
Turku Centre for Computer Science

TUCS Dissertations
No 202, September 2015

Fredrik Abbors

Model-Based Testing of
Software Systems

Functionality and Performance

Model-Based Testing of Software
Systems

Functionality and Performance

Fredrik Abbors

To be presented, with the permission of the the Faculty of Science and
Engineering at Åbo Akademi University, for public criticism in Auditorium

Gamma on September 4, 2015, at 12 noon.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5 A
Turku, Finland

2015

Supervisors

Professor Ivan Porres
Faculty of Science and Engineering
Åbo Akademi University
Joukahaisenkatu 3-5 A
Finland

Adjunct Professor, DSc, Dragos Truscan
Faculty of Science and Engineering
Åbo Akademi University
Joukahaisenkatu 3-5 A
Finland

Reviewers

Prof. Jüri Vain
Department of Computer Science
Tallinn University of Technology
Akadeemia tee 15 A, ICT 419, 12618, Tallinn
Country Estonia

Prof. Detlef Streitferdt
Department of Computer Science and Automation
Ilmenau University of Techology
Zuse-Building, Room 3046, 98693 Ilmenau
Country Germany

Opponent

Prof. Jüri Vain
Department of Computer Science
Tallinn University of Technology
Akadeemia tee 15 A, ICT 419, 12618, Tallinn
Country Estonia

ISBN 978-952-12-3247-3
ISSN 1239-1883

It is often said that being a Ph.D. is like being an expert on a specific
topic. But are you really an expert? What do you really know? What does
it even mean to know? For me, it is not so much about the knowledge, as
it is about the process of learning. In order to know, you have to constantly
test yourself. Ask yourself questions for which you do not know the answer.
Make a prediction based on your current knowledge and your beliefs. Then
collect the data and see if it matches your prediction. Anytime you come
across a new piece of data, ask yourself whether it matches what you would
have predicted.

If these answers do not quite match your predictions, do not just ratio-
nalize it or sweep it under a rug. Be honest. Admit that your beliefs have
been incorrect or imprecise. Alter them to fit the new data, in a manner
that still makes overall coherent sense. Be willing to throw out your beliefs
like yesterday’s news paper and start from scratch, if the situation calls for
it. Pick explanations that are as simple as possible, while still being complex
enough to explain what you are seeing. And once you are done with all that,
gather even more data, and test yourself all over again. It is a never ending
loop, but with every lap that you take, you will find yourself a wiser person
for it.

i

ii

Abstract

Software is a key component in many of our devices and products that we
use every day. Most customers demand not only that their devices should
function as expected but also that the software should be of high quality,
reliable, fault tolerant, efficient, etc. In short, it is not enough that a calcu-
lator gives the correct result of a calculation, we want the result instantly, in
the right form, with minimal use of battery, etc. One of the key aspects for
succeeding in today’s industry is delivering high quality. In most software
development projects, high-quality software is achieved by rigorous testing
and good quality assurance practices. However, today, customers are asking
for these high quality software products at an ever-increasing pace. This
leaves the companies with less time for development.

Software testing is an expensive activity, because it requires much man-
ual work. Testing, debugging, and verification are estimated to consume 50
to 75 per cent of the total development cost of complex software projects.
Further, the most expensive software defects are those which have to be
fixed after the product is released. One of the main challenges in software
development is reducing the associated cost and time of software testing
without sacrificing the quality of the developed software.

It is often not enough to only demonstrate that a piece of software is
functioning correctly. Usually, many other aspects of the software, such as
performance, security, scalability, usability, etc., need also to be verified.
Testing these aspects of the software is traditionally referred to as non-
functional testing. One of the major challenges with non-functional testing
is that it is usually carried out at the end of the software development
process when most of the functionality is implemented. This is due to the
fact that non-functional aspects, such as performance or security, apply to
the software as a whole.

In this thesis, we study the use of model-based testing. We present ap-
proaches to automatically generate tests from behavioral models for solving
some of these challenges. We show that model-based testing is not only
applicable to functional testing but also to non-functional testing. In its
simplest form, performance testing is performed by executing multiple test
sequences at once while observing the software in terms of responsiveness

iii

and stability, rather than the output.
The main contribution of the thesis is a coherent model-based testing

approach for testing functional and performance related issues in software
systems. We show how we go from system models, expressed in the Unified
Modeling Language, to test cases and back to models again. The system
requirements are traced throughout the entire testing process. Requirements
traceability facilitates finding faults in the design and implementation of the
software.

In the research field of model-based testing, many new proposed ap-
proaches suffer from poor or the lack of tool support. Therefore, the second
contribution of this thesis is proper tool support for the proposed approach
that is integrated with leading industry tools. We offer independent tools,
tools that are integrated with other industry leading tools, and complete
tool-chains when necessary.

Many model-based testing approaches proposed by the research commu-
nity suffer from poor empirical validation in an industrial context. In order
to demonstrate the applicability of our proposed approach, we apply our
research to several systems, including industrial ones.

iv

Sammandrag

Mjukvara spelar en central roll i m̊anga av v̊ara elektronikapparater och
produkter vi använder dagligen. De flesta förväntar sig inte bara att deras
apparater ska fungera som förväntat utan ocks̊a att mjukvaran ska vara
p̊alitlig, effektiv, snabb, samt av hög kvalité. Kort sagt, det räcker inte
bara med att en kalkylator ger rätt svar. Vi vill ocks̊a ha svaret genast,
i rätt form, med minimal användning av batteriet, och s̊a vidare. En av
de viktigaste aspekterna för att lyckas i dagens mjukvaruindustri är att
leverera högteknologiska produkter samt att ha en god kvalitetssäkring. I
de flesta mjukvaruutvecklingsprojekt uppn̊as programvara av hög kvalité
genom noggranna testningsprocesser. Men efterfr̊agan p̊a programvara av
hög kvalité ökar ständigt. Detta innebär att företagen har allt mindre tid
för utveckling och testning.

En av de vanligaste aktiviteterna inom mjukvarutestning är sökandet
efter fel i programvaran som är relaterade till systems funktionalitet. Dessa
defekter kan till exampel vara inkorrekt beteende, felaktig output, avsak-
nade av funktionalitet, etc. Denna aktivitet kallas normalt för funktionell
testning. Funktionell testning är, i vissa avseenden, ett sätt att säkerställa
att mjukvaran har all nödvändig funktionalitet om anges i dess kravspeci-
fikation.

Alla mjukvarufel är dock inte relaterade till funktionalitet. Andra aspek-
ter av programvaran, s̊a som prestanda, säkerhet, skalbarhet, användbarhet,
etc., m̊aste ocks̊a testas. Testning av dessa aspekter kallas traditionellt för
icke-funktionell testning. Vissa system kan sluta fungera eller kan hindra an-
dra användare att f̊a tillg̊ang till systemet enbart genom att systemet är un-
der en tung arbetsbörda som den inte klarar av. Inom ramarna för testning
av programvara m̊aste vi ocks̊a ta reda p̊a hur ett mjukvarusystem beter sig
i fr̊aga om responsivitet och stabilitet under olika belastningsförh̊allanden.
Processen för kontroll av dessa typer av defekter kallas normalt för pre-
standatestning. En av de stora utmaningarna inom prestandatestning är
att det utförs i vanliga fall först i slutet av mjukvaruutvecklingsprocessen,
när det mesta av funktionaliteten är implementerad. Detta beror p̊a det
faktum att prestanderelaterade aspekter vanligtvis gäller för ett program i
sin helhet.

v

Testning av programvara är dyrt, eftersom det vanligtvis kräver mycket
manuellt arbete. Hailpern och Santhanam uppskattar att felsökning, test-
ning och verifiering ibland kan sträcka sig fr̊an 50 till 75 procent av den
totala utvecklingskostnaden. De dyraste programvarufelen är de som hit-
tas efter att produkten släpps till marknaden. Den totala kostnaden för
testning av programvara kommer fr̊an m̊anga olika h̊all, till exempel, det
manuella arbetet som g̊ar in i processen för att skapa test. En av de största
utmaningarna inom mjukvaruutveckling är att minska p̊a kostnaderna för
testning av programvara utan att offra kvalitéten.

Modellbaserad testning (MBT) har, under de senaste åren, föreslagits
som en lösning p̊a m̊anga av dessa problem. Fördelen med MBT är att det
bygger p̊a automatisk generering av tester fr̊an en abstrakt modell som rep-
resenterar testsystemet, snarare än att skapa varje test manuellt. Generering
av tester fr̊an en modell innebär normalt att man försöker täcka modellen
p̊a flera olika sätt. Om ändringar görs i programmet, s̊a görs motsvarande
förändringar även till systemmodellen och alla tester anknytna till den ur-
sprungliga förändringen kan enkelt genereras igen. Detta bör ställas i kon-
trast till att manuellt behöva identifiera och skriva om alla de test som
p̊averkas av förändringen i programvaran. En annan fördel med MBT är
att sofistikerade algoritmer kan hitta komplicerade test i en modell vilka
människor skulle ha sv̊art att hitta. Det är därför MBT idag är en av de
rekommenderade teknikerna för att testa säkerhetskritiska system.

Ett av modelleringens starka sidor inom mjukvaruutveckling är att den
skiftar fokuset fr̊an implementation till design. Detta är fördelaktigt efter-
som att flytta fokuset mot design gör att man kan höja abstraktionsniv̊an
och istället fokusera p̊a vad som specificerats. Genom att investera mer i
den inledande specifikationsfasen, är det möjligt att spara tid och kostnader
eftersom fel upptäcks l̊angt tidigare. Att höja abstraktionsniv̊an leder i sin
tur till minskad komplexitet vilket gör att man kan fokusera p̊a de relevanta
delarna av ett problem i stället för att ta itu med implementationsdetaljer.
P̊a grund av dessa fördelar har m̊anga undersökt användningen av modeller
inom testning av programvara. Men med mer än 30 år av utveckling, kämpar
modellbaserad testning fortfarande för att hitta sin väg in i industrin, trots
alla de p̊avisade fördelar.

Syftet med denna avhandlingen är att utforma en strategi för att skapa
modeller som används för generering av tester. I denna avhandling visar vi
hur v̊ar modellbaserad testningsstrategi kan tillämpas i en industriell miljö.
Vi visar att samma grundläggande idé kan tillämpas p̊a funktionell testning
samt till prestandatestning. De metoder som presenteras i denna avhan-
dling har verktygsstöd och är integrerade med andra verktyg bekanta för
programvaruutvecklingsbranschen.

Ett av de centrala problemen vi undersker i denna avhandling är att
visa hur man skall modellera för testgenerering och att MBT kan användas i

vi

praktiken i en industriell miljö. Dessutom, i de flesta fall, anses MBT endast
vara lämplig för funktionell testning. Därför undersöker vi hur principerna
och fördelarna med MBT kan tillämpas p̊a prestandatestning.

Resultaten av avhandligen kan s̊aledes sammanfattas som:

1. En metod för att skapa modeller för testgenerering. Detta bidrag är
uppdelat i tv̊a delar; en systematisk metod för funktionell testning och
en annan för prestandatestning.

2. En metod för att öka p̊a kvaliteten p̊a modeller som används för test
generering. Eftersom modellerna används för testgenerering kommer
de genererade testerna att vara p̊a samma kvalitetsniv̊a som mod-
ellerna. Genom att öka kvaliteten p̊a modellen, kan vi ocks̊a öka
kvaliteten p̊a testerna och därmed undvika onödiga misstag.

3. En metod för modellering och sp̊arning av kravspecifikationer över en
modellbaserad testprocess. Detta bidrag är uppdelad i tv̊a delar; en
metod för att sp̊ara kravspecifikationer i en funktionell MBT process
och en annan metod för att sp̊ara kravspecifikationer i en prestanda-
baserad MBT process.

4. En metod för generering av arbetsbörda fr̊an olika belastningsmodeller
som beskrivs med PTA formalism. Vi presenterar ett notationsspr̊ak
för modellerna och förklarar PTA formalismen.

5. Implementation av nödvändiga verktygen för att stödja de tidigare
nämnda resultaten

V̊art arbete är uppdelat i tv̊a delar, en funktionell- och en prestanda-
del. Fastän delarna är olika s̊a förblir grunden den samma, det vill säga,
vi använder modeller för b̊ade funktionell- samt prestandatestning. För
funktionell testning, utvecklar vi en samling UML-modeller med start fr̊an
kravspecifikationen av systemet. Modeller skapas genom att följa olika rik-
tlinjer och omvandlas i ett senare skede till input för testgenereringsverk-
tyg. Kravspecificationerna modelleras ocks̊a och sp̊aras genom hela pro-
cessen. För prestandatestning skapas ocks̊a en uppsättning modeller, antin-
gen manuellt eller fr̊an loggdata. Modellerna är probabilistiska och beskriver
hur användaren interagerar med ett system. Dessa modeller används som
input för generering av arbetsbörda för olika testsystem.

vii

viii

Acknowledgements

It is not that I would not feel a little sentimental after reaching the point
of writing the final part of my thesis. It is the realization that a long and
interesting journey is soon coming to an end and that a new, and hopefully
equally interesting, chapter in my life is about to begin. This thesis is not
the outcome of one person’s hard work, but the result of much collaboration
with many people of which I feel honored and privileged to have been able
to work with. Without the support and feedback from these people, I do
not think this thesis would have been completed. It is certainly a pleasure,
to have the opportunity to express my deepest gratitude to all of those who
helped me in making this thesis become a reality.

First of all, I would like to thank my professor, Ivan Porres, for trusting in
me and giving me the opportunity to pursue my Ph.D degree at the Software
Engineering Laboratory. It has certainly been an honor to work with him.
Secondly, I would also like to thank my supervisor, Dragos Truscan, for
his constant encouragement, guidance, and critique though all these years.
Dragos is an excellent supervisor, teacher, and researcher, and has to me,
been a person that I can always come and talk to whenever I need motivation
or inspiration. I would also like to sincerely thank professor Jüri Vain and
professor Detlef Streitferdt for their time and effort to review my thesis.
Their valuable feedback and comments are greatly appreciated. I am also
honored and thankful to professor Jüri Vain for his kind acceptance to act
as the opponent at my doctoral defence.

I would also like to thank all my coauthors for giving me the chance to
collaborate with them in my research. Without you, this work would not
have been possible. In particular, I would like to thank Tanwir Ahmad,
Dragos Truscan, Andreas Bäcklund, Ivan Porres, Johan Lilius for collabo-
rating on this research. I would also like to thank my coauthors from the
industry, namely Risto Teittinen and Veli-Matti Aho from Nokia and Jani
Koivulainen from Conformiq for collaborating with me during my research.
A huge thanks also goes out to people which whom I did collaboration but
did not coauthor any papers. I would specially like to thank Vinski Bräysy
at Nethawk and Johan Abbors, Kim Nylund, Tuomas Pääjärvi and Erik
Őstman from Åbo Akademi for laying much of the foundational work in my

ix

research. Without your work, much of my research would not have been
possible.

Furthermore, I am gracefully acknowledging the IT-Department and
Graduate School of Software Engineering (SOSE) for their financial sup-
port during my PhD and for providing a great working environment. Your
contribution is greatly appreciated and without it, hardly any of my research
would have been possible. I am also happy and privileged to have received
scholarships from Nokia Research Foundation, Hans Bangs Stiftelse, and
Svensk sterbottniska Samfundet.

Many things, not directly related to my research but still needed, happen
behind the scenes. The job that these people are doing is not always visible,
but nevertheless important. It has allowed me to focus on my research while
they take care of all kinds of practical things. I wish to thank in particu-
lar Christel Engblom,Nina Hultholm, Tove Ősteroos,Solveig Vaherkylä, and
Susanne Ramstedt with all your administrative support in various matters.
Also Niklas Grőnholm and Joakim Storrank for their support regards tech-
nical matter and always having their door open. A special thanks also goes
out to Tomi Suovuo for helping me with getting this thesis printed.

Having a nice working environment with kind and friendly colleagues,
with whom you can always come and have a little chat, has certainly helped
me during my research. With this in mind, I would like to thank current
and previous colleagues at the Software Engineering Lab, especially, Dragos,
Ivan, Tanwir, Benjamin, Irum, Adnan, Kristian, Faezeh, Ali, Max, Jeanette,
Marta, Espen, Mehdi, Niclas, Martin K, and Martin R.

Sometimes it might be helpful to get input from, and discuss with, peo-
ple from outside academia or your own research group. I am thinking about
all the people with whom I have shared countless interesting lunch meet-
ings. So, I would like to extend a big thank you to all of my friends outside
academia, that have had the patience of listening to my tricky research
problems for hours and hours. Thank you for all of your support though
these years, especially, Johan Abbors, Jonas Storholm, Kim Nylund, An-
dreas Bäcklund, and Ronnie Snellman. Your input has been more helpful
than I think you can imagine. There are also countless other people to thank
with whom I have shared many interesting discussions. I would especially
like to thank, Johan, Andreas, and Stefan for always having the time to
discuss various matters. Finally, I want to thank my family. I am grateful
for all your love and support throughout my academic career.

x

List of original publications

1. Tracing Requirements In A Model-Based Testing Approach. Fredrik
Abbors, Dragos Truscan, and Johan Lilius. Originally published 2009
First International Conference on Advances in System Testing and
Validation Lifecycle. IEEE Computer Society.

2. Including Model-Based Statistical Testing in the MATERA Approach.
Andreas Bcklund, Fredrik Abbors, and Dragos Truscan. Originally
published 2010 Proceeding of 3rd Workshop on Model-based testing
in practice.

3. MATERA - An Integrated Framework for Model-Based Testing. Fredrik
Abbors, Andreas Backlund, and Dragos Truscan. Originally published
2010 Proceeding of 7th Workshop on System Testing and Validation

4. Applying Model-Based Testing in the Telecommunications Domain.
Fredrik Abbors, Veli-Matti Aho, Jani Koivulainen, Risto Teittinen,
Dragos Truscan. Originally published 2012 Model-Based Testing for
Embedded Systems, Taylor and Francis Group, LLC.

5. Model-Based Testing of Web Services Using Probabilistic Timed Au-
tomata. Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan
Porres. Originally published 2013 Scitepress, 9th International Con-
ference on Web information Systems and Technologies.

6. Performance Testing in the Cloud using MBPeT. Fredrik Abbors, Tan-
wir Ahmad, Dragos Truscan, and Ivan Porres. Originally published
2013 Turku Centre for Computer Science, Developing Cloud Software.

7. An Automated Approach for Creating Workload Model from Server Log
Data. Fredrik Abbors, Dragos Truscan, Tanwir Ahmad. Originally
published 2014 Scitepress, 9th International Conference on Software
Engineering and Applications.

xi

xii

Contents

1 Introduction 3

1.1 Motivation . 10

1.2 Purpose of this Thesis . 11

1.3 Research Methodology . 11

1.4 Research Questions . 12

1.5 Overview of Research Contributions 13

1.5.1 Creating Models for Testing 14

1.5.2 Increasing the Quality of Models Used for Testing . . 16

1.5.3 Requirements Modeling and Traceability Across an
MBT Process . 17

1.5.4 Load Generation from Workload Models 17

1.5.5 Tool Support for MBT 18

1.6 Overview of Original Publications 20

1.6.1 Paper I: Tracing Requirements in a Model-Based Test-
ing Approach . 20

1.6.2 Paper II: Including Model-Based Statistical Testing in
the MATERA Approach 20

1.6.3 Paper III: MATERA - An Integrated Framework for
Model-based Testing 20

1.6.4 Paper IV: Applying Model-Based Testing in the Telecom-
munications Domain 21

1.6.5 Paper V: Model-based Performance Testing of Web
Services Using Probabilistic Timed Automata. 21

1.6.6 Paper VI: Performance Testing in the Cloud using
MBPeT. 21

1.6.7 Paper VII: An Automated Approach for Creating Work-
load Models From Server Log Data. 22

1.7 Research Setting . 22

1.8 Structure of the Thesis . 23

2 Modeling for Functional Testing 25

2.1 Background . 25

xiii

2.1.1 The Unified Modeling Language 25
2.1.2 The Systems Modeling Language 26
2.1.3 The Object Constraint Language 27
2.1.4 NoMagic MagicDraw tool 27
2.1.5 Qtronic and the QML Modeling Language 27
2.1.6 The Nethawk EAST tool 28

2.2 Contributions . 28
2.2.1 MATERA: A Systematic Modeling Process 28
2.2.2 Increasing Model Quality through Model Validation . 35
2.2.3 Requirements Traceability Across the MATERA Process 37

2.3 Validation . 38
2.3.1 Tool Support . 39
2.3.2 Empirical Validation on a Tele-communication Case

Study . 43
2.4 Related Work . 53
2.5 Conclusions . 54

3 Modeling for Performance Testing 55
3.1 Background . 55

3.1.1 Performance Testing 55
3.1.2 Workload models . 56

3.2 Contributions . 57
3.2.1 Distributed Load Generation from PTA Models 57
3.2.2 Creation of Workload Models 59

3.3 Validation . 62
3.3.1 Tool Support . 62
3.3.2 Empirical Validation on Case Studies 65

3.4 Related Work . 70
3.4.1 Performance Testing Approaches 70
3.4.2 Performance Testing Tools 71

3.5 Conclusions . 73

4 Conclusions 75
4.1 Discussion . 77
4.2 Future work . 78

xiv

PART I

Research Summary

1

2

Chapter 1

Introduction

Software is a key component in many of the devices and products that we
use every day. Most customers demand not only that their devices should
function as expected but also that the software should be of high quality,
reliable, fault tolerant, efficient, etc. In short, it is not enough that a calcu-
lator gives the correct result of a calculation, we want the result instantly,
in the right form, with minimal use of battery, etc. One of the key as-
pects for succeeding in today’s industry is largely due to delivering high-end
products and having good quality assurance. In most cases quality is the
central aspect. In most software development projects, high-quality soft-
ware is achieved by rigorous software testing processes. However, today,
customers are increasingly asking for these high-quality software products.
This leaves the companies with less time for development [1].

There are many different definition to what software testing is and what
it is not. Hetzel wrote in 1973 that ”Testing is the process of establishing
confidence that a program or system does what it is supposed to do” [Het-
zel 1973]. In 1979, Myers wrote that ”Testing is the process of executing a
program or system with the intent of finding errors” [Myers 1979]. There
are countless other examples and definitions of software testing. However,
software testing can not show that the tested program or software is free
from errors and can not show that a program performs its intended goal
correctly to 100 per cent certainty. In fact, the well know computer sci-
entist E.W. Dijkstra point out already in the early 1970’s that ”program
testing can be used to show the presence of bugs, but never to show their
absence” [2]. In this thesis we will take the definition that software testing
is ”an investigation/examination conducted on a program or system to find
as many errors as possible, check that it meets the requirements, and bring
the software to an acceptable level of quality”. Software testing can also be
used by a business to objectively access and understand the risk of software
implementation. Most software testing techniques include the activity of

3

executing a program or application, using specific test data, with the intent
of finding errors. Software errors include a variety of possible faults but are
usually referred to as undesired behavior or incorrect output from a program
or application with respect to a particular set of inputs.

One of the most common activity in software testing is looking for defects
in the software that are related to systems functionality. The defects could
for example be wrong behavior, erroneous output, missing functionality, etc.
This activity are normally referred to as functional testing. In some sense,
functional testing is the means of ensuring that a piece of software has all the
required functionality that is specified within its functional requirements.

However, not all software defects are related to functionality. Other as-
pects of the software, such as performance, security, scalability, usability,
etc., need also to be verified. The verification of these aspects of the soft-
ware is traditionally called non-functional testing. Some systems may stop
functioning or may prevent other users to access the system simple because
the system is under a heavy workload with which it can not cope. In soft-
ware testing, we also need check how a software system performs in terms
of responsiveness and stability under various load conditions. The process
of checking for these types of defects in normally referred to as performance
testing. One of the major challenges with performance testing is that it is
usually carried out at the end of the software development process when
most of the functionality is implemented. This is due to the fact that per-
formance aspects usually apply to the software as a whole.

Because software testing requires much manual work, it is an expensive
activity. Hailpern and Santhanam estimates that debugging, testing and
verification can sometimes range from 50 to 75 percent of the total develop-
ment cost [3]. Further, the most expensive software defects are those which
have to be fixed after the product is released. The total cost attributed to
software testing originates from many different places, e.g., the manual labor
that goes into the process of creating tests. One of the main challenges in
software development is reducing the associated cost and time of software
testing without sacrificing the quality of the developed software [4].

Another drawback is that functional testing, as well as performance test-
ing, involves tedious manual work when creating test cases. In many large
scale software projects, the testing cost is proportional to the number of
tests needed to demonstrate and ensure a certain level of quality. Gauf and
Dustin reports that 50 percent of the software companies allocate between
30 to 50 percent of their total development time of testing [5].

A software system typically undergoes plenty of changes during its life-
time. Whenever a piece of code is changed, a test has to be updated or
created to show that the change did not break any existing functionality
or introduce any new defects. Maintaining all the created tests adds addi-
tional costs due to changing requirements and changes made to the source

4

code. In case of performance testing, this implies that one has to be able
to benchmark quickly in order to effectively check if the performance of the
system is affected by the change of the code.

In recent years, Model-Based Testing (MBT) has been proposed as a
solution to many of these problems. The advantage of MBT is that is relies
on automatic generation of tests from an abstract model representing the
system under test (SUT) rather than manual crafting. Generating tests
from a model normally implies covering the model in several different ways.
If changes are made to the software, the corresponding changes are also
made to the system models and all tests related to the original change can
simply be re-generated. This should be contrasted with having to identify
and manually re-write all the tests that are affected by the change in the
software. Another benefit with MBT is that sophisticated algorithms can
reveal complicated tests that humans would have difficulties in finding. That
is why MBT nowadays is one of the recommended techniques for testing
safety-critical systems [6].

In software testing, tests can be derived from many different sources,
typically, specifications, requirements, design documents, and source code.
Software testing activities can be divided into 5 different levels. These levels
describe when the testing activity is taking place but also what to test in
relation to the traditional waterfall software development model. Figure
1.1 shows how each testing level corresponds to a particular development
activity. At each level different types of testing methods and activities can
be deployed. We will begin at the lowest level.

In programming, at the lowest level, we find small units of code that
are called functions. The purpose of functions is to carry out very specific
tasks. For example, raising one number to the power of another number or
sorting elements in a list. They take one or more inputs, called parameters,
perform some operations, and return an output value. Unit testing refers
to the activity of testing these units or functions. In principle, testing of
functions is done without knowledge about other functions or encapsulating
software and can be started as soon as implementation is ready. At one
level higher up we find detailed design. This phase involves the activities
of combining functions from the level below into modules that carry out
operations. Hence, a module is a collection of related functions. Module
testing is the activity of testing modules in isolation from other modules. In
other words, testing without knowledge of or influence from other modules.
This activity can be stated as soon as all the functions belonging to the
same module has been implemented.

Going one level further up we find the subsystems design. In this phase
of software development the structure and behavior of subsystems are de-
fined. It involves the activities of connecting the right modules together to
fulfill a specific goal or use case. For example, a printing module on a com-

5

Requirements
Analysis

Architectural
Design

Subsystems
Design

Detailed
Design

Implementation
Unit

Testing

Module
Tesing

Integration
Testing

System
Testing

Acceptance
Testing

Figure 1.1: The V-model of software development and testing processes.

puter needs to be able to communicate with a module on a printer in order
to print a document. Integration testing is the activity of assessing whether
the interface between different modules have consistent assumptions and
communicate correctly. This activity can be started as soon as two or more
communicating modules have been independently tested. On the second
highest level we find architectural design. This phase specifies components
and connectors that together comprises the entire system whose implemen-
tation is expected to meet the system requirements. System testing is design
to test the system as a whole and verify whether the requirements have been
fulfilled. It assumes that all the underlying modules and functions work indi-
vidually and investigates if the system works as a whole. At the highest level
we have the requirements analysis phase. In this phase all the customers’
needs are captured in requirements stating what the system is supposed to
do. Acceptance testing is the activity of verifying if the software system
actually does what the customer wants it to do. In most cases the customer
is also involved in this phase.

In software testing, a clear distinction is made between black-box testing
and white-box testing. Black-box testing is a method for designing/writing
tests without looking at the internal structure or the source code of a pro-
gram. The system or program is viewed as a black box without any knowl-
edge about what is inside. Instead, this method focuses on what is externally
visible or the inputs and outputs. In a sense, the tester only knows what

6

the software should to, but now how it does it. To write tests using this
method one needs access to requirements document and specification of the
software. Black-box testing can be applied to all testing levels but is typi-
cally applied only to the higher testing level (component interface testing,
system testing, and acceptance testing).

On the other hand, White-box testing is a method for designing/writing
tests when the tester has access to the program’s source code. In other
words, the tester also knows how the software produces a specific output.
The knowledge of the internal working of a module or function is used for
determining input values and designing tests that exercises specified and
desired paths through the source code. White-box testing can be applied to
all testing levels but is typically applied only to the lower testing levels (unit
testing and integration testing). Figure 1.2 depicts the difference between
black-box and white-box testing. For example, in the black-box case, we
know only what the function is supposed to do but how exactly how it
does it. In the white-box case, we have insight or knowledge about the
implementation and can design test accordingly. In the context of this thesis,
we focus only on black-box testing methods.

Unknown Equation versus Known Equation

X = 2 Y = 4 X = 2 Y = 4Y = 2X

.

.

.

.

The output
should twice a
large as the
input

Figure 1.2: Black-box vs white-box testing.

Model-based testing (MBT) is a relative new and modern testing paradigm.
It is a black-box testing technique that relies on generation on tests from
abstract models rather that manual crafting. There are many definitions of
MBT but Mark Utting defines it as ”the generation of test cases with test
oracle from a behavioral model” [7]. In other words, the system behavior
is captured in an abstract model from where tests are later automatically
generated. This means that the focus has been shifted form test case imple-
mentation to modeling. The test model is usually not a complete description
of the system functionality but rather an abstract or partial representation
of the behavior of the system under test (SUT) relevant for testing. It is up
tester to decide the level of abstraction and what to represent in a model.

Ideally, the time taken to develop a model should be less than the time

7

taken to implement all the tests manually. However, this may vary de-
pending on the skill of the tester. Figure 1.3 shows the difference between
model-based testing and traditional testing.

Requirements

Requirements

Tests

Tests

@Test public void testfibonacci() {

Test Result = new fibonacci(5);

Int Array Exp =[1,1,2,3,5];

assertEquals(Exp, Result);

}

@Test public void testfibonacci() {

Test Result = new fibonacci(5);

Int Array Exp =[1,1,2,3,5];

assertEquals(Exp, Result);

}

Implement

Implement Generate

Traditional Testing

Model-based Testing

Figure 1.3: Model-based testing versus traditional testing.

One of the main advantages of MBT is test case generation. Large
number of tests can be generated in a very short amount of time. Another
advantage if MBT is its resilience to changing requirements. If a change is
made to the system, the corresponding change can be made in test model
and all the affected test can be re-generated in an instant. This should be
contrasted to the traditional approach where a tester needs to locate every
test affected by the change in the system and update each test accordingly.
Since tests can be automatically generated in MBT, it is also believed that
maintaining a model costs less than maintaining a test suite built manually
[8]. Finally, the fact that modern IT system are very complex and that
multiple test generation algorithms can be combined to cover a model, it is
possible to uncover tests that would be difficult to discover using traditional
methods.

Tests that are derived from a test model are on the same abstraction
level as the test model. Abstract tests cannot directly be executed against
an SUT, but need to be concretized. This a usually achieved by mapping
abstract test to executable test using a form of adaptation layer in between.

Cloud computing, or simply ”the cloud”, is a relatively new trend in
computing. In its most basic form, cloud computing is a general term for
anything that offers hosted services over the internet. For instance, hard-
ware, platforms, or services [9]. From a business perspective, cloud com-

8

puting focuses on maximizing the effective use of shared resources the by
offering various pay-per-use models for development, deployment and scal-
ing for software and services. From a customer point of view, cloud com-
puting offers the possibility to access on-demand computing resources for
large-scale IT infrastructures without requiring a large up-front investment.
The cloud also offers the possibility to dynamically scale up and scale down
the IT infrastructure depending on the capacity needed at particular times.
The resources models offered by a cloud are delivered as to the customer as
”as-a-service” solution and they are normally divided into three categories.

Saas

Paas

Iaas

Hybrid Clouds

Private

Clouds

Public

Clouds

Community

Clouds

Figure 1.4: Cloud service models.

Figure 1.4 shows the tree categories. These service models can be de-
ployed in public, private, community, or hybrid clouds environment. Dif-
ferent cloud providers are targeting specific customer segments by offering
different combinations between service and deployment models. The Iaas
service model, Infrastructure-as-a-Service, offers a complete infrastructure
to its users. The infrastructure usually contains computational, storage, and
network resources. The users can freely choose the operating system, appli-
cations, and services they wish to run. The PaaS service model, Platform-
as-a-Service, offers its users the possibility to create, deploy, and run ap-
plications using a specific set of programming languages, tools, libraries,
frameworks supported by the cloud provider. The users of Paas services
control over the applications but contrary to Iaas, they do not have control
over the underlying infrastructure, e.g., operating system, hardware, net-

9

work, etc. SaaS, Software-as-a-Service, is the most restricted service model.
Here, the cloud provider allows the users to use specific applications. Lim-
ited control, such as application specific details, is given to the users.

1.1 Motivation

One of the promises of modeling in software development has been that
it shifts the focus from implementation to design [10]. This is beneficial
because shifting the focus towards design allows one to raise the abstraction
level and think more at the beginning about what is being specified. By
investing effort in the initial specification phase, it is possible to save time
and effort because errors are detected far earlier [11]. In turn, raising the
abstraction level reduces complexity and allows one to focus on the relevant
parts of a problem instead of dealing with implementation details. Because of
these benefits, many have investigated the use of models in software testing.
The term ”Model-Based Testing” is a relatively recent invention and was
adopted sometime around the mid 1990’s but its origins can be traced back
to the 1970’s when it was used for testing software modeled by finite-state
machines [12]. With more than 30 years development, model-based testing
is still struggling to find its way into mainstream industry despite all the
demonstrated advantages. Bernhard et. al. [13] believe that one of the main
causes is due to the lack of proper cohesion between tools and systems used
in the development and testing processes. The area of software testing is
continuously trying to improve by reducing time and cost while maintaining
the same level of quality. Many believe that model-based testing could give
software testing the boost it needs to meet these goals. In fact, in a model-
based testing survey, the respondents report that MBT reduced the costs
and testing duration with 17 percent and 25 percent, respectively, while
reducing escaped bugs with 59 percent [14].

In a systematic review, Neto et. al. [15] point out that most MBT ap-
proaches have poor integration with software development processes and lack
empirical evaluation from industrial environments. Many of the reviewed ap-
proaches lack tool support and of the 406 reviewed articles, 95 percent used
a non-UML notation language. UML is, by many, considered the de-facto
standard notation language for object oriented modeling [16],[17], [18],[19].
Almost every reviewed approach is focusing on either functional testing or
non-functional testing without combining the two testing areas under the
same approach. Many believe there is a gap to fill in terms of research and
empirical experimentation together with industry.

This opens up new research questions on how to align current model-
based testing approaches with industry testing practices and how to inte-
grate current model-based testing tools with tools familiar to the industry.

10

1.2 Purpose of this Thesis

The proclaimed benefits of MBT have long been advocated by the academic
world, however, the industry have not been fully committed to the use of
MBT as the standard testing technique. The aim of the thesis is to design
an approach for creating models used for test generation. In this thesis, we
show how our model-based testing approach can be applied in an industrial
setting to functional testing, as well as, to non-functional testing. We show
that the same basic idea can be applied to functional testing as well as
to performance testing. The approaches presented in this thesis offers tool
support and are integrated with other software development tools familiar
to the industry.

1.3 Research Methodology

A research methodology is a systematic process or approach used in various
fields of study to support decision making or to expand a particular branch of
knowledge. It is also the means of analyzing and building models to test hy-
pothesis or to address research questions. A methodology typically contains
more than simply a research method. It can constitute of modeling, analy-
sis, testing, and other quantitative or qualitative techniques. Design science
is a research methodology that focuses on addressing questions regarding
the development of artifacts and evaluating their usefulness, performance,
stability, etc., with respect to previous artifacts [20].

Design Implementation Evaluation

Figure 1.5: Design science process model.

The explicit intent is on improving upon previous artifacts. It is a com-
monly used research methodology in the field of information technology and
differs from other methodologies typically used in natural sciences, which
are problem oriented, in that design science is solutions oriented. Figure 1.5
shows the key activities in a design science approach. Once a problem has
been identified, the first phase in the design science process is designing as
solution for the problem that is to be solved. In the second phase the actual
implementation tale place. In this phase, the actual artefact, whether it is

11

a model, method, or instantiation, is built. In the last phase, the produced
artefact is evaluated against existing artefact to determine wether is meets
its goals. The process can be iterated several times until the desired goals are
met. Most of the research presented in this thesis have been in collaboration
with industrial partners and have been applied on specific problems and in a
specific context. We have extensively made use of design science principles
because, once a problem have been identified, the design science process
model best fits our work flow, i.e., designing a solution, implementing it,
and evaluate.

1.4 Research Questions

According to Utting et. al., MBT consists of three parts modeling, test gen-
eration, and test execution [8]. For the most part, the problem of test gen-
eration and test execution has already been solved. There exist at plethora
of tools and platforms for test generation [21] and test execution [22]. In
the academic world, MBT has already been for many years proposed as one
solution to reducing the cost and time related to software testing. How-
ever, MBT has not yet gained the momentum in the industry that many
had hoped for. This might be due to the lack of sufficient tool support and
tester skills required for MBT.

One of the main problems we intend to address in this thesis is to show
how to model for test generation and that MBT in fact can be used in an
industrial setting. Moreover, in most cases, MBT is considered to only being
suitable for functional testing. Hence, we investigate how the principles and
benefits of MBT can be applied to performance testing. Below are the
Research Questions (RQs) that inspired this thesis.

• RQ1: How to create models that can be used for test generation?

– Focus on the relevant things and abstract away implementation
details.

– To find out which perspectives of the system that need to be
modeled.

– Choosing the right level of abstraction.

• RQ2: How can the quality of the test models be increased?

– Higher quality models lead to higher quality tests.

– Ensures that all the necessary information is present in the mod-
els.

• RQ3: How to model and trace requirements across a model-based
testing process?

12

– Ensures that the specified system requirements are covered by
tests.

– Ensures that the specified KPIs are met.

– Facilitates identification of which functionalities of SUT are not
in sync with the model and the requirements.

• RQ4: How models for load generation can be created and used?

– Focus on the relevant things and abstract away implementation
details.

– Ensuring that the right things are captured in the models.

– Choosing the right level of abstraction.

• RQ5: How can tool-chain connectivity be improved?

– Without good connectivity to industry tool-chains no one will use
it.

1.5 Overview of Research Contributions

In this thesis, we investigate the use of models for functional and perfor-
mance testing. Moreover, we propose new processes, methods, and tools for
using models in the context of MBT. Some of the tools used were commer-
cial while other tools were developed in-house as a proof-of-concept to fit
the tool-chain.

Figure 1.6: Overview of an MBT approach supporting functional and per-
formance testing.

An overview of our MBT process is presented in figure 1.6. The figure
also shows which research questions that are addressed by what parts of

13

the process. In the upper part of figure 1.6, we present our model-based
functional testing process and show how we go from requirements to models
and to tests. In the lower part of the figure, we present our model-based
performance testing process and show how it is connected to the previous
part.

Figure 1.7 shows a more holistic view of our process. The right side of
the box show the main stages in an MBT process. On the front of the box we
show our contributions for each stage in the MBT process. The rectangles
with a deeper color are our contributions. On top of the box we see the how
the MBT process is split into two parts, one for functional testing and one
for performance testing. On the back side of the box, we have traceability
of requirements which is supported throughout the whole MBT process.

Ext tools:
Qtronic
EAST Test Runner

Test Reporting Test Reporting

Requirements -> UML
Requirements
Logs PTA
UML

OCL Validation PTA model validation

MPBeT Tool

Figure 1.7: 3-dimensional view of our process.

The presented research work in this thesis has mainly been validated by
conducting experiments on different example. The examples show the ap-
plicability and usefulness of the proposed approaches while the experiments
give quantitative data. In the following sections we present a brief overview
of the main research contributions.

1.5.1 Creating Models for Testing

Our first contribution of the thesis is an approach for creating models for
testing. This contribution is divided into two parts; one systematic approach
for functional testing and another for performance testing. This contribution

14

answers research questions RQ 1: How to create test models that can be
used for test generation? and RQ 4: How models for load generation can
be created and used?

In our first approach, we focus on creating systems models used for func-
tional test generation. We investigate how complex systems can be models
in UML, on what level of abstraction, and what perspective of the systems
are needed for successful test generation. This approach is explained in
Paper III and Paper IV. The systems models are created using the UML
modeling language. Both static and dynamic system behavior is expressed
in the models. In our publications, we present a systematic approach where
models are created starting form analyzing and modeling the requirements
and system features. We the express the modeled requirements in terms of
use cases and sequence diagrams. From the sequence diagrams we create
state diagrams and class diagrams representing the static and dynamic view
of the system. Finally, we have data models depicting the different data
types used in the systems and a test configuration diagram representing a
specific test setup of the system under test. This work has been validated by
applying our proposed approach to an industrial tele-communications case
study. In the case study we modeled three features (location update, phone
calls, and call handover) of and Mobile Switching Server (MSS).

In our second approach, we focus on the creation of models used for
load generation. We explore the use of probabilistic models in order to
describe operational profiles that are used for load generation. We present
a performance testing approach for web services in which we use abstract
probabilistic models to describe how users interact with the system. This
research is presented in Paper V, Paper VI, and Paper VII. In Paper V
and VI, we show how workload models are created following a systematic
approach where we start by identifying key performance scenarios. The
workload models are successively built following a few basic guidelines. In
Paper VII, we describe an automatic approach of inferring a workload from
historical data. The Paper presents the algorithm and explains each step
of the algorithm in detail. This work was validated by conducting two
experiments. In the first experiment we showed that the tool can generated
a workload model from a Apache web server access log. In the second
experiment we set out to test if the generated workload model is in fact
correct. We manually built a workload model, generated load out of it
in order to obtain a data log. We then used that log to generate a new
workload model which we then compared to the original one. The result of
the experiment was that the two workload models were close to identical.

15

1.5.2 Increasing the Quality of Models Used for Testing

Our second contribution is on increasing the quality models used for testing.
Since model are used for test generation, the generated tests will be on the
same level of quality as the models. By increasing the quality of the model,
we can also increase the quality of the tests and, hence, avoid unnecessary
mistakes. This contribution is divided into two parts; one approach for
increasing the quality of models used for functional testing and another
approach for increasing the quality of workload models used for performance
testing. This contributions answers research question RQ 2: How can the
quality of the test models be increased?

In our first approach, we propose a solution for increasing the quality of
UML models by using OCL validation. We provide a set of custom rules and
pre-defined set of validation rules for increasing the quality of the models.
The rules check that the UML conform to certain principles and that impor-
tant data is not omitted. The corresponding research is presented in Paper
III and Paper IV. The papers describe the validation procedure and dis-
cuss the validation rules for checking different aspects of the models before
proceeding to the test generation phase. The papers also describe the OCL
rules, how they can be invoked, and what happens when a rule is violated.
The research work has been validated by executing our pre-defined OCL
rules against UML models describing the behavior of a tele-communications
network element.

