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Abstract 

It has long been known that amino acids are the building blocks for proteins 
and govern their folding into specific three-dimensional structures. However, 
the details of this process are still unknown and represent one of the main 
problems in structural bioinformatics, which is a highly active research area 
with the focus on the prediction of three-dimensional structure and its 
relationship to protein function. The protein structure prediction procedure 
encompasses several different steps from searches and analyses of sequences 
and structures, through sequence alignment to the creation of the structural 
model. Careful evaluation and analysis ultimately results in a hypothetical 
structure, which can be used to study biological phenomena in, for example, 
research at the molecular level, biotechnology and especially in drug 
discovery and development.  
 
In this thesis, the structures of five proteins were modeled with template-
based methods, which use proteins with known structures (templates) to 
model related or structurally similar proteins. The resulting models were an 
important asset for the interpretation and explanation of biological 
phenomena, such as amino acids and interaction networks that are essential 
for the function and/or ligand specificity of the studied proteins. The five 
proteins represent different case studies with their own challenges like 
varying template availability, which resulted in a different structure 
prediction process. This thesis presents the techniques and considerations, 
which should be taken into account in the modeling procedure to overcome 
limitations and produce a hypothetical and reliable three-dimensional 
structure. As each project shows, the reliability is highly dependent on the 
extensive incorporation of experimental data or known literature and, 
although experimental verification of in silico results is always desirable to 
increase the reliability, the presented projects show that also the experimental 
studies can greatly benefit from structural models. With the help of in silico 
studies, the experiments can be targeted and precisely designed, thereby 
saving both money and time. As the programs used in structural 
bioinformatics are constantly improved and the range of templates increases 
through structural genomics efforts, the mutual benefits between in silico and 
experimental studies become even more prominent. Hence, reliable models 
for protein three-dimensional structures achieved through careful planning 
and thoughtful executions are, and will continue to be, valuable and 
indispensable sources for structural information to be combined with 
functional data. 
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Sammanfattning 

Det är sedan länge känt att aminosyror fungerar som byggstenar för proteiner 
och bestämmer deras specifika tre-dimensionella veckning. Detaljerna kring 
denna process är dock ännu okända och representerar ett av de största 
problemen för forskning inom strukturbioinformatik. Denna typ av forskning 
fokuserar på förutsägning av proteiners tre-dimensionella struktur och dess 
förhållande till funktionen. Förutsägning av proteinstrukturer omfattar flera 
faser från sökning och analys av sekvenser och strukturer, till 
sekvensjämförelse och skapandet av en modellstruktur. Noggrann evaluering 
och analys av denna resulterar slutligen i en hypotetisk struktur som kan 
användas för att studera biologiska fenomen inom bl.a. forskning på 
molekyär nivå, bioteknologi och framför allt inom läkemedelsutveckling.   
 
I denna avhandling modellerades strukturen hos fem olika proteiner med 
hjälp av templatbaserade metoder, som använder proteiner med känd struktur 
(templat) för att modellera besläktade eller strukturmässigt liknande 
proteiner. De resulterande modellerna var en viktig tillgång för tolkningar 
och förklaringar av biologiska fenomen, såsom vilka aminosyror och 
samverkningar som är viktiga för funktionen och/eller ligandspecificiteten 
hos de studerade proteinerna. De fem proteinerna representerar olika 
fallstudier av växlande svårighetsgrad p.g.a. varierande templattillgång, vilket 
resulterade i olika processer för strukturmodelleringen. Denna avhandling 
presenterar tekniker och överväganden som bör beaktas i 
modelleringsprocessen för att kunna producera en tillförlitlig modellstruktur. 
Varje projekt visar att tillförlitligheten till hög grad är beroende av 
omfattande inkorporering av experimentell data eller känd litteratur. Utöver 
detta är experimentell verifiering av in silico resultat alltid önskvärt för att 
öka tillförlitligheten, men de presenterade projekten påvisar att även de 
experimentella studierna kan dra fördel av strukturmodeller. Med hjälp av in 
silico studier kan experimenten riktas mot ett specifikt mål och planeras i 
detalj, vilket sparar både pengar och tid vid utförandet av de experimentella 
studierna. De ömsesidiga fördelarna mellan in silico och experimentella 
studier blir allt mer framträdande tack vare ständig utveckling och förbättring 
av programmen och mjukvaran som används inom strukurbioinformatik, 
samt p.g.a. att templatomfånget utökas. Tillförlitliga modellstrukturer som 
uppnåtts genom noggrann planering och eftertänksamma utföranden är 
därmed värdefulla källor för strukturinformation som sedan kan kombineras 
med funktionell data. 
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1 Introduction 

In order to function properly, all living organisms are dependent upon the 
engines of life, i.e. proteins. Vital processes like hearing, vision, smell, 
metabolism, immune response and cell division, to name a few, all involve 
proteins and these macromolecules are also the targets of most current 
medicines. Today, it is widely accepted that proteins are composed of amino 
acids encoded by nucleotides in a gene, but this idea was first introduced only 
after the Second World War. The general acknowledgement that proteins 
carry information and are built from polypeptides of amino acids, whose 
sequence specify the three-dimensional (3D) structure the protein folds into, 
was greatly influenced by Frederick Sanger and colleagues at Cambridge 
University, who sequenced the first complete protein, insulin, and Christian 
Anfinsen and colleagues at the National Institute of Health, who denatured 
ribonuclease and showed that it spontaneously refolds and regains enzymatic 
activity (Anfinsen, 1973; Hagen, 2000; Sanger, 1959). In the late 1960s, Pehr 
Edman gave a major push to the sequencing of proteins with his sequencing 
machine, which automated protein sequencing and made it routine work 
(Edman & Begg, 1967). This led to an increase in the known amino acid 
sequences, which in turn raised the need for collecting and storing the 
sequence data to make it available and accessible to all interested researchers. 
This was the birth of sequence databases (Hagen, 2000).  
 
Margaret Dayhoff became one of the key contributors to the formation of the 
sequence databases during this era by cataloguing all available amino acid 
sequences in the Atlas of Protein Sequence and Structure (Dayhoff & Eck, 
1968; Dayhoff, 1978). This annual publication eventually turned into the 
Protein Information Resource (PIR), a major online database established in 
1983 (Hagen, 2000). The increased number of known amino acid sequences 
showed that some of them were more alike than others, i.e. related or 
homologous, and great efforts were made to develop computer algorithms to 
compare sequences and determine homology. This resulted in programs for 
sequence alignment, which is now an integral method for computational 
studies of proteins. Even more computationally challenging problems like 
protein structure modeling have their predecessors in the 1960s. In that 
decade, Cyrus Levinthal and researchers modeled the 3D structure of 
cytochrome c, but it was not considered to be a great breakthrough due to 
slow and less evolved computers (Hagen, 2000; Levinthal, 1966). Today, 
however, this early stage modeling can be seen as an important historical 
bridge to the advanced computer models of today.  
 
Nowadays, the term bioinformatics, which became commonplace in the late 
1980s, is divided into two main categories: sequence- and structure-based 
bioinformatics (Choong et al., 2013; Hogeweg, 2011). Genome analysis, 
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sequence alignment, networks and evolution are all examples of 
bioinformatics with focus on sequences, while structural bioinformatics 
encompasses the prediction of the protein 3D structure and the structure-
function relationship. This thesis focuses on the latter one of these, i.e. 
structural bioinformatics applications, but it also deals with alignments and 
sequence analysis, since these are an integral part of protein structure 
prediction. Although structural bioinformatics is more than 50 years old, it 
continues to be one of the most active areas of all bioinformatics research and 
the number of available tools and webservers may seem like a jungle for the 
user (Zhang, 2008a). Therefore, this thesis aims to guide the reader through 
the protein structure prediction process and to point out the facts that should 
be taken into account to avoid errors in the final structure. Several case 
studies are presented to illustrate specific scientific questions, where the 
predicted structures have provided useful information. 
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2 Review of the literature 

The human genome was sequenced in 2001 and led to estimations that there 
are around 25,000 protein-encoding genes (Lander et al., 2001; Venter et al., 
2001). Proteins are composed of 20 different, naturally occurring amino acids 
and their combination forms the primary structure, which is the unique linear 
peptide chain for each protein. Peptide bonds are formed through a reaction 
of the carboxyl group in one amino acid with the amino group of another 
amino acid and concomitant release of water. This reaction couples the amino 
acids together and starts the polypeptide from the N-terminus and continues it 
towards the C-terminus. The carbonyl groups in the peptide chain form a 
hydrogen-bonding pattern with the hydrogen atoms of the amino groups and, 
thereby, create regular and stable secondary structures called α-helices and β-
strands (Pauling et al., 1951). Moreover, multiple β-strands usually come 
together and form β-sheets (Pauling & Corey, 1951). In addition, irregular 
loops and turns link the stable and regular secondary structures together in a 
specific 3D pattern in space, called the tertiary structure. Hence, the unique 
sequence of amino acids in the primary structure determines the folding of 
the protein into its tertiary structure, also called the native or functional 
structure since the sequence-protein-structure paradigm states that the 
biological function of a protein is dependent on the right 3D fold of the 
protein (Anfinsen, 1973). One of the main driving forces behind protein 
folding is the hydrophobic effect, which makes the hydrophobic amino acids 
cluster together in the protein interior, while polar and charged amino acids 
are on the surface to interact with the surrounding water (Kauzmann, 1959; 
Lesk, 2000). Hydrogen bonds, together with hydrophilic and hydrophobic 
interactions, further stabilize the tertiary structure (Gibas & Jambeck, 2001; 
Lesk, 2002; Nelson & Cox, 2005). Some proteins are formed by more than 
one subunit and, therefore, they have a quaternary structure determined by 
the specific 3D arrangement of two or more monomers (Lesk, 2002; Nelson 
& Cox, 2005). 

2.1 Determination of protein 3D structure 

2.1.1 Experimental determination of protein 3D structure 
There are three main methods for solving a protein structure experimentally: 
X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and 
electron microscopy (EM). When determining a protein structure by X-ray 
crystallography, the purified protein is crystallized and the crystal is 
subjected to an intense synchrotron X-ray beam. The electrons in the protein 
scatter the X-rays in a specific pattern, which is then used to calculate an 
electron density map where the amino acids in the protein are fitted to give a 
structure (McPherson, 2004). In NMR spectroscopy, the solution of the 
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purified protein is placed in a strong magnetic field and then probed with 
radio waves (Marion, 2013). The resonance can be observed in a spectrum, 
enabling determination of which atom nuclei are close to each other and 
analysis of the atom bond conformation. These restraints are then used to 
build the structure of the protein. On the other hand, EM is used for large 
macromolecular complexes, which are subjected to a beam of electrons to 
obtain a 3D image (Kuhlbrandt, 2013). EM has often been used in 
combination with X-ray crystallography or NMR spectroscopy to obtain the 
atomic details of the complex, but now EM alone has become a force to be 
reckoned with (Callaway, 2015). It can produce high-resolution models 
quickly, also from molecules that X-ray crystallography and other approaches 
have not been able to solve. However, X-ray crystallography relies on 
obtaining a protein crystal, while NMR spectroscopy is limited to low 
molecular weight proteins and, in addition, all the experimental methods are 
tedious, time-consuming and expensive. Therefore, structural modeling of 
proteins with the help of computers has caught increasing interest during the 
last decades.  

2.1.2 Computational modeling of protein 3D structure 
Structural bioinformatics is the branch of bioinformatics, which focuses on 
the prediction of 3D macromolecular structures, such as protein 3D structure 
(Altman & Dugan, 2003; Zhang et al., 2005). One of the main questions, i.e. 
the protein structure prediction problem, concerns the challenge to 
understand how the information from the protein primary structure is 
translated into a 3D structure, and how to use this information for 
development of computational 3D structure prediction methodologies 
(Creighton, 1990). Several algorithms and methods have been established to 
solve this problem: homology modeling (also called comparative modeling), 
fold recognition methods, and first principle prediction with and without 
database information are all examples of these (Floudas et al., 2006). 

2.1.3 Template-free methods 
First principle prediction without database information is also known as the 
ab initio method and considers only the amino acid sequence in search of the 
protein 3D structure that corresponds to the global free energy minimum 
(Bonneau & Baker, 2001; Osguthorpe, 2000). Ab initio methods are limited 
by the many possible conformations that the polypeptide chain can adopt and 
that represent local minima, but the global minimum is the structure of 
interest (Dorn et al., 2014). However, the advantage of these methods is the 
ability to predict new folds since there is no requirement for templates with 
known structures. The other template-free method, first principle prediction 
with database information, uses sub-sequences of the protein of interest 
(target) to scan protein databases for general folding rules of similar 
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fragments, which are then assembled into a low energy structure with the 
help of scoring functions and optimization (Floudas et al., 2006). Likewise, 
challenges with this method are mostly related to the many conformations the 
structure can adopt, but also to minimize the energy in the regions where the 
fragments are combined (Dorn et al., 2014). This method shows, however, a 
clear advantage over ab initio methods in the sense that the conformational 
search space is more limited due to the use of similar fragments. An 
additional advantage is the possibility to predict new folds, similarly to ab 
initio methods.  

2.1.4 Template-based methods 
Template-based methods like homology modeling and threading use 
previously known protein structures (templates) and have proven themselves 
useful by producing better and more accurate protein structure models than 
the template-free methods mentioned earlier (Mullins, 2012). They also have 
the distinct advantage of being able to predict the structure of longer protein 
sequences, especially by combining multiple templates. Threading is a fold 
recognition method based on the conclusion that structure is more conserved 
than sequence and, therefore, two proteins can have the same fold although 
there is no apparent sequence similarity and evolutionary relationship 
between them (Finkelstein & Ptitsyn, 1987; Floudas et al., 2006; Levitt & 
Chothia, 1976; Setubal & Meidanis, 1997). Here, the question of interest is 
merely whether the target protein can be reasonably represented by a known 
protein structure and, hence, modeled based on it (Tramontano, 2006). The 
threading process proceeds by placing the target protein sequence 
sequentially onto the known 3D structure in an optimal way and, through 
this, identifying homologous (evolutionary related) or analogous (no direct 
evolutionary relationship) templates (Dorn et al., 2014). The energy of the 
target sequence in a certain 3D fold assesses the quality and is used to 
estimate the likelihood of the query sequence to adopt this particular fold. On 
the other hand, homology modeling relies on the evolutionary relationship 
between proteins. Homologous proteins are related to each other through a 
common ancestral protein, but their evolution has followed different paths 
and caused them to change. Homologs can be further divided into orthologs 
and paralogs, of which orthologs have evolved independently in different 
species but the function is similar. Meanwhile, paralogs are found in one 
species but the proteins have acquired different functions. Therefore, 
homology modeling is based on the assumption that similar protein 
sequences, i.e. homologous proteins, fold into a similar 3D structure. This 
method uses the target protein sequence and aligns it against the sequence of 
a homologous protein with known structure, which provides the modeling 
process with the structural information needed (Blundell et al., 1987; Johnson 
et al., 1994; Sali, 1995; Sanchez & Sali, 1997). This method can be used 
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whenever there is detectable similarity between the target protein and the 
template sequences.  

2.2 Homology modeling 

The first step in homology modeling is to retrieve the target protein sequence 
and use it to identify a homologous protein with known structure. The 
sequence of the template structure is aligned to the target sequence, whose 
3D structure is thereafter modeled using the 3D coordinates of the known 
structure. The resulting structural model of the target protein is then validated 
and assessed. The steps from sequence alignment and onwards, are iterated 
until an acceptable structure for the target protein is aquired. 

2.2.1 Databases 
Major improvements in DNA sequencing techniques have enabled large-
scale sequencing projects, which have increased the number of new protein 
sequences (Pavlopoulou & Michalopoulos, 2011; UniProt Consortium, 
2015). Searching for a homologous sequence in several integrated protein 
sequence data repositories is usually the first step to characterize an unknown 
gene or protein. GenBank Gene Products Database (GenPept) at the National 
Center of Biotechnology Information (NCBI) (Wheeler et al., 2003) contains 
amino acid sequences derived from translations of the corresponding 
nucleotide sequences, the entries have minimal annotation and several 
records can represent one protein. NCBI’s Entrez Protein is similar, but adds 
additional information to the entries. NCBI also hosts the non-redundant 
Reference Sequence (RefSeq) collection, where the majority of the sequences 
are automatically generated but with only one record per protein. Moreover, 
there are universal curated databases with validated information in addition to 
the sequence data (Apweiler et al., 2004). For example, Protein Information 
Resource Protein Sequence Database (PIR-PSD) has non-redundant entries 
organized in families and superfamilies with information about the protein 
itself, the function, the structure, bibliography and genetic data. For a long 
time, the leading curated protein sequence database was Swiss-Prot with non-
redundant entries annotated by biologists, including information about 
function, post-translational modifications, domains, structure, diseases, 
location, pathways and variants. This type of manual annotation is tedious 
and, therefore, the Translated European Molecular Biology Laboratory 
(TrEMBL) database was developed in order to get the high number of new 
sequences accessible fast by having the entries computationally annotated. 

The next generation of protein sequence databases takes one step further: the 
Universal Protein Resource (UniProt) incorporates Swiss-Prot, TrEMBL and 
PIR-PSD into a single resource and provides researchers with 
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comprehensive, high-quality and freely accessible protein sequence and 
function information (UniProt Consortium, 2015). This leading protein 
sequence database is built from three components: the UniProt Archive 
(UniParc), the UniProt non-redundant reference databases (UniRef) and the 
UniProt Knowledgebase (UniProtKB). UniParc is the most comprehensive 
non-redundant sequence collection with publicly available protein sequences 
from Swiss-Prot, TrEMBL, PIR-PSD, EMBL, Ensembl, International Protein 
Index, Protein Data Bank (PDB), RefSeq, FlyBase, WormBase, and the 
patent offices in Europe, the United States and Japan. The current release 
statistics show 92,444,468 entries (UniProt Consortium release 2015_05, 
29.4.2015). In turn, UniRef is a non-redundant sequence collection clustered 
by sequence identity and taxonomy with 59,744,893 entries (UniProt 
Consortium release 2015_05, 29.4.2015). Moreover, UniProtKB is a merger 
of Swiss-Prot, TrEMBL and PIR-PSD and is the central annotated database 
for information on protein sequence and function. It contains a reviewed, 
manually annotated section (UniProtKB/SwissProt) with 548,454 entries 
(UniProt Consortium release 2015_05, 29.4.2015), as well as a section 
without review but instead automatically annotated records 
(UniProtKB/TrEMBL) containing 47,452,313 entries (Figure 1 a and b). The 
number of deposited sequences has increased almost exponentially for both 
sections, but around 2010 the UniProtKB/SwissProt curve reaches a plateau 
(Figure 1a). This effect can partly be accounted for by redundancy of the new 
sequences, i.e. they are splice variants or mutants of already annotated 
sequences, which means that the information is incorporated into an existing 
entry. Also the number of entries in UniProtKB/TrEMBL has made a sudden 
drop in 2015 due to a new procedure to identify highly redundant proteomes, 
which has been applied to bacterial proteomes and redundant sequences have 
been removed (Figure 1b). 
 
