are used as input to
the more generic QoS manager presented in Paper V. This paper is focus
on the more theoretical aspects of application-to-resource interfaces and is
designed as an input for the later implementations. As the work is extended
to multiple input multiple output controllers for increasing power propor-
tionality on OS level, technologies such as task migration (Paper III) and
workload consolidation (Paper IV) are studied. The multiple input multiple
output controller (Paper VI) is finally integrated into the QoS framework

11

discussed in Paper V, and realized as a real implementation. With the QoS
manager implemented and integrated with the multiple input multiple out-
put controller, Papers VII and VIII present specialized cases which explore
selected important details in more depth. Figure 1.1 illustrates the cohesion
of the papers and how the papers are categorized.

Figure 1.1: Illustration of paper cohesion. Yellow labels state the paper
category. Red boxes indicate problem orig. Purple boxes indicate pure
implementations. Green boxes indicate implementations as part of larger
implementation. Orange boxes indicate specialized implementation or eval-
uations. Arrows indicate work input.

12

Chapter 2

Introduction

“No one should be asked to handle this trip.”
— Raoul Duke, Fear and Loathing in Las Vegas -

1998

Hardware evolution has traditionally been the ultimate solution for com-
puting systems to follow the trend of Moore’s law, and allow continuous per-
formance increase. The clock frequency scaling wall [14], which prevented
computer systems from reaching a stable clock frequency above 3-4 GHz,
was avoided by constructing multi-core systems. With multiple processing
units, the performance of the systems were increased by introducing paral-
lel programs to increase the computational throughput. Later, the memory
wall [54] which represented a bottleneck in the memory bus as more cores
emerged. The memory wall was, however, broken by introducing multiple
memory buses (NUMA) [48] and network-based interconnects (NoC) [65]
between the cores and the main memory. These types of connections ex-
pand by construct as more cores are added to a system, and the single-bus
problem can be avoided.

The current road bump – CPU the power wall [14, 75, 87, 89] – is a new
challenge currently being addressed. The CPU power wall allows no more
dissipation of power with a fixed chip area due to limitations in the semi-
conductor material. As more transistors are squeezed into a smaller area of
silicon, the power density increases [14, 63], and ultimately only a fraction
of the full chip can be used at one time. This phenomenon is referred to as
”dark silicon“ [20, 85]. Traditionally, the power density problem was solved
by creating more energy efficient transistors with, for example, lower voltage
levels. This led to a scaling in transistor efficiency in proportion to the tran-
sistor density called ”Dennard scaling“ [16]. With current manufacturing
techniques, Dennard scaling is no longer applicable [89] since the efficiency
of the transistors are no longer in line with the transistor density. This
leads to increased power density, which causes chips to malfunction due to

13

the extreme temperatures caused by the large amount of power dissipated
from a small area. Hence, the performance of a computer system can no
longer increase unless the energy issue is solved.

While performance alone is a sound motivation breaking the CPU power
wall, energy efficiency is an increasingly popular topic due to other physical
limitations and cost issues. The very usability of battery operated mobile
devices is completely dependent on its energy efficiency. With a limited
ability to reach this goal, the users have been forced to adapt a daily re-
charge routine for battery operated devices. Energy efficiency plays the
same important role in high-end consumer desktop systems, but instead
of the battery re-charge problem, the issue manifests itself notably in the
electrical bill, excessive heat generation and unpleasant noise levels of the
devices. For supercomputing centers to reach Exascale performance, the
current energy efficiency of the computing systems requires a power feed of
roughly 20 MW which is not realistic for a single facility [80].

Finally, the rate of expansion in computer systems is not in line with
sustainable development and the ecological impact. Large scale datacenters
consumed in the U.S. in 2013 100 billion kilowatt-hours of electricity, which
corresponds to over 2% of the total electricity consumed in the U.S. With
the current increase in energy demand, datacenters are predicted to release
more carbon and consume more energy than the global aviation industry by
the year 20201. The Federal Energy Management Program have started an
initiative to reduce the energy consumption in datacenters by increasing the
energy efficiency of the datacenters facilities. According to the 2007 EPA
Report to the U.S Congress, the energy consumption in datacenters could be
reduced by 20%-40% by means of improving the datacenter infrastructure
(not including the servers). According to the U.S. Department of Energy,
an initiate was executed in 2014 to improve datacenter buildings, and is
expected to reduce the energy consumption by 20% in the next ten years2.

However, while the initiate only focuses on the building infrastructure,
the largest energy consumer in the datacenters are the servers. Figure 2.1
shows the distribution of the energy consumption in three modern datacen-
ters [52]. As the facility infrastructure including the cooling represents a
significant part, the IT load – the servers – consume over 50% of the en-
ergy in each case. With the emerging CPU power wall, the end of Dennard
scaling and increased focus on the man-made ecological impact, hardware
solutions become inadequate for solving the global energy problem in com-
puter systems.

1Statistics according to the U.S. Office of Energy Efficiency & Renewable Energy:
http://energy.gov/eere/femp/resources-data-center-energy-efficiency

2https://www4.eere.energy.gov/challenge/sites/default/files/uploaded-
files/Better Buildings Data Center Overview-FAQ.pdf

14

Figure 2.1: The distribution of energy consumption in three large scale
datacenters (2014) [52].

2.1 Software Coordination

The work in this thesis, focuses on improving the energy efficiency in com-
puter systems by increasing software involvement. While hardware solutions
are very fast and have a low latency, software can comprehend a much larger
intelligence base used for achieving a more efficient hardware utilization.
The suggested hardware-software co-design allows the software to guide the
hardware to maximize the energy efficiency.

The key goal for software applications is to not allocate more hardware
resources than what is demanded by user satisfaction. By minimizing un-
necessary resource allocation, user satisfaction is maintained while minimum
energy is wasted. This is a demand pointing to a multi-objective solution,
and possible a subjective interpretation with the following scenarios:

1. Power-constrained. The CPU is executing workload with a power
cap for limiting the power envelope. Energy consumption is usually
minimized with this strategy while the user accepts performance degra-
dation. This solution is usually implemented as the ”powersave“ func-
tion in laptops and includes use cases such as web browsing without
performance constraints.

2. Time-constrained. The CPU is executing workload with a given
deadline to obtain at least a required lower-bound performance. The
hardware has no restrictions. Use cases such as video decoding requires
a steady performance in terms of framerate in order to satisfy the user.

3. Operation-constrained. The CPU is executing a given amount of
bulk work without time limit and without limitations on the hardware.

15

Video encoding or source code compilation are considered as use cases
in which no specific deadline is specified. A very long execution time
will, however, waste energy simply by executing for a long time even
though the power dissipation is low on average.

This thesis provides an investigation into how software-hardware coordi-
nation is used to create energy efficient computing systems. The presented
work provides an interface for user defined software for more close commu-
nication with the hardware. With the provided facilities, software can be
made energy aware, i.e. the software is aware of the required resources for
proper execution. The following keypoints summarize the content of this
thesis:

• An investigation into the power dissipation of modern multi-core
processors.
• Recommendations to increase energy efficiency for program execution.
• An interface between the applications and the hardware in form of a

runtime system.

2.2 Research Area

Energy efficiency in computer systems is a wide spread area crossing many
domains such as mobile, desktop and server systems using different levels
of hardware complexity. On the fundamental level, research in transistor
technology[10, 68] has provided the stepping stones for building low power
processors to fit in hand held devices. Clock frequency scaling [45, 35] is
a method dating back to the 90’s, allowing the early Pentium processors
to reduce the power dissipation by scaling down the clock frequency when
the performance is not needed. In more recent platforms, the clock fre-
quency scaling has been complemented with CPU sleep states [37, 38] to
further lower the power dissipation. As for large scale cloud solutions, en-
ergy efficient solutions have allowed to manage the workload with an optimal
amount of server nodes [5, 51], which allows to physically shut down unused
machines to save energy.

This thesis primarily focus on the runtime system within a comput-
ing node i.e. using the operating system’s view of resources and its power
management capabilities. Compared to other runtime systems [6, 8, 70],
the focus is on modelling the physical system with a realistic, yet simple
model to allow both portability and performance. The usability and a fast
learning curve of the runtime system has also been a primary target, but
rather than complete transparency [78] to the programmer a slight trade
off between programmer effort and the effectiveness of the runtime system
has been made. This thesis gives insight into how to reason about energy

16

awareness in software and how to interface this awareness to the runtime
system. It contains an approach for system modelling and optimization of
resource allocation in real-world many-core devices. A practical case study
of a complete ecosystem containing applications and a runtime system is
finally presented, and experiments on modern many-core Linux platforms
demonstrates its effect on energy efficiency.

2.3 Contribution of the Thesis

This thesis is divided into nine chapters which cover the technical back-
ground in the area of many-core energy consumption, recommendations for
energy aware software and the implementation of the power manager.
Chapter 3 introduces the concept of energy efficiency in modern many-core
systems, starting from the basic electrical characteristics in semiconductors
towards the currently available power saving features in hardware. The con-
tent in this chapter stresses the importance of power proportionality – in
other words all power dissipated in a computer system should be used for
useful computations. The relation between power and energy is addressed
to show how anomalies in power dissipation can be beneficial for energy
consumption and vice versa.
Chapter 4 addresses the first dimension of energy efficiency in this thesis:
the energy-aware mapping. The chapter describes the relation of power dis-
sipation to the location of workload execution on a multi-core chip. The
practical aspects of using power management in conjunction with different
mapping policies are presented, and practical experiments demonstrate ad-
vantages and disadvantages for different policies.
Chapter 5 introduces the second dimension of energy efficiency in this the-
sis: the energy-aware execution. While the mapping question is fixed to the
spatial dimension, workload execution concerns the timing. The trade-off
between power and time is discussed in this chapter, which are the two con-
tributing factors to energy consumption. Furthermore, the currently used
method for determining performance based on workload levels is criticized
and a new application-specific performance metric is suggested.
Chapter 6 ties science and engineering together with the design of a new
type of power manager based on QoS metrics. The power manager is capa-
ble of monitoring the application-specific performance and allocates only the
necessary amount of resources to an application mapped onto an optimal
set of cores. Design choices for the power manager are motivated based on
theoretical findings and practical issues in modern multi-core hardware.
Chapter 7 investigates more deeply into the heart of the power manage-
ment construction. The admission control of the power manager is detailed
in order to emphasize its feasibility in real-world systems. Design questions

17

such as algorithm complexity, scalability, accuracy and response time of dif-
ferent components are answered and further experiments are conducted to
support practical aspects of the implementation.
Chapter 8 details the setup of describing the system as an optimization
problem. Results from Chapter 4 and 5 are direct inputs for setting up
the problem. The choice of optimization solver is motivated in detail with
respect to the nature of the problem, complexity and response time. More-
over, simulations are used to predict the energy consumption for a set of
applications in a system driven by an optimization based power manager.
Finally, the latency of the power management mechanisms used in current
hardware is investigated in order to clarify practical shortcomings in real-
world systems.
Chapter 9 details the real-hardware implementation used in this thesis. A
set of case studies include experiments to compare the default environment
shipped in most Linux distribution with the new power manager on real
hardware.
Chapter 10 finally concludes the thesis and initiates the discussion for
including energy-awareness in future software frameworks.

18

Chapter 3

Energy Efficiency in
Many-Core Systems

“Congratulations, you’ve just left your family a
second hand Subaru!”

— Saul Goodman, Breaking Bad - 2008

The interplay between performance and energy consumption in many-
core systems is a continuous mix of task scheduling, mapping and power
management. It is important to understand the causes and the effects of
the power dissipation in microprocessors in order to optimize the energy
efficiency, since the power dissipation is an ever present factor as work is
being processed and even as the chip is idle. The main components of the
CPU power dissipation is discussed in this chapter in order to pinpoint
the most significant factors for optimizing and obtaining an energy efficient
execution.

3.1 Power Breakdown and Energy Consumption

Power is being dissipated by transistor switching as work is executed on the
CPU and by leakage in the semiconductor material. The sources of power
dissipation in a processing element can be categorized into two distinct parts:
dynamic power Pd and static power Ps. The total power dissipation is the
sum of both components as: Ptot = Pd+Ps. Both the dynamic and the static
part can be individually broken down into several components defined in the
following sections.

19

3.1.1 Dynamic power

Work execution on a microprocessor imposes chip activity in form of tran-
sistor switching. This activity is driven by the clock signal of the micro-
processor, and is required to flip transistors on the chip to execute machine
instructions.

The dynamic power is dissipated when the load capacitance C of the cir-
cuit gates and wires is charged and discharged to a voltage V . The contained
charge is then Q = C ·V (the unit is Coulombs). Since the charge-discharge
cycles are executed at a clock frequency f , the charge moved per second is:
C ·V ·f . The charge is delivered at voltage V ; hence the power dissipated by
the charge/discharge with a frequency f is C · V · V · f . Most microproces-
sors are, however, very complex systems with a huge amount of transistors.
Each cycle does not usually charge/discharge the complete capacitance of
the CMOS chip but only a certain fraction of the capacitance. This fraction
is usually referred to as the activity α of the chip.

The final relation of the dynamic power is shown in Equation 3.1.

Pd = α · C · f · V 2 (3.1)

where the capacitance C is equal to the charge divided by the voltage Q
V .

The electrical current is defined as the charge delivered per time: I = dQ
dt

and similarly Q =
∫ t2
t1
Idt thus for one second Q = I · t (ampere seconds).

The unit for dynamic power is hence derived as: Q·V 2

V ·s = A·s·V 2

V ·s = A ·V = W
(Watts). In case the complete chip capacitance is charge/discharged during
a cycle, the activity factor α is equal to 1.

As seen from the equation, the dynamic power is linearly dependent
on the clock frequency but quadratically dependent on the core voltage.
A low core voltage is hence preferred since the power dissipation is then
significantly reduced.

3.1.2 Static power

Besides the dynamic power dissipation as a result of transistor activity in
the chip, static power as a result of semiconductor imperfections is also
dissipated. The static power is a combination of several factors resulting
in leakage currents in the transistors, which is a current flow though the
transistor even though it is closed.

One source of leakage current is the subthreshold current [44]. The sub-
threshold current is an undesired flow of current as the transistor gate volt-
age is below the threshold voltage Vt. The subthreshold current Isub flows
between the source and the drain because of imperfections in the semicon-
ductor material in combination with the operating conditions such as tem-
perature. The magnitude of Isub depends on the manufacturing technology

20

of the semiconductor, i.e. how precise the transistor is able to cut the cur-
rent flow at the threshold voltage. Secondly, the source voltage range of the
transistor influences the subthreshold leakage. A very narrow voltage range
results in a more imprecise transistor and the definition between high- “on”
and low- “off” is more difficult to determine. Because of this reason, micro-
processors cannot currently operate on an arbitrarily low voltage. Equation
3.2 from [44] details the subthreshold leakage current.

Isub = K1 ·W · e−Vth/n·Vθ(1− e−V/Vθ) (3.2)

where K1 and n are architecture specific constants, W is the transistor gate
width and Vθ is the thermal voltage explained in Section 3.1.3.

An effect of shrinking the manufacturing technology to a very small scale
is the increased tunnelling current [76]. The tunnelling effect is a result of
the Uncertainty principle [26] and the wave-particle duality of matter. As
the distance between two materials is decreased to a very short distance,
the wave functions of the electrons partially overlap and the probability of
an electron tunnelling across the insulator material increases. The other
significant source of tunnelling current is the band-to-band tunnelling [2]
effect. This is a non-quantum mechanical gate-induced drain leakage in
which a high electric field between the transistor bands can cause the current
flow from the gate to the drain. Both tunnelling effects increases the static
power since they cause leakage currents in the transistors.

3.1.3 Thermal Influence

Chip temperature influences the static power by increasing the leakage cur-
rents in the transistors. By increasing the leakage current, the temperature
further increases, which in turn increases the leakage current as a positive
feedback loop. As seen in Equation 3.2, the subthreshold leakage current
is exponentially dependent on a parameter Vθ, the thermal voltage. The
thermal voltage represents the average energy of individual electrons. Vθ is
proportional to kT

q where k is Boltzmann’s constant, q is the electron charge
and T is the temperature. This means that the thermal voltage is linearly
dependent on the temperature, but the leakage current is exponentially de-
pendent on the thermal voltage.

The leakage current effect was demonstrated by running an ARM CPU
on constant clock frequency while not executing any workload. The CPU
temperature was continuously increased with an external heating device
while the power dissipation was measured. Figure 3.1 shows the power
dissipation of the ARM chip and the power dissipation of the complete board
as a function of temperature. As seen in the figure, the power dissipation
increases exponentially (also confirmed in the work of Martinez et al. [55])
as the temperature increases and reaches a maximum at 80 ◦C. At this

21

temperature the CPU is automatically stalled as a safety functionality to
decrease the chip temperature.

Figure 3.1: Influence of temperature on power dissipation for an
ARM system.

Figure 3.2: Total static- and dynamic power breakdown and the trends [44].

In previous generation microprocessors, the static power could be ignored
since the dynamic power was dominating the total power dissipation i.e.
Pd � Ps [10]. However, with smaller transistors, lower voltage, higher clock
frequencies leading to higher temperatures and more transistors on the chip,
the static power is currently becoming more significant and is expected to
dominate the total power dissipation in next generation microprocessors

22

[4, 44, 76]. Figure 3.2 shows the history of the power breakdown from typical
microprocessors as well as the future predictions. As illustrated, in the
early 90s up to the early 00s, the static power could be completely ignored
since the dynamic power was orders of magnitude larger. This statement is,
however, no longer true.

3.1.4 Energy consumption

The energy consumption of a microprocessor is the result of the power dis-
sipated over a determined time window. Energy is measured in Joules (J)
which is equal to Watts*Seconds (Ws). Since the power dissipation is a dy-
namic and instantaneous value, the energy consumption can be measured
as the average power multiplied by the execution time as E = Pavg · T .
Equivalently, the energy is defined as the power integral over a defined time:

E =
∫ t2
t1
P (t) · dt

With the added time dimension, the minimization of energy consumption
becomes a two-variable optimization problem. Figure 3.3a and 3.4a illus-
trates a scenario in which an 11-second execution includes one high power
peak at t = 4, but with a low overall power dissipation. Similarly, Figure
3.3b illustrates the same length execution with a lower power peak at t = 4
but with an overall higher power dissipation. The total energy consumption
is 22% higher in Figure 3.3b even though the instantaneous power dissi-
pation at time = 4 is lower. The question stands whether to execute the
work fast in order to decrease time or slow in order to decrease the power
dissipation. This is further discussed in Chapter 4.

(a) System 1: Power dissipation. (b) System 1: Energy consumption.

(a) System 2: Power dissipation. (b) System 2: Energy consumption.

23

3.2 Power Proportionality

To achieve the most energy efficient execution, all dissipated power should
come as a direct result of processing work and nothing should be dissipated
as waste. In such a theoretical system, every transistor switch and every
clock signal generated should be directly translated into useful work. An
optimal system is assumed to have a power dissipation completely propor-
tional to the amount of executed work – the power proportionality of such
a system is therefore equal to 1.

Cloud server systems have adapted the notion of proportionality in order
to build flexible platforms both for the cloud users and the cloud owners.
The user can purchase a selected amount of processing power proportional to
a rental fee, and the processing can spread across several physical machines
transparent to the user. The cloud owner can, on the other hand, control
the server machines according to the current rental status of the user to
disable all unused machines in order to save power.

Since the perfect proportionality is practically not possible, an as high
proportionality factor as possible should be considered in order to maximize
the energy efficiency. The extraction of the proportionality factor is, how-
ever, generally not straight forward, and depends on the intentions of the
software. Consider a webserver handling requests on demand from external
users. The amount of work applied on the webserver is highly dependent
on user activity, the website content, time of day etc. The system must
therefore be scalable to provide the necessary resources during high activity
and to shut down parts of the system during low activity to save power.

A control mechanism based on a PID controller was presented in Paper I
[29] and Paper II [30] which simulated the adaptation of resources to the
current amount of work, in this case webserver requests per second. The
control mechanism was tunable in order to adapt to different scenarios by
using a set of parameters. Figure 3.5 shows a simulation with poorly tuned
parameters for a real-world workload scenario. As seen in the figure, the
resources in form of processing elements in the cloud system were not able
to well adapt to the very peaky nature of real webserver traffic patterns.
By tuning the control parameters, the improved result shown in Figure 3.6
demonstrates increased power proportionality. The improved controller is
better able to adapt the resource use to the incoming workload.

For any type of power proportional computer system, the hardware re-
sources must be on demand adaptable according to the executing software.
Furthermore, a software part controlling the hardware is required to effi-
ciently collect input from the software to increase the intelligence of the
resource allocation. The following sections present the currently used hard-
ware power management capabilities in modern multi-core systems, and how
these mechanisms can be used to increase the power proportionality.

24

Figure 3.5: Low power proportionality due to poor parameter tuning
(resource curve not able to adapt well to the work curve).

Figure 3.6: High power proportionality due to better parameter tuning
(resource curve able to adapt to the work curve).

3.3 Hardware-Based Power Management

In order to maintain a power dissipation more proportional to the amount of
work processed, the system requires hardware support to scale the hardware
resources on demand at a low enough granularity. The two most common
hardware mechanisms found in modern multi-core systems are Dynamic
Voltage and Frequency Scaling (DVFS), and Dynamic Power Management
(DPM). Both functionalities are described in this chapter as well as their
impact on both dynamic and static power.

3.3.1 Dynamic Voltage and Frequency Scaling (DVFS)

The traditional power saving mechanism, DVFS, was already implemented
in single core systems to increase power proportionality. The technique is
used to dynamically scale the CPU clock frequency and the core voltage

25

according to the workload in order to minimize power waste. Since the
power dissipation of the CPU is linearly dependent on the clock frequency
and quadratically dependent on the core voltage (Section 3.1.1), DVFS is a
suitable technique to significantly reduce the dynamic power. Scaling down
both voltage and frequency also reduces the temperature since the power
output of the chip is reduced. This leads to reduced static power since the
thermal voltage in the chip is reduced.

While the clock frequency can, in theory, scale down arbitrarily, the core
voltage setting must respect the current clock frequency in use. A low volt-
age setting in combination with a high clock frequency can lead to CPU
instability since the threshold voltage in is not reached fast enough and the
distinction between high- “1” and low- “0” becomes more vague. In practice,
CPU manufacturers provide a table indicating which voltage setting is ap-
propriate for which clock frequency. The operating system utilizes the table
to automatically switch between frequency and voltage settings completely
transparent to the user. For ACPI compliant devices, a certain frequen-
cy/voltage combination is referred to as a P-state or Performance state.

Frequency Voltage P-state
3.4 GHz 1.080 - 1.058 V P0

3.3 GHz 1.060 V P1

3.2 GHz 1.040 - 1.458 V P2

3.0 GHz 1.005 - 1.010 V P3

2.9 GHz 0.990 - 0.995 V P4

2.8 GHz 0.975 - 0.980 V P5

2.7 GHz 0.965 V P6

2.6 GHz 0.955 V P7

2.4 GHz 0.935 V P8

2.3 GHz 0.925 V P9

2.2 GHz 0.920 V P10

2.1 GHz 0.915 V P11

2.0 GHz 0.905 - 0.910 V P12

1.8 GHz 0.900 - 0.905 V P13

1.7 GHz 0.900 - 0.905 V P14

1.6 GHz 0.895 - 0.900 V P15

Table 3.1: P-states for an Intel Core
i7-3770 processor (Ivy Bridge).

Table 3.1 shows the P-states for an
Intel Core i7-3770 processor. In this
example, the P-states range from 0 to
15, but the available settings usually
varies between CPU types. The volt-
age setting for this particular proces-
sor is in the range [0.895 1.058] de-
pending on the clock frequency set-
ting.

To illustrate the effects of P-state
selection, the quad-core i7 CPU was
stressed to maximum capability while
switching between the P-states. Fig-
ure 3.7 shows the power dissipation
of the CPU for each P-state setting
as an exponentially increasing power
output with respect to the clock fre-
quency setting and core voltage. This
implication leads to a higher power

difference when switching from a high P-state to a medium P-state, and
a lower power difference when switching from a medium P-state to a low
P-state. With this behavior, the efficiency of using DVFS decreases as lower
P-states are used since the power savings become continuously smaller. Nev-
ertheless, the profile of the power dissipation curve differs between CPU ar-
chitectures and types, which means that the efficiency of DVFS also varies
between different hardware devices.

26

Figure 3.7: Total CPU power dissipation of an Intel core i7-3770 in different
P-states during full load.

DVFS implementation The DVFS mechanism is implemented under
Linux in a frequency governor. The governor monitors the CPU workload
and, based on a set of policies and settings, adjusts the P-state of the CPU.
Different governors can be implemented for different systems, different sce-
narios etc. and several governors can exist in the same system, but only
one is active at a time. Typical governors are Performance, Userspace and
Ondemand.

The policy of the Performance governor is to simply select the highest
P-state of the CPU exclusively. The Userspace governor utilizes inputs from
the user in form of clock frequency settings. No automatic clock frequency
scaling is performed with Userspace without the user’s explicit request. On-
demand [79] is the most typical governor used to dynamically and automat-
ically select clock frequencies during runtime. Clock frequencies are selected
with Ondemand as follows:

• CPU workload is monitored.
• In case the workload exceeds a threshold limit, the governor switches

to the highest clock frequency.
• The governor decreases the clock frequency step-wise until the lowest

feasible setting is found.

Figure 3.8 illustrates this behavior; as the workload increases enough, the
Ondemand governor selects the highest clock frequency to minimize the

27

response time in case of heavy workload. The governor then scales down the
clock frequency to the lowest feasible frequency. In case the workload again
exceeds the threshold, the clock frequency is increased to the maximum and
the same steps are repeated.

Figure 3.8: The Ondemand frequency governor scales up the frequency to
the maximum value as the workload threshold is reached.

3.3.2 Dynamic Power Management (DPM)

Dynamic Power Management (DPM) manages the low power states, also
called sleep states, of the CPU. Instead of reducing the dynamic power,
DPM is used to minimize the static power by disabling parts of the chip,
thus reducing the leakage currents in the transistors. As a part of the chip
is shut down, the current feed to the transistors is cut and the leakage is
reduced.

Similarly to the performance levels, the shutdown levels are referred to
as sleep states or C-states according to the ACPI standard. A C-state is a
standardized definition of the components inside the CPU being disabled,
and the activity of the CPU and its context. The availability of C-states
also depends on the CPU type, model etc., but the most commonly used
C-states are listed below:

• C0: This is the highest C-state. The complete CPU is active and continuously
executing instructions with no halts.

• C1: The C1 state is usually used as a CPU core does not receive work in the work
queue. The core is then halted by executing the halt instruction (HLT) after which
the clock signal to the core is gated. The bus interface unit and advanced pro-
grammable interrupt controller remain however clocked. The core is then regularly
woken-up to check whether new work has arrived. The C1 state must be supported
by all ACPI compliant hardware.

• C1E (Enhanced C1): The C1E state has similar capabilities as the C1 state, but is
capable of lowering the supply voltage as well.

28

• C3: The C3 state improves the power savings further by completely stopping the
internal clock signals. L1 and L2 caches are flushed into the L3 cache and snoops
are ignored.

• C6: In C6 all core clocks are stopped. The core state is saved in a static RAM
outside of the CPU. The voltage to the core can be completely cut off and the core
is fully shut down.

To demonstrate the impact on the power savings, the power of a quad-
core Intel i7 CPU was measured whilst in idle state without workload. The
CPU was executing on a range of different clock frequencies and the maxi-
mum allowed sleep state was step-wise increased from C0 to C6. Figure 3.9
shows the power dissipation of the CPU.

Figure 3.9: Total CPU power dissipation of an Intel core i7-3770 in different
C-states during idling.

In C0 the CPU is actively idling which means that instructions are con-
tinuously executed, mostly in the OS idle loop. As seen in the figure, the
clock frequency has a significant impact on the power, since increasing the
clock frequency leads to an increased number of instructions executed. When
allowing C1, the CPU is only executing instructions when checking the work
queue for arriving workload. This leads to lower power, but also a lower in-
fluence of clock frequency scaling since the CPU is halted for a significant
amount of time. C3 and C6 further decreases the power dissipation since
more parts of the chip is shut down, and the static power is further reduced.

29

DPM implementation DPM is implemented in Linux using the CPU
hotplug functionality, which disables a CPU core on request by either the
user or the kernel. The hotplug functionality was initially intended as a
facility for replacing CPU cores without shutting down the system. As the
importance of reducing static power increased, CPU hotplug was instanti-
ated as a power saving feature.

A CPU core is shut down upon request and hidden from the OS scheduler
after which the core is shut down. For ACPI compliant devices, the C-state
used by the hotplug varies between CPU types and settings. The internal
clock is, however, usually halted and a wake-up can only be performed by
a physical inter-core interrupt signal from another core. Utilizing hotplug
in Linux requires a sequence of user space, kernel space and architecture
specific instructions, which is explained below:

1. A shutdown command is issued by the user (or the kernel)
2. The selected core is locked in order to not accept incoming jobs
3. A message “CPU DOWN PREPARE” is sent to the kernel
4. A callback function in the kernel receives the message and migrates all jobs to

another core in case the core is not idle
5. A message “CPU DEAD” is sent to the kernel
6. A callback function in the kernel receives the message and flushes the cache, inter-

rupts are disabled and the cache coherency is switched off
7. Architecture specific assembly routines are called to physically shut down the core

A wake-up is performed similarly but in the opposite order and the wake-
up is triggered by an inter-core interrupt. The wake-up also includes a set
of callbacks to restore the core and to initialize the idle thread on the core.

Since the CPU hotplug is driven by kernel messages and callbacks, the la-
tency of accessing the functionality can influence the efficiency of the hotplug
functionality as a power saving feature. This issue is further investigated in
Section 8.4. Further details regarding the hotplug mechanism is found in
the article from Mwaikambo et. al [56].

3.4 Summary

Power is continuously dissipated in a microprocessor as a result of active
calculations and by leakage in the semiconductor material. While power
dissipation cannot be completely eliminated, the power proportionality fac-
tor of a system can determine how much of the dissipated power is used for
actual work, and how much is wasted. To increase the power proportion-
ality, modern CPUs include hardware mechanisms for regulating the power
according to the amount of work to execute. Hardware alone contains, how-
ever, only a limited amount of intelligence, and software implementations
are required to increase the efficiency of the mechanisms. The following
chapter details the crucial factor: workload mapping, for achieving effective
power regulation.

30

Chapter 4

Workload Mapping

“Then start asking the right questions!”
— Rust Cohle, True Detective - 2014

Modern processors use multiple processing units, called multi-cores, to
distribute the workload. As the workload is processed in parallel, an in-
creased number of operations can be executed in a smaller time window
compared to a single-core system. This composition can be used to either
increase performance, or to lower the clock frequency while maintaining
constant performance compared to a single-core system. By lowering the
clock frequency, the dynamic power dissipation is reduced as explained in
Chapter 3, and the energy consumption can be reduced for constant time
executions. Still, the static power is continuously increased as more cores
are added to the system since more transistors leaking current are added.
The mapping of the workload is an issue of handing the trade-off between
static and dynamic power dissipation by either spreading the workload to
many cores with low clock frequency or consolidating the workload to few
cores with high clock frequency.

This chapter presents a detailed analysis of the task mapping and the
dynamic re-mapping called task migration. Two different mapping strategies
are discussed and real-world experiments with both strategies are presented.

4.1 Relation to Energy Efficiency

As recalled from Section 3.1.4, the energy consumption of a computer system
is calculated as the power dissipated over a time window. Therefore, the
minimal energy consumption is obtained when the time integral over the
total power dissipation is minimized. As the total power dissipation is a
combination of static and dynamic power, the minimal energy consumption
is obtained for a fixed power case as: Emin = Minimize : (Ps + Pd) · time.

31

The relation between workload mapping and energy efficiency is man-
ifested in the balance between static and dynamic power. The question
becomes whether it is worth decreasing the dynamic power using clock fre-
quency scaling at the cost of increasing the static power by adding cores.
For the sake of comparison, two completely opposite mapping strategies are
considered:

1. Balanced mapping: The workload is always distributed as evenly
as possible over all processing elements.

2. Consolidated mapping: The workload is always packed onto as few
processing elements as possible.

Figure 4.1 illustrates both mappings and the power dissipation. The left
part illustrates the balanced mapping in which four cores are executing the
workload completely in parallel at 400 MHz. The static and dynamic power,
in this case, is equal for all cores since all cores execute the same amount of
workload. In the right case in Figure 4.1, the workload is mapped to only
one core. In order to maintain the same performance as the balanced case,
the active core must execute at four times higher clock frequency. The static
power for the first core is thus increasing since the temperature of the total
system is higher than in the balanced case, and the dynamic power is higher
since the clock frequency is increased.

Figure 4.1: A balanced execution (left) is performed on all cores on a low
clock frequency. A consolidated execution (right) is kept to as few cores as
possible on a high clock frequency. The relative power is illustrated.

Naturally, the scenario illustrated in Figure 4.1 is an ideal case in which
the workload is perfectly parallel, no OS interrupts are present, the workload
is not re-mapped once executing and no mapping overhead is present. In or-
der to gain a better understanding of the optimization involved in workload
mapping, the mapping process was investigated in more detail. Practical as-
pects of workload mapping and task migration is presented in the following
sections, together with the implementation of a new type of Linux scheduler
used for evaluations.

32

4.2 Task Migration

Task migration refers to as the re-mapping of workload between different
processing elements, or cores. The workload is usually quantified into work
items called tasks, threads or processes depending on the currently used
runtime system. In this thesis, the work is referred to as a task since this
concept can be applied on both real-time systems, accelerator-based systems
and desktop systems.

A task is a defined work quanta which can be executed in parallel with
other tasks on a multi-core system in case no inter-task dependencies exist.
A task can establish communication with other tasks, and data from one
task is allowed to be used by another task. In this case, the task using the
input is dependent on the first task hence defining an implicit order in which
the tasks must be executed.

A task can be mapped for execution on a core, and re-mapped during
runtime to another core based on decisions from a scheduler or other entity
handling the task migration and mapping. The source core and destination
core for the task migration depends on several factors such as core utilization,
task type, task communication and the underlying platform. The goal of
the scheduler issuing the task migration is to map the task execution on
a combination of cores which follows a defined policy; such as maximum
throughput, minimum energy consumption, minimum heat generation etc.

4.2.1 Linux run-queue selection

Linux schedulers use run-queue (RQ) selection to distribute tasks over the
available cores. Each core uses a dedicated RQ which contains the collection
of tasks currently runnable on the core. Placing tasks on a RQ is equivalent
to scheduling a task on the RQ’s corresponding core. Because of a shared
memory and a symmetric OS view used in Linux, the scheduler can map
any task to any core while maintaining a global task state view.

The RQ selection functionality places newly created tasks, as well as
newly awakened tasks, on a suitable RQ based on the given policy. As a
new task is created, the scheduler selects a RQ onto which the task is placed.
The task is then scheduled on the core according to the scheduling policy.
Tasks not currently runnable i.e. waiting or blocked tasks are not placed
on a RQ but are placed on a special wait queue [50]. Since waiting tasks
are not assigned to any specific RQ during the wait state, the scheduler
places the task on a RQ upon wakeup. Because the initial RQ placement
will affect the performance of the task in form of cache usage, this data is
taken into account when scheduling a newly awakened task. The placement
of an awakened task is hence dependent on the core’s idle percentage, which
represents the time elapsed in the idle state compared to the execute state.

33

The default Linux Completely Fair Scheduler (CFS) [41] places an awakened
task on the RQ it was previously executing on in case the idle percentage
of the RQ is above the safety margin. In case the target RQ is overloaded,
the scheduler places the task on another RQ with an idle percentage above
this safety margin. For a fully utilized system the scheduler places the task
on the initial target RQ i.e. the task’s previous RQ.

4.2.2 Platform dependence

Modern multi-core systems have obtained a diverse outlook in form of hard-
ware configurations. As more cores are added, the platforms are referred
to as many-core systems in which the core composition usually varies from
the traditional multi-core systems. Cores are usually interconnected with a
network like connection instead of the traditional bus because of the ever
present memory bottleneck or Von Neumann bottleneck [7] present in such
systems. Recent many-core platforms such as the Tilera [88], Xeon-Phi [62],
Single Chip Cloud [36], MPPA [15] and the Adapteva [83] all use a Network-
on-Chip (NoC) connection for inter-core communication.

Figure 4.2: Structure of a bus-based system and a NoC-based system.

The hardware structure, number of cores and communication structure
influences the behavior of utilizing task migration, since migrating a task re-
quires data transfer between the processing elements. Figure 4.2 shows two
different multi-core systems: (A) A bus based systems in which the inter-
core communication is handled by a single bus, (B) A Network-on-Chip

34

based system in which the inter-core communication handled by an on-chip
network. All cores connected to the network can access the shared mem-
ory (DIMM) split into several locations and handled by message controllers
(MC).

While the NoC type interconnect increases the bandwidth and the scal-
ability compared to the bus based system, the communication time becomes
more unpredictable since the communication packages are transmitted on
the on-chip network according to a routing algorithm. In case the network
is congested, the sending a data package might involve using a longer route
than in a non-congested network.

A task migration mechanism was simulated using a many-core NoC sim-
ulator to pinpoint the parameters influencing the overhead. A model of the
Intel SCC [36] was used as reference platform. The processor is clocked to
533 MHz and the network clock frequency is set to 800 MHz. A local L1
cache is used for all core while a L2 cache is shared between all cores. The
task migration was simulated to (1) detach a task from the source core, (2)
transmit the task data over the on-chip network, (3) attach the task on the
target core. Since a shared memory system was considered, the complete
task context was not transmitted but only the reference pointers to the task.
This means that the amount of data to transmit is very low.

The task migration was simulated as follows:

1. L1 data cache of the source processor is cleaned.
2. The data is sent over the network.
3. The target core receives the code and data, which is loaded into the

private L1 cache.

In the first experiment different cache miss-rates were used to model the
task migration overhead. Figure 4.3 shows the results from using a miss-rate
of 0 to 100% for the L1 cache and various parameters for the L2 cache.

As seen in the figure, when keeping the L1 miss-rate under 50% a rela-
tively constant migration time can be expected. When the miss-rate exceeds
this number, the L2 miss-rate will start to influence the results depending
on the L2 miss-rate. By disabling the L2 cache, the migration time can
increase with up to 10x the initial time, but with a L2 miss-rate of 50% the
time is expected to not be influenced.

Secondly, the task migration distance to the memory controller was eval-
uated. A physically longer distance between the memory controller and the
core could influence the task migration time since the packet uses a longer
route. According to the results in Figure 4.4, the task migration overhead
was, however, not influenced by the distance significantly. This is because
the small amount of data involved in migrating a task uses a very small
fraction of the network capacity, and the slow external memory almost com-
pletely dominates the overhead. In summary, the task migration overhead

35

is mostly dominated by the cache miss rates and not the distance to the
memory controllers.

Figure 4.3: Task migration overhead using different cache miss-rates.

Figure 4.4: Task migration overhead using different migration distances in
a NoC system.

4.3 Workload Consolidation

Since the task mapping directly influences the resource allocation and thus
the power dissipation of the CPU, an approach to modify the task mapping
strategy was investigated. The default mapping strategy of the CFS sched-
uler [41] is to balance the workload as evenly as possible over all cores. This
allows a minimal clock frequency since the workload is processed mostly
in parallel. The CFS strategy is therefore aimed to minimize the dynamic
power dissipation while allowing a static power dissipation from all cores.

36

Figure 4.5 illustrates the mapping strategy of CFS using four tasks, each
utilizing 20% of the CPU core.

Figure 4.5: Task mapping of the Completely Fair Scheduler (CFS): the
workload is evenly placed [41].

The complete opposite strategy was therefore investigated – this strategy
involves mapping as many tasks to as few cores as possible while not over-
loading the core. With this approach the idle cores can be shut down and the
static power is completely eliminated from the idle cores. Task packing or
load consolidation was suggested in the Overlord Guided Scheduler (OGS)
[77] and implemented by authors Fredric Hällis and Robert Slotte 1. Figure
4.6 illustrates the load consolidation by mapping all tasks to a single core.
Since all tasks utilize the core by 20% the total core utilization is 80% which
means that the core is not overloaded. In case several cores are actively

Figure 4.6: Task mapping of the Overlord Guided Scheduler (OGS): the
workload is consolidated to few cores [77].

processing load, the tasks are mapped to the most loaded, non-overloaded
core as illustrated in Figure 4.7. After the task is removed from Core2, the
core can be shut down and the static power is decreased.

1Available at https://github.com/rslotte

37

Figure 4.7: The OGS migrates the workload to the highest loaded- non-
overloaded core.

4.3.1 Experimental results

The energy consumption of using the OGS was evaluated and compared to
the CFS. A set of benchmarks were executed while the total energy con-
sumption was measured with an external measurement device.

Spurg-Bench2 was used as basis for evaluation. Spurg-Bench is an open-
source benchmark for measuring load based performance on multi-core sys-
tems. The benchmark generates a selected number of threads; each of them
able to apply a selected load level on a CPU core. The load level assigned to
a thread represents a percentage of the full capacity of the CPU, e.g. four
threads each with the load 50% can either run on two cores at 100% load or
on four cores at 50% load each.

The main operations of a Spurg-Bench thread are: execute, and sleep,
and the time ratio between execution and sleep is monitored by the Linux
kernel and appears as the normal load level of the thread. As workload, the
user can select a certain number of operations to execute, which are evenly
divided among the created threads. For our experiments, we chose 100k
floating points as the operations executed by the Spurg-Bench threads and
load levels in range [10 90]% (for each thread). Spurg-Bench finally measures
the execution time of completing all of the operations. The experiments were
conducted on an Exynos 4412 SoC based on the quad-core Cortex-A9 CPU.
Both the CFS and the OGS were integrated into Linux version 2.6.35.

Since the static/dynamic power ratio varies with the temperature ac-
cording to Equation 3.2, the test bench was executed in various ambient
temperatures: (1) Without active cooling, (2) With active cooling, (3) In
a freezer (-20 ◦C). Figure 4.8 shows the results from the test. Each pair of
curves shows the energy consumption for a constant-operation experiment.
For each curve-pair, a crossover point is found at which the CFS strategy
becomes more energy efficient than the OGS strategy. Depending on the
ambient temperature, the point appears at different load levels.

2Available at https://github.com/ESLab/spurg-bench

38

Figure 4.8: A comparison between CFS and OGS. Y-axis shows energy
consumption in Performance/Power (higher is better) for three scenarios
using different ambient temperatures.

With two completely opposite mapping strategies used in CFS and OGS,
the energy efficiency still depends on the workload applied to the system.
As the CFS occasionally causes an unnecessarily high static power dissi-
pation, the OGS increases the dynamic power dissipation more than the
CFS. With different hardware architectures using different number of cores,
the crossover point is clearly volatile. Results from the experiments suggest
that a middle way between fair scheduling and load consolidation should be
defined according to the type of workload and the hardware platform used.

4.4 Summary

Task mapping is vital to power management in many-core processors because
the distribution of work execution influences the total power balance between
static and dynamic power. An energy efficient execution should minimize
the total power by selecting the optimal number of processing elements for
mapping the present workload on. With current architectures, experiments
have shown that the overhead of communication using task migration is not
significant unless the L2 cache misses are of great order. Practically, unless
the power management system is operating on sub-milliseconds granularity,
the task migration overhead is not a breaking point. The following chapter
presents an approach to reduce the total product by introducing additional
intelligence in the applications.

39

40

Chapter 5

Generic Performance Metric

“Are you Herr Professor Heisenberg? I am here to
prove you wrong!”

— Grete Hermann - 1934

In order to efficiently balance the task execution in a many-core system
and perform resource allocation, the runtime system requires knowledge
about the performance of the applications and their relation to resource
usage. The balance of workload is dependent on a) the behavior of the
applications, b) available hardware resources and c) a balancing policy.

Traditionally, the allocation of resources and the balance of task execu-
tion is purely based on the level of CPU utilization called the workload level.
In this chapter the concept of workload is defined and the shortcomings of
using the workload level as metric for resource allocation are pinpointed.
Furthermore, the concept of application specific performance is introduced
as a more descriptive metric used for resource allocation.

5.1 The Definition of Workload

Workload has traditionally been the metric according to which task schedul-
ing and mapping has been based. The workload is overall a metric upon
which to measure the utilization of the CPU, i.e. the usage factor. Every
task currently mapped on a certain core influences the workload level, and
a common load balancing strategy is to limit the amount of task executions
on a single core in order to not cause overloading.

Optimally the load contribution of each task should be obtained in or-
der to optimize the mapping. However, tasks usually contain unpredicted
behavior using I/O and memory access which causes difficulties in predict-
ing the exact load. A common strategy has therefore been to measure the
combined load of all tasks on a single processing element instead of individ-
ual task load. The total load can be used as a measurement of processing

41

availability or “space left on the core”. The following paragraphs summarize
a set of methods to measure the load in Linux.

Load window On the finest granularity level inside the OS, a CPU is
either actively executing instructions or idle in the idle loop. A load window
is a measurement of the ratio between the active and the idle status of a
CPU over a given time window. By adding the abstraction of load, the
CPU can be modelled as semi-active listed as a percentage; this percentage
determines the available capacity of the CPU.

Figure 5.1: Load calculated as a ratio between active and idle for a defined
window (Gray rectangles represent an active CPU).

Figure 5.1 illustrates two time windows with gray rectangles representing
execution and blank slots representing idling. The left time window is loaded
to 90% and the right window is loaded to 10% based on the ratio between
active and idle. Measurements by load windows is usually a sound method
for illustrating the load to the user since the visualization is considered as
human interpretable.

Run-queue length By measuring the load according to a load window,
a defined time scale must be used since the average is always related to the
time window. A more fine grained method is to measure the length of a
run-queue i.e. the number of runnable tasks in a RQ. A higher number of
runnable tasks indicates a heavier load on the CPU and a lower number
indicates a lighter load.

Even though the RQ length is per-ce not usable in an illustrative context,
scheduling mechanisms and mapping decisions on a fine time scale can use
the RQ length as load metric. As explained in Section 4.2, multi-core sys-
tems use a dedicated RQ per core. This allows load balancers to determine
the task mapping when using several cores.

Load average More slow phased methods to measure the load is by load
averages. Linux provide access to load average using the top or uptime

42

commands. Figure 5.2 shows the output from uptime in which the load
averages are indicated by the rectangle. The load averages are presented
as triplets using moving windows of 1,5 and 15 minutes. Load averages

Figure 5.2: Load displayed by using the uptime command in Linux.

is usually not a feasible measurement for rapid scheduling decisions, but
more useful in statistical analyses, load predictions etc. Figure 5.3 shows
the load average for fully utilizing the CPU with the stress benchmark for
30 minutes after which the CPU was idling for 30 minutes. As seen in the
figure, the one minute window fastly reaches the maximum load average and
the 15 minutes windows reaches the peak after 30 full minutes.

Figure 5.3: Load calculated as an average based on the system uptime.

5.2 Problems with Workload

The problem of using workload as a basis for resource allocation is the
lack of software insights. While workload is a measurement of resource

43

utilization, the allocation of resources is not based on software performance
requirements. This means that resources are allocated only according to the
indirect impact of the software.

The frequency governors presented in Section 3.3.1 regulate the clock
frequency according to a workload threshold in order to keep the workload
on a desired level. By using workload thresholds as basis for clock frequency
regulation, software imposing a high workload also impose a high clock fre-
quency even though not needed. On the other hand, software containing
heavy I/O resulting in a low workload might suffer from performance degra-
dation as the workload threshold is never met.