In our second approach, we describe an approach for increasing the qual-
ity of PTA models. The research on increasing the quality of PTA models is
presented in Paper VI and Paper VII. In Paper VI, we present the MBPeT
tool and the capability of checking the models for various properties before
proceeding to the load generation phase. In Paper VII, we present an au-
tomatic approach, with tool support, for generating workload models from
web server log data. Rather than constructing a model based on estimates,
the models generated from log data actually represent how real users in-
teract the system. In performance testing, it is important that the load
generated from workload models mimic the load generated by real users as
closely as possible, otherwise it is not possible to draw any reliable con-
clusions from the test results [23]. Given a set of web server log data that
describe historical access patterns, the tool will infer a workload model. Our
results show that the algorithm is both fast and accurate when inferring a
workload model. The work has been validated by conducting two exper-
iments. In the first experiment we create workload profiles using real log
data from a web site maintaining sports scores. In the second experiment,
we demonstrate that the created workload profiles actually conforms to the
data found in the logs by comparing the automatically created profiles with
profiles built manually.

16

1.5.3 Requirements Modeling and Traceability Across an MBT
Process

Our third contribution of this thesis is on modeling and tracing requirements
across a model-based testing process. This contribution is divided into two
parts; one approach for tracing requirements in a functional MBT process
and another approach for tracing requirements in a performance testing
process. This contributions answers research question RQ 3: How to model
and trace requirements across a model-based testing process?

Requirements traceability is very important in software testing. It en-
sures that the specified system requirements are covered by tests and it
provides mechanism for detecting untested requirements. In the context of
model-based functional testing this is facilitated by being able to trace an
individual requirement to generated tests and back to models. Our first
approach is for tracing requirements from and to UML system models. This
research is explain in more detail in Paper I and Paper II. In Paper I, we
show how requirements are traced across an entire MBT process and in Pa-
per II, we show requirements traceability can be used to prioritize test cases.
The work was validated by illustrating an example where requirements were
linked to system models describing the behavior of a Mobile Switching Server
(MSS). More specifically, the models described different functionality of the
MSC, such as, location update, phone calls, and call handover. The mod-
els described the previous mentioned MCS features using both 2G and 3G
technologies. The example also showed how the requirements are traced to
tests and later back to the models again.

In our second approach we provide mechanisms for tracing Key Per-
formance Indicators (KPIs) to individual user requests. More specifically,
average response time values are associated with every action in a workload
model and monitored during load generation. This research is explained
in more detail in Paper V and Paper VI. Besides monitoring just response
time values, our proposed approach also monitors other KPI values such as
throughput, CPU, memory, disk, and network utilization. The work has
been validated by applying load to an auctioning web service while moni-
toring the above mentioned KPIs.

1.5.4 Load Generation from Workload Models

Our forth contribution involves generation of load from workload models
described using the PTA formalism. This contributions answers research
question: RQ 4: How models for load generation can be created and used?
We present a model notation language and explain the PTA formalism. We
also propose a model-based approach for generating load from user behav-
ior models described as probabilistic models. This research is explained in

17

more detail in Paper V and Paper VI. The research work has been validated
by generating load from models describing the behavior of user of an auc-
tioning web site. The load was applied in real time to the web server and
the response times were measured. We preformed two experiments where
synthetic load of 300 concurrent user was generated and applied to an auc-
tioning web site in real time. In the first experiment, we showed how the tool
can not only monitor Key Performance Indicators (KPIs) but can also give
indicators for potential bottlenecks. The second experiment served as vali-
dation for the first experiment were we showed that the proposed bottleneck
by MBPeT tool in fact was the right one.

1.5.5 Tool Support for MBT

Our last contribution is related to the implementation of the required tools
to support the previously mentioned approaches. This contribution answers
research question: RQ 5: How can tool-chain connectivity be improved?
In this contribution, we present the MATERA tool-set, the MBPeT tool,
and the Log2Model tool, respectively. Tool support has been discussed in
Papers I-VII. MATERA is a tool-set that helps the tester during the model
creating phase and guides him/her to follow our proposed approach. In [24],
we provide additional information regarding transformational support for
MATERA. The papers discusses in detail how models expressed in UML
are transformed for test generation. The research work on MATERA been
validated by using the MATERA tool-set on an industry case study taken
from the telecommunications domain. In the case study we modeled the
the location update, phone call, and handover functionality of a Mobile
Switching Server (MSS). We demonstrate how the models are validated and
transformed for validation. Further, we also show how the MATERA tool-
set support test reporting and back-tracing of requirements using data from
real test execution logs.

MBPeT is a cloud based performance testing tool. We show how we
use PTAs to model user profiles to generate synthetic workload. The load
is generated in real-time and applied to the system under test, while mea-
suring several Key Performance Indicators (KPIs). The papers focus on
the MBPeT tool support by showing the tools distributed architecture and
dynamical allocation of new generation nodes. We also show how the tool
can be adapted for a cloud environment. The research work has been val-
idated by conducting a case study and running the tool in a private cloud
while generating synthetic load for an auctioning web site in two different
experiments.

Log2Model is a tool for inferring workload models, expressed as PTAs,
from a set of web server log files. The tool outputs a workload model that
corresponds to the access patterns discovered in the log data. The tool

18

has showed to be both fast and accurate when generating workload models.
The work has been validated by conducting several experiments in where
we compare generated models to models built manually.

Below is table showing the original publications and which research ques-
tions they address.

Publication Research Question

Paper I: Tracing Requirements In A
Model-Based Testing Approach

RQ3,RQ5

Paper II: Including Model-Based Statistical
Testing in the MATERA Approach

RQ3,RQ5

Paper III: MATERA - An Integrated Framework
for Model-based Testing

RQ1,RQ2,RQ5

Paper IV: Applying Model-Based Testing
in the Telecommunications Domain

RQ1,RQ2,RQ3,RQ5

Paper V: Model-based Testing of Web
Services Using Probabilistic Timed Automata

RQ1,RQ2,RQ4,RQ5

Paper VI: Performance Testing in the
Cloud using MBPeT

RQ1,RQ3,RQ4,RQ5

Paper VII: An Automated Approach for Creating
Workload Models From Server Log Data

RQ1,RQ2,RQ5

Table 1.1: Original publications and the research questions they address.

Our work is split into two parts, functional and performance testing.
However, the foundation and corner stones in both parts remain the same,
that is, we use models for both functional as well as for performance testing.
For functional testing, we develop a set of UML models starting for from
the requirements of the system. The models are created following as set of
guidelines and are in a later stage transformed as input for test generation
tools. System requirements are also modeled and tracked throughout the
whole process. For performance testing, a set of PTA models are also de-
rived, either manually or from log data. The PTA models are probabilistic
in nature and describe how the user interact with a system. These models
are used as input for load generation and performance testing of the system
under test.

19

1.6 Overview of Original Publications

In the following section we will briefly describe each original publication in
turn.

1.6.1 Paper I: Tracing Requirements in a Model-Based Test-
ing Approach

This paper we present a model-based testing approach where we show how
requirements modeled in the UML language are linked/traced to other UML
system models and elements that implement the requirements. We present
a hierarchical decomposition of requirements where each level in the hier-
archical structure relate to different abstraction levels in the system model.
We also show how requirements linked to model elements are trace to exe-
cutable tests and how they are traced back to the models again after test
execution to visualize which requirements that were not properly tested.

1.6.2 Paper II: Including Model-Based Statistical Testing in
the MATERA Approach

In this paper we build upon the previous one by using statistical data from
test execution combined with UML modeling to prioritize test cases and,
thus, giving us a slight control over how tests are generated. This way we
make sure that the most important requirements and, consequently, the most
important test get tested first. To achieve this we give each requirement an
initial priority. The priority describe the importance of the requirements.
By calculating a combined total, every test case can be ordered based on
their total priority value. Once test have been executed, we analyze the
test log and automatically update the priority value of requirements that
were attached to failed test cases. This means that test cases covering these
requirements will have a higher total priority value in successive test rounds
and, thus, be ordered differently.

1.6.3 Paper III: MATERA - An Integrated Framework for
Model-based Testing

The paper describes our proposed model-based testing process together with
the MATERA tool-set. The paper puts emphasis on the tool and presents
the graphical user interface. In the paper, we explain how models are cre-
ated, how requirements a modeled and traced to model elements, how the
models are validated and transformed for test generation. We also show how
the tool supports test reporting by collecting information from test execu-
tion logs and comparing the test purposes encoded in test scripts against
the results of the test execution. Finally, we present a solution for tracing

20

requirements back to models. We show how requirements are tracked back
to the specifications from which the corresponding test cases have been gen-
erated. This facilitates identification of possible faults in the specifications.

1.6.4 Paper IV: Applying Model-Based Testing in the Telecom-
munications Domain

In this book chapter we describe the entire model-based testing process
applied to a tele-communications case study and present a complete picture
of the entire tool chain. We give a full description of all models together with
their subsequent validation and transformation phases. We explain the test
generation platform and show how tests are generated based on specific test
generation criteria and later translated into executable tests using industrial
tools. We also describe the test execution platform, how tests are executed,
and how test execution logs are produced. The book chapter is the result
of collaboration between many industrial partners that have come together
to build an entire tool-chain. The work presented in the chapter clearly
shows the applicability and usefulness of the proposed model-based testing
approach.

1.6.5 Paper V: Model-based Performance Testing of Web
Services Using Probabilistic Timed Automata.

This paper presents a systematic approach for creating models that can be
used for synthetic work load generation. The main idea of the proposed
approach is to make use of probabilistic models for describing user behavior
and, thus, generate realistic load patterns that mimic real user behavior.
The proposed models conform to the probabilistic timed automata (PTA)
formalism and we show how the models are created and what they mean.
We also show how load is generated from the models and how different
performance indicators are monitored during a test run.

1.6.6 Paper VI: Performance Testing in the Cloud using
MBPeT.

This article we give a complete picture of our proposed model-based per-
formance testing process. We also present the MBPeT load generator that
generates work load from load models representing user behavior described
as PTAs. We describe MBPeT’s scalable architecture that has been built
to fit in a cloud environment and highlight the main features of the tool.
We show how workload models are created and present various stages of
load generation. Finally, we present the results of a few experiments on load
testing an auctioning web service and we discuss test reporting.

21

1.6.7 Paper VII: An Automated Approach for Creating Work-
load Models From Server Log Data.

This paper describes an alternative approach for automatically generating
workload models from web server log data. We describe the different steps
of the algorithm for generating a workload model and also presents tool
support. Finally, we show the usefulness of the approach by applying on a
few experiments.

1.7 Research Setting

The research work presented in this thesis has been developed in conjunc-
tion with several large scale research projects. Most of the research pre-
sented on model-based functional testing was done within the context of the
Deployment of Model-Based Technologies to Industrial Testing (D-Mint)
project [25]. D-Mint was a international project consisting of 24 partner
from 5 different European countries. The aim of the project was to develop
methodology, tools and training material and to adapt model-based testing
into an industrial reality to cut the cost of developing high quality, complex
software.

The rest of the research in this thesis has been done in collaboration with
3 large scale software projects. First, the Cloud Software Finland project
[9] was a joint research project with over 30 IT companies in Finland and
many other universities. The aim was to improve the competitive position of
Finnish software intensive industry in global market through cloud software
solutions. Second, in the PAM project [26], the objective was to investigate
the applicability of model-based testing principles in the context of contin-
uous integration processes. Finally, the Need 4 Speed (N4S) project is a
consortium including a mix of over 30 partner ranging from large industrial
organization to research institutes and universities. The goal of the project
is to develop a foundation for the Finnish software intensive businesses in
the new digital economy.

I was also part of the doctoral programme on Software and Software
Engineering (SOSE) [27], where I had a funded position for two years. The
programme focuses on research problems related to the software engineer-
ing process, software design and architecture, software implementation, and
software testing. The research covers the study and development of meth-
ods and tools used for the various phases of software development and em-
phasizes practical applicability of the results to be evaluated in industrial
contexts.

The findings presented in this thesis is largely the result of much collab-
oration with industrial partners and research institutes in the above men-
tioned projects.

22

1.8 Structure of the Thesis

The thesis is written as a collection of peer-reviewed articles and consists of
two parts. Part I provides a overview of the research and explains the con-
cepts and background information in general terms, while Part II presents
the original publications. Part I is structured as follows: Chapter 2 presents
an overview of our approach of modeling for test generation. The chapter
also presents tool support for the proposed approach and shows the results
of our MBT process applied to a industrial case study. In chapter 3 we in-
troduce our approach for modeling for performance testing and present the
research done on workload model generation from various sources. We also
present tool support for the proposed approach and show the MBT process
applied to a case study. Finally, in chapter 4 we present the conclusions and
discuss future work.

23

24

Chapter 2

Modeling for Functional
Testing

This chapter we introduce a few basic concepts, and presents the research
work related area of creating models for functional testing. We also discuss
the related work and present our approach for modeling for functional test
generation

2.1 Background

In this section we will present the foundation of our approach and discuss a
few relevant concepts and tools. The concepts and the tools are presented
because they are used in our approach and are essential for understanding
how our approach works.

2.1.1 The Unified Modeling Language

The Unified Modeling Language (UML) [28] is a general purpose model-
ing language. A general purpose modeling language usually means that
almost any kind of system can be modeled using that language. The op-
posite to a general purpose modeling language would be a domain-specific
modeling language. Only specific types of system can be modeled using
domain-specific modeling languages and the concepts are closely tied to the
operating domain of the system. UML was designed to give a standard way
to visualize the design of object-oriented software systems. Today, UML is
a de facto standard modeling notation language that provides mechanisms
for modeling systems in an abstract manner and representing the systems
form different types of views [28]. In many cases, UML models are used as
part of the system specification document and due to its large user base it
facilitates communication between systems designers and developers.

25

To represent a system from different viewpoints, UML deploys a number
of different diagrams. Each diagram shows the system from a particular
point of view. A class diagram presents the systems from a static point
of view. It shows all the classes/modules, their attributes and functions,
and how they are interconnected. The state diagram presents the dynamic
view of the system. It uses state machines to view the behavior of each
class/module and what input/output that is required to change from one
state to another. Sequence diagrams are used to represent the communica-
tion between two or more classes/objects while use case diagrams show how
different actors use different functionality (described as use cases) of the sys-
tem. The actors often represent users of the systems but can also represent
other software components. Object diagram are closely related to other class
diagrams in the sense that objected diagrams are a particular instantiation
of a class diagram. For example, imagine a system where students enroll to
different courses. The class diagram would show two classes connected to
each other; a class representing a student connected to a class representing
a course. Using the class diagram as a basis, the object diagram would show
what particular students that are enrolled to what particular courses.

2.1.2 The Systems Modeling Language

The Systems Modeling Language (SysML) [29] is also a general purpose
modeling language and targeted towards the application of systems engi-
neering. It is a UML profile that represents a subset of UML with exten-
sions. The SysML profile also introduces a few new diagrams. The require-
ments diagram visualizes system requirements which can be linked/traced
to other model elements that implements them. Requirements can also be
derived by other requirements. The activity diagram describes the behavior
of a system by showing the data flow and the control flow between different
system activates. The block diagram is similar to the UML class diagram
and show the system structure in terms of components (blocks) together
with their attributes and relationships to other components. To model the
internal structure of a block/component, SysML deploys an internal block
diagram describes. This diagram describes the internal structure of a block
in terms of its parts, ports, and connectors. The parametric diagram defines
parameters and mathematical expressions for different block and describes
how parameter affect each other when their values are changed. The para-
metric diagram also describes how different block depend on other system
properties that they are bound to.

26

2.1.3 The Object Constraint Language

The Object Constraint Language (OCL) is declarative language for spec-
ifying rules that apply to UML models and elements [30]. Today is has
become part of the UML standard. The language provides designers with
constraints that can be used to query objects or put limitations on them.
It is very useful in model validation for assuring the quality of the UML
models via validation rules written in OCL.

2.1.4 NoMagic MagicDraw tool

MagicDraw [31] is a visual UML modeling tool developed to facilitate design
and analysis of object oriented systems [31]. Besides modeling, the tool also
offers support for code generation and has a open API that allows for plugin
development. This way developers can extend the capabilities of the tool
to suite their own needs. It also offers support for validation of UML via
the OCL [30] validation engine. The tool is targeted towards professional
system developers and software architects and is one of the leading UML
tools on the market.

2.1.5 Qtronic and the QML Modeling Language

Qtronic1 [32] is a tool for automatic model driven test case design which
generates test cases from a model representing the SUT. The models are
specified using a formalism called Qtronic Modeling Language (QML). QML
is essentially a mix of UML state machines and a subset of Java. QML is
an object oriented language and is used for describing different aspects of
the SUT like data, data structure, behavior, input/output ports, etc.

Test cases are automatically generated from models representing the
behavior of a SUT. Hence, the tool uses a black-box testing mechanism for
generating tests. The behavior of the SUT is usually described using UML
state machines together with QML as the action language. In QML, data are
defined as records. Records are user-defined data types that can contain
variables, methods, and operators. Hence, the records are the definitions of
specifics data types used in the system and they are used to communicate
with the environment. QML uses ports to define interfaces. An interface
defines ports that can be used to send and receive data/records. The ports
and the records that are exchanged constitute the interface of the SUT to
its environment.

Qtronic provides support for requirement coverage during test genera-
tion. Requirements are associated to state models, more precisely to actions
on transitions that implement a requirement. Basically, requirements are

1Now known as Conformiq Designer

27

tags that are used to trace if a specific action in the state model has been
covered by the generated test cases.

2.1.6 The Nethawk EAST tool

NetHawk EAST [33] is a simulation platform for simulating and testing of
telecommunication systems. The EAST platform consists of all the required
tools needed for a complete behavior simulation of a different telecommu-
nication technologies like LTE, 3G, WiMax, etc. It supports a wide range
of testing capabilities from functional testing to performance testing. The
platform uses of the Testing and Test Control Notation 3 (TTCN-3) [34]
language for specifying and executing complex test cases.

The platform offers a wide range of editors for specifying test cases for
the lowest level up to whole test suits. In most test case scenarios, only a few
relevant message parameters need to be tested. However, in order to test
these parameters, a lot of other detailed information must be provided. This
added complexity could easily become a problem for tester. To address this
problem, the EAST platform uses reference libraries. A reference libraries
contains a collection of messages at different protocol levels we want to send
and receive during a test session and contains pre-defined values for most
message parameters. This way tester can focus on the relevant parameters
without have to be an expert in every protocol.

2.2 Contributions

In this section we are presenting the contributions related to functional
model-based testing. The presented contributions are described in more
detail compared to the overview given in Chapter 1.

2.2.1 MATERA: A Systematic Modeling Process

MATERA is our proposed UML-based modeling approach for systematic
development of system models for automatic test generation. A system-
atic approach ensure that models are created in a step-by-step manner and,
therefore, is more structured than an ad-hoc approach. As stated in the
introduction, models allow one to focus on the relevant part of a problem
and hide away implementation details. The basis for choosing UML as the
modeling language for our approach was that is a modeling language wide
a very wide user base and known to many. It is also used extensively in the
industry. Another reason for choosing UML is that we wanted to show that
system design models are not only suitable for design but can also be used
for deriving test cases.

28

Figure 2.1 shows an overview of a typical MBT process and the parts
of the process that MATERA addresses. As stated in the introduction, test
generation and execution has for the most part already been solved. Hence,
the MATERA approach focuses on modeling and how to create system mod-
els in a systematic way.

� ����������	
���� 	� ��	� 	���� 	�� �	
���
� �� �

� ��	����� � ��	�� ������ ���
�	� ��	� 	������� ���

� 	��	� ������� �	�� �	�	�������	��	� 	����� �������� �!"����	�� ���	�
� ��	��

#$%&'$

Figure 2.1: Overview of the MATERA and the MBT process.

In the MATERA approach, system models are created in a systematic
fashion. Figure 2.2 depicts the MATERA process. The process is divided
into five stages. First, we start by reviewing standards and specification doc-
uments and we analyze the stakeholder requirements related to the product.
The time required to complete this phase depends on the amount of infor-
mation that has to be analyzed. In the second phase, we construct a feature
diagram and a requirements diagram based on the information gathered
from phase one. The feature diagram (Figure 2.3) depicts different charac-
teristics of the system and shoes how they are decomposed into sub-features.
The idea is that every feature maps to a high level system functionality re-
quested by a customer. For every feature, a requirements diagram (Figure
2.4) is constructed.

29

Figure 2.2: The MATERA Modeling Process.

The requirements diagram capture all the system level requirements and
presents a general overview of the requirements. We start by modeling a
single requirement which maps to a system feature. From here, the re-
quirements are decomposed into sub-requirements based on the information
gathered from the first phase. This process in repeated until we reach re-
quirements that are testable or no further sub-requirements are identified.
The requirements can also be given a priority value. The priority value
indicates the importance of a requirements and is in later stages of the test-
ing cycle used to order test cases based on their importance. The priority
values are considered to be given from external sources (e.g., system re-
quirements or stakeholder recommendations) and known a priori before the
first iteration of the testing process. In later cycles, the priority values can
be adjusted based on statistics of untested requirements from previous test
cycles for targeting the testing process towards a certain part of the SUT.

In the third phase we construct use case diagrams and sequence dia-
grams from information contained in the requirements model. The use case
diagram (Figure 2.5) specify how system functionality is provided to its
environment. It shows how users access different system functionality, rep-
resented as a use case. Every use case have a detailed description of pre- and
post-conditions, sub-cases, and a tabular format for specifying the necessary
message communication between actors and the systems in order to com-

30

Figure 2.3: Example of a feature Diagram.

Figure 2.4: Example of a requirements diagram.

plete a use case. This process is repeated for every identified use case. Use
cases also have a probability value that indicates the chance for a user re-
questing that functionality from the system. The probability value together

31

Figure 2.5: Example of a use case diagram.

Figure 2.6: Example of a sequence diagram.

32

with priority values for requirements make up the back bone for ordering
test cases based on their importance. For every use case, a sequence dia-
gram (2.6) is constructed. The sequence diagrams primarily describe the
interactions between system components in a sequential order. They can
also show the messages that are sent between actors participating in a use
case. The exact order of the message exchange is normally extracted from
various protocol specification documents and standards.

Figure 2.7: Example of a domain model.

In the fourth phase, we create a set of models that describe the archi-
tectural and behavioral parts of the system. From this we introduce three
different models, a domain model, a state machine model, and a data model.
The domain model (see figure 2.7) depicts the system and how it is con-
nected to other components. The domain model also shows the interfaces
used for communication between the components. Every interface have two
channels, one for sending and one for receiving messages. The domain model
is derived from sequence diagrams and is built iteratively.

Every object found in the sequence diagrams is represented as a class
in the domain model. The interfaces are obtained from the messages sent
and received by different object in the sequence diagrams. For every class
in the domain model we construct a state model (Figure 2.8). The state
model describes the behavior of an entity in terms of states and transitions.
A transition can be seen as an event where the system is either sending
or receiving an input and, thus, resulting in switching from one state to

33

Figure 2.8: Example of a state machine model.

another. By overlapping the message comminution each sequence diagram
a state model is constructed for each system component. The resulting state
model may also contain composite states. A composite state is simply a state
containing other states and is a way to abstract or reduce the complexity of
a state model and make it more readable.

Figure 2.9: Example of a data model.

We also need a description of the data used in the system. For this
purpose, we introduce a data model (see Figure 2.9). This model depicts

34

the messages related to a specific protocol and we use inheritance to model
common parameters. Each message is represented by a class and the message
parameters are modeled as class attributes. The data model is built via an
iterative process in where we gather information from protocol standards
and various requirements documents. Every class in the data model is linked
to a message in an interface in the domain model. This is done to ensure
traceability throughout the whole process.

Figure 2.10: Example of a test configuration diagram.

In the last phase, we employ a test configuration model. This model is an
instantiation of the domain model and shows a particular configuration at a
particular time of the test environment. For example, Figure 2.10 shows a
system under test (SUT) connected to two test components, TC1 and TC2.
All of these object are instantiations of different components. At this time,
different class attributes or test parameters get their specific values.

2.2.2 Increasing Model Quality through Model Validation

For increasing the quality of models, we present a model validation approach.
Since tests are going to be generated from models, increasing the quality of
the models also increases the quality of the generated tests. During the val-
idation stage, models are check for consistency, correctness, and complete-
ness. With consistency we mean that the models are consistent with respect
to each other. For example, that information in one diagram does not con-
tradict the information specified in another diagram. With correctness we
mean well-formedness, i.e., that models conform to the UML standard. For
example, whether the target item is a valid UML item, or whether a diagram
contains valid elements within it. We notice that this check is left to the
UML tool that we are using, since most modern UML tools will not allow
users to break the UML meta-model. However, some tools might allow users
to specify models that are not well-formed. With completeness, we mean

35

that the models are complete with respect to the transformation and test
generation process. For example, we check that a model contains certain
diagrams and that these diagrams contain the right elements with right val-
ues and stereotypes. More information regarding model validation can be
found in [35]. In general, the concepts are related to checking that our UML
models conforms to certain guidelines, the UML standard, and that all the
necessary data is present in the models. The validation step is a prerequisite
for proceeding to test generation because with low quality models only low
quality tests can be generated.

Figure 2.11: Example of a model validation.

The validation process allows us to check, for instance that all leaf re-
quirements are traced to different model elements and that no requirement
is overlooked. It also allows us to check that all the data fields are properly
filled in. Figure 2.11 depicts the result of validating a requirement model

36

in MagicDraw, according to our specified rules. The Validation Results box
shows all the OCL constraints that has been violated during the validation
process. In this example, MagicDraw detected that requirement 6.1 has no
id. All the requirements highlighted in red are not traced to any model
elements. This means that those requirements will not be propagated fur-
ther to any tests. Before proceeding to the next phase of the process, all
violations need to be corrected and models re-validated.

2.2.3 Requirements Traceability Across the MATERA Pro-
cess

Requirements traceability is essential to the MATERA process. The activ-
ity is preformed throughout the whole testing phase in order to assure that
all requirements have been tested. To accomplish this requirements need
to be traceable both to and from tests. Gotel and Finkelstein define re-
quirements traceability as ”the ability to follow the life of a requirement,
in both forwards and backwards direction, i.e., from its origins, through its
development and specification, to its subsequent deployment and use” [36].

One of the main purposes of tracing requirements to models is for an-
alyzing which parts of the specification ”implement” different requirements.
This will allow later on propagating these requirements from models to tests.
Another reason for tracing requirements is that if a requirement changes, it
is essential to know how this change is reflected in the models. To be able to
verify what requirements that have been tested, we trace requirements from
models to test runs and back to models as illustrated in Figure2.12.

As shown previously, we create requirements diagrams that describe how
requirements are decomposed into a tree-like structure. In our research
we employ a specific relationship between requirements and other model
elements. The relationships between requirements and models elements are
specified on several levels. Non-leaf requirements are linked to models, e.g.
state machine models. An exceptional situation is in the case of top-level
requirements which are linked to use cases in the use case diagram. The
leaf requirements diagram are linked to other model elements to which they
apply, e.g. transitions in a state machine or classes in a class diagram. This
is done to ensure traceability of requirements to test cases. When the state
machine is later executed, if a transitions is successfully executed we consider
the requirement tested.

These links are useful for evaluating whether all the modeled require-
ments have been reflected in the models. Further, by tracing requirements
to model elements we can trace requirements, which were left uncovered
during testing, back to system models again. This facilitates the process of
identifying which of the requirements that have been left untested.

Once the models have been created and all the requirements liked to

37

� �� ��������	
���� 	� ��	� 	����	�� �	
���
� �� �

� ��	�� ��� � ��	�� �� � ������� 	� ��	� 	���� ��� �� �
�	��	� �� ����� �	 �� �	� 	�������	��	� 	����� �� ������ �!"����	�� �� �	� � ��	� �

#$% & '($)$ *+

Figure 2.12: Tracing requirements throughout the MBT process.

model elements, the models undergo a transformation phase. During this
stage the UML models are transformed into a output format suitable for
test generation. This is because UML models, as such, can not be used for
test generation.

2.3 Validation

In this section we describe how each contribution has been validated. We
present tool support and empirical evaluation of the presented research ap-
plied in a case study.

38

2.3.1 Tool Support

This chapter discusses the related work and presents the research work we
have done in the area of model-based testing from a tool support perspec-
tive. More precisely, we will present MATERA, a tool-set that integrates
modeling in the Unified Modeling Language (UML) with requirement trace-
ability across a model-based testing process. This chapter focuses on the
framework and tool that have been developed to support our MBT pro-
cess. The process is supported by a tool chain, depicted in Figure 2.17. The
MATERA tool-set is built as a plugin for the MagicDraw [31] modeling tool.

Modeling. As mentioned earlier, a set of models are created in a system-
atic manner starting from the system requirements. The models represent
the SUT from different perspectives. For creating and editing UML models
we use NoMagic’s Magicdraw [31]. One of the main reason for choosing
MagicDraw as our modeling tool is that it offers great support for extend-
ing its capabilities by various plugins and profiles. Moreover, MagicDraw
also offers support for the SysML profile. We wanted to use the benefits the
SysML’s requirements diagram to model requirements. The requirements di-
agram facilitates tracing of requirements to UML model elements. Another
reason is that MagicDraw offers support for model validation. MagicDraw
is delivered with an OCL interpreter that can be used to validate models
for suspicious and faulty constructs. By validation the system models, er-
rors can be detected and eliminated before moving on to the test generation
phase. In this way, errors are not propagated onto later stages in the MBT
process. Also, developing our own model editor was outside the scope of our
research, hence, we chose Magicdraw because it is a mature tool and well
known in the industry.

Model Validation. In order to gain efficiency of using a MBT process
and reducing the costs by discovering faults at an early stage, the models are
validated by checking that they are consistent and that all the information
required by our process is included. Therefore, the MATERA tool set comes
equipped with a set of modeling guidelines and validation rules for ensuring
compatibility with our MBT process. In our MBT process, validation is
prerequisite before transforming the models.

The MATERA framework utilizes the validation engine of MagicDraw
for model validation. The engine uses OCL [30], a formal language for
specifying rules that apply to UML models and elements, to validate the
models. These rules typically specify invariant conditions that hold true for
the system being modeled. Rules written in OCL can be checked against
UML models and it can be proved that nothing in the model is violating
them. UML is accompanied by several predefined suites of validation rules.
Apart from the rules provided by MagicDraw, user-defined validation rules
are also allowed in the MATERA framework. The author of [35] have defined

39

a complementary set of validation rules to ensure compatibility with our
modeling process a smooth transition to the subsequent phases. In order
to facilitate reuse, validation rules are stored in different validation suites
depending on the intended purpose of the rule. The validation suites can be
invoked at any time during the model creation process. Upon invocation,
each rule will be run against the UML element type for which it has been
defined. If an UML element is violating any rule, the user is notified in
a Validation Results editor (Figure 2.13). By clicking a failed rule, the
elements violating the rules are presented to the user.

Figure 2.13: Example of MagicDraw’s Validation Results editor.

Model Transformation. The created UML models representing the
SUT are used for generating an input model for the Conformiqs Qtronic
test generation tool [32], using the MATERA model transformation module
[24],[37]. The transformation phase has two steps. First, information from
UML models is gathered by a parser module and stored in internal data
structures. Second, the gathered data is read, by various build modules,
and later transformed in the format supported by the test generation tool,

40

namely QML. In our current research we have targeted only Conformiqs
Qtronic test generation tool. However, the goal of transformation approach
is to be generic and to be able to expand our approach to target other test
generation tools when needed. During the transformation phase, require-
ments are also propagated from UML models to QML. In QML, require-
ments are treated as textual tags attached to different parts of the model.
The requirements tags can later be used as testing goals during the test
generations process. The total size of the transformation module is roughly
2000 lines of code.

Test Generation. In our MBT process, test are generated by Con-
formiqs Qtronic test generation tool [32]. Qtronic automatically derive tests
from system models that represent the desired behavior of a system. Tests
are generated using black-box testing techniques and so the tests evaluate
the SUT according to on its external behavior, not by inspecting its internal
workings. Tests are generated by identifying paths in the system model that
together cover selected testing goals. A test case covers a certain testing goal
if execution of the test against the model itself would cause the goal to be
exercised. The testing goals range from covering requirements to transitions
and states to boundary value analysis. The tool utilizes several advanced
techniques for simulating the system model and generating a minimal test
suite that covers the desired testing goals. By selecting different testing
goals, the user can affect how Qtronic generates test cases.

Since the QML model is an abstract representation of the SUT, the
generated test will be on the same abstraction level. Therefore, in order for
the generated tests to be executable, they need to be brought to the same
level of detail understood by the external interfaces of the SUT. In Qtronic,
this is achieved using a scripting back-end or an adapter. Once attached,
the back-end will render out the abstract test cases to a format understood
by the SUT. The only drawback is that, in most cases the back-end have to
be implemented manually.

After the test cases have been generated, the test generation tool can de-
termine the generation order of test cases based on the annotated probability
and priority values. For each generated test case, a weighted probability is
calculated based on an algorithm implemented by the test generation tool.
The weighted probability is calculated from both the use case probability and
the requirement priority and determines the sequence in which test cases are
ordered (see Figure 2.14). Test cases are finally rendered into executable test
scripts using an adapter for concertizing test cases into executable scripts.

Test Execution. In order to target as many system domains as pos-
sible, we chose to have to execution phase completely de-coupled from the
MATERA process. There are plenty of different application domains, test
execution platforms, and languages. Instead of restricting the MATERA
process to a particular execution platform and language, we decided to al-

41

Figure 2.14: Test case sequence ordered by weighted probability in Qtronic.

low the testers to freely choose the test execution platform and language.
However, a few restrictions are still enforced. The chosen test execution
platform and language must support test execution logs and the annotation
of requirement tags in the chosen language. This is because be use test
execution logs to check which requirements that have been covered during
testing.

Requirements Traceability. As suggested earlier, requirements trace-
ability is one of the key features of MATERA and we also keep track of
the requirements during the entire MBT process. In addition, tracing the
requirements helps to understand the impact that new or modified require-
ments have on different artifacts. Altogether, the process supports shorter
feedback loops that, in turn, serve as a basis for modern product develop-
ment conventions such as agile development practices.

More specifically, tracing of requirements allows for requirements to be
propagated to test specifications. The goal in higher level testing practices
is to verify that requirements have been covered by tests. Needless to say,
requirements are the keystone in any successful project implementation, and
hence, they must be traceable both to models and tests. In our process,
requirements are not only traced from model to tests, but also back from
test to models. Tracing requirements to tests can even help in identifying
missing tests, that is, where critical requirements do not trace to any test.
Finally, if a test fails, one can trace the requirement back to the models
from where it originated, in order to identify the error. This facilitates the
process of identifying which parts of the system model cause a test to fail.
For example, figure 2.15 shows how a requirement associated with a failed
test is traced back to a transition in a state machine in UML. The figure
shows how the element linked with the requirement is highlighted in order
to locate the problem area faster.

42

Figure 2.15: Back-tracing of requirements to a state machine model.

2.3.2 Empirical Validation on a Tele-communication Case
Study

To validate our research work we decided to apply our approach on a
telecommunications case study. The target system was a Mobile Switch-
ing Server (MSS), which acted as the system under test (SUT). In survey
on model-based testing approaches, Neto et. al. [15] point out that hardly
anyone is integrating MBT approaches with a software development process
and that most MBT approaches lack empirical evaluation for an industrial
environment. Hence, the reason for selecting the MSS as a SUT was that
we wanted to evaluate our approach on a fairly complex system that is used
in an industrial environment and also for investigating to what degree UML
system models can be used for test generation. Particularly, we wanted to
investigate the following aspects:

• How do we create UML models for test generation with as much reuse
as possible?

• How are requirements traced from model to tests?

• How can requirements be traces from test to models?

An MSS is a telecommunication networks core element and it is re-
sponsible for controlling the rest of the network elements [38]. The MSS is
connected to its surrounding elements via several different interfaces. Figure
2.16 shows an example of the topology of a telecommunications network.

In the figure, the central element is the MSS. It is connected to several
other sub-systems e.g., Base Station Sub-system (BSS) and Radio Network
Sub-system (RNS). The BSS is a 2G telecommunications sub-system and
consists of several Base Station Controllers (BTC), which in turn controls
several Base Transceiver Stations (BTS) [38]. The BTS is a radio tower

43

������ � ��	
� ���� �

���
��� ���

������
��� �� �� ��� ����

����� ��
���

� ��������
���

 !"

"#�
"#�

$%�$%� $%�

�&�'$# �&�'$
�&�'$

$��
$��

Figure 2.16: Telecommunications network architecture.

equipped with 2G (GSM) technologies for sending and receiving radio signal
from various telecommunications devices. Similarly to BSS, the RNS is a
3G telecommunications sub-system and consists of several Radio Network
Controllers (RNC), which in turn controls several Node-B’s [39]. A Node-B
is a radio tower equipped with 3G (UMTS) technologies for sending and
receiving radio signal from various telecommunications devices. Most often
the Node-B and the BTS are located on the same physical radio tower but
are controlled by different controllers. The Media Gate Way (MGW) is a
network element responsible for converting data formats from one network
type to another, while the Home Location Register (HLR) is a database
containing details about various mobile devices that are authorized to use
the network.

The main features of the MSS that we investigated was the location up-
date, voice call, and handover procedures. The location updating procedure
enables devices to inform the network when they move from one location
area to the next. A location area is a small geographical region covered
by one radio tower. The voice call procedure is the method by which the
network connects two mobile device together that wish to make a call. Han-
dover is the procedure that enables mobile devices to move from one location
area to another during an ongoing call, without disconnecting the call

Figure 2.17 presented the tool chain that was used in the case study.
MagicDraw was the editor used for creating and validating our system mod-
els. The MATERA transformation module was used to export our system

44

models to QML notation. As a test generator, we used Conformiqs Qtronic.
Using a test renderer, the generated test were exported to EAST scripts.
Finally, we used Nethawk’s EAST tool as a test execution platform.�����������	
����� � ��	���	�� � 	
���

�� � ��	���� �� ����
� ��� �� ��� �

� ����� ����� � ����� � ����� ������������� � ���� 	�	�� �� ��� ������ ��� �	
����� ���� �� ������ ��

�� �� ������ �!��� ����� � ��� �	
" 	#� ��	� 	� �� $% &'(%

Figure 2.17: Tool chain overview.

Modeling. As mentioned above, the MSS had 3 main features, location
update, voice call, and handover. These features should be supported both
in a 2G network as well as in a 3G network. Figure 2.18 depicts the MSS
feature diagram.

For each decomposed feature we created a requirements diagram. Figure
2.19 depicts one of the three requirements diagrams created.

45

Figure 2.18: MSS feature diagram.

Figure 2.19: MSS Requirements diagram.

46

Figure 2.20: MSS use case diagram.

Figure 2.21: Sequence diagram for Location update procedure.

47

Figure 2.22: MSS domain model.

Once the requirements have been identified and modeled we created use
cases and sequence diagrams for each feature. Figure 2.20 shows a use case
diagram for the identified use cases, while Figure 2.21 shows a sequence
diagram for the location update procedure. Similar diagrams where created
for the remaining use cases.

48

In the next stage, we created a domain model, data models, and state
machine models. The domain model shows a static view of the system under
test and how it is connected to its environment. The diagram also shows
what interfaces it uses for communication with the environment. Figure
2.22 shows an overview of the domain model.

For each interface in the domain, we created a data model. The data
model describes the structure and parameter of the messages sent and re-
ceived by the system under test. Figure 2.23 depict the data model for
mobility management (MM) interface.

Figure 2.23: Data model for the Mobility Management (MM) interface.

By overlapping sequence diagram with each other we obtained a set of
state machines. In total, we obtained 19 state machine diagrams that to-
gether describe the dynamic behavior of the MSS. Figure 2.24 show the
state machine diagram for the Location update procedure. The state ma-
chine also contains sub-state machines that, for example, specify behavior
for sub-routines during the location updating procedure.

49

Figure 2.24: State machine diagram for Location update procedure.

Figure 2.25: MSS test configuration diagram.

50

That last type of diagram type we created was the test configuration
diagram. This diagram represent an instantiation of the domain diagram.
For example, Figure 2.25 shows a configuration with two test components
(TC) connected to one test system (MSS). The two main test components
can in turn inherit parameter values from other test components.

In total we created 40 different diagrams to represent the SUT. To give a
sense of scope of the modeling effort, table 2.1 below shows a list of created
artifacts.

Type Amount

Requirements 35

Use Cases 5

Sequence diagrams 9

Interfaces 10

State machine diagrams 19

Data Messages 69

States 88

Transitions 136

Table 2.1: List of modeled artefacts

Model Transformation. The entire collection of models represent-
ing the SUT from different perspectives was then transformed into QML,
a modeling notation understood by the test generator tool Qtronic. Trans-
forming the models to QML took around 1 minute. The generated QML
state machine were of the equivalent size as the UML state machine, i.e., 88
state and 136 transitions. The generated JAVA part for QML comprised of
approximately 700 lines of code.

Test Generation. From the resulting QML models a total of 114 test
cases [40] were generated in 30 minutes. Figure 2.26 shows a picture of the
Qtronic test generation tool. After the test cases have been generated, the
test generation tool can determine the generation order of test cases based on
the annotated probability and priority values. For each generated test case,
a weighted probability is calculated based on an algorithm implemented by
the test generation tool. The weighted probability is calculated from both
the use case probability and the requirement priority and determines the
sequence in which test cases are ordered.

The generated test cases were rendered into executable EAST [33] test
scripts using a scripting backend. The scripting backend is a piece of adapter
code for translating abstract test cases into executable test scripts. The
scripting backend had to be implemented manually and consisted of roughly
2000 lines of code. The executable tests were of the size 200-400 lines of code,
depending on the amount of test step in each test. This clearly shows the

51

Figure 2.26: Screenshot of the Qtronic test generation tool.

benefit of MBT over having to manually write tests.
Test Execution. The test were executed using NetHawk’s Environment

for Automated System Testing (EAST) platform. While EAST is executing
tests, the output of each test execution is stored in EAST test execution
logs. These logs contain detailed information of every test step, executed
method, covered requirements, etc. We use this information to keep track
of which test that failed during execution and the requirements that were
linked to such tests.

Requirements Re-Propagation. The information gathered from the
test execution logs is used to trace requirements back to UML models and to
update the priority value of those requirements were left uncovered during
test execution. In other words, requirements that were linked to test cases
that failed during testing. The update procedure is done by incrementally
increasing the priority of requirements associated with the failed test cases,
such that they will counterbalance the effect that the probabilities of the use
cases have on the ordering of tests. As the process is iterated several times,
the priority (importance) of requirements will change according to how much
they have been tested. This means that, priority values for requirements
that need to be tested more thoroughly in a subsequent test iteration are
incremented with a predefined coefficient and automatically updated.

In this case study, the executed test cases reveled no errors. This is
mainly because, in this case study, the generated test cases was executed on

52

production Mobile Switch Server (MSS) and we were not expected to find
any errors. With this in mind, it is problematic to show the how require-
ments are trace back to models when all test were successfully executed.
However, after purposely manipulating test execution logs to make them
look like tests had failed, we could gather information from failed test cases.
Figure 2.27 depict tracing a requirements attached to a failed test case back
to UML models.