Also experimentally determined protein structures are deposited in a 
database. PDB is the single worldwide, publicly available repository of free 
of charge macromolecular structure data with the aim to facilitate the use and 
analysis of structural data, thereby enabling new science (Berman et al., 
2000; Berman et al., 2002). PDB was first established at Brookhaven 
National Laboratory (Bernstein et al., 1977) in 1971 with seven structures, 
but the 1990s saw a dramatic increase in the amount of deposited structures 
(Figure 1c) due to improvements in the methods for solving protein structures 
(Berman et al., 2002). Since 1998, the Research Collaboratory for Structural 
Bioinformatics (RCSB), i.e. Rutgers, the State University of New Jersey, the 
San Diego Supercomputer Center at the University of California, San Diego, 
and the National Institute of Standards and Technology, has managed PDB. 
The content of data in the PDB includes, for example, the source of the 
protein, the sequence, method for solving the structure, possible ligands and 
cofactors, 3D coordinates for the structure, and literature citations (Berman et 
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al., 2002). PDB contains 101,233 (19.05.2015) known protein structures, 
which is remarkably less than the available sequences in the wider 
UniProt/TrEMBL database (47,452,313 entries) (compare Figure 1 b and c). 
Moreover, some structures in PDB are partially solved, i.e. only a single 
domain of the protein is known, and the database is also redundant with many 
different variants of one protein due to mutations or complex structures with 
a ligand, co-factor or inhibitor. When adjusting for 95 % sequence identity, 
the number of available structures drops to 43,580, which means that 8 % of 
the sequences in the smaller UniProt/SwissProt database (548,454) are 
structurally characterized. When compared to the wider UniProt/TrEMBL 
database, the same value becomes 0.09 %. Hence, there is a wide gap 
between known sequences and known structures.  

Figure 1. Database growth. a) the current number of entries (548,454) in 
UniProtKB/SwissProt, which is reviewed and manually annotated. b) the number 
of entries (47,452,313) in UniProtKB/TrEMBL, which contains automatically 
annotated records without review. c) the number of crystallized structures 
(101,233) deposited in the Protein Data Bank (PDB). 
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Grouping of the proteins in PDB according to structural similarity has also 
resulted in databases such as the manually annotated Structural Classification 
of Proteins (SCOP) (Murzin et al., 1995), which is now updated to SCOP2 
(Andreeva et al., 2014) and the manually and automatically classified CATH 
(Sillitoe et al., 2015). According to SCOP (v.1.75), there are 1393 unique 
folds for the proteins in PDB since 2008, while CATH (v.4.0.0) has defined 
1375 unique folds since 2012, indicating that the majority of the structures 
being solved have a similar fold to the already known ones. Hence, a small 
number of unique folds represent the majority of known structures (Orengo 
& Thornton, 2005). 

2.2.2 Prediction of protein primary structure 
After retrieving the target sequence it can be used for several analyses. The 
first step is to study the domain composition of the protein and, if different 
domains exist, identify the types of domains. Domains are usually compact 
areas, which fold independently, are spatially separated from each other and 
may have a defined semi-independent function. Therefore, the combination 
and cooperation of different domains give rise to proteins with complex or 
multiple functions (Holland et al., 2006; Ponting & Russell, 2002). There are 
various databases, for example Simple Modular Architecture Research Tool 
(SMART) (Letunic et al., 2015; Schultz et al., 1998) and Pfam (Finn et al., 
2014), which are dedicated to finding domains in query proteins. The 
different protein domains can give valuable information about the function of 
an uncharacterized protein if the domain is found in so called signature 
databases. These are databases of consensus repeats crucial for the structure 
or function of domains or protein families (Mulder & Apweiler, 2002; Wu et 
al., 2003). The signature consists of different levels: motifs, fingerprints, 
patterns and profiles. Motif is the smallest constituent with typically 10-20 
amino acids forming a single conserved region. On the other hand, a group of 
several motifs are called a fingerprint, while a pattern highlights a consensus 
sequence, i.e. specific amino acids at a certain position and in a unique order. 
Patterns are usually short and restricted to the most conserved regions in the 
protein sequence (Hofmann, 2000). Furthermore, profiles are used to describe 
and detect larger areas or domains of the sequence, including variable regions 
(Gribskov et al., 1987) (Figure 2). A widely used server for detecting 
sequence patterns and profiles is PROSITE (de Castro et al., 2006). 

2.2.3 Prediction of protein secondary structure 
The earliest methods for secondary structure prediction were based on the 
probability of a certain amino acid to be in a specific secondary structure. For 
example leucine, isoleucine and valine are common in β-strands (Chou & 
Fasman, 1974). Today, the secondary structure prediction accuracy has 
improved to over 70 %, in a large part due to incorporation of multiple 



Review of the literature!

! !10 

sequence alignment information. This enables identification of highly 
conserved regions in the protein sequences, which translates into structurally 
or functionally important regions that are mostly concentrated to secondary 
structure elements in the protein, while variable regions make up loops on the 
surface of the protein. 
 
The assumption that proteins with > 30 % sequence identity have a similar 
fold allows the secondary structure prediction programs to incorporate 
information from proteins with known structure, as well as multiple sequence 
alignments and sequence profiles to deduce evolutionary relationships 
(Pavlopoulou & Michalopoulos, 2011; Rost, 1999). Examples of secondary 
structure prediction servers are PSIPRED with an accuracy of 76.3 % (Jones, 
1999; McGuffin et al., 2000) and PORTER, which has an accuracy of 82.2 % 
(Mirabello & Pollastri, 2013; Pollastri & McLysaght, 2005). Furthermore, 
JPred has an accuracy of 81.5 % (Cole et al., 2008), which is a result from 
implementation of the knowledge that core amino acids play an important 
role for protein folding since they need to be buried within the protein (Chan 
& Dill, 1990). Hence, the accuracy of the secondary structure prediction is 
improved by measuring how accessible a residue is to the solvent (Adamczak 
et al., 2005). 
 

 

2.2.4 Transmembrane proteins 
Transmembrane proteins carry out cell signaling events, molecular transport 
and many other important biological functions (Schulz, 2002; von Heijne, 
1996). These are proteins, which span the lipid membrane surrounding an 

Figure 2. Protein signatures. Motif is the smallest constituent and several 
motifs form a fingerprint. A pattern highlights a short consensus sequence, i.e. 
specific amino acids at certain positions and in a unique order. Profiles are used 
to describe and detect larger areas or domains of the sequence, including variable 
regions. Figure adapted from Pavlopoulou & Michalopoulos, 2011. 
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organelle and they are classified as either α-helical transmembrane proteins 
or transmembrane β-barrel proteins. The classification depends on the 
structure of the membrane-spanning segment: α-helical transmembrane 
proteins are anchored to the lipid bilayer by one or more α-helices, while 
transmembrane β-barrel proteins form a barrel-like channel with their 
membrane-spanning antiparallel β-strands (Schulz, 2000). The structure of 
transmembrane proteins is difficult to determine experimentally, which 
makes computational tools essential for prediction of the presence and 
topology of transmembrane proteins and, ultimately, a possible function 
(Sonnhammer et al., 1998). These programs mostly base their prediction on 
the amino acid sequence of a protein, where for example a stretch of 15-30 
hydrophobic amino acids indicates a transmembrane α-helix (Schulz, 2002). 
Furthermore, the topology can be predicted by taking into account the 
positive inside rule, which states that positively charged residues are more 
predominant in loops on the cytoplasmic side of the membrane (von Heijne, 
1992). Transmembrane α-helices can be predicted with the TMHMM server 
(www.cbs.dtu.dk/services/TMHMM/) and TMpred (Hofmann & Stoffel, 
1993). Transmembrane β-barrel proteins are not as easily predicted because 
of the shortness of the transmembrane segments, as well as an uncertain 
distribution of polar and non-polar amino acids (Schulz, 2000). Despite this, 
there are available computational techniques like TBBpred with an accuracy 
of 81.8 % (Natt et al., 2004) and BOCTOPUS with an accuracy of 87 % 
(Hayat & Elofsson, 2012), which are dedicated specifically to the prediction 
of transmembrane β-barrel proteins (Pavlopoulou & Michalopoulos, 2011). 

2.2.5 Sequence and structure searching  
Databases contain thousands of sequences or structures, which need to be 
scanned to find homologs. The Basic Local Alignment Search Tool (BLAST) 
(Altschul et al., 1990) at NCBI enables scanning of a nucleotide (BLASTN) 
or protein sequence (BLASTP) (Altschul & Koonin, 1998) against a selected 
database in search of local similarity, which is reported as a statistical 
significance. There are different variants of BLAST, like the position-specific 
iterated BLAST (PSI-BLAST) (Altschul et al., 1997) and context-specific 
iterated BLAST (CSI-BLAST) (Biegert & Söding, 2009). PSI-BLAST uses 
position-specific scoring matrices (PSSM), which represent multiple 
sequence alignments with numbers so that each number indicates the 
probability of a certain amino acid at every position. The number is also 
affected depending on whether the substitution is conserved or not. When 
searching a database with PSI-BLAST, the target sequence is first used for 
standard BLASTP search and the statistically significant results are aligned 
together with the target sequence to create the PSSM. This matrix 
representing the collective characteristics is then used to search the database 
for more related sequences, which is why PSI-BLAST is able to detect 
distantly related proteins that may not be found with regular BLASTP. While 
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PSI-BLAST considers each position in the sequence on its own, CSI-BLAST 
considers each amino acid position centered between twelve surrounding 
positions, which means that the context the amino acid is in affects the 
generation of the PSSM. This matrix is then used in the PSI-BLAST search 
to find more related sequences. It was shown that CSI-BLAST can detect 
~15 % more homologs than PSI-BLAST. However, PSI-BLAST and CSI-
BLAST pose the possible problem of having a higher rate of false positives, 
i.e. sequences that are unrelated to the query sequence (Pavlopoulou & 
Michalopoulos, 2011). 

2.2.6 Structure analysis 
Before choosing a known protein structure to be used as a template, the 
structural data should be carefully analyzed. Special attention should be paid 
to the target – template sequence identity, and the higher the overall sequence 
identity is, the better (Tramontano & Morea, 2003). However, if there are 
many possible templates, other factors can play a key role in the analysis: 
presence or absence of cofactors and ligands, oligomerization state and 
conformation, to name a few (Kopp & Schwede, 2004). Furthermore, the 
quality or resolution of the crystal structure is essential, since the 
performance of the modeling programs is highly dependent on the quality of 
the input data, which will directly affect the quality of the model in the end. 
A low-resolution crystal structure can contain errors in areas without clearly 
defined electron density, which means that a higher resolution crystal 
structure is a more accurate template for modeling. Also, is it of interest to 
study the target protein in the presence of cofactors and/or ligands? Does the 
target protein change conformation or oligomerize? If a ligand bound state or 
a specific conformation is the main aim of the modeling, then these rise as 
important criteria and affect the selection of a proper template. 
 
Protein structure comparison 
Protein structures are often compared to each other as well to highlight the 
similarities and differences. Structural comparison also helps to infer 
evolutionary relationship even when the proteins have less than 25 % 
sequence identity (Johnson & Lehtonen, 2000; Laurents et al., 1994) and it is 
also used for classification of proteins and their domains into families 
(Murzin et al., 1995; Orengo et al., 1997). The protein structure comparison 
is done by superimposition of two or more structures and, during the process; 
one of the molecules is rotated and oriented to fit on top of the other 
molecule (Maiti et al., 2004). The simplest way of doing this is to find a set 
of reference points, which need to have maximal correspondence when the 
structures are superimposed. When comparing protein structures, the question 
of interest is how similar the structures are, whether it is at a local level 
around the ligand-binding site or if it is the global fold. The most commonly 
used measure for this is the root mean square deviation (RMSD), which is 
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calculated by adding together the square of the difference in distance 
(Ångström [Å]) between equal Cα-atom pairs and dividing the sum by the 
number of compared atoms. Hence, the lower the RMSD, the more similar 
are the compared structures. 

2.2.7 Alignment  
During evolution, amino acid sequences of related proteins diverge and 
acquire mutations, insertions or deletions of amino acids. The changes in 
sequence form a pattern of importance, where highly conserved areas are 
presumed to be structurally or functionally important for the protein and are 
detectable through pairwise or multiple sequence alignment of homologous 
sequences. When aligning sequences, the purpose is to maximize the number 
of aligned identical amino acids and keep the gaps caused by insertions and 
deletions to a minimum with the help of a gap penalty. The accuracy of a 
homology model is highly dependent on the alignment accuracy, which is 
why a high sequence identity between the aligned sequences is preferable 
(Mullins, 2012). For example, when the sequence identity drops below 30 %, 
errors in the alignment are more prone to occur because the amino acid 
sequences have diverged too much for the sequence alignment to be accurate 
and reliable, thereby lowering the accuracy and reliability of the resulting 
model. However, the three-dimensional structure of a protein is more 
conserved than the sequence, which makes a structure-based alignment more 
advantageous. To obtain the structure-based alignment, the protein structures 
are superimposed and amino acids in corresponding three-dimensional 
positions are aligned with each other in the alignment.  
 
Pairwise sequence alignment 
Pairwise sequence alignment is mainly used for finding homologous proteins 
in sequence or structure databases and to align two very closely related 
sequences. There are two ways to perform a pairwise sequence alignment: 
global and local sequence alignment. The global alternative tries to find the 
optimal alignment for the entire length of the two sequences based on the 
Needleman-Wunsch algorithm (Needleman & Wunsch, 1970). This 
algorithm handles the sequence boundaries as edges and to create the optimal 
global alignment, the search path must start at one edge and reach the other 
edge. A version of the Needleman-Wunsch algorithm is the Fredman 
algorithm, which follows the same approach but the execution is faster 
(Fredman, 1984). On the other hand, local sequence alignment has 
implemented the Smith-Waterman algorithm (Smith & Waterman, 1981) to 
identify local regions with similarity within two sequences lacking relevant 
similarity over their entire length. Hence, this algorithm allows the edges to 
start and end within the sequence and the most similar substrings from both 
sequences are aligned.  
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Multiple sequence alignment 
If the target and the template proteins share a low sequence identity and 
pairwise sequence alignment is unreliable, the accuracy and the reliability of 
the alignment can be improved by using multiple sequences in the alignment. 
By choosing several sequences within a sequence identity range for both the 
target protein and the template protein, the evolutionary gap between these 
two sequences is lowered and, hence, sequences are more likely to be 
correctly aligned. Moreover, a multiple sequence alignment can reveal 
conserved amino acid patterns, which would not be distinguishable in a 
pairwise alignment. The essence of this can be summarized in the following 
quote from Hubbard et al., 1996: “one or two homologous sequences whisper 
about their three-dimensional structure; a full multiple alignment shouts out 
loud”. Usually, a multiple sequence alignment is done progressively by first 
creating a crude tree to determine the relationship between the sequences and 
use it as a base for the order in which the sequences are added to the 
alignment (Feng & Doolittle, 1987). The closely related sequences are 
aligned first and, thereafter, the more distant ones are added to the alignment 
according to the predetermined order. CLUSTALW (Larkin et al., 2007) and 
T-Coffee (Notredame et al., 2000) are examples or popular programs for 
multiple sequence alignment (Daugelaite et al., 2013; Wallace et al., 2006). 
In this work, multiple sequence alignments were produced with the program 
MALIGN (Johnson & Overington, 1993) in the BODIL modeling 
environment (Lehtonen et al., 2004). MALIGN compares the sequences 
based on the dynamic programming algorithm of Fredman and it also 
constructs multiple sequence alignments according to the Feng & Doolittle 
approach described above (Johnson et al., 1993). 
 
Structure-based alignment 
Despite their usefulness, multiple sequence alignments might not always 
return the most accurate results and there is a need for improvement, 
especially when it comes to large-scale analysis and low sequence identity 
(Armougom et al., 2006). A more reliable approach is to combine structure 
alignment with sequence alignment (Holm & Sanders, 1996). This is a direct 
effect of the structure stability in evolution, i.e. structures are more conserved 
than sequences, and results in constraints on the alignment. However, 
structure-based alignments require known protein structures, but the more 
structural data that is made available, the better the structure-based sequence 
alignments can perform. This type of method is applied by the T-Coffee 
variant 3D-Coffee (O'Sullivan et al., 2004). Moreover, it is possible to 
superimpose structures on top of each other and generate an alignment of 
amino acids in the same 3D positions, to which the target protein is then 
aligned. The structure-based alignment can for example be done with the 
program VERTAA (Johnson & Lehtonen, 2000) in the BODIL modeling 
environment (Lehtonen et al., 2004). VERTAA calculates the initial set of 
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common elements in two compared structures by correlating the number of 
Cα-atoms within 14 Å of each residue for the whole sequence of each 
structure and then superimposing them. Thereafter, the target protein can be 
aligned with MALIGN (Johnson & Overington, 1993) using the pre-aligned 
function to keep the structure-based alignment static. Hence, the structural 
information is taken into account in the alignment process and the spatial 
variations are introduced into the gap penalties, which ultimately leads to 
more accurate alignments. 
 
Amino acid substitution models 
Amino acids change during evolution but the probability for one amino acid 
to substitute another is not the same for all 20 amino acids. Instead, one 
amino acid is more prone to change to another amino acid with similar 
physicochemical properties, which means that the changes do not markedly 
affect the overall structure or function of the protein (Pavlopoulou & 
Michalopoulos, 2011). Hence, in addition to identical amino acids in aligned 
poitions, these conserved substitutions should also be considered. This is 
achieved through substitution matrices like the Point Accepted Mutation 
(PAM) matrix (Dayhoff et al., 1978) and the BLOck Substitution Matrix 
(BLOSUM) series (Henikoff & Henikoff, 1992). The PAM matrices were 
developed from global alignment of closely related protein sequences 
(> 85 % identity) to study the substitution patterns (Dayhoff et al., 1978). The 
results were described in tables, which indicate the frequency of two amino 
acids replacing each other at a specific position. One PAM unit (PAM1) 
equals one amino acid change per 100 amino acids, i.e. 1 % divergence. A 
series of PAM matrices has then been established by multiplying the PAM1 
matrix by itself and the higher the number of the matrix, the more suited it is 
to align distantly related protein sequences. For example, multiplying the 
PAM1 matrix by itself 250 times generates the PAM250 matrix. BLOSUM 
matrices, on the other hand, are calculated from local alignments of 
functionally important and highly conserved blocks in homologous 
sequences. BLOSUM matrices also form a series, where the number indicates 
the identity percentage between the sequences used to develop the matrix. 
For example, the BLOSUM80 matrix is developed from substitutions in 
alignments of proteins sharing 80 % identity, while BLOSUM45 is based on 
a 45 % sequence identity between the aligned sequences. Therefore, in the 
case of BLOSUM matrices, the higher the number of the matrix, the more 
suitable it is to align closely related protein sequences. Another approach has 
been taken to develop the STRMAT110 matrix implemented in MALIGN 
(Johnson & Overington, 1993) in the BODIL modeling environment 
(Lehtonen et al., 2004). This amino acid substitution matrix is built from the 
comparison of protein 3D structure through multiple structure alignment for 
each of 65 protein families and incorporation of information from both highly 
similar areas and more variable regions with gaps (Johnson & Overington, 
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1993). The STRMAT110 takes into account the local environment in the 
folded protein and also functional aspects, which together constrain the 
amino acid substitutions, insertions and deletions to various degrees (Johnson 
et al., 1996). 
 