5.2.1 Race-to-Idle

A practical example of unnecessary resource allocation is the concept of
Race-to-Idle [70] in which the CPU is using the maximum clock frequency
to maximize the performance and minimize the energy consumption. Since
maximizing the performance minimizes the execution time, this execution
strategy was considered energy efficient in older generation smart phones.
The early smart phone, e.g. the iPhone3, used an ARM Cortex-A8 based
single core CPU. The power dissipation for different clock frequencies for
such a CPU was measured and shown in Figure 5.4. As seen in the fig-

Figure 5.4: Power dissipation for a Cortex-A8 CPU using different clock
frequencies (full load).

ure, the highest clock frequency (720 MHz) causes roughly 1.4W of power
dissipation. When scaling down the frequency roughly 3x (250 MHz), the
power dissipation is only reduced by 2x (0.7W), which means that the total
energy consumption is less when executing at the higher clock frequency (if

44

assuming that the speed-up is linear to the clock frequency).
Moreover, the same experiment was conducted using a modern multi-

core ARM Cortex-A15 CPU and the results are shown in Figure 5.5. As
the CPU is clocked to 1800 MHz and uses four cores for execution, roughly
5W of power is dissipated. In contrast to the Cortex-A8, when scaling down
the frequency 2x (900 MHz) the power dissipation is reduced by roughly 4x
(1.3W). This means that the energy consumption is lower using the lower
clock frequency for a longer execution time.

Figure 5.5: Power dissipation for a Cortex-A15 CPU using different clock
frequencies and different numbers of cores (full load).

As Race-to-Idle was an energy efficient option in last generation proces-
sors, the strategy is less efficient using modern processors. This is because
current generation microprocessors use higher clock frequencies leading to
higher dynamic power and more cores leading to higher static power. With
a more exponential power curve, (Figure 5.5) Race-to-Idle becomes less ef-
ficient and the highest clock frequencies should only be used in case the
performance is required.

Race-to-Idle is, however, an easily implementable execution principle
since the resource allocation is completely transparent to the programmer
– the only task of the programmer is to assess the functionality of the soft-
ware, and the responsibility of resource allocation is left to the workload-
based frequency governors. The result of such implementations is a system
executing periodically on a high clock frequency and periodically idling. A
more energy efficient execution strategy is to continuously execute on an
intermediate clock frequency and eliminate the slack time idling.

5.3 QoS – The Generic Performance Parameter

In computer systems, application performance is the parameter directly re-
lated to user satisfaction. The metric is described as throughput, latency,
execution time, memory usage etc. – generally any kind of metric describing

45

the form of performance required by the user is considered. As long as the
user expectations are satisfied, the software is fulfilling its purpose and over
allocation of resources is considered as waste.

5.3.1 QoS-aware execution

Instead of Race-to-Idle, computer systems should allocate resources accord-
ing to software performance. Such an example is easily given by considering
a typical video decoder in a video player. The decoder translates decoded
video frames into a frame format viewable on a display. The execution of a
video player is typically performed as follows:
• Video frames are decoded from a source.
• A decoded frame is put in a buffer of size n. In case the buffer is full,

the decoder is waiting.
• The video player picks a frame from the buffer every 1

25 of a second
(25 frames per second) for the output display.

As soon as the frame decoding is initiated, the workload increases since
the CPU becomes busy. By using workload as basis for resource allocation,
the clock frequency is increased due to the busy CPU. With increasing clock
frequency, the workload is still kept high since the decoder is continuously
fed with new frames to decode. The CPU is hence decoding frames on the
highest clock frequency at a too fast rate as illustrated in Figure 5.6 (A).
When the frame buffer is full, the decoder is halted and the CPU remains
idle until the buffer has been emptied by the video display. In this scenario,
the frames are decoded at a rate of e.g. 50 fps whereas 25 fps is sufficient
for displaying the video.

Figure 5.6: A: Race-to-Idle execution using the maximum clock frequency
during computation and the minimum clock frequency during idling.
B: QoS-aware execution using a mid-range clock frequency for the whole
execution and no idling.

Even though the lowest clock frequency can be used during the idle
periods, the active periods are wasting power due to the very high power

46

dissipation when using high clock frequencies on modern multi-core CPUs
(see Figure 5.5). Part (B) in Figure 5.6 illustrates the QoS-aware execution
in which the CPU is executing only “as fast as needed”. By stretching
the execution over the whole time window and eliminating the slack time,
an intermediate clock frequency can be constantly used. In comparison to
the power dissipation obtained from Figure 5.5, executing at 900 MHz for
time t is significantly more energy efficient than executing at 1800 MHz for
a time t

2 .

5.3.2 Power management with QoS metadata

Since workload is solely a measurement of CPU utilization, direct applica-
tion performance cannot generally be derived, hence the resources cannot
be efficiently regulated. Instead, meta-data in form of direct performance
should be used as basis for resource allocation.

Resources should be allocated according to the current performance level
achieved by the application compared to a pre-set aim called the setpoint S.
The setpoint indicates at what performance level an application should exe-
cute at. In the video decoder case, a suitable setpoint is 25 fps since the video
output display is anyway operating at this frequency because of pre-defined
video standards. With a defined setpoint and the current performance Pr
explicitly monitored, the QoS can be expressed as:

QoS = Pr

S
(5.1)

as a percentage > 0%. A QoS value in range [0 99]% indicates lack of
performance, and more resources should be allocated in order to increase the
QoS value. QoS values > 100% indicates resource excess, and the resources
should be scaled down to save power.

The QoS metric is measured as the ratio between the requested setpoint
and the actual performance. This makes the notion unitless and applica-
tion performance in any metric can be used as basis for resource allocation.
With the gained insights into resource allocation, next chapter presents the
construction of the QoS manager used for energy efficient execution.

5.3.3 Related performance metrics

Eyerman et al. [22] claim that no single throughput metric is fundamen-
tally generic for multiprogram workloads. Performance should instead be
expressed as related to the internal single case-study; a direction adopted
in this thesis. A high-level language CQML [1] was suggested for describing
QoS requirements integrated in UML. CQML links a high level QoS descrip-
tion to system performance, and can describe system actions based on the

47

result. Applications specify a performance setpoint and a lower bound ac-
ceptable performance level in context of the application. Applications then
monitor own performance and signal this value to the QoS manager periodi-
cally. Similar notations inspired by the language has been used in this thesis
to describe QoS in applications, but more focus has been put on the link
between applications and hardware resources in a single computer system.

Hoffmann et. al propose heartbeats [27] as a generic performance param-
eter. The heartbeats are setup by including a set of heartbeat API calls
in applications, which are used to monitor the application performance. By
calling the heartbeat API on suitable places in the applications such as large
loops, a notion of the update interval between API calls is created. The
heartbeat API registers multiple applications and the outside system mon-
itors the heartbeat of each application separately. Heartbeats is a suitable
candidate, and fully compatible as a performance parameter in our system.
An application can register a setpoint heartbeat after which the heartbeat
monitor is used to derive the actual performance in heartbeats. Earlier
work by Vetter et al. [86] presents a similar approach, but by including
performance assertions directly into the code. Based on the assertions, the
application can adapt itself in case significant performance is not achieved.
The system allowed, however, only internal monitoring of the performance,
and a runtime system was not in the scope.

5.4 Summary

Software should not Race-to-Idle on modern microprocessors, because the
total power increase of executing at the highest clock frequency is usually
more than the reduction in execution time. With the energy consumption
as a product of power and time, less energy is consumed when executing at
a lower clock frequency for a proportionally longer time. As Race-to-Idle
is the currently supported execution strategy, the notion of QoS has been
introduced to the applications in order to support user defined execution
speed. By using QoS as the metric for regulating the performance, clock fre-
quency scaling with relation to software execution requirements is possible,
and only the necessary amount of resources are allocated for the execution.
The following chapter presents the interface between the applications and
the resources, which enables the QoS-aware execution.

48

Chapter 6

Bricktop:
The QoS Manager

“Hence the expression: as greedy as a pig.”
— Brick top, Snatch - 2000

The notion of QoS was introduced in previous chapter as a concept for
more specifically describe application performance compared to measuring
the workload level. With a more detailed description of resource require-
ments, the hardware can be more closely scaled according to the software
demands. This creates a more energy efficient execution since resource ex-
cess is minimized compared to the traditional approach.

In order to provide the runtime resource allocation based on QoS, a new
resource manager was implemented. This chapter describes the structure
of the Bricktop QoS manager. Bricktop was implemented as a centralized
point for resource allocation, and is directly available to the applications. It
uses DVFS and DPM to minimize the power dissipation for a system with
a set of applications. A declaration language is used to specify QoS- and
performance requirements in the applications as well as indications related
to efficient hardware usage. Bricktop can be utilized by any application
capable of declaring resource requirements, and capable of monitoring own
performance.

The chapter is based on [34] (Paper V), in which further implementation
details and measurement results are presented. Chapter 7 and 8 later cover
the QoS manager parts in more detail while this chapter focuses on the
overall structure.

49

6.1 Declaring the QoS Metric

The aim of QoS-based resource allocation is to more accurately regulate the
hardware according to the actual software requirements. Because of this
concept, the applications must follow two programming paradigms:

1. The applications must be able to declare performance and QoS re-
quirements. The performance requirement is a defined setpoint ac-
cording to which the application is allocated resources, and the QoS
requirements determine the maximum acceptable deviation from the
setpoint as a percentage. For example, a video decoder requesting 25
fps with a QoS level of 95% defines performance values between 23.75
fps and 26.25 fps as acceptable. In case the performance is below the
lower QoS limit, more resources are allocated, and in case the perfor-
mance is above the upper QoS limit, resources are de-allocated to save
power.

2. The applications must be able to measure performance. Since the
interface between the applications and the QoS manager accepts arbi-
trary performance metrics, the application must control performance
measurements. The implementation for achieving the measurement is
application dependent, and the only requirement is to obtain a suit-
able metric representing the performance. Measurements should be
periodical and the application should utilize the actual interface call
to transmit the measurement data to the QoS manager.

Both QoS declaration and measurement values are transmitted to Brick-
top via simple library calls, which automatically optimizes the resource al-
location with DVFS and DPM (more details is next chapters). The com-
munications infrastructure and the structural overview of the Bricktop en-
vironment is presented in the following sections.

6.2 Structure of the Runtime System

The Bricktop QoS manager is a centralized service to which one or more
applications can connect, declare QoS requirements and establish a commu-
nications flow.

6.2.1 The Bricktop structure

Figure 6.1 illustrates the structure of the environment as a sensor-controller-
actuator setup in which the sensors are providing information to a controller
which regulates the actuators. These three parts are defined as follows:

50

Sensor A sensor is a unit capable of connecting, expressing QoS and send-
ing measurements to Bricktop. A sensors is capable of measuring own per-
formance with an implementation specific mechanism in the sensor itself.
There are no requirements on how the sensor measures the performance as
long as it is able to send it to Bricktop. In Figure 6.1 three sensors are con-
nected to the controller: web server, video player and LDPC decoder. Each
sensor is expressing performance using a unique metric; later translated into
a generic QoS metric in the QoS manager.

Actuator Actuators are units capable of indirectly altering the sensors’
performance by regulating resources. The number of actuators and the
functionality of the actuators varies between platforms. In this thesis DVFS
and DPM (Chapter 3) are assumed as available actuators. An actuator is
regulated by setting the magnitude relative to maximum value e.g. setting
the clock frequency to 1.4 GHz out of the maximum 1.6 GHz.

Controller The controller is managing the connection between sensors
and actuators and adjusts the actuators based on the measurements from the
sensors and defined QoS requirements. The input to the controller is firstly
translated into a generic QoS metric after which the actuator magnitude
is set. The controller optimizes the balance between power efficiency and
performance based on control policies, input priorities and an optimizer
further described in Chapter 8.

Figure 6.1: Overview structure of the Bricktop QoS manager.

The communications flow between sensors and the Bricktop QoS manager
is handled in form of data packets which include a meta-data header and
the measurement information. The header identifies the application, thus
the performance metric used. It also contains a priority field which is used
to declare the importance or the weight of the measurement data in case
resource conflicts occur.

51

The other part of the data packet contains the measurement data pro-
vided by the application (sensor). The communications link between sensors
and controller is handled by a queue structure capable of buffering a set of
data packets referred to as tokens as illustrated in Figure 6.2. A sensor is
sending a single token into the buffer in case the buffer is not full. The
token is discarded otherwise since an outdated token contains outdated per-
formance values unusable for the controller. The Bricktop QoS manager pulls
all tokens periodically from the buffer and the optimization is performed on
all received items within the period. In case no tokens are obtained, no
resource allocation or de-allocation is performed within this period.

Figure 6.2: Communications flow from applications to Bricktop. A buffer is
used to store data tokens, which Bricktop is regularly pulling.

6.2.2 The Bricktop controller

The controller part from Figure 6.1 is here detailed in Figure 6.3. The
performance value from a sensor is transmitted to the Bricktop interface
(Figure 6.3 [Green box]) which translates the value into a QoS value by
comparing the ratio of the performance value Perf to the setpoint S as
QoS = Perf

S . Since the performance and the setpoint always have the same
metric, the QoS value is unitless. For example QoS = 23fps

25fps = 0.92 = 92%.
In case the QoS value is not within the acceptable QoS limits, the de-

rived QoS value is passed to a resource optimizer (Figure 6.3 [Orange box]),
otherwise it is discarded. The task of the optimizer is to find the optimal
resource allocation or de-allocation based on the current resource setting
and the QoS value derived from the sensor(s). The optimization result is
then passed to an update function (Figure 6.3 [Blue box]) which updates
the actuator magnitude according to the result from the optimizer.

Finally, the output from Bricktop in form of actuator magnitude are
passed down to the resource management of the OS and the resources are
allocated. The actuator magnitude is defined in the form e.g.: use 2 cores
clocked to 1.2 GHz. In case of Linux based systems, the frequency gover-
nor (Section 3.3.1) and CPU hotplug (Section 3.3.2) interface are used for
controlling the hardware.

52

Figure 6.3: Bricktop consists of three main parts: QoS interface, power
optimizer and actuator interface to the power saving mechanisms.

In order to achieve efficient resource allocation three important aspects
of the controller must be kept:

1. Since two actuators are assumed in this thesis (DVFS and DPM), the
controller must be able to determine the most energy efficient balance
between using DVFS and DPM while not violating the performance
requirements in the applications. Since DVFS and DPM have differ-
ent impacts on both power dissipation and performance, the controller
must use the provided information in the applications and the envi-
ronment to regularly calculate the optimal balance.

2. Resources must be allocated/de-allocated with a short latency. Both
the energy efficiency and the performance of the system is completely
dependent of the capability of reacting fast enough in cases of non-
adequate QoS in an application. The controller must therefore contain
a control algorithm capable of quickly reacting to changes in the input.

3. The controller must be stable. A common consequence of tuning con-
trollers for fast reaction time is controller instability. An instable con-
troller will produce heavy alternations in the output signal due to the
tuning parameters in the controller. While the controller is able to
react quickly to the input signal, stability must be achieved for energy
efficient and performance prone execution.

The next chapters provide more insights into the optimizer used to de-
termine the DVFS / DPM combination. Chapter 7 presents an approach to
model a multi-core system as a mathematical representation used for control
decisions. Furthermore, Chapter 8 presents the design and implementation
on a multi-variable optimizer used to regulate the resource balance based
on the application inputs.

6.2.3 Related runtime systems

The PowerDial [28] approach allows graceful degradation in applications
based on current application performance measured in heartbeats [27]. The

53

system transforms application parameters (such as peak-signal-to-noise in
a video) into dynamic control variables stored in the application itself. A
callback function is inserted into the application using which the controller
is able to adjust the control variables according to performance and policies.
Figure 6.4 illustrates the PowerDial system in which a Performance Goal
(setpoint) is used to drive a controller which selects the dynamic control
variables in the applications. A heartbeat feedback monitors the execu-
tion and reports on the updated performance of the application. Also, the

Figure 6.4: Overview structure of the PowerDial system [28].

work by Segovia [72] suggests graceful degradation of the application QoS
by monitoring a happiness value from the application. Based on this value,
the runtime system can degrade quality points in the application in order
to achieve the requested QoS. The Bricktop QoS manager uses the same
approach to treat input signals from applications: the performance is trans-
formed into a generic parameter – QoS – upon which the controller acts.
In contrast, Bricktop uses no graceful degradation in the applications, but
hardware actuators to drive the power management.

StarPU [6] is a runtime system developed at INRIA Bordeaux. The
development framework allows task kernels for heterogeneous architectures,
for example CUDA or OpenCL, which in turn are scheduled by the StarPU
runtime. The scheduling is based on a queue structure for each device and a
performance model between the defined task and the hardware device. Dur-
ing initialization, StarPU is able to benchmark the tasks and their depend-
able parameters, such as data type and data size, on the available hardware.
The initialization builds the performance model according to which StarPU
selects the most performance efficient device to schedule a task on. The
schedule is either completely transparent, or is influenced by the user who
is able to select scheduling policy and task priority. StarPU is currently im-
plemented for high performance in heterogeneous systems, while an energy
efficient scheduling policy is under consideration. In contrast to StarPU, the
Bricktop runtime system leaves the scheduling decisions completely to the
OS, and the focus is on hardware resource allocation to minimize the power.

54

For efficiently regulating the power with both DVFS and DPM, a three
step mechanism was used in the work by Ghasemazar et al. [23]. It firstly
selected the number of active cores and secondly an optimal clock frequency
for the active cores and finally task assignment. In a similar fashion, Mari-
noni et al. [53] choose to calculate the minimum frequency and the maximum
sleep time allowed in a real-time scheduler to minimize energy consumption.
HyPowMan [8] uses a set of policy experts to either optimize according to
DVFS or DPM depending on processor state. In contrast to the mentioned
runtime systems, Bricktop performs optimizations for both DVFS and DPM
in a single run in order to determine the optimal combination of both meth-
ods. Hence, no power saving technique is favored over the other, since the
decisions are based on the models.

Three design choices for a MPSoC runtime manager was presented in
the work by Nollet et al. [58]. The complete system consisted of a qual-
ity manager which is capable of selecting operation quality points in the
applications similar to PowerDial [28]. The quality manager is able to com-
municate with a resource manager which ultimately allocates the resources.
Figure 6.5 shows three different setups:
a) Applications communicate only with the quality manager, which invokes
the resource management transparently to the user.
b) Applications communicate with the quality manager, but also hint the re-
source manager using meta-data. This setup engages more precise resource
control based on application input at the cost of increased complexity.
c) Applications communicate only with the resource manager. No quality
operation points are allowed and application performance is only based on
the resource allocation.

Figure 6.5: Three different design choices as defined in [58].

Bricktop adapts version c) using which application communicate directly
with the resource manager and quality degradation of applications is not
allowed as long as resources are available.

55

56

Chapter 7

System Identification

“I’m sorry, Dave. I’m afraid I can’t do that.”
— HAL, 2001: A Space Odyssey - 1968

Resource allocation in computer systems has a direct implication on
the power dissipation of the platform. By multiplying the time of actively
executing processing element by its power integral, the energy consumption
can be determined. As recalled from Chapter 3, a many-core system can
either provide resources in form of processing elements by waking up cores
from a sleep state or by increasing the clock frequency of already active
processing elements. Increasing the number of processing elements has a
greater impact on the static power dissipation while the clock frequency
impacts both the dynamic power and the static power.

In order to optimize the resource allocation, the underlying system should
have an understanding of the implications related to power dissipation and
application performance. A modelling concept is presented in this chapter
which aims to describe the consequences of resource allocation with respect
to power and performance. A power model is created in order to determine
the power dissipation based on the actuator (DVFS and DPM) utilization
called magnitude and a performance model is created to determine the ef-
fects on the speed-up. Both models are used in the Bricktop controller briefly
described in Chapter 6 and further detailed in Chapter 8.

7.1 Modelling Power

By modelling the power dissipation of a microprocessor, the physical activ-
ities and power dissipation of the semiconductor can be more easily inte-
grated into software algorithms in a computer program. A power model is
used as a vehicle for understanding the correlation between resource allo-
cation and power dissipation i.e. “how much power does n-resources use?”.

57

A representative, yet simple model describing this relationship is therefore
required.

7.1.1 Previous work: Bottom-Up Approaches

Power has previously been modelled in multi-cores [11, 13, 21, 55, 64, 66, 70,
73, 74, 82]; the power models are usually constructed from bottom-up ap-
proaches according to which the power is estimation based on mathematical
approximations of the platform and its behavior. An accurate power model
which reflects both the software execution and external conditions such as
temperature is usually difficult to create. Parallel software and OS schedul-
ing in parallel systems is particularly difficult to model as power dissipation,
especially with a real-world power manager executing inside the OS.

Cho et al. [11] presented a mathematical formulation on the interplay
of parallelism and energy consumption. Their work provides analytical op-
timizations for tuning clock frequency and parallelism depending on appli-
cation characteristics. The optimization algorithms was used to calculate
values for the ratio between dynamic and static power for a given archi-
tecture together with application parallelism and performance to find the
optimal configuration for energy efficiency. A similar approach is presented
by Rauber et al. [66], in which the total energy consumption is modelled as a
linear combination of the static and dynamic power. The dynamic power is
based on the voltage and frequency level of each core which in turn depends
on a set of tasks executing on the respective core. Each task is assumed to be
homogeneous and completely independent of every other task. The model
hence exploits a fork-join pattern in parallel tasks and the synchronization
over to simulate the power dissipation.

C-3PO [70] is a power manager used to maximize performance under
power constraints and minimize peak power to reduce energy. The power
model used is based on a set of proportionality constants representing the
chip and an estimated static component C, which is simply modelled as the
idle power of the system. Applications are given a power budget, which
is used for resource allocation in form of clock frequency and the number
of cores. The manager activates cores to more parallel program and clock
frequency scaling to more serialized applications. The work by Tudor et al.
[82] focus more on the real parallelism of a set of tasks bounded by memory
contention and data dependencies between tasks. The available parallelism
is thus modelled as fraction of total parallelism with respect to the platform
and the number of used thread. Power, on the other hand, was modelled as
a linear combination of idle power, active power and memory power.

A further detailed performance model for microprocessors based on hard-
ware and software characteristics is presented in Eyerman et al. [21] upon
which the CPU power can be estimated. The model accounts for specific mi-

58

croarchitectural details such as pipeline characteristics, caches, branches etc.
in combination with software behavior implications on the hardware such as
instruction dependencies, instruction types and the number of instruction
types.

7.1.2 Top-Down Modelling

In contrast to most related work, our power model was derived from real-
world experiments during which the model was created according to the
real power output instead of the physical composition of the system. The
advantage of a top-down approach is a more realistic view of the complete
system including cores, buses, memories, temperature, operating system and
other software, which is very difficult to model using analytical bottom-up
approaches. The approach requires, however, one set of experiments for each
type of platform. This means that the experiment setup should preferably
be easily executed, repeatable and sufficiently fast.

Experiment-based design As an example, a quad-core Exynos 4412
platform using the ARM Cortex-A9 CPU was modelled. To derive the power
model, the system was fully loaded using the stress benchmark while both
actuators (DVFS and DPM) were step-wise increased. The power dissipa-
tion was measured for each step until all combinations of clock frequencies
and number of cores have been evaluated. Figure 7.1 shows the result from

Figure 7.1: A top-down model of a quad-core ARM Cortex-A9 CPU. The
figure shows the power dissipation of the CPU during full load using different
configurations of DVFS and DPM.

this experiment: the power dissipation is low when using few cores and low

59

clock frequencies, and increase according to different ratios as the actuator
magnitudes increase.

From the experiments shown in Figure 7.1 it is clear that a high number
of cores and a high clock frequency results in a very high power dissipation,
and these combinations should be avoided as long as the performance is
sufficient. The power model is hence used as a “road map” using which the
control system can decide the most power efficient path from low- to high
performance. The white arrows in Figure 7.1 illustrates one possible path as
the performance requirements for an application increases from low to high.

Derivation of mathematical representation With the results shown
in Figure 7.1, a mathematical representation was created in order to allow
the integration in the controller. A similar approach as [69] was used, in
which a two dimensional plane (DV FS,DPM) was fitted as a function
of the power dissipation. The control variables for DVFS and DPM were
denoted as q and c respectively. Since these variables are only used as
control variables in the optimization algorithm, the variables are unit-less
and chosen in the range [1 - 8] where 1 is minimum utilization and 8 is
maximum utilization of a specific actuator. The goal is to define a surface
as close as possible to the data values in Figure 7.1, which includes the
control variables.

The following third degree polynomial defines the surface:

P (q, c) = p00 + p10q + p01c+ p20q
2 + p11qc+ p30q

3 + p21q
2c (7.1)

The parameters pxx are fixed coefficients used to represent the quad-core
Exynos 4412 use-case. Levenberg-Marquardt’s algorithm [40] for multi di-
mensional curve fitting was used to find the optimal coefficients. This algo-
rithm minimizes the error between the model and the real data by tuning
the coefficients. Values for the coefficients are found in Table 7.1, and the
obtained surface representing the mathematical model is illustrated in Fig-
ure 7.2.

Table 7.1: Coefficients for the power model.

p00 p01 p10 p11 p20 p21 p30
2.34 0.0576 0.598 -0.0248 -0.1605 0.0097 0.0120

Model verification In order to obtain efficient resource control, the power
model used to represent the system should be significantly accurate com-
pared to the real-world power dissipation. An inaccurate model can predict
a suboptimal actuator combination for a given application performance, for

60

Figure 7.2: A mathematical representation of the power values in Figure 7.1
derived by using surface fitting methods.

example “use 2 cores clocked to 1200 MHz instead of using 3 cores clocked
to 1000 MHz”. The accuracy model was determined by calculating the dif-
ference between the real data and the derived model as the model error.
The results are shown in Figure 7.3 in which the lines are the predicted
model and the rings are data. For this use-case, a maximum error of 10.2%
was obtained, but with an average error of 0.6% and with a computationally
simple model, we considered the model feasible for our experiments. A more
accurate model can be achieved by using a higher degree polynomial with
the cost of increased computational complexity.

Figure 7.3: A comparison between the data points in Figure 7.1 and the
mathematical representation in Figure 7.2.

61

Discussion

A top-down power model was chosen instead of the traditional bottom-
up approaches based on analytical expressions used to model the hardware
under different conditions. The top-down model is created by stressing the
system to full load after which the real power dissipation is measured. A
down side to this approach is clearly the required benchmark run for each
new platform. On the other hand, the top-down model represents the real-
world execution on a more practical level than a bottom-up model. Ambient
temperature differences, for example, change the power curve significantly
[39] – an effect difficult to model in practice with bottom-up models.

7.2 Modelling Performance

With resource-to-power model, Bricktop requires a model of application
speed-up based on actuator magnitude to determine the most energy ef-
ficient actuator combination. With a performance model, the system is
capable of allocating the necessary amounts of resources which results in
minimal power dissipation.

7.2.1 Speed-up response of actuators

With two actuators (DVFS and DPM) considered, a multi-variable opti-
mization routine is used to decide the optimal actuator configuration by
considering the utilization parameters q (DVFS) and c (DPM). The speed-
up is defined as application performance compared to the minimum actuator
setting i.e. 1 active core clocked at the minimum clock frequency.

While acknowledging that predicting the exact speed-up of a general
application is a difficult task because of, memory latencies, disk I/O, OS
influences, user input etc., the abstraction of speed-up was risen to the level
of two functions: clock frequency and parallelism. The speed-up using DVFS
was modelled as a linear combination of clock frequency q as:

Performance(Appn, q) = Kq · q (7.2)

where Kq is a constant. This means that e.g. 2x increase in clock frequency
models a double in speed-up.

Modelling speed-up with respect to the number of cores was, however,
considered more difficult since the result depends highly on the inherited
parallelism and scalability in the program. For example a sequential pro-
gram does not increase its performance by adding additional cores, while
a parallel application could save energy by increasing the number of cores
instead of the clock frequency. Because of this issue, the notion of expressing
parallelism directly in the applications was added as a used defined P-value

62

in the range [0 1]. A value of 0.0 represents a completely sequential pro-
gram phase and 1.0 is an ideal parallel program phase. With the P-value,
Amdahl’s law is used to model DPM:

Performance(Appn, c) = Kc ·
1

(1− P) + P
c

(7.3)

where Kc is a constant and c is the number of available cores and P is the
P-value. Amdahl’s law models a high performance increases as long as the
number of cores is low but decreases as the number increases as a logarithmic
function. Hence, the speed-up becomes sub-linear as more cores are added,
and eventually increasing DVFS instead of the number of cores becomes
more energy efficient. The total performance is the sum of the two models
as:

Performance(Appn, q, c) = Performance(Appn, q) + Performance(Appn, c)
(7.4)

7.2.2 Techniques for Obtaining Parallelism

Typical applications usually have different behavior depending on the phase
of execution. For example whilst in an initialization phase, the applica-
tion is single threaded and sequentially executing. On the other hand, the
computational phase of the application can often be parallelized to utilize
more cores. The different levels of parallelism in applications is accounted
for by dynamic P-value injections during runtime. This means that the
power manager is continuously aware of the resources and to what extent
applications are able to utilize them.

While injecting dynamic P-values during runtime is simply a matter of
updating the parameters in the power manager call, obtaining the correct
P-value in the application can be a complex task. The parallelism in appli-
cations may depend on the usage of tasks/threads, application I/O, memory
accesses etc. Many factors contribute therefore to the obtained performance
scalability of the application in a many-core system. In case the parallelism
is not accurately obtained, the power manager might not find the optimal
solution. Therefore it is important to at least have a rough estimate of the
parallelism, which can be done by several methods.

The work in [12, 57, 81] demonstrate methods to measure speed-up in
parallel software by various benchmarks. The speed-up represents practical
effects of increasing the number of cores in an application capable of parallel
processing. Since the P-value reflects the “usability” of multiple cores, the
level of speed-up determines how many of the available cores can be effi-
ciently used. In more specific domains, tools such as Cilkview [25] can be
used to predict the speed-up in parallel Cilk applications. The tool calcu-
lates the critical path in the software as the upper bound limit, and predicts

63

a speed-up range for an application as a function of the number of cores as
illustrated in Figure 7.4. The P-value is then extracted from the output as
either an optimistic or pessimistic value.

Figure 7.4: A Cilkview example showing the scalability approximation and
measured speed-up for a Cilk-based quick-sort algorithm [25].

In the dataflow domain, dataflow tools can be exploited to predict the
P-value in common dataflow networks. The following section presents an
approach to practically highlight this property of dataflow programming.

Dataflow tools to the rescue!

Dataflow programming originally presented in [17] is a proposed solution
to visualize computations as a set of independent nodes called actors. The
actors are driven by data queues connected as in- and output ports to the
actors called edges. Data flowing between actors is described as a quantized
object called tokens. Each actor in a dataflow program can execute inde-
pendently as long as data is available on the input ports; this construction
explicitly exposes the potential parallelism in the program.

A commonly used dataflow construction is the Synchronous Data Flow
(SDF) graph [19] in which each actor has a fixed data rate on the input
and output port. SDF offers therefore strong compile time predictability,
and transformation models can be used on the base model to allow applica-
tion optimizations. One example is the Single Rate SDF (srSDF) transform
which transforms the actor edges into homogeneous edges (data production
rate = data consumption rate). The transformation is illustrated in Figure

64

7.5 in which the left part using different input and output rates is trans-
formed into a network with only single data rate ports between the actors.

Figure 7.5: A SDF graph and its srSDF transformation – a multi-rate link
is transformed into several single-rate links to enable parallelism.

This transformation exposes the parallelism more explicitly since the B-
actors in Figure 7.5 can be independently scheduled on separate processing
units. The execution is clearly defined as completely sequential in the A- and
C-phases and parallel during the B-phase. The P-value is hence determined
based on the number of independently executing actors and based on the
available hardware.

P-value extraction using PREESM

A practical case study was demonstrated in Paper VI [33], in which the
PREESM tool [61] was used to extract the P-value from parallel applica-
tions. PREESM is an opensource tool for dataflow network construction and
rapid prototyping. The tool was developed at INSA de Rennes, France and is
capable of automatic srSDF transform and c-code generation. Based on ex-
plicit architecture settings and scenario parameters, PREESM can generate
applications tailored for specific hardware architecture without modifying
the software functionality.

The tool was used in a case study for parallelizing and extracting the P-
value of an image processing application. After parallelizing and optimizing
the SDF graph, PREESM automatically generates a Gantt chart which il-
lustrates the execution on the parallel hardware. Three different versions of
an image processing application was generated in the case study: one com-
pletely sequential, one completely parallel and one mixed-parallel.
After the P-value was extracted, the value was injected into the application
phases accordingly.

Figure 7.6 illustrates the three cases. The first case is a sequential appli-
cation with only one actor A active for the complete execution. The second
case illustrates a dividable actor An which is able to execute completely in
parallel. Lastly Figure 7.6 illustrates an application with a non-dividable

65

Figure 7.6: Declaring the P-value for each program phase in three examples.

actor A followed by a parallel actor Bn and finally a semi-parallel actor Cn.
A P-value equals 0.0 was extracted from the completely sequential ver-

sion which indicates that adding additional cores will not affect its perfor-
mance. P-value equals 1.0 was extracted from the parallel version which
indicates that the performance will linearly improve by increasing the num-
ber of cores (for a quad-core system in this case). Finally the mixed-parallel
version implemented both sequential, parallel and semi-parallel phases. A
P-value representing the currently available parallelism was extracted from
each phase according to Equation 7.5:

P =
(1

S − 1
1
N − 1

)
(7.5)

where S is the speed-up factor between the sequential and the parallel actor
composition and N is the number of processing units.

7.3 Summary

Bricktop uses a model-based approach to determine the resource allocation
based on the performance requirements and measurements from the appli-
cations. The models upon which decisions are made should therefore repre-
sent the real outcome of the resource allocation. Two models are considered:
Power and Performance, according to which actuation decisions are made.
The first model predicts the increase or decrease in power as the system al-
locates or de-allocates a selected bundle of resources, and the second model
predicts the speed-up of the application as resources are allocated or de-
allocated. With the provided system information, an optimization solver
was used to determine the most efficient resource allocation or de-allocation
for a given set of applications. This is presented in the following chapter.

66

Chapter 8

Multi-Criteria Power
Optimization

“He who controls the spice controls the universe.”
— Baron Vladimir Harkonnen, Dune - 1984

With both models as input, Bricktop selects the power optimal combi-
nation of DVFS and DPM for the given set of applications. The selection is
based on an optimization algorithm which, periodically and with low over-
head, determines what actuator combination results in the lowest power
dissipation while no QoS requirements in the applications are violated.

8.1 Related Work

Feedback based control is a many decades old approach to regulate systems
based on a setpoint and measurement input. Such systems have been sug-
gested in many papers such as [3, 18, 46, 47, 67] in which one-variable control
systems are used to minimize power in multi-node computing systems.

The Napsac system [46] focus on a web cluster manager which, based
on the request rate, allocates or de-allocates servers using sleep states. The
algorithm uses the notion of workload to start up and shut down servers
while also accounting for the latency of each action. Further, in the work
by Leverich et al. [47] a control system for power gating individual cores
in multi-core systems is suggested. The controller uses a high-low water-
mark based algorithm measuring the workload to wake up or shut down a
core. Varma et al. [84] used a PID controller to scale the clock frequency
according to the workload. The controller was capable of predicting future
load patterns and proactively scale according to the prediction. Similarly
to Paper I and II in this thesis, only a single output variable was used,

67

which means that the controller can use a single transfer function, or simple
if-then-else statements without multi-criteria optimization.

Control mechanisms for a multi-variable output systems were suggested
in [8, 23]. Both works used DVFS and DPM control based on one or more
input metrics. More specifically, the work by Ghasemazar et al. [23] selected
the optimal number of active cores for a given throughput, after which the
system fine-tuned the clock frequency with a feedback loop. Similarly, the
controller approach presented by Bhatti et al. [8] chose, in sequential or-
der, whether to optimize for DPM or DVFS. Our approach differs from the
mentioned works because the Bricktop controller selects the optimal combi-
nation of DVFS and DPM rather than optimizing both methods one after
the other. The problem is hence formulated as a multiple-input multiple-
output problem rather than two multiple-input single-output in sequence.

Liu et al. [49] use multi-variable optimization methods to either minimize
the total energy in a system or its maximum temperature. Side constraints
included feasible task execution under timing constraints, respecting the
thermal thresholds and keeping the core voltage in the allowed range. With
a multi-variable problem, a multi-variable optimization approach was also
considered in the work by Parolini et al. [60]. The work demonstrated an
approach to optimize the power dissipation of a server system by DVFS and
by regulating the CRAC units (air-cooling units) to cool the servers. Several
side constraints were included such as thermal limits and application QoS
based on the throughput of the total server system.

Complementary details have been used from the mentioned works to de-
scribe the optimization problem of using DVFS and DPM based on applica-
tion performance. Such problems are either described as linear or non-linear
depending on the setup of the problem, and the following section will present
the setup in more detail.

8.2 NLP-Optimization

A Non-Linear Programming (NLP) programming problems are character-
ized as problems in which either the objective function or any of the side
constraints contain variables of a higher degree. Both of these conditions are
satisfied in our system with the third degree polynomial (in Equation 7.1)
and the function of Amdahl’s law (in Equation 7.3). Optimizing the DVFS
and DPM magnitude is therefore a multi-dimensional problem with two
control variables.

Figure 8.1 illustrates a common approach in solving multi-dimensional
NLP problems. The search function is initiated at a starting point after
which a search direction and a step length is defined for finding the next
evaluation point. After performing a step, the new point is valid IFF the

68

value of the objective function is lower than in the previous step. The result
of the optimization method is to find the global optimum at which no new
iteration will give the objective function a smaller value (illustrated with the
red arrow in Figure 8.1). Several methods for finding the optimum exist such
as: Newton, General Reduced Gradient (GRG) and Sequential Quadratic
Programming (SQP). The common goal for each method is, however, to
determine the search direction and step length in order to find the optimum
with a low number of iterations and with good accuracy.

Figure 8.1: Illustration of solving a multi-dimensional NLP problem.

While linear optimization is more predictable and can guarantee a global
maximum, NLP problems raise more concerns. Issues with NLP problems
are firstly the inability to ensure global optimum. The optimization method
cannot guarantee the avoidance of converging towards a local optimum. A
local optimum is a point at which a step in either direction results in a
higher objective function value, but an even lower value point exists in the
global search space. This is illustrated as the green arrows in Figure 8.1.
Converging towards the local optimum is a result of, for example, the choice
in starting conditions. Secondly, NLP problems have a high complexity with
respect to the control variables. Fortunately the optimization is iterated
frequently, and a guaranteed global optimum is not a definite requirement
for each iteration as long as the solution is sufficiently close to the optimum.
As previously explained, only two control variables are used, which means
a manageable complexity in practice.

8.2.1 Identification of optimization problem

The objective of the solver is to determine an actuator configuration which
minimizes the power while still is providing sufficient resources to all applica-
tions. The impact of actuator magnitude on the power dissipation is derived
from the previously defined power model (Section 7.1). Orthogonally, the
impact on performance based on the actuator magnitude is derived from

69

the performance model presented in Section 7.2. By combining both mod-
els, the minimum power dissipation for executing the applications can be
determined.

As both the power model and Amdahl’s law used in the performance
model are clearly convex nonlinear, the problem is set up as a non-linear
optimization problem. Recalled from Chapter 6, the required resources are
given as a setpoint S, while the actual performance Pf is monitored and
transmitted to the power manager in which the error value E is calculated.
The power optimization problem is hence defined as follows:

Minimize{Power(q, c)}
Subject to:
∀n ∈ Applications :En − (q + c) < Sn −Qn

(8.1)

where the variables: q and c are the actuators (DVFS and DPM respec-
tively). “Power” is a given power model for the system in question (Section
7.1). Sn is the setpoint, En is the error value and Qn1 is the lower QoS limit.
The optimization rule states to minimize power while eliminating enough er-
rors to reach at least the lower bound QoS limit. This is achieved by setting
the actuators (q, c) to a level sufficiently high for each application n.

• The setpoint S is set by the user to represent a practical performance
aspect of the application which should be reached, for example “25”
as frames per second in a video decoder.

• E is measured by the application – this is the current (real) perfor-
mance.

• The QoS limit Q can be set by the user or obtain a default value
for example 95%. This means that a 5% deviation from the setpoint
would be treated as acceptable.

Initial evaluations of the optimization solver was performed in the Mat-
lab environment using the fmincon implementation. The actuator response
was visualized according to a set of errors E the P-value set to P = 0.9 (a
semi-parallel application). The errors were steadily increasing from a start-
ing point as a linear function, which replicates a system with continuously
increasing load. The power model presented in Chapter 7 (Figure 7.1) was
used for the experiments.

Figure 8.2 shows the actuator response for the mentioned use-case. As
seen in the figure, DPM is chosen (cores are added) as the error value is
very low. When DPM is roughly at 45%, the parallel proportion of only 0.9
causes the system to not benefit enough from activating more cores. DVFS is

1E and Q are normalized to the range in which q and c operate

70

instead used while the numbers of cores decrease. As the error rate hits 5.5,
DPM is again increasing its utilization since the very high clock frequencies
increases the power rapidly (compare to Figure 7.2), and the highest DVFS
steps are used as the last resort since an application with P = 0.9 scales
only to roughly 2 out of 4 cores.

Figure 8.2: Actuator response from steadily increasing QoS errors
(Plain SQP method).

As seen in Equation 8.1, only two two control variables: DVFS (q) and
DPM (c) are used, which means that the complexity for solving the opti-
mization problem is low. However, the response time of reaching a viable
solution is crucial to the usability of the solver since the algorithm is be-
ing executed on a regular basis. Furthermore, the energy consumed by the
solver alone must not exceed the energy savings obtained from optimizing
the actuator usage.

8.2.2 Response time evaluation

In order to determine the response time and energy overhead of regularly
solving non-linear optimization problems, a set of optimization algorithms
were evaluated. The evaluation of the optimization algorithms was set-up
in the MATLAB environment using the fmincon non-linear optimization
solver. Our chosen baseline method implemented the SQP [24] algorithm
with the plain objective function and side constraints given in Equation 8.1.

The baseline SQP was compared to a set of further optimized solvers:

1. SQP [24] with Gradient
2. Interior Point [43] with Gradient
3. Interior Point [43] with Gradient and Hessian

71

While increasing the computational complexity of the solver increases
the number of instructions required in the algorithm, the solver might find a
viable solution faster than the baseline solver and thus decrease the response
time. One option is to provide the user defined gradient of the objective func-
tion to the solver. The gradient function approximates the search direction
with a first order system, which can result in fewer optimization steps and
a faster solution.

The gradient function was defined as g = ∂f
∂A =

 ∂f
∂q

∂f
∂c

 where f is the

objective function and its derivative is defined for each actuator (q and c).
By inserting the values from the objective function given in Equation 8.1,
the derivatives are defined as:

∂f

∂A
=
[

p01 + p11q + p21q
2

p10 + 2p20q + p11c+ 3p30q2 + 2p21cq

]
(8.2)

The the analytical partial derivatives of the side constraints are defined
by the partial derivative of all side constraints C with respect to the actu-
ators c and q. C =

[
∂C
∂c,∂q

]
where ∂C

∂q,∂c are the first order derivative of
actuators with respect to the side constraints.

Secondly, Interior point based methods were selected for evaluation. In-
terior point based methods can approximate the objective function both as
a first order system and as a quadratic function with a Taylor-series expan-
sion. The direction of the search function in the latter case is called the
Hessian matrix H, which approximates the search function as a second or-

der system as: H = ∂2f
∂A2 =

 ∂2f
∂c2

∂2f
∂c,∂q

∂2f
∂c,∂q

∂2f
∂q2

 where A is the actuators. The

matrix contains the second order partial derivatives of the objective func-
tion defined in Equation 8.1. Insertion of the parameters gives the Hessian
matrix:

 0 (p01 + p11q + p21q2)(p10 + 2p20q + p11c + 3p30q2 + 2p21cq)

(p01 + p11q + p21q2)(p10 + 2p20q + p11c + 3p30q2 + 2p21cq) 2p20 + 6p30q + 2p21c


(8.3)

Evaluating the Hessian matrix further increases the computational com-
plexity, but also might result in fewer iterations to find optimum.

The execution time for finding 70 solutions for all algorithm configura-
tions was measured in the Matlab environment. Note that the execution
times do not reflect the overhead of a real-world C or Python implementa-
tion, but merely displays the relation between algorithms. Table 8.1 shows
the results. The plain algorithm used only the cost function and the side

72

constraints given in Equation 8.1, while the other included the user defined
gradient or Hessian. The SQP with Gradient input had the shortest execu-
tion time, and the Interior Point with Hessian input was clearly the most
expensive algorithm. The SQP algorithm with the gradient function was
therefore chosen as algorithm in our solver.

Table 8.1: Average execution times for 70 solutions.

Plain SQP Interior Point Interior Point
SQP Gradient Gradient Hessian
16.44 ms 13.97 ms 29.88 ms 287.27 ms

8.3 Simulation Based Evaluations

The complete system was simulated with a multi-core TrueTime [9] based
simulator, which allows individual task scheduling per core, full DVFS sup-
port and per-core DPM. It is also a practical tool since it runs on top of
Simulink and is capable of using the complete toolbox of Matlab. The
purpose of the simulation was to determine 1) how the parallelism in an
application affects the energy 2) the energy consumption of an optimization
based mapping and the default Linux mapping. The power model for the
quad-core ARM described in Section 7.1 was used as our general reference
model for constructing the simulation environment, and the simulations were
run for 200 seconds each.

8.3.1 Actuator response

The power manager was evaluated by executing a simulated video decoder.
A simulated high definition (HD) video was processed with one type of
frame with a static size. Video decoders with different levels of parallelism
was simulated in order to study the actuator utilization. For illustrative
reasons, the actuator response for a single use cases was plotted.

Figure 8.3 shows the corresponding actuator response for the video de-
coder. With a P-value of only 0.7 the system is able to only utilize DPM to
25%, and is unable to process the video even when executing at the highest
clock frequency. The drop in QoS for the video decoder is listed in Table 8.2.
The more parallel version (P = 0.9) is, on the other hand, able to use more
cores to process the video without significant QoS degradation (as seen in
the fifth column in Table 8.2), but is still forced to push DVFS to roughly
85% of the maximum clock frequency.

73

Figure 8.3: Actuator response for video decoder with two different P-values.

8.3.2 Energy consumption

The energy consumption of the decoder was evaluated by simulating imple-
mentations with nine different levels of parallelism in the range
[0.5 0.7 0.8 0.85 0.9 0.91 0.92 0.93 0.94]. This P-value was static for the
whole experiment run. A SD (standard definition) and the HD (high defi-
nition) video was used in order to evaluate the response of using different
resource requirements. Both cases was compared to the actuation policy in
the default Linux Completely Fair Scheduler (CFS) [41], using the Onde-
mand (OD) frequency governor [79]. This setup is shipped as the default
configuration in typical Linux machines. The behavior of the CFS+OD was
replicated in the TrueTime environment with the policies:

1. Applications are scheduled on all cores (as far as the application scales)
2. Cores with no tasks are activated but idle
3. DVFS utilization is set by the OD governor with the following policies:

(a) Clock freq. is set to the lowest possible according to the workload
(b) The workload is too high if an upthreshold limit2 is reached.

