
Markus Klemetti, Samir Puuska 

Sotatekniikan laitos 

MPKK 

Entropy Measures in Critical 

Infrastructure Graphs 

14.10.15 1 



Markus Klemetti, Samir Puuska 

Sotatekniikan laitos 

MPKK 

Critical Infrastructure 

• Consists of assets and systems which are 

essential in maintaining vital societal functions 

• For example electricity generation, 

telecommunication, water supply, 

transportation systems and financial services 
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Critical Infrastructure (2) 

• Critical infrastructure has become a 

noteworthy field of contemporary research 

• Various methods and formalisms have been 

studied:  

– Graphs 

– Bayesian belief networks 

– Neural networks 

– Etc. 
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Roots of entropy 

• The concept of entropy in thermodynamics 

was invented by Rudolf Clausius in 1850s 

• The term entropy comes from the Greek word 

τρoπή, "transformation” 

• In 1948 Claude E. Shannon proposed a 

information theoretic view of entropy in his 

paper ”A Mathematical Theory of 

Communication” 
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The definition of entropy 

• For a random variable X we define its entropy 

to be 

 H(X):=-∑P(X=x)log P(X=x), 

where x goes through all possible states of X 

• Entropy is the expected value of information 

associated to a single event: 

 H(X)=E(-log P(X)) 
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The definition of entropy (2) 

• Information is usually measured in bits (a.k.a. 

shannons) 

• 1 bit = 1 coin flip 

• Entropy of an event can be thought of as a 

measure of uncertainty: 

 hard to predict = high entropy 

 easy to predict = low entropy 
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DiSCI and SACIN 

• This work is part of a larger research project, 

called Digital Security of Critical 

Infrastructures (DiSCI) 

• Aim is to find solutions to control critical 

infrastructure threats on a national level 

• Situational Awareness of Critical Infrastructure 

and Networks (SACIN) software framework 

was developed for monitoring critical 

infrastructure  
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Modelling critical infrastructure 

• In situational awareness, we are mainly 

interested in critical infrastructure health and 

degree of operational capability 

• The model should reflect this line of thought 

• No exessive specifics about the systems 

should be included  

• Flexible and extensible structure 



Markus Klemetti, Samir Puuska 

Sotatekniikan laitos 

MPKK 

Critical infrastructure system (CIS) 

• Combines graphs and finite state machines 

• Directed graph represents dependency 

relations 

• Finite state machines (on nodes) can 

represent a facility, process or service  
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Example state diagram 
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Event causes transition 
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State change 
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State machines coupled 
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Status function 

• Attached to each finite state machine in the 

graph is a status function S: Q  [0,1], where 

– Q is the set of states of the machine 

– For each state q in Q, the number S(q) 

represents its severity, 0 implying the machine 

is not operational and 1 implying that the 

machine is fully operational. 
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Implementing time and probabilities 

• In this work we expand the critical 
infrastructure system model by associating a 
probability distribution to each node of the 
graph 

• For simplicity we assume that sensor 
readings are always accurate 

• Let M be a finite state machine that has states 
operational (O), marginally operational (M) 
and non-operational (N), with (previously 
observed) probabilities a, b and c, 
respectively. 
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Implementing time and probabilities 

(2) 

• Let X denote the state of the finite state 

machine M. At first we assume that X follows 

the default probability distribution 
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Implementing time and probabilities 

(3) 

• In case we get a sensor reading N, we define 

the new probability distribution for X as 

follows:  

•  

 

 

where t denotes time elapsed since the event 

and k is a constant defined by the operator 

(k>0). 
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Implementing time and probabilities 

(4) 

• This way we get a probability that takes into 

account the uncertainty that occurs due to the 

passage of time. 

• The initial probabilities a, b and c may have 

been collected by observing the operation of 

the sensor for a longer time period, or they 

may have been defined by the sensor 

operator.  
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Implementing time and probabilities 

(5) 

More generally, Let M be a finite state machine with 

states A1, A2,…,An and initial probabilities a1, 

a2,…,an, respectively. If we get a sensor reading Aj, 

we define the new probability distribution for X as 

follows: 
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Entropy in critical infrastructure 

systems 

• By calculating the expected value E(S(X)), it 

is possible to estimate the status of the 

system in question. 

• The entropy of the random variable X informs 

us of the reliability of the estimate (lower 

entropy being more reliable). 
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Entropy in critical infrastructure 

system (2) 

• There is no need to calculate any conditional 

probabilities. The causalities are taken into 

account by the underlying finite state machine 

structure. 

• Setting up the system should be 

straightforward: Each finite state machine 

only requires  

– the initial probability distribution, 

– the constant k in the new distribution,  

– severity values between 0 and 1 for its states.  
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Example 

• Let A be a power plant and B be a radio tower. They each 

have states ”OK”, ”damaged” and ”offline”. The initial 

probabilities for A are 

  0.7 for OK 

 0.2 for damaged 

 0.1 for offline 

• The initial probabilities for B are 

 0.5 for OK 

 0.45 for damaged 

 0.05 for offline  

• In the beginning both A and B are known to be OK. 

• When time=100 we get a sensor reading that A is damaged. 
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“Although our intellect always longs for clarity 

and certainty, our nature often finds uncertainty 

fascinating.”  
― Carl von Clausewitz 

 

“You should call it entropy, because nobody 

knows what entropy really is, so in a debate you 

will always have the advantage.” 
 — John Neumann, suggestion to Claude Shannon on what to 

call his new formula for information 