Gap penalties 
In addition to these substitution matrices, gap penalties are also considered 
when aligning sequences. Gaps in one sequence compensate for insertions in 
the other sequence and are usually introduced to improve the alignment. The 
number of gaps in the alignment needs to be reasonable to reflect a possible 
biological scenario (Baxevanis & Ouellette, 2004; Giribet & Wheeler, 1999). 
Gaps can be scored according to the affine gap penalty method, which 
deduces a fixed penalty score when a gap is introduced and then has a lower 
score for extending an already introduced gap and that is proportional to the 
length of the gap. However, most programs allow manual adjustments of 
these penalty scores. Another method is the non-affine, linear gap penalty 
method, which penalizes each gap position equally (Baxevanis & Ouellette, 
2004; Giribet & Wheeler, 1999). Affine gap penalties consider the fact that 
one mutation event can insert or delete more than a single residue and also 
that, usually, conserved regions do not contain gaps, which is why this 
method enables detection of more distant homologs and also represents the 
biology in a more accurate fashion (Baxevanis & Ouellette, 2004). 
 
These matrices and gap penalties are incorporated into all software, which 
often provide a default matrix and gap penalty. However, these might not 
always be the best ones for the question to be answered. Therefore, the user 
should consider the different options separately for each research question of 
interest. There are also specialized matrices for specific species, particular 
proteins etc. (Wheeler, 2002), which means that no single matrix is good 
enough to produce significant results for all biological questions. 

2.2.8 Model building 
Once a suitable template structure has been chosen and optimally aligned to 
the target protein, the model can be built. The coordinates of the template 
backbone are copied to the model, while the conformation of individual 
amino acid side chains has to be predicted by the model-building program, 
which employ database searches for optimal side-chain packing (Flohil et al., 
2002). The model building is challenged by insertions and deletions in the 
target protein. These are usually located to loops and in the case of insertions 
there is no template. To tackle this, the modeling programs can search 
structural libraries or use ab initio methods to find an energetically favorable 
loop conformation, especially when building longer loops (Fiser et al., 2000). 
The last step is to relax and refine the model by energy minimization, release 
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of conformational strain and optimization of stereochemistry to remove 
unfavorable contacts (Mullins, 2012). 
 
The different methods for model building are: rigid-body assembly, segment 
matching or modeling by satisfaction of spatial restraints. Rigid-body 
assembly is the oldest method and assembles a model from rigid fragments 
corresponding to core aligned regions (Blundell et al., 1987; Greer, 1990). 
The rigid fragments are placed onto the template backbone, after which 
variable parts such as loops and side chains are rebuilt. On the other hand, the 
segment-matching approach employs a subset of atomic positions derived 
from the alignment to search databases for matching segments (Claessens et 
al., 1989; Jones & Thirup, 1986; Levitt, 1992). In turn, the modeling by 
satisfaction of spatial restraints approach derives the restraints from the 
alignment and the model is built in such a way that these restraints are 
violated as little as possible (Sali et al., 1990). Wallner & Elofsson (2005) 
showed that none of these methods significantly outperforms the others, but 
rather there are pros and cons with each of them. However, the three best 
performing modeling programs were MODELLER (Sali & Blundell, 1993), 
Nest (Petrey et al., 2003) and Segmod/ENCAD (Levitt, 1992). MODELLER 
represents modeling by satisfaction of spatial restraints, Nest is a rigid-body 
assembly method and SegMod/ENCAD exemplifies the segment-matching 
approach. All of these produce chemically correct models within a reasonable 
time limit (Wallner & Elofsson, 2005). MODELLER (Sali & Blundell, 1993) 
is still a popular program for homology modeling, but also ORCHESTRAR 
(Tripos International), Prime (Schrödinger, LLC), MOE (Chemical 
Computing Group, Inc.), Composer (Blundell et al., 1988; Sutcliffe et al., 
1987a; Sutcliffe, Hayes et al., 1987b) and Robetta (Kim et al., 2004) are 
commonly used (Dolan et al., 2012). 
 
The ability of template-based modeling to counteract the gap between known 
sequences and structures, coupled to the well-defined steps in the protein 
structure modeling procedure, have sparked the development of automated 
servers and pipelines for modeling. This reduces the required expertise and 
makes the homology modeling methods available to a broader audience 
(Kopp & Schwede, 2004; Mullins, 2012). These types of servers were 
pioneered by SWISS-MODEL in 1996 (Guex & Peitsch, 1997; Peitsch, 1996; 
Schwede et al., 2003) and they provide homology modeling on demand 
through the Internet. Nowadays, there are also so called meta-predictors, 
through which the researcher can obtain a predicted model from several 
automated servers and thereafter choose the best model. Other examples of 
automated modeling servers are the Protein Homology/analogy Recognition 
Engine (Phyre) (Kelley & Sternberg, 2009), HHPred (Remmert et al., 2011; 
Söding, 2005; Söding et al., 2005) and Iterative Threading ASSEmbly 
Refinement (I-TASSER) (Roy et al., 2010; Roy et al., 2012; Zhang, 2008b), 
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of which the last one was proven to produce the best 3D structure predictions 
among all automated servers in the Critical Assessment of Protein Structure 
Prediction (CASP) experiments 7-10 (Zhang, 2014). Whichever path is 
chosen for production of the model, whether it is performing each step in the 
homology modeling procedure separately or using fully automated servers, 
the resulting models have to be carefully examined and evaluated to assess 
the quality and accuracy. 

2.2.9 Model evaluation and refinement 
The quality and accuracy of the resulting models are assessed by the 
geometry of individual model regions and identification of possible errors. 
Depending on the evaluation results, the model can be used for various 
predictions and interpretations. Highly accurate models, which are based on a 
template protein with high sequence identity to the target protein, can be used 
for analysis of specific amino acids and their functional role for ligand-
binding. If the template protein has low sequence identity to the target 
protein, it consequently follows that the model has lower accuracy and 
quality, which makes it more suited for general studies like determination of 
overall fold and amino acids contributing to active sites or ligand-binding. A 
commonly used evaluator of model accuracy is the RMSD value, which 
considers aligned residues and the distance between target and template α-
carbon atoms. The common rule says that the lower the RMSD, the more 
accurate is the model (Pavlopoulou & Michalopoulos, 2011). 

The likely overall quality of the resulting model can already be estimated at 
the alignment level, since the sequence identity will have the biggest effect 
on the quality of the final model (Mullins, 2012). If sequence identity 
between the target and the template protein is > 50 %, then the model will 
probably be of good accuracy with ~1 Å RMSD from the template (Chothia 
& Lesk, 1986). This corresponds to NMR structures of medium resolution or 
low-resolution X-ray structures (Read & Chavali, 2007). The side chains can 
show poor packing and the loops might need additional refinement, but the 
overall quality of the model is high. When the sequence identity is around 
40 – 50 %, the model accuracy will be good with an RMSD < 2 Å, but even a 
model based on 30 – 40 % sequence identity can be significantly different in 
less accurate regions with over 2 Å RMSD from the known template 
structure and, therefore, it shows only medium accuracy. Low accuracy 
models are based on template proteins with < 30 % sequence identity, which 
causes the alignment errors to increase and the accuracy to decrease (Figure 
3). Hence, it is possible to assess the model quality by considering the target 
– template sequence alignment and the probability or confidence that each 
pair of amino acids are aligned correctly (Chen & Kihara, 2008; Lassmann & 
Sonnhammer, 2005; Sadreyev & Grishin, 2004; Tress et al., 2004). 
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Several model quality assessment programs have been developed to aid the 
critical ranking and selection of models. Model quality assessment methods 
normally predict global or local quality scores and they can be classified into 
single-model methods (Wang et al., 2011; Yang & Zhou, 2008; Zemla et al., 
1999; Zemla et al., 2001; Zemla, 2003) or multi-model methods (McGuffin, 
2009; McGuffin & Roche, 2010; McGuffin et al., 2013; Wang et al., 2011; 
Wang et al., 2011). Single-model methods try to predict the quality of a 
protein model based on the structural features (Kalman & Ben-Tal, 2010; 
Luthy et al., 1992; Ray et al., 2012; Tress et al., 2003; Wallner & Elofsson, 
2006). These methods are mostly based on physical effective energy terms 
from analysis of force fields or empirical pseudo energy derived from known 
protein structures, but they can also rely on the agreement between protein 
characteristics, such as secondary structure, solvent accessibility and contact 
maps (Pawlowski et al., 2015). Examples of the single-model methods are 
the programs PROCHECK  (Laskowski et al., 1993), WHATCHECK (Hooft 
et al., 1996), ProSA (Sippl, 1993; Wiederstein & Sippl, 2007), Verify-3D 
(Bowie et al., 1991; Eisenberg et al., 1997; Luthy et al., 1992), ERRAT 
(Colovos & Yeates, 1993), QMEAN (Benkert et al., 2009) and ProQ 
(Wallner & Elofsson, 2003). Both PROCHECK (Laskowski et al., 1993) and 
WHATCHECK (Hooft et al., 1996) base their assessment on stereochemical 
quality, such as main-chain bond lengths and bond angles. On the other hand, 
ProSA evaluates the model packing by estimating the probability for two 
residues to be at a specific distance from each other (Sippl, 1993; Wiederstein 
& Sippl, 2007). ProSA also takes into account the solvation of the model, i.e. 
the interactions between the model and the solvent. Verify-3D assigns an 
environmental class to each residue based on the secondary structure, the 
buried sections and the polar contacts (Bowie et al., 1991; Eisenberg et al., 
1997; Luthy et al., 1992). The probability of an amino acid to be in each type 
of environment is estimated and the sum of these probabilities indicates the 
model quality. In this case, the higher the probability, the more correct is the 
model. ERRAT is also based on the probability that two atoms of a particular 
type are in contact, but in this program, the fraction of all contacts of a 
particular type is used (Colovos & Yeates, 1993). The described programs 
have been developed to distinguish between native and non-native structures; 
however, model quality assessment programs have also been developed with 
the aim to find the best possible model. QMEAN is one of these programs 
and is based on six terms: local geometry assessed by torsion angles, two 
terms considering the distance between atoms, the burial of residues, and two 
terms describing the agreement between predicted and calculated secondary 
structure and solvent accessibility (Benkert et al., 2009). ProQ is another 
program developed to find the best possible model (Wallner & Elofsson, 
2003). This program is based on protein models of different similarity, which 
were each described by a set of structural features (atom-atom contacts, 
residue-residue contacts, surface area exposure, and secondary structure 
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agreement). These factors were then used to train a neural network to predict 
protein model quality. Overall, the main advantage of single-model methods 
is that they can address the important challenge in protein structure modeling 
– picking out a good model from the irrelevant ones (Wang & Cheng, 2012). 
On the other hand, multi-model methods generate a consensus or a cluster of 
models and compare the quality of one model to the other models in the pool 
(Kryshtafovych et al., 2015). These methods are developed based on the 
assumption that frequently predicted conformations are likely to be closest to 
the native structure. Hence, a high quality score means that the model is 
similar to the rest of the models in the pool. These types of methods tend to 
work well when the models in the pool are of good quality and generated by 
multiple different protein structure prediction techniques. A known multi-
model quality assessment program is Pcons, which was pioneering in this 
field (Wallner & Elofsson, 2006). Furthermore, new methods called hybrid 
quality assessment methods or quasi single-model quality assessment 
methods have been developed to benefit from the strengths of both single-
model and multi-model methods (Cheng et al., 2009). These methods use a 
single-model method to assess and score each of the input models and then 
compare them to a subset of previously generated models. An example of a 
quasi single-model quality assessment program is MODFOLD, which has 
been developed with the objective to find the best possible model 
(Buenavista et al., 2012; McGuffin & Roche, 2010; McGuffin et al., 2013). 
 
The available modeling techniques and the quality assessment programs are 
also assessed themselves in the CASP experiments, where models are made 
for experimentally determined protein structures with unreleased structural 
data (Huang et al., 2014; Moult et al., 2014). Instead, researchers are allowed 
to model these specific proteins with various programs and servers in a blind 
fashion, which means that the assessors do not know the identity of the 
researcher. The resulting models are then compared to the experimentally 
determined protein structure and allows for analysis of the accuracy of 
specific modeling methods, resulting in a ranking of the predictor groups 
according to their success. CASP has highlighted the importance of the 
methods to evaluate the overall accuracy of the model, as well as the local 
accuracy at amino acid side chain level (Moult et al., 2014). Moreover, in one 
of the latest CASP rounds, CASP 10, the results show that the selection of the 
most accurate model can be a difficult task and is an important area for 
development (Huang et al., 2014). Nevertheless, the same CASP round saw a 
significant improvement in refinement of protein structure models with a 
concomitant improvement in accuracy (Moult et al., 2014). Furthermore, the 
model accuracy estimations in CASP 11 actually showed that if models are 
available from more than one structure prediction server, or multiple models 
from one structure prediction server, the single-model or multi-model 
methods are equally good at choosing the best models (Kryshtafovych et al., 
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2015). However, multi-model methods perform better when the aim is to 
identify worse models. Together with quasi-single methods, the multi-model 
methods are also better at estimating the local accuracy residue level. Overall, 
the individual accuracy of a model is the main determinant of how and what a 
model can be used for rather than the method used for modeling (Moult et al., 
2014). Therefore, each model should be critically assessed and analyzed. 
Naturally, the ultimate validation of a model comes from experiments (di 
Luccio & Koehl, 2011). Site-directed mutagenesis, cross-linking and mass 
spectrometry are just a few examples of experiments, which can contribute to 
the validation of a model. This type of experimental data can also be used as 
modeling constraints to improve the accuracy of the model. Overall, the 
evaluation of the modeling methods and the quality assessment programs 
themselves has resulted in a broad acceptance of models as recognized and 
well-accepted sources of structural information. Also, the accuracy of 
homology models has greatly improved due to better methods, larger 
amounts of sequences and structures in databases and evaluation by CASP 
(Moult et al., 2014). 
 

 
 
2.3 Use of predicted 3D structures 
Homology modeling is able to predict protein 3D structures with high 
accuracy and is used for example in the pharmaceutical sector for drug design 
and virtual screening, as well as in molecular research, biotechnology and for 

Figure 3. The relationship between sequence identity and the accuracy of the 
3D structural model. Figure adapted from Mullins, 2012. 
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designing site directed mutagenesis studies (Hillisch et al., 2004; Kopp & 
Schwede, 2004; Vangrevelinghe et al., 2003). Homology modeling is also 
useful for constructing hypotheses about protein function or functional 
annotation (Hermann et al., 2007), as well as for docking studies to analyze 
protein-ligand interaction patterns. This type of study can be used to identify 
critical areas for substrate specificity in enzymes important for biotechnology 
or industrial processes and the enzymes can then be engineered to accept 
other substrates of interest (for example see Blikstad et al., 2014). Moreover, 
molecular modeling can be a key method for understanding and engineering 
the biophysical properties of enzymes and also for predicting protein-protein 
interactions through computational docking (Schwede et al., 2009). The 
determining factor for how a protein model can be used is ultimately the 
accuracy and quality of the model. Drug design requires a model of high 
accuracy and reliability, especially in the ligand-binding site, to be able to 
discern valuable information about protein-ligand interactions (Kopp et al., 
2007; Thorsteinsdottir et al., 2006). A good accuracy is also attractive when 
studying the effects of mutations, where a specific site is in focus and 
differences in side chain properties might have significant implications on the 
function and folding of the protein. These types of analyses can explain 
experimental results or guide point mutation experiments. 

2.3.1 Docking 
Today, docking is an essential tool both for the development of new 
pharmaceuticals and for studying protein-protein interactions (Chen, 2015). 
The biggest use of docking tools is exploited for studying how a small 
molecule binds to a protein, particularly in computer-aided drug design (Merz 
et al., 2010; Pei et al., 2014; Warren et al., 2012; Zheng et al., 2013). The 
freely available Autodock (Goodsell & Olson, 1990) and the commercial 
GOLD (Jones et al., 1995; Jones et al., 1997) and Glide (Schrödinger, LLC) 
(Friesner et al., 2004; Halgren et al., 2004), among others, are examples of 
popular docking programs (Azam & Abbasi, 2013; Ferreira et al., 2015; Lape 
et al., 2010; Li et al., 2014). Molecular docking is a method used to predict 
protein-ligand interactions by sampling through many docked conformations 
of the ligand to find the one specific conformation, which corresponds to the 
right/real one. This conformation is the global minimum of the energy 
landscape and can be identified through exploring the various potential 
binding modes of the ligand and predicting the interaction energy of each of 
these modes (Kapetanovic, 2008). Sampling through the different ligand 
conformations includes changing the structural parameters, such as torsional, 
translational and rotational bonds (Ferreira et al., 2015; Guedes et al., 2014). 
This can be achieved by implementing either systematic or stochastic search 
methods. Systematic algorithms explore all degrees of freedom in the ligand, 
after which it converges to the most likely binding mode, i.e. the minimum 
energy conformation. The obvious problem with this algorithm is that the 
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more the rotational freedom for the ligand increases, the more possible 
combinations have to be taken into account. To help with this, the 
incremental construction algorithm makes it possible to break the ligand 
structure into several fragments and then build it back up in the binding site 
(Ferreira et al., 2015). Here, only one fragment at a time is considered and, 
therefore, reduces the degrees of freedom, which have to be accounted for. It 
starts from one anchor fragment, which is first docked into the binding site 
and the other fragments are then sequentially added until the ligand is 
complete. On the other hand, stochastic methods randomly change the 
structural parameters of the ligand and generate a diverse set of solutions. 
Each pose is then evaluated and either rejected or not (Ferreira et al., 2015; 
Guedes et al., 2014). The program GOLD, which has been used in this work, 
uses an application of the stochastic methods called genetic algorithms (Jones 
et al., 1995; Jones et al., 1997). This method encodes all the structural 
parameters in a chromosome and starting from this, the random search 
algorithm generates a population (Ferreira et al., 2015). The energy values of 
the population members are evaluated and the ones with lowest energy serve 
as templates for the generation of the next population and the procedure is 
repeated until it converges to the global energy minimum conformation.  
 
Docking approaches 
The original thought behind docking was to fit a key (the ligand) into a lock 
(the protein) and including protein flexibility in the search for an optimal 
complex is still a challenge (Guedes et al., 2014). However, progress has 
been made in this aspect and the methods used to account for protein 
flexibility are mainly divided into five classes: soft docking, side-chain 
flexibility, molecular relaxation, ensemble docking and collective degrees of 
freedom (Teodoro & Kavraki, 2003). These methods consider that sometimes 
the shape of the binding pockets will change upon ligand-binding and in 
these cases rigid docking is not sufficient enough to give valuable answers 
(Chang et al., 2011; Chen et al., 2014; Tou et al., 2013; Tou & Chen, 2014). 
However, this factor is taken into account at the expense of time and 
computational power. The soft docking approach addresses small 
conformational changes in the protein by allowing small overlaps between 
the protein and the ligand atoms (Jiang & Kim, 1991). When the induced fit 
effect is bigger than can be handled by soft docking, the side-chain flexibility 
approach can be used (Leach, 1994). This keeps the protein backbone fixed 
but the side-chains are allowed to change conformation, which in turn gives a 
favorable and tight binding (Koshland et al., 1966). Molecular relaxation, on 
the other hand, is usually a post-processing step after docking a ligand to a 
rigid protein to relax the complex and allow the protein backbone and side-
chains, as well as the ligand to move and adjust to each other (Armen et al., 
2009; Nowosielski et al., 2013). Thus, this method is mostly used as a 
refinement step for the docking poses and to evaluate the stability of the 
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complex. Alternatively, the protein conformations can be considered as an 
ensemble; similar to the way they behave in solution (Nichols et al., 2011; 
Novoa et al., 2010; Sperandio et al., 2010). One of these conformations 
should match the shape of the ligand and, therefore, the ligand can bind and 
shift the equilibrium of the protein conformations to the ligand bound state 
(Kumar et al., 2000; Ma et al., 2002; Tsai et al., 1999a; Tsai et al., 1999b). 
Additionally, there is a possibility to work with full protein flexibility 
through the collective degrees of freedom method (Teodoro et al., 2003). 
This method tries to capture the dominant protein motion forms and dock the 
ligand to these. The choice between which of these methods to use depends 
on the accessible computing power and the target protein and its behavior. If 
the aim is to screen a database with millions of drug molecules against a 
target protein, then rigid docking is the smartest choice with regard to time. 
But if there are only a few compounds, which should be docked to one 
pocket on the protein, several restrictions are imposed and flexible docking 
might be reasonable to optimize the analysis of the interactions (Chen, 2015). 
Furthermore, the flexible docking approach benefits from knowledge or 
experimental data on residues involved in ligand-binding, since it allows for 
restriction of the flexibility to only these specific residues.  
 