Then, the frequency is increased to the maximum and step-wise
decreased to the lowest feasible setting

The energy consumption for each simulation is shown in Figure 8.4. In
the HD case, the energy consumption is highest around P = 0.8 and de-

2The upthreshold in Linux is usually set based on best practice for the system in
question. Typical settings are around 80-95% of full workload (100%)

74

creases in both directions. This is, firstly, because a lower parallelism pro-
hibits the system from using a sufficient amount of cores and idle resources
are shut down to save power. The cost of disabling resources is a degrada-
tion in the QoS of the video playback as seen in Table 8.2, which might or
might not be acceptable to the user.

HD
HD

SD
SD

Poor QoS

Figure 8.4: Energy consumption for HD and SD video compared with stan-
dard Linux CFS+Ondemand (Rings are data).

Secondly, increasing the parallelism allows the system to activate more
cores and hence reduce the clock frequency. The static power Ps increased
by activating the cores is significantly lower than the dynamic power Pd
saved when decreasing the clock frequency, which results in energy savings.
In the SD case, the resource requirements are much lower and a decreased
clock frequency can occur already at P = 0.7 as seen in Figure 8.4, whereas
the HD case requires a parallelism of at least P = 0.9.

However, the energy consumption reaches, in both cases, an energy
plateau at certain points (roughly at P = 0.91 for the HD case and P = 0.7
for the SD case). At this point the parallelism of the application is not
strongly worth improving – from an energy point of view – since mapping the
application onto even more cores will only result in a static power increase
approximately equal to the related dynamic power decrease i.e. ∆Ps ≈ ∆Pd.

The optimized cased showed overall lower energy consumption than the
default CFS+Ondemand case, which is due to two reasons:
1) Low scalability forces mapping onto only a few cores. For the CFS+On-
demand case no cores can be shut down and they dissipate waste power
while idling.
2) With very high scalability the applications are scheduled on too many
cores, which leads to an increase in Ps which is larger than the total Pd

75

decrease when lowering the clock frequency to reach the same performance
i.e. ∆Ps > ∆Pd. In other words, the static power becomes more significant
than the dynamic power.

Table 8.2: QoS (in %) for HD and SD case compared with the standard
Linux CFS+Ondemand policy.

P-value 0.5 0.7 0.8 0.85 0.9 0.91 0.92 0.93 0.94
QoS HD 6.7 34.8 92.7 97.3 99.4 97.8 97.8 96.7 90.1
QoS-CFS HS 5.0 20.3 92.9 97.6 99.1 99.1 96.2 96.7 89.7
QoS SD 73.7 95.9 93.9 92.6 92.3 92.4 95.8 96.5 95.5
QoS-CFS SD 77.5 96.1 90.6 88.2 93.4 95.1 98.7 97.5 92.4

8.3.3 Discussion

To minimize the energy consumption two main parts should be optimized:
1) Application execution 2) Application mapping. An application should
execute with a performance level such that no unnecessary resources are
allocated. This means that the resource allocation should be regulated such
that the minimum allowed performance level is achieved in the application.
Secondly, the application should be mapped on the optimal number of cores
based on the application parallelism and the ratio between static and dy-
namic power dissipation for the hardware architecture in question. Unnec-
essarily high dynamic power is dissipated when the application is mapped on
too few cores and an unnecessarily high static power is dissipated when the
application is mapped on too many cores. By optimizing both parameters,
an energy optimal execution and mapping is achieved.

8.4 Switching Latency in Power Management

The current theoretical case implies an immediate actuation response and
the resources are available to the applications without any allocation over-
head. Practically, computer systems include physical limitations because
of both hardware and software actions as resources are allocated. Switch-
ing latency in power management mechanisms represents the overhead be-
tween resource request and resource availability. With a significantly large
latency, the performance monitoring used as basis for the power manage-
ment becomes more frequent than the hardware resource allocation. This
can cause inefficient resource management since the timing between demand
and allocation is out of phase i.e. resources are allocated when not needed
and de-allocated when needed. In the most extreme case, switching latency
leads to controller instability which causes the resource allocation to oscillate
between minimum and maximum uncontrolled.

76

The following sections describe latency measurements for DVFS and
DPM using different configuration parameters. The obtained information is
used to define the limits in which the controller is capable of operating, and
further studies can exploit the information to create a predictive latency
model in order to fine tune the controller.

8.4.1 Latency Measurements

DVFS and DPM contain software drivers used to manipulate the hardware
resources via operating system calls. A generic latency is hence not expected
because influential parameters include both software implementations, OS
versions, driver versions and the physical hardware. However, the software-
to-hardware call stack remains static for Linux based systems as:

• User or kernel requests an update to either DVFS or DPM.
• A set of OS calls are made to the kernel.
• The kernel requests hardware access with platform specific drivers.

After the procedure is completed, the hardware resources has been allocated.
Since the main focus was set on mobile devices, a thorough investigation was
conducted on the very procedure of DVFS and DPM on ARM devices. The
latency of allocating resources was measured as the elapsed time between
requesting a resource (DVFS or DPM) and the return of the call which
completes the process.

The evaluations consists of two separate implementations: 1) kernel
space and 2) user space implementations. The kernel space implementation
accesses the functionalities either from a kernel module or via direct system
calls. The user space implementation uses the sysfs interface, which is read
by the kernel using filesystem I/O operations.

DVFS In a Linux based system the following core procedure describes
how the clock frequency is scaled:

1. A change in frequency is requested by the user
2. A mutex is taken to prevent other threads from changing the frequency
3. Platform-specific routines are called from the generic interface
4. The PLL is switched out to a temporary MPLL source
5. A safe voltage level for the new clock frequency is selected
6. New values for clock divider and PLL are written to registers
7. The mutex is given back and the system returns to normal operation

The kernel space implementation issued direct system calls to the kernel
to indicate a change in frequency and the user space implementation wrote
the setpoint frequency value in a sysfs file. Since the resource access is,
as previously mentioned, dependent on software mechanisms, the system

77

was stressed to different load levels in order to demonstrate the effects of
load present. The system was stressed with a step-wise increasing load us-
ing Spurg-Bench3, and the latency was measured 100 times per load level.
Figure 8.5 shows the average latency for an Exynos 4412 ARM chip under
different levels of workload. When using the system call interface, the aver-
age latency decreases slightly when increasing the load (left part of Figure
8.5). On the other hand, the switching latency has a strong correlation to
current clock frequency and target clock frequency in the user space im-
plementation. As expected, the latency is shorter as the clock frequency
transitions from 1600 to 200 MHz because most of the DVFS procedure
(including the file system call) is executed at the higher frequency.

Figure 8.5: Average latency for changing clock frequency under different
load conditions using system call and sysfs interface.

DPM As recalled from Section 3.3.2 in Chapter 3, the shutdown of a core
is reliant on callback functionalities in the Linux kernel, which means that
the system performance and current utilization will affect the response time
of the kernel thread. The wake-up procedure is, similarly to the shut-down
procedure, dependent on callbacks but with an inter-core interrupt to trigger
the core startup. Both functionalities were, however, evaluated since proce-
dure details still differ [56], for example the expensive procedure of creating
kernel threads. Similarly to the DVFS measurements, DPM using the CPU
hotplug implementation in Linux was evaluated on the same Exynos 4412
chip. The kernel space implementation consisted of a kernel module with di-
rect access to kernel functions and the user space implementation consisted
of filesystem I/O to the sysfs interface.

The average latency for shutting down the Exynos4 core in kernel- and
user space respectively is shown in Figure 8.6. It is clear that the average

3https://github.com/ESLab/spurg-bench

78

latency for shutting down this type of core is rather constant and not signif-
icantly dependent on clock frequency as long as the implementation resides
in kernel space. On the other hand, the user space implementation is more
dependent on the load level of the system as the latency tend to double be-
tween 0% load and 100% load. The user space implementation is also more
influenced by the clock frequency of the CPU.

0

10

20

30

40

50

Ti
m
e[
m
s]

Load [%]0 25 50 75 90 100

Figure 8.6: Average latency for shutting down a core under different load
conditions using kernel and userspace mechanisms.

0 25 50 75 90 100Load[%]
0

Ti
m
e[
m
s]

10

20

30

40

50

60

70

80

90

Figure 8.7: Average latency for waking up a core under different load con-
ditions using kernel and userspace mechanisms.

79

On the contrary, the wake up time is more dependent on the load level
in both the kernel space and the user space implementation. As seen in
Figure 8.7, the kernel space implementation measures up to 6x higher latency
for the 100% load case in comparison to the 0% load case. A similar ratio is
seen in the user space implementation, but the latency is on average roughly
2x higher than the kernel space implementation. In summary, the latency for
utilizing power management on modern microprocessors depend on several
parameters such as clock frequency, workload, software implementations and
lastly the hardware platform. Moreover, a latency in the tens of milliseconds
range can be expected when using current implementation under normal
system conditions. For managing the power on modern many-core CPUs,
the power manager should either be implemented with low latency in mind
on OS and hardware level, or the latency based on clock frequency and
workload should be added as a parameter to the power manager.

8.5 Summary

A control-theoretical approach to minimize the CPU energy consumption
has been presented in this chapter. The energy optimization is based on an
architectural model describing the power dissipation of the microprocessor in
question, and a performance model is used for describing application speed-
up with relation to its parallelism. A set of optimization methods have
been evaluated based on response time and simulations have demonstrated
the feasibility of using the optimization based approach compared to the
standard Linux CFS+Ondemand approach.

The latency of the actuators has finally been measured on mobile devices
in order to improve the efficiency of the real-world implementation. Within
the limits of this work, this information is used to determine the period of
the update frequency used in the power manager. Future work remains to
investigate whether it is possible to more accurately determine the optimal
DVFS/DPM combination based on the difference in the latencies. Chapter 9
presents practical details regarding the mapping to real hardware, and a set
of case study application executing under the Linux OS.

80

Chapter 9

Case Studies

“Welcome to the desert of the real.”
— Morpheus, The Matrix - 1999

This chapter presents the real-world implementation of the Bricktop
power manager and a set of applications used for evaluation. Applying
the presented methods to already existing software and utilizing Bricktop as
a power manager is applicable for the following systems:
• Software with declared QoS and measurable performance
• Software with measurable or approximated level of parallelism
• Implementation currently for C-based software, but core algorithm

agnostic to the programming language
• Multi-core platforms with DVFS and/or DPM supported by a Linux

distribution
This chapter shows experimental results from implementations executed on
a quad-core Exynos 5410 ARM platform with the Ondemand frequency
governor as reference point, and the Bricktop power manager used for com-
parison. The output of the experiments is the consumed energy for both
systems with a constant pre-defined performance level.

Bricktop is mapped on top of the operating system and is available as
a middleware to the applications as illustrated in Figure 9.1. Applications
connected to Bricktop issue library calls for transmitting configuration and
measurement parameters to Bricktop as shown in Listing 9.1:

#include <fmonitor>
.
fmonitor(<performance>,<P−value>);
.

Listing 9.1: Library call for transmitting performance values to Bricktop.

81

Applications can naturally use the operating system freely, and Bricktop can
be bypassed completely if no performance requirements are needed in the
application.

Figure 9.1: Bricktop used as a middleware on top of the OS.

The communication was established by using System V queues to push
and pull data between Bricktop and the applications as illustrated in Fig-
ure 9.2. Applications push a data packet containing a header with ap-
plication ID and priority followed by the performance and P-value. The
message queue is polled by Bricktop regularly and all packets are pulled
from the queue each period. The current infrastructure supports multiple
applications, but is limited to a fixed priority between applications. Future
research is thus needed for supporting multiple priority levels.

Figure 9.2: Applications are communicating with Bricktop using shared
memory queues.

The period of the Bricktop controller should hence be set long enough
to not suffer from the hardware/software latency, but also short enough
to give an as fast as possible response. Since the SQP solver is the most
computationally heavy part of the power manager we measured the elapsed
time for obtaining one solution. This time was measured to 900 µs. Fur-
ther based on results from [71] and [42, 59], the access time of DVFS and
DPM can significantly impact on the chosen period of the power manager.
Because the measurements by Schöne et al. [71] were conducted on Intel
platforms, independent experiments were conducted on the chosen ARM
platform (presented in previous chapter). A period of 60ms was finally cho-

82

sen, which means that regulating the actuators will most likely be completed
before the next period is reached.

The following sections shortly presents three use-cases: MPlayer, LDPC-
decoder and Facedetection in which the energy consumption is measured for
using the Ondemand frequency governor and Bricktop.

9.0.1 MPlayer

MPlayer is a free software and open source media player. The program is
available for all major operating systems, including Linux and other Unix-
like systems, Microsoft Windows and Mac OS X. MPlayer can play a wide
variety of media formats and can also save all streamed content. Video
decoding is executing in one or more threads controlled by the MPlayer
process. As in any video decoder, the MPlayer threads requires varying
CPU resources depending on the current frame type and its content under
execution.

The selected videos was of type h.264 using resolutions 480p 720p and
1080p. Since the chosen platform was a quad-core system, the experiments
were executed using four decoder threads.

Performance metric The selected performance metric for the MPlayer
application was the framerate measured in “Frames per Second” or fps.
MPlayer was modified such that the decoder outputs the framerate directly
to Bricktop. Heavy variations and occurrence of I-frames requires signifi-
cantly more hardware resources than frames with low variations. The re-
quirement of MPlayer is to execute the decoder fast enough such that the
output buffer never empties.

MPlayer was implementend using standard pthreads, and experiments
using on four threads resulted in a scalability with the P-value of 0.96.
The video output task reads the output buffer with a period of 25 fps,
which means that the decoder filling the buffer must on average operate
on a slightly higher framerate (for example 30 fps) in order to cope with
occasional framerate under-runs. Figure 9.3 shows the results from the
experiments on the ARM device using the Ondemand governor to the left
and Bricktop to the right. Table 9.1 shows the energy consumption for each
experiment.

Table 9.1: Energy consumption (in Joules).

Video resolution [size] 1080p 720p 480p
Ondemand 279.96 103.96 70.48
Bricktop 158.62 43.88 35.84

83

Bricktop

Bricktop

Bricktop

Figure 9.3: Power dissipation from MPlayer experiment

84

9.0.2 LDPC Decoder

LDPC (low-density parity-check) codes are a class of error correction codes
used in various telecommunications standards in order to correct data cor-
ruption caused by noisy transmission links. An LDPC code is represented
by a bipartite graph called a Tanner graph, which describes the relation be-
tween information bits and parity bits in a transmitted block of data called a
codeword. Decoding LDPC codes is often performed using iterative message
passing algorithms which consist of two major steps, the bit-node update,
and the check-node update. These two steps are iterated back to back as
many times as is required to successfully recover the original data, or until
a certain maximum number of iterations have been performed.

Performance metric The performance metric from the LDPC decoder is
represented as the throughput given in “Megabits per second” (or Mbit/s).
The benchmarks were conducted with six discrete bitrate setpoints for the
ARM device, and the input was distorted with white noise. The decoder
was implemented using pthreads and handcrafted parts to utilize the neon
engines as fully as possible on the ARM platform. The P-value was approx-
imated closely to 1.0 for a quad-core system. Figure 9.4 shows the results
from the experiments on the ARM device using the Ondemand governor
and Bricktop for bitrates in range [1.25 - 7.5] Mbit/s. Table 9.2 shows the
energy consumption for each experiment.

Table 9.2: Energy consumption (in Joules).

Throughput [Mbit/s] 7.5 5.0 2.5
Ondemand 315.64 127.15 39.70
Bricktop 193.74 78.22 22.25

85

Bricktop

Bricktop

Bricktop

Figure 9.4: Power dissipation from LDPC decoder experiment

86

9.0.3 Face Detection Software

The benchmark consisted of a software capable of extracting the number
and location of human faces from an image. The image can either be static
or be read as input from for example a webcam.

The analysis starts by selecting the regions of interest in the image. A set
of skin-like regions, which are considered face candidates, are extracted from
the video frames. After orientation normalization and based on verifying a
set of criteria (face symmetry, presence of some facial features, variance of
pixel intensities and connected component arrangement), only facial regions
are selected. To identify the faces, the face area is first divided into several
blocks and then the LBP (Local Binary Patters) feature histograms are
extracted from each block and concatenated into a single global feature
histogram which efficiently represents the face image.

Face detection software is usually used in for example video surveillance
systems. A video camera feeds the video to a face detection system, which,
in real-time, detects (and even recognizes) the input faces. As a face is
detected on the input stream (a webcam), the software draws a square box
on the position of the face(s).

Performance metric The performance of the face recognition software
was defined as the number of images being scanned for faces per second,
i.e. the inverse of the duration for one image scan. This was referred to
as “Faces per second” (fa/s). Since the input of the software was grabbed
from a webcam stream, one image relates to one frame. With a higher
fa/s, the time elapsed to scan one video frame is shorter, and the software
will detect a face faster when appearing on the webcam. The software was
implemented using the Intel Thread Building Block (TBB) which is a task
based programming construct to more easily expose the parallelism in the
system. The P-value was approximated to 1.0. Figure 9.5 shows the results
from the experiments on the ARM device using the Ondemand governor to
the right and Bricktop to the left. Table 9.3 shows the energy consumption
for each experiment.

Table 9.3: Energy consumption (in Joules).

Throughput [fa/s] 12 8 4
Ondemand 104.34 67.57 25.07
Bricktop 79.20 23.91 13.16

87

Bricktop

Bricktop

Bricktop

Figure 9.5: Power dissipation from Facedetection experiment

88

Chapter 10

Discussion and Conclusions

“I just had one of those brain lernin experiences!”
— Ricky, Trailer Park Boys - 2001

Energy efficiency in computer systems is not only a problem posed by
operational costs apparent in the electrical bill and recharge intervals of
mobile devices. Energy efficiency is currently also introduced as a limit
for performance in current microprocessors because of the end of Dennard
scaling [16]. Dennard scaling forecasts that the power density of transistors
stays constant as the manufacturing technology decreases. This means that
as transistors become smaller, energy efficiency is improved by transistor
technology such that the power remains in proportion to the area. In recent
hardware, this scaling no longer applies since the voltage range used in
transistors no longer can be lowered. The end of Dennard scaling brings
consequences such as dark silicon, which means that all processing power on
a chip cannot be used simultaneously because of the limited power envelope.
The statement in quote:

“Moore’s Law gives us transistors...
Dennard scaling made them useful.”

— William J. Dally, Nvidia - 2015

argues that energy efficiency is required also for gaining performance. En-
ergy efficiency is thus no longer a hardware-only based area of research, but
software must be included in reaching this goal.

We have demonstrated the effect of power proportionality on computer
systems as measurement of how much of the power is used for actual pro-
cessing and how much is waste power. In order to keep the power pro-
portionality high, i.e. not waste energy, the hardware mechanism used to
save power should be controlled on a higher level of abstraction by the ap-
plication software via a runtime system. To achieve this goal, we propose

89

to extend the interaction between software and hardware by creating an
interface allowing applications to directly influence decision making in the
runtime system. This interface allows energy awareness in applications. The
contribution of this thesis is a framework with guidelines for creating energy
aware software. The concept is usable in both legacy software and target
specific programming environments such as in dataflow constructs. Two
important recommendation have been submitted for creating energy aware
software and a runtime system has been implemented to control the resource
allocation.

1) Energy-aware mapping. Modern multi-core systems dissipate power
based on two main factors: 1) The clock frequency, which influences mostly
the dynamic and slightly the static power. 2) The number of active cores,
which influences the static power. In traditional multi-core systems, applica-
tions are mapped onto all available cores (in case of sufficient parallelism in
the application). This approach promotes the usage of many cores with low
clock frequency rather than few cores with high clock frequency i.e. the min-
imization of dynamic power is favored over static power. With the current
advancements in microprocessor technology, the static-to-dynamic power ra-
tio is changing, and the static power is expected to dominate the total power
dissipation in next generation processors. Instead of exclusively maximizing
the parallelism in the system to reach the minimum clock frequency, this
thesis proposes methods to find the middle ground between clock frequency
and the number of cores to minimize the total power dissipation.

2) Energy-aware execution. The typical execution strategy Race-to-
Idle aims at executing software at a maximum speed to minimize the execu-
tion time – this is currently the default behavior in most systems. Because of
the power balance in modern multi-core architectures, this strategy is very
energy inefficient. A QoS-aware execution strategy was therefore suggested
in this thesis. It allows applications to execute only as fast as required, ap-
pointed by the user and by direct application performance levels. Using this
execution strategy, only the necessary amounts of resources are allocated
resulting in, on average, lower power dissipation, which reduces the energy
consumption.

Energy-aware software: a new paradigm To utilize the energy-aware
methodologies, energy-awareness should be a part of the natural develop-
ment environment from programmer- to language- to compiler- and runtime.
Meta-data-based approaches have for decades been a natural part of parallel
programming such as pragmas in OpenMP, keywords in Cilk and initializa-
tions in OpenCL. In other words, the programmer is responsible for including
a set of parameters in a program to increase its efficiency (in the traditional
case, performance). To increase energy efficiency, the programmer should

90

be allowed to input information regarding the structure and the behavior
of the program, to be used as control inputs for resource allocation. This
thesis has presented a policy to extend the energy-awareness of software by
including the following meta-data in the applications:
1) Application Parallelism to enable energy-aware mapping.
2) Application Performance to enable energy-aware execution.
A runtime system, Bricktop, was implemented to use the meta-data and
continuously allocate the optimal amount of resources, which minimizes the
energy consumption.

10.0.4 Future directions

The work presented in this thesis has been a mixture of scientific methodolo-
gies, implementation engineering and practical experimental design. Cover-
ing such a broad spectrum consequently leaves some stones unturned, but
also opens new doors for future research. There are three main future di-
rections, which are summarized below.

Methodology Describing power consumption in modern microprocessors
becomes more and more important in order to fully utilize the power saving
features in the hardware. A model of the system is helpful since mathe-
matical functions can replace the real-life behavior and be used in software
algorithms. As my thesis has suggested a top-down power model, more
models are yet to be investigated, more exactly:

• Is there a better way to model the system?
• Are the experiments creating the model sufficient?
• Is the mathematical expression capable of representing the system with

enough accuracy?

Although the optimization methodology was evaluated in this thesis, more
aspects of it would increase its robustness and efficiency:

• Is there a better optimization algorithm than the ones evaluated?
• Is the algorithm stable under all conditions?
• How close to the global optimum must an algorithm guarantee for

feasible action?

Implementation Secondly, implementing a theoretical framework in prac-
tice requires additional parameters regarding the platform. The work in my
thesis has been assuming the Linux OS environment since it is the most
popular platform for embedded systems and mobile phones, it is also the
most popular server platform and it is fairly much used even as a desktop

91

OS. When relying on a pre-created software infrastructure, one must per-
form system programming according to its facilities. The main future work
questions regarding the implementation are:
• What is the best interface between application and power manage-

ment? Use library call, system call, sysfs or other?
• What is the optimal power management period to minimize the la-

tency, minimize overhead and prohibit control instability?
• Is there a scalability problem when increasing the applications to a

very large number?
• Can the actuator latency be predicted and integrated into the opti-

mizer?
The integration of the DVFS/DPM latencies as well as the task migration
overhead would allow the runtime system to more accurately predict the
efficiency of using the power management techniques. As the latencies have
been determined, it is left to future work to include then in the optimization
algorithm for a more proactive control.

Experiment Experimental design on real hardware requires an actual im-
plementation of the mechanism under investigation as well as a test bench
onto which to apply the implementation. The test bench must represent
the real use-cases to produce useful results for the research community. In
this thesis, much of the applied evaluation tools have been inherited from
other communities such as video processing and other streaming applica-
tions. These evaluation tools were chosen because of their popularity from
the point of view of the everyday-user. While a significant set of tools have
been used to evaluate the power management system, future work can be
applied on the following questions:
• Is the current test bench complete or should different tools be used?
• Should the system be tested on more diverse hardware?
• Are the experiments representing real use-cases well enough?
Finally, as microprocessors become more diverse and heterogeneous mod-

els such as the Exynos 5422, the AMD Kaveri and the Parallella Adapteva
appear on the market, the system should support platforms with different
processors types. This addition does not only require power management,
but also a modified scheduling algorithm since the energy efficiency is not
only dependent on the amount of resources used but also the type. As some
algorithms better fit, for example, a digital signal processor, other algo-
rithms better fit general purpose processors. It is therefore the task of a
runtime system to match this Fitness from software construction and com-
piler technique to the hardware architecture, and to coordinate the power
saving features to maximize the energy efficiency.

92

Bibliography

[1] Jan Aagedal. Quality of Service Support in Development of Distributed
Systems. PhD thesis, University of Oslo, Oslo, Norway, March 2001.

[2] P.C. Adell, H.J. Barnaby, R.D. Schrimpf, and B. Vermeire. Band-to-
band tunneling (bbt) induced leakage current enhancement in irradi-
ated fully depleted soi devices. Nuclear Science, IEEE Transactions on,
54(6):2174–2180, Dec 2007.

[3] Asim Ali, Rui Jia, Abdelkarim Erradi, Sherif Abdelwahed, and Rachid
Hadjidj. Towards model-based management of database fragmentation.
In Presented as part of the 8th International Workshop on Feedback
Computing, Berkeley, CA, 2013. USENIX.

[4] M. Anis and M.H. Aburahma. Leakage current variability in nanome-
ter technologies. In System-on-Chip for Real-Time Applications, 2005.
Proceedings. Fifth International Workshop on, pages 60–63, July 2005.

[5] Adnan Ashraf, Fareed Jokhio, Tewodros Deneke, Sebastien Lafond,
Ivan Porres, and Johan Lilius. Stream-based admission control and
scheduling for video transcoding in cloud computing. In Pavan Balaji,
Dick Epema, and Thomas Fahringer, editors, 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid),
page 482–489. IEEE Computer Society, 2013.

[6] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André; Wacrenier. Starpu: A unified platform for task scheduling on
heterogeneous multicore architectures. Concurr. Comput. : Pract. Ex-
per., 23(2):187–198, February 2011.

[7] John Backus. Can programming be liberated from the von neumann
style?: A functional style and its algebra of programs. Commun. ACM,
21(8):613–641, August 1978.

[8] K. Bhatti, C. Belleudy, and M. Auguin. Power management in real
time embedded systems through online and adaptive interplay of dpm

93

and dvfs policies. In Embedded and Ubiquitous Computing (EUC), 2010
IEEE/IFIP 8th International Conference on, pages 184–191, 2010.

[9] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-
Erik Årzén. How does control timing affect performance? Analysis
and simulation of timing using Jitterbug and TrueTime. IEEE Control
Systems Magazine, 23(3):16–30, June 2003.

[10] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power cmos
digital design. Solid-State Circuits, IEEE Journal of, 27(4):473 –484,
apr 1992.

[11] Sangyeun Cho and R.G. Melhem. On the interplay of parallelization,
program performance, and energy consumption. Parallel and Dis-
tributed Systems, IEEE Transactions on, 21(3):342–353, 2010.

[12] A. Cristea and T. Okamoto. Speed-up opportunities for ann in a time-
share parallel environment. In Neural Networks, 1999. IJCNN ’99.
International Joint Conference on, volume 4, pages 2410–2413 vol.4,
1999.

[13] LeandroFontoura Cupertino, Georges Da Costa, and Jean-Marc Pier-
son. Towards a generic power estimator. Computer Science - Research
and Development, pages 1–9, 2014.

[14] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and
Mark Horowitz. Cpu db: Recording microprocessor history. ACM
Applicative conference, 10, April 2012.

[15] Benôıt Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume
Lager, Clément Léger, Benjamin Orgogozo, Jérôme Reybert, and
Thierry Strudel. A distributed run-time environment for the kalray
mppa-256 integrated manycore processor. In ICCS’13, pages 1654–
1663, 2013.

[16] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R.
LeBlanc. Design of ion-implanted mosfet’s with very small physical
dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268, Oct
1974.

[17] Jack B. Dennis and David P. Misunas. A preliminary architecture for a
basic data-flow processor. In Proceedings of the 2Nd Annual Symposium
on Computer Architecture, ISCA ’75, pages 126–132, New York, NY,
USA, 1975. ACM.

94

[18] Gang Ding. A control theoretic approach to analyzing peer-to-peer
searching. In Presented as part of the 8th International Workshop on
Feedback Computing, Berkeley, CA, 2013. USENIX.

[19] D. Messerschmitt E. Lee. Static scheduling of synchronous data-flow
programs for digital signal processing. IEEE Transactions on Comput-
ers, pages 24–35, 1987.

[20] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of multicore
scaling. In Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, pages 365–376, New York, NY, USA,
2011. ACM.

[21] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith.
A mechanistic performance model for superscalar out-of-order proces-
sors. ACM Trans. Comput. Syst., 27(2):3:1–3:37, May 2009.

[22] Stijn Eyerman, Pierre Michaud, and Wouter Rogiest. Multiprogram
throughput metrics: A systematic approach. ACM Trans. Archit. Code
Optim., 11(3):34:1–34:26, October 2014.

[23] M. Ghasemazar, E. Pakbaznia, and M. Pedram. Minimizing energy
consumption of a chip multiprocessor through simultaneous core con-
solidation and dvfs. In ISCAS, Intern. Symposium on, pages 49–52,
2010.

[24] Philip E. Gill, Walter Murray, Michael, and Michael A. Saunders.
Snopt: An sqp algorithm for large-scale constrained optimization.
SIAM Journal on Optimization, 12:979–1006, 1997.

[25] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The
cilkview scalability analyzer. In Proceedings of the Twenty-second An-
nual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’10, pages 145–156, New York, NY, USA, 2010. ACM.

[26] Werner Heisenberg. Über den anschaulichen inhalt der quantentheo-
retischen kinematik und mechanik. Zeitschrift für Physik, pages 172–
198, 1927.

[27] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E.
Miller, and Anant Agarwal. Application heartbeats: A generic interface
for specifying program performance and goals in autonomous comput-
ing environments. In Proceedings of the 7th International Conference on
Autonomic Computing, ICAC ’10, pages 79–88, New York, NY, USA,
2010. ACM.

95

[28] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive
power-aware computing. SIGPLAN Not., 46(3):199–212, March 2011.

[29] Simon Holmbacka, Sébastien Lafond, and Johan Lilius. Power pro-
portional characteristics of an energy manager for web clusters. In
Proceedings of the 11th International Conference on Embedded Com-
puter Systems: Architectures Modeling and Simulation. IEEE Press,
July 2011.

[30] Simon Holmbacka, Sébastien Lafond, and Johan Lilius. A pid-
controlled power manager for energy efficient web clusters. In Jin-
jun Chen, Wanchun Do, Jianxun Liu, Laurence T. Yang, and Jianhua
Ma, editors, Proceedings of the International Conference on Cloud and
Green Computing (CGC2011), number 0, pages 721–728. IEEE Com-
puter Society, 2011.

[31] Simon Holmbacka, Wictor Lund, Sébastien Lafond, and Johan Lilius.
Lightweight framework for runtime updating of c-based software in em-
bedded systems. In Rik Farrow, editor, 5th Workshop on Hot Topics
in Software Upgrades, page 1–6. Usenix association, 2013.

[32] Simon Holmbacka, Wictor Lund, Sébastien Lafond, and Johan Lilius.
Task migration for dynamic power and performance characteristics on
many-core distributed operating systems. In Peter Kilpatrick, Peter
Milligan, and Rainer Stotzka, editors, Proceedings of the 21st Inter-
national Euromicro Conference on Parallel, Distributed and Network-
based Processing, page 310–317. IEEE Computer society, 2013.

[33] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond,
and Johan Lilius. Energy efficiency and performance management of
parallel dataflow applications. In Ana Pinzari and Adam Morawiec,
editors, The 2014 Conference on Design & Architectures for Signal &
Image Processing, page 133 – 141. ECDI Electronic Chips & Systems
design initiative, 2014.

[34] Simon Holmbacka, Dag Ågren, Sébastien Lafond, and Johan Lilius.
Qos manager for energy efficient many-core operating systems. In Peter
Kilpatrick, Peter Milligan, and Rainer Stotzka, editors, Proceedings of
the 21st International Euromicro Conference on Parallel, Distributed
and Network-based Processing, page 318–322. IEEE Computer society,
2013.

[35] I. Hong, D. Kirovski, Gang Qu, M. Potkonjak, and M.B. Srivastava.
Power optimization of variable voltage core-based systems. In Design
Automation Conference, 1998. Proceedings, pages 176–181, 1998.

96

[36] J. Howard, S. Dighe, Y. Hoskote, and Vangal. A 48-core ia-32 message-
passing processor with dvfs in 45nm cmos. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), pages 108 –109, feb. 2010.

[37] Kai Huang, L. Santinelli, Jian-Jia Chen, L. Thiele, and G.C. Buttazzo.
Adaptive dynamic power management for hard real-time systems. In
Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, pages
23–32, 2009.

[38] Kai Huang, L. Santinelli, Jian-Jia Chen, L. Thiele, and G.C. But-
tazzo. Periodic power management schemes for real-time event streams.
In CDC/CCC 2009. Proceedings of the 48th IEEE Conference, pages
6224–6231, 2009.

[39] Fredric Hällis, Simon Holmbacka, Wictor Lund, Robert Slotte,
Sébastien Lafond, and Johan Lilius. Thermal influence on the energy ef-
ficiency of workload consolidation in many-core architecture. In Raffaele
Bolla, Franco Davoli, Phuoc Tran-Gia, and Tuan Trinh Anh, editors,
Proceedings of the 24th Tyrrhenian International Workshop on Digital
Communications, page 1–6. IEEE, 2013.

[40] Kelly Iondry. Iterative Methods for Optimization. Society for Industrial
and Applied Mathematics, 1999.

[41] M. Tim Jones. Inside the linux scheduler. http://www.ibm.com/
developerworks/linux/library/l-scheduler/, Jun 2006.

[42] A.B. Kahng, Seokhyeong Kang, R. Kumar, and J. Sartori. Enhanc-
ing the efficiency of energy-constrained dvfs designs. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 21(10):1769–1782,
Oct 2013.

[43] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the 16th ACM symposium on Theory of com-
puting, STOC ’84, pages 302–311. ACM, 1984.

[44] N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J.
Irwin, M. Kandemir, and V. Narayanan. Leakage current: Moore’s law
meets static power. Computer, 36(12):68–75, Dec 2003.

[45] Woonseok Kim, Dongkun Shin, Han-Saem Yun, Jihong Kim, and Sang-
Lyul Min. Performance comparison of dynamic voltage scaling algo-
rithms for hard real-time systems. In Real-Time and Embedded Tech-
nology and Applications Symposium, 2002. Proceedings. Eighth IEEE,
pages 219–228, 2002.

97

[46] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys,
David Culler, and Randy H. Katz. Napsac: design and implemen-
tation of a power-proportional web cluster. In Proceedings of the first
ACM SIGCOMM workshop on Green networking, Green Networking
’10, pages 15–22, New York, NY, USA, 2010. ACM.

[47] Jacob Leverich, Matteo Monchiero, Vanish Talwar, Partha Ran-
ganathan, and Christos Kozyrakis. Power management of datacenter
workloads using per- core power gating, 2009.

[48] Yi Liu, Yanchao Zhu, Xiang Li, Zehui Ni, Tao Liu, Yali Chen, and
Jin Wu. Simnuma: Simulating numa-architecture multiprocessor sys-
tems efficiently. In Parallel and Distributed Systems (ICPADS), 2013
International Conference on, pages 341–348, Dec 2013.

[49] Yongpan Liu, Huazhong Yang, R.P. Dick, Hui Wang, and Li Shang.
Thermal vs energy optimization for dvfs-enabled processors in embed-
ded systems. In Quality Electronic Design, 2007. ISQED ’07. 8th In-
ternational Symposium on, pages 204–209, March 2007.

[50] Robert Love. Linux Kernel Develoupment. Addison-Weasly, 3 edition,
June 2010.

[51] D. Lucanin and I. Brandic. Pervasive cloud controller for geotemporal
inputs. Cloud Computing, IEEE Transactions on, (99), 2015.

[52] Rod Mahdavi. Case study: Opportunities to improve energy efficiency
in three federal data centers. U.S. Department of Energy’s Federal
Energy Management Program, May 2014.

[53] M. Marinoni, M. Bambagini, F. Prosperi, F. Esposito, G. Franchino,
L. Santinelli, and G. Buttazzo. Platform-aware bandwidth-oriented en-
ergy management algorithm for real-time embedded systems. In ETFA,
2011 IEEE 16th Conference on, pages 1–8, 2011.

[54] SallyA. McKee and RobertW. Wisniewski. Memory wall. In David
Padua, editor, Encyclopedia of Parallel Computing, pages 1110–1116.
Springer US, 2011.

[55] Francisco Javier Mesa-Martinez, Ehsan K. Ardestani, and Jose Renau.
Characterizing processor thermal behavior. SIGPLAN Not., 45(3):193–
204, March 2010.

[56] Mwaikambo, Raj, Russell, Schopp, and Vaddagiri. Linux Kernel Hot-
plug CPU Support. Proceedings of the Ottawa Linux Symposium, pages
181–194, 2004.

98

[57] A. M’zah and O. Hammami. Parallel programming and speed up evalu-
ation of a noc 2-ary 4-fly. In Microelectronics (ICM), 2010 International
Conference on, pages 156–159, Dec 2010.

[58] Vincent Nollet, Diederik Verkest, and Henk Corporaal. A safari through
the mpsoc run-time management jungle. Journal of Signal Processing
Systems, 60(2):251–268, 2008.

[59] Jaehyun Park, Donghwa Shin, Naehyuck Chang, and M. Pedram. Ac-
curate modeling and calculation of delay and energy overheads of dy-
namic voltage scaling in modern high-performance microprocessors. In
Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE Inter-
national Symposium on, pages 419–424, Aug 2010.

[60] L. Parolini, B. Sinopoli, B.H. Krogh, and Zhikui Wang. A cyber-
physical systems approach to data center modeling and control for en-
ergy efficiency. Proceedings of the IEEE, 100(1):254–268, Jan 2012.

[61] Maxime Pelcat, Jonathan Piat, Matthieu Wipliez, Slaheddine Aridhi,
and Jean-François Nezan. An open framework for rapid prototyping of
signal processing applications. EURASIP journal on embedded systems,
2009:11, 2009.

[62] Sreeram Potluri, Karen Tomko, Devendar Bureddy, and Dha-
baleswar K. Panda. Intra-mic mpi communication using mvapich2:
Early experience. Texas Advanced Computing Center (TACC)-Intel
Highly Parallel Computing Symposium, April 2012.

[63] M.D. Powell and T.N. Vijaykumar. Resource area dilation to reduce
power density in throughput servers. In Low Power Electronics and De-
sign (ISLPED), 2007 ACM/IEEE International Symposium on, pages
268–273, Aug 2007.

[64] Bharathwaj Raghunathan, Yatish Turakhia, Siddharth Garg, and Di-
ana Marculescu. Cherry-picking: Exploiting process variations in dark-
silicon homogeneous chip multi-processors. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2013, pages 39–44, March
2013.

[65] Amir-Mohammad Rahmani. Exploration and Design of Power-Efficient
Networked Many-Core Systems. PhD thesis.

[66] T. Rauber and G. Runger. Energy-aware execution of fork-join-based
task parallelism. In Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), 2012 IEEE 20th Interna-
tional Symposium on, pages 231–240, 2012.

99

[67] Erik Reed, Abe Ishihara, and Ole J. Mengshoel. Adaptive control of
apache web server. In Presented as part of the 8th International Work-
shop on Feedback Computing, Berkeley, CA, 2013. USENIX.

[68] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leak-
age current mechanisms and leakage reduction techniques in deep-
submicrometer cmos circuits. Proceedings of the IEEE, 91(2):305–327,
Feb 2003.

[69] M. Sadri, A. Bartolini, and L. Benini. Single-chip cloud computer ther-
mal model. In Thermal Investigations of ICs and Systems (THER-
MINIC), 2011 17th International Workshop on, pages 1–6, 2011.

[70] H. Sasaki, S. Imamura, and K. Inoue. Coordinated power-performance
optimization in manycores. In Parallel Architectures and Compilation
Techniques (PACT), 2013 22nd International Conference on, pages 51–
61, 2013.

[71] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up latencies
for processor idle states on current x86 processors. Computer Science
- Research and Development, pages 1–9, 2014.

[72] Vanessa Segovia. Adaptive CPU resource management for multicore
platforms. Licentiate thesis, Lund University, Sep. 2011.

[73] Yakun Sophia Shao and David Brooks. Energy characterization and
instruction-level energy model of intel’s xeon phi processor. In Proceed-
ings of the 2013 International Symposium on Low Power Electronics
and Design, ISLPED ’13, pages 389–394, Piscataway, NJ, USA, 2013.
IEEE Press.

[74] Hao Shen, Jun Lu, and Qinru Qiu. Learning based dvfs for simulta-
neous temperature, performance and energy management. In Quality
Electronic Design (ISQED), 2012 13th International Symposium on,
pages 747–754, March 2012.

[75] P.S. Shenoy, Sai Zhang, R.A. Abdallah, P.T. Krein, and N.R. Shanbhag.
Overcoming the power wall: Connecting voltage domains in series. In
Energy Aware Computing (ICEAC), 2011 International Conference on,
pages 1–6, Nov 2011.

[76] H. Singh, K. Agarwal, D. Sylvester, and K.J. Nowka. Enhanced leak-
age reduction techniques using intermediate strength power gating.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
15(11):1215 –1224, nov. 2007.

100

[77] Joachim Sjöblom. Power efficient scheduling for a cloud system. Mas-
ter’s thesis, Åbo Akademi University, Turku, Finland, September 2012.

[78] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green governors: A
framework for continuously adaptive dvfs. In Green Computing Con-
ference and Workshops (IGCC), 2011 International, pages 1–8, July
2011.

[79] Venkatesh Pallipadi Alexey Starikovskiy. The ondemand governor. In
Proceedings of theLinux Symposium, 2006.

[80] M. Tolentino and K.W. Cameron. The optimist, the pessimist, and the
global race to exascale in 20 megawatts. Computer, 45(1):95–97, Jan
2012.

[81] C. Truchet, F. Richoux, and P. Codognet. Prediction of parallel speed-
ups for las vegas algorithms. In Parallel Processing (ICPP), 2013 42nd
International Conference on, pages 160–169, Oct 2013.

[82] B.M. Tudor and Yong-Meng Teo. Towards modelling parallelism and
energy performance of multicore systems. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE
26th International, pages 2526–2529, 2012.

[83] A. Varghese, B. Edwards, G. Mitra, and A.P. Rendell. Programming
the adapteva epiphany 64-core network-on-chip coprocessor. In Parallel
Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International, pages 984–992, May 2014.

[84] Ankush Varma, Brinda Ganesh, Mainak Sen, Suchismita Roy Choud-
hury, Lakshmi Srinivasan, and Bruce Jacob. A control-theoretic ap-
proach to dynamic voltage scheduling. In Proceedings of the 2003 in-
ternational conference on Compilers, architecture and synthesis for em-
bedded systems, CASES ’03, pages 255–266, New York, NY, USA, 2003.
ACM.

[85] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. SIGARCH Comput. Archit. News, 38(1):205–
218, March 2010.

[86] Jeffrey S. Vetter and Patrick H. Worley. Asserting performance expec-
tations. In Proceedings of the 2002 ACM/IEEE Conference on Super-
computing, SC ’02, pages 1–13, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

101

[87] O. Villa, D.R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luit-
jens, N. Sakharnykh, Peng Wang, P. Micikevicius, A. Scudiero, S.W.
Keckler, and W.J. Dally. Scaling the power wall: A path to exascale.
In High Performance Computing, Networking, Storage and Analysis,
SC14: International Conference for, pages 830–841, Nov 2014.

[88] C.Y. Villalpando, A.E. Johnson, R. Some, J. Oberlin, and S. Goldberg.
Investigation of the tilera processor for real time hazard detection and
avoidance on the altair lunar lander. In Aerospace Conference, 2010
IEEE, pages 1 –9, march 2010.

[89] Liang Wang and K. Skadron. Implications of the power wall: Dim cores
and reconfigurable logic. Micro, IEEE, 33(5):40–48, Sept 2013.

Part II

Original Publications

Paper I

Power Proportional Characteristics of
an Energy Manager for Web Clusters

Simon Holmbacka, Sébastien Lafond, Johan Lilius

Originally published Proceedings on Embedded Computer Systems: Ar-
chitecture, Modeling and Simulation, 2011 IEEE International Confer-
ence, pages 51–58. Samos, Greece.

c©2011 IEEE. Reprinted with permission.

Power Proportional Characteristics of an Energy
Manager for Web Clusters

Simon Holmbacka, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
firstname.lastname@abo.fi

Abstract—Energy consumption is a major issue in data centers
operating 24 hours a day, 7 days a week. The power dissipated
by a web cluster is not proportional to the numbers of incoming
requests if only DVFS (Dynamic Voltage Frequency Scaling) is
used. This is because of the nonlinear power efficiency of DVFS,
the large load fluctuation in web services and the typical CPU
utilization rates of a server.

This paper presents a system level controller making a cluster
of low-power servers power proportional by managing the
resources on the platform. Our controller uses sleep states to
switch on or off CPUs in order to continuously match the current
workload with the system capacity. Methods from control theory
are used to drive the CPUs from and into sleep states. The power
proportional characteristics of the proposed energy manager are
studied for different workload patterns. Results from system
simulation show that power proportionality is obtainable but
only with appropriate parameters set on the controller.

I. INTRODUCTION

Energy efficiency and power density are key issues for data
centers. These factors do not only affect the operational costs
and ecological footprint, but have also an important impact on
the possibility to construct or expend data centers.

The Efficient Servers project [1] evaluated the increase of
electric power consumption of servers in Western Europe at
37% between 2003 and 2006 [2]. In 2007 the energy consumed
in data centers in Western Europe was 56 TWh and is projected
to increase to over 100 TWh per year by 2020 [3].

In current servers, there is a mismatch between the energy-
efficiency characteristics and the behavior of server class
workloads as their most common operating mode corresponds
to the lowest energy-efficiency region [4]. When using DVFS
as power management technique, an energy efficient server
still consumes about half of its energy while idling.

With an average of 10 to 50 percent CPU utilization for
servers [5] and the large load fluctuation found in typical
web services [6], the use of slower but more energy-efficient
cores could match the workload more efficiently with a much
finer granularity than server-grade cores. A cluster of mobile
processors can provide the same computational power as
server-grade processors, but with a lower power density. The
usage of mobile processors also aims at obtaining cheaper
server facilities by minimizing the need of active cooling
infrastructure.

Because switching on and off a CPU is orders of magnitude
slower than changing its voltage and frequency, a cluster of

such low-power CPUs needs an energy manager on system
level i.e. a component controlling the whole cluster as one
entity and continuously matching the current workload with
the whole cluster capacity.

This paper analyses for different workload patterns the pro-
portional characteristics of an energy manager that uses sleep
states to dynamically adjust the system capacity according
to the workload so that minimal performance penalty and
maximum reduction in energy consumption is obtained.

II. RELATED WORK

Previous work has been done in the area of using sleep
states to reduce the energy consumption of mobile processors.
The authors in [7] are proposing a mixture of high-end Xeon
servers combined with low-end mobile processors in order to
achieve a fine granularity of system capacity in relation to the
workload. All processing elements in the system uses sleep
states to shut down the CPUs during low workload and thus
reduce the energy consumption. Once the system recognizes
an increase in workload, the system activates the processing el-
ements in accordance with their different capacities and wake-
up times. To determine the power proportionality, experiments
were conducted on two different types of workload patterns,
which results concluded in a power proportional system.