Figure 2.27: Example of tracing uncovered requirements back to models.

2.4 Related Work

As mentioned in the introduction, only about 5 percent of the existing MBT
approaches use UML as the notation language. However tiny this field may
be, there still exist plenty of research in this area. Most of the presented
MBT approaches below offer some kind of tool support.

Binder points out that, little research has be produced in the area of
testing for object-oriented system, which UML is very good at modeling
[41]. Basanieri and Bertolino [42] proposes to use message sequences between
objects from UML sequence diagrams and then combine it with category-
partition testing [43].

Briand et. al., describe the TOTEM system test methodology [44] which
uses sequence diagrams, use cases, and state diagrams to describe test mod-
els and in [45], they present and method for investigating test coverage
criteria based on state charts using simulation techniques. In fact, others
have also proposed to generate test sequences from state charts. Offutt and
Abdurazik, proposes test criteria to generate test cases based on state charts
[46], while they in [47] use traditional data-flow coverage criteria in UML

53

collaboration diagrams for static checking but do not present tool support
test case generation. Chow is of the early proposers of using state machines
to test software [48]. However novel, these approaches are all validated using
text book examples with state diagrams no larger than 5-10 states and lack
empirical validation outside academia.

Sinha and Paradkar, propose a MBT methodology for testing web ser-
vices using extended finite state machines [49]. In a ”lessons learned” paper,
Dalal et. at., report on practical uses of MBT on four cases studies [50].
The authors report on the importance of test data models, having an iter-
ative approach, using abstractions, managing change, etc. The mentioned
approaches all lack one or several of these concepts.

Cavarra et. al., propose an approach of transforming UML object models
into a formal description, namely the IF language, from where tests are
generated [51]. Santosh et. al., propose an approach for generating tests
from UML sequence and activity diagrams [52]. Tretmans and Brinksma,
propose an approach, with tool support, for test generation from models
expressed using formal notations [53].

There exist much more work in the area of UML and MBT and not all
will fit into the scope of this thesis. The presented approaches all have their
basis in UML and support test generation one way or the other. However,
most presented approaches do not focus of test execution and back tracing
of the results to models. Hardly anyone is tracing requirements throughout
their process to be able to tell what has been covered by test and no one have
empirical test results of their from the industry. Our approach extends upon
these limitations and thus addresses all of these above mentioned points.

2.5 Conclusions

In this chapter, we have presented our modeling approach for modeling for
functional testing. We have shown the main contributions and explained how
they have been validated. We have also shown how our research have been
validated in the terms of the tools that have been built and the empirical
validation that was done in a case study. In the case study, a total of
40 different UML diagrams was used to represent the SUT. From these
diagrams a total of 114 test cases was generated. This shows that model-
based testing is applicable even to very large scale and complex industrial
systems. In fact, one of the analysis of results from all the consortia in the
D-mint projet showed that, not only could direct test costs be reduced by 15
percent using model-based testing, but that test coverage could be improved
by 10 percent [11]. The results presented in this chapter serves as a basis for
answering the questions of how to model for test generation and can MBT
be used in an industrial setting.

54

Chapter 3

Modeling for Performance
Testing

In this chapter, we present our contributions related to modeling for per-
formance testing. We also discuss the related work and present how the
research has been validated through experiments and tool support.

3.1 Background

3.1.1 Performance Testing

Performance testing is the process of testing how a system performs in terms
of speed, responsiveness, stability, etc., when the system is put under a
particular workload. Other quality attributes of a system can also be verified
using performance testing, such as, scalability, resource usage, reliability, etc.
Figure 3.1 shows a typical model-based performance testing process. For
instance, a model is developed by analyzing the performance requirements,
the system specifications, and various other documents, such as Service Level
Agreements (SLAs). Load is then generated from the models and applied to
the system. Most often, system resources such as CPU, memory, hard drive,
etc., are monitored and recorded during this stage. Finally, the results are
gathered in a report where one can compare the usage of various system
resources to the applied workload. Performance testing can also be used
for diagnostic purposes, for instance, in locating bottlenecks in the system.
Performance testing includes a number of different sub-genres or techniques
for determining specific characteristics of a system. Below is a list of the
most commonly used techniques:

• Load Testing: Used for measuring a systems responsiveness under an
expected workload.

55

Requirements

Performance
models

Load Generation

Reporting

SUT
Load

System Montoring

Figure 3.1: Example of a general model-based performance testing process.

• Stress Testing: Used for measuring the upper limits of a systems ca-
pacity and to determine the breaking point when a system crashes.

• Spike Testing: Used for testing a systems response and behavior to
sudden large increases in workload.

• Endurance Testing: Used for evaluating if a system can sustain long
periods of high load. Typically used for finding memory leaks.

• Configuration Testing: Used for testing the effects of change made to
the configuration of various systems components.

3.1.2 Workload models

Traditionally, performance testing starts first with identifying key perfor-
mance scenarios, based on the idea that certain scenarios are more frequent
than others or certain scenarios impact more on the performance of the sys-
tem than other scenarios. A performance scenario is a sequence of actions
performed by an identified group of users [54]. However, this has tradition-
ally been a manual step in the performance testing process. Typically, the
identified scenarios are put together in a model or subprogram and later
executed to produce load that is sent to the system.

56

In our approach, we use probabilistic timed automaton (PTA) [55] to
model the likelihood of user actions. The PTAs consists of a set of locations
interconnected to each other via a set of edges. A PTA also includes the
notion of time and probabilities (see Figure 3.2(a)). Edges are labeled with
different values: probability value, think time, and action. The probability
value represents the likelihood of that particular edge being taken based on
a probability mass function. The think time describes the amount of time
that a user thinks or waits between two consecutive actions. An action is
a request or a set of requests that the user sends to the system. Taking
an edge means making a probabilistic choice, waiting for the specified think
time, and executing the actual action. In order to reduce complexity of the
PTA, we use a compact notation where the probability value, think time,
and action are modeled on the same edge (see Figure 3.2(b)).

3.2 Contributions

In this section we are presenting the contributions related to model-based
performance testing. The presented contributions are described in more
detail compared to the overview given in Chapter 1.

3.2.1 Distributed Load Generation from PTA Models

In our approach, we generate load from abstract models. Our distributed
architecture allow us to benefit from the automatic scalability of cloud en-
vironments and our abstract models allow for re-useability of test specifi-
cations. We use two types of models; user profiles and workload models.
Both types of models are represented using the PTA formalism. The user
profile describe the arrival rate of different types of user to a system, while
the workload model describes the probabilistic behavior of a user, i.e., how
a user interacts with the system. For the moment, we are only targeting
systems, i.e., web applications and web services, that use the HTTP pro-
tocol. This means that our workload models describe how users or other
components interact with the system under test. Figure 3.3 depicts a user
profile and Figure 3.2 describes a workload model. In, figure 3.3 we see
a simple PTA model describing three different user types, their probability,
and waiting time. Figure 3.2(a) shows a PTA consisting of a set of locations
connected to each other via a set of edges. The values on each edge represent
the probability of an edge being selected, the waiting time before firing the
edge, and the action to execute when firing an edge. Figure 3.2(b) shows the
PTA presented in figure 3.2(a) but using a more compact notation. This
compact notation is used in order to reduce the size and complexity of a
PTA models.

57

1

2

0.6 / 0 /

3

0.4 / 0 /

4

1.0 / 3 / action1()

5

1.0 / 4 / action2()

6

1.0 / 0 /

7

1.0 / 0 /

8

1.0 / 6 / exit() 1.0 / 8 / exit()

(a) Original PTA syntax

1

2

0.6 / 3 / action1()

3

0.4 / 4 / action2()

4

1.0 / 6 / exit() 1.0 / 8 / exit()

(b) Compact PTA syntax

Figure 3.2: Example of a probabilistic timed automata

1

2

0.1 / 45 / user_type1 0.4 / 60 / user_type2 0.5 / 20 / user_type3

Figure 3.3: User profile describing different user types their waiting times
and probability.

Whenever an edge is fired, the corresponding action is executed. Exe-
cuting an action means sending a request to the system. This activity puts
a small load onto the system because the system has to process the request
and send back a response. Larger volumes of load can be generated by firing
many edges in a short amount of time. In order to achieve this, we run many
workload models in parallel. Since a workload model represents the the ab-

58

stract behavior of one particular type of user, by running several models in
parallel, we can simulate concurrent user behavior. For every desired con-
current user, we executing an instance of the workload model that specifies
the behavior of that particular user type. Having several different workload
models, we can simulate the behavior of many different types of users. The
effects of using workload models described as PTAs is that load generation
is based on a deterministic choice with a probabilistic policy. This intro-
duces certain randomness into the test process and that can be useful for
uncovering certain sequences of actions which may have a negative impact
of the performance. Such sequences would be difficult or maybe impossible
to discover if static test scripts are used, where a fixed order of the actions is
specified, and repeated over and over again. Every PTA has an exit location
which will eventually be reached.

3.2.2 Creation of Workload Models

We describe two different ways of creating workload models. First we present
a systematic manual approach for creating workload models from scratch.
Second, we describe an automatic approach for inferring workload models
from historical data. Using models, allows us to hide implementation de-
tails and, instead, focus on relevant parts of describing user behavior. In
performance testing, it is important that the load generated from workload
models mimic the load generated by real users as closely as possible, other-
wise it is not possible to draw any reliable conclusions from the test results
[23]. Having automatic and systematic approaches for creating workload
models ensure that our models stay close to real user behavior.

Systematic Creation of Workload Models

Our first proposal is a systematic approach for manually creating workload.
Having a systematic approach is beneficial because it is repeatable and it
also tells one how and where to obtain the necessary information. The first
step in manually creating workload models is characterizing the workload
of the system. Menasce and Almeida [56] state that the workload of a
system can be defined as the set of all inputs the system receives from the
environment during any given period of time. In modern systems, it is
virtually impossible to construct probabilistic models that fully describe all
possible interactions with a system, due to state space explosion. However,
if possible, such models would still be difficult for humans to comprehend
and certainly challenging to maintain. Hence, the workload of a system can
be seen as a set of key performance scenarios. This idea is based on the fact
that certain scenarios are more frequent than others and that some impact
more on the performance of the system than other scenarios.

59

We start by analyzing the requirements, Service Level Agreements (SLAs),
and the system specifications, respectively. By using these sources we iden-
tify the inputs of the system with respect to types of transactions, transferred
files, arrival rates, etc., following the generic guidelines discussed in [57]. Sec-
ondly, we try to form an understanding of which are the different types of
users and how they interact with the system. Finally, we identify what are
the key performance scenarios for each user type that will impact most on
the performance of the system. A user type can be seen as a set of users
that share a common behavior and is characterized by the distribution and
the types of actions it performs. Each identified user type is represented in
the user profile and has a separate workload model that describes the prob-
abilistic behavior. In addition, we extract information regarding the KPIs,
such as the number of concurrent users the system should support, expected
throughput, response times, expected resource utilization demands etc. for
different actions under a given load. We would like to point out that this is
a manual step in the process. The results of the workload characterization
are aggregated in a workload model similar to the one in Figure 3.2

Automatic Creation of Workload Models

A second way of constructing a workload model is to use historical log data
as a source of information [58]. We propose an automated approach that
infers a set of workload models from web server log data. This approach
is beneficial because it is less prone to errors, significantly reduces model
creation time, and maps better to real user behavior compared to manual
approaches. The starting point of this approach is a web server log provided
by web servers such as Apache [59] or Microsoft Server [60]. A server log is
a list of entries that describe requests for different types of resources. The
entries in the log contain detail information about the requests, such as, IP-
address, the time of request, the request method, the request resource, the
status code, etc. Table 3.1 shows an example of a typical logging format.

IP-address User-Identifier User Id Date Requested Resource Status Size

87.153.57.43 example.com bob [20/Aug/2014:14:22:35 -0500] ”GET /browse HTTP/1.0” 200 855
136.242.54.78 example.com alice [20/Aug/2014:24:22:45 -0700] ”GET /browse HTTP/1.0” 200 855
87.153.57.43 example.com bob [20/Aug/2013:14:22:56 -0500] ”GET /basket/book 42/add HTTP/1.0” 200 685
136.242.54.78 example.com alice [20/Aug/2014:14:23:04 -0700] ”GET /basket/phone 6/add HTTP/1.0” 200 685
87.153.57.43 example.com bob [20/Aug/2013:14:23:58 -0500] ”GET /basket/book 42/delete HTTP/1.0” 200 936
136.242.54.78 example.com alice [21/Aug/2014:14:54:02 -0700] ”GET /basket/view.html HTTP/1.0” 200 1772

Table 3.1: Example of a typical web server format

By analyzing the server log it is possible to deduce the request pattern
of individual users. In our approach, we analyze and process the server log
in several steps in order to produce workload model. First, we parse the
log file to extract the the information for the individual entries. During this

60

step, requests from autonomous machines, also referred to as bots, are ig-
nored since they are considered as irrelevant candidates for key performance
scenarios. Users are identified with their IP-address and requests made from
the same users are kept is separate lists. Secondly, we split the list of request
of each user into shorter list, called sessions, based on a predefined session
time-out value. A session is a sequence of requests to the web server which
represent the user activity in a certain time interval from the same user.

In the next step, we are trying to deduce user actions from a set of web
requests. As stated earlier in this chapter, actions can be seen as abstract
transactions or templates that fit many different requests. Actions can be
quite similar in structure, yet, not identical to each other. For example,
consider a normal web shop where users add products to the basket. Adding
two different products to the basket will result in two different web requests
even though the underlying user action is the same. To achieve this, we
structure the request in a tree-like manner and, later, reducing the tree by
grouping together nodes that share joint sub-nodes. Once the tree has been
reduced to a minimum, every path leading to a leaf node is considered as
an action.

We then classify users based on their request patterns using the K-means
algorithm [61]. Users with a distinctly different access pattern are clustered
in separate groups. This is done in order to obtain a separate workload
models for user types with distinctly different behaviors. Before constructing
workload models for each identified group of users, we filter out sessions with
a low frequency according to a Pareto probability density function [62] by
cutting off the tail beneath a certain threshold value. Sessions with a low
frequency do not impact significantly on the system’s performance and can
thus be neglected. Including all sessions would result in a workload model
that is too cluttered and difficult to understand and maintain.

In a step-wise manner we then build a workload model where we overlap
the remaining sessions of all users belonging to the same cluster. Session
by session we gradually build a model, while reusing existing nodes in the
model as much as possible. In order to calculate the probability and an
average think time value for each edge we keep track of the number of times
each edge has been reused.

Requirements Traceability in MBPeT

In our research, we also trace non-functional requirements across the model-
based performance testing process. This allows us to compare the measured
KPI values against target values set prior to testing. Target response time
values are defined for individual action and monitored throughout the testing
process. Whenever a target level is reached, the MBPeT tool reports on the
current number of concurrent users and time of the breach. Figure 3.4 shows

61

a table where target response time values have been defined for individual
actions. For example, for every action, an average and maximum threshold
value is defined.

AVERAGE/MAX RESPONSE TIME THRESHOLD BREACH per METHOD CALL

Action Target Response Time NONBIDDER_USER PASSIVE_USER AGGRESSIVE_USER Verdict
Average
(secs)

Max
(secs)

Average
users (secs)

Max
users (secs)

Average
users (secs)

Max
users (secs)

Average
users (secs)

Max
users (secs) Pass/Fail

GET_AUCTION(ID) 2.0 4.0 70 (251) 84 (299.0) 70 (251) 95 (341.0) 70 (250) 95 (341.0) Failed
BROWSE() 4.0 8.0 84 (299) 97 (345.0) 84 (299) 113 (403.0) 84 (299) 113 (403.0) Failed
GET_BIDS(ID) 3.0 6.0 84 (298) 112 (402.0) 83 (296) 112 (402.0) 96 (344) 112 (401.0) Failed
BID(ID,PRICE,USERNAME,PASSWORD) 5.0 10 Passed Passed 97 (346) 113 (405.0) 112 (402) 135 (483.0) Failed
SEARCH(STRING) 3.0 6 95 (341) 134 (479.0) 96 (342) 112 (402.0) 83 (296) 133 (476.0) Failed

Figure 3.4: Table showing traceability of response time values to ac-
tions/method calls

After each test run, the measured average and maximum will be dis-
played together with the target values. If any of the target values have
been breached, the tool reports how long into the test run the threshold was
breached and how many concurrent users the tool was running at that point.
If the target value was not breached, the tool marks it with a pass. For ex-
ample, in figure 3.4 we see that the target average response time value of 2
seconds for the get auction action for the aggressive user type was breached
250 seconds into the test run when running with 70 concurrent users. From
this information we can conclude that; if the system must guarantee an av-
erage response time of 2 seconds for the get auction action, given that a
third of the users are of the type aggressive users, then the system cannot
support more than 70 concurrent users. Besides just measuring response
time values, the tool also monitors throughput, CPU, memory, disk, and
network utilization.

3.3 Validation

In this section we describe how each contribution has been validated. We
present tool support and empirical evaluation of the presented research per-
formed on case studies

3.3.1 Tool Support

Support for load generation from workload models

MBPeT [63] [64] is a Python-based tool that generates the load using a dis-
tributed architecture and applies it in real-time to the system under test.
During the load generation process, the tool measures several key perfor-
mance indicators (KPIs), such as response time, throughput, error rate,

62

etc. After each test session, a test report is generated containing aggregated
information about the each measured KPI.

Architecture. The architecture of the MBPeT tool [63] has been de-
signed to fit in a cloud environment. It supports load generation over mul-
tiple machines in a distributed fashion. The tool architecture is made up of
two types of nodes: a master node and slave nodes. A single master node
controls multiple slave nodes, as shown in Figure 3.5. The slave nodes can
be distributed, meaning that their physical location is not dependent on the
location of the mater node. Slave nodes are designed to be homogeneous
and generic, in the sense that they do not have prior knowledge of the SUT,
its interfaces, or the workload models. Hence, the master node is responsible
for providing all the necessary information required for load generation.

Master
Node

Slave
Node 1

Slave
Node 2

Slave
Node N

.

.

.

SUT Network
Adapter

A
da

pt
er

A

d
ap

te
r

A
da

pt
er

Figure 3.5: Distributed architecture of MBPeT tool

Load Generation. Load generation is initiated by activating a single
slave node. New generation nodes are allocated dynamically during load
generation as more resources are needed. Load is generated from PTA mod-
els by creating traces from the corresponding PTA. Creating traces is a
step-wise process and is based on a deterministic choice with a probabilis-
tic policy at each step. This introduces a certain randomness into the load
generation process and is good for mimicking the dynamic behavior of real
users. Such sequences would be difficult or maybe impossible to discover if
static test scripts are used, where a fixed order of the actions is specified,
and repeated over and over again. By executing several workload models
in parallel, we can simulate concurrent user behavior. The amount of load
that is generated is dependent on the amount of concurrent models that
are executed in parallel. The idea is that one instance of a workload model
corresponds to one user. The number of desired users at each time instance
can be describe with a ramp function. The ramp function can be seen as a
spline that is piecewise-defined by polynomial functions.

Throughout the whole load generation process, the target KPIs values

63

were constantly monitored. At the end, we collect all the gathered data and
compute descriptive statistics [63]. For example, figure 3.6 shows a graph of
how the throughput varied during the test run.

Figure 3.6: Throughput of the course of a test run.

Test Reporting. After each test run the MBPeT tool generates a
test report based on the monitored data. All the gathered information
is presented in a test report. The resource utilization of the SUT is also
monitored and reported. Besides computing different kinds of statistical
values from the raw data we have, the test report also contains graphs such
as how the response time varied over time with the number of concurrent
users. The test report also shows the CPU, disk, network and memory
usage on the target system [65]. A complete description of the tool and test
reporting is presented in [64].

Log2Model Tool

Log2Model is a Python-based tool [58] for generating workload models from
server logs. The tool has a set of pre-defined patterns for common logging
formats that are typically used in modern web servers (e.g., Apache and
Microsoft Server). However, if a custom logging format is used, it is possible
to manually specify the logging format via a regular expression. Parsed log
files are stored in a database, minimizing the effort of the algorithm having
to re-parse large log files between experiments.

One of the main features of the tool, apart from generating a workload
model, is the user classification. This option separates users with distinctly
different request pattern into separate groups. Another nice feature is that

64

once the workload models have been generated, the user is left with the
choice of adjusting the cut-off threshold value, which determines how many
sessions to include in the model (see Figure 3.7). This way the user can set
a desired level of complexity for the generated models. This is done without
having to re-run the algorithm, instead only the model is re-drawn based on
the selected value.

Figure 3.7: Screenshot of the GUI of the Log2Model tool

When a desired complexity of the workload model is chosen, the model is
saved. Upon saving the models another artifact is created, namely a Python
adapter code. The adapter code contains the mapping of each action in the
models in a parameterized form and is used to interface our MBPeT tool
with the system under test.

3.3.2 Empirical Validation on Case Studies

In this chapter, we will show our model-based performance testing approach
[58] [63] in practice and demonstrate its applicability with a set of experi-
ments on a case study. We show that using abstract models for describing
the user profiles allows us quickly to experiment with different load mixes
and detect worst case scenarios. We will also show how using log data as a

65

Figure 3.8: PTA model for an aggressive-bidder user type.

basis for workload model creation can radically reduce the effort needed to
create workload models.

Generating Load With MBPeT

We demonstrate the applicability of our tool and approach by using it to
evaluate the performance of an auction web service, generically called YAAS.
The web service was developed in-house and implemented as a stand-alone
application. The YAAS has a RESTful [66] interface based on the HTTP
protocol and works as a normal auctioning web site where users create,
search, browse, and bid on items that other users have created.

In the experiment we created three types of users: Passive, Aggressive,
and Non-Bidders. The idea was that Aggressive users bid frequently on items
while Passive users bid less on items. Non-bidders do not bid on items at all
but only search and browse through the catalog of items. Figure 3.8 shows
the PTA model for an aggressive user. Similar models were created for the
two other user types.

We set out to test how many concurrent users the host node can support
without exceeding the specified target response time values that we had set
as thresholds for different actions. The length of the test was 20 minutes
and the number of concurrent users were linearly ramped up from 0 to 300
over the course of the test run. From table 3.2 it can be seen that the system
could support 64 concurrent users before breaching one of the set response
time threshold values. The MBPeT tool also maintains a log file of all the
traces generated from the workload models during each test run. In this
particular example, the tool generated a total of 2576 unique traces in 20
minutes. The length of the traces varied from 2 up to 45 actions.

66

Target Response Time Non-Bidders (22 %) Passive Users (33 %) Aggressive users 45 % Verdict

Actions Average Max Time of Time of Time of Time of Time of Time of Pass/fail
(sec) (sec) breach (sec) breach (sec) breach (sec) breach (sec) breach (sec) breach (sec)

browse() 4.0 8.0 279 (78 users) 394 (110 users) 323 (90 users) 394 (110 users) 279 (78 users) 394 (110 users) Failed
search(string) 3.0 6.0 279 (78 users) 394 (110 users) 279 (78 users) 394 (110 users) 229 (64 users) 327 (92 users) Failed

get action(id) 2.0 4.0 280 (79 users) 325 (91 users) 279 (78 users) 279 (78 users) 276 (77 users) 325 (91 users) Failed
get bids(id) 3.0 6.0 279 (78 users) 446 (130 users) 325 (91 users) 394 (110 users) 327 (92 users) 394 (110 users) Failed
bid(id,price, username, password) 5.0 10.0 —- —– 327 (92 users) 474 (132 users) 328 (92 users) 468 (131 users) Failed

Table 3.2: Response time measurements for user actions when ramping up
from 0 to 300 users.

Traces JMeter MBPeT

Nr of Traces Percent of Traces Nr of Traces Percent of Traces

browse,get auction 3706 27,77 % 3682 27,31 %
search,get auction 3101 23,24 % 3218 22,87 %
browse,get auction,get bids 2427 18,19 % 2447 18,15 %
search,get auction,get bids 2306 17,28 % 2305 17,10 %
browse,get auction,get bids,bid 1803 13,51 % 1831 13,58 %

total 13343 100% 13483 100%

Table 3.3: JMeter vs MBPeT: Running 5 different traces with 100 users in
parallel for 20 minutes. A uniform think time of 3 seconds between actions
was used

Comparing MBPeT to JMeter

We investigated how our approach compares to JMeter [67], a well-know
java-based load generator. In this experiment, we ran 5 different test se-
quences with 100 concurrent users and a test session of 20 minutes with a
ramp-up period of 120 seconds. Between each action a uniform think time
of 3 seconds was used. The tests were run three times and an average was
computed. The test sequences used in this experiment were selected based
on a previous test run of the YAAS application, where the top 5 most exe-
cuted sequences were selected for this experiment. We constructed a model
containing the 5 selected trace in MBPeT and did the same in JMeter.

The test sequences and the distribution between them can be seen in
Table 3.3. The table shows that the JMeter tested on average a total of
13343 test sequences while the MBPeT tested on average a total of 13483 test
sequences. This corresponds to a 1 percent speed advantage for the MBPeT
tool. We note that there is a difference in the percentages in which test
sequences were executed. This is because the MBPeT tool uses probabilistic
models, from which load is generated, and due to the randomness in the
models it is difficult to control the exact distribution between test sequences.

The test was not conducted to show that our tool in any way is better
than JMeter, but rather to show that our tool can compete with modern
load generator in terms of generation speed. In this experiment it did require
less time to develop the JMeter scripts than it took to make our models and
adapter. This is due to the fact that JMeter is a mature load generator
that comes equipped with all kinds of ready-made templates, databases,
and other elements which our tool lacks. However, because we are using

67

graphical models, our approach allows for a higher degree of model reuse
between experiments compared to JMeter.

Log2Model

To validate the applicability of our Log2Model tool we tried to re-create the
workload models from log data that was produced during an earlier test run
of the YAAS application. We created a set of PTA models for the YAAS
system and loaded them in our MBPeT tool. We ran load tests based on
the models for 2 hours in order to produce a log file. From the produced
log file, containing roughly 10,000 requests, we tried to re-create the original
models as accurately as possible using our Log2Model tool.

Figure 3.9 shows a comparison between the original model and the re-
created model. From this figure one can see that the two models are virtually
identical apart from some probability values on a few edges. This is due to
the fact that we use a stochastic model for generating the load and we do
not have an exact control over what traces are generated. With a larger
log file, approximately 1,000,000 lines, the probability values would be ex-
pected to be even closer to the original values, if not exact. The paper
shows that automation can reduce the effort necessary for creating work-
load models for performance testing. In contrast, Cai et al. [68] report that
they spent around 18 hours manually creating a test plan and the JMeter
scripts for the reference Java PetStore application [69]. In our experiment,
parsing the 10,000 line took 2 seconds, while the rest of the information
processing, including creating the models took less than a second. Table 3.4
shows a summary of the execution time for different steps of the algorithm
for different log sizes. The final step, constructing the workload model,
was purposely left out since it varies considerably depending on the chosen
number of clusters and threshold value.

Phase 30.000 50.000 100.000 200.000 400.000

Parsing 6 sec 10 sec 22 sec 50 sec 2 min
Pre-processing 4 sec 9 sec 10 sec 21 sec 31 sec
Request tree reduction 0.3 sec 0.3 sec 0.8 sec 2 sec 5 sec
Clustering 0.08 sec 0.08 sec 0.4 sec 5 sec 60 sec

Total 10.38 sec 19.38 sec 33.2 sec 1 min 18 sec 3 min 36 sec

Table 3.4: Table showing execution times for different log sizes in terms of
lines of log entries.

In a second experiment we show how complex models can be generated
from only a small amount of log data. In this experiment we used log
data from a web site called pubiliiga [70]. The web site maintains football
scores in the league of pubiliiga. The web site also stores information about

68

1

2

1.0 / 0 / browse()

0.10 / 7 / browse()

3

0.87 / 4 / get_auction(id)

6

0.03 / 0 / exit()

0.05 / 4 / browse()

4

0.75 / 4 / get_bids(id)

0.20 / 0 / exit()

0.20 / 5 / browse()

5

0.50 / 3/ bid(id,price,username,password)

0.30 / 0 / exit()

0.25 / 6 / browse()

0.45 / 4 / get_bids(id)

0.30 / 0 / exit()

(a) Original model.

1

3

1.0 / 0 / browse()

0.095 / 7 / browse()

2

0.033 / 0 / exit()

4

0.87 / 4 / get_auction(id)

0.052 / 4 / browse()

0.20 / 0 / exit()

5

0.75 / 5 / get_bids(id)

0.24 / 5 / browse()

0.29 / 0 / exit() 6

0.48 / 3 / bid(id, price, username, password)

0.23 / 6 / browse()

0.30 / 0 / exit()

0.48 / 4 / get_bids(id)

(b) Recreated model.

Figure 3.9: Original and re-created workload models.

where and when the games are played, rules, game scores, teams, etc. The
web site has been created using the Django framework [71] and runs on
top of an Apache [59] web server. The results that we are going to show
in this section are generated from a mere 30,000 lines of log data (7 MB)
out of the original 1.3 million lines (320 MB). Generating the model on a
computer equipped with an 8 core Intel i7 2.93 GHz processor and 16 GB of
memory took approximately 2 seconds. After a model has been generated,
the user decides the desired level of complexity on the model. This is done by
choosing a threshold value. Traces are ordered according to their execution
frequency as they are found in the log. Some traces are executed more than

69

others. For example, a threshold value of 20 percent (0.2) means that a
model is constructed with 20 percent of the most frequent traces and the
rest will be filtered out. Figure 3.10 shows the generated workload model
when using a threshold value of 0.5, which means that 50 percent of the
traces are included in the model, starting from the high-frequent ones.

1

2

0.10 / 0 / exit()

3

0.0072 / 4 / action13

4

0.14 / 0 / action16

6

0.056 / 0 / action17

7

0.18 / 9 / action21

8

0.044 / 2 / action19

9

0.20 / 8 / action20

10

0.13 / 0 / action15

11

0.047 / 0 / action5

12

0.08 / 5 / action18

15

0.0062 / 4 / action11

21

0.0082 / 18 / action14

22

0.0062 / 7 / action12

23

0.0010 / 48 / action8

26

0.0010 / 11 / action6

0.35 / 0 / exit()

0.077 / 6 / action21

0.19 / 42 / action19

0.15 / 2 / action20

0.077 / 98 / action18

0.077 / 1 / action11

25

0.077 / 1 / action6

0.28 / 0 / exit()

0.0047 / 625 / action13

0.20 / 815 / action16

0.056 / 17 / action21

0.012 / 120 / action19

0.029 / 8 / action20

0.22 / 22 / action15

0.060 / 59 / action5

0.022 / 29 / action18

0.0035 / 22 / action11

0.0094 / 27 / action14

0.0023 / 7 / action6

5

0.095 / 26 / action17

14

0.0035 / 70 / action1216

0.0035 / 15 / action9

0.30 / 0 / exit()

0.0061 / 13 / action13

0.12 / 14 / action16

0.23 / 72 / action17

0.090 / 4 / action21

0.037 / 5 / action19

0.020 / 6 / action20

0.12 / 6 / action15

0.033 / 14 / action5

0.018 / 9 / action18

0.0041 / 283 / action11

0.0020 / 14 / action12

0.0082 / 19 / action9

17

0.0082 / 36 / action7

28

0.0041 / 11 / action4

13

0.0061 / 20 / action14

24

0.0020 / 15 / action1

0.22 / 0 / exit()

0.0063 / 5 / action13

0.18 / 8 / action16

0.45 / 13 / action17

0.038 / 142 / action21

0.019 / 17 / action19

0.022 / 41 / action20

0.0063 / 212 / action15

0.0094 / 52 / action5

0.013 / 11 / action18

0.0063 / 32 / action11

0.0063 / 26 / action12

0.019 / 7 / action9

0.0063 / 2 / action14

0.038 / 0 / exit()

0.013 / 3 / action13

0.063 / 3 / action16

0.013 / 4 / action21

0.025 / 1 / action20

0.79 / 4 / action15

0.013 / 53 / action5

0.013 / 2 / action18

0.019 / 90 / action14 0.013 / 3 / action12

0.069 / 0 / exit()

0.0069 / 109 / action13

0.73 / 6 / action16

0.038 / 0 / action17

0.035 / 9 / action21

0.021 / 10 / action19

0.031 / 3 / action20

0.042 / 28 / action5

0.017 / 27 / action18

0.010 / 53 / action14

0.37 / 0 / exit()

0.0034 / 914 / action13

0.13 / 8 / action16

0.20 / 25 / action17

0.012 / 16 / action21

0.090 / 41 / action19

0.010 / 25 / action20

0.12 / 69 / action15

0.017 / 41 / action5

0.0052 / 11 / action18

0.0034 / 114 / action11

0.0052 / 20 / action14

0.0069 / 37 / action12

0.0086 / 52 / action9

0.0034 / 4 / action1

20

0.0034 / 3 / action30.34 / 0 / exit()

0.013 / 621 / action13

0.16 / 92 / action16

0.013 / 51 / action21

0.026 / 41 / action19

0.018 / 12 / action20

0.026 / 80 / action15

0.37 / 0 / action5

0.0088 / 549 / action18

0.0088 / 37 / action11

0.013 / 12 / action14

0.31 / 0 / exit()

0.18 / 14 / action16

0.24 / 3 / action17

0.067 / 29 / action21

0.030 / 29 / action19

0.045 / 7 / action20

0.045 / 290 / action18

0.030 / 25 / action14

0.060 / 17 / action9

0.083 / 0 / exit()

0.12 / 139 / action13

0.083 / 1 / action16

0.083 / 54 / action19

0.33 / 4 / action20

0.083 / 48 / action18

0.083 / 0 / action11

0.12 / 222 / action14 0.62 / 7 / action16

0.17 / 6 / action20

0.069 / 17 / action15

0.069 / 2 / action11

0.069 / 0 / action14

0.33 / 0 / exit()

0.11 / 66 / action16

0.11 / 60 / action21

0.11 / 86 / action19

0.11 / 12 / action20

0.11 / 6 / action18

0.11 / 43 / action12

1 / 5 / action21

0.5 / 47 / action20

0.5 / 35 / action14

1 / 1 / action11

0.25 / 0 / exit()

0.22 / 15 / action16

0.024 / 12 / action19

0.031 / 11 / action20

0.024 / 64 / action15

0.31 / 35 / action17

0.024 / 18 / action9

0.016 / 62 / action7

27

0.079 / 3 / action10

0.016 / 31 / action4

0.33 / 0 / exit()

0.33 / 2 / action13

0.33 / 45 / action19

0.093 / 0 / exit()

0.14 / 6 / action17

0.047 / 4 / action21

0.047 / 5 / action19

0.070 / 22 / action20

0.070 / 37 / action15

0.070 / 3 / action18

0.047 / 13 / action12

0.047 / 0 / action9

18

0.023 / 10 / action2

19

0.35 / 3 / action8

1 / 0 / action17

0.12 / 5 / action9

0.88 / 2 / action10

0.5 / 0 / action16

0.5 / 38 / action4

0.071 / 0 / exit()

0.36 / 28 / action16

0.14 / 29 / action19

0.29 / 5 / action20

0.14 / 0 / action5

0.33 / 0 / exit()

0.67 / 11 / action17

0.5 / 0 / action15

0.5 / 43 / action3

0.5 / 7 / action18

0.5 / 50 / action2

1 / 0 / action16

Figure 3.10: Models created from pubiliiga.fi log data. Threshold set at 50
percent

This experiment serves to show that complex models can be generated
even when using relatively small amounts of data and when many traces are
filtered out. From this experiment we can conclude that generating a model
that perfectly matches reality would be highly complex and unmaintainable.
But moreover, having a performance test where only a few static traces are
repeated over and over again would be a huge simplification of reality.

3.4 Related Work

The related work presented in this section is divided into two parts; the first
part addresses research work related to different model-based performance
testing approaches while the second part presents work related to different
performance testing tools. The approaches presented below is not an ex-
haustive list of related work but they are the ones that we find the most
interesting or similar to our approach.

3.4.1 Performance Testing Approaches

Traore et al., [72] propose an SPE process using the UML profile for Schedu-
lability, Performance and Time where they annotate UML models with per-
formance data. However, no tests are derived from the models but instead
the the annotation can be used for performance predictions. Similar ap-
proaches, where the performance of the system is simulated or predicted,
are also described in [[73],[74], [75], [76], [77], [78]]. An approach using Petri
Nets to evaluate performance of UML design is presented in [79]

70

Barna et al., [80] present a model-based testing approach to test the
performance of a transactional system. The authors make use of an itera-
tive approach to find the workload stress vectors of a system. An adaptive
framework will then drive the system along these stress vectors until a per-
formance stress goal is reached. They use a system model, represented as
a two-layered queuing network, and they use analytical techniques to find a
workload mix that will saturate a specific system resource. Their approach
differs from ours in the sense that they use a model of the system instead of
testing against a real implementation of a system.

Other related approaches can be found in [81] and [82]. In the former, the
authors have focused on generating valid traces or a synthetic workload for
inter-dependent requests typically found in sessions when using web appli-
cations. They describe an application model that captures the dependencies
for such systems by using Extended Finite State Machines (EFSMs). Com-
bined with a workload model that describes session inter-arrival rates and
parameter distributions, their tool SWAT outputs valid session traces that
are executed using a modified version of httperf [83]. The main use of the
tool is to perform a sensitivity analysis on the system when different param-
eters in the workload are changed, e.g., session length, distribution, think
time, etc. In the latter, the authors suggest a tool that generates represen-
tative user behavior traces from a set of Customer Behavior Model Graphs
(CBMG). The CBMG are obtained from execution logs of the system and
they use a modified version of the httperf utility to generate the traffic from
their traces. The methods differ from our approach in the sense they both
focus on the trace generation and let other tools take care of generating the
load/traffic for the system, while we do on-the-fly load generation from our
models.

Denaro [84] proposes an approach for early performance testing of dis-
tributed software when the software is built using middleware components
technologies, such as J2EE or CORBA. Most of the overall performance of
such a system is determined by the use and configuration of the middleware
(e.g. databases). They also note that the coupling between the middleware
and the application architecture determines the actual performance. Based
on architectural designs of an application the authors can derive application
specific performance tests that can be executed on the early available mid-
dleware platform that is used to build the application with. This approach
differs from ours in that the authors mainly target distributed systems and
testing of the performance of middleware components.

3.4.2 Performance Testing Tools

There exist a plethora of commercial performance testing tools. In the fol-
lowing, we briefly enumerate a couple of popular performance testing tools.

71

FABAN is an open source framework for developing and running multi-tier
server benchmarks [85]. FABAN has a distributed architecture meaning
load can be generated from multiple machines. The tool has three main
components: A harness - for automating the process of a benchmark run
and providing a container for the benchmark driver code, a Driver frame-
work - provides an API for people to develop load drivers, and an Analysis
tool - to provide comprehensive analysis of the data gathers for a test. Load
is generated by running multiple scripts in parallel.

JMeter [67] is an open source tool for load testing and measuring per-
formance, with the focus on web applications. JMeter can be set up in a
distributed fashion and load is generated from manually created scenarios
that are run in parallel. Httperf [86] is a tool for measuring the performance
of web servers. Its aim is to facilitate the construction of both micro and
macro-level benchmarks. Httperf can be set up to run on multiple machines
and load is generated from pre-defined scripts.

LoadRunner [87] is a performance testing tool from Hewlett-Packard for
examining system behavior and performance. The tool can be run in a dis-
tributed fashion and load is generated from pre-recorded scenarios. Recently
several authors have focused on using models for performance analysis and
estimation, as well as for load generation.

Little research has been published in the area of generation of workload
models using log data. However, when is comes to log data, some research
exists in user clustering and pattern detection.

Kathuria et al. proposed an approach for clustering users into groups
based on the intent of the web query or the search string [88]. The proposed
approach clusters web queries into one of the three categories based on a
K-means algorithm. Vaarandi [89] proposes a Simple Logfile Clustering Tool
consequently called SLCT. SLCT uses a clustering algorithm that detects
frequent patterns in system event logs. The event logs typically contain
log data in various formats from a wide range of devices, such as printers,
scanners, routers, etc. The approach is using data mining and clustering
techniques to detect normal and anomalous log file lines. Shi [90] presents
an approach for clustering user’s interest in web pages using the K-means
algorithm. The approach uses fuzzy linguistic variables that describe the
time duration that users spend on web pages as the classification variable.
These approaches are different from ours in the sense that we assume to know
the logging format and we classify users into group based on the request
pattern rather that the intent, meaning, or time spent of a web page.

The solutions proposed by Mannila et al. [91] and Ma and Hellerstein
[92] are targeted towards discovering temporal patterns from event logs us-
ing data mining techniques and various association rules. Both approaches
assume a common logging format. Although association rules algorithms
are powerful in detecting temporal associations between events, they do not

72

focus on user classification and workload modeling for performance testing.
Another approach is presented by Anastasiou and Knottenbelt [93]. Here,
the authors propose a tool, PEPPERCORN, that will infer a performance
model from a set of log files containing raw location tracking traces. From
the data, the tool will automatically create a Petri Net Performance Model
(PNPM). The resulting PNPM is used to make an analysis of the system per-
formance, identify bottlenecks, and to compute end-to-end response times
by simulating the model. The approach differs from ours in the sense that it
operates on different structured data and that the resulting Petri Net model
is used for making a performance analysis of the system and not for load
generation. In addition, we construct probabilistic time automata (PTA)
model from which we later on generate synthetic load.

Lutteroth and Weber describe a performance testing process similar to
ours [94]. Load is generated from a stochastic model represented by a form
chart. The main differences between their and our approach is that we use
different types of models and that we automatically infer our models from
log data while they create the models manually.

3.5 Conclusions

In this chapter, we have presented our modeling approach for modeling
for performance testing. We have presented the main contributions and
explained how they have been validated. We have also shown how our
research has been validated in the terms of the tools that have been built
and the empirical validation that was made in different experiments. For
example, we showed how modeling can raise the abstraction level and hide
implementation details. We have also showed that fairly complex models can
been generated in a short amount time from small amounts of data and that
large amount our unique traces can be generated from very simple models.
These results together serve as a basis for answering the questions of how
create models from load generation and how to ensure that load generated
from the models stays close the load generated by real users.

73

74

Chapter 4

Conclusions

In this thesis we have presented an approach for using models for test gen-
eration. The presented approach target both functional testing as well as
performance testing. We have also sought solutions to the problems ad-
dressed Chapter in 1, i.e. that most model-based testing approaches are
not integrated with a software development process and that most MBT
approaches lack empirical evaluation for an industrial environment. Also,
a considerable amount of the reviewed literature lack or only offer partial
tool support. To address these issues, we offer tool support that are inte-
grated with well-known software development tools or work as stand-alone
tools. We also demonstrate the applicability of our approach with empirical
evaluations taken from the industry.