Scoring functions 
Docking results give many different options for protein-ligand or protein-
protein interaction modes. Different types of scoring functions evaluate the 
docking poses and enables ranking of the results. Scoring functions have 
traditionally been divided into force-field-based methods, empirical scoring 
functions and knowledge-based functions (Böhm & Stahl, 2002; Muegge & 
Rarey, 2001). However, Liu & Wang (2015) highlight that these terms are 
not up to date and their varied use in the literature can cause confusion. 
Therefore, Liu & Wang have made an effort to produce a naming convention 
for the scoring functions and suggest the following names and groups: 
physics-based methods, empirical scoring functions, scoring functions 
described as knowledge-based potential and descriptor-based scoring 
functions (Liu & Wang, 2015). The first group, physics-based methods, is 
based on force fields to compute van der Waals and electrostatic energies, i.e. 
noncovalent interactions, between the protein and the ligand. They are often 
improved by adding other methods to take into account solvation energies. 
GoldScore implemented in the GOLD docking program (Jones et al., 1995; 
Jones et al., 1997) is an example of a physics-based method. Empirical 
scoring functions consider multiple individual terms, which are important in 
protein-ligand binding (Liu & Wang, 2015). It has rewarding scores for 
favorable interactions, such as hydrogen bonds, coordinate bonds and 
lipophilic contacts, while it penalizes for example steric clashes and frozen 
rotatable bonds. Protein-ligand complexes with experimentally solved 3D 
structures and known data for binding affinity are then used for regression 
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analysis to derive a weight factor for each individual term, after which they 
are summed together to compute the fitness of the protein-ligand binding. 
Examples of empirical scoring functions are PLP (Gehlhaar et al., 1995; 
Verkhivker et al., 1995), ChemScore (Eldridge et al., 1997; Murray et al., 
1998) and GlideScore-XP (Friesner et al., 2006), which is considered as the 
most sophisticated emipirical scoring function at present. Scoring functions 
described as knowledge-based potential take into account pairwise contacts 
between the protein and the ligand (Liu & Wang, 2015). They are derived 
through statistical analysis of structural information from known 3D 
structures of protein-ligand complexes, but do not consider experimental 
binding data. The frequency of a pairwise contact is considered as its 
energetic contribution to the protein-ligand complex, which means that an 
energetically favorable interaction between a pair of atoms occurs often. On 
the other hand, if a certain pairwise contact is rarely seen, it indicates a less 
favorable interaction. An example of such a scoring function is DrugScore 
(Gohlke et al., 2000; Neudert & Klebe, 2011; Velec et al., 2005). The group 
consisting of descriptor-based scoring functions is a new trend and introduces 
quantitative structure-activity relationship analysis into the evaluation of 
protein-ligand interactions (Liu & Wang, 2015). These types of scoring 
functions encode the protein-ligand interaction patterns in descriptors, and 
machine-learning techniques are then applied to obtain statistical models, 
which can compute protein-ligand scores. One example of a descriptor-based 
scoring function is NNScore (Durrant & McCammon, 2010; Durrant & 
McCammon, 2011). The scoring functions are evaluated in benchmarks, 
CASF (Cheng et al., 2009; Li et al., 2014a; Li et al., 2014b) and CSAR 
(Damm-Ganamet et al., 2013; Dunbar et al., 2013; Smith et al., 2011) and, 
currently, it is suggested that the prediction of the correct ligand pose is well 
handled by the scoring functions. However, the prediction of protein-ligand 
binding affinities and, hence, the ranking of the ligands still requires 
attention. So far, ChemPLP (Korb et al., 2009) in GOLD (Jones et al., 1995; 
Jones et al., 1997) and PLP (Gehlhaar et al., 1995; Verkhivker et al., 1995) in 
Discovery Studio (Accelrys Inc.) have both shown a good balance between 
docking and ranking power (Li et al., 2014a).  

2.4 Modeling success stories  

2.4.1 Leptin and its receptor 
One of the key players for regulation of body weight is the leptin protein and 
its receptor, which cause a signal affecting the food intake and energy 
expenditure (Ingalls et al., 1950). The obese gene codes for leptin (Zhang et 
al., 1994) and at the time it was sequenced it did not show significant 
sequence similarity to any other known protein. To study the mechanism of 
action, Bryant and colleagues used a fold recognition method and suggested a 
structure similar to cytokines, comprising a bundle of four α-helices (Madej 
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et al., 1995). This led to a prediction that leptin, similarly to cytokines, exerts 
its signaling through a receptor, which could possibly be mutated in obese 
humans. In 1995, the leptin receptor was found (Tartaglia et al., 1995) and in 
1997, the crystal structure of human leptin (PDB code 1AX8) (Zhang et al., 
1997) confirmed the model and the similarity to cytokines. It would last until 
2012 before the crystal structure of the leptin-binding domain of the leptin 
receptor was solved (PDB code 3V6O) (Carpenter et al., 2012) but, before 
this, the same domain was modeled (Iserentant et al., 2005; Niv-Spector et 
al., 2005a; Niv-Spector et al., 2005b) and used for docking studies with 
leptin, which has given reasonable structural explanations for obtained 
experimental results (Peelman et al., 2014). Hence, structural modeling has 
provided the leptin research with valuable information and helped the 
researchers find key data. The next aim is to study the activation of the leptin 
receptor with the help of computational and experimental methods (Mancour 
et al., 2012; Moharana et al., 2014) in order to explain obesity and develop 
drugs working through the leptin receptor (Peelman et al., 2014; Tramontano, 
2006). 

2.4.2 G protein-coupled receptors  
G protein-coupled receptors (GPCRs) are a large family of signal transducing 
proteins, which makes them very interesting drug targets and pharmaceutical 
research on these proteins is intense (Carlsson et al., 2011). The number of 
drugs targeting GPCRs reflects the importance of these proteins – almost 
30 % of all approved drugs are dedicated to work through GPCRs 
(Overington et al., 2006). For a long time, bovine rhodopsin was the only 
available crystal structure from this protein family (PDB code 1F88) 
(Palczewski et al., 2000) and it was frequently used to model the structure of 
other family members, which were then used for docking studies (Bissantz et 
al., 2005; de Graaf et al., 2008; Engel et al., 2008; Kellenberger et al., 2007; 
Kratochwil et al., 2005; Kurczab et al., 2010; Michino et al., 2009; Salo et 
al., 2005; Shi & Javitch, 2002; Tikhonova et al., 2008). The lack of sequence 
identity poses challenges (Li et al., 2010) for these types of studies, but the 
structures are highly similar with seven transmembrane α-helices coupled 
together by loops. Later on, the crystal structures of other family members 
have been solved, thereby providing an opportunity to compare and verify the 
structural models (Hanson & Stevens, 2009). This comparison has proven the 
modeling and docking studies to be effective, and still today homology 
modeling of GPCRs is essential due to a significant lack of experimentally 
solved crystal structures (Carlsson et al., 2011). 

2.4.3 The HIV protease 
In 1981, the U.S. Centers for Disease Control reported the first cases of an 
infection with subsequent collapse of the immune system and the illness was 
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defined as acquired immunodeficiency syndrome (AIDS). The researchers 
faced a global pandemic and major efforts were made in the 1980s to find a 
cure for the disease. Within three years of the reported cases, a single-
stranded RNA virus from the Lentiviridae family was found responsible for 
causing the disease and it is now called human immunodeficiency virus 
(HIV) (Barre-Sinoussi et al., 1983; Coffin et al., 1986; Gallo et al., 1984; 
Gallo & Montagnier, 1988; Popovic et al., 1984). The genome of the HIV 
virus was sequenced two years after it was found to be the causing agent of 
AIDS (Ratner et al., 1985). This revealed an Asp-Thr(Ser)-Gly triad, which 
can also be found in the aspartic acid protease family (Power et al., 1986; 
Toh et al., 1985). The proteins of this family are built from two homologous 
domains, with each domain contributing its own catalytic triad to the active 
site (Pearl & Blundell, 1984; Tang et al., 1978). Moreover, the two Asp 
residues coordinate a water molecule believed to be important for the activity 
(Pearl, 1987). However, Pearl and Taylor (1987) found that the HIV protease 
did not contain two catalytic triads and only half the number of expected 
amino acids, hence, suggesting that this protease was a single domain protein 
(Pearl & Taylor, 1987). With the help of structural modeling of the HIV 
protease based on the crystal structure of endothiapepsin (PDB code 4APE) 
(Pearl & Blundell, 1984) they found that it is possible for the HIV protease to 
exhibit the aspartic acid protease fold. Hence, they deduced that the single 
domain HIV protease represents an ancestral protease, from which the 
aspartic acid proteases with two domains have evolved and, therefore, the 
HIV protease might form a dimer to be able to make all the important 
interactions needed for an aspartic acid protease. As a consequence, they 
modeled the dimeric structure of the HIV protease and showed that it 
provides the right active site structure and a distinct substrate binding cleft 
(Pearl & Taylor, 1987). Thereafter, this has been confirmed by a number of 
methods, including X-ray crystallography (Lapatto et al., 1989; Navia et al., 
1989; Wlodawer et al., 1989). Based on all the structural data in combination 
with experimental strategies, the researchers were able to design potent 
treatment for the disease within a decade of its finding, thereby making the 
disease chronic rather than fatal (Huff & Kahn, 2001). 
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3 Aims of the study 

The aim of this thesis was to create a workflow for guidance through the 
process of protein structural modeling, with emphasis on critical steps and 
important facts to take into account to avoid errors in the final structural 
model. Through separate case studies with different focus, the possibilities 
and importance of structural bioinformatics in protein structure and function 
research are highlighted. The publications contributing to the thesis will be 
discussed individually.  
 
In publication I and II, the aim was to create 3D models for the Escherichia 
coli propanediol oxidoreductase (FucO) mutants and dock experimentally 
tested ligands to them. The purpose was to give structural explanations for 
the experimentally observed differences in substrate scope, with the ultimate 
goal of finding an enzyme variant with efficient catalysis of S-3-phenyl-1,2-
propanediol, which could be used in the pharmaceutical industry for the 
production of drug components.  
 
In publication III and IV, the aim was to create 3D models for Yersinia 
enterocolitica LpxR and Klebsiella pneumoniae LpxO and find amino acids, 
which are important for their catalytic activities and substrate specificities. 
Together with the experimental data, this would give valuable information 
about the disease-causing mechanisms in these bacteria and ultimately guide 
drug development. 
 
In publication V, the aim was to model the 3D structure of the Synechocystis 
PCC 6803 Slr0006 protein in order to identify a putative active site and 
amino acids, which would play a key role for the protein function. This 
protein is inadequately characterized both structurally and functionally, but it 
is, however, very interesting from a climate point of view to show how 
cyanobacteria and higher plant organisms can adapt to new conditions in the 
environment. 
 
In publication VI, the aim was to model the 3D structure of human cancerous 
inhibitor of protein phosphatase 2A (CIP2A) to get a structural insight into 
how this protein and its cancer-causing mechanism could be inhibited with 
therapeutics. So far, it has been established that CIP2A is involved in 
different cancer types, which makes it an important drug target, but the lack 
of structural data greatly hampers the design of new therapeutics targeting 
this protein. Hence, all structural data would greatly benefit the attempts of 
finding an anti-cancer drug asserting its effects through CIP2A.
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4 Methods 

4.1 Sequence and structural data 
The amino acid sequences for the proteins to be modeled were obtained from 
UniProtKB (UniProt Consortium, 2015) and then used as baits in searches 
with BLAST (Altschul et al., 1990) at NCBI. With the standard protein-
protein BLAST program (blastp), UniProtKB and the non-redundant 
sequence database (GenBank, Refseq, PDB, SwissProt, PIR, PRF) were 
searched to obtain homologous sequences, while PDB (Berman et al., 2000; 
Berman et al., 2002) was used as search database for obtaining crystal 
structures suitable as templates for homology modeling.  

4.2 Sequence analysis 
The secondary structure profiles for the target proteins were predicted with 
the APSSP2 (publication VI) (Raghava, 2002), PSIPred (publication VI) 
(Jones, 1999), PORTER (publication VI) (Mirabello & Pollastri, 2013; 
Pollastri & McLysaght, 2005) and JPred (publication V and VI) (Cole et al., 
2008) servers. The CIP2A amino acid sequence was also analyzed with 
SMART (publication VI) (Letunic et al., 2015; Schultz et al., 1998) to 
determine the different domains in the protein. Furthermore, the amino acid 
sequence for KpLpxO was analyzed with the transmembrane helix prediction 
server TMHMM (publication IV) (Sonnhammer et al., 1998) to determine the 
soluble, i.e. not transmembrane, portions of the protein, which consequently 
are possible to model based on a related, crystallized protein. 

4.3 Sequence alignment 

Global sequence alignments were performed with the programs MALIGN 
(Johnson et al., 1996) and VERTAA (Johnson & Lehtonen, 2000) in the 
BODIL modeling environment (Lehtonen et al., 2004). MALIGN was used 
for both pairwise (publication III) and multiple sequence alignment 
(publications IV, V, VI) with STRMAT110 as scoring matrix and a gap 
penalty of 40. In publication IV and VI, multiple sequence alignments were 
generated between the protein of interest and homologous sequences and the 
alignments were manually inspected and edited. In publication IV, the amino 
acid sequence for the human Asp/Asn β-hydroxylase used as template was 
aligned to the prealigned multiple sequence alignment and all sequences 
except LpxO and human Asp/Asn β-hydroxylase were deleted from the 
alignment before modeling. In publication V, VERTAA (Johnson & 
Lehtonen, 2000) was used to superimpose the structures of proteins from the 
Sua5/YrdC/YciO family and generate a structure-based multiple sequence 
alignment from the superimpositions. The Slr0006 sequence was then aligned 
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with MALIGN (Johnson et al., 1996) to the prealigned structure-based 
alignment. For modeling, all sequences except Slr0006 and the amino acid 
sequence for the structure to be used as template were deleted.  

4.4 Modeling of 3D structure 

The homology models of the target proteins FucO, LpxR, LpxO and Slr0006 
(publications I – V) were produced with MODELLER (Sali & Blundell, 
1993), which uses the satisfaction of spatial restraints method for model 
building. Ten models were generated for each target protein, and the models 
with the lowest energy according to the MODELLER objective function were 
chosen for further studies.  
 
In publication VI, no homologous proteins with known structure were found 
and, therefore, we approached the modeling of the CIP2A armadillo domain 
through the available modeling servers I-TASSER (Roy et al., 2010; Yang et 
al., 2015; Zhang, 2008b), Phyre (version 2.0) (Kelley & Sternberg, 2009) and 
HHPred (Remmert et al., 2011; Söding, 2005; Söding et al., 2005). I-
TASSER (Roy et al., 2010; Yang et al., 2015; Zhang, 2008b) uses LOMETS 
(Wu & Zhang, 2007), which is a multiple-threading program, to identify 
structural templates from PDB (Berman et al., 2000) and constructs models 
based on iterative template fragment assembly simulations. The models are 
then threaded through the protein function database BioLiP (Yang et al., 
2013) to obtain functional information. Phyre (Kelley & Sternberg, 2009) and 
HHPred (Remmert et al., 2011; Söding, 2005; Söding et al., 2005) use the 
principles of homology modeling and start by detecting distant homologs to 
be used as templates for the modeling, if the sequence alignment shows a 
relationship between the target and the template.  

4.5 Model analysis 

The programs and servers PROCHECK (publication V, VI) (Laskowski et 
al., 1993), WHATCHECK (publication V) (Hooft et al., 1996), ProSA-web 
(publication IV, V, VI) (Sippl, 1993; Wiederstein & Sippl, 2007), QMEAN 
(publication IV, VI) (Benkert et al., 2009), ERRAT (publication VI) 
(Colovos & Yeates, 1993), Verify-3D (publication VI) (Bowie et al., 1991; 
Eisenberg et al., 1997; Luthy et al., 1992), ProQ (publication VI) (Wallner & 
Elofsson, 2003) and MODFOLD4 (publication IV, VI) (Buenavista et al., 
2012; McGuffin & Roche, 2010; McGuffin et al., 2013) were used to assess 
the quality of the models. Furthermore, all models were superimposed on the 
known crystal structures of the templates and visually examined and 
evaluated. The conformation of the Leu225 – Asn230 loop in the model of 
the CIP2A armadillo domain (CIP2A-ArmRP; publication VI) was optimized 
using Loopy in JACKAL (Petrey et al., 2003; Xiang & Honig, 2001; Xiang 
et al., 2002), while the conformation of Asp31 in LpxR was optimized with 
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JACKAL rotamer search (publication III). In both cases, the conformation 
with the lowest energy was chosen as the final conformation.  
 
In publications V and VI, the distribution of electrostatic charges on the 
surface of the Slr0006 and CIP2A-ArmRP models was calculated with the 
APBS tool in PyMOL (version 1.4, Schrödinger, LLC). Furthermore, in 
publications III and IV, SURFNET (Laskowski, 1995) was used to calculate 
cavities and amino acids lining the cavities in LpxR and LpxO. For 
publication VI, possible ligand-binding cavities in CIP2A were searched with 
MetaPocket 2.0 (Huang, 2009; Zhang et al., 2011) and ConSurf (Ashkenazy 
et al., 2010; Celniker, 2013; Glaser et al., 2003; Landau et al., 2005) was 
used to generate a multiple sequence alignment as basis for mapping 
conserved areas onto the surface of the modeled CIP2A-ArmRP. 

4.6 Molecular docking 
In publications I and II, the structure for the phenylacetaldehyde ligand was 
taken directly from the crystal structure of E. coli amine oxidase (PDB code 
1D6U) (Wilmot et al., 1999), while S-3-phenyl-1,2-propanediol was derived 
by editing (2R, 3S)-3-amino-3-phenylpropane-1,2-diol from the crystal 
structure of Scytalidium lignicola Scytalidopepsin B (PDB code 2IFR) (Pillai 
et al., 2007) with Maestro Molecular Modeling Interface (Version 9.3., 
Schrödinger, Inc.). The crystal structure of wild type FucO and the models of 
the mutants were prepared for docking in Discovery Studio, along with the 
ligands. In the active site of the protein, O7N was constrained as an acceptor 
of hydrogen bonds, while H23 and H25 of NAD+ were defined as hydrogen 
bond donor and acceptor, respectively. In phenylacetaldehyde, O9 was a 
possible acceptor of hydrogen bonds, while in S-3-phenyl-1,2-propanediol 
O1 and O5 were constrained as acceptors, and H22 and H23 as hydrogen 
bond donors. GOLD via Discovery Studio was used to dock the ligands to the 
rigid protein receptors. The docking poses were analyzed and scored with the 
Score Ligands function in Discovery Studio and the poses with the highest 
PLP2 score were chosen as the best poses.  
 