In our approach, the power management system uses control
theory as basis for the capacity adaption. We argue that the
use of the PID controller could, with correctly set parameters,
create a near optimal adaption of system capacity to the
workload. Moreover, we intend to use a cluster consisting only
of low-end mobile processors to gain finer power granularity
of the whole system.

The authors in [8] present a sleep state based power manager
for server grade CPUs together with PSUs (Power Supply
Units) in a so called RAILS-configuration (Redundant Array
for Inexpensive Load Sharing). Smaller low-power PSUs are
used instead of one powerful, since a RAILS-configuration
will make the PSUs operate in their most energy efficient sweet
spot. As the power need increases more PSUs are enabled to
provide the sufficient power needed. Similarly to [7] the CPU
cores are switched on and off according to the workload to
give a better power proportionality of the system. The method
of anticipating the workload curve was not mentioned, but an
average of 74 % energy reduction was achievable according

to the authors [8]. The power proportionality was determined
based on the wake-up time for the core, and would in best
case result in a linear function.

We have used the idea from both of the previous works
together with the implementation of a PID controller [9] to
adjust the capacity of the system. By using a larger number of
low power CPUs we argue that – by having a finer granularity
– we could achieve a higher energy reduction while keeping
the power proportionality constant and obtaining a sufficient
performance.

III. POWER PROPORTIONAL WEB CLUSTER

A. System Level Power Management

We created a power manager which adjusts the system
capacity dynamically in order to save energy. The manager
uses sleep states to switch on and off cores according to the
current need and according to the anticipated future workload.
The simulated cluster uses ARM Cortex-A8 processors used
in the BeagleBoard and its wake-up time was measured
by experiments to roughly 800 ms. By using the measured
capacity of a Cortex-A8 the energy consumption for a many-
core cluster was simulated. The basic processing element in
this paper is referred to as a core, since embedded systems
with multi-core configurations have recently been available.

1) Overview: The outline of the framework is shown in
Figure 1. The framework is based on input in form of requests
made to the service. The framework shows the output based
on data from a PID-controller and a feedback loop, which
sends information to the compare-block regarding the needed
capacity of the system.

Fig. 1: Structure of the simulation framework

2) System capacity: System capacity is measured as the
number of requests per second the system as a whole is able to
handle. The compare block reads the workload with a certain
sample rate and divides this number with the current capacity
of the system. The ratio of this division determines the QoS
(Quality of Service) output. When the capacity monitor in
the compare-block notices a higher workload than the system
is able to handle, it sends the ratio between the workload
and the capacity to the PID controller in form of an error
value. Similarly when the capacity of the system exceeds the
workload, the monitor sends a negative error value to the
controller which in turn switches off CPU cores.

Since switching on and off CPU cores is not instantaneous,
the framework uses a delay to postpone the control signal
to the workload comparator. For this function, the simulation
framework implements a unit-delay block with a configurable

delay length. This simulates the actual delay introduced in the
change of CPU state.

The framework uses one static core. This core will con-
stantly be active and is used to instantaneously handle the
small amount of requests that are made between request peaks.
The number of static cores is also configurable.

3) QoS value: A trade-off to energy consumption is the
performance and response time of the system. By lowering the
capacity of the system the performance will drop – this leads
occasionally to an increased response time for certain requests.
Quality of Service is the measurement on how well the system
performs compared to a pre-defined value. Our simulations
show a drop in QoS as soon as a request is delayed more
than the selected deadline. The amount of delayed requests
compared to non-delayed requests results in the QoS value. If
every request is handled before their deadlines the QoS will be
100 %, if half of the requests are handled before the deadline
the QoS will be 50 % etc.

4) PID controller: The controller block in Figure 1 in-
cludes a PID controller which, based on methods from control
theory, adjusts the capacity of the system. The obtained
difference between y and r is called the control error e, which
is the a priori result from the capacity comparison in the
previous block. The output y of the PID controller partly shows
the amount of cores needed to achieve a sufficient performance
and partly generates feedback data to the comparison block
in the next time frame. The aim of the feedback loop is to
minimize the control error and to thereby achieve equilibrium
in the system.

The behavior of the PID controller is determined by setting
P , I and D values in the controller. The value of P determines
how fast the controller reacts on a change in the reference
value r. The value I , which is the inverse time constant of the
controller, determines the integral effect of the control error.
The derivative part, which is adjusted by the parameter D,
predicts the future input based on the previous input.

5) Final energy consumption: The system shows the
power output as a multiple of the amount of active cores and
their power dissipation. The cores are assumed to run on the
highest possible clock frequency once activated, and retain
this clock frequency until they are shut down. The final energy
consumption is the sum over the power dissipation for all time
frames in the simulation.

B. Power Proportionality

While the power manager shows a promising result in
energy reduction, we need to investigate how well it scales in
a growing web cluster. To be able to apply the power manager
into a large cluster the proportionality of the workload com-
pared to the power dissipated must be constant. This means
that if the workload increases by a certain factor, the power
dissipation should also increase with the same factor.

To measure the proportionality we created different work-
load patterns against which the power dissipation was com-
pared. The behavior of the system was simulated by inserting
the workload patterns into the simulation framework.

IV. SIMULATION DATA

Our simulations will be based partly on specially generated
request patterns and partly on real web server data, which
allows for a comparison of power proportionality in different
situations. The first simulations are executed against trivial
cases to evaluate and clearly illustrate the theory. Later the
real web server data will show the obtained proportionality in
a real-world scenario.

A. Request patterns
1) Linear cone: The first pattern to investigate energy

proportionality is generated by requests made according to a
linear cone as seen in Figure 2. Requests are made with certain
increments and a selected step size. The increment determines
how much the requests increase for each step, the length of
which is selected by a step size.

For the energy to be proportional to the requests, the
power dissipation for all time frames should increase linearly
according to the workload curve. A linear increase in the
power dissipation would scale the energy consumption well
in a large web cluster.

Fig. 2: Linear workload pattern

2) Exponentially increasing cone: The exponentially in-
creasing cone in Figure 3 is created by incrementing the steps
multiplied by a certain constant. The energy proportionality of
an exponentially increasing pattern should be followed by a
similar pattern in the power dissipation. By investigating dif-
ferent patterns, we will be able to determine the proportionality
characteristics of the power management system.

Fig. 3: Exponential workload pattern

3) Web server requests: We also used requests made to
a Finnish web space provider [10] to compare the results of
power proportionality in a real-world scenario. The request
samples were obtained from 1 Nov. 2010 and simulated for
30 minutes and shown in Figure 4. The simulation data is
freely available from [11].

B. PID-parameters

The values of the PID-parameters P , I and D determines
how the controller should react to its input signal. The pa-
rameters were chosen based on a heuristic method, and tuned
until desired result was achieved. The simulation framework
supports currently only static PID-parameters, but could even-
tually be further developed to handle dynamic values. The
value of the delay after the PID-block was chosen, based on
conducted experiments, to 1000 ms in order to ensure the
necessary delay of the wake-up time, which was measured
to 800 ms. A sample time of 250 ms was selected as time
frame for updating the output from the controller.

C. BeagleBoard power dissipation

To obtain values for the simulation framework and be able to
run a proof-of-concept simulation, the power dissipation of one
BeagleBoard revision C3 low-power platform was measured.
The BeagleBoard is equipped with one ARM Cortex-A8
processor-based TI-OMAP3530 chip that does not require
any forced cooling system or heat sinks. The system ran
Ångström Linux kernel version 2.6.32 and was controlled
through a remote serial console. The operating performance
points (OPPs) of the TI-OMAP3530 chip were used to dy-
namically scale the clock frequency and voltage of the ARM
subsystem. The OPPs were accessed through the Linux ACPI.
To avoid unwanted energy consumption, the display subsystem
of the TI-OMAP3530 was disabled. The BeagleBoard includes
a resistor, which provides a way to measure the current
consumption used by the board. The voltage drop across the
resistor was measured for each OPP and the corresponding
power was calculated. The obtained power values of the
system running at respective voltage and clock frequency are
displayed in Table I. To ensure that the load would remain
constant during the measurements, the processor was stressed
to 100 % utilization using a simple program that recursively
counts Fibonacci numbers. The highest OPP (720 MHz) was
used in the simulation framework to represent the power
dissipation for the active core.

TABLE I: Measured power dissipation of the BeagleBoard

Frequency [MHz] 720 600 550 500 250 125
Voltage [V] 1.35 1.35 1.27 1.20 1.06 0.985
Power [W] 1.40 1.15 1.05 1.00 0.65 0.55

D. BeagleBoard load capacity

The system capacity is dependent on both the number of
CPU cores in use and their capacity. We needed to determine
the capacity of a BeagleBoard in order to run a realistic
simulation.

Experiments were therefore conducted, which results de-
fined the system capacity of one BeagleBoard. The test tool
in use was Autobench [12] which generates requests to an
Apache [13] server running on the BeagleBoard. The number
of requests per second generated by Autobench started from a

Fig. 4: Workload sample from [10] 1. November 2010

selected number and increased by specified increments. When
the number of requests per second start to exceed the capacity
of the host, delay-errors will start to occur as the selected
deadlines for the requests are not met. The requests from
Autobench are made to a selected file on the Apache server
running on the BeagleBoard. Since a larger file will require
more time to process, the capacity of the server is dependent
on the size of the requested file. Our experiments show that
a file size of 248 KB with a deadline of 1000 ms will result
in the capacity of 5 requests per second – this number was
used in the simulations. Related experiments in [7] result also
in the capacity of 5 requests per second for the BeagleBoard
which, as stated, would compare to a file size of 248 KB.

The file size was constant for each simulation with a maxi-
mum amount of 10 or 20 cores available. Using these numbers,
the cluster would have a theoretical maximum capacity of 50
or 100 requests per second.

V. SIMULATION RESULTS

The framework for simulation was set-up according to the
results from the experiments presented in the previous section.
The simulations were run in three phases: using a linear cone,
an exponential cone and real web server data.

A. Linear cone

The first simulation used the workload pattern of a linear
cone. The step size of the cone determines how fast the request
rate is climbing. A longer step size means that request rate
will stay constant for a longer time. The step size for the first
simulation was set to 5 seconds per step. Results from the first
simulation is shown in Figure 5, which displays three graphs.
The first graph (1) shows the power dissipation compared to
the request rate. The second graph (2) shows the amount of
cores switched on in the current time frame, and the last graph
(3) shows the quality of service as a function of time.

The amount of cores in Figure 5 (2) shows to be spiking
each time the step increases. This peak is a result of the
delay (wake-up time) the cores introduce when switching from
sleep state to active state. Because of the delay, the system
will not react instantaneously to the increase in request rate
(workload). As soon as the system notices the drop in QoS it
needs to compensate for the delayed requests by switching on
additional cores. After the system has processed the delayed
requests, the need for the additional cores does not exist any
more and they are shut off. This phenomenon occurs every
time the step increases until a stable request rate is established.

Fig. 5: Simulation of linear cone pattern

The power dissipation follows the amount of CPU cores
since a CPU core is, in this model, either fully on or off.
Similar peaks occurs therefore also in the power dissipation
curve in Figure 5 (1) as the system compensates for the
delayed requests.

Figure 5 (3) shows that the QoS value drops each time the
step increases. This model, which strives to simulate a realistic
case, cannot fully eliminate the QoS drop because of the delay
of waking up cores. A strategy to reduce the QoS drop is to
make the PID controller more QoS conservative by adjusting
the parameters – this, however, also results in increased energy
consumption.

Conclusions about the power proportionality can be drawn

(a) Simulation with initial parameters (b) Simulation with improved parameters

Fig. 6: Simulation of exponential pattern with two different sets of parameters

based on the curve from Figure 5 (1). Aside from the fluctua-
tion peaks when the steps increase, the power dissipation curve
follows the workload in a linear fashion. By applying a low-
pass filter on the power curve, we obtained the mean values
for the fluctuating graph. The proportionality factor between
power and workload is shown in Table II.

TABLE II: Measurement of power proportionality obtained
from Figure 5 (1)

Time [s] 100 150 200 250 300 350 400
Req/sec 20 30 40 50 40 30 20
Power [W] 5.51 8.32 11.12 13.76 11.48 8.63 5.77
Prop. [Req/J] 3.63 3.60 3.60 3.63 3.48 3.47 3.47

Table II shows seven values derived from Figure 5 (1). The
last row shows the final proportionality factor which is the
ratio between the Req/sec and power, and thus uses the unit
Requests/J. From the last row in the table we can see that
the values of the proportionality does not fluctuate much –
in fact the largest fluctuation, shown in Table II, results in a
difference of 5 %.

B. Exponential cone

Secondly the framework was set-up with the same param-
eters as in the previous case, but with a different workload
pattern. The second pattern was an exponentially growing
request curve as shown in Figure 3. The workload used in
this simulation has, in contrast to the previous simulation, a
maximum value of 100 req/s to more clearly illustrate the

behavior of the exponentially increasing pattern. To cope with
100 req/s we allow the system to use 20 cores instead of 10.

Figure 6a shows the result from the simulation. By using
the same PID-parameters the controller fails to establish an
effective output signal used for switching on and off the cores.
The amount of cores in Figure 6a (2) shows to be insufficient
as the curve increases. As the curve exponentially decreases,
the control error remains high because of integrating property
of the controller. The result is a slowly diminishing output
which leads to wasted energy.

Because this simulation did not show a power propor-
tional behavior we needed to alter the PID-parameters on
the controller. After establishing a new set of parameters by
experiments we run the simulation again. The new set of
parameters achieved, with the same workload, better power
proportionality as shown in Figure 6b. Table III shows both
power dissipation and the power proportionality for both
graphs in Figure 6. As seen in the table, case b (row 6) will
show better proportionality than case a (row 4) because the
power curve follows the workload more precisely.

TABLE III: Measurement of power proportionality obtained
from Figure 6 (1)

Time [s] 15 25 35 45 55 65 75
Req/sec 40 60 80 100 80 60 40
Power 6a 4.20 7.70 15.75 27.65 26.95 20.30 15.4
Prop. 6a 3.65 4.08 3.76 3.38 1.79 1.22 0.69
Power 6b 4.20 7.70 15.40 28.00 18.55 11.90 8.40
Prop. 6b 3.65 3.82 3.61 3.34 2.60 2.08 1.55

(a) Simulation with exponential parameters (b) Simulation with linear parameters

Fig. 7: Simulation of exponential pattern with two different sets of parameters

C. Web server data
The final simulation used the request log from a web

server as workload. The PID-parameters for this simulation
was chosen according to the previous simulation (exponential
cone), but since the workload shows a maximum value of 50
req/s we allowed only 10 cores to be active simultaneously.
The results from the simulation is shown in Figure 7a. The
PID-parameters used for the exponential cone turned out to be
unsuitable for controlling the workload from the web server,
since the power dissipation will remain relatively constant and
thus result in a poor energy management.

To achieve a better power proportionality we adjusted the
PID-parameters according to the simulation with the linear
cone. The results from this simulation is pictured in Figure
7b. By interpreting the curves in Figure 7 (1) we can see that
the power proportionality of the system is highly dependent
on the controller settings. The use of CPU cores pictured in
Figure 7b (2) matches the workload better than the previous
simulation. By using the new PID-parameters we achieved a
better power proportionality as seen in Figure 7b (1) compared
to the previous simulation showed in Figure 7a (1). The QoS
was not included in Figure 7b and 7a since the numbers of
cores remained high during the whole simulation and thus not
resulted in any substantial QoS fluctuations.

To further improve the power proportionality factor we
tuned the PID-parameters for this third case. The mentioned
PID-parameters were selected to match the spiky workload ob-
tained in a real-world scenario seen in Figure 4. A simulation
using these parameters results in a greater energy reduction
than the two previous simulations – this while keeping an
acceptable QoS. The result from the last simulation is shown

in Figure 9.
To calculate the power proportionality from Figures 7 and 9

we needed to time shift the power curve to accommodate for
the delay introduced by the wake-up mechanism. Furthermore,
we chose certain points in time where interesting measurement
would take place. Table IV views the power proportionality for
all three cases, with the power curve shifted one second to the
left. This number displays the proportionality factor, meaning
that a lower value is obtained when the system is using much
energy [J] to serve few requests.

TABLE IV: Measurement of power proportionality obtained
from Figure 7 (1) and 9 (1)

Time [s] 617 635 654 680 697 752 765
Req/sec 6 14 10 1 10 50 1
Prop(lin) 7b 1.07 3.43 0.89 0.17 2.45 3.57 0.07
Prop(exp) 7a 0.80 1.87 1.23 0.13 1.26 3.57 0.09
Prop(real) 9 2.54 1.31 1.18 0.66 1.30 3.57 0.61

Prop(lin) and Prop(exp) in Table IV represents the power
proportionality of the first two simulations on real web server
data. As seen in the table the fluctuations are large and close
to zero in the last column. A value close to zero means that
the power output of the system is much larger than the amount
requests made to the system, i.e. the system is wasting much
energy. The 7:th column (at time 752 s) shows equal values
for all three cases. This happens due to the fact that the system
is slightly overloaded, which happens if 50 or more requests
are made during one second.

The results in Prop(real) show occasionally drops in pro-
portionality such as at times 680 s and 765 s. This drop occurs

Fig. 8: Measurement of proportionality

Fig. 9: Simulation of web server pattern

because of the static CPU core that will run even though the
system only needs to process one request. Implementation of
DVFS would in these cases be useful since the granularity of
the power scaling would increase. Furthermore, in Prop(real)
at times 635 s, 654 s and 697 s the power proportionality
decreases even though the request rate is not minimal. This
phenomenon is a temporal response from the system during a

workload peak. The system compensates for delayed requests
by temporary rising the capacity. Over time these workload
peaks would not account substantially for the power propor-
tionality of the system.

To illustrate the different proportionality factors in the three
different cases, the drawn graph displays the whole time range
from 600 s to 800 s (Figure 8). Furthermore, a low pass filter
was used to filter the highly fluctuating output signal to better
illustrate the average proportionality factor by using different
PID parameters. The figure clearly shows that correct PID
parameters will result in a higher proportionality factor, and
thus less energy waste. The proportionality factor for a system
without any power manager (all cores statically on) was also
displayed in order to better compare the power proportionality
of the manager.

D. Simulation summary

By observing the results from the three different simula-
tions: Linear cone, exponential cone and web server data,
we can state that power proportionality could be achieved
by setting the appropriate PID control parameters for the
workload in question. The outcome from using the power
manager is a system with higher power proportionality, which
means that most of the CPU power is actually used for real
work rather than waiting for work to arrive.

The PID-controller reacts differently depending on the input
of the controller, which means that the settings for one
environment not necessarily support another environment. A
run-time update of the PID variables would mean that the
system should automatically accommodate the PID-parameters
for not only the workload, but also the workload pattern.
Another solution would be a model that reflects an a priori
workload with sufficient precision. This model could use static
PID parameters as long as the workload follows the model.

VI. CONCLUSIONS

A energy manager for a many-core web cluster was cre-
ated in order for the system to show power proportional
characteristics when serving alternating amount of work. The

power manager matches the system capacity, every time frame,
according to the workload by using a PID-controller.

This paper has investigated the power proportionality char-
acteristics of the power manager by simulations performed on
determined workload patterns. The results from the simula-
tions were used to determine the relationship between power
dissipation and workload for selected sample points.

The simulations were divided up into three different work-
load patterns. These three patterns were individually simulated
and their respective results were compared. The simulations
show that power proportionality is achievable, but only with
the correct parameters set on the controller. The controller
parameters determine how the controller reacts on changes in
the input signal.

In the most trivial case we used a linear cone as the
workload pattern. The results from the controller showed a non
fluctuating and constant relationship between the workload
and the total power dissipation of the system. The second
simulation used an exponentially increasing workload pattern
which, with the same controller parameters, did not reach
a sufficient proportionality. The parameters on the controller
were adjusted, after which a better result was obtained. Lastly
real data from a web server was used as workload pattern.
The result showed that the controller parameters from neither
of the two previous cases would give a power proportional
system. The controller parameters were therefore adjusted to
match the spiky nature of web server requests, which resulted
in an increased power proportionality.

The parameters of the PID-controller need, as a conclusion,
to match the workload pattern for the controller to be able to
match the capacity of the system to the workload. Incorrect
parameters will either result in poor QoS or unnecessary
energy waste. The parameters need therefore a model from
which the workload pattern is derived, or to dynamically
change during run time. Based on these assumptions, our
simulations show that the proportionality factor of a many-
core system that uses a sleep state based power management
is achievable.

VII. FUTURE WORK

As concluded, future research is needed to determine if
the system can reach power proportionality facing a general
workload pattern. In order to adapt the system to such a
pattern, the PID controller must adjust its control parameters
during run-time. The run-time mechanism must therefore
both analyze the previous workload pattern and anticipate
the future workload pattern in order to make adjustment of
the parameters. By recording the history of workload, CPU
time, performance etc. the system could create certain models
against which the parameter settings are set. After changes
in the input variables occur, the models changes and thereby
requires different controller settings.

Furthermore the power proportionality and energy reduction
need to be compared to a system with both the current power
manager and DVFS for each CPU core. The CPUs could
thereby scale down their frequencies, and power dissipation

(Table I) in accordance with the workload and thus increase
the granularity of the system capacity further. Because scaling
the frequencies is by orders of magnitude faster than switching
on and off cores, the switching delay would not increase
substantially.

REFERENCES

[1] “Efficient servers, a project conducted within the eu-programme
intelligent energy europe.” [Online]. Available: http://www.efficient-
server.eu

[2] B. Schäppi, F. Bellosa, B. Przywara, T. Bogner, S. Weeren, and
A. Anglade, “Energy efficient servers in europe. energy consumption,
saving potentials, market barriers and measures. part 1: Energy consump-
tion and saving potentials,” The Efficient Servers Consortium, Tech.
Rep., November 2007.

[3] “Code of conduct on data centres energy efficiency, version 2.0,”
European Commission. Institute for Energy, Renewable Energies Unit,
Tech. Rep., November 2009.

[4] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” Computer, vol. 40, pp. 33–37, December 2007. [Online].
Available: http://portal.acm.org/citation.cfm?id=1339817.1339894

[5] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer, vol. 40, no. 12, pp. 33 –37, 2007.

[6] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload anal-
ysis,” Vrije Universiteit, Amsterdam, The Netherlands, Tech. Rep. IR-
CS-041, Sepember 2007 (revised: June 2008).

[7] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and
R. H. Katz, “Napsac: design and implementation of a power-
proportional web cluster,” in Proceedings of the first ACM SIGCOMM
workshop on Green networking, ser. Green Networking ’10. New
York, NY, USA: ACM, 2010, pp. 15–22. [Online]. Available:
http://doi.acm.org/10.1145/1851290.1851294

[8] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” SIGPLAN Not., vol. 44, pp. 205–216, March 2009.
[Online]. Available: http://doi.acm.org/10.1145/1508284.1508269

[9] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of
Computing Systems. Wiley and sons inc., 2004.

[10] K. Ab, “Kulturhuset,” January 2011. [Online]. Available:
http://kulturhuset.fi/start/

[11] Kulturhuset, “Request log november 2010 kulturhuset.” [Online].
Available: https://research.it.abo.fi/projects/cloud/data/Request log kul
turhuset nov2010.zip

[12] J. T. J. Midgley, “Autobench,” Xenoclast, May 2004. [Online].
Available: http://www.xenoclast.org/autobench/

[13] T. A. S. Foundation, “Apache,” 2010. [Online]. Available:
http://www.apache.org/

Paper II

A PID-Controlled Power Manager for
Energy Efficient Web Clusters

Simon Holmbacka, Sébastien Lafond, Johan Lilius

Originally published Proceedings of the International Conference on
Cloud and Green Computing, 2011 IEEE International Conference,
pages 712–728. Sydney, Australia.

c©2011 IEEE. Reprinted with permission.

A PID-Controlled Power Manager for Energy Efficient Web Clusters

Simon Holmbacka, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
Email: firstname.lastname@abo.fi

Abstract—Large data centers using high-end processors
operating continuously around the clock are major energy
consumers. Long periods of idling due to low workload will
cause a waste in energy because the processors are active but
not doing any useful work.

A cluster of low-end embedded processors could continu-
ously match its computational capacity with the workload at
a much finer granularity than a server-grade processor by
changing the power states of the CPUs. This paper introduces
a framework simulating a system level power manager for
many-core clusters targeting server cards used in warehouse-
sized data centers. The power management system uses sleep
states to switch on or off processing elements in a cluster of
low power boards to match the capacity of the whole system
with the workload, and thus save energy. A PID-controller is
implemented in the system; a component already well known
with established methods in the industrial control domain.
We intend to use this component to effectively determine the
number of active processing elements in the used many-core
cluster.

The proposed power manager can save up to 62 percent in
energy compared to a system which only uses dynamic voltage
and frequency scaling as power management.

Keywords-Power Management; Web Clusters; PID-
controller; Low Power Processors;

I. INTRODUCTION

Energy efficiency and physical size have become key
issues for server cards used in warehouse-sized data centers.
These factors do not only affect the operational costs and
ecological footprint, but also have an impact on the possibil-
ities to construct or expand data centers. With an average of
10 to 50 percent CPU utilization for servers [1] and the large
load fluctuation found in typical web services [2], the use
of slower but more energy-efficient cores could match the
workload more efficiently with a much finer granularity and
higher power proportionality [3] than server-grade cores.

A cluster of mobile processors can provide the same
computational power as server-grade processors, but with
a lower total energy consumption. Such a cluster can reduce
the energy consumption efficiently by switching off elements
according to the current need of service. For this purpose
the cluster needs a power management on system level i.e.
a component controlling the whole cluster as one entity.

This paper proposes a system level power manager for a
cluster consisting of low-power nodes. The power manager
uses sleep states to dynamically adjust the system capacity

according to the workload. The monitored workload is
matched so that minimal performance penalty and maximum
reduction in energy consumption is obtained.

The PID-controller used in the industrial domain contains
well established methods for obtaining stability and equilib-
rium in a dynamic system. We intend to exploit the theory of
the PID-controller, and implement it into our power manager
for matching the capacity of the system to the incoming
workload.

Simulation parameters and workload data have been ob-
tained by conducting experiments on real hardware, and by
collecting statistics from a web space provider. The eval-
uated cluster is constructed of BeagleBoards [4] equipped
with the ARM Cortex-A8 CPU. The chosen platform was
selected based on its low price, energy efficiency and per-
formance. By running several simulations on data samples
containing 30 minutes of web statistics, we obtained a
potential energy reduction of up to 62 percent compared
to a similar system that only uses DVFS.

II. RELATED WORK

The authors of [5] suggests a computational environment
consisting of high-end Xeon servers combined with low-end
mobile processors in order to achieve a fine granularity of
system capacity in relation to the workload. All processing
elements in the system uses sleep states to match the system
capacity with the workload and thus reduce the energy
consumption. Once the system recognizes an increase in
workload, the system activates the processing elements in
accordance with their different capacities and wake-up times.
Four different control algorithms for adapting the capacity
to the workload were presented and evaluated in the paper.

The authors in [6] also uses per-core sleep states to
reduce the energy consumption in high-end server CPUs.
The control algorithm used a simple high/low watermark on
each CPU to decide which CPU core should be active. The
obtained energy reduction for the system was claimed to be
40 % higher than a system with only DVFS available.

We intend to create fast, scalable and efficient capacity
controller with control theoretic methods as basis. We argue
that the use of the PID-controller could create a near optimal
adaption of system capacity to the workload.

To determine the needed capacity of the system Bertini
et. al [7] used tardiness for setting the needed performance

by altering the CPU frequencies in a multi-tier cluster.
Furthermore, the work in [8] presents an energy manager
for server clusters based on a power model combined with a
closed-loop controller to control the performance with sleep
states and DVFS. In this work high-end CPUs were used
evaluated with different energy policies and wake-up times
were not considered.

Our sleep state-based system in contrast operates with
a granularity of seconds and the wake-up time of cores
highly influences the system. Our manager and architecture
consist only of low-end embedded processors to give a
distributed view of the system, and to adapt the manager
to future many-core architectures. A combination of using
sleep states to reduce energy consumption, the theory of
the PID-controller to drive the capacity and the distributed
architecture could decrease energy consumption without a
substantial performance penalty.

III. SIMULATION FRAMEWORK

A. Overview

The dominant consumer of energy on the aforementioned
board is the CPU core [9], which our research focuses
on. A simulation framework was created in Simulink to
simulate and calculate the total energy reduction of the
boards induced by using the power manager. The framework
minimizes the total energy consumption by deactivating
cores while maintaining the required QoS (Section III-B).

The basic structure of the framework is illustrated in
Figure 1. The structure consists of a closed-loop system with
an input, a PID-controller that controls the system capacity,
and an output. The basic processing element in this paper is
referred to as a core, since embedded systems with multi-
core configurations have recently been available. The output
of the system is used to determine the amount of cores
needed to serve all requests.

Since a sleeping node will not be able to act as the power
manager, all state changes will be based on decisions from
a monitor node in the cluster i.e. the system level power
manager. By running the manager on system level, decisions
for power management will benefit the whole cluster instead
of only a local node and thus reach closer to a global energy
optimum.

Figure 1. Basic structure of the power management system

B. Performance and quality

The simulation framework compares system capacity, i.e.
how many requests the system can handle in a certain time,
and the current workload. This comparison is taking place in
the Compare block (Figure 1), which calculates difference
between these two values. Incoming request are being spread
out and processed in the web cluster in certain time frames.
The granularity of the framework is therefore the length of
one time frame.

QoS is a metric that is fully implementation dependent.
The term describes how well an application is performing
compared to its specification. QoS is usually used in soft
real-time systems, in which the deadlines are set based on the
human usability (or other subjective matters) of the system.
Our system uses QoS to give a notion of latency of the
request sent to the web service. A QoS drop occurs when
a request in a certain time frame is not handled before the
end of the time frame. This/these requests are then added to
the next time frame and the QoS drops with a certain factor.
Our definition of QoS states that as the workload exceeds
the system capacity in a time frame, the QoS will drop. Eq.
1 shows the relation between QoS, capacity and workload.

QoS =
(
1− W − C

W

)
· 100 (1)

where W is the current workload and C is system capacity.
The magnitude of the QoS drop is simply based on how
many of the incoming requests were not handled in one time
frame. The QoS is shown as a percentage. The maximum
QoS value of 100 % means that the system provides the
capacity to handle the whole workload in the measured time
frame.

C. Switching delay

Our power manager works within the granularity of
seconds. Since switching on cores is not instantaneous, the
simulation must contain a delay for changing the CPU
states. The algorithms in the PID-controller as well as
measurements of the output signal also adds to the overhead
of adapting the system capacity to the incoming workload.
This overhead is represented in the simulation by inserting a
delay block after the output of the PID-controller as shown
in Figure 1. The delay can be adjusted in the simulation
framework to represent different system configurations.

D. PID-controller

The PID-controller (Figure 1) is a common module in
many control systems. It controls an output signal y de-
pending on the input signal r and the controller settings.
The difference between r and y is called the error value e,
and is measured by using a feedback loop. The goal of the
PID-controller is to minimize the error value and achieve
equilibrium in the system.

The behavior of the PID-controller is determined by
setting P , I and D values in the controller. These values

Figure 2. Workload sample from [10] 1. November 2010

choose how the output signal should react to changes in the
input signal. The proportional part of the controller is set by
the P parameter, which determines how fast or aggressive
the controller reacts to changes in the input signal. I is
the integral part of the controller. The main function of the
integral value is to ensure that the process output agrees with
the set point value in steady state. The derivative value D
determines how the system reacts to changes in the reference
value. By using a derivative term, the future of the reference
curve is predicted based on previous values. The derivative
term also enhances stability in the system [11].

The PID-controller is used in our power manager to
select the amount of active CPU cores needed to process all
requests in a time frame – this means that the PID-controller
strives to activate only the minimum amount of cores and
therefore minimize the energy consumption.

E. System capacity

The output of the system shown in Figure 1 is the current
number of active CPU cores per time frame, which is
determined as the output from the PID-controller.

Furthermore, the simulation framework supports the usage
of statically active cores. These cores will be active and run
on highest frequency completely independent of the control
system. A high number of statically active cores allows the
system to instantaneously being able to process the work
between workload peaks. Workload peaks will decrease the
QoS because of the delay the power management system
introduces before it accommodates to the work peak. A high
number of static cores will therefore slow down the QoS
decrease during such a period, but will increase the average
power dissipation of the cluster.

F. Final energy consumption

The simulation framework calculates the energy consump-
tion for each time frame. The energy consumption is derived
from the amount of active cores multiplied by the power
dissipation of a core. We make the assumption that each core
has two different states: running or sleeping. Since the board
itself (with the CPU excluded) dissipates a small amount of
energy, the power dissipation of the whole board is included
in the output of one core for simplicity. The obtained power
dissipation values were measured on the BeagleBoard with
the DSP and the display subsystems disabled.

IV. SIMULATION DATA

In order to simulate a realistic situation we conducted
experiments to determine the parameters and settings for
the simulation framework.

A. Web server requests

The web server requests used in the simulations were
derived from [10] which is a Finnish web space provider.
These http requests were addressed to over 750 websites
and 510 domain names. By using data from an existing
web space provider, we created a realistic situation for
simulation. The workload curve pictured in Figure 2, relates
to the number of http requests in a daytime sample from
1. November 2010. The curve shows, on average, a low
workload with high peaks concentrated into certain time
intervals. 30 minute samples were collected on the same
date from the aforementioned server, and used as workload
in the simulations. The data is freely available from [12].

B. PID parameters

As mentioned, the PID parameters determine how the
controller reacts to changes in the input signal. This means
that finding the appropriate parameters for the PID-controller
is essential for having good regulation.

Several control methods for tuning PID parameters exist,
and we will here focus on two common methods based on
the frequency response of the closed loop system. Frequency
response-based methods define the PID-parameters by de-
termining the critical gain kc in the closed-loop system.
kc is determined by increasing the controller gain until
the output is on the border to instability, after which the
period of the output signal tc can be estimated. When these
two parameters are determined, design recommendations are
used to calculate the PID-parameters.

C. Ziegler-Nichols’ frequency response-based recommenda-
tion

Ziegler-Nichols methods [11] were designed to give a
good output response to load disturbances. This design
recommendation is considered to give an aggressive con-
troller with the risk of heavy overshoots, which means
that our power manager will strive to quickly adjust the
output resulting in fast reaction time and high overall QoS.
Overshoots are a result of the control signal reaching over
the desired set value to a certain amount before the controller

stabilizes to the set value. This effect can cause slight energy
waste because of unnecessary resource allocation.

Values for the PID-parameters, based on kc and tc can be
obtain from Equation 2.

P = 0.6 · kc

I =
1

0.5 · tc
(2)

D = 0.12 · tc

D. Åström-Hägglund’s frequency response-based recom-
mendation

The Åström-Hägglund method [13] also uses the param-
eters kc and tc obtained from the critical gain experiments
to define the controller parameters. Furthermore, a constant
κ has been defined through experiments and optimizations
and is considered to give the system more robustness. κ is
defined as :

κ =
1

Kp · kc
(3)

where Kp is the process gain and kc is the critical gain. This
design suggests PID-parameters defined as:

P = (0.3− 0.1 · κ4) · kc

I = (
0.6

1 + 2 · κ)
−1 · tc (4)

D =

(
0.15(1− κ)

1− 0.95 · κ

)
· tc

The integral part in a PID-controller can cause problems
when the input signal has great disturbances as the case
shows in Figure 2. Integral windup is a phenomenon where
the integral term accumulates a significant error during an
overshoot. We have chosen to neglect the I-term completely
to solve this problem. The nature of the power manager
makes it possible to ignore the static control error that would
otherwise have been eliminated with the I-term. This is
due to the fact that the web cluster uses a discrete amount
of cores and is not disturbed by a steady state value that
is slightly off the set value. The implementation of the
controller without an I-term will also be simpler with less
calculation overhead. The result is actually a controller of
PD-type, which is equal to a PID-controller with the I-term
set to zero.

E. Static cores

The simulations were run with different configurations of
static cores in order to measure the impact on the result.
We used one to four static cores in different simulations.
All four combinations were also simulated together with the
different PID tuning methods to give a result on the energy
and QoS relation between methods and static cores.

F. BeagleBoard power dissipation

To obtain values for the simulation framework and be able
to run a proof-of-concept simulation, the power dissipation
of one BeagleBoard revision C3 low-power platform was
measured. The BeagleBoard is equipped with one ARM
Cortex-A8 processor-based TI-OMAP3530 chip [4]. The
system ran Ångström Linux kernel version 2.6.32 and was
controlled through a remote serial console. The operating
performance points (OPPs) of the TI-OMAP3530 chip were
used to dynamically scale the clock frequency and voltage
of the ARM subsystem. The values from this experiment
will be used to simulate the energy reduction using DVFS
as power manager compared to the proposed PID-controlled
power manager and a system without power management.
The OPPs were accessed through the Linux ACPI. To avoid
unwanted energy consumption, the display and DSP subsys-
tems of the TI-OMAP3530 were disabled. The BeagleBoard
includes a resistor, which provides a way to measure the
current consumption used by the board. The voltage drop
across the resistor was measured for each OPP and the
corresponding power was calculated. The obtained power
values of the system running at respective voltage and clock
frequency are displayed in Table I. To ensure that the load
would remain constant during the measurements, the proces-
sor was stressed to 100 % utilization using a simple program
that recursively counts Fibonacci numbers. Furthermore, the
power dissipation of a board with a sleeping core was

Figure 3. Non-linear power scaling by using DVFS

Figure 4. Capacity test for the BeagleBoard using Autobench

Table I
POWER DISSIPATION OF THE BEAGLEBOARD

Freq. [MHz] 720 600 550 500 250 125
Voltage [V] 1.35 1.35 1.27 1.20 1.06 0.985
Power fully [W] 1.40 1.15 1.05 1.00 0.65 0.55
loaded

measured to dissipate 0.2 W. Detailed information of this
experiment can be found in [14].

The Table I and Figure 3 clearly show that the power
dissipation does not drop linearly according to the clock
frequency. Therefore, we intend to explore the possibility of
using sleep states instead of DVFS as power management.

G. BeagleBoard wake-up time

To measure the wake-up latency we configured the system
as illustrated in Figure 5. The expansion pin 23 of the
BeagleBoard was set to alternate between logic ’1’ and
logic ’0’. To initiate the wake up the system, the voltage on
expansion pin 8 was set high. This will cause an interrupt
that wakes up the system. The oscilloscope was connected
to expansion pins 23 and 8. A transition from ’0’ to ’1’,
i.e. the wake-up signal, on pin 8 was set to trigger the
oscilloscope. The wake-up time for the BeagleBoard was on

Figure 5. Schematic of wake-up tests

average measured to be 650 ms – with a standard deviation
of 50 ms. Based on this measured wake-up time we set the
transition delay in the simulation framework to 1000 ms to
accommodate for overhead related to other eventual factors.

H. BeagleBoard load capacity

The system capacity is dependent on both the number of
CPU cores in use and their capacity. We needed to determine
the capacity of a BeagleBoard in order to run a realistic
simulation.

Experiments were conducted on a BeagleBoard to give the
number of requests per second a BeagleBoard could handle.
The test tool in use was Autobench [15] which generates
requests to an Apache server running on the BeagleBoard.
The number of requests per second generated by Autobench
started from a selected number and increased by specified
increments. When the number of requests per second start to
exceed the capacity of the host, deadline errors will start to
occur as the selected deadlines for the requests are not met.
The selected deadline in our experiments was one second,
in order to match the time frame of the workload described
in section III. Moreover a range of files each request needed
to process was chosen and shown in Table II. The table also
shows at what point deadline errors start to occur for the
different file sizes. The file sizes were selected based on
typical file sizes used in a web server.

The result of the experiment showed a certain error rate
produced when the requests were not processed within the
given time interval of one second.

Table II shows that a BeagleBoard in general can handle
between 75 and 2 requests per second without errors, when
using file sizes between 4 KB and 852 KB. A large file size
such as 2.4 MB will produce large errors already after one
request per second; this implies that experiments with larger
file sizes are not needed. Figure 4 illustrates how the errors
increase according to the increasing request rate. The curves
represent the outcome of different file sizes.

Table II
MEASURED CAPACITY OF THE BEAGLEBOARD

File size [KB] 4 12 30 56 116 248 852 2400

Max [req/s] 75 50 35 20 10 5 2 0

Figure 6. Results from simulation with Åström-Hägglund recommendations and 1 static core. A: Incoming requests, B: QoS value, C: Number of cores
in use, D: Energy consumption

Related experiments in [5] result in a capacity of 5
requests per second for the BeagleBoard, which in our test
setup would compare to a file size of 248 KB. The selected
file size for our simulations was therefore chosen to be 248
KB. The file size is constant for each simulation with a
maximum amount of 10 cores available.

Altering file sizes is a typical real-world scenario for web
servers – this case is a general load balancing problem [16]
and it has not been focused on in our simulations. Future
research is needed to determine the impact of altering file
sizes on the system.

V. SIMULATION RESULTS

A. Comparisons

In order to draw a conclusion about the efficiency of our
power management, our simulations should be compared to
other power management systems.

Since existing systems implement power management
such as DVFS, we also need to compare the final results
with a 10 core system which is able to dynamically scale
down its voltage and frequency. We created a framework
for this purpose. Our simulations used the OPPs and the
corresponding power dissipations presented in Table I. The
simulation results show a typical 45 % energy reduction
with DVFS enabled, compared to a system without power
management. During a 30 minute run using a 10-core cluster,
a system without power management would consume:

Efull = 10 · 1.4W · 30 · 60s = 25200J (5)

When enabling DVFS the energy consumption was reduced
to 13558J .

B. Our simulations
Given the values from the measurements we set-up the

simulation framework as a 10-core system. The simulations
were run for both tuning methods: Ziegler-Nichols and
Åström-Hägglund – using the file size of 248 KB. This
simulation was run four times, to use all combinations of
static cores (1,2,3 and 4). The average QoS and total energy
consumption was calculated and stored for all combinations
of settings.

Figure 6 shows results from a simulation, which used the
Åström-Hägglund method and one static core. The graphs in
the figure are only showing the time interval [1200 1600]s
for illustrative reasons. The graph in Figure 6(A), shows the
incoming requests to the service. The corresponding QoS
is presented as percentage in Figure 6(B), the number of
currently active cores is shown in Figure 6(C) and the final
power dissipation in Figure 6(D).

Table III shows the result for all simulations. The result
consists of two important values: QoS and energy con-
sumption. The values change depending on the used tuning
method and amount of static cores. As seen in the table, both
the QoS and energy consumption will steadily rise when
switching on more static cores or using the more aggressive
Ziegler-Nichol method.

Table IV compares the energy reduction between Ziegler-
Nichols’ and Åström-Hägglund’s frequency response rec-

Figure 7. Energy graph comparing A: DVFS and B: sleep states

Table III
RESULTS FROM SIMULATIONS USING ZIEGLER-NICHOLS’ AND

ÅSTRÖM-HÄGGLUND’S FREQUENCY RESPONSE RECOMMENDATIONS.
QOS [%] / ENERGY [J]

Static cores Z-N Å-H
1 96.8 / 6304 96.3 / 5190
2 98.1 / 7508 97.8 / 6746
3 98.9 / 9075 98.8 / 8612
4 99.2 / 11105 99.2 / 10787

ommendations for PID tuning. As expected, the more ag-
gressive tuning method will result in less energy reduction,
but as was seen in Table III the QoS was overall higher.
By comparing the results with the reference value 13558J
(obtained by only using DVFS), one can clearly state that a
power management system that uses sleep state could reduce
the energy consumption significantly compared to a system
without a power management or to a system using DVFS as
power management.

Table IV
TOTAL ENERGY REDUCTION FOR DIFFERENT CONTROL METHODS
COMPARED TO A SYSTEM USING DVFS. THE TABLE SHOWS THE

ENERGY SAVINGS IN %

Static cores Z-N Å-H
1 53.5% 61.7%
2 44.6% 50.2%
3 33.1% 36.5%
4 18.1% 20.4%

Figure 7 displays clearly the reason why sleep states will
reduce the energy consumption more than DVFS. Part (A)
in figure 7 shows the power dissipation for system in time
range [1200 1600]s using DVFS as power management.
In comparison, part (B) shows how sleep state-base power
management allows the system to drop the power dissipation
much more than DVFS, and therefore resulting in lower
energy consumption.

Figure 8 shows a chart comparing the tuning methods to
DVFS in terms of energy consumption and QoS. Naturally

Figure 8. Energy chart comparing DVFS and sleep states

the sleep state-based power manager behaves more like
DVFS when adding more static cores since more cores will
then be constantly active. The most energy is saved when
using the Åström-Hägglund method with one static core.

The lowest QoS will arise using a more conservative
tuning method such as Åström-Hägglund and few static
cores. Despite these constraints the simulations show that the
QoS will only drop by approximately 4 % as seen in Table
III. We assumed here that DVFS has 0 % drop in QoS.
The table also shows that switching to a more aggressive
tuning method (such as Ziegler-Nichols) and increasing the
number of static cores will increase the QoS to over 99 %
if requested.

VI. CONCLUSIONS

We have presented a power management system for many-
core clusters. The power manager uses sleep states to match
the capacity of the system with the workload to minimize the
energy consumption while keeping the system performance
on an acceptable level.

We have developed a simulation framework to evaluate the
efficiency of the power management system. The framework
reads a workload as input and shows, for each time frame,
the results namely: number of cores in use, the QoS, and the

energy consumption. Finally the framework shows the total
energy consumption and the average QoS over the whole
simulation.

The amount of active cores in the cluster is determined by
a PID-controller that based on the well defined recommenda-
tions from Ziegler-Nichols and Åström-Hägglund methods
drives the capacity of the system to just the necessary
minimum.

Our simulation framework is based on parameters from
the BeagleBoard equipped with an ARM Cortex-A8 proces-
sor. The capacity, power dissipation and wake-up time of
the BeagleBoard was measured by experiments – this gives
a realistic simulation and comparison of efficiency.

The results of our simulations show that our power man-
agement has the potential to reduce the energy consumption
by 18 to 62 percent depending on the desired QoS, compared
to a system that uses DVFS as power management. The
reduction in energy arises from the fact that typical web
servers have long idle times during which the full capacity
of the system is not needed. Energy consumption can be
reduced by replacing high-end server CPUs with clusters of
low-end boards. The achieved granularity of low-end boards
gives arise to extensive power management on system level
which scales in a large data center.

VII. FUTURE WORK

The power manager is currently being implemented on
real hardware that uses the aforementioned CPU configu-
ration. The real implementation will show the relation in
energy consumption and an exact value of the introduced
overhead of communication, algorithms etc.

We intend to further improve the power management for
more intelligent control. Our simulations presented in [3]
shows that static PID parameters is not sufficient to control
all environments. Self-tuning regulators is described in [17]
and could provide the necessary properties to adapt the PID-
controller to heavily changing workload patterns.

Currently the framework does not support any tools to
ensure a maximum latency for a request. By ensuring the
maximum latency, a user can be guaranteed to receive a reply
from the server in a certain time interval. PID-parameters can
be influenced of this additional requirement and eventually
self-tune to provide sufficient CPU power.

The file sizes used in the simulations have so far been
constant. To compare the simulation to a further realistic
case, the file sizes should change dynamically during the
simulation according to an appropriate distribution function.
The simulation framework can also be extended to explore
situations of stochastic file sizes.

REFERENCES

[1] L. Barroso and U. Holzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33 –37, dec 2007.