For model-based functional testing, we presented the MATERA ap-
proach. The MATERA approach include several steps: model creation,
model transformation, test generation, test execution. On top of this, re-
quirements are traced through all of these steps. The main contribution is
the actual modeling approach. Here, we show how the SUT models are built
in a stepwise manner and how requirements and statistical information are
included and traced to different model elements. This allowed requirement
information to be propagated to test generation tools and be used as test
generation goals and even test case ordering. Another important contri-
bution is tool support. We presented the MATERA tool-set, and showed
how it integrates with MagicDraw, one of the leading UML tools on the
market. We discussed how the tool aid the tester in different phases, such
as, model validation, model transformation, and requirements traceability.
Finally, we demonstrated the applicability of our approach and tool support
by validating it against an industrial case study. The goal of the case study
was to investigate how to apply MBT in an industrial setting. The system
under test was a mobile switching server. The main features of the mobile
switching server that we investigated was the location update, voice call, and

75

handover procedures. In total, 40 different UML diagrams were created in
order describe the static and dynamic parts the SUT. The UML diagrams
contained, among other things, 35 requirements, 5 use cases, 9 sequence
diagrams, 88 states, 136 transitions, and over a 100 different classes. This
information was then translated into QML, using the MATERA transfor-
mation module. From the resulting QML models, a total of 114 test cases
were generated. The generated test cases reveled no errors. This was mainly
because, in this case study, the generated test cases was executed on pro-
duction Mobile Switch Server (MSS) where no errors were expected to be
present.

To address the problems of model-based performance testing, we intro-
duced MBPeT. MBPeT is a load testing process with assisted tool support.
We described how our load testing process make use of workload models
described as probabilistic timed automata (PTA). Due to their probabilis-
tic nature, PTA models are suitable for representing user behavior. One
of the main contribution is the process of creating workload models. We
presented three different approaches for creating workload models: (a) au-
tomatic derivation of PTA models from UML sequence charts, (b) automatic
derivation of PTA models from log data, (c) manual systematic creation of
PTA models from system specifications. Another important contribution is
our process-assisted tool support. Here, we presented the MBPeT perfor-
mance testing tool. MBPeT is a cloud-based performance testing tool that
generates load using is distributed architecture. During load generation,
the tool measure several key performance indicators, such as, response time,
CPU utilization, memory usage, etc. At the end of the test run, the tool
also presents a test report with the aggregated data.

Finally, we showed how MBPeT can be used in an industrial setting.
We demonstrated the applicability of the tool on an auctioning web service
and made a comparison with the well known-load generator JMeter. The
comparison showed that MBPeT is on par with JMeter and even sometimes
faster. Since the comparison was made, several improvements have been
done to MBPeT. We also demonstrated the applicability of the tool support
for creating workload models from log data. The experiments showed that
PTA models can be generated in a matter of minutes, or even seconds. This
is a huge speed-up compared to other manual approaches that requires up
many hours in order to produce a workload model that accurately describes
user behavior.

76

4.1 Discussion

In the next section, we acknowledge the limitations in the work presented
in this thesis.

One of the most difficult problems to tackle in design science and research
in general is the ability to generalize the results. In our research work, we
acknowledge the fact that the results of our experiments and finding has
been derived from one single case study where only one test system was
used. To be able to further generalize our results, our approach would need
to be applied on other systems in other domains. However, in an academic
setting, developing a methodology and testing it thoroughly, simply lies
beyond the capacity and focus of this thesis. Further, obtaining additional
interesting and complex industrial case studies for verifying the results of
our proposed approach also require the willingness of industrial partner to
collaborate in a desirable fashion. We recognize that this is not always
easy to achieve. We also recognize that our experiments, in the context
of model-based functional testing and performance testing, were performed
on different systems under test. Ideally the same test system should have
been used. The reason for this is that the two approaches were developed in
different stages and different projects were different industrial partners had
their own needs and systems.

The work done in the context of model-based functional testing and
MATERA was attributed to one particular tool-chain. We note the fact
that in order to be able to fully generalize our results, other test genera-
tion and execution tools should also be targeted. However, in the context
of our work, we have tried to target and integrate our work with leading
tools for each part in the testing process. During the development of the
process, a lot of effort was put into tool integration. Despite the fact that
the models were described using standardized modeling languages, such as
UML and SysML, it was not possible to create a UML model using one
tool and open it with another tool. Transforming the models between the
tools can be used to circumnavigate this problem. Consequently, transfor-
mations will be performed frequently, and hence there would be a tool-chain
induced performance penalty. In addition, implementing a number of model
transformations increases the costs of the tool-chain. The tools used in our
tool-chain were all commercial and industry leading tools. Creating adapta-
tion for an entire new tool-chain was simply out of the scope for this thesis.

The MBPeT tool described in chapter 3 has been developed and tested in
a private cloud with only 4 computing nodes. Public clouds, unlike private
clouds, are usually preferred by organisations due to their availability and
on-demand scalability. Due to the choice of targeting a private cloud, the
MBPeT tool has not yet been tested to its limits. For a wider adoption of our
research work regarding model-based performance testing, we acknowledge

77

the fact that we would need to target public clouds as well, for example
Amazon EC2 [95]. However, we are limited to only certain clouds, due
to that choice of using Python [96] as the implementation language of the
MBPeT tool.

The work in the context of model-based performance testing and MBPeT
was validate only against http-based systems. To be able to generalize the
results in the context of MBPeT, we should also target other protocols and
other systems in other domains. We recognize the difficulty in finding collab-
oration parters with interesting test systems and performance requirements
that meet our needs. For this reason, we decided to implement our own test
system for use in our experiments.

4.2 Future work

The research work presented in this thesis has shown a coherent approach
for creating and using models for functional and performance testing. There
are of course several potential places of improvements in our approach and
tool support. In the following, we mention a few improvements and some
future research directions.

In the context of model-based functional testing, we have focused mainly
on generating input for certain tools in our tool-chain. To get a better
sense of the generalization of our work, it would certainly be interesting
to investigate how our methodology translate to other test generation and
execution tools used in the industry. Moreover, extending the approach to
target other types of systems in other application domains would certainly
be beneficial.

It is really difficult to get a good understanding of the weak points and
the real potential of our approach without solid empirical data. Making
experiment in a laboratory environment is simply not enough. It would
certainly be interesting to let the industry try our methodology and tool
support to get empirical data on how much time and effort that really is
saved using our approach. This is something we hope to achieve in the
future.

So far, the MBPeT tool has only been used for testing web services.
However, the approach is not limited only to such systems. In the future,
we plan to address web applications, as well as other types of communicating
systems in other domains. Due to limited resources, the MBPeT tool has
never been tested with extreme load levels. Hence, we do not yet known
the upper capacity of the MBPeT tool. In the future, we plan to investigate
this further to find out how much load the tool can handle.

78

Bibliography

[1] M. Haug, E.W. Olsen, and L. Consolini. Software Quality Approaches:
Testing, Verification, and Validation: Software quality approaches
: testing, verification, and validation. ESSI practitioners’ reports.
Springer Berlin Heidelberg, 2001.

[2] Edsger W. Dijkstra. Notes on Structured Programming. circulated
privately, April 1970.

[3] B. Hailpern and P. Santhanam. Software debugging, testing, and veri-
fication. IBM Systems Journal, 41(1):4–12, 2002.

[4] Matthew Heusser. How to Reduce the Cost of Software Testing. Auer-
bach Publications, 1 edition, September 2011.

[5] Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing Au-
tomated Software Testing: How to Save Time and Lower Costs While
Raising Quality. Addison-Wesley Professional, 1st edition, 2009.

[6] International Electrotechnical Commission. Iec 61508. http://www.

iec.ch/functionalsafety/standards/.

[7] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007.

[8] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxon-
omy of model-based testing approaches. Softw. Test. Verif. Reliab.,
22(5):297–312, August 2012.

[9] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lind-
ner. A break in the clouds: Towards a cloud definition. SIGCOMM
Comput. Commun. Rev., 39(1):50–55, 2008.

[10] Sascha Kirstan Helmut Krcmar Broy, Manfred and Bernhard Schtz.
What is the benefit of a model-based design of embedded software sys-
tems in the car industry? In Emerging Technologies for the Evolution
and Maintenance of Software Models, pages 343–369. IGI Global, 2012.

79

http://www.iec.ch/functionalsafety/standards/
http://www.iec.ch/functionalsafety/standards/

[11] ITEA2. Itea 2 d-mint project result leaflet: Model-
based testing cuts development costs. Online
at: https://itea3.org/project/result/download/5519/D-
MINT%20Project%20Leaflet.pdf, February 2015.

[12] T. S. Chow. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, 4(3):178–187, May 1978.

[13] Bernhard Peischl, Rudolf Ramler, Vitalina Turlo, Stefan Mo-
hacsi, Valery Safronau, and Tobias Walter. Integrated model-
based testing in a project’s ttool landscape (white paper).
Online at: http://nl.atos.net/content/dam/nl/documents/atos-wp-
modelbasedtesting-tam.pdf, February 2015.

[14] Robert Binder. Model-based testing user survey: Results and anal-
ysis. Online at: http://robertvbinder.com/wp-content/uploads/rvb-
pdf/arts/MBT-User-Survey.pdf, March 2015.

[15] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guil-
herme H. Travassos. A survey on model-based testing approaches: A
systematic review. In Proceedings of the 1st ACM International Work-
shop on Empirical Assessment of Software Engineering Languages and
Technologies: Held in Conjunction with the 22Nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) 2007,
WEASELTech ’07, pages 31–36. ACM, 2007.

[16] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Ja-
son E. Robbins. Modeling software architectures in the unified model-
ing language. ACM Trans. Softw. Eng. Methodol., 11(1):2–57, January
2002.

[17] Gregor Engels, Reiko Heckel, and Stefan Sauer. Uml – a universal
modeling language? In D. Simpson M. Nielsen, editor, In Proc. 21st
International Conference in Application and Theory of Petri Nets, vol-
ume 1825, pages 24–38, 2000.

[18] Laura A. Campbell, Betty H. C. Cheng, William E. McUmber, and
R. E. K. Stirewalt. Automatically detecting and visualising errors in
uml diagrams. Requirements Engineering, 7(4):264–287, 2002.

[19] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Rea-
soning on uml class diagrams. Artif. Intell., 168(1):70–118, October
2005.

[20] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS Q., 28(1):75–105,
2004.

80

[21] Zoltan Micskei. Mbt tools. Online at:
http://mit.bme.hu/ micskeiz/pages/modelbased testing.html, March
2015.

[22] Terry Shepard. Incomplete list of tesing tools.
Online at: http://research.cs.queensu.ca/ shep-
ard/testing.dir/under.construction/tool list.html, March 2015.

[23] J. Shaw. Web application performance testing — a case study of
an on-line learning application. BT Technology Journal, 18(2):79–86,
April 2000.

[24] Fredrik Abbors, Tuomas Pjrvi, Risto Teittinen, Dragos Truscan, and
Johan Lilius. Transformational support for model-based tesing - from
uml to qml. In Proceddings of 2nd Workshop on Model-Based Testing
in Practice (MOTIP’09), volume 1, pages 55–64, 2009.

[25] Deployment of model-based technologies to industrial testing (d-mint)
project. Online at: https://itea3.org/project/d-mint.html, February
2015.

[26] Practical applications of model-based technologies to continuous
integration & testing methodproject (pam) project. Online at.
https://research.it.abo.fi/projects/PAM, February 2015.

[27] Doctoral programme on software and systems engineering (sose). On-
line at: http://www.sose.oulu.fi/, March 2015.

[28] Object Management Group (OMG). The unified modeling language.
Web, August 2015. http://www.omg.org/spec/UML/.

[29] Object Management Group (OMG). The systems modeling language.
Web, August 2015. http://www.omg.org/spec/SysML/1.2/PDF/.

[30] Object Management Group (OMG). Object constraint language speci-
fication formal/06-05-01. Web, February 2014. http://www.omg.org/

spec/OCL/.

[31] NoMagic. Magicdraw user manual. Web, 2014. http://www.nomagic.
com/files/manuals/MagicDraw%20UserManual.pdf.

[32] Conformiq. Conformiq Designer 4.4 User Manual, 2011. http://www.
verifysoft.com/ConformiqManual.pdf.

[33] Nethawk. Nethawk east, 2008. https://www.nethawk.fi/products/

news/nethawk-and-testing-techn/index.xml.

81

http://www.omg.org/spec/UML/
http://www.omg.org/spec/SysML/1.2/PDF/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.nomagic.com/files/manuals/MagicDraw%20UserManual.pdf
http://www.nomagic.com/files/manuals/MagicDraw%20UserManual.pdf
http://www.verifysoft.com/ConformiqManual.pdf
http://www.verifysoft.com/ConformiqManual.pdf
https://www.nethawk.fi/products/news/nethawk-and-testing-techn/index.xml
https://www.nethawk.fi/products/news/nethawk-and-testing-techn/index.xml

[34] Michael Schmitt, Michael Ebner, Technische Berichte, Georg august-
universitt Gttingen, Michael Schmitt, and Michael Ebner. The ttcn3,
2003.

[35] Johan Abbors. Increasing Quality of UML Models Used for Automatic
Test Generation. Master’s thesis, Åbo Akademi University, 2009.

[36] Orlena Gotel and Anthony Finkelstein. An analysis of the requirements
traceability problem. In International Conference on Requirements En-
gineering, pages 94–101, 1994.

[37] Tuomas Pääjärvi. Generation input for the test generator tool from
uml design models. Master’s thesis, Åbo Akademi University, 2009.

[38] 3GPP. 3gpp ts 23.002 v8.3.0 technical specification group services and
systems aspects; network architecture, September 2008.

[39] 3GPP. 3gpp ts 44.018 v8.2.0 technical specification group services and
systems aspects; network architecture, Mars 2008.

[40] Kim Nylund. From test generation to test execution in model-based
testing. Master’s thesis, Åbo Akademi University, 2010.

[41] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and
Tools, volume 1. Addison Wesley Longman, Inc., 1999.

[42] F. Basanieri and A. Bertolino. A practical approach to uml-based
derivation of integration tests. In Proc. 4th International Software Qual-
ity Week Europe (QWE’2000), 2000.

[43] T. J. Ostrand and M. J. Balcer. The category-partition method for
specifying and generating fuctional tests. Commun. ACM, 31(6):676–
686, June 1988.

[44] Lionel C. Briand and Yvan Labiche. A uml-based approach to system
testing. In Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and Tools,
pages 194–208, London, UK, UK, 2001. Springer-Verlag.

[45] L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to empirically
investigate test coverage criteria based on statechart. In Proceedings of
the 26th International Conference on Software Engineering, ICSE ’04,
pages 86–95, Washington, DC, USA, 2004. IEEE Computer Society.

[46] Jeff Offutt and Aynur Abdurazik. Generating tests from uml speci-
fications. In Proceedings of the 2Nd International Conference on The
Unified Modeling Language: Beyond the Standard, UML’99, pages 416–
429, Berlin, Heidelberg, 1999. Springer-Verlag.

82

[47] Aynur Abdurazik and Jeff Offutt. Using uml collaboration diagrams
for static checking and test generation. In Proceedings of the 3rd Inter-
national Conference on The Unified Modeling Language: Advancing the
Standard, UML’00, pages 383–395, Berlin, Heidelberg, 2000. Springer-
Verlag.

[48] T. S. Chow. Testing software design modeled by finite-state machines.
IEEE Trans. Softw. Eng., 4(3):178–187, May 1978.

[49] Avik Sinha and Amit Paradkar. Model-based functional conformance
testing of web services operating on persistent data. In Proceedings
of the 2006 Workshop on Testing, Analysis, and Verification of Web
Services and Applications, TAV-WEB ’06, pages 17–22, New York, NY,
USA, 2006. ACM.

[50] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In Pro-
ceedings of the 21st International Conference on Software Engineering,
ICSE ’99, pages 285–294, New York, NY, USA, 1999. ACM.

[51] Alessandra Cavarra, Charles Crichton, and Jim Davies. A method for
the automatic generation of test suites from object models. Information
Software Technology, 46(5):309–314, 2004.

[52] Santosh Kumar Swain and Durga Prasad Mohapatra. Article:test case
generation from behavioral uml models. International Journal of Com-
puter Applications, 6(8):5–11, September 2010. Published By Founda-
tion of Computer Science.

[53] G. J. Tretmans and H. Brinksma. Torx: Automated model-based test-
ing. In A. Hartman and K. Dussa-Ziegler, editors, First European Con-
ference on Model-Driven Software Engineering, Nuremberg, Germany,
pages 31–43, December 2003.

[54] Dorina C. Petriu and Hui Shen. Applying the UML Performance Profile:
Graph Grammar-based Derivation of LQN Models from UML Specifi-
cations. pages 159–177. Springer-Verlag, 2002.

[55] M. Jurdziński, M. Kwiatkowska, G. Norman, and A. Trivedi.
Concavely-Priced Probabilistic Timed Automata. In M. Bravetti and
G. Zavattaro, editors, Proc. 20th International Conference on Concur-
rency Theory (CONCUR’09), volume 5710 of LNCS, pages 415–430.
Springer, 2009.

[56] Daniel A. Menasce and Virgilio Almeida. Capacity Planning for Web
Services: metrics, models, and methods. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2001.

83

[57] Maria Calzarossa, Luisa Massari, and Daniele Tessera. Workload
Characterization Issues and Methodologies. In Performance Evalua-
tion: Origins and Directions, pages 459–481, London, UK, UK, 2000.
Springer-Verlag.

[58] Fredrik Abbors, Tanwir Ahmad, and Dragos Truscan. An automated
approach for creatingworkload models from server log data. In Proceed-
ings of the 2014 9th International Conference on Software Engineering
and Applications, 2014.

[59] The Apache Software Foundation. Apache https server project. Online
at: http://httpd.apache.org/, February 2015.

[60] Microsoft. Microsoft server 2012 r2. Online at:
http://www.microsoft.com/en-us/server-cloud/products/windows-
server-2012-r2/, February 2012.

[61] J. B. MacQueen. Some methods for classification and analysis of
multivariate observations. In Proceedings of 5-th Berkeley Symposium
on Mathematical Statistics and Probability, number 1, pages 281–297.
Berkeley, University of California Press, 1967.

[62] BarryC. Arnold. Pareto and generalized pareto distributions. In
Duangkamon Chotikapanich, editor, Modeling Income Distributions
and Lorenz Curves, volume 5 of Economic Studies in Equality, Social
Exclusion and Well-Being, pages 119–145. Springer New York, 2008.

[63] Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres. Per-
formance Testing in the Cloud using MBPeT, volume 1, chapter 6,
pages 191–226. Turku Centre for Computer Science, 2013.

[64] Tanwir Ahmad, Fredrik Abbors, Dragos Truscan, and Ivan Porres.
Model-Based Performance Testing Using the MBPeT Tool. Technical
Report 1066, Turku Centre for Computer Science (TUCS), 2013.

[65] Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres.
Model-based performance testing of web services using probabilistic
timed automata. In Proceedings of the 2013 10th International Confer-
ence on Web Information Systems and Technologies, 2013.

[66] Leonard Richardson and Sam Ruby. Restful web services. O’Reilly, first
edition, 2007.

[67] The Apache Software Foundation. Apache JMeter.
http://jmeter.apache.org/. Retrieved: October, 2012.

84

[68] Yuhong Cai, John Grundy, and John Hosking. Synthesizing client load
models for performance engineering via web crawling. In Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, ASE ’07, pages 353–362. ACM, 2007.

[69] Oracle. Java Pet Store 2.0 reference application.
http://www.oracle.com/technetwork/java/index-136650.html, 2015.
Last Accessed: 2015-05-23.

[70] Kim Nylund. Pubiliiga.fi. Online at: http://www.pubiliiga.fi/, March
2015.

[71] Django. Online at https://www.djangoproject.com/, September 2012.

[72] Ahmed Awad El Sayed Ahmed Mohammed S. Obaidat Issa Traore,
Isaac Woungang. Software performance modeling using the uml: a case
study. Journal of Networks, 7(1):4–22, January 2012.

[73] Julie A. Street and Robert G. Pettit IV. Lessons learned applying
performance modeling and analysis techniques. In ISORC, pages 208–
214, 2006.

[74] V. Garousi. Uml model-driven detection of performance bottlenecks
in concurrent real-time software. In Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS), 2010 International
Symposium on, pages 317–324, July 2010.

[75] Vittorio Cortellessa, Antinisca Di Marco, Romina Eramo, Alfonso
Pierantonio, and Catia Trubiani. Digging into uml models to remove
performance antipatterns. In Proceedings of the 2010 ICSE Workshop
on Quantitative Stochastic Models in the Verification and Design of
Software Systems, QUOVADIS ’10, pages 9–16, New York, NY, USA,
2010. ACM.

[76] A. AL Abdullatif and R.J. Pooley. Uml-jmt: A tool for evaluating
performance requirements. In Engineering of Computer Based Systems
(ECBS), 2010 17th IEEE International Conference and Workshops on,
pages 215–225, March 2010.

[77] Yong Zhang, Tao Huang, and Jun Wei. Declarative performance mod-
eling for component-based system using uml profile for schedulability,
performance and time. In Software Engineering and Formal Methods,
2006. SEFM 2006. Fourth IEEE International Conference on, pages
246–258, Sept 2006.

85

[78] Simonetta Balsamo and Moreno Marzolla. A simulation-based ap-
proach to software performance modeling. SIGSOFT Softw. Eng. Notes,
28(5):363–366, September 2003.

[79] Salvatore Distefano, Marco Scarpa, and Antonio Puliafito. From uml
to petri nets: The pcm-based methodology. IEEE Transactions on
Software Engineering, 37(1):65–79, 2011.

[80] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Model-based per-
formance testing (NIER track). In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 872–875, New
York, NY, USA, 2011. ACM.

[81] Mahnaz Shams, Diwakar Krishnamurthy, and Behrouz Far. A model-
based approach for testing the performance of web applications. In
SOQUA ’06: Proceedings of the 3rd international workshop on Software
quality assurance, pages 54–61, New York, NY, USA, 2006. ACM.

[82] G. Ruffo, R. Schifanella, M. Sereno, and R. Politi. WALTy: A User
Behavior Tailored Tool for Evaluating Web Application Performance.
Network Computing and Applications, IEEE International Symposium
on, 0:77–86, 2004.

[83] David Mosberger and Tai Jin. httperf - a tool for measuring web server
performance. SIGMETRICS Perform. Eval. Rev., 26(3):31–37, Decem-
ber 1998.

[84] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early per-
formance testing of distributed software applications. In Proceedings of
the 4th international workshop on Software and performance, WOSP
’04, pages 94–103, New York, NY, USA, 2004. ACM.

[85] Sun. Faban Harness and Benchmark Framework.
http://java.net/projects/faban/, February 2013.

[86] Hewlett-Packard. Httperf. Online at:
http://www.hpl.hp.com/research/linux/httperf/httperf-man-0.9.txt,
March 2015.

[87] HP. HP LoadRunner. http://www8.hp.com/us/en/software-
solutions/loadrunner-load-testing/, February 2013.

[88] Ashish Kathuria, Bernard J. Jansen, Carolyn Theresa Hafernik, and
Amanda Spink. Classifying the user intent of web queries using k-means
clustering. In Internet Research, number 5, pages 563–581. Emerald
Group Publishing, 2010.

86

[89] Risto Vaarandi. A data clustering algorithm for mining patterns from
event logs. In Proceedings of the 3rd IEEE Workshop on IP Operations
and Management (IPOM03), pages 119–126. IEEE, 2003.

[90] Peilin Shi. An efficient approach for clustering web access patterns from
web logs. In International Journal of Advanced Science and Technology,
volume 5, pages 1–14. SERSC, 2009.

[91] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery
of frequent episodes in event sequences. Data Min. Knowl. Discov.,
1(3):259–289, January 1997.

[92] Sheng Ma and Joseph L. Hellerstein. Mining partially periodic event
patterns with unknown periods. In Proceedings of the 17th Interna-
tional Conference on Data Engineering, pages 205–214, Washington,
DC, USA, 2001. IEEE Computer Society.

[93] Nikolas Anastasiou and William Knottenbelt. Peppercorn: Inferring
performance models from location tracking data. In QEST, Lecture
Notes in Computer Science, pages 169–172. Springer, 2013.

[94] Christof Lutteroth and Gerald Weber. Modeling a realistic workload for
performance testing. In 12th International Conference on Enterprise
Distributed Object Computing., pages 149–158. IEEE Computer Society,
2008.

[95] Amazon elastic compute cloud 2. Online at
http://aws.amazon.com/ec2/.

[96] Python. Python programming language. Online at
http://www.python.org/. Last Accessed: 2014-12-30.

87

PART II

Original Publications

Paper I

Tracing Requirements In A Model-
Based Testing Approach

Fredrik Abbors, Dragos Truscan, and Johan Lilius.

Originally published 2009 Proceeding of 1st International Conference
on Advances in System Testing and Validation Lifecycle. IEEE. Septem-
ber 2009, Porto, Portugal.

c©2009 IEEE. Reprinted with permission of IEEE.

In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of Åbo Akademi’s products
and services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising
or promotional purposes or for crediting new collective work for resale or
redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html

to learn how to obtain a License from RightsLink.

Tracing Requirements In A Model-Based Testing Approach

Fredrik Abbors, Dragoş Truşcan, and Johan Lilius,
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520, Turku, Finland
Email: {Fredrik.Abbors, Dragos.Truscan, Johan.Lilius}@abo.fi

Abstract

In this paper we discuss an approach for require-
ments traceability in a model-based testing process.
We show how the informal requirements of the system
under test evolve and are traced at different steps of
the process. More specifically, we discuss how require-
ments are traced to system specifications and from
system specification to tests during the test generation
process, and then how the test results are analyzed
and traced back the specification of the system. The
approach allows us to have both a fast feed-back
loop for debugging either the specification or the
implementation of the system and a way to estimate the
coverage degree of the generated tests with respect to
requirements. We discuss tool support for the approach
and exemplify with excerpts from a case study in the
telecommunications domain.

1. Introduction

The key to successful product engineering in the
software industry today is in many cases a good
quality-assurance and deployment of software systems.
Customers demand highly efficient, low-cost, and reli-
able software products. Companies are forced to build
high-end products with a low budget in a short time.
The increasing demand for software products forces
the companies to develop new products at a very fast
pace. We see a constant decrease in the time-to-market
and customers demanding more flexible systems which
result in the growing system complexity. Missing the
deadline for the time-to-market can have a huge neg-
ative impact on the company’s profit. Unfortunately,
this fast pace leaves the companies with less time for
testing their products.

The purpose of testing is to find faults that have
been introduced during the development of the system,
starting with the initial specification phases and ending
with its implementation. Testing is also a means to

ensure the quality of a product and to verify that
the product meets its requirements. Having a sys-
tematic and automated way to test software systems
would reduce the overall expenses of testing due to a
shorter time-to-market. Likewise, this would leave the
companies with more time for actually designing and
implementing the software, and would result in better
and more reliable software.

Model-based testing (MBT) is a software testing
technique that has gained much interest in recent years
by providing the degree of automation needed for
shortening the time required for testing. The main idea
behind MBT, is that a behavioral model of the system,
namely a test model, is used for automatically deriving
test cases following different coverage criteria.

The test model is typically developed from the
informal requirements of the system and therefore it is
important to trace how the generated test cases cover
different requirements. Traceability of requirements
can help one to achieve the right level of coverage
and show what requirement has been covered by what
test. Traceability can also be used to trace requirements
to specifications (code or models) and can detect what
part of a code or a model implements a requirement.
By tracing requirements to tests, it becomes possible
to trace back requirements to models, when a test fails
and to identify from which part of a the test model the
failure originated.

In this paper we present an approach for tracing
product requirements across a model-based testing
process, from informal documents via test models to
test cases, and back to requirements and test models.
The approach allows us to have both a fast feed-
back loop for debugging either the specification or the
implementation of the system and a way to estimate the
coverage degree of the generated tests with respect to
requirements. We discuss tool support for the approach
and exemplify with excerpts from a case study in the
telecommunications domain.

Related Work. Requirements traceability is a
very popular topic in the software engineering and
testing communities, and has gained momentum in
the context of model-based testing in the context of
automated test generation. However, as requirements
change during the development life cycles of software
systems, updating and managing traces has become a
tedious task. Researchers have addressed this problem
by developing methods for automatic generations of
traceability relations [1] [2] [3] [4] by using infor-
mation retrieval techniques to link artifacts together
based on common key-words that occur in both the
requirement description and in a set of searchable
documents. Other approaches focus on annotating the
model with requirements which are propagated through
the test generation process in order to obtain a re-
quirement traceability matrix [5]. The matrix is then
used to manually analyze and track requirements to
models. From the reviewed works, the one in [6] is
closer to our approach. In there, the authors use textual
delimiters to add requirements in the OCL constructs
associated to a restricted set of UML models. The
LEIROS test design tool is then used to generate test
cases, and a traceability matrix is obtained after the
test are executed. However, there is no tool support
for tracing-back requirements from tests to models.

2. Model-Based Testing Process

Our model-based testing process (Figure 1) starts
with the analysis and structuring of the informal re-
quirements into a Requirements Model. The Require-
ments Diagrams of the Systems Modeling Language
(SysML) [7] are used for this purpose. In the next
phase, the system under test (SUT) is specified using
the Unified Modeling Language (UML) [8]. In our
modeling process, we consider that several perspec-
tives of the SUT are required in order to enable a
successful test derivation process later. In addition, one
should note that in our approach a model of the system
is used for deriving test cases and not a test model, the
difference between the two being that the former is
both used for development and testing, whereas the
latter is only used for testing. Several perspectives
of the SUT are modeled; a class diagram is used
to specify a domain model showing what domain
components exist and how they are interrelated through
interfaces. A behavioral model describes the behavior
of the SUT using state machines. Data models are
used to describe the message types exchanged between
different domain entities. Last but not least, domain
configuration models are used to represent specific test
configurations using object diagrams.

Informal
Requirements

Informal
Requirements

Requirements Model
(SysML)

Requirements Model
(SysML)

Requirements Analysis and Structuring

Requirements tracing

Generate
Test Report

Traceback

SUTSUT

Connects

Test Report
(HTML)

Test Report
(HTML)

Coverage
Criteria
Coverage
Criteria

Validation

System Models
(UML)

System Models
(UML)

Propagate Requirements

Automatic
Test Design and

Execution

Report
Analyzer

Validation
Traceback

Figure 1: Overview of the model-based testing process

A set of modeling guidelines and validation rules are
defined for ensuring the quality of the resulting models.
Modeling guidelines are used to specify how different
models are created from requirements or from other
models, what information they should contain, how this
information is related to the information present in the
other models, etc.

Validation rules have been defined and imple-
mented [9] for both Requirements Models and for
System Models for checking different quality metrics
of the resulting models before proceeding to the test
derivation phase. These rules ensure that the models
are syntactically correct, they are consistent with each
other, and that they contain the information needed in
the later phases of the testing process. Tool support is
provided for automatically verifying these rules using
the Object Constraint Language (OCL). The OCL rules
check the static semantics of the models and can be
used to describe constraints that are specific to the
domain, modeling language, modeling process, etc.
However, if OCL can be used for checking the dynamic
semantics of the models has to be further investigated.
The NoMagic’s MagicDraw tool [10] has been used for
editing the SysML and UML models and for running
the validation rules.

The models used to specify the SUT are subse-
quently transformed into input for an automated test
derivation tool, namely Conformiq’s Qtronic [11]. We
use the online testing mode of this tool, in which tests
are generated and applied on-the-fly against the SUT.
The desired coverage criteria used for test generation
are manually selected from the graphical user interface
(GUI) of Qtronic. At the end of each test run, a
automatically generated Test Report will summarize

the result of the testing process in terms of gener-
ated test cases, verdicts, coverage levels, requirements
traceability matrix, etc.

3. Requirements Traceability

Our approach to requirements traceability is built on
top of the previously explained testing process with
two goals in mind. Firstly, we want to be able to
trace how different parts of the system models relate
to the requirements and then to see how different
requirements are covered by the generated test cases.
Another reason for tracing requirements is that if a
requirement changes, it is essential to know how this
change is reflected in the models [12] [13]. Secondly,
once the test report becomes available, we would like
to be able to identify which requirements have been
successfully tested and which have resulted in failures.
In addition, for the failed test cases we should be able
to trace back from test cases those parts of the SUT
specification that generated the failure.

In the following, we briefly describe our require-
ments traceability approach while providing small ex-
amples from a telecommunications case study. In our
case, the SUT is a Mobile Switching Server (MSS).
The MSS is a network element located in a mobile
telecommunication system. The MSS is connected
to its surrounding elements through several different
interfaces. The MSS is responsible for keeping track of
the location of mobile subscribes (MS) in the network
and for connecting calls between MS’s over 2G and 3G
networks. The MSS is also responsible for tracking the
movement of MS’s during an ongoing call.

3.1. Tracing requirements to tests

3.1.1. Requirements decomposition. The require-
ments models are obtained by analyzing informal
requirements related to standards, protocols, system
specifications, etc. Requirements are structured in a
tree-like manner and defined on several levels of ab-
straction following a functional decomposition. They
can also be related (i.e. traced) to other requirements on
the same abstraction level. Requirements may also be
decomposed into different categories, depending on the
nature of the requirement, like functional, architectural,
data, etc.

Each requirement element contains a name field
which specifies the name of the requirement, an id
field, and a text field. The id field simply specifies the
id of the requirement, whereas the text field describes
the requirement. A requirement also contains a source
field. The source field specifies the origins of the

Figure 2: Example of a SysML requirements diagram

Figure 3: Linking requirements to a transition in a state
machine

requirement. The source can be a link to or a name
of a textual document from where the requirement has
been extracted. Figure 2 shows the functional require-
ments for the location update procedure of the MSS
represented using a SysML requirements diagram.

3.1.2. Requirements traced to models. The UML
models of the SUT are built starting from the require-
ments models. During this process, the requirements
are traced to different parts of the models to point
how each requirement is addressed by the models. The
relationships between requirements and models are
specified on several levels. Non-leaf requirements are
refined (linked) to models, e.g. state machine models.
An exceptional situation is in the case of the top-
level functional requirements, which are linked to use
cases in the use case model of the SUT. The leaf
requirements in the requirements tree are then linked
to other UML elements to which they apply, e.g.
transitions in a state machine or classes in a class
diagram. Figure 3 shows how a requirement can be
linked to a model element, e.g. a transition in a state
machine using the MagicDraw editor.

This is done to ensure the traceability of require-
ments within the system models and to test cases.

These links are useful for evaluating (using the pre-
viously discussed validation rules) whether all the
requirements have been reflected in the models or
by showing what elements from different diagrams
specify a given requirement. When all requirements
have been linked to model elements and the models
have been validated, the UML models are transformed
into input for the Qtronic tool via an automated trans-
formation.

The transformation [14] [15] basically translates
UML models to the Qtronic Modeling Language
(QML), the language used by Qtronic for specifying
the SUT. QML is a textual specification language
with a Java-like syntax in which one can specify the
input/output ports of the system and what data types
(complex data type are supported) can be send and
received on different ports. The behavior of the SUT
can be described either in QML or using a simplified
version of UML statecharts. In the latter case, QML
can be used as an action language for the statechart.

Qtronic provides support for requirement coverage
during test generation. Requirements are associated to
state models, more precisely to the actions on tran-
sitions via the requirement statement. Basically,
the requirements in Qtronic are tags that are used to
trace if a specific transition in the state model has been
covered by the generated test cases.

During the transformation from UML to QML,
links between requirements and model elements are
preserved. In the current status of our work, only
requirements attached to state machine transitions are
propagated to Qtronic. Requirement hierarchy is spec-
ified in QML with the ”/” character. Figure 4 shows
an example of a state machine that has been trans-
formed from UML to QML. In this figure, one can
see that requirement 6.1.1 and requirement
6.1.2 in the MagicDraw model are propagated to the
same transitions in QML. As the rest of the system
description in QML is not relevant for this paper we
do not include it here. However a detailed example can
be found in [15].

3.1.3. Tracing requirements to tests. In Qtronic, test
cases are generated according to different coverage
criteria, like requirements coverage, transition cover-
age, state coverage. The coverage criteria are selected
manually using the Qtronic user interface. By com-
bining one or more of the mentioned criteria, Qtronic
tries to generate tests based on those criteria. If the
requirements coverage criterium is enabled, one can
choose to test different requirements individually, by
checking or unchecking the corresponding requirement
in a list. Qtronic will then generate test cases that cover

Figure 4: Example of a UML state machine in Mag-
icDraw (left) and its equivalent in QML (right)

the selected requirements.
In the online testing mode, Qtronic handles the test

execution process. One-by-one it generates an input
message, sends it via the adapter to the SUT, and
generates a new input message based on the responses
from the SUT. A logging back-end can be used during
test execution. The logging back-end provides connec-
tivity to the Qtronic reporting infrastructure and it is
used by Qtronic to generate a test report. Three logging
back-ends are provided by default. With these logging
back-ends, Qtronic can generate test reports in HTML,
SQLite, and XML format. When all tests have been
applied against the SUT, Qtronic generates a test report
in the chosen format. Listing 1 shows an example of
a generated test case specified in XML. As one can
notice, the requirements have been propagated during
test generation and included in the test specification
(see line 6).

Listing 1: Requirement propagated to Qtronic test
specification

1 <c h e c k p o i n t>
2 <symbol v a l u e =” t r a n s i t i o n : Loca t ionUpda te−

A u t h e n t i c a t i o n−>Loca t ionUpda te−C i p h e r i n g−
i n i t i a l −0−1” />

3 <t imes t amp nano seconds =” 447362000 ” s e c o n d s =” 0 ” />
4 </ c h e c k p o i n t>
5 <c h e c k p o i n t>
6 <symbol v a l u e =” 6 A u t h e n t i c a t i o n / 1 The MSS must

be a b l e t o a u t h e n t i c a t e MSs / 1
A u t h e n t i c a t i o n o f MSs must be s u p p o r t e d i n
GERAN (2G) n e t w o r k s ” />

7 <t imes t amp nanoseconds =” 447399000 ” s e c o n d s =” 0 ” />
8 </ c h e c k p o i n t>
9 <c h e c k p o i n t>

Figure 5 shows a example of a test report1 generated

1. The test report also includes a requirements traceability matrix
which we do not include due to space reasons.

Figure 5: Test report produced by Qtronic

by Qtronic with a HTML logging back-end. It is
also possible to inspect each test case individually
by clicking on the [MSC] link next to the test case
number in the test report. This will bring up a message
sequence chart (MSC) showing the order of messages
sent and received by Qtronic.

3.2. Back-tracing of requirements

The approach opposite to the one presented above, is
to trace-back requirements from test cases to models.
For this purpose, we analyze the test report, collect the
information of the failed test cases, and trace the re-
quirements attached to those test cases, back to system
models. This way we can see which requirements were
not validated during testing and to what parts of the
specification they are linked.

We have developed a Python script that automati-
cally analyzes the Qtronic test report and generates a
set of OCL queries (see Figure 6), that we use in Mag-
icDraw to locate erroneous parts in the UML system
models. In this way, we can see which requirements
failed during testing and to what model elements they
are linked. Figure 7 shows how requirements, which

Figure 6: OCL constraints produced by the Req2Ocl
script

Figure 7: Tracing of requirements to a SysML Require-
ment Diagram

failed during testing, are found in the requirements
model with the help of the OCL queries. In Figure 8
one can see how the same requirements are found in
the state machine diagram, on the same transitions
to which they were initially traced. Ultimately, since
requirements are traced to model elements, it facili-
tates the identification of which functionalities of SUT
are not in sync with the model, and hence with the
requirements.

4. Conclusion

This paper has presented an approach for traceability
of requirements in a model-based testing approach. We
have shown how requirements can be traced to mod-
els, to test specifications, and back to models again.
Traceability of requirements facilitates the process of
locating parts in the system models that are causing
failed test cases. Further, traceability of requirements
can help in depicting missing tests, i.e. when critical
requirements are not traced to any tests.

Currently, our presented approach only supports

Figure 8: Tracing of requirements to transitions in a
state machine

online testing. In the future, we will extend it to
offline testing, as well. Another future goal is to
find a solution for tracing non-functional requirements
to system models and, respectively, to tests. This is
something that has not yet been fully investigated.

Our approach benefits from a well integrated tool
chain, in which specialized tools are used for each
phase of the model-based testing process. When not
already provided by the tools involved, we have pro-
vided automation of the transitions between the phases
of the process, allowing to have a fast feed-back loop
for testing and debugging the specifications or the
implementation of the SUT. In addition, having a fully
automated approach, the effort in updating the models
and performing the testing again was diminished.

The approach also proved beneficial through the fact
that many errors have been detected in the early stages
of the process, when the system models have been
created. The errors were caused mainly by omissions
in the models and by misinterpreting the requirements.
Thus, when failed test cases were reported after test
runs we could focus our attention directly on debug-
ging the implementation of the SUT.

References

[1] G. Spanoudakis, A. Zisman, E. Perez-Minana, and
P. Krause, “Rule-Based Generation of Requirements
Traceability Relations,” The Journal of Systems & Soft-
ware, vol. 72, no. 2, pp. 105–127, 2004.

[2] C. Duan and J. Cleland-Huang, “Visualization and
Analysis in Automated Trace Retrieval,” in Require-

ments Engineering Visualization, 2006. REV’06. First
International Workshop on, 2006, pp. 5–5.

[3] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou,
“Utilizing Supporting Evidence to Improve Dynamic
Requirements Traceability,” in 13th IEEE International
Conference on Requirements Engineering, 2005. Pro-
ceedings, pp. 135–144.

[4] J. Hayes, A. Dekhtyar, and J. Osborne, “Improving Re-
quirements Tracing via Information Retrieval,” in 11th
IEEE International Requirements Engineering Confer-
ence, 2003. Proceedings, 2003, pp. 138–147.

[5] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and
M. Utting, “Requirements Traceability in Automated
Test Generation: Application to Smart Card Software
Validation,” in Proceedings of the 1st international
workshop on Advances in model-based testing. ACM
New York, NY, USA, 2005, pp. 1–7.

[6] E. Bernard and B. Legeard, “Requirements Traceabil-
ity in the Model-Based Testing Process,” in Software
Engineering, ser. Lecture Notes in Informatics, vol.
106. Bttinger, Stefan and Theuvsen, Ludwig and Rank,
Susanne and Morgenstern, Marlies, 2007, pp. 45–54.

[7] Object Management Group, “OMG SysML
Specification,” Tech. Rep. [Online]. Available:
http://www.omg.org/spec/SysML/1.1/

[8] “Unified Modeling Language -
http://www.omg.org/spec/UML/2.0/.” [Online].
Available: http://www.omg.org/spec/UML/2.0/

[9] J. Abbors, “Increasing Quality of UML Models Used
for Automatic Test Generation,” Master’s thesis, bo
Akademi University, 2009.

[10] “NoMagic MagicDraw,” http://www.magicdraw.com/.

[11] “Conformiq Qtronic,” http://www.conformiq.com/.

[12] T. Tsumaki and Y. Morisawa, “A Framework of Re-
quirements Tracing using UML,” in Software Engi-
neering Conference, 2000. APSEC 2000. Proceedings.
Seventh Asia-Pacific, 2000, pp. 206–213.

[13] R. Settimi, J. Cleland-Huang, O. Khadra, J. Mody,
W. Lukasik, and C. DePalma, “Supporting software
evolution through dynamically retrieving traces to UML
artifacts.”