For the docking studies in publication III, the Kdo2-lipid A ligand was 
modified from the coordinates of the lipopolysaccharide (LPS) molecule 
bound to FhuA (PDB code 2FCP) (Ferguson et al., 1998) with the program 
SYBYL (version 8.0, Tripos Associates, Inc., St Louis, MO, USA). The fatty 
acyl chains were removed to make the docking easier with fewer rotatable 
bonds and aminoarabinose was added to the structure, after which it was 
minimized with the conjugate gradient method and Tripos force field. The 
modified Kdo2-lipid A ligand with and without aminoarabinose was docked 
to the YeLpxR structural model and the crystal structure of StLpxR (PDB 
code 3FID) (Rutten et al., 2009) with GOLD via Discovery Studio (Version 
3.5., Accelrys Inc.). Default parameters were used and the receptor cavity 
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was defined to amino acids Asp10, Gln16, Thr/Ser34, Lys67, and Tyr130. 
The receptor conformations were kept rigid throughout the docking.  

4.7 Molecular dynamics simulations 
In publication VI, the final model was validated to have a stable fold with 
parallel molecular dynamics (MD) simulations. These simulations allow for 
analyses of how atoms in the protein behave and change over time. Energy 
minimization, thermal equilibration and standard production simulations for 
the CIP2A-ArmRP model were done with the AMBER package (v.12) (Case 
et al., 2012) and the AMBER ff03 force field (Duan et al., 2003). All 
simulations were run in an octahedral box filled with explicit TIP3P water 
molecules (Jorgensen et al., 1983) and extending 10 Å from the protein. Six 
neutralizing Na+ ions were added for the model, while the template structure 
required 15 Na+ ions for neutralization. Periodic boundary conditions and 
particle-mesh Ewald electrostatics (Essmann et al., 1995) were used, while 
the cut-off for non-bonded interactions was 9 Å. For Langevin dynamics 
during simulation, a 1 fs or 2 fs time step was applied and the hydrogen 
atoms were constrained with the SHAKE algorithm (Ryckaert et al., 1977). 
The temperature and pressure were held constant at 300 K (coupling constant 
5.0 ps) and 1 bar (coupling constant 2.0 ps), respectively, during the 20 ns 
production simulations (Berendsen et al., 1984). VMD (Humphrey et al., 
1996) and the ptraj module in AMBER were used to study the trajectories, 
while PyMOL was used to study the final model.  

4.7.1 Energy minimization 
Steepest descent and conjugate gradient methods were used in six steps and 
the restraints on the atoms to their initial position was gradually reduced 
during these steps. A maximum of 200 iterations was defined for each step, 
of which the ten first iterations were performed with the steepest descent 
method and then the conjugate gradient method was applied. The restraint 
force constant at each step was 10, 5, 1, 0.1, 0.01 and 0 kcal/molÅ2. 

4.7.2 Equilibration simulations 
Five steps were used for the equilibrium simulations: 
1) A Langevin thermostat, collision frequency (γ) of 1.0 ps-1, constant 
volume and a force constant of 5 kcal/molÅ2 to restrain the protein atom 
positions were used for heating the system from 10 K to 300 K for 10 ps.  
2) Same as previous step but without restricting the protein atom positions 
and for 20 ps instead of 10 ps.  
3) 20 ps MD at 300 K, Langevin thermostat, γ = 0.5 ps-1, constant volume, no 
restraints on the protein atoms. 
4) 50 ps MD at 300 K, Langevin thermostat, γ = 0.5 ps-1, constant pressure of 
1.0 bar, pressure coupling constant 1.0 ps, no restraints on the protein atoms. 



Methods 

! 33 

5) 400 ps MD at 300 K, constant pressure of 1.0 bar, pressure coupling 
constant 2.0 ps, temperature coupling constant 5.0 ps, no restraints on the 
protein atoms. 

4.8 Visualization 

High-resolution pictures of the structural models in each publication were 
made with PyMOL (version 1.4, Schrödinger, LLC) and labels were added in 
the GNU Image Manipulation Program (version 2.6.9). Pictures of the 
sequence alignments in publications III, IV, V and VI were made with 
ESPript 2.2 (Gouet et al., 1999). 

4.9 Experimental work 
Our collaborators performed all the experimental work contributing to this 
thesis in their laboratories. The experiments are explained in detail in the 
Materials and Methods section of the original publications I, II, III, IV and V.
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5 Results and discussion 

5.1 FucO (E. coli) 

5.1.1 Introduction 
In the cell, NAD(P)H-dependent dehydrogenases stereoselectively catalyze 
the oxidation of primary and secondary alcohols into α-hydroxyaldehydes 
and ketones, which are important building blocks for natural products and 
synthetic drugs (Adams & Levine, 1923; Enders & Bhushan, 1988; Hoyos et 
al., 2010; Kratzer & Nidetzky, 2007). Industrial synthesis of these molecules 
requires harsh conditions and, therefore, the power and stereoselectivity of 
the natural enzymes producing the chiral molecules have turned them into 
targets for use in biocatalysis (Blank et al., 2010; Goldberg et al., 2007; Hall 
& Bommarius, 2011; Monti et al., 2011). Naturally, enzymes have specificity 
towards a certain substrate, but a broader substrate scope can be achieved by 
re-engineering and, hence, make the enzymes better biocatalysts 
(Bornscheuer et al., 2012). Our enzyme of interest, FucO, is a homodimeric 
class III Fe2+ dependent alcohol dehydrogenase (Montella et al., 2005; Reid 
& Fewson, 1994). Each FucO subunit is 41 kDa with an all α-helical C-
terminal domain and an N-terminal domain, which has a α/β-dinucleotide 
binding fold (PDB code 2BL4) (Montella et al., 2005). A tunnel in between 
the two domains defines the active site, where a Fe2+ ion is coordinated by 
three histidines (His200, His263, His277) and one aspartate (Asp196). FucO 
converts S-lactaldehyde to S-1,2-propanediol (Figure 4a), and vice versa, in 
the catabolic pathway of fucose and rhamnose (Baldoma & Aguilar, 1988; 
Boronat & Aguilar, 1979; Conway & Ingram, 1989). It is highly specific for 
aliphatic, low molecular weight primary 2-S alcohols, it can be easily 
produced and the tertiary structure is known, which makes it an ideal target 
for re-engineering towards a biocatalyst (Blikstad & Widersten, 2010). In 
publication I and II, we set out to create FucO mutants, which would catalyze 
the conversion of S-3-phenyl-1,2-propanediol (Figure 4b) into the 
corresponding α-hydroxyaldehyde, which is an important intermediate for 
industrial synthesis of pharmaceuticals, fine chemicals and natural products. 
S-3-phenyl-1,2-propanediol is bigger and bulkier than the natural substrate 
due to an additional phenyl ring and, therefore, our objective was to enlarge 
the active site by analysis and targeted mutation of amino acids known to be 
catalytically important. 

5.1.2 Target substrate vs. screening substrate  
The available crystal structure of FucO (PDB code 2BL4) (Montella et al., 
2005) enabled determination of the amino acids, which restrict the active site 
cavity. These amino acids were then the targets for iterative saturation 
mutagenesis to create mutants with a larger active site. Phenylacetaldehyde 
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(Figure 4c) was included as a surrogate substrate in the activity screening, 
since the reduction reaction is faster than the oxidation reaction (Blikstad & 
Widersten, 2010) and, therefore, could facilitate the detection of even weakly 
active variants. Additionally, the product from S-3-phenyl-1,2-propanediol 
oxidation is not commercially available and, therefore, a structural analog is a 
logical choice for performing a reduction reaction. Phenylacetaldehyde lacks 
the sec-alcohol at the α-position and a methylene group compared to oxidized 
S-3-phenyl-1,2-propanediol but, despite this, phenylacetaldehyde was 
deemed to be a reasonably good analog. Nevertheless, kinetic 
characterization showed that the best catalyst of phenylacetaldehyde, the 
Asn151Gly-Leu259Val mutant with a 4400-fold increase in kcat/KM compared 
to wild type FucO, had lost activity with the target substrate S-3-phenyl-1,2-
propanediol. The opposite was true for the best catalyst of S-3-phenyl-1,2-
propanediol. This Val164Cys-Leu259Val-Cys362Gly mutant had a 43-fold 
increase in turnover of the target substrate compared to wild type FucO, but it 
did not show activity with the screening substrate phenylacetaldehyde. 
Hence, in publication I, each of these mutants was modeled and used for 
docking studies with the respective substrate to find structural reasons for the 
substrate specificity. 
 

 

5.1.3 Asn151 and Phe254 are key residues for substrate specificity 
The modeling and docking results show that both the Asn151Gly-Leu259Val 
mutant and the Val164Cys-Leu259Val-Cys362Gly mutant are able to 
accommodate the bulkier phenyl-containing screening and target compounds, 
respectively, which means that the increase in active site size enables 
catalysis (Figure 5). The aldehyde oxygen of phenylacetaldehyde hydrogen 
bonds to the amide of the NAD+ cofactor in the Asn151Gly-Leu259Val 
mutant and the bent conformation allows the phenyl ring to π-π stack with 
Phe254 (Figure 5a). The latter of these interactions is lost in the wild type 
protein due to Asn151 (Figure 5b). The side chain of this amino acid points 
straight into the active site, thereby restricting the active site volume together 
with Leu259 on the opposite side, which makes it impossible for the phenyl 
ring to be accommodated in the active site. Hydrogen bonds are formed 

Figure 4. FucO substrates. a) The structure of the natural substrate S-1,2-
propanediol. b) The structure of the target substrate S-3-phenyl-1,2-propanediol. 
c) The structure of the screening substrate phenylacetaldehyde. 
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between the aldehyde oxygen and the cofactor, leaving the phenyl ring to 
protrude from the active site cavity and the complex is not stable. Therefore, 
wild type FucO is unable to efficiently catalyze phenylacetaldehyde. The 
target substrate S-3-phenyl-1,2-propanediol also binds in a bent conformation 
to the Val164Cys-Leu259Val-Cys362Gly mutant and forms a π-π stacking 
interaction between the phenyl ring of the substrate and Phe254 (Figure 5c). 
However, Asn151 is retained in this mutant, but instead the π-π stacking 
interaction is enabled by the Leu259Val mutation, which creates the required 
additional space for the phenyl ring to be accommodated in the active site. 
The other mutations, Val164Cys and Cys362Gly, enable both hydroxyl 
groups in the S-3-phenyl-1,2-propanediol molecule to form hydrogen bonds 
to the cofactor, while one of them also creates a hydrogen bond to Asn151, 
which makes this an important amino acid for the formation of a stable 
complex for catalysis. Consequently, for the mutants to be active with 
phenylacetaldehyde, they require mutation of Asn151, while the same residue 
needs to be retained for the formation of a stable complex between the 
mutants and S-3-phenyl-1,2-propanediol. Furthermore, docking of the target 
substrate to wild type FucO shows that the lack of space for a phenyl-
substituted compound is the main reason for the lack of activity with the 
target substrate (Figure 5d). 
 
Although it has been shown in other studies that coevolution of highly 
specialized proteins can be successful by iteratively selecting for activity 
towards structural intermediates of the ultimate target ligand (Chen & Zhao, 
2005) the results show that phenylacetaldehyde was not the best screening 
substrate considering that the mutants, which showed activity with this 
substrate did not have activity with S-3-phenyl-1,2-propanediol. The 
responsible factor, Asn151, is crucial for the hydrogen-bonding network of 
the target substrate to form a stable complex for catalysis, while the same 
residue inflicts steric hindrance for the accommodation and efficient catalysis 
of the screening substrate phenylacetaldehyde. Additionally, the docking 
results highlight Phe254 as an important residue for the formation of stable 
complexes with both substrates, and this residue is retained in all mutants 
displaying improved catalytic activity compared to wild type FucO. The 
structural analysis implies an important role for its aromatic side chain and its 
ability to form π-π stacking interactions. 
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5.1.4 Asn151 stabilizes enzyme complexes  
In publication II, we continued the previous study and complemented it with 
a more in-depth structure-function analysis of active FucO mutants. The 
mutants of special interest, which were modeled and used for docking studies 
were: Asn151Gly, Phe254Ile, Leu259Val, Thr149Ser-Leu259Val, Val164Ile-
Leu259Val, Thr149Ser-Asn151Gly-Leu259Val and Val164Cys-Leu259Val-

Figure 5. The most active FucO mutants. The Asn151Gly-Leu259Val mutant 
has the highest activity with phenylacetaldehyde (a) and binds the screening 
substrate through hydrogen bonds and π-π stacking interactions. It is impossible 
for the substrate to bind in this conformation to the wild type protein due to 
Asn151 (b). The most active mutant with S-3-phenyl-1,2-propanediol is 
Val164Cys-Leu259Val-Cys362Gly (c), which binds the target substrate through 
hydrogen bonds to both hydroxyl groups and π-π stacking interactions. Wild type 
FucO cannot form as many hydrogen bonds and no π-π stacking interactions to 
the target substrate (d), which makes the enzyme inactive. Figure from 
publication I (Blikstad et al., 2013). 
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Cys362Gly, since these showed altered activity with either 
phenylacetaldehyde or S-3-phenyl-1,2-propanediol. This further highlighted 
the fact that mutation of Asn151 leads to activity with phenylacetaldehyde, 
because the experimental studies showed that also the other Asn151 mutants 
(Asn151Gly-Leu259Val and Thr149Ser-Asn151Gly-Leu259Val) had 
reasonable or high activity with the screening substrate. Furthermore, in 
accordance with the conclusions drawn in publication I, all Asn151 mutants 
showed no activity with the target substrate S-3-phenyl-1,2-propanediol. 
Moreover, the experimental results pinpointed a loss of activity with the 
natural substrate S-1,2-propanediol for the same mutants. Docking of the 
natural substrate to wild type FucO indicates a similar hydrogen-bonding 
network as for the target substrate S-3-phenyl-1,2-propanediol, with one 
hydroxyl group involved in formation of a hydrogen bond to the NAD+ 
cofactor, while both hydroxyl groups interact with Asn151 (Figure 6a). 
Consequently, deletion of this residue will destabilize the S-1,2-propanediol – 
enzyme complex, which leads to the inability of the enzyme to perform 
catalysis. However, since Asn151 limits the size of the active site, 
mutagenesis of this residue was expected to install activity with the bulkier 
phenyl-substituted substrates, but as can be seen from the results with the 
natural substrate and the target substrate S-3-phenyl-1,2-propanediol, a more 
refined fine-tuning of the active site is needed for FucO to accept the bulkier 
substrates and perform proper catalysis.  

5.1.5 Subtle changes install activity with the target substrate 
In accordance with the conclusion that fine-tuning is needed, the studies 
show that already subtle changes are enough to install the wanted activity: the 
Leu259Val mutant is active with the target substrate S-3-phenyl-1,2-
propanediol although the volume addition is only 25 Å3 (Counterman & 
Clemmer, 1999), while the added phenyl ring on the target substrate would 
require ~100 Å3 more compared to the natural substrate. The docked pose of 
S-3-phenyl-1,2-propanediol in the active site of the Leu259Val mutant shows 
hydrogen bonds between both hydroxyl groups on the target substrate and the 
cofactor (Figure 6b). Additionally, one hydroxyl group forms a hydrogen 
bond to Asn151. In wild type FucO, Leu259 creates a hydrophobic 
environment in the active site pocket and this, together with the sterical 
hindrance, repels one of the hydrophilic hydroxyl groups on the target 
substrate. The Leu259Val mutation does not reduce the hydrophobicity, but it 
creates enough space for the hydroxyl group to form favorable interactions 
with the cofactor instead. Hence, the size of the active site is an important 
factor, but the key to a successful biocatalyst is the ability to form a proper 
and stabilizing interaction network and, thereby, create a successful complex 
for catalysis. Consequently, the mutations have to be carefully selected not to 
interfere with the crucial hydrogen-bonding network taking place between S-
3-phenyl-1,2-propanediol, Asn151 and the NAD+ cofactor. 
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5.1.6 Val164 and Phe254 are involved in cofactor binding 
The Val164Ile and Phe254Ile mutants caught special interest when tested 
with the natural substrate due to a two- and four-fold increase in kcat, 
respectively. It is previously known that the release of NADH is the rate-
limiting step for the FucO reaction (Blikstad & Widersten, 2010), which 
suggests that the cofactor dissociation rate is elevated in these mutants. 
Docking of the natural substrate to the Phe254Ile mutant shows no difference 
in binding mode compared to wild type FucO. However, both Val164 and 
Phe254 are interacting with the cofactor within a 4 Å distance, but upon the 
introduction of Phe254Ile, the π-π stacking interaction between the two ring 
systems is lost, which makes the cofactor less tightly bound and, therefore, 
the rate limiting dissociation reaction becomes faster (Figure 6c). 
Furthermore, the Phe254I mutant is not able to use S-3-phenyl-1,2-
propanediol for catalysis, which can also be explained by the loss of the 
stabilizing π-π stacking ability. On the other hand, the effect of the Val164Ile 
mutation can possibly be accounted for by the introduction of a bigger and 
longer amino acid, which causes steric constraints for the cofactor. However, 
the increase in the reaction rate seen in both mutants can possibly be utilized 
to enhance the activity of other weakly performing mutants by engineering 
the binding site for the nucleotide. 