[2] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia work-
load analysis,” Vrije Universiteit, Amsterdam, The Nether-
lands, Tech. Rep. IR-CS-041, Sepember 2007 (revised: June
2008).

[3] S. Holmbacka, S. Lafond, and J. Lilius, “Power proportional
characteristics of an energy manager for web clusters,” in Pro-
ceedings of the 11th International Conference on Embedded
Computer Systems: Architectures Modeling and Simulation.
IEEE Press, July 2011.

[4] OMAP35x Technical Reference Manual, Texas Instruments
Incorporated, July 2010.

[5] A. Krioukov and P. Mohan, “Napsac: Design and implemen-
tation of a power-proportional web cluster,” in Proceedings
of the first ACM SIGCOMM workshop on Green networking,
ser. Green Networking ’10. New York, NY, USA: ACM,
2010, pp. 15–22.

[6] J. Leverich and M. Monchiero, “Power management of
datacenter workloads using per-core power gating,” IEEE
Computer Architecture Letters, vol. 8, pp. 48–51, 2009.

[7] L. Bertini, J. Leite, and D. Mosse, “Siso pidf controller
in an energy-efficient multi-tier web server cluster for e-
commerce,” in Second IEEE International Workshop on
Feedback Control Implementation and Design in Computing
Systems and Networks, Munich, Germany, June 2007.

[8] T. Horvath and K. Skadron, “Multi-mode energy management
for multi-tier server clusters,” in Proceedings of the 17th inter-
national conference on Parallel architectures and compilation
techniques. New York, NY, USA: ACM, 2008, pp. 270–279.

[9] S. Madhavapeddy and B. Carlson, OMAP 3 Architecture from
Texas Instruments Opens new Horizons for Mobile Internet
Devices, Texas Instruments Incorporated, 2008.

[10] “Kulturhuset,” http://kulturhuset.fi/start/, January 2011, [On-
line; accessed 31-May-2011].

[11] K. J. Åström and T. Hägglund, Automatic tuning of PID
controllers. Instrument Society of America, 1988.

[12] Kulturhuset.fi, “Request log november 2010 kulturhuset,”
https://research.it.abo.fi/projects/cloud/data/Request log
kulturhuset nov2010.zip.

[13] K. J. Åström and T. Hägglund, Advanced PID control. Re-
search Triangle Park, 2006.

[14] J. Smeds, “Evaluating power management capabilities of
low-power cloud platforms,” Master’s thesis, Åbo Akademi
University, Finland, 2010.

[15] J. Midgley, “Autobench,” Xenoclast, May 2004. [Online].
Available: http://www.xenoclast.org/autobench/

[16] E. Musoll, “Hardware-based load balancing for massive
multicore architectures implementing power gating,” Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 29, pp. 493–497,
March 2010.

[17] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback
Control of Computing Systems. IEEE Press, 2004.

Paper III

A Task Migration Mechanism for
Distributed Many-Core Operating
Systems

Simon Holmbacka, Mohammad Fattah, Wictor Lund, Amir-
Mohammad Rahmani, Sébastien Lafond, Johan Lilius

Originally published The Journal of Supercomputing, 2014 Springer,
volume 68, Issue 3, pages 1141–1162

c©2014 Springer-Verlag. Reprinted with permission.

J Supercomput (2014) 68:1141–1162
DOI 10.1007/s11227-014-1144-7

A task migration mechanism for distributed many-core
operating systems

Simon Holmbacka · Mohammad Fattah ·
Wictor Lund · Amir-Mohammad Rahmani ·
Sébastien Lafond · Johan Lilius

Published online: 8 March 2014
© Springer Science+Business Media New York 2014

Abstract Spatial locality of task execution is becoming important in future hardware
platforms since the number of cores is steadily increasing. The large amount of cores
requires an intelligent power manager and the high chip and core density requires
increased thermal awareness to avoid thermal hotspots on the chip. This paper presents
a lightweight task migration mechanism explicitly for distributed operating systems
running on many-core platforms. As the distributed OS runs one scheduler on each
core, the tasks are migrated between OS kernels within the same shared memory
platform. The benefits, such as performance and energy efficiency, of task migration
are achieved by re-locating running tasks on the most appropriate cores and keeping the
overhead of executing such a migration sufficiently low. We investigate the overhead of
migrating tasks on a distributed OS running both on a bus-based platform and a many-
core NoC—with these means of measures, we can predict the task migration overhead

S. Holmbacka (B)
Turku Centre for Computer Science, Turku, Finland
e-mail: sholmbac@abo.fi

M. Fattah · A.-M. Rahmani
Department of Information Technologies, University of Turku, Turku, Finland
e-mail: mofana@utu.fi

A.-M. Rahmani
e-mail: amirah@utu.fi

W. Lund · S. Lafond · J. Lilius
Institution of Information Technologies, Åbo Akademi University, Turku, Finland
e-mail: wlund@abo.fi

S. Lafond
e-mail: slafond@abo.fi

J. Lilius
e-mail: jlilius@abo.fi

123

1142 S. Holmbacka et al.

and pinpoint the emerging bottlenecks. With the presented task migration mechanism,
we intend to improve the dynamism of power and performance characteristics in
distributed many-core operating systems.

Keywords Task migration · Distributed operating systems · Many-core systems ·
Network-on-chip · Shared memory systems

1 Introduction

The notion of spatial resource locality is a measurement of the distance between exe-
cuting tasks and their resources. This value reflects the communication delay intro-
duced between the communicating tasks due to spatial separation. In a many-core
network-on-chip (NoC) processor, this overhead is noticeable as messages need to
propagate along the routing network of the chip. To minimize the communications
overhead when using inter-core communication, the communicating tasks should
be placed as close as possible to each other and possibly share caches. An opti-
mal mapping of tasks can in a static system be done at compile time, but in a more
general purpose PC with dynamic task creation, execution times, suspension, etc.
the tasks should migrate on the chip during runtime to obtain the optimal local-
ity.

System performance is usually improved by mapping tasks in parallel applications
on multiple cores to improve the hardware utilization, since multiple processing ele-
ments are then capable of executing separate parts of the application in parallel. On
the other hand, performance improvements are usually achieved with the sacrifice of
energy. In contrast to parallelizing tasks, collecting them to only a few cores allows
for sleep state based power management to shut down idle cores and enable a more
energy efficient system.

Another important issue caused by the locality of task execution is the thermal
balance inside the chip [1,2]. By changing the location of task execution on the chip,
it is possible to avoid thermal hotspots which can gradually wear out the chip [3]. Work
has previously been done in terms of task scheduling and heat distribution on the chip.
An example is shown in [4] in which the mapping of tasks affects the thermal gradient
of the CPU. The authors show a highly parallelized mapping in which the temperature
is more evenly balanced, while concentrating tasks to only a few CPU cores forms a
hotspot. Task mapping on many-core systems affects, therefore, the temperature and
hotspots on the chip based on the spatial locations of the tasks. This effect will show
even more clearly in 3D chips [5], since heat producing elements will spread out in
three dimensions. Recently, there has been several work showing that the maximum
thermal conduction usually takes place from the die which is closer to the heat sink
[6–8]. This highlights the key roles of task migration (to move the computation) and
packet routing (to move the communication) in mitigating hotspots and enhancing the
thermal herding process.

In this paper, we present the implementation of a task migration mechanism using
checkpoints for homogeneous many-core systems with shared memory. We contribute
with an implemented task migration mechanism with a focus on:

123

A task migration mechanism 1143

• Shared memory task migration on distributed OSs and its memory mapping
• Context transfer and checkpointing on distributed OSs
• A comparison between utilizing task migration on bus-based and NoC-based sys-

tems
• A FreeRTOS Many-Core port for the ARM Cortex-A9 MPCore

2 Related work

Load balancing in conventional Linux [9] kernels on symmetric multi-processing
(SMP) systems has existed for decades. The Linux completely fair scheduler (CFS)
aims towards balancing the work as evenly as possible over all processing ele-
ments in the system [9]. The Linux load balancer inserts tasks into the run queue
on a selected core while keeping all references to kernel resources unmodified. We
have created a task migration mechanism for, in contrast to the monolithic sin-
gle kernel Linux environment, a distributed OS [10–12] consisting of multiple ker-
nels. The difference between our notion of task migration and conventional SMP
load balancing is mainly the transfer of task context. Migrating a task between
OS kernels requires more explicit context transfer, since the kernels are work-
ing independently of each other. Our task migration mechanism is implemented
for many-core asymmetric multi-processing (AMP) OSs, which use time sharing
scheduling only on local core level and explicit space sharing between OS kernels
[10].

Many task migration techniques have been investigated [2,13–15], and the choice is
usually dependent on what hardware configuration and what kind of OS is in use. Task
migration between physically separate memories requires a transfer of both data and
program memory area to the new memory location [16]. Heterogeneous task migration
techniques have also been considered in previous work, in which the program code
is modified to support the destination architecture [17]. This introduces several other
challenges such as memory alignment, endianness and different instructions.

In contrast to previous works, our task migration mechanism is intended for a distrib-
uted OS with multiple kernels running on a homogeneous shared memory architecture
with a MMU. Because of this architecture, only a pointer to the task handle needs to
be physically moved. This means that in contrast to [13] and [2], the task size does
not influence the migration overhead and no ISA translation is needed.

Different notions of task migration and strategies to initiate task migration have
been previously presented [15,18–22]. Notably in [20], a replication mechanism is
used to migrate tasks between cores in a multi-core system. As a task is created on
one core, there is also a replica of the same task created on the other cores on which
the task is migratable to. The replica tasks are suspended while the original is put
in the running state. When migrating the task, the replica task receives its starting
point and state and starts running exactly from the point at which the original task
was suspended. A task migration mechanism based on re-creation was presented in
[15]. The re-creation strategy involves creating a task only on the native core initially.
During the execution of task migration, the task is completely copied to the other core’s
memory and started from the point at which it was suspended. After the migration is
completed, the original task is suspended and deleted on the first core.

123

1144 S. Holmbacka et al.

The migration of a task, in the first contribution of our work (bus-based platform),
is based on only migrating the memory references a task is using. This migration
strategy is possible since our target platforms include a shared memory between all
cores. No replica of the task is needed, nor any transfer of program memory or the
stack.

As the second contribution of this work, we also investigate the impact of our task
migration mechanism on networks-on-chip-based platform. In this platform, accesses
to the shared memory are handled through the network resources, while the memory
is utilized by all nodes in the network. This will make a different traffic and memory
access patterns compared to the bus-based platform. There have been several migra-
tion mechanisms for mesh-based and NoC-based multiprocessor System-on-Chips
(MPSoCs). In [23], the authors proposed two migration schemes called Diagonal and
Gathering–Routing–Scattering. The Diagonal scheme explores all disjoint paths to
migrate a task in a single step. It operates based on XY dimension-ordered routing.
They further expand their work by the Gathering–Routing–Scattering scheme.

Goh et al. [24] present two task migration techniques to rearrange active tasks
in the mesh to form a larger contiguous area of free nodes for future mappings.
Goodarzi et al. [25] propose a task migration mechanism using virtual point-to-
point (VIP) connections. They tried to minimize the migration overhead using the
Gathering–Routing–Scattering technique to migrate sub-meshes over VIP connec-
tions. The authors in [26] present a NoC-based MPSoC, using task migration to bal-
ance traffic at runtime. In this technique each processor may have one or a set of
running tasks. They benefit from a real-time operating system on each processor for
monitoring the deadlines as well as deciding on task migration. Moraes et al. propose a
migration protocol to guarantee a correct task and context migration. Their technique
provides in-order message delivery after the migration.

As it can be observed from the discussed NoC-based studies, the main focus is on
the distributed memory based or non-uniform memory access (NUMA) architectures.
In this paper, we concentrate on uniform shared memory access architectures. Task
migration in this context has been rarely addressed in recent years. In this architecture,
while migrating a task from a source node to a destination node, updating dirty cache
lines in the main memory should be also taken into account. This is a situation which
also happens for our bus-based platform and provides a fair comparison between the
both platforms.

3 Evaluated platforms

For our work, we are considering a many-core platforms consisting of homogeneous
CPU cores, shared memory and a MMU. These characteristics have been obtained
in recent NoC-based many-core platforms [27–30], and is therefore a relevant choice
according to the current hardware trend.

When using these kinds of platforms, the monolithic kernel architecture used in for
example Linux starts to suffer from scalability problems [31]. The reason is mainly
because inter-core locking of data structures in the kernel is required [32]. These locks
are used to protect data structures from being accessed simultaneously by several

123

A task migration mechanism 1145

cores, but become a bottleneck as the number of CPU cores increases. Linux uses,
for example, a per-process kernel mutex which serializes calls to mmap and munmap
[31]. This is because Linux was originally not intended to run on many-core platforms,
and is thus not built with scalability in mind.

Instead, we focus on using a distributed operating system as our target platform.
This OS structure has been adopted by several research operating systems such as
the distributed/multikernel structure in Barrelfish [10], Corey [33] and fos [34] or the
satellite kernels in Helios [11]. When using a multikernel OS, tasks can use core-
local kernel calls instead of sharing one big kernel, which means that tasks issue
kernel calls only (or mainly) to the core they are currently running on. No core-to-core
communication or inter-core spinlocks are therefore required for kernel calls. We will
map one small kernel with one independent scheduler on each core. The scheduler is
time sharing tasks only on the local core with a real-time scheduler, and task migration
is achieved by explicitly requesting a transfer of a task from one kernel to another.

Our task migration mechanism has been created explicitly for shared memory dis-
tributed operating systems. The platform is assumed to use shared memory for task
stack allocation, dynamic memory allocation, program code and for inter-core mes-
sage passing between tasks. The kernels can run either in shared memory or in private
core memory.

We will use two different types of platforms for our experiments: one bus-based
machine with a relatively predictable core-to-core overhead and one scalable NoC-
based many-core platform.

3.1 Bus-based platform

The first used platform was the Versatile Express [35] board equipped with an ARM
Cortex-A9 based CA9 NEC [36] CoreTile 9 × 4 quad-core chip running at 400 MHz
with 1 GB of DDR2 main memory.

A multi-core port of FreeRTOS [37] for the ARM Cortex-A9 MPCore was created
as a demonstration platform for the task migration mechanism and is freely available
[38]. FreeRTOS is a small real-time kernel ported to many popular architectures. The
kernel supports a real-time scheduler on top of which applications can be scheduled
with hard real-time requirements. This RTOS was chosen due to its simplicity, small
overhead and portability.

Figure 1 shows the structure of our system using one OS per core, a certain number
of tasks and one task migration mechanism (TM) per core. The kernel of each OS
is located, in this case, in separate parts of the shared memory and each instance
schedules tasks only on the local core. This is an AMP OS view, which means that
each OS instance (with scheduler) is running independent of the others and tasks on
different cores do not share the same OS view as in the SMP case.

3.2 NoC-based platform

The Intel SCC [29] platform is our targeted network-based many-core platform. The
SCC platform consists of 48 identical cores connecting together through a 6×4 2D

123

1146 S. Holmbacka et al.

Fig. 1 Structure of the platform with shared memory for both OS kernels and core-to-core communication

fully synchronous NoC infrastructure with rigorous performance and power require-
ments. The 48 cores are placed in a tile formation with two cores per tile. Each core
is clocked at 533 MHz and is connected to a 800 MHz network. The cores have two
16 kB of private L1 caches for data and instruction, and share a 256 kB L2 cache.
The whole platform is connected to the main memory through 4 memory controllers
(MC). The DDR3 main memory is clocked at 400 MHz.

Accordingly, we took the parameters from the SCC and modeled it with our in-house
cycle-accurate SystemC many-core platform to have a close-to-realistic experiment
environment. The simulation platform utilizes a pruned version of Noxim [39] as its
communication architecture. With one core per tile, the constructed system is a 6 × 8
NoC-based platform. This configuration enhances the clarity and transparency of our
analysis. The block diagram of the instantiated platform is shown in Fig. 2. Using the
platform, each L1 cache miss results in replacing a cache line with the required line.
If the required line is available in the shared L2 cache, the replacing line is sent to the
target L2 part to get written out, after which the target L2 sends back the requested
line to the requesting core. The L2 stalls for 18 clock cycles, which is equal to the
SCC L2 reply time. In case loading the missed line from the main memory is required,
the same scenario occurs by sending a cache line to the closest MC and fetching the
requested line. The main memory stalls for 46 clock cycles according to its access
time in the SCC platform.

According to the obtained parameters, the task migration methodology mentioned
in the next section is modeled using the developed networked many-core platform.
The migration occurs from a source core to a destination core while other cores are
accessing the cache lines with respect to the caches miss rates.

4 Task migration methodology

The procedure to perform task migration on distributed-kernel operating systems is to
safely suspend a selected task and transfer its state and references to another kernel
on another CPU core. After the transfer, the task should be able to continue executing
from the same point and with the same state it had before it was suspended. Moreover,

123

A task migration mechanism 1147

Fig. 2 NoC-based platform top-level architecture

the task should be attached to the task list of the target kernel and detached from the
task list of source kernel. The task should also keep the same priority, name, stack
pointer and stack size as it is transferred to the target kernel.

4.1 Notion of task migration

Because our notion of task migration covers migration between completely indepen-
dent OS kernels, the task must be ensured a safe state to keep the notion of consistency
[40] in case I/O, communication or kernel functionality is used. A safe state is a defined
state in which the task is guaranteed to not be influenced by any external factors dis-
turbing the transfer of the task state. Arbitrary transfer of a task might issue abrupt
terminations of core-dependent resources such as I/O communication, which could
lead to lost data or unwanted timeout errors. Any usage of resources, kernel function-
ality, intra-core communication or other non-preemptive functionality must, therefore,
complete or safely be aborted before a migration can occur. Because of this uncer-
tainty in computer programs, a checkpointing mechanism is used to depict points in the
program at which is it safe to migrate the task. Checkpointing also decreases the com-
plexity of the task migration mechanism, since all migrations are done at completely
predictable points.

123

1148 S. Holmbacka et al.

To make a program migratable, the programmer sets the checkpoints as the
program is created. In our model, a checkpoint is set by a simple function call
TASK_IN_SAFE_STATE(). This point is the dedicated place at which a task can
migrate to another core.

The initiation of task migration is up to the system or another task, e.g., a power
manager. Our task migration mechanism uses an observer task which recognizes sce-
narios for task migration. The observer can investigate the setup of other cores and
make decisions where to move a task from which source core. Migration requests are
signaled by a request hook in each migratable task, which sets a migration request flag
initiated by the observer. A request hook is a special callback function inside the task
(shown in Listing 1), which is callable from outside the task, e.g., the observer task.

Listing 1 Callback example

The migration request flag is regularly checked by the task itself to reach the safe
state if a request is issued. This procedure should be followed to achieve task migration
in our model:

1. An observer actor in the system requests the migration of Task 1 to Core n
2. Request hook is called in Task 1 and the migration_request flag is set
3. Task 1 checks the migration_request flag in the application, which now is

set, and enters the safe state though the function TASK_IN_SAFE_STATE()
4. The task migrator is called and Task 1 is migrated to Core n

Figure 3 illustrates the request flow with the same respective steps, in which the left
part is the source core and the right part is the target core.

4.2 Use-case example

Since the checkpoints are placed by the programmer, the system should be analyzed
beforehand to determine an eventual request lag. The request lag is the time between
a migration request has been issued by the observer task until the task reaches the safe
state. This time is minimized by placing checkpoints more frequently in the program.
Polling the request flag uses only three instructions with the-O3 flag on the Cortex-A9
CPU, but since a more frequent occurrence of checkpoints slightly increases the task
overhead, the frequency of the checkpoint placement should be taken into account.
Listing 2 shows a simple loop incrementing numbers and calling a function foo(). A
checkpoint is set after each loop iteration, meaning that the task containing the loop can
be migrated after each loop iteration. The task checks the migration_request
flag at each loop iteration, which means that in worst case the migration lag is the time
of one loop iteration. In case one loop iteration is very long, the programmer could
consider adding checkpoints inside the loop itself to reduce the request lag. Still a

123

A task migration mechanism 1149

Fig. 3 Request flow in task migration. Left part source core, right part target core

more frequent use of checkpoints will affect the execution time and power efficiency
of the system.

To find the optimal compromise between the request lag and the checkpoint over-
head, measurements should be conducted. However, this question is very use-case
dependent and is not part of this paper because of: (1) the introduced overhead is
architecture dependent, (2) the introduced overhead is compiler dependent, (3) the
trade-off between request lag and overhead is a subjective question and depends on
which property is most desired from the application.

Listing 2 Checkpoint example

5 Implementation

The task migration mechanism has been implemented in the C-language specifically
for FreeRTOS on 1300 lines of code in total. It consists of a migrator task mapped

123

1150 S. Holmbacka et al.

Fig. 4 Memory layout for a Quad-Core CPU

on each core, which handles the physical transfer and inter-core communication. The
FreeRTOS kernel was modified to support the dynamic attachment and detachment
of tasks from the task list while keeping the tasks’ state consistent. The complete
modification to FreeRTOS was implemented using 110 lines of C-code. This section
describes the most important part of the implementation, namely how the memory is
used between the kernels and how the task state is transferred across cores.

5.1 Virtual memory mapping

Virtual memory is used to replace the physical memory layout from the system, and
replace it with a virtual representation which is easier to operate against.

In our model, each core C contains one kernel K . Each kernel uses the same virtual
memory space, which means that each kernel has the same memory view; this is seen in
the left part of Fig. 4. This mirrored view abstracts away the fact that the kernels actually
execute in separate memory locations in the physical memory (right part of Fig. 4).

With this setup, all tasks can issue kernel calls with the same address of reference.
This increases the OS scalability since no inter-core kernel locks are required, but
tasks always call the local kernel. An example is later shown in Sect. 5.2.

The tasks running on a kernel are given a specific memory location: the Globally
Visible Memory (GV M). This location depends on the location (in which kernel) the
task is created. For example a task created on core C1 will allocate its stack space
in GV M1. The GV Ms are not, on the other hand, provided with the same virtual
memory view. This is because tasks should be able to switch kernel to be scheduled
on. The state of the task must always refer to the absolute memory address space to
be kept consistent independent on what core the task is running on.

123

A task migration mechanism 1151

Fig. 5 Updating kernel references during task migration

For example, consider the case in Fig. 5: a task T 1 with stack memory GV M1
migrating from C1 to C2. For the state to be kept consistent, T 1 must still keep the
references to GV M1 even though it is moved to C2.

If the stack pointer of T 1 should now point to GV M2 instead, the content of the
stack would not be kept consistent without physically moving the whole stack to
GV M2. Since we assume a shared memory architecture, it is possible to only pass
references to the corresponding GV M instead of a complete transfer. The migration
overhead will also be much smaller since less information is moved.

After T 1 has migrated from C1 to C2 the pointer to GV M1 is passed to K 2, which
updates its local task list. If T 1 is deleted on K 2, K 2 sends a message to K 1 to free
the allocated memory T 1 was using in GV M1. Generally, if a core issues a delete
command on a task created on a non-local core, the delete request propagates back to
the origin of the task to free the memory allocated by the task.

The memory reserved for core-to-core communication (ICC) is a statically allocated
area in the highest part of the memory and is used to pass messages between cores.
This part of the memory is set non-cacheable for the data to not rely on any write back
from the local cache to the main memory. The core-to-core communication overhead
will therefore have higher timing predictability.

Communication with shared variables is feasible and will not be affected by the task
migration, since the address of the shared variable is located in the globally visible
memory part and can thus be accessed by any task independently of what core the task
is scheduled on.

5.2 Context transfer

The state transfer in a task migration is more complex than on Linux SMP systems
since the task is moved to a different OS instance while keeping its state consistent.
The state of a task is any entity stored as meta-data in the task which determines the

123

1152 S. Holmbacka et al.

execution of the task, and is during runtime modifiable. Besides the name and function
pointer to the task itself, the following context is transferred during a task migration:

5.2.1 Stack state

The stack is initially created in a certain GVM depending on which core the task is
created on. Upon task migration the location pointer to the stack is transferred to the
target core. The stack itself is not physically moved since we assume that task stacks
are located in the GVM.

5.2.2 Heap state

All dynamically allocated variables are stored in the heap. Similarly to the stack, the
heap variables are stored in the GVM on the core the task using the variables was
created on. As the task is migrated, all dynamically allocated variables pass their
reference pointers to the new core, which means that no data are physically moved
similarly to the stack state.

5.2.3 Function references

The motivation behind using a distributed kernel is to create a scalable OS for many-
core architectures. An important functionality in this type of architecture is to enable
core-local kernel calls. All tasks should therefore only use the local kernel for kernel
calls.

Consider the system shown in Fig. 6: a task T1 is created on core C1 and uses
kernel K1 for kernel calls. After the task migration to C2, T1 should update its kernel
reference to K2 to use the core-local kernel calls.

To obtain this functionality, we have implemented re-linkable elf binaries for FreeR-
TOS. All tasks are compiled to distinct elf binaries and are linked together with the
kernel on a core. During the task migration, the link between the task and the kernel
is broken and re-linked with the kernel on the target core. The memory references to
the kernel do not change, since the virtual memory ensures the same memory outlook
of all kernels (as shown in Fig. 4). In this way, the tasks do not need to keep track on

Fig. 6 Update of kernel reference after task migration

123

A task migration mechanism 1153

what core they are mapped on, which makes the programming completely location
transparent for the programmer.

5.2.4 Inter-task communication

Tasks communicating with shared memory will retain the memory location used for
the communication without any modifications. This is possible because all tasks can
access any GVM at any time. The migrated task will, after the migration, keep the
address to the shared memory at which the communication was taking place.

Communication with message passing between tasks is a part of future work. This
functionality is non-trivial since the message passing mechanism is dependent on local
or non-local communication. Non-local communication requires explicit core-to-core
communication because the communicating tasks are located on different cores, while
local communication should only use the message queue mechanism to not introduce
unnecessary overhead. The solution to this problem is to create a multi-core extension
to the FreeRTOS message passing mechanism that would be able to pass messages
between tasks over a core-to-core channel.

6 Use-case evaluation

Our first evaluations are based on the ARM platform since the NoC platform is able
to simulate the intended behavior but not execute all necessary functionalities. Later
in Sect. 7, the overhead evaluation of task migration is measured for both platforms.

The evaluation setup consists of four identical video playing tasks mapped on the
ARM quad-core platform described in Sect. 3. Each task plays a video with a certain
resolution. The frame rate (fps) is measured with a regular interval to evaluate the
performance of the video. We evaluated the system for both performance and power
efficiency to demonstrate the improved dynamism of the system.

6.1 Performance evaluation

The first test was run to show how the performance of the video tasks is boosted by
parallelization; namely by migrating tasks to all available cores. Our goal for this test
is to obtain a stable video playback (25 fps) for all four videos. Initially, four large-
resolution videos were mapped on Core0 on the ARM platform. After measuring a
low frame rate, three of the video tasks were migrated to other cores, resulting in a
system with one video task per core. The video task included one safe state point per
frame, which resulted in 11 additional lines of source code in the application.

Figure 7 shows the execution of the test. At the beginning of the test (t = [1, 3]),
all videos play with a frame rate between 6 and 14 fps, which is too low for user
satisfaction. At t = 3, the first video task (Video1) migrated to another core, which
results in an increased frame rate for Video1 at t = 5, and also a higher frame rate for
the remaining video tasks on Core0. Similarly at t = 6, Video2 is migrated and thus
achieves satisfactory frame rate at t = 9. Finally, Video3 migrates at t = 13 and is
fully stable at t = 14. The high peak of the non-migrated task (Video4) is due to the

123

1154 S. Holmbacka et al.

Fig. 7 Frame rates for large-resolution videos migrated to four cores. Task migration initiated at t = 3.
Points 1, 2 and 3 show migration points in time

frame dropping mechanism used to compensate for low frame rate in the beginning
of the test.

All videos are mapped on their own dedicated core at t = 14, and all videos tasks
are executed completely in parallel. By parallelizing tasks and better utilizing the
hardware, all videos increase the frame rates to 25 fps and keep a stable playback after
t = 18.

6.2 Power evaluation

The second test was used to show the power efficient potentials of task migration. In
this setup, we started by having four small- resolution videos mapped one on each
core on the same quad-core ARM platform. The power output was measured directly
from an internal register in the Cortex-A9 MPCore chip. Our goal with this test is
to minimize the power dissipation as much as possible while keeping the frame rate
stable. From the starting point of having four parallel videos, all video tasks were
migrated to one core (Core0). The remaining idle cores (Core1, Core2, Core3) were
shut down since no tasks were mapped on them after the migration.

Figure 8 shows the frame rate and related power output for the test. The curves
related to videos are plotted against the frame rate axis and the power dissipation
curve against the power axis. The test starts with having video playbacks with frame
rates of 25.0 fps which is sufficient to the user, however the small resolution of the
video format would allow collecting all videos to a single core. At t = 7 in Fig. 8,
the migration mechanism starts to collect one video task at the time to Core0, and
completes this operation at t = 12.

123

A task migration mechanism 1155

Fig. 8 Frame rates for small-resolution videos migrated to one core and Cortex-A9 power output. Task
migration initiated at t = 7. Points 1, 2 and 3 shows migration points in time

The figure shows how the power dissipation initially starts at about 900 mW and
decreases to roughly 550 mW after the tasks have migrated to Core0. This clearly
affects the energy consumption of the platform since the power output is reduced by
40 %. Figure 8 also shows that Core0 alone is able to keep a sufficient frame rate of 25
fps for all four videos during normal playback. At the time of migration, the migrated
video tasks occasionally measure a slight frame rate drop, but the overall quality is
still kept sufficient.

7 Migration overhead evaluation

The migration of tasks naturally introduces an overhead due to the moving of data and
detachment and attachment of tasks to/from the OS scheduler. A simple evaluation
to measure the total overhead was run to demonstrate the feasibility of migrating a
streaming task such as a video player without noticeable interruption. Our defined
overhead of a task migration is measured as the time between the suspension of the
task on the sender core and the resume of the task on the target core. This overhead
was measured in three parts:

1. Time of task detachment and the activation of inter-core communication
2. Time for moving data over the inter-core channel
3. Time between the arrival of inter-core data and the attachment of the task

To have an as smoothly running application as possible, this overhead should be kept
sufficiently small. We evaluated the overhead on both the bus-based ARM platform
and on the NoC platform since the results should be very different: the completely
symmetric ARM platform should introduce more or less a constant migration overhead
while the communication delay on NoC platform is highly dependent on, e.g., the
migration distance.

123

1156 S. Holmbacka et al.

Table 1 Task migration
overhead measurements on
bus-based platform

Part 1 Part 2 Part 3 Total

Time 17 ms 38 ms 45 ms 100 ms

7.1 Bus-based platform

The bus-based platform was the quad-core ARM Cortex-A9 interconnected with a
shared memory for core-to-core communication. Part 1 and 3 were measured with a
simple tic-toc timer which counts the elapsed time between two time instances using
OS ticks as time unit, which is easily converted into Milli seconds. Part 2 (inter-
core communication delay) was measured with a provided inter-core communications
library for FreeRTOS. This library uses inter-core software interrupts to synchronize
the time between two communicating inter-core channels, since the clocks of different
cores are not identical. Measurements were run several times and the deviation of the
results was zero for all three parts for a system with only one migrating task. The total
overhead is presented in Table 1.

Table shows that Part 3, which consisted of attaching the task to the new OS sched-
uler, introduced the largest overhead when migrating one of our video tasks. A rea-
son for this is due to L1 cache misses as the task is moved to a new core with a
cold L1 cache. To reduce this overhead, the system could be set to warm up the
cache lines before the task continues the execution or possibly enabling a shared
L2 cache. Detaching the task (Part 1) had the least overhead with only 17 ms, and
the physical data transfer 38 ms. The data transfer included a provided inter-core
communications protocol binary, which enabled us to analyze clock synchroniza-
tion, but overhead analysis of the internal mechanism was not possible due to closed
source.

A fair comparison with related mechanisms is not directly straight forward since
methodologies, platforms and the notion of task migration usually differ. For exam-
ple, a NUMA architecture with non-uniform access time to memory would show a
larger delay when migrating the task to a destination located further away. More-
over, with the introduced overhead, the video playback was—to the user—very
smooth and the slight freeze during the task migration of a 25 fps video was hardly
noticed. The task migration mechanism introduced in total 160 additional bytes to the
application, which corresponded to 40 additional instructions to run (with gcc -O3
flag).

Single bus-based systems have, however, showed poor scalability because the single
path of communication becomes a bottleneck when the core number increases. Not
only core-to-core task migration will become slower because of the bus congestion,
but also other data intense applications accessing the memory frequently. In case of
distributed OS task migration, the likelihood of having an available bus decreases
as the number of core increases. This would affect the overhead Part 2 in Table 1,
since the physical data movement would be slower. Nevertheless, Part 1 and 3 are
completely independent of the core-to-core communication and would not be affected
by upscaling the system.

123

A task migration mechanism 1157

7.2 NoC-based platform

As mentioned before, we assume the SCC [29] platform with 48 cores to explore the
migration overhead in a NoC-based shared memory system. Each core has its own
private L1 data and instruction caches, while L2 cache is shared among the cores. In
this subsection, we measure the networking time required in the migration process
across different parameters. Since no physical OS is run on the NoC simulator, the
additional overhead of OS functionalities are not included.

It is observed in [41] that 0.025 bytes of data are demanded in average by each
instruction in the PARSEC benchmark (data access rate). Thus, a cache line is accessed
every 1,280 instructions when assuming each cache line is 32 bytes on the SCC
platform. Considering two threads running on each core, each core can issue around
1.5 instructions per clock cycle [41]. As a result, a cache line, in the system with the
specified characteristics, will be accessed almost every 800 clock cycles by the cores.
Note that the network clock frequency is 800 MHz and the cores are clocked to 533
MHz.

The scenario for a task migration is simulated as follows: (1) the L1 data cache of
the source processor is cleaned. This means to write the contents of the cache out to
the main memory and clear the dirty bit(s) in the cache. This makes the content of the
cache and main memory coherent with each other. (2) The migration command is sent
to the destination core by passing the memory reference of the migrating task to it. (3)
The destination core will fetch the code and data of the migrating task and load them
into its private L1 cache. The data volume to be written out and fetched is set equal
to the SCC processors data cache sizes (16 kB) and we assume instruction codes to
be 6 kB for each task. Note that the evaluated times are relevant to networking costs,
memory and cache access latencies according to SCC characteristics. However, the
overhead of the OS and local processors will be applied as an offset in real experiments
as they are almost independent of the network performance.

In our first study, we explore the L1 miss rate effect on the migration time when no
L2 cache is enabled in the system. In this case, all the L1 misses are handled through
the main memory. Accordingly, upon a cache line miss, one of the lines is written
out to the main memory, and the requested line is fetched back. The migration occurs
while all the cores are issuing memory accesses constantly according to the defined
miss rate. Figure 9 shows the elapsed time during the migration process with different
L1 miss rates. Note that the source and destination are selected based on to the farthest
physically separated nodes to the memory controllers.

As seen in Fig. 9, the migration time depends on the L1 cache miss rates. When
the L2 cache is disabled, the memory controllers (the SCC contains four memory
controllers) become the networking bottlenecks; i.e., all the missed cache lines are
fetched from the main memory through the memory controllers. Note that in real
application cases, the cache misses and data access rates are highly dependent on the
tasks characteristics and is not identical for all processors.

In the second experiment, we enabled the L2 cache. The L2 cache is shared and
distributed among all the processors. The address space is evenly distributed over L2
caches so the content related to a cache line miss in L1 can exist in any of the L2 cache
parts of the system. Figure 9 also shows the migration time when L2 cache is enabled

123

1158 S. Holmbacka et al.

Fig. 9 Networking time in migration process without and with L2 cache enabled; with L2 cache miss rate
set to 50 %

and 50 % of L1 misses can be fetched from it. By enabling the L2 cache, the migration
time will significantly decrease since the L2 has a much shorter access time compared
to main memory, and also releases the hot-spot pressure on the memory controllers.

Finally, Data intensive applications will affect both the L1 and L2 miss rates. We,
therefore, assumed the L2 cache miss rate to follow L1 miss rate as: L2miss−rate =
0.9×L1miss−rate. Figure 9 also shows the migration latency in this case. As expected,
the migration time will increase in data intensive applications. In case of extremely
data intensive applications, in which L1 miss rate will go beyond 70 %, the system
main memory will become the system bottleneck and increases the migration time
dramatically. Note that the case will vary according to the number of cores accessing
the main memory. This highlights the memory wall in the future shared memory
many-core systems.

As shown above, the main memory will be the performance bottleneck in case of
data intensive applications. Hence, the migration time will be high despite the source
and destination distance to the memory controller. On the other hand, computation
intensive applications make the network calm and keep the network latency small
despite the communication distance. In other words, the distance between either cores
or memory controllers-to-cores does not in practice influence the migration time.

This is observed in Fig. 10 when placing the source and destination in different
distances from the memory controllers and running the migration process under various
L1 miss rates. The extracted results in Fig. 10 show the source and destination settled
in processors by Manhattan Distances (MD) of 1 to 5 from the memory controllers.
The overhead is practically not affected by the migration distance.

8 Heterogeneous approach

The above experiments are done assuming a homogeneous system. However, differ-
ences in the obtained results are expected when considering a heterogeneous system,
in which two types of heterogeneity impact on migration time:

123

A task migration mechanism 1159

Fig. 10 The migration time is independent of source and destination distance from the memory controllers

First is the heterogeneous workload. As mentioned in the previous sections, all
nodes are assumed to have identical traffic behavior; i.e., all nodes inject/consume the
same amount of data into/from the network. Accordingly, a balanced load is offered
to all network resources; such that the migration time is not influenced by source and
destination placement as seen in Fig. 10. However, an asymmetric workload will offer
an unbalanced load to each of the network resources as well as the MCs and caches
[42]. Accordingly, a different migration time will be delivered by changing the source
and destination node of migration process. Note that in this case, the difference is not
derived from the distances to MCs, but from the heterogeneous traffic distribution over
the network, which is out of the paper scope.

Secondly, the heterogeneity can be expressed by different types of core architectures
in the nodes. The source and destination selection is therefore influenced by the node
type, and the traffic distribution in the system is most likely unbalanced according to
individual core performance. As a consequence, the source and destination selection
will have an impact on the migration overhead and requires an independent study on for
example the fitness of a workload on a certain core. Nevertheless, the same migration
methodology can be used in heterogeneous systems, while a suitable mechanism for
source and destination selection will be required.

9 Conclusions

This paper has described the implementation of a task migration mechanism for dis-
tributed many-core operating systems. We have presented the main points in building
a task migration mechanism for shared memory platforms including memory map-
ping, state transfer and checkpointing. The task migration methodology was evaluated
against both a traditional bus-based platform and a NoC-based platform to stress the
diversity of future many-core platforms.

Several different characteristics can be obtained by managing the location of task
execution such as communication latency, power and application throughput. We stud-

123

1160 S. Holmbacka et al.

ied the overhead effects of task migration as the time needed to logically and physi-
cally move task references. The bus-based system demonstrated a constant overhead
because of the light OS interference and the predictable latency to the main memory.
The less predictable NoC platform showed, on the other hand, a varying migration
time depending on the L1 cache misses as a result of interfering tasks running simul-
taneously. The task migration overhead is in this case largely dependent on (a) the L1
miss rate and (b) the presence of L2 cache and its availability. Migrating a task on
shared memory platforms by simply transferring the task handle reference imposes,
however, no significant overhead variations with migration distance. The chosen NoC
layout and its characteristics limits the variations in task migration to memory accesses
because of the network speed compared to the memory itself.

With more and more diverse and complex hardware, more intelligent software
solutions are required to fully utilize the potential of the hardware. The distributed
OS design together with task migration gives us the opportunity to tune the spatial
execution location on large NoC platforms, and is a step towards this goal.

10 Future work

Tasks using inter-task communication need to update the references for passing mes-
sages if one of the communicating task changes its spatial location. Core-to-core
communication must be explicitly pointed to tasks located on different cores, while
tasks on the same core can use simple message queues.To hide these details from the
programmer, we have developed a lightweight component framework for real-time
systems [43]. With the framework, the developer is able to setup specific communica-
tion interfaces used for inter-task communication and could be used to rise the level of
abstraction for the inter-task communication. We intend to integrate the possibility of
task migration into the framework, which simplifies the updating of communication
references.

To determine the physically timed overhead for the NoC platform, FreeRTOS should
be ported to the architecture and be run on the real hardware with given use-case
applications. While simulation gives results for the communication-based part of task
migration, a real hardware experiment would add the inherited OS scheduling offset
for task migration.

Acknowledgments This work has been supported by the Artemis JU project RECOMP: Reduced Certi-
fication Costs Using Trusted Multi-core Platforms (Grant Agreement Number 100202). The present work
benefited from the input of William Davy, Wittenstein ltd., who provided valuable software and integration
efforts to the research summarized here.

References

1. Cuesta D, Ayala J, Hidalgo J, Atienza D, Acquaviva A, Macii E (2010) Adaptive task migration policies
for thermal control in mpsocs. In: Proceedings of the IEEE 2010 Annual Symposium on VLSI, vol 1.
Ecole Polytechnique Fédérale de Lausanne and Politecnico di Torino

2. Mulas F, Atienza D (2009) Thermal balancing policy for multiprocessor stream computing platforms.
IEEE Trans Comput Aided Des Integr Circuits Syst 28:1870–1882

123

A task migration mechanism 1161

3. Vaddina K, Rahmani A-M, Latif K, Liljeberg P, Plosila J (2011) Thermal analysis of job allocation
and scheduling schemes for 3D stacked NoC’s. In: Proceedings of the Euromicro conference on digital
system design, pp 643–648

4. Musoll E (2010) Hardware-based load balancing for massive multicore architectures implementing
power gating. IEEE Trans Comput Aided Des Integr Circuits Syst 29(3):493–497. doi:10.1109/TCAD.
2009.2018863

5. Matsumoto K, Ibaraki S, Sato M, Sakuma K, Orii Y, Yamada F (2010) Investigations of cooling
solutions for three-dimensional (3d) chip stacks. In: 26th Annual IEEE semiconductor thermal mea-
surement and management symposium, SEMI-THERM 2010, pp 25–32. doi:10.1109/STHERM.2010.
5444319

6. Rahmani A-M, Vaddina K, Latif K, Liljeberg P, Plosila J, Tenhunen H (2012) Design and management
of high-performance, reliable and thermal-aware 3D networks-on-chip. IET Circuits Devices Syst
6(5):308–321

7. Rahmani A-M, Vaddina K, Latif K, Liljeberg P, Plosila J, Tenhunen H (2012) Generic monitoring and
management infrastructure for 3D NoC-Bus hybrid architectures. In: Proceedings of the IEEE/ACM
international symposium on networks on chip, pp 177–184

8. Vaddina K, Rahmani A-M, Latif K, Liljeberg P, Plosila J (2012) Thermal modeling and analysis of
advanced 3D stacked structures. Procedia Eng 30:248–257

9. Jones MT Inside the linux scheduler, developerWorks. URL http://www.ibm.com/developerworks/
library/l-completely-fair-scheduler/

10. Baumann A, Barham P (2009) The multikernel: a new os architecture for scalable multicore systems.
In: Proceedings of the ACM SIGOPS 22nd symposium on operating systems principles, SOSP ’09.
ACM, New York, pp 29–44

11. Nightingale EB, Hodson O, McIlroy R, Hawblitzel C, Hunt G (2009) Helios: heterogeneous multi-
processing with satellite kernels. In: Proceedings of the ACM SIGOPS 22nd symposium on operating
systems principles, SOSP ’09, ACM, New York, NY, USA, pp 221–234. doi:10.1145/1629575.1629597

12. Boyd-Wickizer S, Chen H, Chen R, Mao Y, Kaashoek F, Morris R, Pesterev A, Stein L, Wu M,
Dai Y, Zhang Y, Zhang Z (2008) Corey: an operating system for many cores. In: Proceedings of
the 8th USENIX conference on Operating systems design and implementation, OSDI’08, USENIX
Association, Berkeley, CA, USA, pp 43–57

13. Engin TJE Bag distributed real-time operating system and task migration. Turkish J Elect Eng Comput
Sci 9 (2)

14. Saraswat PK, Pop P, Madsen J (2009) Task migration for fault-tolerance in mixed-criticality embedded
systems. SIGBED Rev 6(3):6:1–6:5. doi:10.1145/1851340.1851348

15. Bertozzi S, Acquaviva A, Bertozzi D, Poggiali A (2006) Supporting task migration in multi-processor
systems-on-chip: a feasibility study. In: Proceedings of the conference on design, automation and test
in Europe: Proceedings, 3001 Leuven, Belgium, pp 15–20

16. Armstrong JB (1995) Dynamic task migration from simd to spmd virtual machines. In: Proceedings
of the 1st international conference on engineering of complex computer systems, ICECCS ’95. IEEE
Computer Society, Washington, DC, p 326

17. DeVuyst M, Venkat A, Tullsen DM (2012) Execution migration in a heterogeneous-isa chip multi-
processor. In: 17th International conference on architectural support for programming languages and
operating systems (ASPLOS 2012). IEEE Computer Society, New York

18. Aguiar A, Filho SJ, dos Santos TG, Marcon C, Hessel F (2008) Architectural support for task migration
conserning mpsoc. SBC

19. Acquaviva A, Alimonda A, Carta S, Pittau M Assessing task migration impact on embedded soft
real-time streaming multimedia applications, EURASIP J Embed Syst (9)

20. Layouni LGS, Benkhelifa M, Verdier F, Chauvet S (2009) Multiprocessor task migration implementa-
tion in a reconfigurable platform. In: International conference on reconfigurable computing and FPGAs,
2009. doi:10.1109/ReConFig.37

21. Brio E, Barcelos D, Wagner F (2008) Dynamic task allocation strategies in mpsoc for soft real-time
applications. In: Proceedings of the conference on design, automation and test in Europe. IEEE Council
on Electronic Design Automation and EDAA : European Design Automation Association, ACM, New
York, pp 1386–1389

22. Smith P, Hutchinson NC (1998) Heterogeneous process migration: the tui system. Softw Pract Exp
28(6):611–639

123

1162 S. Holmbacka et al.

23. Chen T-S (2000) Task migration in 2D wormhole-routed mesh multicomputers. Inf Process Lett 73(3–
4):103–110

24. Goh L, Veeravalli B (2008) Design and performance evaluation of combined first-flit task allocation
and migration strategies in mesh multicomputer systems. Parallel Comput, pp 508–520

25. Goodarzi B, Sarbazi-Azad H (2011) Task migration in mesh NoCs over virtual point-to-point connec-
tions. In: Proceedings of the Euromicro international conference on parallel, distributed and network-
based processing, pp 463–469

26. Almeida G, Varyani S, Busseuil R, Sassatelli G, Benoit P, Torres L, Carara E, Moraes F (2010)
Evaluating the impact of task migration in multi-processor systems-on-chip. In: Proceedings of the
symposium on Integrated circuits and system design, pp 73–78

27. Shao YS, Brooks D (2013) Energy characterization and instruction-level energy model of intel’s xeon
phi processor. In: 2013 IEEE international symposium on low power electronics and design (ISLPED),
pp 389–394. doi:10.1109/ISLPED.2013.6629328

28. Potluri S, Tomko K, Bureddy D, Panda DK Intra-mic mpi communication using mvapich2: Early
experience. Texas Advanced Computing Center (TACC)-Intel Highly Parallel Computing Symposium

29. Howard J, Dighe S, Hoskote Y, Vangal S (2010) A 48-core ia-32 message-passing processor with dvfs
in 45nm cmos. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp 108–109.
doi:10.1109/ISSCC.2010.5434077

30. Wentzlaff D, Griffin P, Hoffmann H, Bao L, Edwards B, Ramey C, Mattina M, Miao C-C, JFB III,
Agarwal A (2007) On-chip interconnection architecture of the tile processor. IEEE Micro 27:15–31.
doi:10.1109/MM.2007.89

31. Boyd-Wickizer S, Clements AT, Mao Y, Pesterev A, Kaashoek MF, Morris R, Zeldovich N (2010)
An analysis of linux scalability to many cores, in: Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, USENIX Association, Berkeley, CA, USA,
pp 1–8

32. Kleen A (2009) Linux multi-core scaleability, in: Linux Kongress 2009, Dresden
33. Boyd-Wickizer S, Chen H, Chen R, Mao Y, Kaashoek F, Morris R, Pesterev A, Stein L, Wu M,

Dai Y, Zhang Y, Zhang Z (2008) Corey: an operating system for many cores. In: Proceedings of
the 8th USENIX conference on Operating systems design and implementation, OSDI’08, USENIX
Association, Berkeley, CA, USA, 2008, pp 43–57. http://portal.acm.org/citation.cfm?id=1855741.
1855745

34. Wentzlaff D, Agarwal A (2009) Factored operating systems (fos): the case for a scalable operating
system for multicores. SIGOPS Oper Syst Rev 43:76–85

35. ARM, Coretile express a9x4 technical reference manual, http://infocenter.arm.com/help/topic/com.
arm.doc.dui0448e/DUI0448E_coretile_express_a9x4_trm.pdf (2011)

36. ARM, Cortex a9 technical reference manual, http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0388e/DDI0388E_cortex_a9_r2p0_trm.pdf (2009)

37. Barry R (2009) FreeRTOS Reference Manual: API functions and Configuration Options. Real Time
Engineers Ltd

38. Ågren D (2012) Freertos cortex-a9 mpcore port. https://github.com/ESLab/FreeRTOS---ARM-
Cortex-A9-VersatileExpress-Quad-Core-port

39. Fazzino F, Palesi M, Patti D Noxim: Network-on-chip simulator, URL: http://sourceforge.net/projects/
noxim

40. Banno F, Marletta D, Pappalardo G, Tramontana E (2010) Tackling consistency issues for runtime
updating distributed systems. In: 2010 IEEE international symposium on parallel distributed process-
ing, workshops and Phd forum (IPDPSW), pp 1–8. doi:10.1109/IPDPSW.2010.5470863

41. Bhadauria M, Weaver VM, McKee SA (2009) Understanding PARSEC performance on contempo-
rary CMPs. In: Proceedings of the 2009 IEEE international symposium on workload characterization
(IISWC), Washington, DC, USA, pp 98–107

42. Das R, Ausavarungnirun R, Mutlu O, Kumar A, Azimi M (2013) Application-to-core mapping policies
to reduce memory system interference in multi-core systems. In: 2013 IEEE 19th international sym-
posium on high performance computer architecture (HPCA2013), pp 107–118. doi:10.1109/HPCA.
2013.6522311

43. Slotte R (2012) A lightweight rich-component framework for real-time embedded systems, Master’s
thesis, Åbo Akademi University

123

Paper IV

Thermal Influence on the Energy
Efficiency of Workload Consolidation
in Many-Core Architectures

Fredric Hällis, Simon Holmbacka, Wictor Lund, Robert
Slotte, Sébastien Lafond, Johan Lilius

Originally published Proceedings of the 24th Tyrrhenian International
Workshop on Digital Communications, 2013 IEEE International Con-
ference, Genoa, Italy.

c©2013 IEEE. Reprinted with permission.