[14] T. Pääjärvi, “Generation Input for the Test Generator
Tool from UML Design Models,” Master’s thesis, Åbo
Akademi University, 2009.

[15] F. Abbors, T. Pääjärvi, R. Teittinen, D. Truşcan, and
J. Lilius, “A Semantic Transformation from UML Mod-
els to Input for the Qtronic Test Design Tool,” Turku
Centre for Computer Science (TUCS), Tech. Rep. 942,
2009.

Paper II

Including Model-Based Statistical Test-
ing in the MATERA Approach

Andreas Bäcklund, Fredrik Abbors, and Dragos Truscan

Originally published 2010 Proceeding of 3rd Workshop on Model-based
testing in practice.. IEEE. June 2010. Paris, France.

c©2009 IEEE. Reprinted with permission of IEEE.

In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of Åbo Akademi’s products
and services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising
or promotional purposes or for crediting new collective work for resale or
redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html

to learn how to obtain a License from RightsLink.

Including Model-Based Statistical Testing in the
MATERA Approach

Andreas Bäcklund, Fredrik Abbors, and Dragos Truscan

Åbo Akademi University, IT Dept., Joukahaisenkatu 3-5B, 20520, Turku, Finland
Andreas.C.Backlund@abo.fi, Fredrik.Abbors@abo.fi,

Dragos.Truscan@abo.fi

Abstract. In this paper, we present a Model-Based Testing (MBT) approach in
which statistical data contained in Unified Modeling Language (UML) models
are used to prioritize test cases. The models are used by a test derivation tool for
automatic generation of test cases. The statistical data included in the models is
used by the tool to determine the order of the resulting test cases before being
implemented and executed. The test outputs are analyzed and information about
requirement coverage is gathered. Based on the gathered statistics, the results
are automatically fed back to the UML models to prioritize those sections of the
system where failures are frequent.

1 Introduction

The complexity of software systems is constantly increasing. Hence, the amount of
tests needed to properly test a software system is also increasing. Software companies
usually do not have enough time to run all their test cases, and are therefore forced
to prioritize them in such a way that the test cases cover as much functionality of the
system as possible [1].

Especially in the telecommunications domain, which we target in this paper, the
amount of test cases needed to be executed against the System Under Test (SUT) is
rather large, and in practice only a part of these tests can be executed. Thus, there is a
need to be able to order the test cases based on their importance. By determining the
priority-specific paths within the system, it is possible to order the test cases in such
a way that test cases of statistically higher priority are executed before others. In this
way, specific sections of the system can be given higher priority, resulting in earlier
execution of test cases running the highest prioritized paths of the system.

There are several benefits with using statistical testing [2, 3]. One of the main ben-
efits is that more testing effort can be put into the most important sections of SUT,
while less important section can be left less tested. Another benefit of conducting sta-
tistical testing is that statistical data from previous iterations of the testing process can
be included in latter iterations, in order to target the test execution towards the system
sections that are more important or yielded more failures.

Model-Based Testing (MBT) [4] is a testing approach that addresses some of the
shortcomings in traditional testing by using an abstract representation (a model) of the
system for automatic generation of test cases. The models can be implemented either
as program code representations or as graphical representations using graphical speci-
fication languages, such as the Unified Modeling Language (UML) [5] or various tool

specific languages. The main idea with MBT techniques is to automatically generate
tests by applying algorithms that are able to explore paths through the model.

According to [1], statistical testing can be integrated into the development process
at the point when requirements have been gathered and approved. In other words, sta-
tistical testing can be initialized at the same phase as the model construction in MBT.
Combining this with the benefits of using models to prioritize certain sections of the
SUT, makes statistical testing beneficial when used in a MBT process.

There are several advantages of using MBT in a software development process.
One advantage is that large amounts of tests can be generated in a short amount of
time when there exists an appropriate model representation of the system. This adds
additional value especially to conducting regression testing in the end of the software
development project. Another advantage is that models are usually easier to modify
than manually created test cases, which especially benefits projects where requirements
are changing frequently. The third advantage is that the modeling of the system can
be initiated immediately when the requirements have been specified. This means that
a testing process using MBT can already be initiated in the design phase. Since the
test model in MBT is typically an abstract representation of the system, it is easier to
maintain it compared to manually written test cases.

2 Related Work

Previous research on combining statistical testing and MBT has been done under the
acronym Model-based Statistical Testing (MBST). For instance, Prowell [6] presents an
approach in which the transitions of a test (usage) model are annotated with probability
of occurrence information that is later used during test generation by the JUMBL tool.
A similar approach, targeted at telecommunication protocols, is presented in [7]. An
operational profile (a Markov process) is used to describe the usage and behavior of
the SUT. The probabilities included in the operational profile are later on used during
test generation. In our approach we will use a test model describing the behavior of
the system. The generated test cases will be ordered after test generation based on
the statistical information, and information resulted from test reporting will be used to
update the priorities for the generated test cases. In addition, requirements of the system
are modeled and traced throughout the testing process.

Other similar work on MBST is presented in [8–10]. For instance, the author of [8]
uses UML activity diagrams to express high level requirements. The nodes and edges in
the activity diagram are assigned with weights indicating priority, based on complexity
and possibility of occurrence of defects. The activity diagram is later translated into a
tree structure, from which prioritized test scenarios are generated.

Work related to statistical testing has also been preformed in the context of the
MaTeLo tool [11, 12]. In MaTeLo, test cases are generated from statistical models of
the SUT expressed using Markov chains usage models. However, while MaTeLo-based
approaches utilize a usage model for describing the SUT, our approach utilizes a system
model to represent the SUT.

In [9] the author presents an approach for using MBST together with time durations
to test real-time embedded systems. The author’s approach differs slightly from ours,
since it uses statistical information to test the reliability of the system. In the approach,

reliability is tested by generating test cases from a model that represents the actual use
of the system. In our approach, statistical information about the system is not used to
test the intended usage of the system, but rather to order test cases according to weighted
probabilities calculated from statistics of requirement priority and use case probability.

The most similar approach is presented in [10]. Here the authors take advantage of
an approach in which they go from a requirements document, via a statistical model, to
a statistical test report. Similarly to our approach, their approach benefits from a high
degree of automation in each phase of the testing process.

3 Overview of MATERA

MATERA

MATERA process/toolchain

Requirements

Modeling

Validation

Transformation

Test generation

Test Report

Analysis

Test Execution

BackTracing

Fig. 1. MATERA process

MATERA (Modeling for Automated
TEst deRivation at Åbo Akademi) [13] is
an approach for integrating modeling in
UML and requirement traceability across
a custom MBT process (see Figure 1).
UML models are created from the sys-
tem requirements, using a UML mod-
eling tool. The models are validated by
checking that they are consistent and that
all the information required by the mod-
eling process is included. Consequently,
the models are transformed into input
for the test derivation tool. The resulting
test cases are executed (after being con-
cretized) using a test execution frame-
work. The results of the test execution are
analyzed and a report is generated. Re-
quirements are linked to artifacts at different levels of the testing process and finally
attached to the generated test cases. The approach enables requirements to be back-
traced to models in order to identify which test cases have covered different modeling
artifacts or from which part of the models a failed test case has originated.

4 Statistical Approach for MATERA

Our statistical approach relies on two sources of information: (1) that the functional-
ity of the system (use cases) has associated probability values, depicting the chances
for functionality to be invoked by the external user of the system during the use of the
SUT; (2) that the requirements of the system are classified based on their importance
(for testing) by associating them with priority values. The priorities and probabilities of
the system are considered to be given from external sources (e.g., system requirements
or stakeholder recommendations) and a priori to the first iteration of the testing process.
In latter test cycles, the priorities can be adjusted based on statistics of uncovered re-
quirements from previous test cycles for targeting the testing process towards a certain
part of the SUT.

There is a slight difference between probability and priority. Even though they both
mean that specific sections of the SUT are prioritized, it is important to recognize that
probability is part of the model, while requirement priority is a property for ordering
system requirements according to importance. Hence, UML use case elements are given
a probability value indicating the chance of the use case to be executed, whereas require-
ments are given a priority value indicating their importance for testing. The values are
manually assigned to each use case in part. The two types of values are then combined
in the test model from where test cases are generated. Each resulting test case will have
a weighted priority calculated based on the cumulative probabilities and priorities of
the test path in the model. The weighted priority will be used for determining the test
execution order. In the following, we delve into more details related to each phase of
the process.

4.1 Requirements Modeling

The process starts with the analysis and structuring of the informal requirements into a
Requirements Model. The requirements diagrams of the Systems Modeling Language
(SysML) [14] are used for this purpose. Requirements are organized hierarchically in
a tree-like structure, starting from top-level abstract requirements down to concrete
testable requirements. Each requirement element contains a name field which specifies
the name of the requirement, an id field, and a text field. For the purpose of statistical
testing, requirements are also given a priority value (see Figure 2). The priority
value is a property describing the importance of the requirement. During the modeling
process the requirements are traced to different parts of the models to point out how
each requirement is addressed by the models. By doing this we ensure the traceability
of requirements and that priority information is propagated to other model artifacts.

Fig. 2. Requirement Diagram with priorities

4.2 System Modeling

In this phase, the SUT is specified using UML. In our modeling process, we consider
that several perspectives of the SUT are required in order to enable a successful test
derivation process later on. A use case diagram is used to capture the main functional-
ity of the system. Sequence diagrams are used to show how the system communicates
with external components (in terms of sequence of messages) when carrying out differ-
ent functionality described in the use case diagram. A class diagram is used to specify
a domain model showing what domain components exist and how they are interrelated
through interfaces. A behavioral model describes the behavior of the system using state
machines. Data models are used to describe the message types exchanged between dif-
ferent domain components. Finally, domain configuration models are used to represent
specific test configurations using object diagrams. Each use case is given a probability
value which indicates the chance of the use case being executed (see Figure 3).

Fig. 3. Use case diagram with probability

The state model describing the expected behavior of the system is the pivotal artifact
for test generation. According to the MATERA approach, leaf requirements are linked
to transitions in the state machine to enable requirements traceability and requirements
coverage during test generation. Thus, the priority of each requirement will be asso-

ciated to the corresponding transition. Similarly, use case probabilities are manually
linked to the state model, as use cases are related with one or several starting points in
the state machine diagram (see Figure 4). This enables the test generation tool to deter-
mine the weighted probability of certain paths through the state model. Before the tests
are generated, the consistency of the UML models is checked using custom defined
Object Constraint Language (OCL) rules [15].

Fig. 4. UML state machine diagram

4.3 Test Case Generation

In the MATERA approach, the UML models are translated into a representation under-
stood by a test generation tool, namely Qtronic [16], using the transformation described
in [17]. During the translation, the priority and probability values are propagated to the
new model representation. Test cases are generated by the tool based on the selected
structural coverage criteria (e.g., state, transition, and requirement coverage, respec-
tively), without taking into account priority and probability annotations.

4.4 Test Case Ordering

After the test cases have been generated, the test generation tool can determine the gen-
eration order of test cases based on the annotated probability and priority values. For
each generated test case, a weighted probability is calculated based on the algorithm
implemented by the test generation tool described in [18]. The weighted probability is
calculated from both the use case probability and the requirement priority and deter-
mines the sequence in which test cases are ordered (see Figure 6). Test cases are finally
rendered into executable test scripts using an adapter for concertizing test cases into
executable scripts.

4.5 Test Execution

Test scripts are executed against the SUT using a test executor tool. The test scripts
are executed in the order determined by the test generation tool. If only a part of the
test suite can be executed, e.g. due to restricted testing time, ordering tests according
to probability and priority ensures that the most important tests are executed. The ex-
ecution of test scripts is monitored and the results are stored in log files. The log files
contain information about the test execution, e.g. messages sent and received by the
SUT, tested and untested requirements, used resources, etc. The log files together with
the test scripts serve as a source for the test results analysis.

4.6 Test Log Analysis

By parsing logs and scripts and comparing these against each other it is possible extract
statistical data from the test run. The extracted data describe requirements that have
been successfully tested, requirements that have been left uncovered, and during testing
of which requirements that failures have occurred.

The analysis of the test execution is presented in a HTML report (see Figure 5)
generated by the MATERA tool-set. The report consists of two sections, one for Gen-
eral Test Execution Statistics and one for Requirements Information. The General Test
Executions Statistics section contains information about the number of test cases that
passed and failed. The Requirements Information section contains information about
the requirement coverage. Finally, the test cases are presented in a Traceability Matrix.

4.7 Feedback Loop

In the feedback loop, the statistical information gathered in the test log analysis is used
to update priority of requirements that failed or were left uncovered during testing. The
feedback loop is implemented as a part of the MATERA tool-set and allows the modeler
to read in the analyzed statistics and update priority values for requirements in the UML
models without user intervention.

The feedback loop is the main actor for targeting the test execution towards the
parts of the system that had most failures. This is done by incrementally increasing the
priority of the failed and uncovered requirements, such that they will counterbalance
the effect that the probabilities of the use cases have on the ordering of tests. As testing
progresses and the process is iterated several times, the importance (priority) of require-
ments will change according to how well they have been tested. Providing a feedback
loop which updates the requirement importance automatically, will result in that the
failed and uncovered requirements are included in the test cases that are ordered first in
the test execution queue.

However, if requirement importance is changed due to external factors that can-
not be derived from statistics, the tester can choose to manually change the priority of
requirements directly in the models at any time.

The feedback module is executed from the MATERA menu in MagicDraw. When
initialized, the module collects test data from a user specified folder holding test logs
and test scripts from the last test execution. Based on these statistics, the priority values
for requirements that need to be tested more thoroughly in a subsequent test iteration are

Fig. 5. Statistical Report

incremented with a predefined coefficient and automatically updated in the requirement
models.

5 Tool Support

In our current approach we use No Magic’s MagicDraw [19] modeling tool for creating
and validating the UML models. The Graphical User Interface (GUI) of the MATERA
tool-set has been implemented as a plug-in for MagicDraw. The purpose of the MAT-
ERA tool-set is to extend the capabilities of MagicDraw for specifying system models
and using them as input for automatic test generation.

For automatic test case generation we use Conformiq’s Qtronic [16]. Qtronic is an
Eclipse based tool to automate the design of functional tests. Qtronic generates tests and

executable test scripts from abstract system models based on selected coverage criteria.
An example of a test case sequence ordered by probability is shown in Figure 6. The
models for Qtronic are expressed using the Qtronic Modeling Language (QML). QML
is a mixture of UML State Machines and a super set of Java, used as action language.
The UML state machines are used to describe the behavior of the SUT and QML is
used to represent data and coordinate the test generation. By using a custom Scripting
Backend (adapter), Qtronic generates executable test scripts for the Nethawk’s EAST
test executor framework [20].

Fig. 6. Test case sequence ordered by weighted probability in Qtronic

The EAST Scripting Backend in Qtronic is the main actor for rendering the test
scripts. When the abstract test cases are selected for execution, they are rendered to
test scripts, loaded into the EAST test executor, and executed against the SUT. The test
executor produces logs from the test case execution, which are used as source for the
statistical analysis in the MATERA tool-set.

6 Conclusions

In this paper, we have presented a model-based testing approach in which statistical
information is included in the system models and used for ordering of test cases. The
approach benefits from a highly integrated tool chain and a high degree of automa-
tion. To handle complexity, the system is described from different perspectives using a
different UML model for each perspective. Statistical information is described in use
case and requirement diagrams, via priority and probability annotations. Traceability
of requirements is preserved in each step of the testing process and can be gathered as
statistics for later test cycles.

During test generation, test cases are ordered based on the statistical information
contained in the models. After each test run, statistical information is gathered and fed
back to the models in a feedback loop. The statistical information serves as basis for
updating the information contained in the models to prioritize tests for those parts of
the system where failures are discovered.

Future work will be to extract additional information from test logs. Since the test
logs contain detailed information about messages sent and received from the SUT, this
information could be extracted and presented to the user. For example the HTML test

report could be extended to include sequence diagrams for each test case. The tester
could then examine failed tests in more detail, e.g. see what messages has been sent and
received and what values were used, to manually adjust priorities and probabilities in
the model. It could also facilitate the debugging of possible errors in the model.

References

1. Weber, R.J.: Statistical Software Testing with Parallel Modeling: A Case Study, Los Alami-
tos, CA, USA, IEEE Computer Society (2004) 35–44

2. Mills, H.D., Poore, J.H.: Bringing Software Under Statistical Quality Control. Quality
Progress (nov 1988) 52–56

3. Whittaker, J.A., Poore, J.H.: Markov analysis of software specifications. ACM Trans. Softw.
Eng. Methodol. (1) (1993) 93–106

4. Utting, M., Pretschner, A., Legeard, B.: A Taxonomy of Model-Based Testing. Technical
report (April 2006)

5. Object Management Group (OMG): OMG Unified Modeling Language (UML), Infrastruc-
ture, V2.1.2. Technical report (November 2007)

6. Prowell, S.J.: JUMBL: A Tool for Model-Based Statistical Testing. In: HICSS ’03: Proceed-
ings of the 36th Annual Hawaii International Conference on System Sciences (HICSS’03) -
Track 9, Washington, DC, USA, IEEE Computer Society (2003)

7. Popovic, M., Basicevic, I., Velikic, I., Tatic, J.: A Model-Based Statistical Usage Testing of
Communication Protocols. 13th Annual IEEE International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS) (2006) 377–386

8. P.G., S., Mohanty, H.: Prioritization of Scenarios Based on UML Activity Diagrams. First
International Conference on Computational Intelligence, Communication Systems and Net-
works (2009) 271–276

9. Böhr, F.: Model Based Statistical Testing and Durations. In: 17th IEEE International Confer-
ence and Workshops on Engineering of Computer-Based Systems, IEEE Computer Society’s
Conference Publishing Services (CPS) (March 2010) 344–351

10. Bauer, T., Bohr, F., Landmann, D., Beletski, T., Eschbach, R., Poore, J.: From Requirements
to Statistical Testing of Embedded Systems. In: SEAS ’07: Proceedings of the 4th Interna-
tional Workshop on Software Engineering for Automotive Systems, Washington, DC, USA,
IEEE Computer Society (2007)

11. All4Tec: MaTeLo http://www.all4tec.net.
12. Dulz, W., Zhen, F.: MaTeLo - Statistical Usage Testing by Annotated Sequence Diagrams,

Markov Chains and TTCN-3. International Conference on Quality Software (2003) 336
13. Abbors, F., Bäcklund, A., Truscan, D.: MATERA - An Integrated Framework for Model-

Based Testing. In: 17th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS 2010), IEEE Computer Society’s Conference Publishing
Services (CPS) (March 2010) 321–328

14. Object Management Group (OMG): Systems Modeling Language (SysML), Version 1.1.
Technical report (November 2008)

15. Abbors, J.: Increasing the Quality of UML Models Used for Automatic Test Generation.
Master’s thesis, Åbo Akademi University (2009)

16. Conformiq: Conformiq Qtronic (2009) http://www.conformiq.com.
17. Abbors, F., Pääjärvi, T., Teittinen, R., Truscan, D., Lilius, J.: Transformational Support for

Model-Based Testing–from UML to QML. Model-based Testing in Practice 55
18. Conformiq: Conformiq Qtronic User Manual. (2009) 131–134

http://www.conformiq.com/downloads/Qtronic2xManual.pdf.
19. No Magic Inc: No Magic Magicdraw (2009) http://www.magicdraw.com/.
20. Nethawk: Nethawk EAST test executor (2008) https://www.nethawk.fi/.

Paper III

MATERA - An Integrated Frame-
work for Model-based Testing

Fredrik Abbors, Andreas Bäcklund, and Dragos Truscan

Originally published 2010 Proceeding of 7th Workshop on System Test-
ing and Validation. IEEE. March 2010. Oxford, UK.

c©2009 IEEE. Reprinted with permission of IEEE.

In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of Åbo Akademi’s products
and services. Internal or personal use of this material is permitted. If inter-
ested in reprinting/republishing IEEE copyrighted material for advertising
or promotional purposes or for crediting new collective work for resale or
redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html

to learn how to obtain a License from RightsLink.

MATERA - An Integrated Framework for Model-Based Testing

Fredrik Abbors, Andreas Bäcklund, and Dragoş Truşcan
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520, Turku, Finland
Email: {Fredrik.Abbors, Andreas.C.Backlund, Dragos.Truscan}@abo.fi

Abstract—This paper presents MATERA, a framework that
integrates modeling in the Unified Modeling Language (UML),
with requirement traceability across a model-based testing
(MBT) process. The Graphical User Interface (GUI) of MAT-
ERA is implemented as a plug-in in the NoMagic’s MagicDraw
modeling tool, combining existing capabilities of MagicDraw
with custom ones. MATERA supports graphical specification
of the requirements using SysML and tracing of them to the
UML models specifying the SUT. Model validation is performed
in MagicDraw using both predefined and custom validation
rules. The resulting models are automatically transformed into
input for the Conformiq Qtronic tool, used for automated
test generation. Upon executing the test scripts generated by
Qtronic in the NetHawk’s East execution environment, the
results of statistic analysis of the test run are presented in the
GUI. The back-traceability of the covered requirements from
test to models is also provided in the GUI to facilitate the
identification of the source of possible errors in the models.
The approach we present shows that existing model-based
languages and tools are an enabler for model-based testing and
for providing integrated tool support across the MBT process.

Keywords-Model-Based Testing; Model Validation; Require-
ments Traceability;

I. INTRODUCTION

The software industry is facing several challenges in deliv-
ering increased business value to their customers. Customers
demand more flexible, reliable, low cost, and highly efficient
software solutions. Additionally, the customers usually re-
quire the software systems to be deployed within different
types of distributed environments. Research has shown that
as much as 60 per cent of the total development time can
be spent in testing [1]. This implies that testing is a highly
expensive and time consuming process.

Model-based testing is a technique that tries to address
these issues by introducing automatic generation of tests
from models representing the behavior of the System Under
Test (SUT). Using models for test generation increases the
pressure put on the modeling process and on the quality of
the models used for test generation, as any inconsistency in
the models will reflect later on in the quality of the generated
test cases.

In order to address these issues we suggested a modeling
approach [2] which puts emphasis on three aspects. First,
the models of the SUT are built in a systematic manner
starting from requirements, after which they are fed as input
to the test generation tools. Secondly, several model types

are used to model different perspectives of the system like
behavior, data, architecture, test configuration. Thirdly, the
requirements of the SUT are traced through all the stages
of the testing process and back-traced from the executed
test cases back to models. The approach and the afferent
tool support is also referred to as MATERA (Modeling for
Automated TEst deRivation at bo Akademi).

In this paper, we describe how the tool support for the
MATERA approach is provided by reusing and adapting
existing commercial tools. More specifically, we try to show
that existing model-based techniques and tool can become an
enabler for supporting model-based testing and for providing
integration across the MBT tool chain. MATERA has been
targeted to the telecommunications domain and thus the
examples used in this paper are excerpts from and industrial
case study. Further information on case study can be found
in [3].

II. MATERA

The MATERA tool-set is used to provide support for the
approach by integrating modeling in the Unified Modeling
Language (UML) [4] and requirement traceability across a
custom MBT process (see Figure 1). As mentioned in the
introduction, a set of models are created from the system
requirements. These models are validated by checking that
they are consistent and that all the information required
by the modeling process is included. Consequently, the
models are transformed into input for the test derivation
tool. The resulting test cases are executed (after being
implemented) using a test execution framework. The results
of the test execution are analyzed and a report is generated.
Requirements are linked to artifacts at different levels of the
testing process and finally attached to generated test cases.
This allows one to traceback to models which test cases have
covered different modeling artifacts or from which part of
the models a failed test case has originated.

In the following, we briefly present different features of
the MATERA tool set accompanied by excerpts from a
telecom case study.

A. Graphical User Interface

The GUI of the MATERA tool-set has been implemented
as a plug-in in the MagicDraw UML modeling tool [5]. The
plug-in is developed in Python using the Open Application

MATERA

MATERA process/toolchain

Requirements

Modeling

Validation

Transformation

Test generation

Test Report

Analysis

Test Execution

BackTracing

Figure 1. MATERA process

Programming Interface (Open API) of MagicDraw. The
purpose of MATERA tool-set is to extend the capabilities of
MagicDraw for specifying system models and using them
as input for automatic test generation. Once the models
are completely specified, they can be transformed to input
for test generation tools. Besides model transformation,
MATERA also supports model validation, test reporting, and
(back-)tracing of requirements. Hence, MATERA promotes
the integration of UML modeling with test generation tools.
Figure 2 shows a caption of the MATERA GUI in Magic-
Draw.

Figure 2. Caption of the MATERA GUI in MagicDraw.

B. Requirements Modeling

Requirements play an important role in any software
project and it is also the starting point of the testing pro-

cess [6]. MATERA starts with the analysis and structuring of
the informal requirements into a Requirements Model. The
Requirements Diagrams of the Systems Modeling Language
(SysML) [7] are used for this purpose. We use MagicDraw’s
model editor to create, edit, and structure requirement ele-
ments. Requirements are organized hierarchically in a tree-
like structure, starting from top-level abstract requirements
down to concrete testable requirements. Figure 3 shows
how requirements are structured in MagicDraw editor. Each
requirement is described using a Name and an Id, a Text
field explains the requirement, and a Source field points to
the document or standard from which the requirement was
extracted. Further, requirements can be related to each other
using the relationships defined by SysML. For instance,
requirements can be derived into other requirements using
the deriveReqt relationship or related horizontally using the
trace relationship.

Figure 3. Structuring requirements in MagicDraw.

Traceability of requirements is a pivotal aspect of MBT
that allows one to ensure that all requirements have been
tested [8]. As the models are derived from requirements, it is
important to track how different requirements are reflected
in the models, on different perspectives, and on different
abstraction levels. In MATERA, the requirements can be
linked to different parts of the UML-based system specifica-
tion, for instance to models or to model elements, to ensure
requirements traceability throughout the process. When the
specification is used for test generation, the requirements
are associated with the generated test cases and propagated
throughout test execution.

With MATERA it is possible to check that all specified
requirements have been properly linked to models or model
elements. For this purpose we use MagicDraw’s validation

engine and custom Object Constraint Language (OCL) [9]
rules to check e.g. that the leaf requirements are not left
unlinked or that every requirement has a unique Id.

C. Modeling the SUT

In MATERA, we take advantage of the expressiveness and
graphical capabilities of UML for creating the specification
of the SUT. In our case the test model is derived from
high-level development models, such that partial reuse of
the development specification is enabled. In addition, the
SUT is specified from several perspectives to enable a
successful test derivation process. These perspectives of the
SUT are modeled using the UML diagram editors provided
by MagicDraw; a class diagram is used to specify an
architectural model describing the static structure of system.
The architectural model shows what domain components
exist and how they are interrelated through interfaces. A
behavioral model describes the dynamic behavior of the
SUT using state machines. Data models are represented as
class diagrams and are used to describe the data exchanged
between different domain entities. Last but not least, test
configuration models, represented as object diagrams, are
used to describe specific test configurations and to set up
initial values for the test components.

In MATERA, different parts of the specifications are
linked together in order to specify dependencies. We use
MagicDraw’s property editor to link model elements and
data together, for example, every messages specified on an
interface in the domain model is linked to the corresponded
class in the data model describing the structure of the
message. Also the properties of the elements can be edited
using the Specification editor, see Figure 4.

D. Model Validation

Humans tend to make mistakes and forget things. There-
fore, to gain efficiency of using a MBT process and reducing
the costs by discovering faults at an early stage, it is
necessary to validate the models before using them to e.g.
automatically generate code or test cases [8]. Hence, a set of
modeling guidelines and validation rules have been defined
for ensuring the quality of the models. Modeling guidelines
are used to specify how different models are created from
requirements or from other models, what information they
should contain, how this information is related to the infor-
mation present in the other models, etc.

Validation rules have been defined and implemented for
both Requirements Models and for System Models for
checking different quality metrics of the resulting models
before proceeding to the test derivation phase. These rules
ensure that the models are syntactically correct, they are
consistent with each other, and that they contain the infor-
mation needed in the later phases of the testing process. In
MATERA, validation is prerequisite before transforming the
models.

Figure 4. Screenshot showing the specification editor of a transition.

OCL is used to describe rules that apply to models. The
rules describe conditions that must hold for the system being
modeled. MagicDraw comes shipped with a set of prede-
fined OCL rules for validating UML and SysML models.
In addition to those, custom rules have been defined and
implemented specifically for MATERA. The custom rules
we created are all related to the modeling process, the
application domain, and the specific MBT tool we target. For
instance, we have created validation rules for checking the
leaf requirements in the Requirements Diagram are linked
to model elements and that messages defined on interfaces
in the domain model are linked to data models.

An OCL rule is similar to a model element which has
a number of editable properties e.g. name, specification,
constrained element, severity level, etc. In order to provide
reuse, rules are stored in different validation suites (pack-
ages) depending on the intended purpose of the rule, see
Figure 6.

MagicDraw has a built-in validation engine for checking
the rules against models. The validation in MagicDraw can
be invoked at any time. When the validation is started the
user will be prompted for the validation suite that he/she
wants to apply, the scope (which models), and the severity
level. Upon running the selected validation suite in the
validation engine, MagicDraw creates a summary of the
validation process as depicted in Figure 5, listing which
elements are violating a rule and why. From this window the
user can e.g. choose to open all diagrams with the elements
violating a rule and see the faulty elements in the diagrams
as they are highlighted. Once an error has been corrected
the user can run the same validation suite again to see if the

Figure 5. Validation summary.

modifications made any difference.

E. Transformation

In MATERA, the system models of SUT are transformed
into input for the automated test derivation process. The
transformation has two steps. First, the needed information
from the models is collected by a parser module and stored
into an internal representation. Then this information is read,
by various build modules, and written (rendered) in the
format supported by the test generation tool. The idea is
to have a generic transformation approach and to be able to
expand the approach to target different test generation tools.
However, in our research we currently target only one partic-
ular test generation tool, namely Conformiq’s Qtronic [10].
The transformation [11] [12] translates UML models to the
Qtronic Modeling Language (QML), the language used by
Qtronic for specifying the SUT.

The transformation also propagates requirement from
UML models to QML. In QML, requirements are treated as
textual tags attached to different parts of the specification,
which are treating as testing goals during the test gener-
ations process. Once the test cases are generated they are
implemented in the language used by the test execution tool
(NetHawk’s EAST [13] in our case) using the a scripting
backend. During this process the requirements are propa-
gated further and attached to executable tests allowing the
test execution tool to trace and log the execution of tests
cases and their associated requirements.

F. Test Reporting

MATERA offers support for test reporting. The test report
will summarize the result of the testing process in terms
of generated test cases, verdicts, coverage levels, etc. The
information in the test report is collected form test logs and

Figure 6. Validation suites in MATERA.

from the test scripts by comparing the test purposes encoded
in the scripts against the results of the test execution.

When invoking the test report function from the MATERA
menu (see Figure 2), a parser module collects and stores data
from the test logs and scripts, similarly to the transformation.
The collected data is then analyzed and presented to the user
in HTML format, using the systems default HTML reader.
The user only has to specify is the paths to the executed test
scripts and their corresponding test logs. Figure 7 shows a
snapshot of a test report.

G. Back-Tracing of Requirements

In MATERA, information from test logs is collected
on how different requirements have been covered during
both test generation and test execution phase, respectively.
Based on this information the requirements are tracked
back to the specifications from which the corresponding test
cases have been generated, in order to detect the source
of possible faults in the specifications. Upon selecting the
Trace Back Requirements in the MATERA’s GUI a Python
script that analyzes the test logs and generates OCL queries
that we use in MagicDraw to locate erroneous parts in the
UML system models. The OCL queries are used to trace
requirements from tests to the requirements models and to
the requirements placed on transitions in state machines.
The Python scripts generates OCL queries based on the
information in the test logs and writes them to MagicDraw
in a validation suite called ”Trace Rules”. We use again
MagicDraw’s OCL interpreter to find the requirements in
the UML models based on the produced OCL queries.

This way one can see which requirements failed during
testing and to what model elements they are linked. It
also enables one to identify which parts of the system
model have been covered by the test set. The back-tracing

function in MATERA will highlight model elements in the
system models, to which a failed requirement was linked. In
Figure 8, the list of requirements covered by failed test cases
in presented at the bottom of the screen. By selecting an
entry in the list the corresponding requirement is highlighted
in the diagram editor. Ultimately, since requirements are
linked to model elements, it facilitates the identification of
those parts of the models that are not in sync with the SUT,
see Figure 9.

III. RELATED WORK

Similar research has been conducted within other indus-
tries. When modeling for automatic test generation, it is has
proven beneficial to check the models against pre defined
modeling rules and design guidelines before generating tests.
In [14], the authors use the Object Constraint Language
(OCL) to specify design guidelines and modeling rules for
Simulink models. This approach is similar to ours, in the
sense that rules written in the OCL language are used to
check model consistency against a metamodel. However,
their approach differs slightly from ours since the authors
check the rules against a custom made Matlab/Simulink
metamodel while we check OCL rules against the UML
metamodel.

Other research similar to ours is described in [15]. In
this research the authors use Matlab/Simulink behavioral
models, instead of UML behavioral models, from where they
automatically generate test sequences. Their approach differs
somewhat from ours since it does not address automatic
evaluation of test results.

From other reviewed works, the approach presented in
[16] is closest to our approach. In there, the authors use a re-
stricted set of UML diagrams together with OCL to describe
both the static structure and dynamic behavior of the SUT.
Requirements traceability is addressed by manually tagging
the UML specification with ad-hoc comment symbols to
associate a requirement with an OCL statement. Using the
LEIRIOS (now Smartesting) Test Designer tool the authors
automatically generate test cases out of the UML system
specification and a traceability matrix is obtained after test
execution. However, the Test Designer tool does not offer
support for tracing requirements from test cases to the UML
specification.

IV. CONCLUSION

This paper has presented a framework for integrating
UML and requirements traceability in a MBT process.
The MATERA framework is implemented as a plug-in for
MagicDraw, which adds extended functionality to use UML
models for automatic test generation. UML modeling is
combined in MATERA with consistency checking of the
specification using pre- and custom defined consistency
rules, with the purpose of increasing the quality of the

Figure 7. Caption of a test report generated from MATERA.

specifications used for automated test generation. Require-
ments are traced across the entire testing process; from
models to test cases, and from test cases back to models.
Requirements traceability is facilitated in MATERA by the
back-traceability function.

The MATERA framework provides value by allowing
testers to generate input for automatic test generation tools
from a graphical representation of the SUT. The graphical
representation is created using UML, which is one of the
commonly used standard in the software industry. Addi-
tionally, back-tracing of requirements allows for having a
visual overview of requirements that have not been properly
tested. MATERA also provides the tester with a test report
presented in HTML format which contains statistics of the
test execution.

In our current research, we have focused mainly on
generating input for Conformiq’s Qtronic test generation
tool. However, in the future we plan to target other test
generation tools as well. Another future goal is to include
statistical information into the UML models, based on past
test executions, to be able to prioritize test cases or to focus
the testing on specific parts of the system specification. We
will also investigate how the information contained in the
UML models can be used for generating adapter frameworks
for different MBT tools.

ACKNOWLEDGMENT

Financial support from Tekes under the ITEA2 D-Mint
project is gratefully acknowledged.

Figure 8. Back-tracing of a requirement to a transition.

Figure 9. Back-tracing of requirements to the Requirement Diagram
.

REFERENCES

[1] “Historical Perspective in Optimising Software Testing
Efforts - http://www.indianmba.com/Faculty Column/FC139/
fc139.html.” [Online]. Available: http://www.indianmba.com/
Faculty Column/FC139/fc139.html

[2] J. Abbors, “Increasing Quality of UML Models Used for
Automatic Test Generation,” Master’s thesis, Åbo Akademi
University, 2009.

[3] F. Abbors, “An Approach for Tracing Functional Re-
quirements in Model-Based Testing,” Master’s thesis, Åbo
Akademi University, 2009.

[4] “Unified Modeling Language - http://www.omg.org/spec/
UML/2.0/.” [Online]. Available: http://www.omg.org/spec/
UML/2.0/

[5] “NoMagic MagicDraw,” http://www.magicdraw.com/.

[6] G. Fournier, Essential Testing: A Use Case Driven Approach.
BookSurge Publishing, 2007, pp. 67–75.

[7] Object Management Group, “OMG SysML Specification,”
Tech. Rep. [Online]. Available: http://www.omg.org/spec/
SysML/1.1/

[8] M. Utting, The Role of Model-Based Testing. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 510–517.

[9] Object Constraint Language v2.0, OMG, May 2006, http://
www.omg.org/spec/OCL/2.0/PDF.

[10] “Conformiq Qtronic,” http://www.conformiq.com/.

[11] T. Pääjärvi, “Generation Input for the Test Generator Tool
from UML Design Models,” Master’s thesis, Åbo Akademi
University, 2009.

[12] F. Abbors, T. Pääjärvi, R. Teittinen, D. Truşcan, and J. Lilius,
“A Semantic Transformation from UML Models to Input for
the Qtronic Test Design Tool,” Turku Centre for Computer
Science (TUCS), Tech. Rep. 942, 2009.

[13] NetHawk, “NetHawk EAST,” 2009. [Online].
Available: www.nethawk.fi/products/nethawk simulators/
nethawk ims tester/

[14] T. Farkas, C. Hein, and T. Ritter, “Automatic Evaluation
of Modeling Rules and Design Guidelines,” in proc. of the
Workshop ”From code centric to Model centric Soft. Eng.”,
http://www.esi.es/modelware/c2m/papers.php, 2006.

[15] M. Conrad, H. Dörr, I. Stürmer, and A. Schürr, “Graph
Transformations for Model-based Testing,” GI-Lecture Notes
in Informatics, P-12, pp. 39–50, 2002.

[16] E. Bernard and B. Legeard, “Requirements Traceability in
the Model-Based Testing Process,” in Software Engineering,
ser. Lecture Notes in Informatics, vol. 106. Bttinger, Stefan
and Theuvsen, Ludwig and Rank, Susanne and Morgenstern,
Marlies, 2007, pp. 45–54.

Paper IV

Applying Model-based Testing in the
Telecommunications Domain

Fredrik Abbors, Veli-Matti Aho, Jani Koivulainen, Risto
Teittinen, Dragos Truscan

Originally published 2012 Model-Based Testing for Embedded Systems.
Taylor and Francis Group, LLC. 2012.

c©2012 From Model-Based Testing for Embedded Systems by Justyna Zanader,
Ina Schieferdecker, Pieter J Mosterman. Reproduced by permissions of Tay-
lor and Francis Group, LLC, a division of Informa plc

In reference to Taylor and Francis Group copyrighted material which is used
with permission in this thesis, Taylor and Francis Group does not endorse
any of Åbo Akademi’s products and services. Internal or personal use of
this material is permitted. If interested in reprinting/republishing Taylor
and Francis Group copyrighted material for advertising or promotional pur-
poses or for crediting new collective work for resale or redistribution, please
go to

http://www.taylorandfrancis.com/info/permissions/

to learn how to obtain a license.

17

Applying Model-Based Testing in the
Telecommunication Domain

Fredrik Abbors, Veli-Matti Aho, Jani Koivulainen, Risto Teittinen, and
Dragos Truscan

CONTENTS

17.1 Overview . 488
17.1.1 Process and tools . 488
17.1.2 System under test . 490

17.2 UML/SysML Modeling Process . 491
17.3 Model Validation . 498
17.4 Model Transformation—From UML to QML . 500

17.4.1 Generating the interfaces and ports of the system . 501
17.4.2 From UML data models to QML message types . 502
17.4.3 Mapping the UML state machine to the QML state machine 503
17.4.4 Generating the QML test configuration . 504
17.4.5 Assigning the state model to the SUT specification . 505

17.5 Test Generation . 506
17.5.1 QML . 506
17.5.2 Test generation criteria . 506
17.5.3 Requirements traceability . 508
17.5.4 Test concretization . 509

17.6 Test Execution . 511
17.6.1 Load testing mode . 512
17.6.2 Concurrency in model-based testing . 512
17.6.3 Executable test case . 512
17.6.4 Context . 513
17.6.5 Run-time behavior . 514

17.7 Requirement Traceability . 514
17.7.1 Tracing requirements to models . 516
17.7.2 Tracing requirements to tests . 516
17.7.3 Back-tracing of requirements . 518

17.8 Related Work . 519
17.9 Conclusions . 521
References . 522

It is in the public domain that model-based testing (MBT) has been used for years and
its benefits have been emphasized by numerous publications.∗ Despite this, there is still
one question pending. If MBT is an excellent way to test, why has MBT not made a
major breakthrough in the telecommunication industry? In order to find the answer to this

∗Results of case studies on industrial context have been explained in numerous publications. Dalal et al.
described case studies and experiences in (Dala et al. 1999), and Prenninger, El-Ramly, and Horstmann
listed and evaluated selected case studies in Prenninger, El-Ramly, and Horstmann (2005).

487

488 Model-Based Testing for Embedded Systems

question, a MBT methodology was developed for a product testing project at Nokia Siemens
Networks (Network 2009).

A systematic methodology was developed during the project. The methodology uses
a system model instead of test models in contrast with many other MBT systems. In the
context of the methodology, the term system model refers to models that define the behavior
of the system under test (SUT) instead of the behavior of test cases.∗ In addition, during
the development, the methodology was constantly evaluated to understand benefits and
problematic aspects of the MBT technology.

The methodology includes a process and the supporting tool chain. The methodology
was developed for testing functionality of an MSC Server (Mobile Services Switching Centre
Server), a network element, using a functional testing approach, that is, the product was
tested using a black-box testing technique.† The methodology exploited a so-called offline
testing approach, where test cases were generated from the models before execution, instead
of using an online testing approach, where models are interpreted step by step and each
step is executed, instantly.‡

The content of this chapter will first provide an overview of the project in Section 17.1
that helps understand the following subsections within the chapter. Sections 17.2 through
17.4 focus on process, model development, validation, and transformation aspects. Sec-
tions 17.5 through 17.6 describe test generation and test execution aspects. Section 17.7 is
devoted to requirement traceability as it spans across the entire process and the tool chain.
Conclusions are provided in Section 17.9.

17.1 Overview

Firstly, the overview will provide a high-level view of the process and tools. Next, the SUT
and its characteristics are explained. These together provide a detailed context for the work.

17.1.1 Process and tools

The high-level process used in the project is depicted in Figure 17.1. The top level of the
process uses the MATERA approach (Abbors 2009a). Four major phases can be identified
from the process. First, the requirements are processed and models describing the SUT are
created. The models are validated using a set of validation rules in order to improve the
quality of the models. Second, the tests are generated from the models. The test generation
phase produces executable test scripts. Third, the test scripts are executed with the help of
a test execution system. The execution phase produces test logs that are used for further
analysis. Fourth, the tests are analyzed in case of failures and requirement coverage tracing
is performed. The analysis exploits the test logs and the models. The phases of the process
are described in detail in Sections 17.2 through 17.5. In addition, requirement traceability

∗In case the models represent behavior of the tests, the term test model is often used. The differences in
the two modeling approaches are explained in Chapter 2, Section 2.3 and by Malik et al. (2009).

†Beizer defines functional testing as an approach that considers implementation as a black box. Hence,
the functional testing is often called black-box testing (Beizer 1990).