5.1.7 Thr149 is important for side chain packing  
Although Thr149 is far away from the cofactor and the active site, our results 
indicated that it is important for the catalytic function. In related proteins, this 
residue is either conserved or conservatively substituted so that the hydrogen-
bonding capacity is retained and, in accordance, only the enzyme variants 
with a retained Thr149 or a conservative Thr149Ser mutation were able to 
have an appreciable activity with S-1,2-propanediol. Furthermore, Thr149 
also affects the activity with S-3-phenyl-1,2-propanediol, since the 
Thr149Ser-Leu259Val mutant is 3.5-fold less active with the target substrate 
compared to the Leu259Val mutant (Figure 6d). Upon structural inspection, 
wild type FucO shows a 3.2 Å hydrogen bond between Asn151 and the 
hydroxyl group of Thr149, while it ranges between 2.7 Å and 5.0 Å in the set 
of ten Thr149Ser models. In wild type FucO, the β-methyl group of Thr149 
restricts the rotational freedom of the side chain by interacting with Phe254 
but since Ser lacks this methyl group, the side chain packing is affected and 
renders the Ser residue more flexible. In turn, this flexibility destabilizes the 
formation of a hydrogen bond between Ser149 and Asn151, which also 
increases the flexibility of the latter. Consequently, the hydrogen bonds 
between the important Asn151 and the substrate become labile, which 
negatively affects the catalysis. In short, effective catalysis requires both the 
hydrogen-bonding capacity of a hydroxyl group at position 149 and the right 
spatial position of this residue through proper side chain packing. 
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Figure 6. Amino acids important for FucO activity. All Asn151Gly mutants 
show a loss of activity with the target substrate S-3-phenyl-1,2-propanediol and the 
natural substrate S-1,2-propanediol. The docked pose of S-1,2-propanediol forms a 
hydrogen bond to the cofactor through one hydroxyl group, while both hydroxyl 
groups hydrogen bond to Asn151 in wild type FucO (a). This makes Asn151 
important for the formation of a stable complex for catalysis. Wild type FucO is 
not active with S-3-phenyl-1,2-propanediol, but already a Leu259Val mutation 
installs activity with the target substrate. The docked pose of S-3-phenyl-1,2-
propanediol in the active site of Leu259Val FucO, shows that the target substrate 
forms hydrogen bonds to the cofactor through both hydroxyl groups and one of 
them also interacts with Asn151 (b). The Leu259Val mutation is believed to create 
enough space to allow the second hydroxyl group to bind into the active site and 
form the hydrogen bonds. The Val164Ile and Phe254Ile mutants have higher 
turnover numbers, although they do not affect the binding of the natural substrate. 
However, the Val164Ile mutation reduces the space available for the cofactor, 
while the Phe254Ile mutation causes a loss of π-π stacking capacity (c). Both of 
these make the cofactor less tightly bound and consequently the dissociation rate is 
elevated. The Thr149Ser-Leu259Val mutant is less active compared to the 
Leu259Val mutant due to a more flexible Ser residue. This affects the side chain 
packing and renders Asn151 more flexible, which destabilizes the complexes (d). 
Figure adapted from publication II (Blikstad et al., 2014). 
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5.1.8 FucO evolves through a generalist to a new specialist 
Overall, the modeling and docking studies show that the use of FucO as a 
biocatalyst for substrates with a phenyl ring is limited by the active site 
cavity size, while hydrogen-bonding and π-π stacking capacity of several 
amino acids in the active site are important for stabilization of an enzyme-
substrate complex. Usually, generalist enzymes with activity towards 
multiple substrates are considered to be more suited for biocatalyst 
production (Tracewell & Arnold, 2009). FucO is not a generalist enzyme but, 
as can be seen for other specialists (Matsumura & Ellington, 2001; Rockah-
Shmuel & Tawfik, 2012), it gains specificity towards new substrates by first 
becoming a more promiscuous generalist enzyme (Leu259Val) and then 
adopting new specificity when the generalist version is mutated. The 
Leu259Val mutant is not a good catalyst but it shows activity with most of 
the substrates. However, the Asn151Gly-Leu259Val mutant is a new 
specialist enzyme with substrate specificity for phenylacetaldehyde. Also the 
mutants active with the target substrate S-3-phenyl-1,2-propanediol have the 
Leu259Val mutation coupled to other mutations, but their features resemble 
more the generalist enzyme. They are relatively inefficient; however, they do 
display activity with the target substrate and, hence, represent important 
intermediates, which can be further mutated into new specialist enzymes with 
high efficiency catalysis of S-3-phenyl-1,2-propanediol. 

5.2 LpxR (Y. enterocolitica) 

5.2.1 Introduction 
Gram-negative bacteria have a protective outer membrane, which consists of 
LPS built from an O-antigen, a negatively charged core oligosaccharide and a 
hydrophobic membrane anchor called lipid A (Raetz, 1996; Raetz, 1990; 
Rietschel et al., 1994). The lipid A component also serves as a key player in 
host-microbe interactions (Raetz et al., 2007; Raetz et al., 2009) and triggers 
innate immune system responses in mammalian cells upon encounter with 
LPS. The lipid A structure was earlier thought to be static, but it is now 
known to be modified by addition or deletion of fatty acids, phosphates, 
aminoarabinose, phosphoethanolamine and other decorations (Raetz et al., 
2007). The modifications may cause changes in the bacterial outer membrane 
physiology, as well as affect the biological activity of lipid A so that 
pathogens can avoid detection by the immune system of the host organism 
(Murata et al., 2007; Trent et al., 2006). For example, Helicobacter pylori 
and Salmonella enterica serovar typhimurium use this mechanism at the 
infection stage. These pathogenic bacteria employ the protein LpxR to 
deacetylate the 3’ position of lipid A (catalysis presented in Figure 1a in 
Rutten et al., 2009), which alters the recognition by the host cell immune 
system and, therefore, causes less inflammatory response (Kawasaki et al., 
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2012; Reynolds et al., 2006; Stead et al., 2008). A corresponding lipid A 
species exists in Y. enterocolitica grown at 37 °C (Aussel et al., 2000; 
Bengoechea et al., 2003; Kawahara et al., 2002; Oertelt et al., 2001; Perez-
Gutierrez et al., 2010; Rebeil et al., 2004; Rebeil et al., 2006) and, 
furthermore, it has been shown that Y. enterocolitica virulence factors and 
lipid A structure are temperature dependent, with specific levels of 
acetylation and decorations at different temperatures (Marceau, 2005; Rebeil 
et al., 2004; Reines et al., 2012; Straley & Perry, 1995). The virulence factors 
aid in food borne infections of Y. enterocolitica in humans and animals, so 
that the bacteria can resist host cell defense mechanisms and colonize the 
intestinal tract (Bottone, 1997; Marceau, 2005; Straley & Perry, 1995). In 
publication III, we set out to determine whether Y. enterocolitica encodes for 
an LpxR ortholog, which would be responsible for the Y. enterocolitica lipid 
A species and, if so, to characterize this protein.  

5.2.2 YeLpxR removes the 3’-acyloxyacyl residue from lipid A 
The experimental results obtained by our collaborators showed the presence 
of a lipid A species lacking the 3’-acyloxyacyl residue in Y. enterocolitica 
and genome analysis confirmed the possibility of an LpxR ortholog. Deletion 
of the lpxR gene verified that the LpxR protein indeed is the lipid A 3’-O-
deacylase in Y. enterocolitica (YeLpxR). However, this deacylation is more 
evident at 37 °C than at 21 °C, although the enzyme is expressed in higher 
levels in bacteria grown at the lower temperature. A general lack of function 
was ruled out as an explanation but, instead, the experimental results verified 
that the lipid A species found at 21 °C is decorated with aminoarabinose, 
which might inactivate YeLpxR or inhibit the physical interaction between 
the aminoarabinose-decorated lipid A and the enzyme. To explore these 
possibilities, a homology model of YeLpxR was constructed.  

5.2.3 Asp31 is a key residue for YeLpxR substrate specificity 
Amino acids 1-296 (signal sequence excluded) of YeLpxR (UniProtKB code 
A1JP43) were modeled based on the crystal structure of Salmonella 
typhimurium LpxR (StLpxR) (PDB code 3FID) (Rutten et al., 2009), which 
shares 75 % sequence identity to YeLpxR. All amino acids determined to be 
important for StLpxR activity (Rutten et al., 2009) are conserved in YeLpxR, 
but StLpxR is active also at 21 °C and, therefore, catalyzes lipid A decorated 
with aminoarabinose, which YeLpxR is unable to do. This indicates 
differences in substrate specificity despite the high sequence identity and the 
conserved functional amino acids. The homology model shows a reliable β-
barrel fold, which is further supported by the high sequence identity to the 
crystallized StLpxR (Figure 7). Six amino acids differ in the active site of 
YeLpxR compared to StLpxR and two of these are major differences: a 
negatively charged Asp31 and a polar Gln35 in YeLpxR replace a small, 
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flexible Gly31 and a small, hydrophobic Ala35, respectively, in StLpxR 
(Figure 7). Of these, Gln35 is in the periphery of the YeLpxR active site, 
while Asp31 is in the center.  
 

 
 
 
Due to the big side chain, Asp31 forces a conserved Lys67 to adopt a slightly 
different conformation in YeLpxR compared to StLpxR and cavity 
calculations confirm that the volume of the active site cavity in StLpxR is 
bigger than in YeLpxR (Figure 8a). The changed Lys67 conformation in 
YeLpxR causes a loss of an inward protruding cavity next to this residue, 
while Asp31 also cuts the active site cavity in two parts with only a narrow 
connection. Hence, Asp31 causes major spatial limitations in the YeLpxR 
active site cavity. In order to explore the effect of an aminoarabinose 
decoration on the lipid A – YeLpxR interaction, modified Kdo2-lipid A with 
and without aminoarabinose was docked to the homology model of YeLpxR 
and, for comparison, also to the crystal structure of StLpxR (PDB code 3FID) 
(Rutten et al., 2009). When the lipid A molecule without aminoarabinose was 
docked to YeLpxR, the 4’ phosphate group, which attaches aminoarabinose 
to lipid A, binds in the near vicinity of Lys67 and Asp31 (Figure 8b). On the 
other hand, when this molecule is docked to StLpxR, the same phosphate 

Figure 7. YeLpxR model and its extracellular active site. The YeLpxR model 
(left) shows a reliable β-barrel fold with intracellular turns and extracellular 
helices and loops. The active site residues (right, yellow sticks) show two major 
differences compared to the template StLpxR (PDB code 3FID; Rutten et al., 
2009): Gln35 and Asp31, of which Asp31 (pink sticks) is located in the middle of 
the active site. Figure adapted from publication III (Reinés et al., 2012). 
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group binds in the inward protruding cavity next to Lys67, which is lost in 
YeLpxR due to Asp31 (Figure 8c). As a result, the 4’ phosphate is able to 
form more favorable electrostatic interactions with Lys67 in StLpxR 
compared to YeLpxR. As was expected based on the experimental results, the 
docking of the aminoarabinose-containing lipid A molecule to YeLpxR did 
not show any good and reliable results, but when docked to StLpxR, the 
aminoarabinose binds close to Gly31 and occupies the space corresponding 
to the narrow connection between the two cavities separated by Asp31 in 
YeLpxR (Figure 8d). This narrow connection is too small to accommodate 
the aminoarabinose decoration in the YeLpxR active site. Conclusively, the 
modeling and docking results indicate that lipid A modified with 
aminoarabinose at 21 °C simply cannot fit into the active site of YeLpxR due 
to the spatial restraints caused by Asp31 and, therefore, YeLpxR is unable to 
perform its function at this temperature and becomes latent. To verify this, 
YeLpxR mutants were constructed by site-directed mutagenesis and, indeed, 
the Asp31Gly mutant, which resembles StLpxR, deacylated aminoarabinose-
containing lipid A in bacteria grown at 21 °C. Nevertheless, it is still possible 
that also other residues in YeLpxR have an effect on the enzyme latency. For 
example, Salmonella PagL was shown to become active by mutation of 
amino acids in extracellular loops, which suggests that they might be 
involved in recognition of lipid A decorated with aminoarabinose (Kawasaki 
et al., 2005; Manabe & Kawasaki, 2008; Manabe et al., 2010). Hence, similar 
regulation mechanisms might also play a role in YeLpxR latency.  

5.2.4 YeLpxR helps the low inflammatory response upon infection 
Additional experimental results showed that deletion of the YeLpxR enzyme 
makes the bacteria less motile and invasive, indicating that YeLpxR has an 
important role at the host colonization stage. Furthermore, the deletion of 
LpxR did not affect the production of the virulence factors with an anti-
inflammatory effect. This means that Y. enterocolitica can employ both the 
anti-inflammatory virulence factors and lipid A 3’-O-deacylation to avoid 
responses from the host immune system and generate the characteristic low 
inflammatory response seen in Y. enterocolitica infections. Furthermore, by 
keeping the YeLpxR enzyme in a latent state at 21 °C, the bacteria can 
quickly respond and start the lipid A 3’-O-deacylation when entering the 
37°C host cells. The importance of LpxR at the infection stage makes it an 
interesting drug target and the obtained results can be valuable for the design 
of new therapeutics against Y. enterocolitica infections.  
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5.3 LpxO (K. pneumoniae) 

5.3.1 Introduction 
K. pneumoniae is another bacterium employing lipid A modifications to 
avoid the host immune system and uses the LpxO protein (KpLpxO) for it. K. 
pneumoniae is a pathogenic bacterium, which upon infection significantly 
affects the blood stream and the respiratory functions in humans and 

Figure 8. Docking of lipid A with and without aminoarabinose to YeLpxR 
(pink) and StLpxR (green). The StLpxR active site (green) is bigger than the 
YeLpxR active site (pink), which is essentially cut in two parts due to Asp31 (a). 
Both YeLpxR (b) and StLpxR (c) catalyze lipid A (yellow sticks) without 
aminoarabinose, but only StLpxR is able to use aminoarabinose-containing lipid 
A (d). The aminoarabinose binds in between Lys67 and Gly31 at the same place 
where Asp31 in YeLpxR cuts the active site in two parts, thereby making 
YeLpxR unable to accommodate and catalyze aminoarabinose-containing lipid 
A. Figure from publication III (Reinés et al., 2012). 
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increasing rates of multidrug resistance has become a problem (De Majumdar 
et al., 2015). LpxO is a relatively unknown protein but shows homology to 
the catalytic domain of bovine Asp/Asn β-hydroxylase, which is a Fe2+/α-
ketoglutarate-dependent dioxygenase (Gibbons et al., 2000). KpLpxO has 
302 amino acids with a hydrophobic N- and C-terminus, it displays 
conserved His, Asp and Glu residues, which have been shown to be 
important in bovine Asp/Asn β-hydroxylase (McGinnis et al., 1996) and, in 
particular, KpLpxO has a conserved Fe2+ binding motif (His-X-Asp-(X)~50-
His). Bacterial LpxO homologs are all of similar length and closely related to 
each other (Raetz, 2001), which indicates a similar function. It has been 
shown in vitro that KpLpxO modify the lipid A at position 2’ by adding a 
hydroxy-myristate group (Clements et al., 2007; Llobet et al., 2011) 
(catalysis presented in Figure 2a in Gibbons et al., 2008). In publication IV, 
we wanted to analyze the lipid A species in vivo and structurally characterize 
KpLpxO to find important amino acids for its function.  

5.3.2 KpLpxO is involved in 2-hydroxylation of lipid A 
The experimental mutation of the lpxO gene showed that K. pneumoniae 
encodes for the enzyme LpxO (UniProtKB code W9B4N2), which has been 
implicated in 2-hydroxylation of lipid A. This mutant is unable to 
hydroxylate C14 on the primary 2’-linked R-3-hydroxymyristoyl group, while 
a plasmid containing the lpxO gene restores this hydroxylation when cloned 
into K. pneumoniae. Furthermore, the mutant strain lacking LpxO was found 
in lower amounts in trachea and lung compared to wild type K. pneumoniae 
and, thereby, demonstrates that the 2-hydroxylated lipid A modification helps 
K. pneumoniae avoid the innate immune system and attenuate the 
inflammatory responses of K. pneumoniae. Also, the effect of antimicrobial 
peptides, especially colistin, which is one of the few options left to treat 
multiresistant K. pneumoniae infections, is counteracted by this lipid A 
modification. 

5.3.3 KpLpxO adopts the Asp/Asn β-hydroxylase fold 
3D structural modeling of KpLpxO showed that it contains transmembrane 
helices in both the N- and C-terminus, with a central, cytoplasmic domain 
from amino acid 19 to 279. This central domain contains the active site and a 
model could be based on the crystal structure of human Asp/Asn β-
hydroxylase (PDB code 3RCQ) (Krojer et al., to be published). Due to low 
sequence identity, KpLpxO was aligned with homologs in a multiple 
sequence alignment, after which the sequence for human Asp/Asn β-
hydroxylase was aligned. Comparison of KpLpxO to the well characterized 
Asp/Asn β-hydroxylase from bovine (75 % sequence identity to human 
Asp/Asn β-hydroxylase) (McGinnis et al., 1996) shows that several 
catalytically important amino acids are conserved in KpLpxO and, together 
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with the resulting model, it indicates that KpLpxO indeed adopts the Asp/Asn 
β-hydroxylase fold and has the typical iron-binding motif His-X-Asp-X~50-
His in the active site (His155-Arg-Asp-X44-His202 in KpLpxO) (Figure 9). 
From the model, we could deduce the amino acids within 4 Å from the 
predicted active site and then experimentally mutate these to alanine to verify 
their importance. The mutated residues were His155, Asp157, Arg164, 
His166, Trp188, Glu198, His202, Arg212 and Asp218, of which all, except 
His166, are strictly conserved. The mutants were not able to produce 2-
hydroxylated lipid A although the mutants of KpLpxO were produced. 
Hence, our results show that KpLpxO is likely to adopt the Asp/Asn β-
hydroxylase fold and that the active site and catalytic residues are similar to 
bovine Asp/Asn β-hydroxylase. Mutation of His155, Asp157 and His202 
were expected to have an effect since these residues are involved in the 
binding of iron. Furthermore, mutation of Arg163, His166 and Arg212 was 
also highly likely to affect the catalysis since these residues are pointing 
straight into the active site and probably are involved in interactions with the 
substrate. On the other hand, Trp188, Glu198 and Asp218 can have a 
structurally important role rather than being directly involved in catalysis. 
Trp188 could be keeping Arg212 in the right conformation for catalysis, 
while Glu198 and Asp218 could have a similar role for the correct 
positioning of Arg164. However, these residues were all confirmed to be 
important for the proper function of KpLpxO and the results lead the way for 
more detailed structural characterization of this protein and the design of new 
drugs against K. pneumoniae infections.  

Figure 9. Structural model of KpLpxO and active site. KpLpxO contains a 
central soluble domain, which adopts the Asp/Asn β-hydroxylase fold with an 
iron-binding motif (His155-Arg-Asp-X44-His202) and several catalytically 
important amino acids (pink sticks). Figure from publication IV (Llobet et al., 
accepted manuscript). 
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5.4 Slr0006 (Synechocystis) 

5.4.1 Introduction 
Synechocystis is a carbon concentrating cyanobacterium, which up-regulates 
multiple genes coding for proteins with unknown function when subjected to 
low CO2 and, hence, a limited access to inorganic carbon (Battchikova et al., 
2010). One of these genes is slr0006 (Carmel et al., 2011), which encodes for 
the 23 kDa Slr0006 protein (UniProtKB code Q55667). So far, this cytosolic 
protein does not seem to be important for cell survival (Carmel et al., 2012). 
However, the cellular localization shifts upon addition of divalent cations, 
which link the Slr0006 protein to the membrane (Carmel et al., 2011). Our 
aim in publication V was to functionally characterize the Slr0006 protein and 
couple the results to structural analyses. 

5.4.2 Slr0006 belongs to the Sua5/YciO/YrdC protein family 
Sequence analysis of Slr0006 indicates that it belongs to the 
Sua5/YciO/YrdC family of proteins, which is one of the top 10 universal 
protein families with an unknown function (Galperin & Koonin, 2004). 
However, several members, such as E. coli YrdC (PDB code 1HRU) 
(Teplova et al., 2000), E. coli YciO (PDB code 1KK9) (Jia et al., 2002), 
Sulfolobus tokodaii Sua5 (C-terminal domain) (PDB code 2EQA) (Agari et 
al., 2008), Methanothermobacter thermoautotrophicum Mth1692 (PDB code 
1JCU) (Yee et al., 2002), E. coli HypF (middle domain) (PDB code 3TSQ) 
(Petkun et al., 2011) and Streptococcus mutans smu. 1377c (PDB code 
3L7V) (Fu et al., 2010) have a known crystal structure. Slr0006 shares a low 
sequence identity to these proteins: 19.0 % to the C-terminal YrdC-domain of 
Sua5, 18,3 % to YrdC and 17 % to YciO. However, the low sequence identity 
is a common feature for the Sua5/YciO/YrdC protein family, although the 
proteins share a highly similar structure. For example, despite only 27 % 
identity, YciO and YrdC share a similar structure and also the smu. 1377c 
protein has a similar fold as YrdC, YciO and the C-terminal domain of Sua5, 
although the sequence identity is 15 %, 25 % and 16 %, respectively. 
Furthermore, structures are three to ten times more conserved than sequences 
(Illergard et al., 2009), which is well represented by the other members of the 
Sua5/YciO/YrdC protein family and indicates a similar behavior for Slr0006. 
Due to the low sequence identity, a multiple structure-based alignment was 
calculated by superimposing YciO, the YrdC domain of Sua5, YrdC and 
Mth1692, and the Slr0006 sequence was then aligned to the pre-aligned 
multiple structure-based sequence alignment. Three models were created: 
amino acids 1-211, 10-193 and 1-206 of Slr0006 were modeled based on the 
C-terminal domain of Sua5, YrdC and YciO, respectively. The 3D models of 
Slr0006 show that it is possible for this protein to adopt the Sua5/YciO/YrdC 
fold with an α/β twisted open-sheet structure, containing both parallel and 
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anti-parallel β-strands (Figure 10a). The model evaluation also shows that the 
models are of good quality and reliable.  