Thermal Influence on the Energy Efficiency of
Workload Consolidation in Many-Core

Architectures

Fredric Hällis, Simon Holmbacka, Wictor Lund, Robert Slotte, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
Email: firstname.lastname@abo.fi

Abstract—Webserver farms and datacenters currently
use workload consolidation to match the dynamic work-
load with the available resources since switching off
unused machines has been shown to save energy. The
workload is placed on the active servers until the servers
are saturated. The idea of workload consolidation can be
brought also to chip level by the OS scheduler to pack
as much workload to as few cores as possible in a many-
core system. In this case all idle cores in the system are
placed in a sleep state, and are woken up on-demand. Due
to the relationship between static power dissipation and
temperature, this paper investigates the thermal influence
on the energy efficiency of chip level workload consolida-
tion and its potential impact on the scheduling decisions.
This work lay down the foundation for the development
of a model for energy efficient OS scheduling for many-
core processors taking into account external factors such
as ambient and core level temperatures.

I. INTRODUCTION

Energy efficiency is becoming a key issue in all
types of computing systems, from hand-held devices to
large scale distributed systems. The energy efficiency
and proportionality characteristics can be studied on
different levels, from the level of enterprise server farms
and datacenters to the level of cores in a many-core
processor. On the level of datacenters, a mismatch
between the energy-efficiency region [1] and the typical
processed workload is usually observed. This leads to
a non-proportional relationship between the produced
work and the corresponding energy consumption i.e. all
energy is not used for useful work. Several approaches
based on load consolidation [2], [3] were proposed
to solve this issue and to accomplish better energy
efficiency.

On the level of cores in a many-core processor, the
current Advanced Configuration and Power Interface
(ACPI) standard defines processor power states, called
C-states or sleep states, and performance states called
P-states. Using only P-states by exploiting dynamic
voltage and frequency scaling (DVFS) mechanisms does

not fully solve the power proportionality problem as
an idling core still dissipates a non-negligible static
power. The overall static power of a chip can be reduced
by removing cores from the set of active cores and
by using their C-states. Therefore, mapping portions
of the workload to appropriate processing elements at
any time and by using the processor and performance
states influences the power dissipation of the processor.
This mapping decision is usually done within the OS
scheduler which can make scheduling and load balanc-
ing decisions leading to different operating states. As
example, fairly distributing all tasks on all cores will
disable the possibility to exploit any processor power
states but will allow the use of performance states on
all cores. On the other hand, consolidating all tasks on
as few cores as possible will drastically limit the use of
performance states on the remaining active core, but will
take full advantage of the power states on the unused
cores.

However a side effect of consolidating the workload
to few cores is an increase of the temperature of the
active cores, while the idle cores, on the other hand, re-
main cool. In an extreme case, because a hot core dissi-
pates more static leakage power [4], a positive feedback
effect of thermal runaway might lead to a continuously
increase of temperature and static power dissipation
over time. Moreover this factor tend to become more
significant as the manufacturing technology decreases
[4]. Although chip aging, calculation errors and thermal
breakdown are also affected by the temperature, the
scope of this paper is only focused on the relation to
power dissipation. In this paper we will investigate the
issue of energy efficient workload mapping in many-
core systems and workload mapping guidelines will be
given by investigating and considering:

• The spatial location of workload

• The ambient temperature conditions

• The processor temperature

All measurements and implementations have been ob-
tained from a benchmark running on real hardware and
using Linux 3.6.11 as the underlying software platform.

With the given insight into efficient workload map-
ping, this paper demonstrates that under certain con-
ditions an OS scheduler should not only consider the
inherited characteristics of the measured workload, but
also account for external factors such as ambient and
core level temperatures.

II. RELATED WORK

Several strategies based on load consolidation to im-
prove the system energy efficiency have been proposed
in the literature. For example load consolidation is a
well studied approach to reduce the energy consumption
on the level of cellular access networks [5] and datacen-
ters [2]. Improvements in energy efficiency based on the
consolidation of virtual machines on a reduced number
of physical servers, as shown by [6], has even resulted
in commercially available implementations [7].

Also, on the level of many-core processors tech-
niques to improve the energy efficiency have been
proposed. The optimization problem of achieving a
minimum energy consumption with the use of load
consolidation and performance states on a many-core
processor is mathematically formulated in [8]. Previous
research has demonstrated the power saving potential
of load consolidation in many-core systems [9]–[11].
For example, the behavior of the currently implemented
power-awareness feature in the Linux scheduler is dis-
cussed in [11]. Without taking into account the thermal
state of the cores, this paper demonstrates that the
effectiveness of the power saving functionality in the
Linux scheduler, described in more details in [12], on a
many-core processor is workload dependent. In particu-
lar the current Linux scheduler is unable to consolidate
load consisting of short running jobs and high rate of
process creation and deletion. This paper indicates that
the consolidation of tasks to keep as many cores as
possible in long idle state is needed in order to reach
the most optimal processor power state.

Indeed, idle states can be disturbed by needless inter-
rupts, even when implementing an idle friendly interrupt
scheme, such as the dynamic ticks in Linux [11]. To
solve this issue, a form of interrupt migration framework
to remove all needless interrupts from idling cores is
needed [11]. Such a mechanism can be found as part of
OS:es, such as the Linux hotplug functionality, which
does not only remove interrupts but, depending on the
underlying architecture, can shut down an entire core
and remove it from the reach of the system scheduler.
Migrating interrupts also cost time and it is important
that the magnitude of this cost justifies the use of the
mechanism [11]. However, since this functionality is

capable of removing all activity on a core and placing
it in a deep sleep state, it is argued that it can be used
as a form of load consolidating power saving measure.
By turning off cores at times of low load the remaining
load would be consolidated over the remaining active
cores.

It is often assumed that consolidating tasks onto
fewer cores will result in a trade off between power
and performance. However, load consolidation applied
in conjunction with DVFS can, in some circumstances,
also increase performance [10], [11]. Nevertheless, plac-
ing the CPU in a higher performance state, as a result
of the load consolidation increasing the load over the
active cores, the dynamic power of these cores as well
as their heat production will increase, in turn increasing
their static power consumption [13]. Since load consol-
idation can, depending on the load situation, a) either
increase or degrade the performance, b) directly affect
the dynamic power and c) indirectly, through thermal
fluctuations, affect the static power, a prediction of its
potential power saving is challenging. The situation is
further complicated by the ambient temperature, since
it also directly affects the system’s leakage power.

Research has shown that load consolidation is in
some cases a viable power saving technique on many-
core platforms [14]. However, due to different variables
such as load perception, interrupt handling, core and
ambient temperature, DVFS behavior, and their impact
on the overall energy consumption and performance,
a best practice regarding load consolidation is yet to
be found. This paper discusses the load consolidation
challenges on many-core processor in order to discern
scenarios in which load consolidation approaches are
beneficial.

III. POWER DISSIPATION AND ENERGY
CONSUMPTION IN MICROPROCESSORS

A. Power breakdown

The total power dissipated by a processing element
origins from two distinct sources: a) the dynamic power
dissipation Pd due to the switching activities and b)
the static power dissipation Ps mainly due to leak-
age currents. The dynamic power is dissipated when
the load capacitance of the circuit gates is charged
and discharged. Such activities occur when the CPU
functional units are active. Because the dynamic power
is proportional to the square of the supply voltage
Pd ∼ V dd2, much effort was put into the design
of integrated circuits being able to operate at a low
supply voltage. However decreasing the supply voltage
of integrated circuits increases propagation delays which
force the clock frequency down accordingly. Therefore
by dynamically adjusting the clock frequency along the

2

supply voltage when using performance states maxi-
mizes the power savings. The dynamic power is given
in Eq. 1.

Pd = C · f · V dd2 (1)

Where C is the circuit capacitance, f is the clock
frequency and V dd is the core voltage.

The static power is dissipated due to leakage current
through transistors. Moreover, when lowering the supply
voltage of integrated circuits, the threshold leakage cur-
rent increases which also increases the dissipated static
power [15], [16]. In addition to this, scaling down the
technology process of integrated circuits increases the
gate tunneling current which also leads to an increased
static power [15]. Until recently, the power dissipated
by a processing element was mainly consisting of the
switching activities i.e. Pd � Ps [17]. However due
to technology scaling, the static power dissipation is
exponentially increasing and starts to dominate the
overall power consumption in microprocessors [4], [15],
which leads to increased research efforts in minimizing
static power e.g. with the use of sleep states.

B. Thermal influence

The temperature of a microprocessor directly influ-
ences the static power dissipation of the chip since the
leakage current increases with increased temperature.
The rate at which the static power is increased depends
on the architecture and manufacturing techniques, and
in this paper we mainly focus on mobile many-core
processors. In order to determine the temperature-to-
power ratio, we let a quad-core processor (ARM based
Exynos 4) idle with no workload in different ambient
temperatures.

Fig. 1. Static power dissipation as function of ambient temperature
for idling chip

Figure 1 shows the increase in static power as a
function of the temperature for both board and CPU
level measurements. At the left hand side of the curve,

the chip was put in a freezer and its internal temperature
was measured to be 1 ◦C, and afterwards it was placed
in room temperature and heated up to 80 ◦C with an
external heat source. As seen from the figure, the power
dissipation of the chip increases more than twofold
depending on the ambient temperature conditions. The
sudden drop in chip power at the 80 ◦C point is due
to the chip’s frequency throttling mechanism, which is
automatically activated at this point in order to prevent
overheating leading to physical and functional damage.

C. Energy consumption

The amount of energy consumed by a processor is
the product of the processors power Ptot and the time
t as shown in Eq.2

E = Ptot · t (2)

where Ptot is the sum of dynamic and static power
Ptot = Pd + Ps. The linear combination of power and
time results in a two-variable optimization problem for
minimizing the energy consumption. A strategy called
race-to-idle [14] primarily used in handheld devices
aims to execute work as fast as possible in order to
minimize the execution time and save energy. On the
other hand, decreasing the clock frequency and supply
voltage at the cost of longer execution time might reduce
the total energy if the processing elements are not
overheated due to hot ambient temperature.

We will therefore investigate the energy consump-
tion of different workload placement policies with re-
spect to both power and execution time.

IV. WORKLOAD MAPPING POLICIES AND ENERGY
CONSUMPTION

The main goal of this paper is to investigate how
different workload placement policies affect the dissi-
pated power and execution time and how it impacts the
energy consumption. Practically the workload on an OS
is defined in a certain work quanta called process or
task. A task executing on a core may utilize or load a
certain percentage of the core’s capacity. The methods

Fig. 2. Workload placement for the evenly balanced policy

for calculating load varies but are usually defined as
the ratio between core execution and core idling over a
certain time window.

3

Figure 2 shows the traditional method of task map-
ping in Linux [18]. Four theoretical CPU-bound tasks,
each imposing 20% load, spread out evenly over a quad
core CPU to create a balanced schedule.

The complete opposite mapping policy would be to
pack as much work onto as few cores as possible.

Fig. 3. Workload placement for the packing policy

Figure 3 illustrates a scenario in which four tasks
have been mapped on only one core and the remaining
cores are turned off. In this case the system must insert
the notion of overloading a core because as soon as the
loaded core is overloaded, a new core must be woken
up to offload the overloaded core. In a non-ideal (and
more realistic) case the workload is not ideally divisible
over the complete platform.

Fig. 4. Workload migration in a non-ideal workload case

Figure 4 shows how the core with the least workload
offloads a task to the most loaded (but not overloaded)
core, in this case Core 0. Similarly, if a core becomes
overloaded, the core offloads a sufficiently large portion
of the workload to the most loaded but not overloaded
core.

The key issue for these different mapping policies
is the power breakdown and thermal gradient of the
chip. Consider a case with four tasks, each utilizing
a core running at 400 MHz to 100%, and a chip
implementing P- and C-states. Figure 5 illustrates the
relative differences in terms of static and dynamic power
dissipation for the balanced policy (leftmost part) and
the packing policy (rightmost part). As for the balanced
strategy, every core (in this case a quad-core) dissipates
a small amount of dynamic power since the clock is only
running at 400 MHz and still the core is not overloaded.
At the same time, the cores also dissipate static power
since all cores must be enabled to process the workload.

The same set of tasks using the packing policy is
shown in Figure 5, (rightmost part). Since all four tasks

Fig. 5. Power distribution of two workload placement policies

in this case are mapped on only one core, the core
must quadruple its frequency in order to not become
overloaded. As the frequency increases, the dynamic
power increases due to the frequency factor f and the
voltage factor V dd2 as was shown in Eq. 1. Further-
more, when frequency and supply voltage increase the
thermal dissipation also increases to form a thermal hot-
spot. This increases the static power dissipation because
of increased leakage currents in the semiconductors.

While the packing policy results in high power
dissipation for the busy core, the idle cores can be shut
off and their total power dissipation is in best case zero.
The following sections present a set of benchmarks to
determine the most energy efficient workload mapping
policy with different workload scenarios in different
ambient temperatures.

V. EXPERIMENT SETUP

A. Hardware platform

The hardware platform used for the experiments was
an Odroid-X board equipped with a Quad-Core Exynos
4 implementation of the ARM Cortex-A9 architecture.
The CPU had a maximum clock frequency of 1.6
GHz and 1 GB of DRAM. The board has 15 P-states
corresponding to 15 different clock frequencies and
voltage settings. The highest P-state corresponds to a
frequency of 200 MHz and each P-state step changes
the frequency by 100 MHz. We ran each experiment in
three ambient temperature conditions: 1) hot tempera-
ture (the board was using only a passive heatsink), 2)
normal temperature (an external fan was used), 3) cold
temperature (the board was put in a freezer at -20◦C).
The power was measured with a probe attached to the
current feed pins on the ARM cores and the temperature
was measured by reading internal registers.

B. Software platform

Linux 3.6.11 was chosen as the underlying software
platform because of the possibilities to alter the task
mapping with simple scheduling tweaks and already
implemented CPU hotplugging capabilities. All com-
parisons were run with two policies a) spread out the
workload as evenly as possible, and b) packing the
workload to as few cores as possible without overload-
ing them. The used platform did have capabilities for
DVFS tweaking and CPU hotplugging. The used DVFS

4

governor was the default Linux OnDemand, which sets
the clock frequency to the appropriate level depending
on the measured workload by utilizing the P-states.
All OnDemand parameters were constant in all sets of
experiments.

C. Spurg Bench

Spurg-Bench [19] is used to generate controlled
load levels on many-core processors. This benchmark
is designed to test a system with different types of
load levels. It consists of a load generator and a runner
script able to generate one or more single-threaded
load operation schedulable to any core in the system.
Between each portion of operations, the benchmark
idles for a set amount of time to create the desired
workload percentage. This means that the test is able
to generate a specific amount of operations to calculate
by utilizing the CPU to a certain level.

The chosen operation we have used stresses the CPU
and the CPU’s floating point unit with floating-point
multiplications. The C code for the operation is shown
in Listing 1.

1 int operation(){
int i; double a = 2.0;

3 for (i = 0; i < 1000; i++)
a ∗= 2.0;

5 return 0;
}
Listing 1. Example of a operation using the processors floating-point
units.

D. Results

Spurg-Bench was initially set to execute 100000
operations for a certain set of load level setpoints:
[10, 20, 30, 40, 50, 60, 70, 80, 90]. All the tests were
run in the three different ambient temperature conditions
with both the consolidation policy and the balanced
policy.

Figure 6 presents the performance, as the number of
operations per second, per watt of CPU power, during
each of the different load level set points for both
scheduling policies in three different ambient temper-
atures. The figure shows that during lower load levels
more work can be accomplished, for the same power
budget of one watt, by consolidating the workload.

In situations when the load is low, consolidating
does not increase dynamic power nor the temperature,
and in extension the static power of the remaining
cores considerably. This leads to a situation where the
reduction in static power is larger than the increase
in total power over the remaining cores, resulting in
power savings. Furthermore, since the static power
consumption is higher at higher temperatures the effect
is more discernible in the high temperature case.

Fig. 6. Power of CPU as a function of operations per second for
different ambient temperatures

From the figure it can be seen that as the load
increases the performance per watt, for the consolidation
policy, degrades in relation to the non consolidation
policy. This results in crossover points between the
performance per power of the two different policies.
These crossover points depict the point at which the
trade off between power and performance, when uti-
lizing consolidation, is no longer energy efficient. This
behaviour is due to the inherent trade-off between power
and performance brought upon by consolidation. Even
though the average power drawn by consolidation is
lower, at higher loads it takes longer to complete the
tasks resulting in decreased performance per watt. The
decrease in performance is also partly due to the con-
solidation policy itself not being as fast at rearranging
tasks as the default scheduling policy.

From Figure 6 we notice that the crossover point for
the studied CPU with no cooling fan is around load level
70% at 1440 operations per second per watt, and at load
level 40% with 1600 operations per seconds per watt if
the CPU is cooled down by a fan. In case the CPU is
in a freezing environment the crossover point already
happens around load level 20% at 1500 operations
per second per watt. The different placement of the
crossover points are due the static power consumption
per core being higher at higher temperatures, which
effects the power saving effect of consolidation.

Even though the gains of using load consolidation
on the chip level where considerably less than expected,
when compared to similar techniques used on the server
level [6] [7], the results indicate that consolidation on
the chip level can, only in some cases, prove to be a
valid measure to improve energy efficiency. Although
we expect comparable behaviour on similar types of
hardware, we intend to extend our analyses to other
architectures as future work. The evaluation of archi-

5

tectures having hardware controlled P- and C- states
might produce different results.

VI. CONCLUSION

This paper has investigated the performance and
energy efficiency of a fairly distributed scheduling pol-
icy compared to a workload consolidation policy in
different ambient temperature conditions. The aim of
this work was to determine if under different tempera-
ture conditions the static power saved by shutting off
idle cores weighs up against the increased dynamic
power obtained when increasing the clock frequency
and consolidating the workload on the remaining active
cores.

The results show that as the workload is fairly
distributed over the whole chip, the power and thermal
dissipation of the chip remains rather proportional and
predictable. However, this is not always the most energy
efficient way of scheduling tasks in a many-core system;
for low workloads consolidation provides a more energy
efficient scheduling policy as the unused cores are
completely shut down. Due to the power dissipation of
the CPU increasing exponentially as a function of the
temperature, the effects of consolidation on energy ef-
ficiency is more prominent during higher temperatures.
On the other hand, the improved energy efficiency of
consolidation degrades as the load increases. Reaching a
point where it is more energy efficient to utilize all cores
in the system at a slightly higher power dissipation.

We have found that it is difficult to apply a general
scheduling policy suitable for any environment – as
ambient and chip temperature conditions change, the
energy efficiency of scheduling policies varies. Conse-
quently, scheduling decisions should not only be based
on internal workload measurement, but should also
integrate external conditions such as ambient temper-
ature. On the studied platform, the energy efficiency
can be improved by adding a temperature sensitive
consolidation policy to a modular scheduler, such as the
Linux scheduler. The scheduler can use consolidation
during periods of low load where the switch-over point
between policies will be dependent on the chip temper-
ature. This would enable energy efficient load balancing
mechanisms under variable temperature conditions.

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for
energy-proportional computing,” Computer, vol. 40,
pp. 33–37, December 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1339817.1339894

[2] C. Mastroianni, M. Meo, and G. Papuzzo, “Analysis of a
self-organizing algorithm for energy saving in data centers,”
in The Ninth Workshop on High-Performance, Power-Aware
Computing, 2013.

[3] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy
aware consolidation for cloud computing,” in Proceedings
of the 2008 conference on Power aware computing
and systems, ser. HotPower’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855610.1855620

[4] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu,
M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current:
Moore’s law meets static power,” Computer, vol. 36, no. 12,
pp. 68–75, 2003.

[5] M. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optimal
energy savings in cellular access networks,” in Communications
Workshops, 2009. ICC Workshops 2009. IEEE International
Conference on, 2009, pp. 1–5.

[6] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan,
and X. Zhu, “Delivering Energy Proportionality with Non
Energy-Proportional Systems Optimizing the Ensemble,” in
HotPower ’08: Workshop on Power Aware Computing and
Systems. ACM, Dec. 2008.

[7] [Online]. Available: http://www.eco4cloud.com/
[8] M. Ghasemazar, E. Pakbaznia, and M. Pedram, “Minimizing

energy consumption of a chip multiprocessor through simul-
taneous core consolidation and dvfs,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium
on, 2010, pp. 49–52.

[9] J. Hopper, “Reduce Linux power consumption, Part 3: Tuning
results,” 2009, accessed: September 10, 2012. [Online].
Available: http://www.ibm.com/developerworks/linux/library/l-
cpufreq-3/index.html

[10] V. W. Freeh, T. Bletsch, and F. Rawson, “Scaling and packing
on a chip multiprocessor,” in Parallel and Distributed Process-
ing Symposium, 2007. IPDPS 2007. IEEE International, 2007,
pp. 1–8.

[11] V. Srinivasan, G. R. Shenoy, S. Vaddagiri, D. Sarma, and
V. Pallipadi, “Energy-Aware Task and Interrupt Management
in Linux,” vol. 2, Aug. 2008.

[12] V. Pallipadi, “cpuidle - Do nothing, efficiently...” [Online].
Available: http://ols.108.redhat.com/2007/Reprints/pallipadi-
Reprint.pdf

[13] V. Jimenez, R. Gioiosa, E. Kursun, F. Cazorla, C.-Y. Cher,
A. Buyuktosunoglu, P. Bose, and M. Valero, “Trends and
techniques for energy efficient architectures,” in VLSI System
on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP, 2010,
pp. 276–279.

[14] M. J. Johnson and K. A. Hawick, “Optimising energy man-
agement of mobile computing devices,,” in Proc. Int. Conf. on
Computer Design (CDES12). Las Vegas, USA: WorldComp,
16-19 July 2012, pp. 1–7.

[15] H. Singh, K. Agarwal, D. Sylvester, and K. Nowka, “Enhanced
leakage reduction techniques using intermediate strength power
gating,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 15, no. 11, pp. 1215 –1224, nov. 2007.

[16] S. Borkar, “Design challenges of technology scaling,” Micro,
IEEE, vol. 19, no. 4, pp. 23 –29, jul-aug 1999.

[17] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power
cmos digital design,” Solid-State Circuits, IEEE Journal of,
vol. 27, no. 4, pp. 473 –484, apr 1992.

[18] M. T. Jones, “Inside the linux scheduler,” Jun 2006. [Online].
Available: http://www.ibm.com/developerworks/linux/library/l-
scheduler/

[19] W. Lund. Spurg-bench. https://github.com/ESLab/spurg-bench.
Åbo Akademi University.

6

Paper V

QoS Manager for Energy Efficient
Many-Core Operating Systems

Simon Holmbacka, Dag Ågren, Sébastien Lafond, Johan
Lilius

Originally published Proceedings of the 21st International Euromicro
Conference on Parallel, Distributed and Network-based Processing, 2013,
IEEE International Conference, pages 318–322. Belfast, UK

c©2013 IEEE. Reprinted with permission.

QoS Manager for Energy Efficient Many-Core Operating Systems

Simon Holmbacka, Dag Ågren, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
Email: firstname.lastname@abo.fi

Abstract—The oncoming many-core platforms is a hot topic
these days, and this next generation hardware sets new focus
on energy and thermal awareness. With a more and more
dense packing of transistors, the system must be made energy
aware to not suffer from overheating and energy waste. As a
step towards increased energy efficiency, we intend to add the
notion of QoS handling to the OS level and to applications. We
suggest the design of a QoS manager as a plug-in OS extension
capable of providing applications with the necessary resources
leading to better energy efficiency.

Keywords-QoS, Distributed Operating Systems, Many-Core
Systems, Energy Efficiency

I. INTRODUCTION

Pollack’s rule [1] describes the performance increase of
a CPU as an increase proportional to the square root of the
increase in core complexity. As a result of this rule, chips
with less complex but more cores are becoming popular.
Twice the core complexity will, according to Pollack’s rule,
result in only about 40% performance speed-up, while using
the same amount of transistors for adding more available
cores increases the performance potentially by 70-80% [1].
While processing power can be increased by simply adding
more cores, developing the software for many-core chips
utilizing the parallelism is not trivial. Scalability issues can
arise from both performance bottlenecks and new types of
power constraints these chips introduce. In this paper we
tackle the energy and thermal issues present in many-core
chips due to the difficulty of managing the power dissipation
efficiently.

Performance is usually maximized by spreading out tasks
evenly on the chip, which also results in less thermal
hotspots. On the other hand if tasks are scheduled to only
a few cores, the idle cores could be shut down and as a
result the total energy consumption decreases. A problem
arises from this dynamic management and from optimiza-
tion for energy efficiency without introducing performance
degradation. Applications in computer systems usually strive
towards high performance; an aim in the opposite direction
to lowering the energy consumption. The compromise is to
lower the energy consumption as much as possible while still
provide the necessary processing power. For this cause we
will investigate how to allocate the right amount of resources
to the applications at the right time in order to provide
sufficient Quality-of-Service (QoS).

QoS is a metric describing the level of performance

compared to a stated specification [2]. By introducing
QoS awareness into the applications, resource allocation
can become more energy efficient because applications can
deliberately ask for only a defined amount of processing
power. The notion of QoS extends applications’ influence
over resources, and expands energy scalability by enabling
control of the resource distribution. A QoS manager is
therefore vital to a system level point of QoS control.

This paper presents the design of a QoS manager capable
of regulating performance of many-core operating systems.
The suggested manager is an OS service to which appli-
cations and other OS services can connect and establish
the information flow necessary for QoS control. Besides
the QoS manager, this paper also focuses on the declaration
language the applications use to express their requirements.
The contributions of the paper are:

• The QoS manager: a standardized link between appli-
cations and resources

• The possibility of applications to hint their resource
need to the OS

II. NOTION OF PERFORMANCE AND QOS

QoS is a term used in real-time systems [3], usually in
order to describe the relation to soft deadlines. It is also
a term used in cloud computing [4], to enable the selling
of a bundle of processing power to the user with a certain
quality. In both cases, QoS is used to describe the average
feasibility of a system without looking at sharp deadlines –
a feature we intend to extend the OS with. This notion will
enable us to create a more energy efficient system.

Energy is consumed as cores dissipate power over time
and by the cooling infrastructure required for actively lead-
ing the heat away. Power is required for executing tasks
on the processing elements, which in turn create the waste
heat. In order to create an energy efficient system, the tasks
should: a) execute on the appropriate execution unit and b)
be only allocated the necessary amount of resources. For
this, the notion of performance is an important measurement
for deriving QoS values and how well an application is able
to satisfy the user.

The QoS value for an application is determined by
comparing the performance requirement in the specification
with the actual measured performance. The ratio between
these two values is the drop in QoS. If the QoS drop is
more than allowed by the specification, the system must

control some actors giving the application more resources
and thus higher QoS. Similarly, if the performance is too
high, the system should decrease the amount of resources
to the corresponding application in order to reduce energy
waste. For this reason we suggest a new single entity – the
QoS manager – controlling the QoS for the applications.

III. THE QOS MANAGER

The presented QoS manager is implemented as an OS
extension. The manager is able to measure QoS values
from the applications (referred to as sensors), and with
the obtained information control the resource allocation on
system level. The structure of the manager is shown in
Figure 1. It contains the manager, applications and actuators
interconnected. The system is built from a sensor-controller-

Figure 1. Structure of the OS containing the QoS Manager

actuator structure shown in Figure 1, and is described below.
Sensor: A sensor is a unit capable of connecting to the

manager, expressing QoS and sending measurements to the
QoS manager, hence the name sensor. Initially, the sensor
registers its own QoS requirements and type of resources
to use to the QoS manager with a declaration language
described in Section IV. Afterwards, the sensor measures
its own performance periodically with an implementation
specific mechanism in the sensor itself. The performance
values are sent to the QoS manager for QoS evaluation. As
long as the values are within the specified QoS range, the
task of the QoS manager is simply monitoring. In Figure
1 three sensors are connected to the controller: web server,
transcoder, and power observer.

Controller: The controller is the part managing the link
between sensors and the resources. It contains a database
over all established sensor connections and the control unit.
Furthermore, the controller handles the resource allocation
if the measured QoS from the sensors is too low. Since the
sensors are able to hint what kind of resource they lack
in such a situation, the controller functions as a plug-in
system connecting application directly to the right part of
the hardware. All control theoretical implementations are
put into the control unit. In this paper we used a simple
P-controller (proportional controller) due to its simplicity.
The P-controller determines how much more/less resources
should be allocated to a certain sensor depending on its
QoS value. In future work, we intend to investigate more
advanced control methods.

Actuator: Actuators are units capable of indirectly
altering the sensors’ performance by regulating some re-
sources (hardware or software). The way performance in-
creases is sensor dependent, which means that such an
actuators must be available, that the requests from the sensor
can be fulfilled. A common actuator is the DVFS governor
capable of setting the CPU voltage and frequency of a pro-
cessor. Other actuators could handle sleep states, or migrate
tasks from core to core to adjust the level of parallelism.
Specific hardware related actuators could shut down memory
banks on demand to decrease power dissipation. Even fan
controllers can be used to set the fan speed for energy
efficient cooling. Sensor choose which actuators to use with
a declaration language describe in the following section.

IV. DECLARATION LANGUAGE

A simple language has been derived to let the programmer
determine QoS requirements for sensors and what actuators
are connected to the sensors.

Overview: The declaration language is used during
the implementation of the applications, and is compiled
to c-code used for the registration and transmission of
measurements used in the sensors. Rules and measurements
are sent to the QoS manager during runtime. The sensors
should therefore use the language to describe required QoS.
A template for using the language is shown in Listing 1 and
explained below.

QoS MyTemplate {
requirements{

boundary: <condition1>: <value>;
boundary: <condition2>: <value>;
... }

priority <value>
control{

actuator: <Actuator candidate1> <sign>;
actuator: <Actuator candidate2> <sign>;
... } }

Listing 1. Template for specifying QoS

The declaration language used in the sensors is divided
into fields for expressing the performance and QoS. A field
contains an entity needed to specify what is intended from
the system upon a measurement.

Requirements: The requirements field describes the
actual limits for determining QoS boundaries. QoS require-
ments in form of a performance description is therefore
inserted in this field and is compared against a selected
setpoint. By setting a setpoint, the QoS manager can relate
the performance measurements to what would be considered
too low (poor performance) or too high (energy waste). In
order to specify the accepted range of performance the user
must also specify a QoS limit, which gives the lower
bound of what is considered acceptable. For example the
programmer of a webserver can choose a setpoint of 500
requests/sec and the QoS limit of 450 requests/sec.

Priority: The priority field determines which (if exists
many) of the connected sensors have the highest weight.
Situations can occur in which two different sensors’ require-
ments completely conflict each other. In these cases the
priority selects how much is weighted from which client.
The priority from a thermal guard would for example be
prioritized higher than a performance request from a web
server if physical damage is imminent because of heat issues.
Currently the weighing system is implemented to discard
lower prioritized measurements in favor of measurements
with higher priority. A more comprehensive way of express-
ing priorities is part of future work.

Control: The control field is used to describe what
actuators should be used by the sensors. Actuators are cho-
sen name wise based on available actuators in the controller
database. All actuators are related to a control sign (+ or -).
The sign determines in which direction the actuator should
aim its output signal for the specific sensor. An example
shown in Listing 2 describes is a power observer which
strives to minimize the power dissipation of the system.

control{
actuator: CPU freq, −;
actuator: CPU nr, −;
actuator: Parallelize, −;

}

Listing 2. Example of control for a power observer

This sensor has a negative signs on CPU frequency and
number of active CPU cores as it aims to shut down and
scale down cores in order to reach low power dissipation. It
also tries to parallelize as little as possible in order to enable
the shut down of cores. A webserver or transcoder could, on
the other hand, use positive signs to request more resources
if the QoS drops too low.

V. EVALUATION

We evaluated a simple system with two sensors: a JPEG
decoder which decodes JPEG images in an infinite loop and
a power observer which is used to keep the dissipated power
under a certain value in order to act as an on-demand power
saving mode. The applications were run on top of FreeRTOS
[5]. The system was mapped on the Versatile Express board
equipped with an ARM Cortex-A9 based CoreTile 9x4 quad-
core chip running at 400 MHz with 1 GB of DDR2 memory.
Our FreeRTOS port is available at [6]. Figure 2 shows four
CPU cores each running one separate instance of FreeRTOS.
Our system consist of one master core running the QoS
manager and three worker cores. Each core has one JPEG
decoder task running. Each decoder task runs completely
independent of the other decoders. In this architecture, we
are therefore able to decode up to four pictures in parallel.

Measurement data describe how many pictures per second
(p/s) a core is able to decode, and is sent to the master.
The total sum of p/s of all four separate JPEG decoding

Figure 2. Mapping of the QoS manager on an ARM Cortex-A9 quad-core

instances gives the final p/s number for the whole system.
Furthermore, the master core implements a power observer,
which is used as a on-demand power saving feature. A sleep
state mechanism was implemented as actuator; giving the
master core the opportunity to shut down individual worker
cores in order to lower the power dissipation. Experiments
were conducted to show how the energy consumption be-
haves according to what performance requirements are set
in the QoS manager.

Without power requirements: The first set of experi-
ments were conducted without power requirements. Table I
shows the requirements for the JPEG decoder in five differ-
ent tests. The first test (1) has a performance requirement of
7.5 p/s with a QoS of 93.3% etc.

Table I
REQUIREMENTS FOR THE FIRST EXPERIMENT

Test nr. 1 2 3 4 5
Setpoint [p/s] 7.5 5.5 4.0 3.8 2.0
QoS [%] 93.3 90.9 97.5 84.2 75.0

Results from the first run is shown in Figure 3. Figure
3(A) shows the picture rate of each test run. From the figure
it is clear that the cases with a steady curve are successfully
provided with the demanded resources most of the execution
time. The oscillating curve is a result of demanding such
a picture rate that 2.5 active cores are required. To avoid
the oscillations, additional actuators such as DVFS could
scale down one core in order close the gap between setpoint
and requirement more exact. The power dissipation was also
measured during the same experiments. Figure 3(B) shows
the power output from the same use cases as in Table I, with
the oscillating case (test 3) removed for illustrative reasons.

Figure 4 shows the final energy consumption for a 5
minute run on the Cortex-A9 for all mentioned test cases
and four additional configurations. It shows clearly how the
energy consumption increases steadily as the performance
requirements (p/s) increase. The result is a nearly linear
relationship between performance and energy consumption
due to the QoS manager with the sleep state actuator.

With power requirements: The next set of experiments
included power requirements to give a more realistic situ-
ation with multiple parameters to match. Similarly to the
first experiment, a JPEG decoder was used as application
with the same range of performance requirements. A power
observer application was added to the system. The power
observer measures the power dissipation of the chip. Ideally

Figure 3. Power dissipation with different performance settings

Figure 4. Energy consumption with different performance settings

it requires 650 mW of dissipated power, but accepts power
dissipation up to 700 mW . The power observer uses also a
higher priority than the JPEG decoder sensor to function as
a power saving and heat protection feature.

With these settings experiments were run for the first
settings in Table I. Without power constraints the system
activated four cores during the whole test and dissipated
roughly 900mW on average.

Figure 5. Results from experiment with power constraints ([7.5-7.0]p/s)

By adding power constraints, the system is forced to shut
down some cores in order to meet the higher prioritized
requirement from the power observer. Figure 5 shows how
the system is forced to operate mostly with three active cores
with occasional usage of only two cores. This experiment
shows that the system is able to override requirements on
demand by higher prioritized sensors in order to obtain

power saving feature etc.

VI. RELATED WORK

QoS management and monitoring exist in different areas;
from cloud infrastructures and web servers [4], [7] to OS
level on single computers and real-time systems [3], [8], [9]
etc. Language constructs for injecting QoS support has also
earlier been presented. Aagedal presented in his PhD thesis
[2] CQML; a language having the property of describing
QoS requirements. In this work, applications specify what
performance is to be expected from it and what is considered
as performance in context of the application. Applications
also monitor own performance and signal this value to the
QoS manager periodically.

We use similar notations inspired by the languages to
describe QoS in applications, with more focus on the OS-
level support. Our manager will be implemented as an
OS extension capable of system level control many-core
systems. Furthermore we have added the control output,
by which applications can choose which action needs to be
taken if the desired QoS is not achieved.

Design choices for a run-time manager was presented in
[10], consisting of a resource manager and a quality (QoS)
manager. The task of the QoS manager was to optimize an
operation point such that the system is maximally utilized.
Utilization is controlled by adjusting quality points in the
applications i.e. selecting one of many performance levels
an application specifies. Video resolutions or frame rate
for a transcoder are examples of such performance levels.
Similarly in [11], a system PowerDial is used to insert con-
figuration parameters (knobs) into applications and tune their
values to achieve the best accuracy vs. performance trade-
off. Complementary to Hoffman’s work [11], his application
tuning knobs can be used as a single actuator in our model,
which forms an application to be both a sensor and actuator
at the same time. Instead of controlling the applications, our
manager is intended to only monitor the applications which
indirectly influence the resources.

The managers in [9] and [10] require the application pro-
grammer to specify required processing power, memory and
communication capabilities. We intend to simplify require-
ment notation by only requiring an abstract quality value
freely defined by the programmer. The programmer does
not need to modify the application or analyze performance
points in order to use the presented QoS manager.

VII. CONCLUSIONS

In this paper we have introduced a QoS manager for
improving the energy efficiency of many-core systems. The
manager is intended to make the system better utilize the
resources of the platform depending on the workload. Appli-
cations are referred to as sensors; actors capable of declaring
performance and QoS requirements. By introducing the
notion of QoS, sensors are able to signal their resource

requirements and, through the QoS manager, allocate the
resources. The QoS manager control a set of actuators
capable of altering the performance characteristics for the
sensors. Sensors also set what type of actuator is required
for increasing performance of a certain type of sensor,
which gives the programmer opportunities to tailor the
resources more exact to the application. It also allows future
optimization techniques to be plugged in to the QoS manager
and used by any sensor if suitable.

The QoS manager has been evaluated on a quad-core
ARM Cortex-A9 with a JPEG decoder and its picture rate as
use case. The experiments have shown that the QoS manager
is able to scale down the energy consumption of the chip in
two different ways. Firstly, the application can by itself relax
the performance requirements to a given rate and thereby
request less resources. Secondly, other sensors with higher
priority can force the system to allocate less resources to
lower prioritized sensors.

In contrast to current systems, more awareness on the
thermal distribution inside the chip must be made when
using many-core systems because of the very dense packing
of cores and the spacial locality. Controlling QoS will
therefore be an important part of the many-core evolution.
By using the system level QoS manager, the distributed
many-core system can more easily be optimized for a global
maximum since the applications can hint the controller of
how resources should be used.

VIII. FUTURE WORK

An issue not addressed in this paper is the control
theoretical view of the QoS controller. Since this part is
the system level of control, methods such as PID or MP
or fuzzy control should be tested and evaluated complete
with stability analysis and tuning rules etc. As this system
uses multiple inputs from sensors and multiple outputs to
the actuators, a state spaced-based method could enable
the possibility for constructing a more efficient controller.
Other alternatives would be to formulate the system as
a optimization problem in which the objective function
minimizes the power dissipation and QoS requirements are
the constraints. This would also improve the current priority
model since the system would, with more rigorous methods,
determine the lowest total cost (power vs. performance) of
the system.

The complexity of the controller is also an important
parameters especially in a large many-core system, as the
number of inputs/outputs is likely to grow rapidly. As the
number of cores grow towards extreme numbers (1000+) a
single manager will become a bottleneck for communication
even if the complexity is very low. To solve the issue, the
manager must be decentralized and function as a distributed
system with sub-managers handling certain islands of cores
eventually grouped into continents of cores.

We intend to develop the complete environment for
demonstrating the scaling effects of the QoS manager on a

true many-core platform such as the SCC [12] or TilePro64
[13] and also construct the necessary actuators needed
to control such a system efficiently. For example energy
efficient scheduling, task migration and dynamic voltage and
frequency scaling are techniques useful to create the required
actuators. We also intend to use a more complex mix
of applications requesting different actuators with different
priorities for a more realistic conclusion.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,”
in Proceedings of the 44th annual DAC. New York, NY,
USA: ACM, 2007, pp. 746–749.

[2] J. Aagedal, “Quality of service support in development of
distributed systems,” Ph.D. dissertation, University of Oslo,
Oslo, Norway, March 2001.

[3] F. Monaco, E. Mamani, M. Nery, and P. Nobile, “A novel
qos modeling approach for soft real-time systems with per-
formance guarantees,” in HPCS ’09., june 2009, pp. 89 –95.

[4] P. Zhang and Z. Yan, “A qos-aware system for mobile cloud
computing,” in CCIS, 2011 IEEE International Conference,
sept. 2011, pp. 518 –522.

[5] R. Barry, FreeRTOS Reference Manual: API functions and
Configuration Options, Real Time Engineers Ltd, 2009.

[6] D. Ågren. Freertos cortex-a9 mpcore port. Åbo Akademi
University. [Online]. Available: https://github.com/ESLab/
FreeRTOS---ARM-Cortex-A9-VersatileExpress-Quad-Core-port

[7] T. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance
guarantees for web server end-systems: A control-theoretical
approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, p. 2002, 2001.

[8] B. Li and K. Nahrstedt, “A control-based middleware frame-
work for quality-of-service adaptations,” Selected Areas in
Communications, IEEE Journal on, vol. 17, no. 9, pp. 1632
–1650, sep 1999.

[9] V. Segovia, “Adaptive cpu resource management for multicore
platforms,” Licentiate Thesis, Lund University, Sep. 2011.

[10] V. Nollet, D. Verkest, and H. Corporaal, “A safari through
the mpsoc run-time management jungle,” Journal of Signal
Processing Systems, vol. 60, no. 2, pp. 251–268, 2008.

[11] H. Hoffmann and S. Sidiroglou, “Dynamic knobs for respon-
sive power-aware computing,” in Proceedings of the sixteenth
ASPLOS conference. New York, NY, USA: ACM, 2011, pp.
199–212.

[12] P. Thanarungroj and C. Liu, “Power and energy consumption
analysis on intel scc many-core system,” in 30th (IPCCC),
2011, nov. 2011, pp. 1 –2.

[13] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and
A. Agarwal, “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, pp. 15–31, 2007.

Paper VI

Energy Efficiency and Performance
Management of Parallel Dataflow
Applications

Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien
Lafond, Johan Lilius

Originally published The 2014 Conference on Design & Architectures
for Signal & Image Processing [BEST PAPER], ECSI International
Conference, pages 133–141. Madrid, Spain.

c©2014 ECSI. Reprinted with permission.

Energy Efficiency and Performance Management of
Parallel Dataflow Applications

Simon Holmbacka∗, Erwan Nogues†, Maxime Pelcat†, Sébastien Lafond∗ and Johan Lilius∗
∗Department of Information Technologies, Åbo Akademi University, Turku, Finland

Email: {sholmbac,slafond,jolilius}@abo.fi
†UMR CNRS 6164 IETR Image Group, INSA de Rennes, France

Email: {erwan.nogues,maxime.pelcat}@insa-rennes.fr

Abstract—Parallelizing software is a popular way of achieving
high energy efficiency since parallel applications can be mapped
on many cores and the clock frequency can be lowered. Perfect
parallelism is, however, not often reached and different program
phases usually contain different levels of parallelism due to data
dependencies. Applications have currently no means of expressing
the level of parallelism, and the power management is mostly done
based on only the workload. In this work, we provide means of
expressing QoS and levels of parallelism in applications for more
tight integration with the power management to obtain optimal
energy efficiency in multi-core systems. We utilize the dataflow
framework PREESM to create and analyze program structures
and expose the parallelism in the program phases to the power
management. We use the derived parameters in a NLP (Non
Linear Programming) solver to determine the minimum power
for allocating resources to the applications.