‡Utting, Pretschner, and Legeard describe offline testing in Utting, Pretschner, and Legeard (2006) as
a method, where tests are strictly generated before the execution, in contrast with online testing, where a
test system reacts on outputs of a SUT dynamically. In the context of model-based verification and MBT
the terms online and on the fly are often used to refer to similar kinds of test execution approaches. Bérard
et al. describe the on-the-fly method in Bérnard et al. (2001) as a way to construct parts of a reachability
graph on a needs basis rather than constructing a full graph immediately.

Applying MBT in the Telecommunication Domain 489

Requirement
analysis

Validation
report

Models

Modeling Model
validation

MATERA

Requirements

Test report

Test
evaluation

Logs

Test cases

Test
execution

Test generation

System
under

test

FIGURE 17.1
Process description overview.

Requirements

MagicDraw
UML editor

Validation
report MagicDraw

validation engine

UML models

Test report

Test evaluation
module

UML to QML
transformation module

QML models

EAST scripts

Qtronic

EAST
EAST logs

MSC
server

MATERA

FIGURE 17.2
Tool chain overview.

is discussed in Section 17.6 as it is not restricted to any particular phase but spans across
all the phases.

The process is supported by the tool chain depicted in Figure 17.2. The figure resem-
bles Figure 17.1 and therefore indicates the roles of the tools with respect to the described
process. The top level is supported by the MATERA framework (Abbors, Bäcklund, and

490 Model-Based Testing for Embedded Systems

Truscan 2010), which is developed as a plug-in to the No Magic MagicDraw tool (Magic
2009). In MATERA, the Unified Modeling Language (UML) (Object Management Group
models d) is edited, validated, and transformed to Qtronic Modeling Language (QML) (Con-
formiq 2009b) models and given as an input into the Conformiq Qtronic tool (Conformiq
2009a) for test generation. Qtronic outputs test scripts that are executed with Nethawk
EAST (Nethawk 2009). The test logs produced by EAST are analyzed and evaluated against
the original models using the MATERA test evaluation function. The relevant details of
the tools are provided in Sections 17.2 through 17.5.

The UML models are edited with No Magic MagicDraw tool (Magic 2009). In addition,
MagicDraw is used for model validation via custom rules implemented using the Object
Constraint Language (OCL) (Object Management Group b). The UML models are trans-
formed with a script into QML models and given as an input into the Conformiq Qtronic
tool (Conformiq 2009a) for test generation. Qtronic outputs test scripts are executed with
Nethawk EAST (Nethawk 2009). The test logs produced by EAST are analyzed and eval-
uated against the original models using a test evaluation script. The relevant details of the
tools are provided in Sections 17.2 through 17.5.

17.1.2 System under test

The project focused on testing the Mobility Management (MM) feature of a MSC Server,
that is, the MSC Server acted as the SUT. It is a key network element of second and third
generation mobile telecommunication networks that establishes calls and controls handovers
during calls. The MSC Server is capable of handling up to several million users and at the
same time provides a near zero downtime. The MSC Server communicates with a number
of other network elements as illustrated in Figure 17.3.

BSS

A

A

MAP

Megaco

Iu-CS

Iu-CS

BSCBTS

BTS

BTS

Node-B

Node-B

Node-B

RNC

RNC

MSC
server

MGW

HLRBSCUm

Um

Um

Uu

Uu

Uu

RNS

Iur

Iub

Iub

Iub

Mobile

FIGURE 17.3
Project-related mobile telecommunication network elements.

Applying MBT in the Telecommunication Domain 491

The MSC Server is a typical telecommunication network element from a testing point of
view. It has multiple interfaces with other network elements. In addition, the MSC Server
communicates with multiple network elements of the same kind, for example, a MSC Server
connects to many Radio Network Controllers (RNCs) and Base Station Controllers (BSCs).
Communication between the network elements is concurrent and performance scalability
aspects are already taken into account in the architecture of the network. The MSC Server
also communicates with mobile phones using logical connections, that is, the MSC Server
does not have a physical connection with the mobile phones, but the MSC Server uses
services provided by other network elements. These elements are part of the radio access
networks, that is, Base-Station Subsystem in the second generation network and Radio
Network Subsystem (RNS) in the third generation network. The details of the network
architecture are specified in the 3GPP Technical Specification 23.002 (The 3rd Generation
Partnership Project 2005). Evolution from the second generation GSM systems to the third
generation UMTS networks and a detailed description of the latter technology are provided
by Kaaranen et al. (2005).

17.2 UML/SysML Modeling Process

The models of the SUT are created following the MATERA approach. The approach starts
from the textual requirements of the system, the MSC Server, and incrementally builds a
collection of models describing the SUT from different perspectives. In this context, textual
requirements refer to the collection of stakeholder requirements, as well as additional docu-
ments such as protocol specifications, standards, etc. The modeling phase captures several
perspectives (architecture, behavior, data, and test configuration) of the system, at several
abstraction levels, by spanning the Functional View and Logical View layers described in
Figure 17.4. The functional view defines how the system is expected to behave when it inter-
acts with its users. The logical view describes the logical parts of the system, with behaviors
and interactions, without relating to the actual implementation of the system. Each per-
spective is initially specified on the functional view via the feature, requirements, use case,
and sequence diagrams, and it is subsequently refined on the logical view (state machine
diagrams, class diagrams, and object diagrams). There are both horizontal (between the
perspectives on the same level) and vertical relationships (refinements) among the specifi-
cation artifacts in this process, as will be illustrated throughout this section.

Functional view

Logical view

Data

Behavior

Architecture

FIGURE 17.4
Modeling perspectives in the NSN case study.

492 Model-Based Testing for Embedded Systems

The UML (Object Management Group d) is used as a specification language for system
modeling in the project. Additionally, the requirements diagrams of the Systems Modeling
Language (SysML) (Object Management Group c) are used to capture the requirements
of the system in a graphical manner. The No Magic MagicDraw tool was employed to
create the models. MagicDraw is a commercial software and system modeling tool, which
offers support for both UML and SysML. The tool also offers support for automatic code
generation, model validation, model analysis, reporting, etc., and can be extended with the
use of various plug-ins.

The system models are created in a systematic manner, based on the MATERA guide-
lines (Figure 17.5), starting from the textual requirements. The approach consists of five
phases. In each phase, a new set of models is created. Each model describes the system
from a different perspective. The approach is iterative, so each phase can be visited several
times, and the models are constructed incrementally.

The first phase deals with the identification of stakeholder requirements, standards, and
associated specifications. Since the models are derived from requirements, it is necessary to
identify and collect as much relevant information about the system as possible. The system
models are later built based on the collected information.

In phase two, feature models and requirements models are created from the information
collected in the previous phase. Initially, the features of the SUT are specified using UML
Class diagrams (Figure 17.6). The feature models are mainly derived from product require-
ments and they give a rough outline of which features and functionality the system must
be able to perform. Each class describes one feature, whereas mandatory and optional rela-
tionships between features are modeled using aggregation and composition relationships
between classes. The feature diagram follows the principles of functional decomposition,
where high-level features are decomposed into subfeatures.

Requirements model
(SysML requirements diagram)

Standards,
specification,

stakeholders requirements

Feature model
(UML class diagram)

Usage scenarios
(UML use case diagram)

Sequence diagrams
(UML sequence diagrams)

State model
(UML state machine diagram)

Domain model
(UML class diagram)

Data model
(UML class diagram)

Test configuration model (UML object
diagram)

act [Activity] System modeling[Sytem modeling]

FIGURE 17.5
System modeling process.

Applying MBT in the Telecommunication Domain 493

A set of requirement models are created using SysML Requirements Diagrams
(Figure 17.7). The requirements are specified on several levels of abstraction following prin-
ciples of functional decomposition. One such model is created for every leaf in the feature
diagram. The purpose of these models is to structure the requirement specifications cor-
responding to each feature in a graphical manner. They are structured in requirements
diagrams similar to a UML class diagram in which the classes are annotated with the
 requirement! stereotype. A requirement in SysML is specified using different proper-
ties including an id field, a textual description, and the source of the requirement. The
textual description gives a brief explanation of the requirement, while additional details
(e.g., technical specifications) are added in the documentation field of each requirement
(not visible in the previous figure). The source field directs the document to where the
requirement has been extracted from.

MSS

3G

package Feature model[MSS feature diagram]

2G

3G_Handover 2G_Handover3G_Location update 2G_Location update3G_Voice call 2G_Voice callSMS MMS

FIGURE 17.6
A feature diagram of the MSC Server.

Id = ''6''
Text = ''Authentication''
Source = 3GPP TS 23.012

<<trace>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>> <<deriveReqt>>

<<deriveReqt>><<deriveReqt>><<deriveReqt>>
<<deriveReqt>><<deriveReqt>>

<<deriveReqt>> <<deriveReqt>> <<deriveReqt>> <<deriveReqt>>

<<trace>>
Id = ''7''
Text = ''Ciphering''
Source = 3GPP TS 23.012

Id = ''3''
Text = ''Location
update''
Source = 3GPP TS 23.012

<<requirement>>

req [Package] Requirements model [Location Update Requirements]

6

Id = ''3.4''
Text = ''The MSS must be
able to authenticate a MS''
Source = 3GPP TS 42.009 / 3.2

Id = ''3.1''
Text = ''The MSS must be
able to perform a location update''
Source = 3GPP TS 23.002 / 4.1.1.2

Id = ''3.5''
Text = ''The MSS must be able
to cipher the communication''
Source = 3GPP TS 44.018 / 3.4.7

Id = ''3.2''
Text = ''The MSS must always
respond to the MS on a location
update''
Source = 3GPP TS 23.012

Id = ''3.3''
Text = ''MSS must be able to
request the IMSI of the MS''
Source = 3GPP TS 23.012 / 3.5

<<requirement>>
3.4

Id = ''3.1.2''
Text = ''Location update
must be supported in UTRAN
(3G) networks''
Source = 3GPP TS 24.008 / 4.1

Id = ''3.1.1''
Text = ''Location update
must be supported in GREAN
(2G) networks''
Source = 3GPP TS 24.008 / 4.1

Id = ''3.2.1.2''
Text = ''If MSS is able to identify
MS''
Source = 3GPP TS 24.008 / 4.1.1.1.1

Id = ''3.2.1.1''
Text = ''If MS is still in same LA''
Source = 3GPP TS 24.008 / 4.1.1.1.1

Id = ''3.2.2.2''
Text = ''If identification
fails''
Source = 3GPP TS 23.012

Id = ''3.2.2.1''
Text = ''If authentication
fails''
Source = 3GPP TS 23.012

Id = ''3.2.1''
Text = ''MSS responds
with a accept message''
Source = 3GPP TS 23.012

Id = ''3.2.2''
Text = ''MSS responds
with a reject message''
Source = 3GPP TS 23.012

Id = ''3.3.1''
Text = ''If PVLR is unknown
MSS request the IMSI from
the MS''
Source = 3GPP TS 23.012 / 3.5

<<requirement>>
3.1.2 <<requirement>>

3.1.1

<<requirement>>
3.2.1.2

<<requirement>>
3.2.1.1

<<requirement>>
3.2.2.2 <<requirement>>

3.2.2.1

<<requirement>>
3.2.1 <<requirement>>

3.2.2

<<requirement>>
3.3.1

<<requirement>>
3.1

<<requirement>>
3.5

<<requirement>>
3.2 <<requirement>>

3.3

<<requirement>>
3

<<requirement>>
7R

R R

R
R

RRR

R
R R

R
R

R
R

RR

FIGURE 17.7
SysML requirements diagram. (Reproduced from Abbors, F., Backlund, A., and Truscan,
D., MATERA—An Integrated Framework for Model-Based Testing, Proceedings: 2010 17th
IEEE Conference and Workshops, c© 2010 IEEE.)

494 Model-Based Testing for Embedded Systems

Requirements are traced to other requirements on the same abstraction level or between
requirements and other model elements in UML by using relationships such as DeriveReqt,
Satisfy, Verify, Refine, Trace, or Copy. If necessary, requirements are also arranged into
different categories such as functional, architectural, and communication (data).

In the third phase, a use case model and a set of sequence diagrams are created. The
purpose of the use case model (Figure 17.8) is to present a graphical overview of the main
functionality of the system. The use case model also identifies the border of the system
and the external entities (actors) with which the system must interact. Each use case has
a detailed textual description using a tabular format (see Figure 17.9). The description
includes fields for precondition, postcondition, actors using the use case, possible sub-use
cases, as well as an abstract textual description of the sequence of actions performed by
the system when the scenario modeled by the use case is in use. Message sequence charts
(MSCs), or sequence diagrams, are illustrated in Figure 17.10 and are primarily used to
describe the interactions between different entities in a sequential order, as well as for
describing the behavior of a use case, by showing the messages (and their parameters) that
are passed between entities for a given use case. Basically the intended usage of MSC is
twofold: to discover entities communicating with the system and to identify the message
exchange between these entities. The messages exchanged between entities (referred to as
lifelines in the context of sequence diagrams) are extracted from the protocol specifications
referenced by the requirements.

In the fourth phase, we define the domain, data, and state models of the SUT. The
domain model (Figure 17.11) is represented as a class diagram showing the domain entities
as classes and their properties (attributes). The domain model also describes the interfaces
that the domain entities use for communicating with one another. Each interface contains
a set of messages that can be received by an entity, modeled as class operations. The
names of the operations are prefixed with the acronym of the protocol level at which they
are used, similar to the approach followed in the sequence diagrams. For instance, the

<<extend>>

<<extend>>

<<extend>>
(if handover)

RNS

MS BSS

HLR

<<include>>

(if authentication)

(if authentication)

Authentication

package MSS [Use Cases]

Location Update
extension points

if authentication

Ciphering

Voice Call
extension points
if authentication
if handover

Handover

FIGURE 17.8
Use case diagram of the MSC server.

Applying MBT in the Telecommunication Domain 495

Name Location Update
Author Fredrik Abbors
Date 1.10.2008
Actors MS, HLR, BSS, RNS
Sub-cases Authentication, Ciphering

Description
The MS requests a location update from MSS. The MSS can in some cases initiate
authentication and ciphering of the MSS. Finally, the MSS will respond to MS with
the location area.

Pre-conditions Connection established between MS and MSS.
Post-conditions The location area of MS stored/updated in MSS’s registers.

Scenario

Actor input System response

1
MS sends requests to MSS
to update its location

2
MSS responds and accept message containing
information
about the location area

3
MS responds with an
acknowledge message

FIGURE 17.9
Tabular description of the location update use case.

1: [MM]_LOCATION_UPDATING_REQUEST ()

Connection establishment

2: [MM]_IDENTITY_REQUEST()

3: [MM]_IDENTITY_RESPONSE()

4: [MM]_LOCATION_UPDATING_ACCEPT()

5: [MM]_TMSI_REALLOCATION)_COMPLETE()

Connection release
ref

Update location
ref

alt

ref

: MS : MSS : HLR

Interaction Location Update [Location Update]

ref

ref

[else]

Authentication

Ciphering

[MS not registered in VLR]

FIGURE 17.10
Sequence diagram describing the location update procedure.

496
M

od
el-B

a
sed

T
estin

g
fo

r
E

m
bed

d
ed

S
ystem

s

Um Um

BSS

A

A

MM MM

MS

Uu

RNS

Iu

Iu

HLR

MAP

MAP

MSS

Uu
+[RR]_CIPHERING_MODE_COMPLETE()
+[RR]_DISCONNECT()
+[RR]_CONNECTION_REQUEST()
+[RR]_CHANNEL_MODE_MODIFY_ack()
+[RR]_PAGING_RESPONSE()

<<use>>

package Architectural model [Architecture]

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

MGW

Megaco

Megaco
<<use>>

<<use>>

1

1

1

1

1

<<use>>

<<use>>

<<use>>

1

O..*

O..*

O..* O..*

O..*

O..*

+[BSSMAP]_ASSIGNMENT_REQUEST()
+[BSSMAP]_CLEAR_COMMAND()
+[BSSMAP]_HANDOVER_REQUEST()
+[BSSMAP]_HANDOVER_COMMAND()
+[BSSMAP]_PAGING()
+[BSSMAP]_CIPHER_MODE_COMMAND()

+[BSSMAP]_ASSIGNMENT_COMPLETE()
+[BSSMAP]_CLEAR_COMPLETE()
+[BSSMAP]_HANDOVER_REQUEST()
+[BSSMAP]_HANDOVER_REQUEST()
+[BSSMAP]_HANDOVER_COMPLETE()
+[BSSMAP]_CIPHER_MODE_COMPLETE()
+[BSSMAP]_PAGING_RESPONSE()
+[BSSMAP]_HANDOVER_DETECT()
+[BSSMAP]_HANDOVER_REQUEST_ack()

+[MM]_LOCATION_UPDATING_REQUEST()
+[MM]_AUTHENTICATION_RESPONSE()
+[MM]_INDENTITY_RESPONSE()
+[MM]_TMSI_REALLOCATION_COMPLETE()
+[MM]_CM_SERVICE_REQUEST()
+[CC]_ALERTING()
+[CC]_CALL_CONFIRMED()
+[CC]_CONNECT()
+[CC]_CONNECT_ack()
+[CC]_SETUP()
+[CC]_DISCONNECT()
+[CC]_RELEASE()
+[CC]_RELEASE_COMPLETE()

+[MM]_LOCATION_UPDATING_ACCEPT()
+[MM]_AUTHENTICATION_REQUEST()
+[MM]_IDENTITY_REQUEST()
+[CC]_ALERTING()
+[CC]_CALL_PROCEEDING()
+[CC]_CONNECT()
+[CC]_CONNECT_ack()
+[CC]_SETUP()
+[CC]_DISCONNECT()
+[CC]_RELEASE()
+[CC]_RELEASE_COMPLETE()

+[RR]_CIPHERING_MODE_COMMAND()
+[RR]_CHANNEL_RELEASE()
+[RR]_UA()
+[RR]_IMMEDIATE_ASSIGNEMENT()
+[RR]_CHANNEL_MODE_MODIFY()

- imsi : String
- domain : String
- role : String
- follow-on : Boolean
- registered : Boolean
- connected : Integer

+[RRC]_CONNECTION_SETUP()
+[RRC]_CONNECTION_RELEASE()
+[RRC]_SECURITY_MODE_COMMAND()

+[RRC]_CONNECTION_REQUEST()
+[RRC]_CONNECTION_SETUP_COMPLETE()
+[RRC]_CONNECTION_RELEASE_COMPLETE()
+[RRC]_SECURITY_MODE_COMPLETE()

+[RANAP]_IU_RELEASE_COMMAND()
+[RANAP]_RELOCATION_COMMAND()
+[RANAP]_RELOCATION_REQUEST()
+[RANAP]_SECURITY_MODE_COMMAND()
+[RANAP]_PAGING()
+[RANAP]_RAB_ASSIGNMENT_REQUEST()

+[RANAP]_IU_RELEASE_COMPLETE()
+[RANAP]_RELOCATON_REQUIRED()
+[RANAP]_SECURITY_MODE_COMPLETE()
+[RANAP]_RELOCATION_DETECT()
+[RANAP]_RELOCATION_COMPLETE()
+[RANAP]_RAB_ASSIGNMENT_COMPLETE()
+[RANAP]_PAGING_RESPONSE()
+[RANAP]_RELOCATON_REQUEST_ack()

+[MAP]_UPDATE_LOCATION_ack()
+[MAP]_INSERT_SUBSCRIBER_DATA()

+[MAP]_UPDATE_LOCATION()
+[MAP]_INSERT_SUBSCRIBER_DATA_ack()

FIGURE 17.11
Class diagram depicting the system domain. (Reproduced from Malik, Q. A., Jääaskeläinen, A., Virtanen, H., Katara, M., Abbors, F.,
Truscan, D., and Lilius, J., Using system models vs. test models in model-based testing. In Proceedings of “Opiskelijoiden minikonferenssi”
at “Tietotekninen tuki ohjelmoinnin opetuksessa,” c© 2009 IEEE.)

Applying MBT in the Telecommunication Domain 497

[MM] prefix depicts a class method used at the MM protocol. The set of messages that
can be exchanged between the MSC Server (MSS) and the Mobile Subscriber (MS) at the
MM protocol are modeled by two different class interface elements (i.e., MM), one for each
direction of communication. The approach allows a clear separation of the communication
between different network elements and on different protocol levels. The domain model is
built iteratively and is mainly derived from the sequence diagrams and the architectural
requirements. Each lifeline in the sequence diagrams generates a new class, whereas the
interfaces of the class are obtained from the messages that each lifeline in the sequence
diagrams receives.

The data model (Figure 17.12) describes the different message types used in the domain
model. That is, every message on each interface in the domain model is linked to the corres-
ponding message in the data model. The messages are modeled explicitly via class diagrams.
Since, in the telecommunication domain, the main unit of data exchanged between entities
is the message (or PDU), we focus our attention on how different message types and their
structure (parameters) can be described. By analyzing the communication requirements and
the domain models (where messages have been described as class operation with parameters),
we create a data model of the system in which each message type is represented by a class, while
the parameters of the message are represented as class attributes. We structure the message
definitionbasedontheircorrespondingprotocols(onediagramperprotocol)anduseinheritance
tomodel commonparameters foragivenmessage.Figure17.12showsaclassdiagramspecifying
the messages used by the MM protocol. The MM super-class defines the parameters common to
allmessages,whereas leaf classesdefinemandatoryparameters for eachmessage type.Optional
parameters can be added following a similar approach.One important aspect of the datamodel
is that it does not contain all the mandatory fields of a given PDU, but only those necessary to
model the SUT at the current abstraction level. The rest of the parameters will be set up during
the test generation level when the abstract test cases will be transformed into executable ones
(see Section 17.5, Test Concretization).

State models are used to describe behavior of the SUT. The state model of the MSC
Server is derived by analyzing sequence diagrams of each use case one by one. That is, for

- CM Service Type : byte 1/2
- ciphering Key Sequence Number : byte 1/2
- mobile Station Class mark 2 : byte 4
- mobile Identity : byte 2-9

- protocol Discriminator : byte 1/2
- skip Indicator : byte 1/2
- message Type : byte 1

package MM messages [MM

- identity Type : byte 1/2
- spare half octet : byte 1/2+ location Updating Type : Integer

- ciphering Key Sequence Number : byte 1/2
- location Area Identification : byte 5
- mobile Station Classmark 1 : byte 1
- mobile Identity : byte 2-9
+ domain : String

- location Area Identification : byte 5

- mobile Indentity : byte 2-10

- authentication Response Parameter SRES : byte 4

- ciphering Key Sequence Number : byte 1/2
- spare Half Octet : byte 1/2
- authentication Parameter RAND : byte 16

CM_SERVICE_REQUEST

MM

IDENTITY_REQUEST

IDENTITY_RESPONSE

AUTHENTICATON_RESPONSE

AUTHENTICATON_REQUEST

LOCATION_UPDATING_REQUEST

LOCATION_UPDATING_ACCEPT

TMSI_REALLOCATION_COMPLETE

FIGURE 17.12
Data model, defining the structure of MM protocol messages. (Reproduced from Abbors,
F., Backlund, A., and Truscan, D., MATERA—An Integrated Framework for Model-Based
Testing, Proceedings: 2010 17th IEEE Conference and Workshops, c© 2010 IEEE.)

498 Model-Based Testing for Embedded Systems

idle

: Authentication

: Ciphering

: ReleaseChannel

Req 3.1.1

Req 3.1.2

Req 3.2.1

Req 6.1

[MM]_LOCATION_UPDATING_REQUEST() [msg.domain == domain]

/ [MM]_LOCATION_UPDATING_ACCEPT()

[domain == ''2G''] [domain == ''3G'']

LocationUpdate]state machine LocationUpdate [

FIGURE 17.13
State machine diagram describing the system behavior.

each sequence diagram, the state of a given object in which each message is received and
what messages are sent from that particular state is identified. The former will become
trigger messages, while the latter will become actions on the state machine transitions.
By overlapping the states and transitions extracted from each sequence diagram, the full
state model of the SUT is obtained. The resulting state model may also contain hierarchical
states that will help in reducing the complexity of the model. Figure 17.13 shows a state
machine model of the SUT for the location update procedure.

In the last phase, a test configuration model is created. This model is represented using
a UML object diagram and serves to specify the test setup. The elements of this diagram
are basically instances of the entities defined in the domain model, showing a particular
configuration at a particular point in time. Figure 17.14 shows a test configuration with two
mobile phones connected to a 2G network and a 3G network, respectively.

17.3 Model Validation

Humans tend to make mistakes and omit things. Therefore, in modeling, it is necessary for
the models to be validated before using them to, for example, automatically generate code
or test cases. In our methodology, we take advantage of the model validation functionality
of MATERA to check the models for consistency, correctness, and completeness before pro-
ceeding to the next step of the process. The idea behind consistency validation is to check
for contradictions in the model, for example, a message name in a sequence diagram should
match the name of the operation in the class corresponding to that lifeline. Correctness
ensures that the models conform to the modeling language (e.g., UML), whereas com-
pleteness checks that all necessary information fields have been properly filled out for each

Applying MBT in the Telecommunication Domain 499

ms#1 : MS
domain = ''2G''
followOn = false
imsi = ''234800000000921''
registered = true
role = ''MOC''

domain = ''3G''
followOn = false
imsi = ''234800000000923''
registered = true
role = ''MOC''

ms#2 : MS

bss#1 : BSS

rns#1 : RNS

: HLR

: MSS

FIGURE 17.14
Test configuration model with two mobile phones connected to the SUT.

element. Model validation can be considered “best practice” in modeling since it increases
the quality of the models by ensuring that all relevant information is present or dependencies
between elements are correct.

The MATERA framework utilizes the validation engine of MagicDraw for model vali-
dation. The engine uses the OCL (Object Management Group b), a formal language for
specifying rules that apply to UML models and elements. These rules typically specify
invariant conditions that hold true for the system being modeled. Rules written in OCL
can be checked against UML models and it can be proved that nothing in the model is vio-
lating them. UML, the main modeling language supported by MagicDraw, is accompanied
by several predefined suites of validation rules. For example, UML models can be validated
for correctness and completeness. There are also additional validation suites for different
contexts that can be used. For example, in the SysML context there is a set of validation
rules that apply to SysML diagrams. The different validation suites can be checked against
either all models or selected models.

Beside predefined validation rules provided by MagicDraw, custom (domain-specific)
validation rules can also be created and executed, using the MATERA framework. A com-
plementary set of validation rules was defined (Abbors 2009b) in order to increase the
quality of the models with respect to the modeling process. The main purpose of these
rules is to ensure a smooth transition to the subsequent steps in the testing process such
as generating the input specifications for the test generation tool, or the test generation
itself. Next, the validation suites in MATERA and the creation of custom validation rules
are described.

An OCL rule normally consist of three parts: (1) a context that defines to which language
elements the rule applies (e.g., class or state), (2) a type that specifies if the rule is a, for
instance, an invariant, a precondition, or a postcondition, and (3) the rule itself. Optionally,
an OCL rule can also contain a name. An example of an OCL rule is shown in Listing 17.1.

Listing 17.1
Example of an OCL rule

context Region inv i n i t i a l a n d f i n a l s t a t e :
subvertex → e x i s t s (v : Vertex | v . oclAsType (Pseudostate) . kind =
PseudostateKind : : i n i t i a l) and subvertex → e x i s t s (v : Vertex |
v . oclIsTypeOf (F ina lS ta t e))

500 Model-Based Testing for Embedded Systems

FIGURE 17.15
Screen shot of MagicDraw showing the properties of an OCL rule.

The OCL rule in this example checks that every state machine has an initial and a
final state. As one can see, the context of the rule in this example is a Region and the
type of the rule is invariant (inv), which means that the expression must always hold
true for every instance of type Region. In this example, the OCL rule also has a name,
“initial and final state,” specified next to the type. By assigning proper names to OCL
constraints, it becomes easier to understand the purpose of the constraint and, in addition,
it allows the constraint to be referenced by name.

In the validation engine, OCL constraints are treated similarly to model elements. As
a result, each constraint has a number of editable properties such as name, specification,
constrained element, etc. (see Figure 17.15). The name property specifies the name of the
constraint. The specification property specifies the rule itself and its type, while the con-
strained element specifies the context of the constraint.

The validation suites can be invoked at any time during the model creation process.
Upon invocation, each rule will be run against the element types or element instances for
which it has been defined. If elements violating any rule are found, the user is notified in
a Validation Results editor (Figure 17.16). By clicking a failed rule, the elements violating
the rules are presented to the user.

17.4 Model Transformation—From UML to QML

The resulting collection of UML models is used for generating the input model for the Con-
formiq’s Qtronic test generation tool, using the MATERA model transformation module.
The model in Qtronic is specified using the QML which is discussed more in Section 17.5.1.
QML is a mixture of UML state machines and Java, the latter being used as an action

Applying MBT in the Telecommunication Domain 501

FIGURE 17.16
Screenshot of MagicDraw showing the Validation Results editor. (Reproduced from Abbors,
F., Backlund, A., and Truscan, D., MATERA—An Integrated Framework for Model-Based
Testing, Proceedings: 2010 17th IEEE Conference and Workshops, c© 2010 IEEE.)

language. As such, the system models created in MagicDraw are not directly compatible
with the Qtronic tool and hence must be transformed into a representation understood by
Qtronic, namely QML. The MATERA model transformation module (Abbors et al. 2009)
automatically transforms the UML models into the corresponding QML representation.
Figure 17.17 shows how different models are mapped onto QML.

17.4.1 Generating the interfaces and ports of the system

In QML, interfaces are specified within a system-block. The interfaces describe the ports
that can be used to communicate with the environment and which message types can be
sent and received on each port. The Inbound ports declare messages to be received by the
SUT from the environment, whereas the Outbound ports declare messages to be sent from
the SUT to the outside world.

The ports of the SUT are obtained directly from interface classes in the domain model
(see Figure 17.11). Inbound messages are taken from the interface realization offered by the
SUT, and Outbound messages are taken from the interface realization used by the SUT.
The name of the ports will be composed of two components, the direction and the interface
name. UML operations are listed as messages that are transferred through the ports. The
structure of the messages is declared elsewhere as records. The partial result of applying
the transformation on the MM interfaces in Figure 17.11 is shown in Listing 17.2.

502 Model-Based Testing for Embedded Systems

Domain
model

Network
configuration

model

State
machines +

requirements

UML

QML

Transformation

State
machines

QML files

System-block

Records

Methods
Test

configuration

Data model

FIGURE 17.17
Mappings from UML to QML.

Listing 17.2
An example of generated Example of QML system-block

// System b l o c k example
system {

Inbound MM in : l o c a t i on upda t i ng r eque s t ,
au then t i c a t i on r e spons e , i d en t i t y r e spon s e ,
TMSI rea l locat ion complete , CM serv ice request , a l e r t i n g ,
c a l l c on f i rmed , connect , connect ack , setup , d i sconnect ,
r e l e a s e , r e l e a s e c omp l e t e ;

Outbound MM out : l o ca t i on upda t ing ac c ep t ,
au then t i c a t i on r eque s t , i d en t i t y r e qu e s t , a l e r t i n g ,
c a l l p r o c e ed i ng , connect , connect ack , setup , d i sconnect ,
r e l e a s e , r e l e a s e c omp l e t e ;

}

17.4.2 From UML data models to QML message types

In QML, messages are described as records that are used for communicating with the
environment. QML records are user-defined types similar to classes. The fields of a record
can be of type: byte, int, boolean, long, float, double, char, array, String, or of
another record type. In the transformation, records are obtained from classes in the UML
data model. Attributes of the UML classes are transformed into the fields of the record.
Inheritance in UML is reflected in QML using the extends relationship. For instance, the
location update request record in Listing 17.3 is obtained from a class with the same
name in Figure 17.12 following the described approach. The model does not indicate value
ranges of the fields. Instead, the value ranges can be checked by the protocol codecs provided
by the test system.

Applying MBT in the Telecommunication Domain 503

Listing 17.3
QML record declaration for LOCATION UPDATING REQUEST

record MM messages{
public St r ing p r o t o c o l d i s c r im i n a t o r ;
public St r ing s k i p i n d i c a t o r ;
public St r ing message type ;

}
// record i n h e r i t a n c e
record l o c a t i on upda t i n g r e qu e s t extends MM messages{

public int l o c a t i on upda t i ng type ;
public St r ing c ipher ing key sequence number ;
public St r ing l o c a t i o n a r e a i d e n t i f i c a t i o n ;
public St r ing mob i l e s t a t i on c l a s sma rk 1 ;
public St r ing mob i l e i d en t i t y ;
public St r ing domain ;

}

17.4.3 Mapping the UML state machine to the QML state machine

As mentioned previously, the behavior of the SUT can be specified in Qtronic either tex-
tually in QML or graphically using a restricted version of the UML state machines. For
simplicity, the latter option was chosen as the target of our transformation. Thus, the
transformation is basically a matter of transforming the UML state machine into the cor-
responding state machine used by the Qtronic tool, which in practice is equivalent with a
transformation at the XMI-level. Figure 17.18 shows the same state machine transformed to
QML. As one can see, there is a strong similarity between the two models, albeit with small
differences. For instance, both state and substate machines are supported and propagated
at the Qtronic level. In UML, triggers and actions are declared as methods (selected only
from the operations of the interface classes in the domain model).

In QML, triggers are implemented by messages (record instantiations) received on a cer-
tain port, whereas actions can be seen as methods of the SUT class definition. This approach
allows one to perform further processing of the system data before sending a given message
to the output port.∗ The method generated for the MM LOCATION UPDATING ACCEPT() in
Figure 17.11 is shown in Listing 17.4.

Listing 17.4
Example of a generated QML method

void MM LOCATION UPDATING ACCEPT() {
MM LOCATION UPDATING ACCEPT lo ca t i on upda t i ng a c c ep t

;
MM out . send (l o c a t i on upda t i ng a c c ep t) ;
return ;

}

∗If necessary, additional QML instructions can be manually inserted into the generated methods, before
the .send() statement.

504 Model-Based Testing for Embedded Systems

[]/setThreadName(this.my_name):

idle
idle

[MM]_LOCATION_UPDATE_REQUEST() [msg.domain == domain && msg.imsi

[role == ''MOC'']

Main]gin [

[followOn == true]

[followOn == false]

[role == ''MTC'']

/ [BSSMAP]_CLEAR_COMMAND()

[MM]_C_M_SERVICE_REQUEST() [msg.imsi == calledimsi && msg cMServiceTy

: LocationUpdate

MOCMTC

Make a call

: VoiceCall

: ReleaseChannel

Channel
cleared

LocationUpdate

[role == ''MTC'']/ [role == ''MOC'']/

[followOn == true]/

[followOn == false]/

VoiceCall

[]/

[]/

[]/

ReleaseChannel

Channel cleared

[]/BSSMAP_ClearCommand(); Make a call
inPort:MM_CMServiceReques[msg.imsi == calledmsi &&
msg.cMServiceType == CMServiceType.moc_or_packet_mode]/

MOC
MTC

inPort:MM_LoactionUpdateRequest[msg.domain == domain && msg.imsi == imsi
&& msg.locationUpdateType == locationUpdateType
&& msg.followOn == followOn]/SCCP_CC();

FIGURE 17.18
Example of a UML state machine in MagicDraw (left) and its equivalent in QML (right).

17.4.4 Generating the QML test configuration

As illustrated in Figures 17.11 and 17.14, a :MS is a user of the SUT who communicates
with it via the MM interface. The test configuration in our example consists of two MS. In
QML, a subscriber is modeled as a record (Listing 17.5) with the same attributes as in the
domain model (Figure 17.11). The test configuration is translated into QML in two steps.
In the first step, the properties of the test components are extracted from the UML domain
model and are declared in the constructor method of the SUT specification class (MSS in
our case) as shown in Listing 17.6. In the second step, each test component is instantiated
and the properties are initialized with the values taken from the configuration diagram
(Listing 17.7). The test components are stored in an array, which is later used for starting
concurrent test components of the test system in separate threads.

Listing 17.5
Example of subscriber record

record Subsc r i b e r s {
public St r ing my name ;
public boolean fol lowOn ;
public St r ing domain ;
public St r ing r o l e ;
public boolean r e g i s t e r e d ;
public St r ing ims i ;
}

Applying MBT in the Telecommunication Domain 505

Listing 17.6
Example of subscriber record initialization

public I n i t i a l i z e S u b s c r i b e r (Subs c r i b e r s sub) {
my name = sub . my name ;
fol lowOn = sub . fol lowOn ;
domain = sub . domain ;
r o l e = sub . r o l e ;
r e g i s t e r e d = sub . r e g i s t e r e d ;
ims i = sub . ims i ;
}

Listing 17.7
main method of the SUT specification class

// ∗∗∗ MAIN ∗∗∗
void main () {

Subsc r i b e r s mySubscribers [] = new Subsc r i b e r s [3] ;
mySubscr ibers [0] . my name = ”ms#1” ;
mySubscribers [0] . fol lowOn = fa l se ;
mySubscr ibers [0] . domain = ”2G” ;
mySubscribers [0] . r o l e = ”MOC” ;
mySubscribers [0] . r e g i s t e r e d = true ;
mySubscr ibers [0] . ims i = ”234800000000921” ;

mySubscr ibers [1] . my name = ”ms#2” ;
mySubscribers [1] . fol lowOn = fa l se ;
mySubscr ibers [1] . domain = ”2G” ;
mySubscribers [1] . r o l e = ”MTC” ;
mySubscribers [1] . r e g i s t e r e d = true ;
mySubscr ibers [1] . ims i = ”234800000000922” ;

for (int i = 0 ; i <=1; i++){
MSS mss = new MSS(mySubscribers [i]) ;
Thread t = new Thread (mss) ;
t . s t a r t () ;

}
}

17.4.5 Assigning the state model to the SUT specification

At this point, the only thing that remains to be done is to connect the SUT class specification
to the graphical state model. This is done by calling the constructor method for the state
machine. Once the state machine has been constructed, the concurrency of the SUT can be
tested by starting (via the Thread.start() method) separate execution threads for each
test component (i.e., subscriber) (Listing 17.8). The approach allows for different MSs to
concurrently communicate with the SUT using different configuration parameters. This is
necessary as in telecom systems such as the MSC Server, one must test the presence of

506 Model-Based Testing for Embedded Systems

multiple MSs interacting with the MSC Server (in practice, one MSC Server can serve up
to several million users). In addition, we must test calls between pairs of subscribers, where
one call requires two subscribers, that is, the caller and the receiver (known as A and B
subscribers).

Listing 17.8
State machine instantiation in Qtronic

for (int i = 0 ; i <=1; i++){
MSS mss = new MSS(mySubscribers [i]) ;
Thread t = new Thread (mss) ;
t . s t a r t () ;

}

17.5 Test Generation

The test generation phase follows the modeling phase in the overall process. The test gen-
eration exploits the QML models transformed from the UML models. The supporting tool
chain implements the test generation phase using the Conformiq Qtronic tool. Qtronic is
a tool for Automated Test Design. It derives tests automatically from system models that
represent the desired behavior of the SUT. The generated tests are black-box tests and
so they evaluate the SUT based on its external behavior, not by monitoring its internal
workings.

17.5.1 QML

The systems model given as input into Qtronic is expressed in terms of a language called
QML. A model is a collection of the following:

• Textual source files in a Java-compatible but extended notation that describe data types,
constants, classes, and their methods.

• UML state-chart diagrams representing the behavioral logic of active classes as an alter-
native to representing the logic textually.

• Class diagrams as a graphical alternative to declare classes and their relationships.

A QML model is therefore essentially an object-oriented computer program, an abstract
implementation of the system to be tested.

The diagrams can be drawn using various tools that Qtronic works with, such as Con-
formiq Modeler, Enterprise Architect, IBM Rational Software Developer, or IBM Rhapsody.
It is also possible to create models completely textually, that is, all the diagram types are
optional.

17.5.2 Test generation criteria

Given a system model, Qtronic automatically identifies a number of test cases that together
cover the testing goals selected for test generation. Appropriate test input data as well as
the correct expected output is automatically calculated and generated by the tool without
further input from the user.

Applying MBT in the Telecommunication Domain 507

For this, Conformiq Qtronic uses semantics-driven methods for generating test suites,
which means that test generation is guided by an analysis of the behavior implied by the
model, instead of being based on syntactic analysis or simple heuristics. Qtronic uses model-
based coverage criteria to select a set of test cases to form a good test suite. The coverage
or testing goals are used to guide Qtronic to look for certain behaviors from models or
to enable certain behaviors.∗ A test case covers a certain testing goal if execution of the
test against the model itself would cause the goal to be exercised. Then, Qtronic uses its
capability to simulate the system model to construct test cases, and at the same time, it
maps the test cases to the different test goals that result from the coverage settings. It then
selects from the constructed test cases a set that covers all of the resulting test goals using a
minimal cost test suite. This ensures that the suite is reasonably small and compact, and at
the same time, the individual test cases remain relatively short, which eases test execution
and debugging. In addition to this, Conformiq Qtronic also prefers covering all test goals
as early as possible, that is, after as few messages as possible, providing better separation
of concerns between test cases.

A test suite generated by Qtronic has the following characteristics:

• In order to have good error detection capabilities, the generated test suite covers as
many testing goals as possible.

• In order to avoid redundant testing, the generated test suite is as compact as possible
while individual test cases in the suite are relatively short in order to ease the test
execution and debugging.

• In order to provide better separation of concerns between test cases, the test goals are
covered as early as possible in test cases.

Qtronic makes the testing goals accessible to the user in the Qtronic user interface (UI).
By selecting different testing goals, the user can affect how Qtronic generates test cases.
This is the primary vehicle in Qtronic for a user to have a say in how the tests are generated.
Figure 17.19 shows testing goals in the Qtronic UI. From this view in the coverage editor
the user can see, for example, that the generated test suite covers all requirements (more
on requirements below) related to category “1.2” but not all requirements in some other
categories. One can also see that 62% of all the states and 60% of the transitions are covered
by the test suite.

The selection testing goals that are used depend on how extensive a test suite the user
wishes to generate and also on the characteristics of the model and hence the SUT itself.
For example, if the model has lots of interesting boundary conditions related to inputs
to the system, it is highly recommended for one to enable Boundary Value Analysis as a
test generation criterion (see Figure 17.19). With boundary value analysis enabled, Qtronic
will attempt to exhaustively generate all possible boundary values based on the various
conditions in the model.

Not all testing goals are always reachable. One can, for example, have conflicting if-
statements in the model, which cause a certain boundary value case to be statically unreach-
able. An important aspect of how Qtronic works is that Qtronic will give the user a precise
account of which coverage goals were covered by the generated test suite and which ones
were left uncovered. Therefore, after test generation, the user knows exactly how well the
generated test suite covers the different functionalities of the modeled system (and can react
to uncovered areas and change the model if it turns out that there was a defect in the model
itself).

∗Both of the terms, coverage goal and testing goal, are used in this chapter and they mean the same
thing.

508 Model-Based Testing for Embedded Systems

FIGURE 17.19
Testing goals in the Qtronic user interface.

17.5.3 Requirements traceability

Most of the testing goals are related to various properties of the model itself (such as state,
transitions, conditional branches, etc.). In addition to these structural coverage criteria,
user-defined requirements can be used in models to guide the test generation.

Technically, the requirements are embedded in the model using the requirement keyword,
as illustrated in Listing 17.9.