5.4.3 Slr0006 could bind RNA or nucleotides 
Another feature that is shared among all crystal structures of the 
Sua5/YciO/YrdC family and the Slr0006 models is a central cavity with a 
strong positive charge (Figure 10b). This cavity binds RNA in YrdC 
(Teplova et al., 2000) and, therefore, Slr0006 was experimentally tested for 
association with the protein synthesis machinery, i.e. ribosomes. The results 
show that Slr0006 always co-localizes with the S1 protein of the 30S 
ribosomal subunit, which implies a possibility for RNA-binding. Moreover, 
both YrdC and Sua5 are highlighted as essential for N6-threonylcarbamoyl 
adenosine (t6A) biosynthesis (El Yacoubi et al., 2009) and Sua5 has been 
crystallized in complex with the essential biosynthesis components L-
threonine and an ATP analogue (ANP) (Kuratani et al., 2011). The t6A 
biosynthesis pathway exists in all organisms with a sequenced genome and 
they also encode one or more members of the Sua5/YciO/YrdC family of 
proteins (El Yacoubi et al., 2009). However, the Synechocystis genome 
encodes the Sll1866 protein, which corresponds better to both the C-terminal 
YrdC domain of Sua5 and YrdC itself: Sll1866 has 27 % identity to the C-
terminal domain of Sua5 and 29 % identity to YrdC, compared to 20 % and 
19 %, respectively, for Slr0006. This indicates that Sll1866, rather than 
Slr0006, would have a similar function to E. coli YrdC. 
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Figure 10. The Sua5/YciO/YrdC fold and electrostatic surface. a) shows 
the overall fold of the Sua5/YciO/YrdC family in comparison to the Slr0006 
model based on YciO. b) shows the electrostatic surface of the 
Sua5/YciO/YrdC proteins in comparison to the models of Slr0006 (red are 
negatively charged areas, blue are positively charged, grey are neutral and 
color ranges from -7 to 7). Figure from publication V (Carmel et al., 2013). 
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5.4.4 Slr0006 belongs to the YciO family  
The YciO protein has been shown not to be a functional ortholog to YrdC, 
although it adopts the YrdC architecture. Hence, El Yacoubi et al. (2009) 
suggested that YrdC and YciO should be split in two families. The dividing 
factor would be the two positively charged residues Lys50 and Arg52 
according to YrdC numbering. These are conserved in most of the 
Sua5/YciO/YrdC family members, but YciO has the positively charged 
Arg57 corresponding to Lys50 (YrdC), while a hydrophobic Leu adopts the 
position corresponding to Arg52 (YrdC) (Figure 11). Slr0006 follows the 
YciO pattern rather than the one for YrdC: Lys59 (Slr0006) corresponds to 
Lys50 (YrdC), while the hydrophobic Phe61 (Slr0006) replaces Arg52 
(YrdC). Furthermore, based on the analyses by Petkun et al., (2011), several 
amino acids are conserved in YrdC-like proteins (Arg245, Ala/Ile251, 
Lys/Phe294 and Asn324 [HypF numbering]) but different in YciO (Leu, Phe, 
Lys, Met, respectively), which indicates a different substrate for YciO than 
for the YrdC-like proteins. Similarly, five of the HypF nucleotide-binding 
residues (Arg245, Ala/Ile251, Thr321, Asn324 and Val/Ile363) differ in 
Slr0006 (Phe, Leu, Ala, Lys and Leu, respectively), which suggests that 
Slr0006 resembles YciO more than YrdC and, therefore, probably binds 
similar ligands to YciO. 
 
Although the function of YciO is still unknown, the protein has been 
implicated in glycogen metabolism (Montero et al., 2009), since E. coli 
lacking the yciO gene accumulated enormous amounts of glycogen. This led 
us to test the same for the mutant lacking the slr0006 gene. In contrast, this 
mutant showed similar amounts of glycogen for both wild type and the 
mutant, implicating that the functions of Slr0006 and YciO are different, 
although the structure is similar. A BLAST search against the Synechocystis 
genome with the sequence for YciO as query then showed that the Sll0216 
protein has a 40 % sequence identity to E. coli YciO, which indicates that 
Sll0216 performs the same function as YciO rather than Slr0006. Despite 
this, the co-localization of Slr0006 and the S1 protein of the 30S ribosomal 
subunit indicates a role in processes related to ribosomes, but this function is 
probably unique compared to the characterized Sua5/YciO/YrdC family 
members, since the important amino acids are not conserved. However, the 
conserved positively charged cleft on the surface of Slr0006 indicates that the 
function can be related to nucleotide- or RNA-binding. 
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5.4.5 Slr0006 could contribute to a bigger complex 
The YrdC domain is also found fused to other domains in multidomain 
proteins, such as the nucleotide binding proteins HypF (Petkun et al., 2011; 
Teplova et al., 2000) and TobZ (Parthier et al., 2012), which have the YrdC 
domain coupled to Kae1-like domains. In turn, Kae1 proteins are part of the 
Kae1/Qri7/YgjD family, which is also universally conserved and participates 
in the t6A biosynthesis (El Yacoubi et al., 2011; Galperin & Koonin, 2004). 
However, the function of the proteins in the Kae1/Qri7/YgjD family has been 
suggested to differ from the proteins in the Sua5/YciO/YrdC family so that 
they together represent the whole synthesis pathway (El Yacoubi et al., 
2011). If this is the case, there is still one unidentified and uncharacterized 
protein in the pathway and, therefore, it can be speculated that Slr0006 would 
be similar to this protein. Furthermore, it can be hypothesized that Slr0006 

Figure 11. Structure-based alignment of Slr0006 and crystallized members 
of the Sua5/YciO/YrdC family. The residues used to divide YciO from YrdC 
are marked with grey boxes and black stars. Black boxes show conserved 
residues, bold letters similar residues. The secondary structure of crystallized 
Sua5/YciO/YrdC members are shown on top of the alignment. Figure adapted 
from publication V (Carmel et al., 2013). 
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could be part of a bigger protein complex, since members of the 
Kae1/Qri7/YgjD family have been indicated to contribute to a bigger hetero-
oligomeric enzyme in bacteria. In these types of enzymes, the subunits can be 
homologs, which in many cases have lost their catalytic function and serve as 
interaction surfaces. Hence, this could be the role of Slr0006 and, therefore, it 
might not be essential for the survival of the bacteria. These results highlight 
the complex mechanisms behind the adaptation of plants and cyanobacteria 
to new environmental factors, which can be caused by for example global 
warming. 

5.5 CIP2A (Human) 

5.5.1 Introduction 
CIP2A is a 905 amino acid long oncoprotein, with a molecular mass of 
~102 kDa (UniProtKB Q8TCG1). It can be used as a clinically relevant 
prognostic marker in most human cancer types (Khanna et al., 2011) and has 
been shown to interact with multiple proteins functioning as substrates for 
protein phosphatase 2A (PP2A) dephosphorylation, such as MYC, E2F1, 
AKT, death-associated protein kinase 1 (DAPK1), and the rapamycin 
complex 1 (mTORC1) (Puustinen & Jäättelä, 2014). Especially the cancer 
promoting effect of the CIP2A-MYC interaction has caught interest. PP2A 
normally dephosphorylates MYC, which results in the degradation of MYC, 
but CIP2A can disrupt this chain of events by preventing the 
dephoshporylation and, thereby, stabilizing MYC (Junttila et al., 2007). The 
elevated MYC levels then help the cells to transform and induce malignant 
cell growth. CIP2A is highly interesting as an anticancer drug target (He et 
al., 2012; Khanna et al., 2013) due to its overexpression in many cancer 
types, such as ovarian cancer (Bockelman et al., 2011), breast cancer (Come 
et al., 2009), non-small cell lung cancer (Dong et al., 2011), gastric cancer 
(Khanna et al., 2009), bladder cancer (Xue et al., 2013), head and neck 
squamous carcinoma, colon cancer (Junttila et al., 2007) and liver cancer 
(Soo Hoo et al., 2002). However, the lack of structural data on CIP2A 
significantly hampers the drug development efforts since it is not even known 
if CIP2A is a druggable protein or not (Khanna et al., 2013). Therefore, all 
structural data on this protein is essential for the development of new 
therapeutics targeting the cancer-causing mechanism of CIP2A. Hence, in 
publication VI, we set out to model the structure of CIP2A and find important 
amino acids for protein-protein or protein-ligand interactions, which could 
ultimately aid in the development of new anticancer drugs exerting their 
effect through CIP2A. 
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5.5.2 CIP2A N-terminus adopts the armadillo fold 
Analysis of the CIP2A amino acid sequence with SMART (Letunic et al., 
2015; Schultz et al., 1998) indicated that CIP2A consists of an armadillo 
repeat fold (ArmRP) from amino acid 47 to amino acid 308 (CIP2A-ArmRP), 
followed by a coiled coil region between amino acids 636 and 884. The 
ArmRP fold is characterized by a right-handed superhelix formed by four to 
twelve motifs of three α-helices with ~42 amino acids each (Coates, 2003; 
Reichen et al., 2014). The secondary structure predictions agree with this by 
proposing an all α-helical profile for CIP2A-ArmRP and also SCOP suggests 
that the CIP2A-ArmRP is similar to the ArmRP protein β-catenin (PDB code 
1JDH) (Graham et al., 2001). Furthermore, the highly conserved sequence 
logo Leu-Val-X-Leu-Leu, deduced from naturally occurring and designed 
ArmRP proteins (Parmeggiani et al., 2014) is also conserved in CIP2A-
ArmRP, which further improves the reliability of a CIP2A-ArmRP domain. 
 
BLAST search against PDB at the NCBI server did not result in any good 
templates for modeling of either full length CIP2A or CIP2A-ArmRP. Hence, 
the model was produced with 3D structure prediction servers, which employ 
highly sensitive methods to detect remote homologs, align the query protein 
to the resulting templates and produce a hypothetical 3D model (Söding, 
2005). The predictions for full length CIP2A were not reliable when 
compared to the results from sequence analysis, since the servers predicted an 
ArmRP fold for the whole sequenc, while the sequence analysis indicated a 
C-terminal coiled coil domain. However, the model of CIP2A-ArmRP 
showed reasonably good quality. HHpred (Remmert et al., 2011; Söding et 
al., 2005; Söding, 2005), Phyre (Kelley & Sternberg, 2009) and I-TASSER 
(Roy et al., 2010; Roy et al., 2012; Zhang, 2008b) predicted the CIP2A-
ArmRP domain to fold into a similar structure as the synthetic OR329 arm8 
protein (PDB code 4HXT) (Parmeggiani et al., 2014) and the CIP2A-ArmRP 
model produced by I-TASSER was used for further analysis, since I-
TASSER has been proven to generate the best 3D structure predictions 
among all automated servers in the CASP 7-10 experiments (Zhang, 2014). 
Also, the model itself shows a good quality score and a good topological 
similarity to the template. Furthermore, several evaluation programs and 
visual inspection together with comparison to the template indicated that the 
model is of good quality and reliable. However, manual evaluation showed 
that CIP2A-ArmRP Arg229 was pointing into a hydrophobic environment 
inside the protein, which is uncommon for a charged amino acid unless they 
form salt bridges. Hence, we searched for different loop conformations with 
the Loopy program in Jackal and chose a low energy conformation, where 
Arg229 interacts with the solvent instead. Parallel MD simulations were 
performed for both the model and the crystal structure to verify a stable fold 
with no changes or unfolding during the simulation and the results confirmed 
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that the fold is stable with rigid secondary structure elements and no 
unfolding taking place during the simulation. 

5.5.3 The central groove in CIP2A-ArmRP binds peptides  
The CIP2A-ArmRP model has 18 α-helices, thereby forming six ArmRP 
motifs, from which the last α-helices (H3) create a central groove when the 
motifs twist into the right-handed superhelix (Figure 12). The ArmRP fold is 
structurally highly conserved even though the sequence identity between 
ArmRP proteins might be low. Furthermore, ArmRP proteins are rigid 
structures with a typical central groove (Coates, 2003; Reichen et al., 2014; 
Varadamsetty et al., 2012), which is known to be a binding site for peptides 
from bigger proteins (Cutress et al., 2008; Eklof Spink et al., 2001; Reichen 
et al., 2014). A MetaPocket (Huang, 2009; Zhang et al., 2011) search 
indicated that the central groove is indeed a binding site for CIP2A-ArmRP 
as well. This central pocket is made up of residues Gln122, Gln125, Met160, 
Pro161, Gly164, Asn168, Arg171, Val206, Phe207, Ser210, Ser213, Ser214, 
Leu217, Leu249, Lys252, Tyr253, Asp256, Met259, Asp260, which are all 
well conserved in multiple sequence alignments of homologous proteins. 
Met160, Pro161, Phe207, Ser213, Leu249, Lys252, Tyr253 and Met259 are 
more variable than the rest of the residues, while Asn168, Ser214, Leu217 
and Asp256 are strictly conserved and, hence, probably important for 
structure and/or function of CIP2A-ArmRP. 
 

 
 
 
I-TASSER also predicts a protein/peptide binding function for the central 
groove in CIP2A-ArmRP. All of the most similar proteins found in PDB by 
I-TASSER have a protein binding function, which indicates that also CIP2A-
ArmRP would bind a peptide from a bigger protein in the central groove. 
Moreover, ConSurf analysis shows that the central groove is highly 

Figure 12. 3D structural model of CIP2A-ArmRP and its central groove. The 
model shows a reliable ArmRP fold, with six ArmRP repeats twisting around an 
axis to form a superhelix and a concave central groove. Figure from publication 
VI (Dahlström & Salminen, 2015). 
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conserved between CIP2A-ArmRP and homologs, further implicating this as 
an important binding site. The binding mode in naturally occurring ArmRP 
proteins is very conserved: the extended peptide is bound antiparallel to the 
ArmRP motifs into the central groove with hydrogen bonds between 
conserved Asn residues in the H3 α-helices and the peptide backbone to keep 
it in an extended conformation (Andrade et al., 2001; Conti et al., 1998; 
Graham et al., 2001; Ishiyama et al., 2010; Morishita et al., 2011; Roman et 
al., 2013; Tarendeau et al., 2007). Specificity is conferred by other residues 
in the central groove, which interact with the side chains of the amino acids 
in the bound peptide (Reichen et al., 2014). I-TASSER suggests, with high 
confidence, that CIP2A-ArmRP would bind a peptide in a similar manner as 
the human adenomatous polyposis coli (APC) protein fragment binds to 
mouse β-catenin (PDB code 1JPP) (Eklof Spink et al., 2001). A polar ladder 
in β-catenin, which is conserved also in other ArmRP proteins (Andrade et 
al., 2001), binds the APC protein fragment to the central groove in an 
extended conformation. In CIP2A-ArmRP, Gln82, Gln119, Gln122, Gln125, 
Gln311, Asn130, Asn168, Asn173, Asn218, Asn264 and His172 form a 
similar polar ladder and the high degree of conservation of these residues 
implicates that they are essential (Figure 13). Furthermore, we superimposed 
the CIP2A-ArmRP model on the APC-β-catenin complex and analyzed the 
residues within 4 Å of the bound peptide, which all coincide or are in the near 
vicinity of the polar ladder. Hence, CIP2A-ArmRP is highly likely to bind a 
peptide from an interaction partner in the same way as other ArmRP proteins. 
 

 

Figure 13. Polar ladder in CIP2A-ArmRP. The polar ladder in the CIP2A-
ArmRP domain (pink sticks) is formed by highly conserved amino acids. 
These have an important function in peptide binding together with conserved 
positively charged residues (cyan sticks), which confer specificity to the bound 
peptide. Strictly and highly conserved residues are shown in bold. Figure from 
publication VI (Dahlström & Salminen, 2015). 



Results and discussion 

! 59 

5.5.4 CIP2A interaction partners have a conserved binding motif 
It is previously known that specific motifs are common in the ArmRP 
interaction partners depending on the charge of the central groove in the 
ArmRP protein itself (Reichen et al., 2014). The electrostatic surface 
calculations show a strong positive charge for the CIP2A-ArmRP central 
groove, while the opposite side of the protein is divided into one positively 
charged area and one negatively charged area. Also, the top and the bottom of 
CIP2A-ArmRP show clearly defined areas of positive and negative charge. 
Similarly to CIP2A-ArmRP, β-catenin has a positively charged groove and 
has been shown to interact with peptides containing a conserved Asp-X-Hp-
Hp-X-Ar-X2-7-Glu motif (X = any amino acid, Hp = a hydrophobic residue, 
Ar = aromatic residue), where the conserved Asp and Glu form salt bridges 
with two Lys residues in the central groove of β-catenin (Graham et al., 
2000; Sun & Weis, 2011; Xu & Kimelman, 2007). Similarly, CIP2A-ArmRP 
exhibits the highly conserved Arg171 and Lys263, along with the conserved 
Lys252 and Lys126, indicating that the interaction mode between CIP2A-
ArmRP and a peptide would be highly similar to the interaction seen in 
peptide-β-catenin complexes. Furthermore, this means that it is likely that the 
peptide interacting with CIP2A-ArmRP would show the same conserved 
motif (Asp-X-Hp-Hp-X-Ar-X2-7-Glu) as the peptides interacting with β-
catenin and other ArmRP proteins with a positively charged central groove. 
PP2A (Junttila et al., 2007), MYC, E2F1, the mTORC1 complex (De et al., 
2014), AKT, DAPK1 (Puustinen & Jäättelä, 2014) and H-Ras (Wu et al., 
2015) are all known to interact with CIP2A. However, analysis of the MYC, 
H-Ras and AKT sequences did not reveal the expected conserved motif, 
which indicates that these would interact with CIP2A outside of the CIP2A-
ArmRP central groove. However, the 65 kDa scaffolding subunit (also called 
A or PR65 subunit) of PP2A, E2F1, DAPK1 and the DPTOR and RPTOR 
subunits of the mTORC1 complex all have the conserved motif in their 
sequences. Also the mTOR subunit of the mTORC1 complex has a similar 
motif, where an Asp replaces the conserved Glu but, despite this, the negative 
charge is conserved. Hence, all of these proteins can be expected to interact 
with the central groove in CIP2A-ArmRP. These results may be of 
considerable help when designing experiments to characterize the CIP2A 
function and also for future crystallization efforts. The results indicate a 
possibility to generate a construct for the CIP2A-ArmRP domain, which 
might be easier to crystallize than the whole protein due to the rigidity of the 
ArmRP fold. This could then give the much-needed information for 
development of anti-cancer drugs, which work through CIP2A.  