Keywords—Power manager, Multi-core, Application Parallelism,
Dataflow framework

I. INTRODUCTION

Energy efficiency in computer systems is a continuous
coordination between the power dissipation of the used re-
sources and the execution time of the applications. In multi-
core systems energy efficiency is a question of both the time
and space sharing of resources, and is highly dependent on
the application characteristics such as its level of parallelism
(referred to as P-value). Many studies have investigated the
relationship between power dissipation and parallel execution
[1], [11], [17]. The general solution to reach energy efficiency
is to map parallel applications onto several cores to exploit
the parallelism and hence enable clock frequency reduction
without any performance degradation.

The parallelization will, however, in practice be restricted
by the application’s own internal scalability i.e. the P-value(s)
in the application. This factor is a crucial parameter which de-
scribes the application’s behavior and directly influences which
power saving techniques to use and what resources to allocate.
For example, resource control for sequential applications is
only possible by scaling the clock frequency, while parallel
applications are both influenced by the number of available
processing elements and their clock frequency.

To extract the P-value is, however, a non-trivial task since
a) the value depends on the programming techniques, usage
of threads, tasks etc. and b) the P-value usually varies in the
execution phases of the program because of non-parallel paths,

synchronization points etc. This means that resource allocation
should be done differently in different program phases.

Power saving techniques such as DVFS (Dynamic Voltage
and Frequency Scaling) and DPM (Dynamic Power Manage-
ment based on sleep states) can be utilized to bring the CPU
into the most power efficient state, but is currently only driven
by the system workload. This means that hardware resources
can be over allocated even though the application does not
provide useful work. To provide applications with a sufficient
amount of resources, the application performance should be
monitored rather than the CPU workload. For example in
a parallel phase of an application, DVFS and DPM could
be utilized to enable many cores and to reduce their clock
frequency to save power. On the other hand during a sequential
phase, DVFS could be used to increase the clock frequency
on the active core to gain performance, and the unused cores
could be shut down to save power. This interplay between
DVFS and DPM during the program phases is only possible
when describing the program performance and parallelism and
when observing the program progression during runtime.

Rather than providing this information by hand, dataflow
frameworks such as PREESM [16] provides tools for explicit
parallelization by single rate Synchronous Data Flow (SDF)
transforms, which can be exploited for extraction of the P-
value in the program phases. We use this framework to show
how dataflow tools can be used for energy efficient program-
ming and tight integration of the resource management. We
provide the following contributions:
a) We demonstrate the extraction of the P-values at compile-
time with the PREESM framework.
b) The P-values are injected together with QoS (Quality of
Service) parameters at runtime into the program phases to steer
the power saving features of the multi-core hardware.
c) A NLP solver is used to allocate resources with minimum
power dissipation for given QoS requirements.

Our approach demonstrates up to 19% energy savings for
real world applications running on multi-core hardware and
using a standard Linux OS without any modifications.

II. RELATED WORK

Various ways of using parallelization for achieving energy
efficiency have been studied in the past. The key goal has been
to spread out the workload [21] on several cores in order to

lower the clock frequency [9], hence lowering the dynamic
power dissipation while keeping constant performance.

Video applications have been popular use cases to demon-
strate such energy efficiency; Yang et. al. [23] presented smart
cache usage tailored for a MPEG-2 decoder to steer cache
usage for energy efficiency by utilizing application specific
information during runtime. The work in [14] formulated a
rigorous scheduling and DVFS policy for slice-parallel video
decoders on multi-core hardware with QoS guarantees on the
playback. The authors presented a two-level scheduler which
firstly selects the scheduling and DVFS utilization per frame
and secondly maps frames to processors and set their clock
frequencies. In our work, we lift the level of abstraction to
any kind of application while retaining video processing only
as a suitable use-case. Our QoS and power manager is hence
not tied to a certain application or system but is intended as a
more generic solution for energy efficient parallel systems.

Jafri et. al. [11] presented a resource manager which maps
parallel tasks on several cores in case energy efficiency can
be improved. The authors used meta data in the applications
to describe different application characteristics such as task
communication, and based on this data determine the paral-
lelization by calculating the corresponding energy efficiency.
Complementary to this work, we inject meta data in form
of QoS and the P-value, but orthogonally to compile-time
information we address runtime information which requires
no specific compiler knowledge and can be changed during
runtime.

On a fundamental level, energy- and power efficiency is
dependent on the proper balance between static and dynamic
power dissipation of the CPU. Rauber et. al. [17] provided the
mathematical formulation for the scheduling and the usage of
clock frequency scaling to minimize the energy consumption
for parallel applications. The results indicate that execution
on very high clock frequencies are energy inefficient even
though the execution time is minimized. This is a result of the
high dynamic power dissipation when executing on high clock
frequencies and the increase in static power due to high temper-
atures. Similarly in [1], Cho et. al. formulate mathematically
the best balance between dynamic and static power to achieve
minimal energy consumption. We acknowledge these findings
in our work and aim to realize the outcomes by utilizing DPM
and DVFS to obtain minimal power while keeping the QoS
guarantees defined in the applications. Furthermore we also
take the temperature into account, which significantly affects
the static power dissipation [5]. We also create our power
model specifically for a given CPU type, which gives us the
total power dissipation as a function of resource usage.

Finally we evaluate our system on real consumer hardware
to demonstrate the feasibility of integrating the proposed
strategies into real-world applications.

III. QOS & PARALLELISM AWARE STRATEGY

In this work we focus on general streaming applications in
which 1) QoS requirements can be defined and 2) performance
can be measured. An example is a video processing applica-
tion, which processes and displays a video for a set amount
of time. From this application we demand a steady playback
(e.g. 25 frames per second) for the whole execution, but the

execution speed of the internal mechanisms such as filtering
is usually completely dependent on the hardware resource
allocation.

Applications demand resources in order to perform the
intended functionality, which results in a power dissipation
Pw of the CPU over a time t. Since the energy consumption
is the product of Pw and t, an energy efficient execution
is obtained as the product is minimized. The power Pw is
further divided into the sum of the dynamic power Pwd and
the static Pws, hence Pw = Pwd + Pws. The dynamic
power is given by Pwd = C · f · V 2, where C is the
effectively switched capacitance, f is the frequency and V
is the voltage of the processor. The static power consists
mainly of leakage currents in the transistors and increases
with smaller manufacturing technologies and temperature [13].
The static power is hence present during the whole execution
and becomes the dominating power factor as clock frequencies
decrease and execution time increase [1].

The popular (and easily implementable) execution strategy
called race-to-idle [18] was implemented to execute a task as
fast as possible, after which the processor enters a sleep state
(if no other tasks are available). The ondemand (OD) frequency
governor in Linux supports this strategy by increasing the clock
frequency of the CPU as long as the workload exceeds an
upthreshold limit. Race-to-idle minimizes t, but on the
other hand results in high power dissipation Pw during the
execution. A strategy such as race-to-idle will have a negative
impact on energy efficiency if the decrease in time is less
than the increase in power i.e. ∆−t < ∆+Pw compared to
running on a lower clock frequency. Depending on the CPU
architecture and the manufacturing technology this relation
varies, but with current clock frequency levels, is it usually
very energy inefficient to execute on high clock frequencies
[24], [17]. It is also (usually) inefficient to execute on very low
clock frequencies [5] since the execution time becomes large
and the static power is dissipated during the whole execution.

Our strategy is to execute as slow as possible while still
not missing a given deadline; we call it QP-Aware (QoS and
Parallel). Figure 1 Illustrates two different execution strategies
for a video processing application: Part A) illustrates the race-

Fig. 1. Two execution strategies: A) Race-to-idle B) QP-Aware

to-idle strategy in which the operations are executed as fast
as possible for a short time, after which it idles for the rest

of the video frame window. Part B) illustrates the QP-Aware
strategy in which the operations are executed as slowly as
possible while still keeping the frame deadline of the playback.
If the execution time in case A) is twice as fast but the power
dissipation is more than twice as high, case B) will be more
energy efficient. Moreover, frequently switching the frequency
and voltage introduces some additional lag, which also impacts
on the energy consumption.

We argue for the B-type of execution in streaming applica-
tions, in which the application executes on more energy effi-
cient frequency [6] with the appropriate amount of active cores,
which is dependent on the application P-values injections and
the QoS requirements. In the general case a QP-aware strategy
is possible whenever the performance of an application can be
measured, either with an application specific metric such as the
framerate or with a more generic metric such as heartbeats [7].

IV. POWER OPTIMIZER

To set QoS requirements and to scale the performance of
the software according to the requirements of the application,
we implemented a power optimizer to regulate the hardware
such that minimal power is dissipated for the required per-
formance. Current power managers, such as the frequency
governors in Linux, base the resource allocation purely on sys-
tem workload levels. Resources are allocated as the workload
reaches a certain upthreshold, which is usually done on
CPU level rather than on core level. This means that the power
management has no information of the program behavior such
as its parallelism, nor any notion of how the workload should
be mapped on the processing elements.

The structure of our power manager supports: P-value in-
jections and QoS declarations in the applications. The P-values
are easily injected by the programmer with a function call to
a provided power management library for each application.
Similarly, the QoS requirements are set using any performance
metric [8] with a function call to the QoS library.

Applications are provided with an interface to the power
manager, which in turn regulates the power saving techniques
(called actuators) as illustrated in Figure 2. Actuator regulation
is calculated from two defined cost models describing power
and performance. The models are mathematical representations
of the real system used for calculating the effect of resource
usage. Since different chip architectures behave differently
when using various combinations of DVFS and DPM, the
models are easily interchangeable and can be re-engineered for
any chip architecture by a chosen system identification method.
Figure 2 illustrates the information flow from application to
actuator.

Fig. 2. Information flow from application to actuator

The blocks are defined as follows:

1) Applications are normal user space programs con-
nected to the optimizer and are capable of expressing
QoS and P-value(s)

2) The Optimizer determines the optimal combination
of actuator utilization based on the QoS and P-value
inputs from the Applications and the mathematical
cost models

3) Actuators are power saving techniques (DPM and
DVFS), with a degree of utilization determined by
the Optimizer

Figure 3 illustrates the structure of the application ecosystem
together with the power optimizer compared to the default
Linux Completely Fair Scheduler (CFS) Scheduler and the

Fig. 3. Structure of the application ecosystem

ondemand (OD) frequency governor. Compile-time tools such
as PREESM are used to simplify the P-value extraction (Sec-
tion V) and QoS declaration in the applications by automatic
time analysis of the application. While the default CFS+OD
is only able to scale the system according to the workload,
the power optimizer can exploit extracted P-values and QoS
requirements previously defined.

A. System Identification

The key issue for model based control systems is to identify
the system as a mathematical expression used for control
decisions. The model should be as accurate as possible to the
real case, but also remain simple in order to not introduce
unnecessary computational overhead. The system identification
is, in this paper, made for an Exynos 4412 microprocessor
based on the quad-core ARM Cortex-A9 which is an off-
the-shelf microprocessor used in many mobile phones and
tablets. We show in this section how to set up the NLP solver
for minimizing the power dissipation while keeping the QoS
guarantees in the applications.

1) Power model identification: We trained the power model
of the Exynos chip by increasing the frequency and the number
of active cores step-wise while fully loading the system. As
workload we ran the stress benchmark under Linux on four
threads during all tests, which stressed all active cores on the
CPU to their maximum performance.

The dissipated power was measured with hardware probes
for each step and is shown Figure 4. As seen in the figure,
the power dissipation of the chip peaked the highest using
high clock frequency and with many cores. Even though the
stress benchmark does not reflect the power trace of any
application exactly, we still consider its power output as a
sufficiently close compromise.

Since the power trace in Figure 4 is clearly not linear, we
used a similar approach to [19] for deriving our power model.

Fig. 4. Power as function of nr. of cores and clock frequency (fully loaded).
Hot temperature on top and cold on bottom

We denote the control variables for DVFS and DPM as q and
c respectively. Since these variables are only used as control
variables in the optimization algorithm, the variables are unit-
less and chosen in the range [1 - 8] where 1 is minimum
utilization and 8 is maximum utilization of a specific actuator.
The goal is to define a surface as close as possible to the data
values in Figure 4. The third degree polynomial

P (q, c) = p00 + p10q + p01c+ p20q
2 + p11qc+ p30q

3 + p21q
2c

(1)

where pxx are coefficients was used to define the surface.
We used Levenberg-Marquardt’s algorithm [10] for multi di-
mensional curve fitting to find the optimal coefficients, which
minimizes the error between the model and the real data.
Table I shows the derived parameters and Figure 5 illustrates
the model surface with the given parameters. To verify our

TABLE I. COEFFICIENTS FOR POWER MODELS

p00 p01 p10 p11 p20 p21 p30

2.34 0.058 0.598 -0.025 -0.161 0.010 0.012

Fig. 5. Surface of the hot use case derived from Equation 1. Dots are real
data measurements

model we calculated the error difference between the real
data and the derived model. The maximum difference of
10,2% was obtained when using four cores and running on
the highest clock frequency, while the average difference was
only 0.6%. With the rather small average difference and with
a computationally simple model, we considered the model
feasible for our experiments.

2) Performance model identification: In order to determine
which power saving technique to use, the optimizer requires

knowledge on how much it affects the applications. For ex-
ample a sequential program would not gain any performance
by increasing the nr. of cores, while a parallel application
might save more energy by increasing the nr. of cores instead
of increasing the clock frequency. Similarly to the power
model, the performance model is equally flexible and can be
exchanged during runtime.

We modeled DVFS performance as a linear combination
of clock frequency q as:

Perfq(Appn, q) = Kq · q (2)

where Kq is a constant. This means that e.g. 2x increase in
clock frequency models a double in speed-up. Even though
the performance in reality could fluctuate by memory/cache
latencies etc., we consider the approximation in the general
case as close enough.

In contrast to the simpler relation between performance and
clock frequency, modeling the performance as a function of nr.
of cores is more difficult since the result depends highly on
the inherited parallelism and scalability in the program.

To assist the optimizer, we added the notion of expressing
parallelism (P-value) directly in the applications. The program-
mer is allowed to inject the P-value in any phase of a program
in the range [0, 1] where 0 is a completely sequential program
phase and 1 is an ideal parallel program phase. This value can
either be static or change dynamically according to program
phases [20]. Calculating the P-value can be done by using
various methods such as [22], [2], [15], but in this paper we
chose to utilize the functionality of PREESM to automatically
determine the P-value directly from the dataflow graph.

Our model for DPM performance uses Amdahl’s law:

S(N) =
1

(1− P) + P
N

(3)

where P is the parallel proportion of the application and
N is the number of processing units. The final performance
model for DPM is rewritten as:

Perfc(Appn, c) = Kc ·
1

(1− P) + P
c

(4)

where Kc is a constant and c is the number of cores. This
models a higher performance increase as long as the nr. of
cores is low but decreases as the nr. of cores increase. It means
that as more cores are added the speed-up becomes ever more
sub-linear, until increasing performance by DVFS eventually
becomes more energy efficient.

To describe the performance of the whole system we
calculate the sum of both DVFS and DPM performance as:
PerfTot = Perfq + Perfc

B. NLP optimization solver

With the derived models, we adopted a non-linear Se-
quential quadratic programming (SQP) solver for calculating
the optimal configuration of clock frequency and number of
active cores (DVFS vs. DPM) under performance criteria. The
required resources are given as a setpoint S, and the lack of
resources is monitored in the applications and is sent as a

positive error value E to the optimizer. The application can
request more resources by setting a lower bound QoS limit Q,
which indicates the lowest tolerable performance. We set-up
the power optimization problem as follows:

Minimize{Power(q, c)}Subject to:
∀n ∈ Applications :En − (Perfq + Perfc) < Sn −Qn

(5)

where q is clock frequency, c is the number of cores and Perfq
and Perfc is the performance of DVFS and DPM respec-
tively. Sn is the performance setpoint, En is the difference
(error value) between the performance setpoint and the actual
performance and Qn is the lower QoS limit. The optimization
rule states to minimize the power while still providing sufficient
performance to keep above the QoS limit. This is achieved by
setting the actuators (q, c) to a level sufficiently high such that
enough errors En are eliminated for each application n.

Our chosen baseline method implemented the SQP [4]
solver with the plain objective function and side constraints
given in Eq. 5. For a faster solution we added the gradient

function g =

[∂f
∂q

∂f
∂c

]
which approximates the search direction

with a first order system. We also provided the analytical
partial derivatives of the side constraints C =

[
∂C

∂q,∂c

]

to the solver for a more accurate solution, where ∂C
∂q,∂c are

the first order derivative of actuators with respect to the side
constraints.

The SQP solver was implemented in the c-language and
compiled for the ARM platform with -O3. The time for
obtaining a solution for one iteration was timed to roughly
500 - 900 µs on the ARM platform clocked to 1600 MHz,
which is fast enough to not interfere with the system.

V. PARALLELISM AND QOS IN DATAFLOW

For rapid development and a more pragmatic view of the
application, we use the dataflow framework PREESM for the
software implementation. Indeed, the capabilities of dataflow
programming is exposed and we show how such tools can in
practice be used for integration of QoS and P-value extraction
of the applications.

A. Static Dataflow

In many cases a signal processing system can work at
several levels where actors fire according to their in- and output
rates. The concept of SDF graphs for signal processing systems
was developed and used extensively by Lee and Messerschmitt
[3]; it is a modeling concept suited to describe parallelism. To
enlighten the purpose of the discussed method within static
parallel applications, we describe the general development
stages briefly. The first step in the design process is a top-
level description of the application, which is used to express
the data dependency between the actors, so called edges. An
SDF graph is used to simplify the application specifications.
It represents the application behavior at a coarse grain level
with data dependencies between operations. An SDF graph is
a finite directed, weighted graph G =< V,E, d, p, c > where:

• V is the set of nodes.

• E ⊆ V ×V is the set of edges, representing channels
which carry data streams.

• d : E → N ∪ {0} is a function with d(e) the number
of initial tokens on an edge e

• p : E → N is a function with p(e) the number of data
tokens produced at e’s source to be carried out by e

• c : E → N is a function with c(e) representing the
number of data tokens consumed from e by e’s sink
node.

This model offers strong compile-time predictability properties
but has limited expressive capability. Several transformations
are available to transform the base model and optimize the
behavior of the application ([16]).

The Single rate SDF (srSDF) transformation (Figure 6)
transforms the SDF model to an srSDF model in which
the amount of tokens exchanged on edges are homogeneous
(production = consumption), which reveals all the potential
parallelism in the application. As a consequence, the system

Fig. 6. A SDF graph and its srSDF transformation – multi-rate link to is
transformed to several single-rate links to enable parallelism

scheduling can easily benefit of the srSDF to process data
in parallel. The data edges of the original graph is used for
the data synchronization of the exploded graph and is used to
defined sequences of processing from which P-values can be
extracted.

B. Extracting QoS and P-value with PREESM

A flexible prototyping process has an important role in
system architecture to optimize performance and energy con-
sumption. The purpose is to find a way of explore architecture
choices with a good adequacy for the application. PREESM
[16] is an opensource tool for rapid prototyping which au-
tomatically maps and schedules hierarchical SDF graphs on
multi-core systems. Using what is called a scenario (Figure
7), the user can specify a set of parameters and constraints
for the mapping and scheduling of tasks. This restricts for
instance the mapping of an actor on a subset of cores of
the architecture. The workflow is divided into several steps

Fig. 7. Rapid prototyping description to extract QoS and P-value

as depicted in Figure 7, which can be used to extract the
parallelism of the application:

• Single rate transformation (srSDF) exposes the pos-
sible parallelism

• Mapping & Scheduling finds the best adequacy be-
tween the architecture parameters and the application
graph

• Gantt chart generation illustrates the parallelism of
the application as a function of time

• Code generation provides a rapid test code to run on
the platform using the outputs of the previous steps

Dataflow representation increases the predictability of the
applications, which enables an accurate description of the par-
allelism. The PREESM tool was used to generate applications
with different behavior and extract their P-values used by the
Optimizer to design energy efficient systems.

Fig. 8. Extracting P-value from the Gantt chart in PREESM

Figure 8 illustrates different considered behaviors of ap-
plications: the sequential case maps a single actor A on a
single core, while in the parallel case the actor can be divided
up into smaller pieces and executed on all cores. The mixed
application has non-dividable actor A which must be executed
on a single thread before the B actors can execute, which is a
typical behavior in general parallel applications. We extract the
P-value in the range [0.0, 1.0], where 0.0 is a serial sequence
and 1.0 is a ideal parallel sequence for the used hardware
platform. Consequently a value of 0.5 describes a scalability
to half of the processing elements. From the Amdahl’s law
(Eq. 3) and the Gantt chart (Figure 8) we calculate the P-value
as:

P-value = (
1
S − 1
1
N − 1

) (6)

where S is the speed-up factor between the sequential and
optimized applications after parallelization and N > 1 is
the total number of cores. The P-value can furthermore be
calculated as an average of the whole sequence or dynamically
for each sub-sequence for enhanced precision.

VI. EXPERIMENTAL RESULTS

We evaluated a video processing application, which is
a typical streaming application and is dependent on QoS
guarantees to provide a requested playback rate. The evaluation
platform was the previously mentioned quad-core Exynos 4412
board. We implemented and mapped the power optimizer and
its infra structure on Linux (kernel version 3.7.0) with the NLP
solver and communications backbone implemented in the c-
language.

A. Application description

The video processing application consisted of a sequence
of filters and a buffer connected to the display output. With
our designing framework, we added QoS requirements on the
filtering to match the intended playback rate of 25 frames per
second (fps) with an additional small safety margin i.e. 26 fps
to ensure that no framedrops would occur during the playback.
This means that it filters frames with a rate of 26 fps and sleeps
for the remaining (very short) time window; with this behavior,
the filter follows the QP-Aware strategy illustrated in Figure 1
part B rather than executing as fast as possible and then sleep
for a longer time (part A).

To cover the different use cases, we chose three types
of video processing implementations: fully sequential, fully
parallel and mixed-parallel as seen in Figure 8.

For performance evaluation an edge detection algorithm
is used to filter the decoded image. The Sobel filter is an
image transformation widely used in image processing to
detect the edges of a 2-dimensional video. It is a particularly
good application to explore architecture strategies as it can
be made parallel for the filtering part and sequential for
any preprocessing function [12]. Once the data is processed,
the output can be displayed with a real-time video display
at 25 fps. By optimizing the execution time using parallel
processing, the difference between the filtering and displaying
rates can be used for energy optimization.

Fig. 9. Top level description - Original dataflow and after single rate
transformation extracting data parallelism via slicing

Figure 9 shows the system description of an edge detection
sequence for a YUV video. The video is firstly read from a
source (Read YUV) after which it passes through a sequence
of filters and finally is displayed (Display). The filtering part
can be parallelized by multi-threaded execution [12] since the
picture on which the filter is applied can be divided into several
slices without internal data dependencies as seen in the right
part of Figure 9. The DC Cancellation filter is an optional
choice for preprocessing the video. This algorithm cannot be
parallelized and was added to the third use-case, the mixed-
parallel application, in order to force mixed parallelism into the
application. In the other use-cases, this filter was not applied.

The three applications were generated automatically using
PREESM. The P-values were injected into the automatically
generated code by adding function calls for sending the P-
values to the optimizer. For fully serial sequences, we injected
P = 0.0, which (according to Amdahl’s law) means a
scalability up to 1 core in the 4 core system. For completely

parallel sequences we naturally injected P = 1.0, and for
mixed sequences we injected P values according to Eq. 6. With
these setups we ran the three different use-cases with both the
default CFS+OD and the optimizer for a 5-minute run.

B. Sequential application

We firstly evaluated the sequential implementation of the
application in order to have a reference for comparison. The
sequential application run only a single threaded Sobel filter
(Figure 9) after which the frame is displayed. Figure 10

Fig. 10. Power trace from the sequential application using default CFS and
with power optimizer

shows the power trace from a 500 sample part of the run. As
predicted, the CFS with the OD governor decodes the video
very fast for a given time after which it idles for the rest of
the time frame. This is clearly seen in the figure as the power
dissipation of the CFS+OD case oscillates heavily. By using
the optimizer, the power dissipation is more stable and the
average power dissipation is much lower partly by using the
QP-Aware strategy and partly by disabling the unused cores.

C. Parallel application

The second application performed the same functionality
as the sequential case, but with the Sobel phase parallelized
and mapped on all four cores as the parallel case in Figure
8 and 9. This configuration would (in theory) speed-up the
software roughly four times, which would allow the power
saving features to scale down the hardware resources to save
power. Figure 11 shows interestingly roughly the same power

Fig. 11. Power trace from the parallel application using default CFS and
with power optimizer

output for the optimized case compared to Figure 10. This
is because the static power increase when using more cores is
almost identical to the dynamic power decrease of reducing the
clock frequency – this is an occurring phenomenon as systems
run on very low clock frequencies with many cores [5]. The
situation could be improved by fine tuning the power model

to enable higher precision. The CFS+OD case, on the other
hand, shows more power reduction since the workload of the
cores most of the time is below the upthreshold limit for
the OD governor.

D. Mixed-parallel application

The third use-case was the mixed-parallel application with
a serialized DC Cancellation filter added before the parallel
Sobel filter. This means that the filtering job will be more
computational heavy than in the previous two cases. We
profiled the execution with gprof, with the timing portion
of 66% for the DC Cancellation filter and 25% for the Sobel
filter.

We evaluated this use-case with both the Average P-value
for the whole sequence and with Dynamic P-values for each
sub-sequence. For the first case we calculated the average
speed-up and injected the P-value P = 0.53 according to Eq. 6.
For the dynamic case we injected P = 0.0 on the serial phase
and P = 1.0 on the parallel phase. Figure 12 shows three

Fig. 12. Power trace from the mixed parallel application using default CFS
and with power optimizer

power traces: The CFS+OD case oscillates heavily as predicted
according to the race-to-idle strategy. By using one average P-
value the power dissipation becomes more stable and is on
average significantly lower than the CFS+OD case. By further
fine tuning the application with dynamic P-values, the power
optimizer is able to better scale the hardware according to the
different program phases. The optimizer increases the clock
frequency and shuts down cores during the serialized phase,
and enables the cores during the parallel phase and decreases
the clock frequency.

We also mapped the mixed application to a single thread in
order to illustrate the power savings of using parallel hardware.
Figure 13 shows a rather steady power trace when mapping
both the DC cancellation filter and the Sobel filter on the same
core. Both the optimized case and the ondemand case show a
higher average power dissipation than the partly parallel case
(in Figure 12) since the CPU is forced to run on the higher
clock frequencies.

Table II shows the total energy consumption for all use-
cases and the energy savings by using the optimizer in the
last row. The energy reductions is the result of allowing
applications to better express intentions and behavior. By fine
tuning the application to use dynamic P-values, the energy
consumption can be further decreased as the optimizer is able
to scale the hardware more close to the software requirements.
The optimized case was at most able to save as much as 19%
for executing the same amount of work as the CFS+OD case,
which can be considered as significant.

Fig. 13. Power trace from the mixed parallel application using default CFS
and with power optimizer running on one thread

TABLE II. ENERGY CONSUMPTION (IN JOULES) FOR A 5 MIN RUN

Serial Parallel Mixed
CFS+ondemand 839.31 735.21 1089.8
Optimized (avg. P) 705.03 719.91 936.1
Optimized (dyn. P) n/a n/a 874.4
Energy savings (avg. P) 16.0% 2.1% 14.1%
Energy savings (dyn. P) n/a n/a 19.8%

VII. CONCLUSIONS

Parallelism in software is an important parameter for ef-
ficient power management in multi-core systems. It describes
the possible utilization of multiple processing elements which
determines the relation between dynamic and static power
dissipation. Today’s power managers do not consider the static
power dissipation of enabling cores which becomes more
significant as the manufacturing technologies decrease and the
amount of cores on a chip increase. To optimize for energy
efficiency, applications should be able to express the level of
parallelism (P-value) in order to select the appropriate amount
of cores to execute on.

We have, in this paper, demonstrated an approach to
integrate fast parallel software directly with the power man-
agement by injecting QoS guarantees and the P-value into the
software as meta data to the power manager. In the presented
use-case, the P-values are extracted by a dataflow programming
framework, PREESM, and is injected into code segments
and used as a parameter in a NLP optimization problem for
minimizing total power. With our approach supporting energy
efficient programming we can a) find the necessary perfor-
mance required for an application and b) allocate resources
optimally in multi-core hardware.

REFERENCES

[1] S. Cho and R. Melhem. On the interplay of parallelization, program per-
formance, and energy consumption. Parallel and Distributed Systems,
IEEE Transactions on, 21(3):342–353, 2010.

[2] A. Cristea and T. Okamoto. Speed-up opportunities for ann in a time-
share parallel environment. In Neural Networks, 1999. IJCNN ’99.
International Joint Conference on, volume 4, pages 2410–2413 vol.4,
1999.

[3] D. M. E. Lee. Static scheduling of synchronous data-flow programs
for digital signal processing. IEEE Transactions on Computers, pages
24–35, 1987.

[4] P. E. Gill, W. Murray, Michael, and M. A. Saunders. Snopt: An sqp
algorithm for large-scale constrained optimization. SIAM Journal on
Optimization, 12:979–1006, 1997.

[5] F. Hällis, S. Holmbacka, W. Lund, R. Slotte, S. Lafond, and J. Lilius.
Thermal influence on the energy efficiency of workload consolidation
in many-core architectures. In Digital Communications - Green ICT
(TIWDC), 2013 24th Tyrrhenian International Workshop on, pages 1–
6, 2013.

[6] M. Haque, H. Aydin, and D. Zhu. Energy-aware task replication
to manage reliability for periodic real-time applications on multicore
platforms. In Green Computing Conference (IGCC), 2013 International,
pages 1–11, 2013.

[7] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and
A. Agarwal. Application heartbeats for software performance and
health. SIGPLAN Not., 45(5):347–348, Jan. 2010.

[8] S. Holmbacka, D. Agren, S. Lafond, and J. Lilius. Qos manager for en-
ergy efficient many-core operating systems. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro International
Conference on, pages 318–322, 2013.

[9] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava.
Power optimization of variable voltage core-based systems. In Design
Automation Conference, 1998. Proceedings, pages 176–181, 1998.

[10] K. Iondry. Iterative Methods for Optimization. Society for Industrial
and Applied Mathematics, 1999.

[11] S. Jafri, M. Tajammul, A. Hemani, K. Paul, J. Plosila, and H. Ten-
hunen. Energy-aware-task-parallelism for efficient dynamic volt-
age, and frequency scaling, in cgras. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013
International Conference on, pages 104–112, 2013.

[12] N. Khalid, S. Ahmad, N. Noor, A. Fadzil, and M. Taib. Parallel approach
of sobel edge detector on multicore platform. International Journal of
Computers and Communications Issue, 4:236–244, 2011.

[13] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75, 2003.

[14] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. van der
Schaar. Markov decision process based energy-efficient on-line schedul-
ing for slice-parallel video decoders on multicore systems. Multimedia,
IEEE Transactions on, 15(2):268–278, 2013.

[15] A. M’zah and O. Hammami. Parallel programming and speed up
evaluation of a noc 2-ary 4-fly. In Microelectronics (ICM), 2010
International Conference on, pages 156–159, Dec 2010.

[16] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F. Nezan. An open
framework for rapid prototyping of signal processing applications.
EURASIP journal on embedded systems, 2009:11, 2009.

[17] T. Rauber and G. Runger. Energy-aware execution of fork-join-based
task parallelism. In Modeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS), 2012 IEEE 20th
International Symposium on, pages 231–240, 2012.

[18] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch. Adagio: Making dvs practical for complex hpc
applications. In Proceedings of the 23rd International Conference on
Supercomputing, ICS ’09, pages 460–469, New York, NY, USA, 2009.
ACM.

[19] M. Sadri, A. Bartolini, and L. Benini. Single-chip cloud com-
puter thermal model. In Thermal Investigations of ICs and Systems
(THERMINIC), 2011 17th International Workshop on, pages 1–6, 2011.

[20] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discov-
ering and exploiting program phases. Micro, IEEE, 23(6):84–93, Nov
2003.

[21] I. Takouna, W. Dawoud, and C. Meinel. Accurate mutlicore pro-
cessor power models for power-aware resource management. In
Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE
Ninth International Conference on, pages 419–426, 2011.

[22] C. Truchet, F. Richoux, and P. Codognet. Prediction of parallel speed-
ups for las vegas algorithms. In Parallel Processing (ICPP), 2013 42nd
International Conference on, pages 160–169, Oct 2013.

[23] C.-L. Yang, H.-W. Tseng, and C.-C. Ho. Smart cache: an energy-
efficient d-cache for a software mpeg-2 video decoder. In Information,
Communications and Signal Processing, 2003 and Fourth Pacific Rim
Conference on Multimedia. Proceedings of the 2003 Joint Conference
of the Fourth International Conference on, volume 3, pages 1660–1664
vol.3, 2003.

[24] D. Zhi-bo, C. Yun, and C. Ai-dong. The impact of the clock frequency
on the power analysis attacks. In Internet Technology and Applications
(iTAP), 2011 International Conference on, pages 1–4, 2011.

Paper VII

Accurate Energy Modelling for Many-
Core Static Schedules

Simon Holmbacka, Jörg Keller, Patrick Eitschberger,
Johan Lilius

Originally published Proceedings of the 23rd International Euromi-
cro Conference on Parallel, Distributed and Network-based Processing,
2015, IEEE International Conference, pages 525–532. Turku, Finland

c©2015 IEEE. Reprinted with permission.

Accurate Energy Modelling for Many-Core Static
Schedules

Simon Holmbacka∗, Jörg Keller†, Patrick Eitschberger† and Johan Lilius∗
∗Department of Information Technologies, Åbo Akademi University, Turku, Finland

Email: firstname.lastname@abo.fi
†Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Hagen, Germany

Email: firstname.lastname@fernuni-hagen.de

Abstract—Static schedules can be a preferable alternative for
applications with timing requirements and predictable behavior
since the processing resources can be more precisely allocated
for the given workload. Unused resources are handled by power
management systems to either scale down or shut off parts of
the chip to save energy. In order to efficiently implement power
management, especially in many-core systems, an accurate model
is important in order to make the appropriate power management
decisions at the right time. For making correct decisions, practical
issues such as latency for controlling the power saving techniques
should be considered when deriving the system model, especially
for fine timing granularity. In this paper we present an accurate
energy model for many-core systems which includes switching
latency of modern power saving techniques. The model is used
when calculating an optimal static schedule for many-core task
execution on systems with dynamic frequency levels and sleep
state mechanisms. We create the model parameters for an
embedded processor, and we validate it in practice with synthetic
benchmarks on real hardware.

I. INTRODUCTION

Computer systems with timing guarantees on the applica-
tions often pursue two conflicting goals: meeting the deadlines
and minimizing the consumed energy. Execution speed is
usually optimized by the programmer and compiler while
minimizing energy is often left to the operating system which
employs Dynamic Voltage and Frequency Scaling (DVFS)
and Dynamic Power Management (DPM) using sleep states.
However, an operating system with a dynamic scheduler has no
knowledge about the application, its behavior and its timeline.
In practice, the power management for dynamic schedules is
performed with respect only to the workload level, which does
not describe performance requirements.

For applications consisting of a set of tasks with a pre-
dictable behavior and a known execution deadline, a schedule
with the information when to execute which task at which
speed can be devised at compile time (i.e. a static schedule).
With hints from the application, the power management tech-
niques can more precisely scale the hardware according to the
software performance demands, and energy is minimized by
eliminating unnecessary resource allocation. However, Power
management is a practical interplay between software al-
gorithms and physical hardware actions. This means that
accessing power management techniques in general purpose
operating systems introduces practical shortcomings such as
access latency. Two separate mechanisms – DVFS and DPM –
are currently used for minimizing the CPU power dissipation.
As DVFS regulates voltage and frequency to minimize the

dynamic power, DPM is used to switch off parts of the CPU
to minimize the rapidly growing static power [12]. The tech-
niques are therefore complementing each other and a minimal
energy consumption is achieved by proper coordination of
both techniques [1], [19]. While both mechanisms have been
evaluated in the literature [7], [13], no work has been done to
determine the practical latency of both DVFS and DPM on a
single platform, and its impact on power management.

In this work we present an accurate energy model for static
schedules in many-core systems using DVFS and DPM. The
model is based on real hardware measurements to conform
with complete platform details and a realistic view of the
static and dynamic power balance. We account for the latency
of using DVFS and DPM on a statically scheduled many-
core system by including the timings in the decision making
process of power management techniques. The model is able to
accurately forecast the energy consumption of a selected static
schedule under different workload configurations and differ-
ent deadlines. We validate the results with an implemented
benchmark framework on real hardware running an unmodified
Linux OS.

II. RELATED WORK

DVFS and its efficiency for multi-cores has been studied
in the past [7], [13], but mostly the focus has been put directly
on measuring the overhead of physically switching hardware
states [13], [21] including PLL locking, voltage level switching
etc. Mazouz et al. present in [20] a frequency transition latency
estimator called FTaLaT, which chooses a frequency depending
on the current phase of a program. They argue that programs
mostly have either CPU intensive phases in which the CPU
is running on a high clock frequency or memory intensive
phases in which the clock frequency can be decreased to save
power. For very small memory intensive regions, it is favorable
to ignore the frequency scaling because the switching delay
would be higher than the length of the memory phase. They
evaluate their estimator with a few micro-benchmarks (based
on OpenMP) on different Intel machines, and they show that
the transition latency varies between 20 and 70 microseconds
depending on the machine. As the total switching latency is
the sum of both hardware and software mechanisms, we study
in this paper the practical aspects of switching latency in both
DVFS and DPM for off-the-shelf operating systems running
on real hardware. Influences of user space interaction and the
kernel threads which control the power saving mechanisms are
studied, and related to the effects on the energy consumption.

In the paper of Schöne et al. [23] the implementation of the
low-power states in current x86 processors are described. The
wake-up latencies of various low-power states are measured
and the results are compared with the vendor’s specifications
that are exposed to the operating system. The results show fluc-
tuations e.g. depending on the location of the callee processor.
Their work complements ours, but rather than using the x86
architecture we focus on mobile ARM processors with less
support for hardware power management.

Algorithms for minimizing energy based on power and ex-
ecution time have been presented in previous work such as [3],
[7], [8]. Cho et al. define an analytical algorithm for expressing
dynamic and static power in a multi-core system with multiple
frequency levels. The minimum-energy-operation point is then
calculated by determining the first order derivative of the sys-
tem energy with respect to time. The mathematical expression
defined in [3] exploits the task parallelism in the system to
determine the amount of processing elements required, and
hence influencing the static power dissipation. In our work,
we define the system power model based on experiments on
real hardware rather than analytical expressions in order to
tailor the model closer to real-world devices.

In [16] an Energy-Aware Modeling and Optimization
Methodology (E-AMOM) framework is presented. It is used
to develop models of runtime and power consumption with
the help of performance counters. These models are used to
reduce the energy by optimizing the execution time and power
consumption with focus on HPC systems and scientific appli-
cations. Our approach follows the same principle, but instead
we use a top-down power model based on real experiments
rather than analytical expressions. We also account for the
latency of both DVFS and DPM which, as explained, becomes
important when the time scale is shrinking.

While acknowledging that DVFS and DPM are possible
energy savers in data centers [4], [15], [10], our work focus
on core level granularity with a smaller time scale and our
measurements are based on the per-core sleep state mechanism
rather than suspension to RAM or CPU hibernation. Aside
from the mentioned differences, none of the previous work
deals with latency overhead for both DVFS and DPM on
a practical level from the operating system’s point of view.
Without this information, it is difficult to determine the ad-
ditional penalty regarding energy and performance for using
power management on modern multi-core hardware using an
off-the-shelf OS such as Linux.

III. POWER DISTRIBUTION AND LATENCY
OF POWER-SAVING MECHANISMS

Power saving techniques in microprocessors are hardware-
software coordinated mechanisms used to scale up or down
parts of the CPU dynamically during runtime. We outline
the functionalities and current implementation in the Linux
kernel to display the obstacles of practically using power
management.

A. Dynamic Voltage and Frequency Scaling (DVFS)

The DVFS functionality was integrated into microproces-
sors to lower the dynamic power dissipation of a CPU by
scaling the clock frequency and the chip voltage. Equation

1 shows the simple relation of these characteristics and the
dynamic power

Pdynamic = C · f · V 2 (1)

where C is the effective charging capacitance of the CPU,
f is the clock frequency and V is the CPU supply voltage.
Since DVFS reduces both the frequency and voltage of the
chip (which is squared), the power savings are more significant
when used on high clock frequencies [22], [25].

The relation between frequency and voltage is usually
stored in a hardware specific look-up table from which the
OS retrieves the values as the DVFS functionality is utilized.
Since the clock frequency switching involves both hardware
and software actions, we investigated the procedure in more
detail to pinpoint the source of the latency. In a Linux based
system the following core procedure describes how the clock
frequency is scaled:

1) A change in frequency is requested by the user
2) A mutex is taken to prevent other threads from changing
the frequency
3) Platform-specific routines are called from the generic
interface
4) The PLL is switched out to a temporary MPLL source
5) A safe voltage level for the new clock frequency is selected
6) New values for clock divider and PLL are written to
registers
7) The mutex is given back and the system returns to normal
operation

1) DVFS implementations: To adjust the DVFS settings,
the Linux kernel uses a frequency governor [11] to select,
during run-time, the most appropriate frequency based on a set
of policies. In order to not be affected by the governors, we
selected the userspace governor for application-controlled
DVFS. The DVFS functionality can be accessed either by
directly writing to the sysfs interface or by using the system
calls. By using the sysfs, the DVFS procedure includes file
management which is expected to introduce more overhead
than calling the kernel headers directly from the application.
We studied, however, both options in order to validate the
latency differences between the user space interface and the
system call.

a) System call interface: The system call interface for
DVFS under Linux is accessible directly in the Linux kernel.
We measured the elapsed time between issuing the DVFS
system call and the return of the call which indicates a
change in clock frequency. Listing 1 outlines the pseudo code
for accessing the DVFS functionality from the system call
interface.

#include <cpufreq.h>
#include <sys/time.h>
latency_syscall(){
gettimeofday(&time1);
cpufreq_set_frequency(Core0, FREQ1);
gettimeofday(&time2);
cpufreq_set_frequency(Core0, FREQ2);
gettimeofday(&time3);

}

Listing 1. Pseudo code for measuring DVFS latency using system calls

b) User space interface: The second option is to use
the sysfs interface for accessing the DVFS functionality
from user space. The CPU clock frequency is altered by
writing the setpoint frequency into a sysfs file, which is read
and consequently used to change the frequency. The kernel
functionality is not directly called from the c-program, but file
system I/O is required for both reads and writes to the sysfs
filesystem. Listing 2 outlines an example for the DVFS call
via the sysfs interface.

#include <sys/time.h>
latency_sysfs(){
gettimeofday(&time1);
system("echo FREQ1 > /sys/devices/system/cpu/cpu0/cpufreq/

scaling_setspeed");
gettimeofday(&time2);
system("echo FREQ2 > /sys/devices/system/cpu/cpu0/cpufreq/

scaling_setspeed");
gettimeofday(&time3);

}

Listing 2. Pseudo code for measuring DVFS latency using sysfs

2) DVFS Measurement results: The user space and the
kernel space mechanisms were evaluated, and the results are
presented in this section. Since the DVFS mechanism is ulti-
mately executed on kernel- and user space threads, we stressed
the running system with different load levels to evaluate
its impact. For this purpose, we used Spurg-Bench [18] to
generate defined load levels on a set of threads executing
floating point multiplications. All latency measurements were
executed in a loop of 100 iterations with different frequency
hops, and with a timing granularity of microseconds. We used
an Exynos 4412 SoC with an ARM core capable of clock
speeds in the range from 200 to 1600 MHz.

Figure 1 shows the average latency for all load levels and
with frequency hops from 1600 to 200 MHz and from 200 to
1600 MHz. When using the system call interface, the average
latency decreases slightly when increasing the load (left part
of Figure 1). On the other hand, the switching latency has a
strong correlation to current frequency and target frequency in
the sysfs implementation. The measurements of the sysfs
interface show a latency increase until the load is roughly
60% after which it slightly declines and finally increases when
stressing the CPU to 100%. As expected, the latency is shorter
as the CPU frequency jumps from 1600 to 200 MHz because
most of the DVFS procedure (including the file system call) is
executed on the higher frequency. Table I shows the standard
deviation from samples in the same experiments. The sysfs
experiments show a much higher standard deviation because
of filesystem I/O when accessing the sysfs filesystem.

TABLE I. STANDARD DEVIATION OF DVFS LATENCY USING SYSTEM
CALL AND SYSFS

Load 0% 25% 50% 75% 90% 100%
1600-200MHz

System call 2% 5% 5% 6% 6% 8%
sysfs 27% 28% 40% 26% 20% 30%

200-1600MHz
System call 3% 6% 6% 8% 6% 6%
sysfs 25% 30% 34% 39% 29% 25%

Fig. 1. Average latency for changing clock frequency under different load
conditions using system call and sysfs mechanisms

B. Dynamic Power Management (DPM)

In older generation microprocessors, most of the power was
dissipated by switching activities in the chip (dynamic power).
In recent years, the static power has, on the other hand, become
more dominant [12], and is even expected to dominate the total
power dissipation in next generation microprocessors [17].
The static power is dissipated due to leakage currents through
transistors, which is mostly a result of subthreshold and gate-
oxide leakage [14]. Equation 2 shows the subthreshold leakage
current

Isub = K1 ·W · e−Vth/n·Vθ (1− e−V/Vθ) (2)

where K1 and n are architecture specific constants, W is the
gate width and Vθ is the thermal voltage. Hence, the silicon
temperature causes an exponential increase in leakage currents
[6]. Moreover, when lowering the supply voltage of integrated
circuits, the subthreshold leakage current increases which also
increases the dissipated static power [2], [24]. The leakage
current is present as long as the chip (or parts of the chip) is
connected to a power source. This means that in order to reduce
the leakage current, parts of the chip must be disconnected
from the power source and re-connected as the functionality
is required again.

CPU sleep states (or DPM) is used to disable parts of the
CPU on demand to decrease the static power consumption.
The functionality is accessed in Linux by the CPU hotplug
facilities, which was originally implemented to replace phys-
ical CPUs during run-time. On our test platform the hotplug
functionality places the core in a Wait For Interrupt (wfi)
state in which the core clock is shut down, and re-activated as
soon as the core receives an interrupt from another core. The
functionality of hotplugging a core differs depending on the
state of the core designated to be turned off. In case the core is
executing workload, the mechanism re-allocates the workload
to another core in order to make it idle. In case the core is
idle this action is not required. The hotplug functionality can be
accessed in Linux either as a kernel space module or directly
from user space using the sysfs interface.

The hotplug implementation consists of a platform-
independent part and a platform-specific part, which lastly calls
the CPU specific assembly routines for accessing the hotplug.
The following procedure describes how the hotplug mechanism
is used to shut down a core:

1) A core shutdown command is issued in the system
2) The system locks the core with a mutex in order to block

tasks from being scheduled to this core
3) A notification is sent to the kernel:
CPU_DOWN_PREPARE
4) A kernel thread executes a callback function and receives
the notification
5) Tasks are migrated away from the core being shut down
6) A notification is sent to the kernel: CPU_DEAD
7) A kernel thread executes a callback function and receives
the notification
8) Interrupts to the core are disabled, the cache is flushed and
the cache coherency is turned off
9) The power source is removed and core is physically shut
down

As seen from the procedure, the shutdown of a core is
reliant on callback functionalities in the Linux kernel, which
means that the system performance and current utilization
will affect the response time of the scheduled kernel thread
issuing this functionality. As suggested in [5], improvements
can be made to decrease the hotplug latency but the current
main stream kernels still rely on the aforementioned callback
facilities. The wake-up procedure is, similarly to the shutdown
procedure, dependent on callbacks but with an inter-core
interrupt to trigger the core startup.