Listing 17.9
An example of a requirement in a model

// A requirement embedded in a model
requirement ‘ ‘ This i s a requirement ’ ’ ;

For the Qtronic algorithm, a requirement is one additional coverage goal in the model to
be covered (see discussion on testing goals in Section 17.5). In generating tests, Qtronic will
attempt to generate a test suite that covers all requirements embedded in the model at least
once, assuming that the user has chosen requirements as a testing goal prior to starting test
generation. The notion “covering a requirement” means that there is an execution in the
model that passes through the point where the requirement is defined.

At the end of test generation, Qtronic will report how well the requirements in the model
were covered by the generated test suite (just like it does for all other testing goals). What
is particularly interesting about the requirements coverage is that it provides automatic
traceability from the functional requirements of the system all the way through to the
generated test cases and test execution. A traceability matrix maps requirements to test
cases, allowing a tester to easily pick up test cases to exercise certain functional areas
identified by the corresponding functional requirements. An example of a traceability matrix
can be seen in Figure 17.20. For example, if the user wishes to execute a test case that

Applying MBT in the Telecommunication Domain 509

FIGURE 17.20
Traceability matrix in the Qtronic user interface.

exercises a “mobile-originating call from a 2G network to a 3G network,” then test case 1
would have to be executed as can be seen from the “Xs” in the highlighted column for test
case 1. Furthermore, a failure in test execution can be easily attributed to a functional area
by looking at the traceability matrix.

17.5.4 Test concretization

Once the QML system model is created and tests are generated, we have a set of valid
test artifacts in terms of test cases, messages, parameters, and testing goals. Test arti-
facts, from the Qtronic database, must be transformed into an executable format for test
execution.

NetHawk’s Environment for Automated System Testing (EAST) [3] is used for test exe-
cution. EAST embeds the SUT in a virtual network incorporating protocols over interfaces
under test. EAST provides a Test Creation Environment (TCE) with graphical program-
ming language for defining tests, test suites, message templates etc., and a Test Execution
Environment (TEE) for test execution. In the project described in this chapter, TCE is
utilized for creation of the message reference library. TEE is used for executing test cases
in Load Testing mode, which provides an execution performance close to real network ele-
ments. EAST TEE connects a test execution engine to the desired protocol server required
by a protocol under test. A Protocol server is a standalone program simulating a protocol
stack below the protocol under test. In this context, Protocol under test refers to the level
of the modeled behavior of the SUT.

The message reference library is a collection of message descriptions and encoding rules
of telecom protocols under test. In other words, it is a definition of the run-time behavior
of messages. EAST provides most Protocol Data Units (PDU) of telecom protocols in the
form of message templates with default content. Each value of the template field in the
reference library is accessible through an API. It is up to the user to select the necessary

510 Model-Based Testing for Embedded Systems

PDUs from the reference library and create mappings between the parameters from test
artifacts and reference library messages. Data models, depicted in Figure 17.12, define the
interfaces under test on an abstract level when the message reference library is the actual
implementation of PDUs. One could think of the reference library as a refinement model
for the data model.

For example, the data model defines a message MM LocationUpdateRequest and
Qtronic has generated test artifacts defining parameters and behavior of when the mes-
sage is sent by the test system. In an executable test case, the event of sending the
MM LocationUpdateRequest message will be composed from the implementation of the mes-
sage in the reference library and of test artifacts calculated by Qtronic. Figure 17.21 shows
the relation between reference library and generated test artifacts.

In order to concretize such an executable test case, it is required that there be a tool to
combine Qtronic test artifacts and the message reference library refinement data producing
EAST executable test cases. For this purpose, a test scripting back-end was implemented.
The back-end is connected to Qtronic using an open API. Through the open API, it is
possible to create a custom output format (e.g., EAST scripts) from test artifacts and
utilize external test libraries such as the EAST reference library. The back-end creates a set
of test cases that can be executed on EAST TEE.

-locationUpdateType : int = 1
MM_LocationUpdateRequest

-cipheringKeySequence : byte = 0xFE
-locationAreaIdentification = byte = 0x11122

-mobileIdentity : char = ''234800000000911''

+domain : String = GSM
+Send()

-followOn : bool = true

Qtronic

Qtronic test
artifactsSystem

model

Scripter
plug-in

EAST
reference

library

EAST executable test
Action locationUpdateState0

BinartMessage.LoadMessage {Variable + $BINMsg,

String.assign { destination = $followOn, strsource = “true” };
BinaryMessage.setPointValue {ParameterVal = $followOn ,

BinaryMessage.sendMessage {Message = MM_LocationUpdateRequest};

MM_LocationUpdateRequest
Value < = DTAPv4.10.0:Location updating request.message
Location updating request

Skip Indicator
protocol discriminator
SSN
Message type
Spare

For

Spare1

LUT

Key sequence
Value = %000

Value: = ${followOn}

Value = default

Value: = ${loactionUpdateType}

Message = MM_LocationUpdateRequest };

Message = MM_LocationUpdateRequest,
ParameterName = “Location updating request/FOR”

{

};

}

...

. . .

-mobilStationClassmakrk1 : byte = 0xAA

Encoding
rules,

Protocol
data units

FIGURE 17.21
Test concretization.

Applying MBT in the Telecommunication Domain 511

The message reference library may have several versions supporting several protocol
versions. All versions implement the same API in order to keep maintenance work to a min-
imum. The API defines the mapping between the reference library messages and the abstract
definitions of messages. If the specification version of the protocol under test changes, the
reference library version also must be changed. Abstract definitions and the data model
should not have to change.

17.6 Test Execution

Test execution is performed with the help of a test system. The test system is illustrated in
Figure 17.22. The test system operation is automated with a custom-made Test Automation
Script (TAS). The test system is based on the NetHawk EAST Test Execution Environment
(TEE) and on protocol servers providing connectivity to the SUT. In addition, the message
reference library, described in Section 17.4, is providing run-time behavior for PDUs called
from EAST test scripts. EAST produces test logs on each test run. The logs are used in the
analysis and for coverage tracing purposes later on as will be discussed in Section 17.6. The
communication between the MSC Server and the test system is monitored with the Wire-
shark (Wireshark) protocol analyzer. The message reference library was discussed earlier
in Section 17.4 from the test concretization point of view. During the test execution, the
message reference library is providing an API for encoding and decoding rules for messages
sent and received. For example, if a message MM LocationUpdateRequest is about to be
sent by the TEE, the message reference library provides information about online encoding
of the message.

The TAS is used for starting related test steps at the same time, for collecting combined
coverage results, and for calculating the final verdict of the test case. After the system model
is created and test generation performed, the TAS takes care of all steps required in the
test execution phase.

Test automation
script

Protocol
analyzer

Test scripts

EAST
reference

library

EAST
TEE

Protocol
servers

SUT

Test system

MSC
server

Logs

FIGURE 17.22
Architecture of the test system.

512 Model-Based Testing for Embedded Systems

17.6.1 Load testing mode

The Load Testing mode has been selected from different execution environments provided
by EAST TEE. The Load Testing mode provides an execution engine allowing several
simultaneous calls and has a means for identifying different calls by a special Context. The
Context in our environment defines a sequence of actions or events having certain unique
characteristics. For example, when simulating an originating phone call, the calling party
has its own phone number and the called party has its own number. Both, originating
and terminating, calls have their own Context that can be addressed by a phone number
as phone numbers are unique. Also, while a phone call is ongoing, the Context can be
referred to at a protocol level through a specific connection in case of a connection-oriented
communication.

17.6.2 Concurrency in model-based testing

Modeling concurrent systems, such as telecom network elements, requires some extra atten-
tion in the modeling phase in order to obtain executable tests from the test generation. The
SUT is concurrent by nature, which means that several sequences of events are happening
at the same time without synchronization between them. This leads to a situation where
it is possible to have large amounts of different, but correct, interleaved sequences of ele-
mentary procedures. For example, Event A (EA) has 10 elementary procedures that always
happen in a known order. Respectively, Event B (EB) has 10 elementary procedures. In a
case where EA and EB are happening in parallel, there are 220−1 = 524,288 possibilities for
interleaved elementary procedures of EA and EB. In reality, there are some relationships
between EA and EB which narrow down the possibilities. But, when looking from a test
generation point of view, it is difficult to create information on models that rule out the
possibilities that do not take place in reality. And even after that, it is neither feasible nor
wise to generate all possible variations. The most important point is to not generate a test
that has one fixed order of parallel events. That is because it is not known beforehand in
which order these parallel events happen in the SUT.

For example, originating and terminating calls receive a confirmation when they are
connected to each other, but it is not specified which phone receives the confirmation first.
Some branching would be necessary in a single test case to cover these types of situations.
This will lead to a very complex test case that requires a lot of computational power from
the test generation tools. Instead of branching, the solution is to treat originating and
terminating calls as separate threads and generate independent test steps for both calls.
These steps together form a test case. Both steps are increasing the test coverage (see
Section 17.4) of the test case while they are running.

17.6.3 Executable test case

MBT test generation tools such as Qtronic can handle only deterministic behavior. An
individual test case should go through a deterministic path on each execution round. But
as illustrated in the above example, EA and EB as one test case, there are several options
on how a valid test case could behave on interleaved execution leading to nondeterministic
behavior. At first, this sounds like a restriction from the test generation tool perspective, but
when thinking about this dilemma openly, this is the only way that a test generation tool
could produce something reasonable. Concurrency must be handled in the test execution
environment and taken into account when creating system models. The system model should
define a separate thread for both the originating and terminating phone call. The test
generation tool produces one test case where EA and EB are combined in one interleaved

Applying MBT in the Telecommunication Domain 513

sequence of events. In the creation of an executable test in the test concretization phase,
described in Section 17.4, executable events of EA and EB are separated on their own test
steps. The entire process is depicted in Figure 17.23.

17.6.4 Context

Figure 17.24 depicts the message routing from the SUT to the correct test step in the test
system and vice versa. In the picture, the Router is a book keeper of the active Contexts
in the test system. It compares the received message type, header, and possible payload
to infer the correct Context. The EAST test case from the example above has two test
steps with unique phone numbers. There is also a possibility to define a unique protocol
transport layer identifier for each test step, for simplicity, is referred to as connectionID.
Most of the communication between the SUT and the test system is connection oriented and
it is easy to determine an identifier, connectionID, for each connection during the connection
establishment phase. However, because of the nature of the telecom network, there are some
connectionless messages exchanged within the network. These messages are mainly used for
paging other phones or resources before the connection is known. Here, it is assumed that
these broadcast messages carry an address of an entity to which the message belongs. To
simplify the example, the address is referred to as phoneNumber.

Generated EAST scripts, one script for each test step, are uploaded to the Load Runner.
Each test step registers their Context with a run-time database storing the relation between
the Context and the test step. In the example Listing 17.10, the Context can be addressed
through two context identifiers, connectionID and phoneNumber.

Listing 17.10
Example of the relation between the Context and the test system

St r ing . a s s i gn { de s t i n a t i on = $connect ionID , s t r s ou r c e = ”1” }
LoadEngine . setContextId { Var iab le = $phoneNumber , type = ” r e f e r e n c e ” }
St r ing . a s s i gn { de s t i n a t i on = $phoneNumber , s t r s ou r c e = ”62030614610001” }
LoadEngine . setContextId { Var iab le = $phoneNumber , type = ” r e f e r e n c e ” }

Originating
call

Terminating
call

Event

EB

EA
Test generation TestStep#2

TestStep#2

Test concretization

Executable test case

Test artifacts

FIGURE 17.23
From the system model to executable test.

514 Model-Based Testing for Embedded Systems

Load runner

Router
Test step
context 2

Test step
context 1 Header Protocol under test data

ConnectionID

SUT

Phone number

Broadcasting message

FIGURE 17.24
Context-based message routing.

17.6.5 Run-time behavior

There are two possibilities for the test step to identify its Context. First, it could do a con-
nection establishment after which connectionID can be used to address messages through
the router. Second, the test step waits for a broadcasting message with phoneNumber defin-
ing the correct Context after which the connection should be created as in the first case.
Broadcast messages are sent to all test steps but discarded if the phoneNumber does not
match. After the Context is known, the Router depicted in Figure 17.24 knows the desti-
nation of each message.

EAST TEE is writing a textual log that contains information of executed events and cov-
ered requirements. The log file is an input for the requirement traceability phase described
in Section 17.7.

17.7 Requirement Traceability

Conventional test scripting is based on static test cases, that is, a test case has a name
and corresponding test code that is not modified significantly between consecutive versions.
However, this is not the case when tests are generated from models automatically. In auto-
matic test generation, there are no guarantees that different test generation rounds produce
similar test scripts. Thus, as part of the methodology, an approach was developed for trac-
ing the requirements throughout the entire MBT process, from models to test runs and
back to models as illustrated in Figure 17.25. This approach provides a consistent way to
monitor the modeling, generation, and test execution status, as well as the test comple-
tion rates. In addition, tracing of requirements helps understand what kind of impact new
or modified requirements have on different artifacts of the testing process. All in all, the
requirement tracing process supports short feedback loops that, in turn, support modern
product development conventions such as iterative and agile development practices.

The use of the requirements fits well in product testing because the features of the
product are defined as a set of requirements. It does not require any additional information
on top of the regular product development information. Instead, it uses information that
is readily available in the product development. This makes it easier to integrate the MBT
tool chain with the current frameworks and with the tools used in product development. In
addition, it is also important to be able to evaluate how many tests cover each requirement
to support test prioritization and optimization.

Applying MBT in the Telecommunication Domain 515

Requirement
analysis

Test report

Requirement

Requirements

Models

Model
validationValidation

report

Modeling

Test generation

Test cases

Test
execution

Logs

Test
evaluation

System
under

test

FIGURE 17.25
Tracing requirements throughout the MBT process.

The use of the requirement tracing also helps in the process of test selection and pri-
oritization. Typically in product development, some features (requirements) of the product
are more important than others. This affects the testing process in a way that more impor-
tant features must be tested more extensively compared to others. The prioritization of the
test cases can be done in two different phases of the testing process, during test generation
or test execution. If the behavioral model of the SUT used for test generation is adorned
with priority information, then the test generation tool will be able to generate test cases
and calculate their execution order. However, if such a possibility is not supported by the
test generation tool, then having the generated test cases tagged with the requirements
they are testing will allow the selection of the most important test during execution based
on the priority of the requirement. Especially in the telecom domain, where the number
of generated test cases tends to be very large, having the possibility to select the most
important test cases to be executed based on the requirement to be tested is an important
aspect.

At a more detailed level, requirement tracing allows requirements to be propagated to
test specifications. Further, functional testing must verify that all requirements have been
covered by test. Needless to say, requirements are the keystone in any successful project
implementation, and hence, they must be traceable both to models and tests. Tracing
requirements during development ensures that all requirements have been implemented and
that no functionality has been overlooked. Tracing requirements to tests can even help
in identifying missing tests, that is, where critical requirements do not trace to any test.
Finally, if a test fails, one can trace the requirement back to the models from where it
originated, in order to identify the error. This facilitates the process of identifying which
parts of the system model cause a set of test cases to fail. It is described in brief how these
aspects are addressed in the following subsections.

516 Model-Based Testing for Embedded Systems

17.7.1 Tracing requirements to models

Requirements traceability is one of the key features of MATERA and is based on the
approach described in Section 17.2. As presented in Figure 17.7, requirements are structured
hierarchically. Top-level requirements are traced to different models (e.g., state machine
diagrams), whereas the rest of the requirements are traced to model elements to which they
apply (e.g., a transition or a state).

In our modeling process, requirements are propagated to different parts of the mod-
els to indicate a relationship between requirements and model elements. For instance,
communication-related requirements are traced to data models, architecture-related require-
ments to architecture models, and functional requirements are initially traced to use case
models and then to state models. Figure 17.26 shows an example of how a requirement can
be linked to a model element in MagicDraw (e.g., to a transition in a state machine). These
links can be useful both for evaluating that all the requirements have been reflected in the
models, by showing what elements from different diagrams “implement” a given require-
ment, and for tracing the requirements to tests. Figure 17.13 presented a partial state model
of the SUT in which various transitions have tags depicting requirements that they satisfy.

Once all requirements have been traced to UML elements, validation can be applied to
verify that no requirement has been overlooked and that the models are ready for transfor-
mation.

17.7.2 Tracing requirements to tests

As mentioned in Section 17.4, Qtronic offers support for tracing requirements during test
case generation. MATERA propagates the requirements linked to model elements into QML
specifications. During the UML to QML transformation, the requirements are propagated
from UML models (namely from state machine models) to QML state machine models. In
the current case study, only those requirements that are attached to state transitions are
collected from the UML state models. However, nothing prevents the collection of require-
ments from other UML models.

As such, the requirements are captured from UML transitions and placed on the corre-
sponding transition in QML by using the requirement-statement (as explained in Section
17.5). Hierarchy can also be propagated from UML to Qtronic based on the numbering
scheme of the requirement.

FIGURE 17.26
Tracing requirement to a model element.

Applying MBT in the Telecommunication Domain 517

FIGURE 17.27
Example of Qtronic’s UI with requirements.

Upon importing a QML model in Qtronic, requirements are displayed hierarchically in
Qtronic’s UI (Figure 17.27) from where requirements-based test derivation can be pursued.
In addition, the user can select which requirements should be covered by Qtronic during
test case generation.

During the test case generation, Qtronic propagates the requirements to EAST test
scripts via the scripting back-end discussed in Section 17.4. After running the generated
test scripts in EAST, the output of the test run is stored in EAST test logs (see Listing
17.11). The test logs contain detailed information on test steps, executed methods, covered
requirements, etc.

Listing 17.11
Excerpt from an EAST test log.

Log :20

1::1:: Symbol: Statement :: Label: Statement :: Script Name: TC_TEST_2G_ms #1_2

:: When: Tue May 19 14:50:53:451 2009 ::

Assign(("6 Authentication /1 The MSS must be able to authenticate MSs /1

Authentication of MSs must be supported in GERAN (2G) networks ")) =

requirement ("6 Authentication /1 The MSS must be able to authenticate

MSs /1 Authentication of MSs must be supported in GERAN (2G) networks")

Log :21

1::1:: Symbol: Statement :: Label: Statement :: Script Name: TC_TEST_2G_ms #1_2

:: When: Tue May 19 14:50:53:451 2009 ::

518 Model-Based Testing for Embedded Systems

Assign(("6 Authentication /3 Authentication is accepted when response is

valid ")) = requirement ("6 Authentication /3 Authentication is

accepted when response is valid")

Log :22

1::1:: Symbol: Statement :: Label: Statement :: Script Name: TC_TEST_2G_ms #1_2

:: When: Tue May 19 14:50:53:451 2009 ::

Assign(("6 Authentication /1 The MSS must be able to authenticate MSs")) =

requirement ("6 Authentication /1 The MSS must be able to authenticate

MSs")

17.7.3 Back-tracing of requirements

This approach is the opposite to the ones presented above and it consists of two parts.
Firstly, statistical information about the test run regarding the number of passed/failed
test cases, number of requirements covered, validated, etc., is collected in a report. The
MATERA test evaluation module is used for analyzing the EAST test logs and generating
the report (a simplified version of the report is shown in Figure 17.28). During the analysis,

Statistics of the test output from EASTtm

This HTML log has been automatically generated by a script.

The log contains statistical information about test output from EAST as well as requirements coverage

information

Generated on: Fri August 14 14:52:47 2009

Requirements Information

Failed Requirements

3.1.1 Location updated must be supported in GREAN (2G) networks

6.1.1 Authentication of MS’s must be supported in GERAN (2G) networks

6.1.2 Authentication of MS’s must be supported in UTRAN (3G) networks

7.1 The MSS must be able to cipher the communication with MS’s

7.2 The ciphering procedure is initiated by the MSS after a successful authentication procedure

Uncovered Requirements

6.1 The MSS must be able to authenticate MS’s

Test Case Information

The testrun generated a total of 10 testcases

Requirement 3.1.1 was present in 2 testcases

Requirement 6.1.1 was present in 1 testcases

Requirement 6.1.2 was present in 1 testcases

Requirement 7.1 was present in 1 testcases

Requirement 7.2 was present in 1 testcases

Model Coverage Information

The testrun covered 4 of 10 requirements in the model

The testrun covered 1 of 3 use cases in the model

The testrun covered 8 of 24 transitions in the model

FIGURE 17.28
Example of statistical information from a test run.

Applying MBT in the Telecommunication Domain 519

MATERA also collects information from the UML models in order to calculate how different
parts of the model have been covered.

Secondly, information concerning failed test cases is collected in order to identify from
which parts of the system model a given failed test was generated. In this way, one can
see which parts of the system model are not in sync with the real implementation, and
therefore with the stake holder requirements. The previously mentioned test evaluation
module also retrieves information about requirements from the EAST test logs and gen-
erates a set of OCL constraints used by MATERA. The generated constraints have two
purposes.

• To locate in the model the uncovered requirements by the test run, in which case their
parent requirement will also be located.

• To locate the models and their elements that “implement” a given uncovered or failed
requirement.

Listing 17.12 shows an example of generated OCL constraints.

Listing 17.12
Example of generated OCL rules

-- Expressions for tracing uncovered or failed requirements in SysML

requirements diagram:

not(Id = ’3’) and not(Id = ’3.1’) and not(Id = ’3.1.1 ’) and

not(Id = ’6’) and not(Id = ’6.1’) and not(Id = ’6.1.1 ’) and

not(Id = ’7’) and not(Id = ’7.1’) and not(Id = ’7.2’)

-- Expressions for finding uncovered or failed requirements placed on

transitions :

not(clientDependency ->exists(a |

(a.supplier.name ->includes(’3’) or a.supplier.name ->includes(’3.1’) or a.

supplier.name ->includes(’3.1.1 ’) or a.supplier.name ->includes(’6’) or a.

supplier.name ->includes(’6.1’) or a.supplier.name ->includes(’6.1.1 ’) or a

.supplier.name ->includes(’7’) or a.supplier.name ->includes(’7.1’) or a.

supplier.name ->includes(’7.2’)))) and clientDependency ->notEmpty ())

The generated constraints are automatically loaded and interpreted in the MATERA frame-
work, which will highlight the targeted elements. Once loaded and executed in MATERA,
the first expression will trace and highlight in the diagram editor the set of requirements to
which it is attached (see Figure 17.29). Similarly, the second rule will highlight the elements
to which the previous requirements were linked. For instance, Figure 17.30 shows a screen-
shot of MagicDraw displaying the transitions in the state model to which requirement 3.1.1
is linked.

17.8 Related Work

There is much literature on MBT in general and specific aspects in particular. For instance,
Utting, Pretschner, and Legeard (2006) suggests a taxonomy for MBT, while in Hartman
(2002) and Utting and Legeard (2006), the authors discuss MBT from a tools perspec-
tive, both academic and industrial. MBT techniques and tools have also been researched
and developed in the context of the Automated Generation and Execution of Test Suites
for Distributed Component-based Software (AGEDIS) (http://www.agedis.de) and Deploy-
ment of Model-based Technologies to Industrial Testing (D-MINT) (http://www.d-mint.org)

520 Model-Based Testing for Embedded Systems

<<requirement>>

Location Update Requirements]req [Package] Requirements model [

Id = ''6''
Text = ''Authentication''

Id = ''3''
Text = ''Location
Update''

Id = ''7''
Text = ''Ciphering''

Source 3GPP TS 23.012

Text = ''The MSS must be
able to authenticate a MS''
Source = 3GPP TS 42.009 / 3.2

Id = ''3.1''
Text = ''The MSS must be able
to perform a location update''
Source = 3GPP TS 23.002 / 4.1.1.2

Id = ''3.1.1''
Text = ''Location update
must be supported in
GREAN (2G) networks''
Source = 3GPP TS 24.008 / 4.1

Id = ''3.1.2''
Text = ''Location update
must be supported in
UTRAN (3G) networks''
Source = 3GPP TS 24.008 / 4.1

Id = ''3.5''
Text = ''The MSS must be able
to cipher the communication''
Source = 3GPP TS 44.018 / 3.4.7

Id = ''3.3''
Text = ''MSS must be able
to request the IMSI of the
MS''
Source = 3GPP TS 23.012 / 3.5

Id = ''3.3.1''
Text = ''if PVLR is unknown,
MSS request the IMSI from
the MS''
Source = 3GPP TS 23.012 / 3.5

Id = ''3.2.1''
Text = ''MSS responds
with a accept message''
Source

Id = ''3.2.2''
Text = ''MSS responds
with a reject message''
Source

Id = ''3.2''
Text = ''The MSS must always
respond to the MS on a location
update''
Source

<<trace>>

<<trace>>

<<deriveReqt>>

<<deriveReqt>> <<deriveReqt>>
<<deriveReqt>> <<deriveReqt>> <<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>> <<deriveReqt>>

6
R

R R

RRRRR

R
R

R R
R

<<requirement>>
3

<<requirement>>
7

<<requirement>>
3.4

<<requirement>>
3.1

<<requirement>>
3.5

<<requirement>>
3.2

<<requirement>>
3.3

<<requirement>>
3.3.1<<requirement>>

3.2.2
<<requirement>>

3.2.1
<<requirement>>

3.1.1

<<requirement>>
3.1.2

FIGURE 17.29
Back-tracing of requirements to the requirements model. (Reproduced from Abbors, F.,
Backlund, A., and Truscan, D., MATERA—An Integrated Framework for Model-Based
Testing, Proceedings: 2010 17th IEEE Conference and Workshops, c© 2010 IEEE.)

[MM]_LOCATION_UPDATING_REQUEST() [msg.domain == domain]

idle

: Authentication

: Ciphering

: ReleaseChannel

Req 3.1.2

Req 3.2.1

Req 6.1

Req 3.1.1

[domain == ''2G''] [domain == ''3G'']

/ [MM]_LOCATION_UPDATING_ACCEPT()

LocationUpdate]state machine LocationUpdate [

FIGURE 17.30
Back-tracing of requirements to a state machine model.

Applying MBT in the Telecommunication Domain 521

projects. The projects focused on the applicability of MBT techniques to industrial envi-
ronments, and numerous publications and reports can be found on the web pages of each
project. Both projects were applied to industrial case studies from different application
domains, including telecommunications.

For instance, the authors describe in Born et al. (2004) a Model-driven Development and
Testing process for Telecommunication Systems. A top-down approach based on CORBA
is proposed in which the system is decomposed into increasingly smaller parts that can
individually be implemented and tested. They make use of UML and profiles, in particular
the Common Object Request Broker Architecture (CORBA) Component Model (CCM)
(Object Management Group a), for specifying system models. These models are later on
mapped onto software components using code generators, and executed within the CCM
platform. Testing is also supported using specific UML profiles, in particular UML2 Test-
ing Profile (U2TP), and by generators. The test design is tightly coupled with the system
design so as to be able to reuse information provided in the system design, as soon as
it becomes available. Testing is based on contracts built into different components and is
derived from the models of the system. Test models are specified using U2TP and are used
for the derivation of Testing and Test Control Notation (TTCN-3) tests. The TTCN-3 test
are later automatically translated into executable Java byte code.

An approach similar to ours where several telecommunication case studies are evaluated
against the Qtronic tool is discussed in Khan and Shang (2009). The main target of the work
is to investigate the applicability of MBT in two telecommunication case studies. Another
evaluation of MBT via a set of experiments run on Qtronic is described in Nordlund (2010).
Both of those investigations draw the conclusion that MBT brings benefits in terms of
automation and improved test coverage compared to traditional software testing.

Requirements traceability is a very popular topic in the software engineering and testing
communities and has gained momentum in the domain of MBT in the context of automated
test generation. However, as requirements change during the development life cycles of
software systems, updating and managing traces have become tedious tasks. Researchers
have addressed this problem by developing methods for automatic generations of traceability
relations Hayes, Dekhtyar, and Osborne (2003), Spanoudakis et al. (2004), Cleland-Huang
et al. (2005), Duan and Cleland-Huang (2006) by using information retrieval techniques
to link artifacts together based on common keywords that occur in both the requirement
description and in a set of searchable documents. Other approaches focus on annotating the
model with requirements that are propagated through the test generation process in order
to obtain a requirement traceability matrix Bouquet et al. (2005).

Work regarding requirements traceability similar to the MATERA approach is found
in Bernard and Legeard (2007). There, the authors suggest an approach in which they
annotate the UML system models with ad hoc requirement identifiers and use it to auto-
matically generate a Traceability Matrix at the same time as the generated test cases. Their
approach is embedded in the LEIROS Test Designer tool (SmartTesting). However, once
the generated test cases are executed, requirements covered by tests are not traced back to
the model.

17.9 Conclusions

Our experience indicates that MBT can already be used for productive testing in the
telecommunication industry but there are some challenges. The challenges are related more
to the tool integration than to MBT as a technology itself. If the challenges will be solved

522 Model-Based Testing for Embedded Systems

properly, MBT will become even more effective technology within the telecommunication
domain.

Initial expectations on MBT were that modeling is difficult and requires a lot of expertise
and competence. Our experiences indicate the opposite. Modeling as a competence seems
to be fairly easy to learn. At the same time, modeling helps gain and retain an overview of
the system behavior much easier than using programming and scripting languages.

Automated test generation is clearly significantly different in comparison to manual test
scripting. In test generation, the emphasis is on the design phase instead of the implementa-
tion of test cases. Based on our experience, the modifications on the model are propagated
into the test cases significantly faster using test generation than manually modifying test
scripts. By the same token, automated test generation forces exploiting a different strategy
on tracing details, such as requirements, throughout testing compared to manual test script-
ing. Content of manually written test cases tends to be static and hence the names of the
test cases are typically human readable names that testing staff learn fairly quickly. Because
of these aspects, mapping of the test scripts and the requirements is fairly static. In the case
of automatic test generation, the content of test cases is more dynamic. The content of the
test cases may change significantly between test generation rounds and because of that, the
names of the test cases do not reflect the content of the tests. Because of this, tracking the
details of testing requires a new strategy. In the developed methodology, requirements are
used to track test coverage, progress of testing, etc. aspects. Using requirements for tracking
is natural because the requirements are present in product development. Hence, use of the
requirements for tracking does not necessitate any additional and artificial details for the
methodology.

During the development of the methodology, a lot of effort was put into tool integration.
Despite the fact that the models were described using standardized modeling languages, such
as UML and SysML, it was not possible to create a UML model using one tool and open it
with another tool. Compared to text-based programming and testing languages (e.g., C++
and TTCN-3), this is a significant drawback for UML modeling. Model transformations
between the tools can be used to circumnavigate this problem. However, seamless use of
the tools in, for example, model validation, refactoring, and traceability analysis, requires
frequent interaction between the tools. Consequently, transformations will be performed
frequently, and hence there would be a tool chain-induced performance penalty. In addition,
implementing a number of model transformations increases the costs of the tool chain.

References

Abbors, F. (2009a). An Approach for Tracing Functional Requirements in Model-Based
Testing. Master’s thesis, Åbo Akademi University.

Abbors, F., Bäcklund, A., and Truscan, D. (2010). MATERA—An integrated framework for
model-based testing. In 17th IEEE International Conference and Workshops on Engi-
neering of Computer-Based Systems (ECBS 2010), Pages: 321–328. IEEE Computer
Society’s Conference Publishing Services (CPS), Los Alamitos, CA.

Abbors, F., Pääjärvi, T., Teittinen, R., Truscan, D., and Lilius, J. (2009). Transformational
support for model-based testing—From UML to QML. In Proceedings of 2nd Workshop
on Model-based Testing in Practice (MOTIP’09), Enschede, the Netherlands.

Applying MBT in the Telecommunication Domain 523

Abbors, J. (2009b). Increasing the quality of UML Models Used for Automated Test Gen-
eration. Master’s thesis, Åbo Akademi University.

Beizer, B. (1990). Software Testing Techniques (2nd ed.), Van Nostrand Reinhold Co., New
York.

Bérnard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.,
and McKenzie, P. (2001). Systems and Software Verification - Model-Checking Tech-
niques and Tools. Springer-Verlag New York, Inc. New York.

Bernard, E. and Legeard, B. (2007). Requirements traceability in the model-based testing
process. Software Engineering, ser. Lecture Notes in Informatics, Pages: 45–54.

Born, M., Schieferdecker, I., Gross, H., and Santos, P. (2004). Model-driven development
and testing—A case study. In 1st European Workshop on Model Driven Architecture
with Emphasis on Industrial Application, number TR-CTIT-04-12 in CTIT Technical
Report, Pages: 97–104. University of Twente, Enschede, the Netherlands.

Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., and Utting, M. (2005). Requirements
traceability in automated test generation: Application to smart card software valida-
tion. In Proceedings of the 1st International Workshop on Advances in Model-Based
Testing, Pages: 1–7. ACM, New York, NY.

Cleland-Huang, J., Settimi, R., Duan, C., and Zou, X. (2005). Utilizing supporting evidence
to improve dynamic requirements traceability. In 13th IEEE International Conference
on Requirements Engineering, 2005. Proceedings, Pages: 135–144.

Conformiq (2009a). Conformiq Qtronic. Web page. http://www.conformiq.com/products.
php. Accessed on June 13, 2011.

Conformiq (2009b). Conformiq Qtronic User Manual. http://www.conformiq.com/
downloads/Qtronic2xManual.pdf. Accessed on June 13, 2011.

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton, G. C., and
Horowitz, B. M. (1999). Model-based testing in practice. In ICSE ’99: Proceedings
of the 21st International Conference on Software Engineering, Pages: 285–294. IEEE
Computer Society Press, Los Alamitos, CA.

Duan, C. and Cleland-Huang, J. (2006). Visualization and analysis in automated trace
retrieval. In Requirements Engineering Visualization, 2006. REV’06. First Interna-
tional Workshop on, Pages: 5–5.

Hartman, A. (2002). Model based test generation tools. Agedis Consortium, URL:
http://www. agedis. de/documents/ModelBasedTestGenerationTools cs. pdf . Accessed
on June 13, 2011.

Hayes, J., Dekhtyar, A., and Osborne, J. (2003). Improving requirements tracing via infor-
mation retrieval. In 11th IEEE International Requirements Engineering Conference,
2003. Proceedings, Pages: 138–147.

Kaaranen, H., Ahtiainen, A., Laitinen, L., Naghian, S., and Niemi, V. (2005). UMTS
Networks, 2nd Edition. John Wiley & Sons, Ltd, Chichester, UK.

Khan, M. and Shang, S. (2009). Evaluation of Model Based Testing and Conformiq
Qtronic. Master’s thesis, Linköping University. http://liu.diva-portal.org/smash/
record.jsf?pid=diva2:249286.

524 Model-Based Testing for Embedded Systems

No Magic (2009). MagicDraw. Web page. http://www.magicdraw.com/. Accessed on June
13, 2011.

Malik, Q. A., Jääskeläinen, A., Virtanen, H., Katara, M., Abbors, F., Truscan, D., and
Lilius, J. (2009). Using system models vs. test models in model-based testing. In
Proceedings of “Opiskelijoiden minikonferenssi” at “Tietotekninen tuki ohjelmoinnin
opetuksessa.”

Nethawk (2009). Nethawk EAST simulator. Web page. https://www.nethawk.fi/products/
nethawk simulators/. Accessed on June 13, 2011.

Nokia Siemens Networks (July 2009). Nokia Siemens Networks Company Profile. Web
site. http://www.nokiasiemensnetworks.com/about-us/company. Accessed on June 13,
2011.

Nordlund, J. (2010). Model-Based Testing: An Evaluation. Master’s thesis, Karlstad Univer-
sity. http://kau.diva-portal.org/smash/record.jsf?pid=diva2:291718. Accessed on June
13, 2011.

Object Management Group. CORBA Component Model. http://www.omg.org/spec/
CCM/4.0/. Accessed on June 13, 2011.

Object Management Group. Object Constraint Language (OCL). http://www.omg.org/
spec/OCL/2.0/. Accessed on June 13, 2011.

Object Management Group. Systems Modeling Language. http://www.omg.org/spec/
SysML/1.1/. Accessed on June 13, 2011.

Object Management Group. Unified Modeling Language (UML). http://www.omg.org/
spec/UML/2.1.2/. Accessed on June 13, 2011.

Prenninger, W., El-Ramly, M., and Horstmann, M. (2005). Model-Based Testing of Reac-
tive Systems, Chapter Case Studies. Number 3472 in Advance Lectures of Computer
Science. Springer, New York.

SmartTesting. CertifyIt, http://smartesting.com/index.php/cms/en/product/certify-it.
Accessed on June 13, 2011.

Spanoudakis, G., Zisman, A., Perez-Minana, E., and Krause, P. (2004). Rule-based genera-
tion of requirements traceability relations. The Journal of Systems & Software, 72(2):
105–127.

The 3rd Generation Partnership Project (2005). 3GPP TS 23.002 Network Architec-
ture, v. 6.10.0. Web site. http://www.3gpp.org/ftp/Specs/html-info/23002.htm.
Accessed on June 13, 2011.

Utting, M. and Legeard, B. (2006). Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA.

Utting, M., Pretschner, A., and Legeard, B. (2006). A taxonomy of model-based testing.
Working Paper Series, ISSN 1170-478X. http://www.cs.waikato.ac.nz/pubs/wp/2006/
uow-cs-wp-2006-04.pdf. Accessed on June 13, 2011.

WireShark. WireShark Network Protocol Analyzer. http://www.wireshark.org/. Acc-
essed on June 13, 2011.

Paper V

Model-based Testing of Web Services
Using Probabilistic Timed Automata

Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan
Porres

Originally published 2013 Proceeding of 9th International Conference
on Web information Systems and Technologies. SCITEPRESS. May
2013, Aachen, Germany.

c©2013 SCITEPRESS. Reprinted with permission of SCITEPRESS.

In reference to SCITEPRESS copyrighted material which is used with per-
mission in this thesis, SCITEPRESS does not endorse any of Åbo Akademi’s
products and services. Internal or personal use of this material is permitted.
If interested in reprinting/republishing SCITEPRESS copyrighted material
for advertising or promotional purposes or for crediting new collective work
for resale or redistribution, please go to

https://www.insticc.org/Portal/copyright.aspx

to learn how to obtain a license.

Model-Based Performance Testing of Web Services Using Probabilistic
Timed Automata

Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres
Department of Information Technologies, Åbo Akademi University, Joukahaisenkatu 3-5 A, Turku, Finland

{fabbors, tahmad, dtruscan, iporres}@abo.fi

Keywords: Performance testing, Performance monitoring, Load Generation, Probabilistic Timed Automata

Abstract: In this paper, we present an approach for performance testing of web services in which we use abstract models,
specified using Probabilistic Timed Automata, to describe how users interact with the system. The models are
used in the load generation process to generate load against the system. The abstract actions from the model
are sent in real-time to the system via an adapter. Different performance indicators are monitored during the
test session and reported at the end of the process. We exemplify with an auction web service case study on
which we have run several experiments.

1 Introduction

Today, we see advancements in cloud comput-
ing and more and more software applications being
adapted to a cloud environment. Applications de-
ployed in the cloud are delivered to users as a ser-
vice, without the need for the users to install anything.
This means that most of the processing is done on the
server side and this puts a frightful amount of stress
on the back-end of the system. Performance charac-
teristics such as throughput, response times, and re-
source utilization are crucial quality attributes of such
applications and systems.

The purpose of performance testing is to deter-
mine how well the system performs in terms of re-
sponsiveness, stability, and resource utilization under
a particular synthetic workload in a controlled en-
vironment. The synthetic workload (Ferrari, 1984)
should mimic the expected workload (Shaw, 2000) as
closely as possible, once the system is in operational
use, otherwise it is not possible to draw any reliable
conclusions from the test results.

Performance tests are typically implemented as
usage scenarios that are either manually scripted (e.g.,
using httperf or JMeter) or pre-recorded (e.g., using
Selenium (SeleniumHQ, 2012) in the case of web ap-
plications). The usage scenarios are then executed
concurrently against the system under test. A ma-
jor drawback with this approach is that the manually
coded scripts and pre-recorded scenarios seldom rep-
resent real-life traffic and that certain combinations of
user inputs may remain untested. Repeating the same

script over and over may lead to unrealistic results
because of caching and other operating system opti-
mization mechanisms. Performance testing is done
efficiently when it is executed in an iterative man-
ner and uses techniques that simulate real life work
load as closely as possible (Menasce, 2002). This
means that load is incrementally increased until a cer-
tain threshold (saturation) is reached, beyond which
the performance of the system begins to degrade.

In this paper, we propose a model-based approach
to evaluate the performance of a system by incremen-
tally exercising different kinds of loads on the system.
The main contributions of this work are:

• we use abstract models, specified as Probabilistic
Timed Automata (PTA) to model the user profiles,
including the actions or sequences of actions the
user can send, the probabilistic distribution of the
actions, and individual think time for each action,

• the load is generated in real-time from these mod-
els and sent to the system under test (SUT) via an
adapter which converts abstract actions into con-
crete interactions with the SUT and manages data
dependencies between different actions;

The rest of the paper is structured as follows: In
Section 2 we give an overview of the work related
to our approach. Section 3 presents our model-based
testing process, while Section 4 presents an auction
web service case study and an experiment using our
approach. Finally, in Section 5, we present our con-
clusions and we discuss future work.

2 Related Work

There is already a large body of work on workload
characterization and a more limited one on load gen-
eration from performance models. In the following,
we briefly enumerate several works that are closer to
our approach.

Barna et al., (Barna et al., 2011) present a model-
based testing approach to test the performance of a
transactional system. The authors make use of an it-
erative approach to find the workload stress vectors of
a system. An adaptive framework will then drive the
system along these stress vectors until a performance
stress goal is reached. They use a system model, rep-
resented as a two-layered queuing network, and they
use analytical techniques to find a workload mix that
will saturate a specific system resource. Their ap-
proach differs from ours in the sense that they use a
model of the system instead of testing against a real
implementation of a system.

Other related approaches can be found in (Shams
et al., 2006) and (Ruffo et al., 2004). In the former,
the authors have focused on generating valid traces
or a synthetic workload for inter-dependent requests
typically found in sessions when using web applica-
tions. They describe an application model that cap-
tures the dependencies for such systems by using Ex-
tended Finite State Machines (EFSMs). Combined
with a workload model that describes session inter-
arrival rates and parameter distributions, their tool
SWAT outputs valid session traces that are executed
using a modified version of httperf (Mosberger and
Jin, 1998). The main use of the tool is to perform a
sensitivity analysis on the system when different pa-
rameters in the workload are changed, e.g., session
length, distribution, think time, etc. In the latter, the
authors suggest a tool that generates representative
user behavior traces from a set of Customer Behav-
ior Model Graphs (CBMG). The CBMG are obtained
from execution logs of the system and they use a mod-
ified version of the httperf utility to generate the traf-
fic from their traces. The methods differ from our
approach in the sense they both focus on the trace
generation and let other tools take care of generating
the load/traffic for the system, while we do on-the-fly
load generation from our models.

(Denaro et al., 2004) propose an approach for
early performance testing of distributed software
when the software is built using middleware compo-
nents technologies, such as J2EE or CORBA. Most
of the overall performance of such a system is deter-
mined by the use and configuration of the middleware
(e.g. databases). They also note that the coupling be-
tween the middleware and the application architecture

determines the actual performance. Based on archi-
tectural designs of an application the authors can de-
rive application-specific performance tests that can be
executed on the early available middleware platform
that is used to build the application with. This ap-
proach differs from ours in that the authors mainly
target distributed systems and testing of the perfor-
mance of middleware components.