5.6 Choosing between BLAST results 
The resulting reliability of the structural model is already affected at the 
sequence/structure search step of the modeling procedure. There are several 
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sequence databases and, therefore, it is good to keep in mind to try to 
maximize the information obtained from them. When performing modeling 
studies, coupling the results to existing literature is of key importance to be 
able to draw biological conclusions based on the models. Therefore, when 
searching for homologs, start in smaller databases like UniProtKB, which is 
manually annotated and contains biological information about known signal 
sequences, structures, function data etc. If the results are not sufficient, then 
gradually increase the database size to obtain homologs, which may not be 
experimentally characterized or are predicted from sequencing projects. For 
example, the CIP2A protein (publication VI) required the large non-
redundant sequence database to find homologs for multiple sequence 
alignment, while LpxO homologs were found in UniProtKB (publication IV). 
Hence, there was a possibility to check for experimental information on the 
LpxO homologs, while some of the CIP2A homologs were only predicted to 
exist. This type of knowledge is very valuable when interpreting the sequence 
alignment and determining amino acids important for function and/or 
structure. This further highlights the benefits of smaller, manually annotated 
databases, since these incorporate references and serve as a great starting 
point for gathering the necessary and valuable experimental information for 
the modeling procedure. 
 
The search for similar sequences or structures is usually done through 
BLAST searches. The results are reported in table form with name of the 
protein, query coverage, statistical significance (E-value), sequence identity 
etc. At this point, it is crucial to evaluate especially query coverage, statistical 
significance (expected value or E-value) and sequence identity together and 
not base the choice of sequences or structures solely on sequence identity. 
The sequence identity might be sufficiently high for some of the results, 
which only represent a small part of the protein of interest and, therefore, are 
not valuable for the study. Moreover, it is important to pay attention to the E-
value, which describes the number of hits that can be seen by chance. The 
lower this value is, the more relevant is the hit and a good rule of thumb says 
that the E-value should be below 0.001. Also other factors should be taken 
into account when choosing a good template for the modeling. In addition to 
the factors mentioned above, the resolution, the presence/absence of ligands 
or cofactors and mutations should be taken into account depending on the 
question of interest. Furhermore, conformational changes and missing parts 
in the structure can also affect the end result. It is also a good idea to compare 
a secondary structure prediction for the target protein to the secondary 
structure of the template protein to see if they correspond. Hence, it is not 
enough to consider a single value when choosing homologous sequences or 
structures to use as templates. Instead, all of these different values should be 
considered in a bigger picture and with the research question in mind.  
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5.7 Sequence alignment is the most important step 
One major drawback of the automated servers is the inability to edit the 
sequence alignment. This is the most important step in the whole modeling 
process, directly affecting the quality and reliability of the resulting model 
and, therefore, it requires careful and thorough inspection. The ability to 
inspect and modify sequence alignments requires understanding of amino 
acids and their properties, but it is also essential to properly determine the 
type of alignment needed to increase the accuracy and reliability of the 
model. If the sequence identity is high, like for the LpxR proteins 
(publication III), global pairwise alignment can be used to produce a reliable 
model. However, low sequence identity between the target and the template 
protein requires a multiple sequence alignment to improve the reliability of 
the model, which is exemplified by the LpxO protein (publication IV). When 
performing a multiple sequence alignment, it is important to include a 
number of sequences with varying sequence identity to the target protein. If 
the sequence identity range is too narrow and only include sequences with 
high sequence identity, the high amount of conserved amino acids will pose 
problems when determining the amino acids that are truly important for the 
function and/or structure. If sequences with too low sequence identity are 
included in the alignment, they will introduce gap areas of different size and 
might differ too much from the other sequences for the important amino acids 
to be detectable. Hence, a proper range of sequence identity should be chosen 
for each specific protein but, usually, a range of 30 – 80 % sequence identity 
is appropriate.  
 
Generally, the protein fold is more conserved than sequence (Illergard et al., 
2009), which is also true for Slr0006 (publication V), where a pairwise 
sequence alignment would not give a reliable result. Even multiple sequence 
alignment shows some unreliable gap areas, which is why the conserved fold 
was chosen as the basis for the alignment instead. By superimposing the 
known structures, a multiple structure-based sequence alignment could be 
generated and this produced a model with a more reliable fold than the other 
alignment methods would have. The aim of the study was to model the fold 
and find amino acids important for the function, which means that the 
obtained accuracy and reliability were sufficient for this project. On the other 
hand, the analyses performed on FucO (publication I and II) and LpxR 
(publication III) demanded more detailed information about active site amino 
acids, which required high accuracy models, especially for the active site, to 
give reliable results. The availability of a FucO crystal structure and a high 
sequence identity homolog with known structure for YeLpxR, ensured that 
the resulting models were highly reliable and accurate. However, if the 
overall sequence identity is low, it might be beneficial to tackle the alignment 
problem through local alignments with, for example, only active site 
residues. This enables high accuracy in the area of interest, while the less 
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important areas may remain unstudied. Hence, the purpose of the project and 
the aim of the analysis should always be kept in mind when aligning 
sequences for structural modeling and the way to produce an alignment and a 
model should always be malleable depending on the obtained results.  

5.8 Considerations when creating the structural model 
At the model creation step, several models should be created to get different 
conformations for the amino acid side chains and, hence, varying overall 
energies. Usually, a set of ten models is enough and often the model with the 
lowest energy is the best, but it is a good idea to check all the models visually 
to see the differences. At this stage it should be considered whether the 
overall fold is good and if all areas can be modeled reliably. In some cases, 
certain areas lack a template and should be restricted into a specific 
secondary structure. An example of this can be seen in Toivola et al., 2013, 
where a part of a long linker between two domains in the Arabidopsis 
thaliana NADPH-dependent thioredoxin reductase lacked a template 
structure and, hence, was restricted to an α-helix based on secondary 
structure predictions.  
 
Kopp & Schwede (2004) and Mullins (2012) claim that the automated 
servers for protein modeling do not require as much expertise as non-
automated modeling, which enables a broader audience to perform homology 
modeling. However, these types of servers are not to be trusted blindly. In the 
case of CIP2A (publication VI), I-TASSER is able to produce a model for the 
full-length sequence; however, when coupled to sequence analysis results, 
this model is not reliable. Protein modeling servers do facilitate the modeling 
work, especially when there is no detectable homolog with known structure, 
but the criteria and threshold values implemented in these servers should be 
carefully analyzed to see if they are met. Even more importantly, the 
researcher should know what each of these values describes and how reliable 
it is. Nevertheless, in the end, the model has to be carefully evaluated and 
examined both by evaluation programs and visually by the researcher.  

5.9 Model quality 
When assessing the model quality, multiple programs should be used to 
increase the reliability of the results. It is also important to know how the 
program or server works to be able to correctly interpret the relationship 
between the results and the target protein. Visual inspection of the model and 
comparison to the template are also vital procedures for adequate assessment 
of the model quality and possible improvements. The template structure 
should be carefully examined to unveil key amino acids, which stabilize the 
structure and, also, the residues contributing to the protein function. If these 
amino acids are conserved in the target protein, they are likely to have a 
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similar conformation as the corresponding amino acids in the template. This, 
in turn, makes the model better and increases the reliability of the results. For 
example, visual inspection of the CIP2A-ArmRP model (publication VI) 
revealed an unusual interaction pattern between an Arg residue and a 
hydrophobic environment. The conformation was corrected so that the Arg 
residue interacted with the solvent instead, which also enhanced the 
correctness of the electrostatic surface calculations. Furthermore, all 
published literature about experimental data on the target protein, the 
template structure and homologs should be carefully analyzed to help the 
modeling procedure and the quality and reliability assessment of the model. 
Important questions are whether the fold is logical and if the important amino 
acids are in the correct places. The coupling of the modeling results to the 
existing literature and experimental data cannot be done by computers, but 
rather have to be interpreted by the researcher to form conclusive results. 
Hence, knowledge and expertise about protein folding and the effects on 
function, especially when considering amino acid substitutions, are required. 
Furthermore, knowledge of structural biology in general is also important, as 
well as understanding of protein biochemistry, molecular interactions and 
specific biological phenomena related to each project.  
  
The quality of structural models is often questioned, which is valid 
considering the number of errors that can be introduced in the model during 
each step of the process, especially if the sequence identity between the target 
and the template protein is low. However, structural genomics efforts focus 
on rapid structure determination to increase the number of protein families 
with a structurally characterized member in PDB (Mullins, 2012; Paliakasis 
et al., 2008) and this has already resulted in an increase in the accuracy of 
homology models due to better structural homolog coverage. Furthermore, 
structural genomics have proven itself by structurally characterizing the 
majority of new families and contributing with five times as many novel 
folds as classical structural biology (Chandonia & Brenner, 2006; Gileadi et 
al., 2007; Liu et al., 2007; Marsden et al., 2007; Todd et al., 2005). The 
quality of the sequence alignment directly affects the quality and reliability of 
the structural model and, hence, sequence and structure alignment programs 
have become more sophisticated and still continue to improve, which in turn 
leads to more accurate protein structure predictions (Mullins, 2012). This is 
indeed needed, since the increase in new sequences provided by genome 
sequencing projects, coupled to the cost and tediousness of experimental 
structure solving, will make 3D structure modeling increasingly important as 
a tool for gaining insight into the structure of new proteins. Hence, there 
should be a careful selection of the targets in the structural genomics projects 
to ensure that the majority of the sequences could be modeled based on a 
template with at least 30 % sequence identity (Mullins, 2012).  
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There is also a need to improve the refinement process coupled to modeling. 
Now it is heavily dependent on the template protein, but it should rather 
consider the target structure to try to optimize the model as close as possible 
to the native state (Mullins, 2012). This could be beneficial for protein 
structures modeled with less than 30 % identity to the template, since these 
models may contain alignment errors, as well as have some real differences 
in structure compared to the template. Furthermore, the crystal structure is a 
snapshot of the protein in one state and may also contain errors in side chain 
conformations due to weak experimental data or flexibility. With this in 
mind, incorporating information implemented in electron density maps for 
template main chain when modeling proteins with low sequence identity to 
the template protein might improve the model. The maps could include the 
electron density for the side chains of conserved amino acids, as well as for 
amino acids of similar length, which would maximize the reliable 
information incorporated into the model. The implementation of electron 
density maps would also allow for identification of areas with weak electron 
density and lower confidence. These areas could then be less constrained and 
more flexible during the creation of the model. 
 
Models are often considered to be highly hypothetical and not trustworthy 
before they have been verified by crystallization. Indeed, crystal structures 
may be important for verification of the modeling results when the overall 
quality is low, but other times the question at hand can be reliably answered 
with the help of models. In this work, CIP2A (publication VI) represents a 
study where a crystal structure or experimental data would be very beneficial 
to verify the results and get a more accurate and detailed knowledge about 
amino acids important for the function of the protein. This would markedly 
enhance the reliability for future drug development experiments. On the other 
hand, YeLpxR (publication III) represents a reliable model and the 
confidence of the results is high, which makes it unlikely that a 
crystallization experiment would add to the current knowledge. However, it 
cannot be ruled out that there could be some structural differences that are 
left undetected in the modeled structure. Hence, the need for validation of the 
modeling results by crystallization should be considered separately for each 
research project, especially when taking into account the time and money 
required for these experiments. 

5.10 Inference of function from structural model 
The function of an unknown protein is often inferred from evolutionary 
relationship to a homolog with characterized function. However, it should be 
kept in mind that protein families can be promiscuous: one fold might give 
multiple functions and several folds might exert one function (Todd et al., 
2001). Moreover, there are also examples of a similar structure, although 
there is no functional relationship or similarity between the protein sequences 
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(Sousounis et al., 2012). The on-going structural genomics projects will 
certainly reveal more of these relationships that have been undetected at 
sequence level, since protein structure is much more conserved than 
sequence. However, functional variation has been shown to occur mostly 
when two proteins are less than 40 % identical. Also, even though the overall 
fold is highly conserved, substrate specificity and catalysis mechanisms 
might not be the same even if the sequence identity is higher than 50 % 
(Mullins, 2012; Rost, 2002; Tian & Skolnick, 2003), which is exemplified in 
the case of YeLpxR and StLpxR (publication III). Despite the high sequence 
identity (75 %), StLpxR can deacylate aminoarabinose-containing lipid A, 
while YeLpxR cannot. Hence, the experimental verification of the function 
inferred from structural modeling is still essential to distinguish the details 
behind the function of each protein. However, the computational function 
inference can serve as a valuable starting point for the experimental tests and 
a combination of the two methods enables maximum output and 
characterization.  

Furthermore, bioinformatics enables researchers to design proteins with a 
desired function, which are then synthesized (Choong et al., 2013). This 
touches upon the FucO project (publication I, II), which was aimed at 
designing an enzyme variant with activity towards the target substrate S-3-
phenyl-1,2-propanediol. By redesigning the active site, the enzyme became a 
biocatalyst of the target substrate, although with moderate efficiency. The 
redesign was based on analysis of the available crystal structure, and then the 
active enzymes were modeled and subjected to docking studies. However, it 
is also possible to switch this workflow to analysis of the structure to find 
important amino acids, mutate these residues in silico and perform docking 
experiments to the mutants. The experimental work could then verify the 
results and build upon the best mutants obtained from the computational 
work. Hence, incorporating structural bioinformatics results can significantly 
reduce the experimental work and the related costs, since sequence 
alignments and homology models can pinpoint areas to be characterized 
experimentally. Moreover, corroborating experimental results always add to 
the reliability of the conclusions drawn from in silico studies and verify them. 
However, having experimental results at the beginning of the modeling 
process also benefits the modeling procedure. This way, the areas requiring 
extra attention are known and can be focused on when aligning sequences, 
thereby increasing the reliability of the models in the most crucial areas. 
Hence, many different factors and considerations should be taken into 
account in the modeling procedure, but with careful planning and execution 
the 3D structural models of proteins can greatly aid in obtaining important 
results. 
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6 Conclusions   

In this thesis, five different proteins have been studied by 3D structural 
modeling: FucO, LpxR, LpxO, Slr0006 and CIP2A. They all represent 
separate case studies for different modeling techniques and highlight the 
possibilities for usage of a structural model. 
 
In publication I and II, 3D structural models were created for FucO mutants 
and used for docking studies to explain differences in substrate specificities. 
The studies demonstrate the importance of additional space in the active site 
of FucO to install activity with S-3-phenyl-1,2-propanediol but, more 
importantly, they highlight the essentiality of retaining or maximizing the 
interactions between the enzyme and substrate. However, the role of the iron 
for the catalysis is still unknown and might have an effect on both the 
cofactor and the substrate binding and their positions. For future work, the 
catalytic mechanism should be studied in depth to verify the role of each 
individual component. Furthermore, from a computational perspective, the 
structure of FucO outside the active site could be studied more thoroughly 
and the amino acids predicted to affect the binding of S-3-phenyl-1,2-
propanediol could be mutated in silico before performing docking studies to 
the mutants. The most promising mutants could then be tested experimentally 
to verify binding and catalysis. 
 
In publication III, the homology model of YeLpxR was used for docking 
studies to explain the differences in substrate specificity compared to the 
ortholog StLpxR. The study pinpoints one amino acid, Asp31, as the main 
cause for the inability of YeLpxR to use aminoarabinose-containing lipid A 
for catalysis although StLpxR can use it. Asp31 limits the active site and 
makes it physically impossible for aminoarabinose-containing lipid A to fit 
into the active site pocket, thereby explaining the latency of YeLpxR at 
21 °C. In this work, only the differing part of the lipid A molecules were 
docked to the protein and, therefore, it cannot be ruled out that other parts 
might affect the binding and positioning of the lipid A molecule in the 
binding site. Furthermore, we used rigid docking but including receptor 
flexibility in the docking protocol might give a slightly different and more 
exact positioning of the lipid A molecules in the active site. However, the 
aim of the project was to find out if lipid A decorated with aminoarabinose 
was physically unable to bind to YeLpxR and the reason for this. Hence, the 
docking method and settings were deemed to be good enough for this 
particular question. Furthermore, the results were ultimately verified by 
experimental studies and shown to be correct. Consequently, the modeled 
complex is not aimed to be detailed enough for studies on specific 
interactions and should not be used for such in depth analyses. Instead, the 
results give a general overview of the YeLpxR structure and where the amino 
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acids important for the substrate binding are located. 
 
In publication IV, the model of LpxO was used to structurally and 
functionally characterize the protein. The fold was shown to be similar to 
human Asp/Asn β-hydroxylase, with an active site that resembles bovine 
Asp/Asn β-hydroxylase. Furthermore, catalytically important amino acids 
were mutated and experimentally proven to be essential. However, some of 
the mutated residues might be important for the correct positioning of one or 
more of the other catalytically important amino acids and not for the catalysis 
per se. This cannot be ruled out from the present results, but could be a 
valuable study in future work. Moreover, crystallization of LpxO would 
verify the structural model, as well as positioning of catalytically important 
amino acids. 
 
In publication V, the homology model helped to determine that the Slr0006 
protein belongs to the Sua5/YciO/YrdC family and has a similar active site to 
the YciO protein. Furthermore, the model showed that Slr0006 has a 
positively charged cleft, which possibly binds RNA or nucleotides. However, 
the aim was to solve the function and functional details of the Slr0006 
protein, but these factors still remain uncertain. Therefore, future work should 
be concentrated to solving the function and performing crystallization studies 
to verify the structural details of Slr0006. Moreover, phylogenetics studies 
could help to determine the relationship between the Sua5/YciO/YrdC family 
members and Slr0006 and aid the correct classification of this protein. 
 
In publication VI, the 3D structural model of CIP2A-ArmRP serves as a first 
insight into the structure-function relationship of the CIP2A protein. Existing 
literature was extensively incorporated into the analysis and evaluation of the 
model and showed that CIP2A-ArmRP is highly likely to follow the 
characteristics of other ArmRP proteins in forming interactions with partner 
proteins. The performed MD simulations might be regarded as too short to 
show without a doubt that the modeled CIP2A-ArmRP structure is stable, but 
coupled to the highly conserved and rigid structure of armadillo proteins in 
general, the performed parallel simulations were considered valuable enough. 
The obtained results are important for future work based upon structural 
information about CIP2A. Protein-peptide or protein-protein docking could 
be performed to analyze the binding mode of the identified interaction 
partners and experimental point mutations targeting the polar ladder could 
verify the binding site for some of the interaction partners. Furthermore, the 
model can help to create a stable construct for crystallization studies, which 
would be essential to verify the structural details of CIP2A-ArmRP. 
 
The presented projects each represent a different modeling process based on 
the existence or nonexistence of a highly similar template. The projects 
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reflect the complexity of modeling, which comes from the fact that each 
project and protein presents its own challenges and cannot be studied in 
exactly the same manner. Often it is the method for obtaining a reliable 
sequence alignment that varies, which further supports its role as the most 
important step in the modeling process. However, caution and careful 
consideration should be a natural component in each of the steps in the 
modeling procedure (see Workflow 1). Of notice, it is important to 
incorporate as much information as possible from previously published 
literature or experimental data to maximize the knowledge gained from a 
protein structural model and to verify it. The lower the sequence identity, the 
more important it becomes to incorporate and interpret these factors within 
the modeling procedure to increase the reliability of the computational 
predictions. However, it is always important to understand and interpret the 
computational results yourself. Never leave it up to a computer because they 
cannot judge the data in the same way and many times they do not have the 
same understanding of a bigger picture. Conclusively, with knowledge on the 
performance of the computer programs, what they can do and their 
limitations, coupled to protein structure and chemistry knowledge, as well as 
critical analysis and interpretation of the results and their relationship to 
previously published data, structural bioinformatics can be the key to a 
successful project in a cost- and time-efficient manner.  
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