1) CPU hotplug implementations: Two separate experi-
ments were conducted to determine the latency of CPU hot-
plug: kernel space and user space implementations. Similarly
to the DVFS measurements, we measured the elapsed time
between issuing the shutdown/wake-up call and the return of
the call.

a) Kernel space module: In the first implementation we
accessed the CPU hotplug functionality directly in a kernel
module which Linux executes in kernel space with closer
access to the hardware. Listing 3 outlines the functionality
of accessing the CPU hotplug in kernel space.

#include <linux/cpu.h>
#include <linux/time.h>
latency_kernel(){
mutex_lock(&lock);
do_gettimeofday(&time1);
cpu_down(1); //Core 1 is shut down
do_gettimeofday(&time2);
mutex_unlock(&lock);
mutex_lock(&lock);
do_gettimeofday(&time3);
cpu_up(1); //Core 1 is waken up
do_gettimeofday(&time4);
mutex_unlock(&lock);

}

Listing 3. Pseudo code for measuring hotplug latency in kernel module

b) User space interface: The second mechanism for
accessing the CPU hotplug functionality was implemented as
a normal user space application accessing sysfs files. The
benefit of using the user space functionality rather than the
kernel space is a significantly simpler implementation and
misbehavior in user space will be intercepted safely by the
kernel rather than causing system crashes. The downside is an
expected higher latency for accessing the hardware due to file
system I/O and kernel space switches. Listing 4 outlines the
functionality of accessing the CPU hotplug in user space.

#include <sys/time.h>
latency_user(){
gettimeofday(&time1);
system("echo 0 > /sys/devices/system/cpu/cpu1/online");
gettimeofday(&time2);
system("echo 1 > /sys/devices/system/cpu/cpu1/online");
gettimeofday(&time3);

}

Listing 4. Pseudo code for measuring hotplug latency in user space

2) CPU hotplug results: Similarly to the DVFS exper-
iments, we stressed the system with different load levels
using Spurg-Bench. The system was running on a selected
range of clock frequencies and the timings were measured on
microsecond granularity.

Figure 2 shows the average latency for shutting down
a core in kernel- and user space respectively. The axes of
the figures have been fixed in order to easily compare the
different configurations and implementations. From Figure 2
it is clear that the average latency for shutting down a core is
rather constant in kernel space and not significantly dependent
on clock frequency. The user space implementation is more
dependent on the load level as the latency doubles between
0% load and 100% load.

Fig. 2. Average latency for shutting down a core under different load
conditions using kernel and userspace mechanisms

On the contrary, the wake-up time is dependent on the load
level in both the kernel space and the user space case. As seen
in Figure 3 (left), the kernel space implementation measures
up to 6x higher latency for the 100% load case compared to
the 0% load case. A similar ratio is seen in the user space
implementation, but the latency is on average roughly 2x
higher than the kernel space implementation. Similarly to the
shutdown procedure, the wake-up is also dependent on several
kernel notifications followed by kernel callbacks. An additional
factor in waking up a core is the long process of creation and
initialization of kernel threads (kthreads), which are required
to start the idle loop on a newly woken-up core. Only after the
kthread is running, the CPU mask for setting a core available
can be set.

Since this work focus on user space implementations with
static scheduling, we chose to access the hotplug functionality
from the sysfs interface in our evaluation. However we
acknowledge that a more optimized solution is possible by
embedding parts of the functionality in kernel space. Table II
shows the standard deviation for shutdown and wake-up from
the experiments.

Fig. 3. Average latency for waking up a core under different load conditions
using kernel and userspace mechanisms

TABLE II. STANDARD DEVIATION OF DPM LATENCY IN KERNEL-
AND USERSPACE

Load 0% 25% 50% 75% 90% 100%
Shut-down

Kernelspace 3% 8% 9% 11% 5% 9%
userspace 3% 9% 11% 12% 16% 15%

Wake-up
Kernelspace 7% 20% 26% 27% 23% 4%
userspace 8% 13% 18% 17% 18% 28%

IV. ENERGY MODEL

An energy model is used to predict the energy consumption
of the system using a set of fixed parameters. The input to
our model are descriptions of the workload and the target
architecture. The workload is represented by the number of
instructions w to be executed, and the deadline D before
which the workload must be processed as illustrated in Figure
4. In case the workload is processed sufficiently prior to the
deadline, the cores can be shut down or scaled down with a
given overhead penalty.

Fig. 4. Execution of workload before a given deadline

As we target compute-bound applications, we do not have
to care for long I/O latencies and thus the time t to process
the workload is considered inversely proportional to the core
frequency. For simplicity we assume the workload being is
inversely proportional to the core frequency, with a constant
of 1, i.e. one instruction per cycle is processed on average.
Thus:

t(w, f) = w/f

Let tmin be the time to process the workload at maximum
possible speed, we then call D/tmin ≥ 1 the pressure. If the
pressure is close to 1, the CPU must run on maximum speed to
meet the deadline. If the pressure is e.g. 2, the CPU can either
run at half the maximum speed for time D, or run at maximum
speed until time D/2, and then idle or shut down the cores
until the deadline. We assume a workload consisting of a large
number of small, independent tasks, so that the workload can
be balanced among the cores.

The target architecture is a many-core CPU represented
by p number of cores with frequencies f1, . . . , fk, together

with the power consumption of the chip at each frequency in
idle mode and under load, i.e. Pidle(j, fi) and Pload(j, fi),
where 1 ≤ j ≤ p denotes the number of active cores. As
we target compute-bound applications, we assume that the
cores are stressed to 100% load, however, extensions for power
consumptions at different load levels are possible. We further
assume that all cores run at the same frequency, because that
is a feature of our target architecture. We will explain at the
end of the section how to extend the model to architectures
with different frequencies on different cores.

From previous sections we have obtained the latency tscale
of switching frequencies of the cores (the cores are assumed
to be idle) from fi1 to fi2, the power consumption during this
time is assumed to be the average of Pidle(fi1) and Pidle(fi2).
While tscale might vary depending on the frequencies, the
model confines it to an average value as a close enough
approximation. An idle core at frequency fi can be shut down,
and later wake up again. We consider these consecutive events,
as the cores must be available after the deadline. The total time
for shutdown and wake-up is denoted by tshut(fi), we assume
that the core consumes idle power during this time.

If each of the j active cores, where 1 ≤ j ≤ p has to
process the same workload w/j until the deadline, the cores
must run at least at frequency fmin = (w/j)/D. Hence they
can utilize any fi ≥ fmin to process the workload in time
ti = (w/j)/fi.

There are several possibilities to process the workload w:
1) For any number j of active cores, the cores can run at any
frequency fi ≥ fmin for time ti to process the workload and
then idle at the same frequency for time D − ti consuming
total energy:

E1(j, fi) = ti · Pload(j, fi) + (D − ti) · Pidle(j, fi)
2) The idle cores could also be scaled down to the lowest
frequency f1 if D − ti is larger than tscale, with a resulting
energy consumption of

E2(j, fi) = ti · Pload(j, fi) + tscale · Pidle(j, fi)+
(D − ti − tscale) · Pidle(j, f1)

3) Finally, the cores could be shut down after processing the
workload, and wake up just before the deadline, if D − ti ≥
tshut(fi). In our target architecture, the cores must be shut
down in sequence, and the first core must remain active idle
to wake the others up. However, it would be easy to extend
the model for other platforms. The consumed energy can be
modeled as:

E3(j, fi) = ti · Pload(j, fi) +
j∑

l=2

tshut · Pidle(l, fi)+

(D − ti − (j − 1)tshut) · Pidle(1, f1)

Having formulated the model, and given a concrete work-
load, we enumerate all feasible solutions prior to execution,
and choose the one with the lowest energy consumption. Hence
we create a static schedule, i.e. a balanced mapping of the tasks
onto the cores together with information about core speeds
and necessary frequency scalings or shutdowns. If the target
architecture has some other characteristics such as concurrent
shutdown of cores, another energy formula can be adapted,

and the number of solutions might increase. However, the core
algorithm design remains, as the number of feasible solutions
is still small enough for enumeration. The model can also be
refined to scale the frequency of the cores prior to shutdown
to a frequency level with a more favorable shutdown time.

In contrast to an analytic model, we do not have to make
assumptions of convexity and continuity of power functions
etc., which are often not true in practice, as well as the
distinction between idle power and power under load. Yet, the
model still uses optimizations, such as a non-decreasing power
function with respect to frequency and number of active cores.
For example, we do not scale frequencies while processing
workload.

A. Model based simulation

We scheduled task sets with 10k, 100k and 1M synthetic
jobs with pressure levels 1.1, 1.3, 1.5 and 4.0 in order to deter-
mine the best, 2nd best and worst energy efficient configuration
parameters. The number of instructions of each job were ran-
domly chosen to obtain a [0;500ms] runtime normalized to the
highest clock frequency. The system parameters were obtained
from the quad-core Exynos 4412 platform by measuring the
power under workload Pload (Table III) and the idle power
Pidle (Table IV) for all frequency levels from 1 to 4 active
cores.

TABLE III. POWER DISSIPATION (IN WATTS) FOR THE EXYNOS 4412
UNDER FULL WORKLOAD. COLUMNS ARE THE NUMBER OF ACTIVE CORES

AND ROWS ARE CLOCK FREQUENCY

200 400 600 800 1000 1200 1400 1600
1 2.875 3.02 3.095 3.16 3.315 3.43 3.675 3.955
2 2.975 3.125 3.275 3.375 3.55 3.775 4.22 4.715
3 3.045 3.305 3.45 3.65 3.85 4.225 4.935 5.71
4 3.105 3.365 3.6 3.845 4.185 4.745 5.795 7.615

TABLE IV. POWER DISSIPATION (IN WATTS) FOR THE EXYNOS 4412
UNDER IDLE WORKLOAD. COLUMNS ARE THE NUMBER OF ACTIVE CORES

AND ROWS ARE CLOCK FREQUENCY

200 400 600 800 1000 1200 1400 1600
1 2.148 2.162 2.173 2.139 2.048 2.035 2.143 2.284
2 2.152 2.163 2.179 2.133 2.11 2.057 2.202 2.381
3 2.156 2.167 2.183 2.146 2.122 2.08 2.279 2.407
4 2.158 2.173 2.181 2.155 2.172 2.105 2.33 2.503

The scheduler used four threads for execution, which mod-
els a scalability up to four cores. We executed the scheduler
with different parameters, and the output shows the possible
scheduling configurations which meet the deadline. Table V
shows the configuration settings for three chosen outputs: best,
2nd best and worst energy efficiency with the aforementioned
power values and scheduling parameters. The output is a work-
ing frequency combined with a power management feature:
DPM, DVFS or idling the whole slack time.

Since a pressure of 1.1 poses a very tight deadline for the
jobs, the only feasible clock frequency setting is 1600 MHz.
The best case with this parameter uses rather DVFS than DPM
because of a faster switching time which costs less energy. For
pressure levels > 1.1 a more relaxed deadline allows slower
execution speed, which impacts significantly on the dynamic
power dissipation. Hence, the best case uses DPM rather than
DVFS since the more relaxed deadline allows a longer sleep

time, which reduces the energy consumption more than the
cost of activating the DPM mechanism. Finally the pressure
level 4.0 – with a very relaxed deadline – allows the system
to execute on 1000 MHz, which is the most energy efficient
clock frequency. Because of the execution model illustrated
in Figure 4, the number of jobs does not affect the usage of
the power management techniques, since the clock frequency
scaling or core shutdown is always executed only once after
the workload finishes.

TABLE V. CONFIGURATION PARAMETERS FOR DIFFERENT NUMBER
OF JOBS AND DIFFERENT PRESSURE LEVELS

Number of jobs
Config 10k 100k 1M

Pr
es

su
re

1.1
Best 1600MHz+DVFS 1600MHz+DVFS 1600MHz+DVFS
2nd Best 1600MHz+DPM 1600MHz+DPM 1600MHz+DPM
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

1.3
Best 1400MHz+DPM 1400MHz+DPM 1400MHz+DPM
2nd Best 1400MHz+DVFS 1400MHz+DVFS 1400MHz+DVFS
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

1.5
Best 1200MHz+DPM 1200MHz+DPM 1200MHz+DPM
2nd Best 1200MHz+IDLE 1200MHz+IDLE 1200MHz+IDLE
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

4.0
Best 1000MHz+DPM 1000MHz+DPM 1000MHz+DPM
2nd Best 1000MHz+DVFS 1000MHz+DVFS 1000MHz+DVFS
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

Finally, in Table V we only list configuration using all four
cores since it proved most energy efficient using all settings.

V. REAL-WORLD VALIDATION

To validate the model presented in Section IV we executed
real-world experiments to compare the final energy consump-
tion with the mathematical representation.

A. Experimental setup

We replicated the scenarios described in Section IV by
constructing experiments with: a) a set of configuration pa-
rameters used to time trigger the hardware power saving
features according to the scheduler results b) one or more
benchmark threads executing a selected job for a given time.
In one example configuration, the benchmark executes on four
threads on 1600 MHz for n milliseconds after which the clock
frequency is reduced to 200 MHz for m milliseconds or the
cores are shut down until the deadline. We chose stress
as the benchmark since it was used to train the mathematical
model and its behavior is easily repeatable. stress is also a
good candidate for representing CPU intensive workloads.

We used the quad-core Exynos 4412 platform on which the
experiments were earlier conducted. In order to measure the
power of the Exynos board and to not disturb its performance,
we added an external Raspberry Pi board to monitor the board
power consumption similar to the work in [9]. Figure 5 shows
the complete workflow for time synchronization and power
measurements:

1) Raspberry Pi sends a start signal over UDP to Exynos
2) Raspberry Pi starts to log the power measured by an INA226
A/D converter connected to its i2c bus
3) Exynos starts the benchmark threads
4) Exynos scales frequency or shuts down cores if requested
5) Exynos finishes benchmark and sends stop signal over UDP
6) Raspberry Pi ends power monitor

In order to get an average power log as accurate as possible,
the additional overhead including 2 ms ping latency between
the Raspberry Pi and the Exynos was accounted for and
excluded in the power monitor.

Fig. 5. Raspberry Pi connected to Exynos board with A/D converter to
measure power and send data to Raspberry-Pi

B. Experimental Results

We used the task sets with 10k, 100k and 1M jobs from the
previous section. The respective execution times for executing
the jobs were measured and used in the benchmark framework.
Furthermore, we also evaluated pressure levels: 1.1, 1.3, 1.5
and 4.0 for all task sets. For each combination of task set
and pressure levels the best case, 2nd best case and worst
case energy scenarios were compared against the mathematical
model.

Figure 6 shows results for 10k jobs. Both the best case

Fig. 6. Energy consumption for model and data running 10k jobs with
different pressure settings

model and data show a high energy consumption for low
pressure and for high pressure; the lowest energy consumption
is achieved at P=1.5 for both data and model. This is a result
of low pressure levels pushing the deadline very close and the
CPU is hence forced to execute on a high clock frequency to
meet the deadline. Even though the execution time is short,
the dynamic power dissipated when executing on the highest
frequency results in high energy consumption. Large values for
pressure also result in high energy consumption since deadline
and the execution time becomes very long and the ever present
static power significantly increases the energy consumed even
though the clock frequency is low.

Figure 7 shows the results of the benchmarks with 100k
jobs. The relation between data and model are rather similar
to Figure 6 with the exception of pressure level P=1.1. This
case has a higher prediction than the actual measured data. As
previously explained, a low pressure level forces a high clock
frequency – and running the CPU on the maximum frequency
for a long time activates the thermal throttling of the CPU as
it reaches a critical temperature. The CPU is then temporarily

Fig. 7. Energy consumption for model and data running 100k jobs with
different pressure settings

stalled resulting in lower power dissipation, which leads to low
energy consumption. Naturally by using CPU throttling, fewer
operations are executed in the benchmark which causes poor
performance. The situation can be avoided by adding active
cooling, but we chose to acknowledge this anomaly when
creating mathematical power models of a thermally limited
chip.

Fig. 8. Energy consumption for model and data running 1M jobs with
different pressure settings

Figure 8 shows the results from the longest running experi-
ments, i.e. 1M jobs. Similarly to Figure 7 the thermal throttling
of the CPU causes a misprediction of the model.

The mean squared error between data and model is finally
shown in Figure 9 for all previously mentioned experiments.
The figure shows the largest misprediction in cases with
P=1.1 and for long running jobs (1M and 100k). As pre-
viously concluded, the misprediction is mostly caused by
the CPU thermal throttling activated when running the CPU
on maximum frequency for a long time (in range 10s of
seconds). Furthermore, the thermal throttling is occasionally
also activated when running the CPU on the second highest
frequency for a very long time (several minutes) as can be seen
in 1M case with P=1.3. Hence, the model remains accurate as

Fig. 9. Error squared between model and data for all task sets and pressures

long as the CPU remains within its thermal bounds.

VI. CONCLUSIONS

As the hardware becomes more complex and the manufac-
turing techniques shrink, accurate power consumption details
for multi-core systems is difficult to derive from an analytical
mathematical approximation. An alternative is to model the
system top-down based on real experiments and include prac-
tical aspects such as such as power management overhead,
which cannot be ignored for applications with deadlines in the
millisecond range. We have presented an energy model derived
from real-world power measurements including power man-
agement latencies from a general purpose operating system.
The model can be used to calculate an energy-optimal static
schedule for applications with a given deadline. We also have
obtained the practical timing granularity for DVFS and DPM
after which the latency of power saving techniques cannot
longer be neglected.

We have validated the model with experiments on real
hardware and demonstrated its accuracy. Practical anomalies
such as critical temperatures can cause inconsistencies in the
model and has also been acknowledged as a limitation. In
future work, we would like to extend our model to Intel-based
multi-core platforms with independent core frequencies, and
to heterogeneous platforms such as the big.LITTLE systems.
By using core independent frequency levels the model must
coordinate both the location of the running task and the
clock frequency of the core possibly by defining a dynamic
power model. The heterogeneous platform must further also
define the type of core which leads to both a dynamic power
model and a dynamic performance model of the currently used
core type. Moreover, we would like to extend the model to
multiple applications, and to applications with partly stochastic
behavior.

REFERENCES

[1] K. Bhatti, C. Belleudy, and M. Auguin. Power management in real time
embedded systems through online and adaptive interplay of dpm and
dvfs policies. In Embedded and Ubiquitous Computing (EUC), 2010
IEEE/IFIP 8th International Conference on, pages 184–191, 2010.

[2] S. Borkar. Design challenges of technology scaling. Micro, IEEE,
19(4):23 –29, jul-aug 1999.

[3] S. Cho and R. Melhem. On the interplay of parallelization, program per-
formance, and energy consumption. Parallel and Distributed Systems,
IEEE Transactions on, 21(3):342–353, 2010.

[4] A. Gandhi, M. Harchol-Balter, and M. Kozuch. Are sleep states
effective in data centers? In Green Computing Conference (IGCC),
2012 International, pages 1–10, June 2012.

[5] T. Gleixner, P. E. McKenney, and V. Guittot. Cleaning up linux’s cpu
hotplug for real time and energy management. SIGBED Rev., 9(4):49–
52, Nov. 2012.

[6] F. Hällis, S. Holmbacka, W. Lund, R. Slotte, S. Lafond, and J. Lilius.
Thermal influence on the energy efficiency of workload consolidation
in many-core architecture. In R. Bolla, F. Davoli, P. Tran-Gia, and
T. T. Anh, editors, Proceedings of the 24th Tyrrhenian International
Workshop on Digital Communications, pages 1–6. IEEE, 2013.

[7] C. Hankendi and A. K. Coskun. Adaptive power and resource manage-
ment techniques for multi-threaded workloads. In Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, IPDPSW ’13, pages 2302–
2305, Washington, DC, USA, 2013. IEEE Computer Society.

[8] M. Haque, H. Aydin, and D. Zhu. Energy-aware task replication
to manage reliability for periodic real-time applications on multicore
platforms. In Green Computing Conference (IGCC), 2013 International,
pages 1–11, June 2013.

[9] S. Holmbacka, F. Hällis, W. Lund, S. Lafond, and J. Lilius. Energy
and power management, measurement and analysis for multi-core
processors. Technical Report 1117, 2014.

[10] T. Horvath and K. Skadron. Multi-mode energy management for multi-
tier server clusters. In Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’08, pages
270–279, New York, NY, USA, 2008. ACM.

[11] IBM Corporation. Blueprints: Using the linux cpufreq subsystem for
energy management. Technical report, June 2009.

[12] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of the 41st
annual Design Automation Conference, DAC ’04, pages 275–280, New
York, NY, USA, 2004. ACM.

[13] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Enhancing the efficiency
of energy-constrained dvfs designs. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 21(10):1769–1782, Oct 2013.

[14] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75, 2003.

[15] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. H.
Katz. Napsac: Design and implementation of a power-proportional web
cluster. In Proceedings of the First ACM SIGCOMM Workshop on
Green Networking, Green Networking ’10, pages 15–22, New York,
NY, USA, 2010. ACM.

[16] C. Lively, V. Taylor, X. Wu, H.-C. Chang, C.-Y. Su, K. Cameron,
S. Moore, and D. Terpstra. E-amom: an energy-aware modeling and
optimization methodology for scientific applications. Computer Science
- Research and Development, 29(3-4):197–210, 2014.

[17] W. Lockhart. How low can you go? http://chipdesignmag.com/display.
php?articleId=3310, 2014.

[18] W. Lund. Spurg-bench: Q&d microbenchmark software. https://github.
com/ESLab/spurg-bench, May 2013.

[19] M. Marinoni, M. Bambagini, F. Prosperi, F. Esposito, G. Franchino,
L. Santinelli, and G. Buttazzo. Platform-aware bandwidth-oriented
energy management algorithm for real-time embedded systems. In
ETFA, 2011 IEEE 16th Conference on, pages 1–8, 2011.

[20] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby. Evaluation of cpu
frequency transition latency. Comput. Sci., 29(3-4), Aug. 2014.

[21] J. Park, D. Shin, N. Chang, and M. Pedram. Accurate modeling and
calculation of delay and energy overheads of dynamic voltage scaling in
modern high-performance microprocessors. In Low-Power Electronics
and Design (ISLPED), 2010 ACM/IEEE International Symposium on,
pages 419–424, Aug 2010.

[22] T. Rauber and G. Rünger. Energy-aware execution of fork-join-based
task parallelism. In Modeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS), 2012 IEEE 20th
International Symposium on, pages 231–240, 2012.

[23] R. Schöne, D. Molka, and M. Werner. Wake-up latencies for processor
idle states on current x86 processors. Computer Science - Research and
Development, pages 1–9, 2014.

[24] H. Singh, K. Agarwal, D. Sylvester, and K. Nowka. Enhanced
leakage reduction techniques using intermediate strength power gating.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
15(11):1215 –1224, nov. 2007.

[25] D. Zhi-bo, C. Yun, and C. Ai-dong. The impact of the clock frequency
on the power analysis attacks. In Internet Technology and Applications
(iTAP), 2011 International Conference on, pages 1–4, 2011.

Paper VIII

Performance Monitor Based Power
Management for big.LITTLE Plat-
forms

Simon Holmbacka, Sébastien Lafond, Johan Lilius

Originally published Proceedings of the HIPEAC Workshop on Energy
Efficiency with Heterogeneous Computing, 2015, pages 1–6. Amster-
dam, Netherlands

c©2015 HIPEAC. Reprinted with permission.

Performance Monitor Based Power Management for
big.LITTLE Platforms

Simon Holmbacka, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

20530 Turku, Finland
firstname.lastname@abo.fi

ABSTRACT
Recently new heterogeneous computing architectures, cou-
pling low-power low-end cores with powerful, power-hungry
cores, appeared on the market. From a power manage-
ment point of view, and compared to traditional homoge-
neous multi-core architectures, such architectures provide
one more variable: the core type to map applications on.
At the same time conventional power managers drives the
DVFS mechanism based on the notion of workload. This
means that as long as the CPU is capable of executing work,
a workload increase will result in a frequency increase. In
practice this results in a Race-to-Idle execution which mostly
uses high clock frequencies. In this work we propose a per-
formance monitor based power manager for cluster switched
ARM big.LITTLE architectures. The proposed power man-
ager allocates resources based on application performance
rather than workload levels, which allows the hardware to
adapt closer to software requirements. The presented power
manager is capable of saving up to 57% of energy with the
addition of one line of c-code in legacy applications.

1. INTRODUCTION
The big.LITTLE architecture [1] using one cluster of high
performance cores and one cluster of energy efficient cores is
becoming popular in mobile devices such as mobile phones
and tablets. The big cores are designed for high performance
calculations using high clock frequencies, deep pipelines, large
caches and out-of-order execution. In case high performance
is not required, the system can shut down the big cores and
activate the energy efficient LITTLE cores. The LITTLE
cores in e.g. the Exynos 5410 SoC utilizes four A7 cores
with short pipelines, small caches and in-order execution,
which reduces the power dissipation significantly. The core
selection – in this SoC which we consider – is based on clus-
ter switching [12], which enables either the cluster of A7
or A15 cores, but not both types simultaneously. The core
types are automatically switched from LITTLE to big as
the clock frequency of the CPU is increased beyond a cer-
tain threshold.

While the hardware shows a great potential in energy sav-
ings, the software is usually unable to utilize such an ar-
chitecture efficiently. Optimally, the system should not allo-
cate more CPU resources than what the application requires.
This aim can be achieved with a power manager monitoring
the system and adjusting the clock frequency accordingly.
Currently, the power managers controlling CPU resources
use only workload as the metric for resource allocation [2].

Workload is defined in Linux as the ratio between CPU ex-
ecution and CPU idle states for a given time window. It
is, however, a poor metric for controlling CPU resources be-
cause it does not describe application performance. When
applying high workload on a CPU, power managers will in-
crease the clock frequency as long as the workload remains
high, and since applications execute as long as work is avail-
able for execution, the workload will remain high for the
whole execution. This leads to Race-to-Idle [11] conditions,
in which the CPU is executing the work as fast as possible
in order to reach the idle state. Consequently, by using high
clock frequencies, it leads to unnecessary execution on the
big cores after which the system idles until more work is
available.

In this work we investigate whether a power manager driven
by performance monitoring in the applications is able to
more efficiently manage big.LITTLE architectures. The CPU
allocation is directly based on application performance mon-
itored by a new kind of power manager. We use a big.LITTLE
power model created from real-world experiments to obtain
the most power efficient execution at run-time. The model
is able to predict the optimal clock frequency to satisfy the
performance requirements of the applications.

We evaluate the system with typical legacy applications, and
up to 57% of energy savings have been obtained with exe-
cutions on real hardware using an unmodified Linux OS.

2. RELATED WORK
Power optimization of DVFS in multi-core systems has been
extensively studied in the past [5, 10, 15]. A critical differ-
ence between traditional multi-cores and big.LITTLE multi-
cores is the significant power reduction potential of execut-
ing tasks on the LITTLE cores. A utilization-aware load
balancer for big.LITTLE system was presented in [9]. The
balancer implemented a processor utilization estimator for
determining the most optimal clock frequency for a given
set of tasks without loosing performance. We argue that a
utilization-based metric alone is not sufficient to efficiently
control big.LITTLE power management. Instead we focus
on performance monitoring in the applications in order to
allocate the resources directly based on software demands.

The work in [3] presents the partition of real-time tasks onto
heterogeneous cores such that energy is minimized by an op-
timal load distribution. The scheduling decisions were based
on an analytical power model and an energy model based on

the load distribution of tasks. Minimum energy consump-
tion was calculated by modeling tasks executing on cores
with given clock frequencies. Our work is focused on non
real-time or soft real-time tasks without a given deadlines
but with performance requirements in the applications. The
power model we rely on is, in contrast to [3], derived from
real-world experiments and not from analytical bottom-up
models.

C-3PO [13] is a power manager used to maximize perfor-
mance under power constraints and minimize peak power to
reduce energy consumption. Applications are given a power
budget, which is used for resource allocation in form of clock
frequency and the number of cores. Orthogonally, we aim to
minimize power under performance constraints. This means
that our notion of constraints relate to the execution of ap-
plications rather than the power dissipation of the hardware.
We further aim to implement this practice on big.LITTLE
CPUs on which power is significantly reduced as long as the
execution can take place on the LITTLE cores.

3. EXECUTION MODEL
The consequence of using workload-based power manage-
ment is in often an execution model called “Race-to-Idle”
[11]. Its behavior is to execute a job as fast as possible
in order for the CPU to minimize the execution time and
to maximize the idle time. The popularity of this execu-
tion model relates to simple programming; the programmer
specifies only the program functionality, and the OS scales
the clock frequency indirectly according to the workload.

Ondemand power management. Clock frequency in Linux
based systems is driven by a kernel module called frequency
governor. A frequency governor is monitoring the workload
of the system and adjusts the clock frequency according to
the policy for the governor in question. A number of dif-
ferent governors can be installed on a system, but usually
the default governor is called Ondemand [14]. The Onde-
mand governor monitors an upthreshold value after which
the workload is considered “too high”. As the threshold
value is reached, the governor switches the clock frequency
automatically to the highest value (as illustrated in Figure
1). After the maximum value is reached, the governor de-
creases the clock frequency step-wise in order to find the
most suitable frequency.

Figure 1: Illustration of the clock frequency scaling
strategy of the Ondemand governor

The strategy of the governor was designed to rapidly respond
to changes in workload without performance penalty, and to
save power by step-wise scaling down. However, this strat-
egy a) forces the CPU to always execute some part of the

workload on the maximum clock frequency if the thresh-
old is reached and b) for Race-to-Idle conditions, most of
the workload will execute on the maximum (or a high) fre-
quency since the workload will remain high as long as jobs
are available for execution. For big.LITTLE systems, this
strategy is contradictory to the intentions of the hardware
since much time is spent on executing on high frequencies
(with big cores) even if the system has significant idle time.

QoS driven power management. We argue that work-
load alone is not a sufficient metric to efficiently control
big.LITTLE systems, instead the system should measure ap-
plication performance for driving the power management.

As example illustrated in Figure 2, a video decoder decodes
a number of frames and puts them in a display buffer. When
the buffer is full, the decoder waits until the buffer is emp-
tied. Since the output is usually determined by a fixed fram-
erate, e.g. 25 frames per seconds (fps), the decoder is only
required to decode frames at the same rate as the output dis-
play is using. Part (A) illustrates the Race-to-Idle strategy
in which the CPU executes on maximum clock frequency for
half a time window, after which it idles on the lowest clock
frequency. The decoding process is hence producing 50 fps
while the required rate would be 25 fps. Even though the
power dissipation of the CPU is low on the idle part, the
decoding part uses only the big cores even if the LITTLE
cores would be sufficient when stretching the execution.

Figure 2: Illustration of (A) Race-to-Idle strategy
and (B) QoS-Aware strategy

To create a system controlled by software requirements, we
implemented a framework [6] to inject application specific
performance directly into a new type of power manager (fur-
ther explained in [7]). The power manager monitors the per-
formance of the applications to determine the magnitude of
the CPU resource allocation.

The power manager supports an execution strategy called
QoS-Aware. The strategy is illustrated in Figure 2 (B), in
which the execution time is stretched out over the whole time
window. By executing only at the required clock frequency,
the LITTLE cores are utilized as long as the performance
is sufficient. The power manager is re-evaluating the per-
formance measurements periodically, and the effort of the
programmer is to suitably assist the power manager with
the performance parameter. Practically, one line of c-code
must be added to the applications:
fmonitor(<performance>);. This function calls the power
management library and provides the run-time information,
for example the current decoding framerate (fps).

Figure 3: Creation of big.LITTLE power model. Separate reference measurements on the LITTLE and the
big cores are used to generate a mathematical model which overlaps in the [600 800] MHz range.

4. BIG.LITTLE POWER MODEL
The power manager uses a power model to determine the in-
crease in power by increasing/decreasing the clock frequency
one step. The performance values given by the fmonitor li-
brary call are compared against a power model in order for
the power manager to determine the power output caused
by the CPU allocation.

As an application demands more resources, the aim is to
chose a frequency which results in minimum power increase
and sufficient performance increase. In contrast to our previ-
ous work on homogeneous systems [7], we require a dynamic
model for describing the big.LITTLE architecture in which
two types of cores can be used. As the model is constructed
by mathematical expressions including architecture based
parameters, the power manager must be able to adjust the
dynamic parameters based on the core type currently in use.
Since we use a big.LITTLE system with cluster switching
[12], we consider only one type of core active at one time.

Similarly to [7], we stressed the physical system to max-
imum CPU load with the stress benchmark under Linux.
Under full load we increased the number of cores and the
clock frequency step-wise until all configurations were ob-
tained. The power was physically measured after each step
by reading internal power measurement registers in the chip.

By using the real-world measurements, we transformed the
results into two mathematical functions using plane fitting
methods [8] into a third degree polynomial1: P (q, c) = p00 +
p10q + p01c + p20q

2 + p11qc + p30q
3 + p21q

2c where P is the
power, q is the clock frequency and c is the number of cores.
With traditional non-linear optimization methods [4], we
can minimize the cost (power) by selecting the optimal clock

1Further details in [7]

frequency for a given application based on performance re-
quirements and the number of cores in use.

The studied architecture is a big.LITTLE configuration with
two different types of cores, and the types are selected based
on the clock frequency transition between 600 MHz and 800
MHz. We therefore created two separate power models for
each core type based on the stress measurements. Figure 3
(1) shows the LITTLE measurements from 250 MHz to 600
MHz and (2) the big measurements from 800 MHz to 1800
MHz.

Because the aim is to keep the system executing on the LIT-
TLE cores as much as possible, we overlapped the LITTLE
and the big power models by including the lowest frequency
of big cores in the LITTLE measurements (seen in Figure
3 (1)). This generates a steep cost increase when transi-
tioning from the LITTLE to the big model (Figure 3 (3)),
and pushes the optimizer to avoid the big cores if possible.
Similarly, the highest clock frequency setting (600 MHz) of
the LITTLE cores was included in the big-core measurement
profile (seen in Figure 3 (2)), which drives the optimizer to
descend to this setting if performance is sufficient. The re-
sult is a surface defined by the previously described third
degree polynomial with one step overlapping (seen in Figure
3 (3)). The selected model (and pxy parameters defined in
the polynomial) is chosen based on the current core type in
use, which can be monitored with Linux sysfs.

5. PRIORITY WEIGHT INTERFACE
As long as only one application has exclusive control over
the power manager, no control conflicts can occur. How-
ever, as soon as several applications compete over the same
resources, two applications could output conflicting execu-
tion conditions to the power manager. Conflicting infor-
mation can result in wrong control settings for both appli-

cations, instability in the resource allocation or diverging
control output favoring one of the applications.

In order to increase the predictability of the control output
which allocates CPU resources to the applications, the no-
tion of priority weights in the applications was included in
case several applications input conflicting information. The
basic notation behind CPU allocation is the measured per-
formance Pn of application n. Pn is compared to a user
defined setpoint Sn, which marks the desired performance
of application n. In case Pn < Sn, the application is given a
positive error value En by the power manager, which signals
for increased resource allocation. Similarly, in case Pn > Sn

the application is given a negative error value, which corre-
sponds to resource waste and resource deallocation.

The magnitude of the error values determines the amount of
resources to allocate/deallocate. With no notion of priority,
the difference between setpoint and measured performance
alone determines the error. By manipulating the magnitude
of the error values, it is hence possible to alter the priority
weight of an application error En, and increase the influence
of important applications.

Application priorities in the Linux kernel are set by manipu-
lating the run-time information of the tasks. The execution
time of a task is simply replaced by a virtual time, which is
manipulated according to priority weights. In other words,
a high priority task will receive a slowly incrementing vir-
tual time, which means that the scheduler will keep the task
under execution for a longer “real” time.

We applied the same concept by replacing the error values
with virtual errors vEn to increase the influence of impor-
tant tasks. The virtual errors of the applications were deter-
mined by sending all errors En and their respective priorities
Rn to an error transformation function. Listing 1 outlines
this procedure: (2) The system is monitoring all applica-
tions and calculate their respective error values based on
the performance, (3) error values are replaced with virtual
errors based on priorities, (4) the virtual errors are sent to
the power manager which allocates the resources. Listing
2 shows the algorithm: (1–4) All applications are iterated
over and a sum of all weights (priorities) for the current
applications is calculated, (5–6) for each application, the
virtual error is determined as the error multiplied with a
weight determined by the priority in relation to all other
applications (weightsum).

1 LoopForever{
2 <Apps><Errors><Priorities> = getMeasurements()
3 <vErrors> = veTrans(<Apps><Errors><Priorities>)
4 PowerManagement(<vErrors>)
5 }

Listing 1: Pseudo code for measurement procedure

The weight values were extracted from the Linux kernel
source and are shown in Table 1. There are currently forty
different priority levels defined by the weights where a higher
weight means higher priority.

1 for(j=0; j<num_apps; j++){
2 weightsum = 0.0;
3 for(i=0; i<num_apps; i++){
4 weightsum += weights[priorities[i]];
5 }
6 verrors[j] = 2∗errors[j]∗weights[priorities[j]]/

weightsum; }

Listing 2: c-code for generating virtual errors

Table 1: Weight values
15 18 23 29 36 45 56
70 87 110 137 172 215 272
335 423 526 655 820 1024 1277
1586 1991 2501 3121 3906 4904 6100
7620 9548 11916 14949 18705 23254 29154
36291 46273 56483 71755 88761

6. EXPERIMENTAL RESULTS
For evaluation we required a benchmark with variable load,
yet repeatable and multi threaded.

We chose video decoding using Mplayer2 as basis for the
evaluation. Further, we added a Facedetection application
sharing the resources with Mplayer to create a mixed-priority
scenario. Both applications were run with the Ondemand
governor and with our optimized power manager under Linux
3.7.0. Our test platform was the 28 nm octa-core Exynos
5410 SoC based on the big.LITTLE configuration with four
ARM Cortex-A15 cores and four ARM Cortex-A7 cores.

Mplayer. The first experiment was set up to use only the
Mplayer application. Mplayer was set to decode and play a
720p video for 5 minutes using the h.264 video codec. Since
the playback is executed with a steady framerate of 25 fps,
we added a QoS requirement of 30 fps on the decoder by
using our power management library. This means that the
decoding process is slightly faster than the playback in order
to keep up with occasional buffer underruns.

Figure 4 (A) shows the power dissipation for using Onde-
mand with a power sample rate of 250 ms. The dark gray
curve is the A15 power, the black curve is the A7 power
and the light gray curve is the memory power. With the
resource requirement for decoding the 720p video, the work-
load exceeds the threshold used by the governor. Because of
the Race-to-Idle strategy, the system is forced to stress the
CPU to decode the frames as fast as possible and the core
type in use is mostly the big A15 even though the perfor-
mance of using a lower clock frequency would be sufficient.

By regulating the system according to the application spe-
cific performance (fps) instead of the workload, the CPU
is allowed to stretch the decoding window while the out-
put framerate is still met. Instead of racing to idle, a clock
frequency below the core transition limit (800 MHz) is used
which allows the system to execute on the LITTLE A7 cores.
With this strategy there is almost no idle time in the sys-
tem, but the execution is performed more energy efficiently
and the performance requirements are met. Figure 4 (B)

2http://www.mplayerhq.hu/

Figure 4: Power dissipation for Mplayer using
(A) Ondemand (B) Optimizer

shows the optimized execution in which the A7 cores are
mostly used for processing the same video as in Figure 4 (A).
The Ondemand governor consumed in total 103.96 Joules of
energy while the optimized power manager consumed only
43.88 Joules, which is a reduction of 57% for executing the
same amount of work with 0% performance degradation.

Mplayer + Facedetection. In the second evaluation we
extended the use case to a mixed-priority scenario with sev-
eral applications. Similarly to the previous evaluation we ex-
ecuted a 720p video with a required decoding rate of 30 fps.
Furthermore, we added a Facedetection application used for
video surveillance. The Facedetection application reads the
input of a video stream, scans the current frame for the
occurrence of one or more faces and draws a rectangle of
the found face on the video stream. The QoS requirements
added to this application was to scan 10 video frames per
second for faces i.e. “10 Scans per Second (SPS)”.

Since this application was used for surveillance, its perfor-
mance was more critical than the video player. The priority
for Facedetection was therefore set to 30 while Mplayer used
a priority of 9. With a higher priority on Facedetection, it
was expected for framedrops to occasionally occur in the
video playback. We therefore executed Mplayer with pa-
rameters -framedrop and -benchmark in order to measure
the number of dropped frames as well as the power.

Figure 5 (A) shows the power dissipation for using Onde-
mand and Figure 5 (B) for using the optimizer. Similarly
to the Mplayer-only use case, the Race-to-Idle conditions
of Ondemand forces a mostly high clock frequency and the
workload is executed exclusively on the big A15 cores. The
optimizer (in part (B) of Figure 5) shows a rather spiky

Figure 5: Power dissipation for Mplayer and Facede-
tection using (A) Ondemand (B) Optimized

output since the added Facedetection application occasion-
ally requires more resources than what can be achieved on
the LITTLE A7 cores. The system rushes to meet the per-
formance requirements by temporarily using the A15 cores
after which is it able to scale down to the A7 cores.

The mixed-application scenario occasionally imposes con-
flicting control signals based on the performance require-
ments. For example, while Mplayer is decoding very light
frames and measures a “too high” framerate, Facedetection
is under utilized and requires more resources. In order to
verify the priority interface, we also plotted the scanrate for
Facedetection during the whole experiment. Figure 6 (A)
shows the scanrate for using Ondemand and (B) for using
the optimizer. With a setpoint of 10 SPS we marked our ac-
ceptable lower and upper QoS limits for the application at
9 SPS and 11 SPS respectively. Since Ondemand is able to
use the full power of the CPU all the time, it is expected to
reach a more stable scanrate than the optimizer which can
be seen in the figure. In case a better QoS is required using
the optimizer, the user can either increase the performance
setpoint to e.g. 12 SPS or increase the application priority
with the cost of increased power dissipation.

Table 2 finally summarizes the mixed-scenario experiments.
The optimized power manager was able to save roughly 40%
of energy while imposing only a 1% QoS degradation on
Mplayer and 6% QoS degradation on Facedetection com-
pared to Ondemand.

Table 2: Energy (in Joules) and QoS (in %)

Energy QoS Mplayer QoS Facedetection
Ondemand 334.3 100 (1 drop) 92 (52 late frames)
Optimized 201.5 99 (97 drops) 86 (108 late frames)

Figure 6: Scanrate and QoS for Facedetection using
(A) Ondemand (B) Optimized

7. CONCLUSION
Workload alone is not a sufficient metric for driving power
management in modern big.LITTLE systems. Since work-
load only expresses CPU utilization and not application per-
formance, the execution is forced to Race-to-Idle as long as
the workload remains high. By measuring the application
performance and regulating the CPU allocation based on
application requirements, the system is able to keep the ex-
ecution of jobs on the energy efficient LITTLE cores for a
longer time. We have presented a power manager utilizing a
dynamic big.LITTLE power model for maximizing the LIT-
TLE core usage. The usage is maximized by minimizing the
idle time; allowing the system to execute on the lowest pos-
sible clock frequency without performance penalties. With
an implemented library, applications can set performance
requirements and input run-time information to influence
the control decisions. Applications are further able to ex-
press their importance and the relation to CPU allocation
in resource sharing scenarios involving several applications.

With real-world measurements using Linux running on big.
LITTLE hardware we have obtained up to 57% of energy
reduction for decoding typical HD videos with no perfor-
mance degradation. Further on a mixed-priority scenario
using one critical and one best effort application, we obtain
energy savings up to 40% with minor QoS degradation com-
pared to the default power management system. We plan
to integrate the system into embedded devices such as mo-
bile phones to increase the battery time when using typical
every-day applications. We are also targeting global task
scheduling systems in which both the big and the LITTLE
cores are available at the same time.

8. REFERENCES
[1] ARM Corp. big.little processing witharm cortex-a15 &

cortex-a7. http://www.arm.com/files/downloads/
big_LITTLE_Final_Final.pdf, 2011.

[2] D. Brodowski. Cpu frequency and voltage scaling code
in the linux(tm) kernel. https://www.kernel.org/
doc/Documentation/cpu-freq/governors.txt, 2013.

[3] A. Colin, A. Kandhalu, and R. Rajkumar.
Energy-efficient allocation of real-time applications
onto heterogeneous processors. In RTCSA, 2014 IEEE
20th International Conference on, pages 1–10, Aug
2014.

[4] P. E. Gill, W. Murray, Michael, and M. A. Saunders.
Snopt: An sqp algorithm for large-scale constrained
optimization. SIAM Journal on Optimization,
12:979–1006, 1997.

[5] M. Haque, H. Aydin, and D. Zhu. Energy-aware task
replication to manage reliability for periodic real-time
applications on multicore platforms. In Green
Computing Conference (IGCC), 2013 International,
pages 1–11, 2013.

[6] S. Holmbacka, D. Ågren, S. Lafond, and J. Lilius. Qos
manager for energy efficient many-core operating
systems. In Parallel, Distributed and Network-Based
Processing (PDP), 2013 21st Euromicro International
Conference on, pages 318–322, 2013.

[7] S. Holmbacka, E. Nogues, M. Pelcat, S. Lafond, and
J. Lilius. Energy efficiency and performance
management of parallel dataflow applications. In
A. Pinzari and A. Morawiec, editors, The 2014
Conference on Design & Architectures for Signal &
Image Processing, pages 1 – 8, 2014.

[8] K. Iondry. Iterative Methods for Optimization. Society
for Industrial and Applied Mathematics, 1999.

[9] M. Kim, K. Kim, J. Geraci, and S. Hong.
Utilization-aware load balancing for the energy
efficient operation of the big.little processor. In
Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pages 1–4, March 2014.

[10] T. Rauber and G. Runger. Energy-aware execution of
fork-join-based task parallelism. In Modeling, Analysis
Simulation of Computer and Telecommunication
Systems (MASCOTS), 2012 IEEE 20th International
Symposium on, pages 231–240, 2012.

[11] B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch. Adagio:
Making dvs practical for complex hpc applications. In
Proceedings of the 23rd International Conference on
Supercomputing, ICS ’09, pages 460–469, New York,
NY, USA, 2009. ACM.

[12] Samsung Corp. Heterogeneous multi-processing
solution of exynos 5 octa with arm big.little
technology. https://events.linuxfoundation.org/
images/stories/slides/elc2013_poirier.pdf, 2013.

[13] H. Sasaki, S. Imamura, and K. Inoue. Coordinated
power-performance optimization in manycores. In
Parallel Architectures and Compilation Techniques
(PACT), 2013 22nd International Conference on,
pages 51–61, 2013.

[14] V. P. A. Starikovskiy. The ondemand governor. In
Proceedings of theLinux Symposium, 2006.

[15] I. Takouna, W. Dawoud, and C. Meinel. Accurate
mutlicore processor power models for power-aware
resource management. In Dependable, Autonomic and
Secure Computing (DASC), 2011 IEEE Ninth

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3305-0
ISSN 1239-1883

Sim
on H

olm
backa

Sim
on H

olm
backa

Energy A
w

are S
oftw

are for M
any-C

ore S
ystem

s

Energy A
w

are S
oftw

are for M
any-C

ore S
ystem

s