3 Performance Testing Process

Our performance testing process is depicted in
Figure 1. In brief, we build a workload model of
the system by analyzing different sources of informa-
tion, and subsequently we generate load in on-the-fly
against the system. During the process, different per-
formance indicators are measured and a test report is
created at the end.

Requirements

Execution
Logs

Test
Report

Workload
Models

Load
Generation

System
Under Test

Monitoring

Figure 1: Our performance
testing process.

In our work,
we have used
various Key Perfor-
mance Indicators
(KPIs) to provide
quantifiable mea-
surements for our
performance goals.
For instance, we
specify the target
KPIs before the
testing procedure is
started and later on
we compare them
against the actual
measured KPIs.

3.1 Workload characterization

The first step in our process is characterizing the
workload of the system. According to (Menasce and
Almeida, 2001), the workload of a system can be de-
fined as the set of all inputs the system receives from
the environment during any given period of time.

Traditionally, performance analysis starts first
with identifying key performance scenarios, based on
the idea that certain scenarios are more frequent than
others or certain scenarios impact more on the perfor-
mance of the system than other scenarios. A perfor-
mance scenario is a sequence of actions performed by
an identified group of users (Petriu and Shen, 2002).

In order to build the workload model, we start by
looking and analyzing the requirements and the sys-
tem specifications, respectively. During this phase we
try to form an understanding of how the system is

used, what are the different types of users, and what
are the key performance scenarios that will impact
most on the performance of the system. A user type
is characterized by the distribution and the types of
actions if performs.

The main sources of information for work-
load characterization are: Service Level Agreements
(SLAs), system specifications, and standards.

By using these sources we identify the inputs
of the system with respect to types of transactions
(actions), transferred files, file sizes, arrival rates,
etc. following the generic guidelines discussed in
(Calzarossa et al., 2000). In addition, we extract in-
formation regarding the KPI’s, such as the number of
concurrent users the system should support, expected
throughput, response times, expected resource utiliza-
tion demands etc. for different actions under a given
load. We would like to point out that this is a man-
ual step in the process. However, automating this step
could be achieved analyzing log files of the system
and using various clustering algorithms for determin-
ing e.g., different user types, which is subject for fu-
ture work.

The following steps are used for analyzing the
workload:
1. Identify the actions that can be executed against

the system.
(a) Determine the required input data for each ac-

tion. For instance, the request type and the pa-
rameters.

(b) Identify dependencies between actions. For ex-
ample, a user can not execute a logout action
before a login action.

2. Identify the most relevant user types, based for in-
stance on the amount of interactions with the sys-
tem.

3. Define the distribution of actions that are per-
formed by each user type.

4. Estimate an average think time per action.
With think time we refer to the time between two

consecutive actions. In our approach, the think time
for the same action can vary from one user to another,
or from one test scenario to another.

3.2 Workload models

The results of the workload characterization are ag-
gregated in a workload model based on Probabilistic
Timed Automata.

We take the definition of a probabilistic timed au-
tomaton (PTA) as defined by (Kwiatkowska et al.,
2006). A (PTA) P = (L,l, X, ∑, inv, prob) is a tu-
ple consisting of a finite set L of locations with the

1

2

 X=t1 / action1() / p0 /X:=0

3

 p1

4

 p2

5

 p3

6

 X=t2 / action2() / X:=0 X=t3 / action3() / X:=0 X=t4 / action4() / X:=0

 X = t5 / action5() / p4 / X:= 0

7

 X = t5 / action6() / p5 / X:= 0

8

 X=t6 / action7() / X:=0

Figure 2: Example of a probabilistic timed automaton.

initial location l ∈ L; a finite set X of clocks; a fi-
nite set of ∑ of actions; a function inv : L→ CC(X)
associating an invariant condition with each location,
where CC(X) is a set of clock constraints over X; a
finite set prob ⊆ L × CC(X) × ∑ × Dist(2X × L)
of probabilistic transitions, such that, for each l ∈ L,
there exists at least one (l, , ,) ∈ prob; and a label-
ing function δ : L → 2AP, where AP denote a set of
atomic propositions.

A probabilistic transition (l,g,p,a) ∈ prob is a
quadruple containing (1) a source location l, (2) a
clock constraint g, called guard or invariant condi-
tion, (3) a probability p, and (4) an action. The prob-
ability indicates the chance of that transition being
taken. The action describes what action to take when
the transition is used, and the clock indicates how long
to wait before firing the transition. The behavior of a
PTA is similar to that of a timed automaton (Alur and
Dill, 1994): in any location, time can advance as long
as the invariant holds, and a probabilistic transition
can be taken if its guard is satisfied by the current val-
ues of the clocks. Every automaton has an end loca-
tion, depicted with a double circle, which will even-
tually be reached. It is possible to specify loops in
the automaton. We note that not all transitions have
both a guard and a probability. For simplicity, we do
not explicitly specify location invariants, but they im-
plicitly evaluate to true. One such workload model is
created for each identified user type.

3.3 Load generation

The resulting workload models are used for generat-
ing load in real-time against the system under test, by

creating traces from the corresponding PTA. The user
types are selected based on their reciprocal distribu-
tion. The PTA of each user type will be executed con-
currently by selecting the corresponding actions and
sending them to the system. By executing the PTA of
a given user, in each step an action is chosen based on
the probabilistic values in the automaton.

The load generation is based on a deterministic
choice with a probabilistic policy. This introduces
certain randomness into the test process and that can
be useful for uncovering certain sequences of ac-
tions which may have a negative impact of the perfor-
mance. Such sequences would be difficult or maybe
impossible to discover if static test scripts are used,
where a fixed order of the actions is specified, and re-
peated over and over again. Every PTA has an exit
location which will eventually be reached. By modi-
fying the probability for the exit action, it is also pos-
sible to adjust the average length of the generated se-
quences.

3.4 Performance monitoring

During the load generation, we constantly monitor
target KPIs for the entire test duration. At the end,
we collect all the gathered data and compute descrip-
tive statistics, like the mean and peak response times
for different actions, number of concurrent users, the
amount of transferred data, the error rate, etc. All the
gathered information is presented in a test report. The
resource utilization of the system under test is also
monitored and reported. Besides computing different
kinds of statistical values from the raw data we have,
the test report also contains graphs such as how the
response time varied over time with the number of
concurrent users. The test report also shows the CPU,
disk, network and memory usage on the target system.

Tool support for load generation is provided via
the MBPeT tool (Abbors et al., 2012). Due to space
limitations we defer more details about the approach
and support to (Ahmad et al., 2013)

4 Case Study and Experiments
In this section, we demonstrate our approach by

using it to evaluate the performance of an auction
web service, generically called YAAS. The YAAS ap-
plication was developed as a stand-alone application
and is used for the evaluation of our approach. The
YAAS has a RESTful (Richardson and Ruby, 2007)
interface based on the HTTP protocol and allows reg-
istered users to create, change, search, browse, and
bid on auctions that other users have created. The ap-
plication maintains a database of the created auctions

and the bids that other users have placed on the auc-
tioned objects. The YAAS application is implemented
using Python (Python, 2012) and the Django (Django,
2012) framework.

Test Architecture. The test architecture is shown
in Figure 4. The MBPeT tool has a scalable architec-
ture where a master node controls several slave nodes.
The SUT runs an instance of the YAAS application
on top of the Apache web server. All nodes (master,
slaves, and the server) feature an 8-core CPU, 16 GB
of memory, 1Gb Ethernet, 7200 rpm hard drive, and
Fedora 16 operating system. The nodes were con-
nected via a 1Gb Ethernet.

1 GB

Slave
Node 1

Slave
Node 2Master

Node

Slave
Node N

.

. Monitoring tools

Apache

YAASDB DB

Populator

Ethernet

Server

Dstat

Figure 4: A caption of the test architecture.

A populator script is used to generate input data
(i.e., populate the test databases) on both the client
and server side, before each test session. This ensures
that the test data on either side is consistent and easy
to rebuild after each test session.

Workload Modeling. We analyzed the workload
following the steps described in Section 3. Based on
this analysis, three user types were identified: aggres-
sive bidders, passive bidders, and non-bidders. From
this information, we constructed a PTA model for
each user type. Figure 3 shows the PTA for a aggres-
sive bidder.

Figure 3 shows that each action has a think time
parameter, modeled as a clock variable associated
with it, that specifies how much time should elapse
before firing a transition. This variable is denoted
with the symbol X and it is reset to 0 after the tran-
sition is fired. Upon firing the transition, the action
associated with that transition is sent to the SUT.

Adapter. An adapter is used to translate abstract
actions generated from the model into concrete HTTP
requests by adding the necessary HTTP parameters
and encapsulation to the SUT. All slaves run identi-
cal adapters. The models as such are system inde-
pendent, but an adapter module need to be written for
every system that one chooses to interface with. Since
YAAS is based on the HTTP protocol, it will under-
stand the basic HTTP commands like GET, POST,
PUT, etc. Whenever a new action is selected from

Figure 3: PTA model for an aggressive-bidder user type.

Figure 5: Average response times for get auction and
get bids (bottom), search and browse (middle), and bid
(top) when ramping up from 0 to 300 users.

the model, the corresponding HTTP request is created
and, when needed, the associated data is automati-
cally attached to the request from the local database.

Experiments. In the case study, an experiment
was conducted to find out how the YAAS application
performs under load. As a rule of thumb for ensuring
accurate results, the experiment was run three times.

In the experiment, we set out to test how many
concurrent users the host node can support without
exceeding the specified target response time values.

Table 1 shows the average and max response time
limits (see column Target Response Time) that were
selected for each type of action. For instance, the av-
erage response time limit for action browse() was set
to 4.0 seconds, while the max response time was set to
8.0 seconds. If any of the set limits (average and max)
are breached during the test run, the tool will mark the
time of the breach and the number of concurrent users
at that time (see Table 1 - Time of breach). The length

of the test run was 20 minutes (1200 seconds). Fig-
ure 5 shows how the response times of different ac-
tions increase over time for the aggressive user type
as the number of concurrent users are ramped up from
0 to 300. In this experiment the tool generated a total
of 1504 unique test sequences form the models. Sev-
eral of the unique test sequences were executed more
than 100 times and the variance on the test sequence
length was from 1 up to 50 actions.

Table 1 also shows the time when a target response
time (average and/or max) value was exceeded and
the number of concurrent users at that time. For ex-
ample, the average response time for the search() ac-
tion was exceeded at 229 seconds into the test run by
the aggressive user type. The tool was when running
64 concurrent users. Form this table we concluded
that the current configuration of the server can sup-
port a maximum of 64 concurrent users before ex-
ceeding the threshold value of 3 seconds set for action
search(). A closer inspection of the monitored values
of the server showed that the database was the bottle-
neck, due to the fact a sqlite database was used and
the application locked the whole database for write
operations.

Additional experiments, including a comparison
of our approach against JMeter can be found in (Ah-
mad et al., 2013). The experiment showed that out
tool has similar capabilities as JMeter for instance
when comparing the throughput (actions/sec) against
the SUT.

5 Conclusion and Future Work
In this paper, we have presented a model-based

performance testing approach that uses probabilistic
models to generate synthetic load in real-time. The

Target Response Time Non-Bidders (22 %) Passive Users (33 %) Aggressive users 45 % Verdict
Actions Average Max Time of Time of Time of Time of Time of Time of Pass/fail

(sec) (sec) breach (sec) breach (sec) breach (sec) breach (sec) breach (sec) breach (sec)
browse() 4.0 8.0 279 (78 users) 394 (110 users) 323 (90 users) 394 (110 users) 279 (78 users) 394 (110 users) Failed
search(string) 3.0 6.0 279 (78 users) 394 (110 users) 279 (78 users) 394 (110 users) 229 (64 users) 327 (92 users) Failed
get action(id) 2.0 4.0 280 (79 users) 325 (91 users) 279 (78 users) 279 (78 users) 276 (77 users) 325 (91 users) Failed
get bids(id) 3.0 6.0 279 (78 users) 446 (130 users) 325 (91 users) 394 (110 users) 327 (92 users) 394 (110 users) Failed
bid(id,price, username, password) 5.0 10.0 —- —– 327 (92 users) 474 (132 users) 328 (92 users) 468 (131 users) Failed

Table 1: Response time measurements for user actions when ramping up from 0 to 300 users.

models are based on the Probabilistic Timed Au-
tomata, and include statistical information that de-
scribes the distribution between different actions and
corresponding think times. With the help of probabil-
ity values, we can make it so that a certain action is
more likely to be chosen over another action, when-
ever the virtual user encounters a choice in the PTA.
We believe that the PTA models are well suited for
performance testing and that the probability aspect
that the PTA holds is good for describing dynamic
user behavior, allowing us to include a certain level
of randomness in the load generation process. This is
important because we wanted the virtual users to be
able to mimic real user behavior as closely as possi-
ble, and minimize the effect of caches on the perfor-
mance evaluation.

The approach is supported by a set of tools, in-
cluding the MBPeT load generator. MBPeT has a
scalable distributed architecture which can be easily
deployed to cloud environments. The tool has a ramp-
ing feature which describes at what rate new users are
added to the system and also supports the ability to
specify a think time. When the test duration has ended
the MBPeT tool will gather measured data, process it
and create a test report.

In the future we will look into if parts of the model
creation can be automated. At the moment it is done
manually. There are indications that certain parts of
creating the models can be automated e.g. by auto-
matically analyzing the log data and using different
clustering algorithms.

REFERENCES

Abbors, F., Ahmad, T., Truscan, D., and Porres, I. (2012).
MBPeT: A Model-Based Performance Testing Tool.
2012 Fourth International Conference on Advances in
System Testing and Validation Lifecycle.

Ahmad, T., Abbors, F., Truscan, D., and Porres, I. (2013).
Model-Based Performance Testing Using the MBPeT
Tool. Technical Report 1066, Turku Centre for Com-
puter Science (TUCS).

Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235.

Barna, C., Litoiu, M., and Ghanbari, H. (2011). Model-
based performance testing (NIER track). In Proceed-
ings of the 33rd International Conference on Software

Engineering, ICSE ’11, pages 872–875, New York,
NY, USA. ACM.

Calzarossa, M., Massari, L., and Tessera, D. (2000). Work-
load Characterization Issues and Methodologies. In
Performance Evaluation: Origins and Directions,
pages 459–481, London, UK, UK. Springer-Verlag.

Denaro, G., Polini, A., and Emmerich, W. (2004). Early
performance testing of distributed software applica-
tions. In Proceedings of the 4th international work-
shop on Software and performance, WOSP ’04, pages
94–103, New York, NY, USA. ACM.

Django (2012). Online at https://www.djangoproject.com/.
Ferrari, D. (1984). On the foundations of artificial work-

load design. In Proceedings of the 1984 ACM SIG-
METRICS conference on Measurement and modeling
of computer systems, SIGMETRICS ’84, pages 8–14,
New York, NY, USA. ACM.

Kwiatkowska, M., Norman, G., Parker, D., and Sproston,
J. (2006). Performance analysis of probabilistic timed
automata using digital clocks. Formal Methods in Sys-
tem Design, 29:33–78.

Menasce, D. A. (2002). Load Testing of Web Sites. IEEE
Internet Computing, 6:70–74.

Menasce, D. A. and Almeida, V. (2001). Capacity Plan-
ning for Web Services: metrics, models, and methods.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition.

Mosberger, D. and Jin, T. (1998). httperfa tool for measur-
ing web server performance. SIGMETRICS Perform.
Eval. Rev., 26(3):31–37.

Petriu, D. C. and Shen, H. (2002). Applying the UML
Performance Profile: Graph Grammar-based Deriva-
tion of LQN Models from UML Specifications. pages
159–177. Springer-Verlag.

Python (2012). Python programming language. Online at
http://www.python.org/.

Richardson, L. and Ruby, S. (2007). Restful web services.
O’Reilly, first edition.

Ruffo, G., Schifanella, R., Sereno, M., and Politi, R. (2004).
WALTy: A User Behavior Tailored Tool for Evaluat-
ing Web Application Performance. Network Comput-
ing and Applications, IEEE International Symposium
on, 0:77–86.

SeleniumHQ (2012). Online at http://seleniumhq.org/.
Shams, M., Krishnamurthy, D., and Far, B. (2006). A

model-based approach for testing the performance of
web applications. In SOQUA ’06: Proceedings of the
3rd international workshop on Software quality assur-
ance, pages 54–61, New York, NY, USA. ACM.

Shaw, J. (2000). Web Application Performance Testing –
a Case Study of an On-line Learning Application. BT
Technology Journal, 18(2):79–86.

Paper VI

Performance Testing in the Cloud us-
ing MBPeT

Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan
Porres

Originally published 2013 Developing Cloud Software. Turku Centre
for Computer Science (TUCS), 2013.

c©2013 TUCS. Reprinted with permission of TUCS.

6 Performance Testing in the Cloud Using

MBPeT

Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres
Department of Information Technologies
Åbo Akademi University, Turku, Finland
Email: {fredrik.abbors, tanwir.ahmed, dragos.truscan, ivan.porres}@abo.fi

Abstract–We present a model-based performance testing approach using
the MBPeT tool. We use of probabilistic timed automata to model the user
profiles and to generate synthetic workload. The MBPeT generates the load
in a distributed fashion and applies it in real-time to the system under test,
while measuring several key performance indicators, such as response time,
throughput, error rate, etc. At the end of the test session, a detailed test
report is provided. MBPeT has a distributed architecture and supports load
generation distributed over multiple machines. New generation nodes are
allocated dynamically during load generation. In this book chapter, we will
present the MBPeT tool, its architecture, and demonstrate its applicability
with a set of experiments on a case study. We also show that using abstract
models for describing the user profiles allows us quickly experiment di↵erent
load mixes and detect worst case scenarios.

Keywords-Performance testing, model-based testing, MBPeT, cloud.

6.1 Introduction

Software testing is the process of identifying incorrect behavior of a system,
also known as revealing defects. Uncovering these defects, typically, consists
of running a batch of software tests (test suite) against the software itself.
In some sense, a second software artefact is built to test the primary one.
This is normally referred to as functional testing. A software test compares
the actual output of the system with the expected output for a particular

191

192 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

known input. If the actual output is the same as the expected output the
test passes, otherwise a test fails and a defect is found. Software testing
is also the means to assess the quality of a software product. The fewer
the defects found during testing, the higher the quality is of that software
product. However, not all software defects are related to functionality. Some
systems may stop functioning or may prevent other users to access the system
simple because the system is under a heavy workload with which it cannot
cope. Performance testing is the means of detecting such errors.

Performance testing is the process of determining how a software system
performs in terms of responsiveness and stability under a particular workload.
The purpose of the workload is that it should match the expected workload
(the load that normal users put on the system when using it) as closely as
possible. This can be achieved by running a series of tests in parallel, but
instead of focusing on the right output the focus is shifted towards measuring
non-functional aspects, i.e. the time between input and output (response
time) or number of requests processed in a second (throughput).

Traditionally, performance testing has been conducted by running a num-
ber of predefined scenarios (or scripts) in parallel. One drawback to this
approach is that real users do not behave as static scripts. This can also lead
to certain paths in the system being left untested or that certain caching
mechanisms in the system kick in due the repetitiveness of the test scripts.

Software testing can be extremely time consuming and costly. In 2005,
Caper Jones - chief scientist of Software Productivity Research in Mas-
sachusetts - estimated that as much as 60 percent of the software work in
the United States was related to detecting and fixing defects [1]. Another
drawback is that software testing, as well as performance testing, involves
tedious manual work when creating test cases. A software system typically
undergoes a lot of changes during its lifetime. Whenever a piece of code is
changed, a test has to be updated or created to show that the change did
not break any existing functionality or introduce any new defects. This adds
more time and cost to testing. In the case of performance testing this implies
that one has to be able to benchmark quickly and e↵ectively to check if the
performance of the system is a↵ected by the change of the code.

Research e↵ort have be put into solving this dilemma. One of the most
promising techniques is Model-Based Testing (MBT). In MBT, the central
artefact is a system model. The idea is that the model represents the behav-
ior or the use of the system. Tests are then automatically generated form
the model. In MBT the focus has shifted from manually creating tests to
maintaining a model that represents the behavior of the system. Due to the
fact that tests are automatically generated from a model, MBT copes better
with changing requirements and code than traditional testing. Research has

Performance Testing in the Cloud Using MBPeT 193

shown that MBT could reduce the total testing costs with 15 percent [8].
MBT has mostly been targeted towards functional testing, however, there
exist a few tools that utilizes the power of MBT in the domain of perfor-
mance testing. In our research we make use of the advantages of MBT in
our performance testing approach.

MBPeT is a Python-based tool for performance testing. Load is generated
from probabilistic timed automata (PTA) models describing the behavior of
groups of virtual users. The models are then executed in parallel to get a
semi-random workload mix. The abstract PTA models are easy to create and
update, facilitating quick iteration cycles. During the load generation phase,
the tool also monitors di↵erent key performance indicators (KPIs) such as
response times, throughput, memory, CPU, disk, etc. The MBPeT tool has a
distributed architecture where one master node controls several slave node or
load generator. This facilitates deployment to a cloud environment. Besides
monitoring, the tool also produces a performance test report at the end of
the test. The report contains information about the monitored KPIs, such as
response times, throughput etc, but also graphs showing how CPU, memory,
disk, network utilization varied during a performance test session.

The rest of the report is structured as follows: we briefly enumerate
several related works in the following section. Then, is Section 6.3, we briefly
describe the load generation process. In Section 6.4, we give an overview of
the architecture of the tool. In Section 6.5, we describe how the workload
models are created and discuss the probabilistic timed automata formalism.
In Section 6.6, we discuss the performance testing process in more detail.
In Section 6.7, we present a auction web service case study and a series of
experiments using our tool. Finally, in Section 6.8 we present our conclusions
and discuss future work.

6.2 Related Work

There exist a plethora of commercial performance testing tools. In the fol-
lowing, we briefly enumerate couple of popular performance testing tools.
FABAN is an open source framework for developing and running multi-tier
server benchmarks [18]. FABAN has a distributed architecture meaning load
can be generated from multiple machines. The tool has three main com-
ponents: A harness - for automating the process of a benchmark run and
providing a container for the benchmark driver code, a Driver framework -
provides an API for people to develop load drivers, and an Analysis tool - to
provide comprehensive analysis of the data gathers for a test. Load is gen-
erated by running multiple scripts in parallel. JMeter [19] is an open source

194 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Java tool for load testing and measuring performance, with the focus on web
applications. Jmeter can be set up in a distributed fashion and load is gener-
ated from manually created scenarios that are run in parallel. Httperf [6] is
a tool for measuring the performance of web servers. Its aim is to facilitate
the construction of both micro and macro-level benchmarks. Httperf can be
set up to run on multiple machines and load is generated from pre-defined
scripts. LoadRunner [7] is a performance testing tool from Hewlett-Packard
for examining system behavior and performance. The tool can be run in a
distributed fashion and load is generated from pre-recorded scenarios.

Recently several authors have focused on using models for performance
analysis and estimation, as well as for load generation. Barna et al., [2]
present a model-based testing approach to test the performance of a trans-
actional system. The authors make use of an iterative approach to find
the workload stress vectors of a system. An adaptive framework will then
drive the system along these stress vectors until a performance stress goal
is reached. They use a system model, represented as a two-layered queuing
network, and they use analytical techniques to find a workload mix that will
saturate a specific system resource. Their approach di↵ers from ours in the
sense that they use a model of the system instead of testing against a real
implementation of a system.

Other related approaches can be found in [16] and [15]. In the former, the
authors have focused on generating valid traces or a synthetic workload for
inter-dependent requests typically found in sessions when using web appli-
cations. They describe an application model that captures the dependencies
for such systems by using Extended Finite State Machines (EFSMs). Com-
bined with a workload model that describes session inter-arrival rates and
parameter distributions, their tool SWAT outputs valid session traces that
are executed using a modified version of httperf [12]. The main use of the
tool is to perform a sensitivity analysis on the system when di↵erent param-
eters in the workload are changed, e.g., session length, distribution, think
time, etc. In the latter, the authors suggest a tool that generates represen-
tative user behavior traces from a set of Customer Behavior Model Graphs
(CBMG). The CBMG are obtained from execution logs of the system and
they use a modified version of the httperf utility to generate the tra�c from
their traces. The methods di↵er from our approach in the sense they both
focus on the trace generation and let other tools take care of generating the
load/tra�c for the system, while we do on-the-fly load generation from our
models.

Denaro [4] proposes an approach for early performance testing of dis-
tributed software when the software is built using middleware components
technologies, such as J2EE or CORBA. Most of the overall performance of

Performance Testing in the Cloud Using MBPeT 195

such a system is determined by the use and configuration of the middleware
(e.g. databases). They also note that the coupling between the middleware
and the application architecture determines the actual performance. Based
on architectural designs of an application the authors can derive application-
specific performance tests that can be executed on the early available mid-
dleware platform that is used to build the application with. This approach
di↵ers from ours in that the authors mainly target distributed systems and
testing of the performance of middleware components.

6.3 The Performance Testing Process

In this section we are briefly going to describe the steps of the performance
testing process. A more detailed description is given in Section 6.6.

6.3.1 Model Creation

Before we start generation load for the system we first have to create a
load profile or a load model that describe the behavior of the users. Since
we can not have a model for each individual user we have to create one or
several models that represent the behavior for a larger group of users. These
models describe how a groups of virtual users (VUs) behave and they are
simplified models of how a real users would behave. Section 6.5 gives more
details of how the models are constructed. Essentially, we use probabilistic
timed automata (PTA) to specify user behavior which describe in an abstract
way the sequence of actions a VU can execute against the system and their
probabilistic distribution.

6.3.2 Model Validation

Once the models have been created they are checked for consistency and cor-
rectness. For instance, we check that the models have a start and end point,
that there are no syntactical errors in the models, and that the probabilities
and actions have been defined correctly. Once the models have been checked
by the MBPeT tool we start generating load for the system under test (SUT).

6.3.3 Test Setup

Before we can actually start generating load we need to set up everything
correctly so that the MBPeT can connect to the SUT and generate the ap-
propriate amount of load. To do that one have to fill in a settings file. This
file contains e.g., the IP-address of the SUT, what load models to use, how

196 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

many parallel virtual users to simulate, ramp up period, and the duration of
the performance test. The MBPeT tool needs this information in order to
be able to generate the right amount of load.

The tester also needs to implement an adapter for the tool. Every SUT
will have its own adapter implementation. The purpose of the adapter is
to translate the abstract actions found in the model into concrete actions
understandable by the SUT. In case of a web page, a browse action would
need to be translated into a HTTP GET request.

6.3.4 Load Generation

Once everything is set up, load generation begins. The MBPeT tool generates
load from the models by starting a new process for every simulated user.
Inside that process load is generated by executing the PTA model. For more
details please see Section 6.6.2. Please see Section 6.5.2 for more information
on PTAs.

6.3.5 Monitoring

During the load testing phase the MBPeT tool monitors the tra�c sent on
the network to the SUT. The tool monitors the throughput and response
time for every action sent to the system. If there is a possibility to connect
to the SUT remotely, the MBPeT tool can also monitor the utilization of the
CPU, memory, network, disk, etc. This information can be very useful when
trying to identify potential bottlenecks in the system. Once the test run is
complete and all information is gathered, the tool will create a test report.

6.3.6 Test Reporting

The test report contains information about the parameters monitored during
the performance test. It gives statistical values of the mean and max response
time for individual actions and displays graphs that show how the repones
time varied over time when the load increases. If the tool can be connected
remotely to the SUT, the test report will also show how the CPU, memory,
and disk was utilized over time when the load was applied to the SUT. Both of
these sources of information can be helpful when trying to pin the a potential
bottleneck in the system.

Performance Testing in the Cloud Using MBPeT 197

6.4 MBPeT Tool Architecture

MBPeT has a distributed architecture. It consists of two types of nodes: a
master node and slave nodes. A single master node is responsible of initiating
and controlling multiple remote slave nodes, as shown in Figure 6.1. Slave
nodes are designed to be identical and generic, in a sense that they do not
have prior knowledge of the SUT, its interfaces, or the workload models. That
is why for each test session, the master gathers and parses all the required
information regarding the SUT and the configuration for each test session
and sends that information to all the slave nodes. Once all slaves have been
initialized, the master begins the load generation process by starting a single
slave while rest of the slaves are idling.

Master
Node

Slave
Node 1

Slave
Node 2

Slave
Node N

.

.

.

SUT Network
Adapter

Ad
ap

te
r

Ad
ap

te
r

Ad
ap

te
r

Figure 6.1: Distributed architecture of MBPeT tool

6.4.1 The Master Node

The internal architecture of the master node is shown in Figure 6.2. It
contains the following components:

Core Module

The core module of the master node controls the activities of other modules
as well as the flow of information among them. It initiates the di↵erent
modules when their services are required. The core module takes as input
the following information and distributes it among all the slave nodes:

198 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Master Node

Model Validator Models

Configuration

User DB

User-
Resource
Data Base

Core

Test Report
Creator

Test
Report

Slave node 1

Slave Controller 1

User Input

User Output
Slave node N

Slave Controller N

.....

Resource
utilization at SUT

Trace
File

Figure 6.2: Master Node

1. User Models: PTA models are employed to mimic the dynamic behav-
ior of the users. Each case-study can have multiple models to represent
di↵erent types of users. User models are expressed in DOT language
[5].

2. Test Configuration: It is a collection of di↵erent parameters, that are
defined in a Settings file, which is a case-study specific. A Settings
file specifies the necessary information about the case-study and this
information is later used by the tool to run the experiment. There
are some mandatory parameters in the Settings file, which have been
listed below with the brief description. These parameters can also be
provided as command-line arguments to the master node.

(a) Test duration: It defines the duration of a test session in seconds.

(b) Number of users : It specifies the maximum number of concurrent
users for a test session.

(c) Ramp: The ramp period is specified for all types of users. It can
be defined in two ways. One way is to specify it as a percentage

Performance Testing in the Cloud Using MBPeT 199

Figure 6.3: Example ramp function

of the total test duration. For example, if the objective of the
experiment is to achieve the given number of concurrent users
within the 80% of total test duration, then the ramp value would
be equal to 0.8. Then, the tool would increase the number of
users at a constant rate, in order to achieve the given number of
concurrent users within the ramp period.

The ramp period can also be defined as an array of tuples. For
instance the ramp function depicted in Figure 6.3, as illustrated in
the Listing 6.1. A pair value is referred to as a milestone. The first
integer in a milestone describes the time duration in seconds since
the experiment started and the second integer states the target
number of concurrent users at that moment. For example, the
fourth milestone in the Listing 6.1, that is (400, 30), indicates that
at 400 seconds the number of concurrent users should be 400, and
thus starting from the previous milestone (100, 30) the number
of concurrent users should drop linearly in the interval 250-400
seconds. Further, a ramp period may consist of several milestones
depending upon the experiment design. The benefit of defining
the ramp period in this way is that the number of concurrent
users could increase and decrease during the test session.

Listing 6.1: Ramp section of Settings file
#=============== Ramp Period =================
r amp l i s t = [(0 , 0) , (100 , 100) , (250 , 100) ,
(400 , 30) , (480 , 30) , (580 , 150) , . . .]

200 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

(d) Monitoring interval : It specifies how often a slave node should
check and report its own local resource utilization level for satu-
ration.

(e) Resource utilization threshold : It is a percentage value which de-
fines the upper limit of local resource load at the slave node. A
slave node is considered to be saturated if the limit is exceeded.

(f) Models folder : A path to a folder which contains all the user
models.

(g) Test report folder : The tool will save the test report at this given
path.

In addition to mandatory parameters, the Settings file can contain
other parameters, which are related to a particular case-study only.
For example, if a SUT is a web server then the IP address of the web
server would be an additional parameter in the Settings file.

3. Adapter: This is a case-study specific module which is used to commu-
nicate with SUT. This module translates each action interpreted from
the PTA model into a form that is understandable by the SUT, for
instance a HTTP request. It also parses the response from the SUT
and measures the response time.

4. Number of Slaves: This number tells the master node how many slave
nodes that are participating in the test session.

Two test databases are used by MBPeT: a user database and a user
resource database. The user database contains all the information regarding
users such as usernames, passwords or name spaces. In certain cases, the
current state of the SUT must be captured, in order to be able to address
at load generation time data dependencies between successive requests. As
such, the user resource database is used to store references to the resources
(e.g. files) available on the SUT for di↵erent users. The core module of the
master node uses an instance of the test adapter to query the SUT and save
that data in the user resource database.

Further, the core module remotely controls the Dstat1 tool on SUT via
SSH protocol. Dstat is a tool that provides detailed information about the
system resource utilization in real-time. It logs the system resources utiliza-
tion information after every specific time interval, one second by default. The
delay between each update is specified in the command along with the names
of resources to be monitored. This tool creates a log file in which it appends

1http://dag.wieers.com/home-made/dstat/

Performance Testing in the Cloud Using MBPeT 201

a row of information for each resource column after every update. The log
file generated by the Dstat tool is used as basis for generating the test report,
including graphs on how SUT’s KPIs vary during the test session.

Model Validation Module

The Model Validator module validates the load models. It performs di↵erent
numbers of syntactic checks on all models and generates a report.This report
gives error descriptions and the location in model where the error occurred.
A model with syntax anomalies could lead to inconclusive results. Therefore
it is important to ensure that the all given models are well-formed and no
syntax mistakes have been made in implementing the models. Examples of
couple of validation rules are:

• Each model should have an initial and a final state

• All transitions have either probabilities or actions

• The sum of probabilities of transitions originating from a location is 1.

• All locations are statically reachable

Slave Controller Module

For each slave node there is an instance of SlaveController module in the
master node. The purpose of the SlaveController module is to act as a bridge
between slave nodes and the core master process and to control the slave
nodes until the end of the test. The benefit of this architecture is to keep the
master core process light and active, and more scalable. The SlaveController
communicates with master core process only in few special cases, so that the
core process could perform other tasks instead of communicating with slave
nodes. Moreover, it also increases the parallelism in our architecture, all the
SlaveControllers and the master’s core processes could execute in parallel on
di↵erent processor cores. Owning to the e�cient usage of available resources,
the master can perform more tasks in less period of time. A similar approach
has been employed at the slave node, where each user is simulated as an
independent process for the performance gain.

Test Report Creation Module

This module performs two tasks: Data Aggregation and Report Creation. In
the first task, it combines the test results data from all slaves into an internal
representation. Further, it retrieves the log file generated by the Dstat tool

202 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

from the SUT via Secure File Transfer Protocol (SFTP). The second task of
this module is to calculate di↵erent statistical indicators and render a test
report based on the aggregated data.

6.4.2 The Slave Node

Slave nodes are started with one argument, the IP-address of the master
node. The Core module opens the socket and connects to the master node
at the given IP-address with the default port number. After connecting with
the master node successfully, it invokes the Load Initiator module.

Slave Node

Load Initiator

Adapter

Resource
Monitor

Reporter

Input from
Master node

Output to
Master
Node

Core

Load Generator UserSimulator

Model Parser

Figure 6.4: Slave Node

Load Initiation Module

The Load Initiator module is responsible for initializing the test setup at
the slave node as well as storing the case-study and model files in a proper
directory structure. It receives all the information from the master node at
initialization time.

Performance Testing in the Cloud Using MBPeT 203

Model Parser Module

The Model Parser module reads the PTA model into an internal structure.
It is a helper module that facilitates the UserSimulator module to perform
di↵erent operations on the PTA model.

Load Generation Module

The purpose of this module is to generate load for the SUT at the desired
rate, by creating and maintaining the desired number of concurrent virtual
users. It uses the UserSimulator module to simulate virtual users where each
instance of UserSimulator presents a separate user with unique user ID and
session. The UserSimultor utilizes the Model Parser module to get the user’s
action from the user model and uses the Adapter module to perform the
action. Then it waits for a specified period of time (i.e. the user think time)
before performing the next action, which is chosen based on the probabilistic
distribution.

Resource Monitoring Module

The Resource Monitor module runs as a separate thread and wakes up regu-
larly after a specified time period. It performs two tasks every time it wakes
up: 1) checks the local resource utilization level and saves the readings, 2) cal-
culates the average of resource utilizations over a certain number of previous
consecutive readings. The value obtained from the second task is compared
with resource utilization threshold value, defined in the test configuration.
If the calculated average is above a set threshold value of 80 percent, then
it means that the slave node is about to saturate and the master will be
notified. When a slave is getting saturated, its current number of generated
users is kept constant, and additional slaves will be delegated to generate the
more load.

Reporter Module

All the data that has been gathered during the load generation is dumped
into files. The Load Generator creates a separate data file for each user;
it means that the total number of simulation data files would be equal to
the total number of concurrent users. In order to reduce the communication
delay, all these data files are packed into a zip file, and sent to the master at
the end of the test session.

204 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Figure 6.5: Main window of the GUI

6.4.3 Graphical User Interface

The MBPeT tool can be run both in command line and via a graphical user
interface (GUI) as shown in Figure 6.5. Feature-wise the GUI is almost
identical to the command-line version except for two features:

• The GUI implements the number of users as a slider function. This
implies that the number of parallel user can be increased and decreased
in real time using the slider, as an alternative to predefining a ramp
function at beginning of the test session;

• The average response observed by all slave nodes is plotted in real-
time. The response time graphs can be configured to display either
one average response time plot for all actions (as currently depicted in
Figure 6.5) or one average response time plot for each individual action
type.

Additionally, from the GUI, one can specify basically all the test session
settings previously described in Section 6.4.1

6.5 Model Creation

In this section we will introduce the load models used for generating load
and describe how they are constructed. We will also in theory describe how

Performance Testing in the Cloud Using MBPeT 205

load is generated from these models.

6.5.1 Workload Characterization

Traditionally, performance analysis starts first with identifying key perfor-
mance scenarios, based on the idea that certain scenarios are more frequent
than others or certain scenarios impact more on the performance of the sys-
tem than other scenarios. A performance scenario is a sequence of actions
performed by an identified group of users [13]. In some cases, key perfor-
mance scenarios can consist of only one action, for example ”browse”, in the
case of a web-based system. In the case of Amazon online store, examples
of key performance scenarios could be: searching for a product, then adding
one or more products into the shopping cart and finally pay for them. In the
first example, only one action is sent to the system, namely ”browse”. In
the second example, several actions would have to be sent to the server, e.g.
”login”, ”search”,”add-to-cart”,”checkout”, etc.

In order to build the workload model, we start by looking and analyzing
the requirements and the system specifications, respectively. During this
phase we try to get an understanding of how the system is used, what are
the di↵erent types of users, and what are the key performance scenarios
that will impact most on the performance of the system. A user type is
characterized by the distribution and the types of actions if performs.

The main sources of information for workload characterization are: Ser-
vice Level Agreements (SLAs), system specifications and standards, and
server execution logs [11]. By studying these sources we identify the inputs of
the system with respect to types of transactions (actions), transferred files,
file sizes, arrival rates, etc. following the generic guidelines discussed in [3]. In
addition, we extract information regarding the KPIs, such as the number of
concurrent users the system should support, expected throughput, response
times, expected resource utilization demands etc. for di↵erent actions under
a given load.

We use the following steps in analyzing the workload:

1. Identify the actions that can be executed against the system.

(a) Analyze what are the required input data and output data for each
action. For instance, what is the request type, its parameters, etc.

(b) Identify dependencies between actions. For example, a user can
not execute a logout action before a login action.

2. Identify what classes (types) of users execute each action

206 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

3. Identify the most relevant user types.

4. Define the distribution of actions that is performed by each user type.

5. Define an average think time per action for each user type.

Table 6.1 shows an example of a user type specification, its actions, action
dependencies, and think time ordered in a tabular format. Based on this
information we build a workload model described as a probabilistic timed
automata or PTA.

Action Dependency User Type 1 User Type 2
Think time Frequency Think Time Frequency

a1 t1 f1 t2 f2

a2 a1 t3 f3

a3 a1 t4 f4

a4 a2 t5 f5

a5 a4 t6 f6 t7 f7

a6 a3 t8 f8

Table 6.1: Example of user types and their actions

6.5.2 Workload Modeling Using PTA

The results of the workload characterization are aggregated in a workload
model similar to the one in Figure 6.6, which mimics the real workload un-
der study. One such workload model is created for each identified user type.
Basically, the model will depict the sequence of actions a user type can per-
form and their arrival rate, as a combination of the probability that an action
is executed and the think time of the user for that action. In addition, we
also identify the user types and their probabilistic distribution. A concrete
example will be given in Section 6.7.

All the information that is extracted from the previous phase is aggre-
gated in a workload model which is describes as a probabilistic timed au-
tomaton (PTA). A PTA is similar to a state machine in the sense that a
PTA consists of a set of locations connected with each other via a set of
transitions. However, a PTA also include the notion of time and probabil-
ities. Time is modeled as an invariant clock constraint on transitions and
increase at the same rate as real time.

A probabilistic timed automaton (PTA) is defined [9] as T = (L,C,inv,
Act, E, �) where:

• a set of locations L;

Performance Testing in the Cloud Using MBPeT 207

• a finite set of clocks C;

• an invariant condition inv : L ! Z;

• a finite set of actions Act;

• an action enabledness function E : L ⇥ Act ! Z;

• a transition probability function � : (L ⇥ Act) ! D(2C ⇥ L).

In the above definitions, Z is a set of clock zones. A clock zone is a set
of clock values, which is a union of a set of clock regions. � is a proba-
bilistic transition function. Informally, the behavior of a probabilistic timed
automaton is as follows: In a certain location l, an action a can be chosen
when a clock variable reaches its value with a certain probability if the action
is enabled in that location l. If the action a is chosen, then the probability of
moving to a new location l’ is given by �[l,a](C’,l’), where C’ is a particular
set of clocks to be reset upon firing of the transitions. Figure 6.6 gives an
example of a probabilistic timed automata.

The syntax of the automata is as follows: Every transition has an initial
location and an end location. Each location is transitively connected from the
initial location. The transitions can be labeled with three di↵erent values: a
probability value, an action, and a clock. The probability indicates the chance
of that transition being taken. The action describes what action to take when
the transition is used, and the clock indicates how long to wait before firing
the transition. Every automaton has an end location, depicted with a double
circle, that will eventually be reached. It is possible to specify loops in the
automaton. It is important to notice that the sum of the probabilities on all
outgoing transitions from a given location must be equal to 1. For example,
consider location 2 in Figure 6.6: for the PTA to be complete the following
must apply: p1 + p2 + p3 = p4 + p5 = 1.

6.6 Performance Testing Process

In this section we describe the performance testing process. Figure 6.7 shows
the three steps involved in the process. In the following, we will discuss the
three steps in more detail.

6.6.1 Test Setup

Every test run starts with a test setup. In each test setup, there is one master
node that carries out the entire test session and generates a report. The

208 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Figure 6.6: Example of a probabilistic timed automaton.

user only interacts with the master node by initializing it with the required
parameters (mentioned in the Section 6.4.1) and getting the test report at
the end of the test run. The parameter given to the master is the project
folder. This folder contains all the files needed for load generation, such as
the adapter code, the settings file (if command line mode is used) and other
user specific files.

The adapter file and the settings file are the most important. The adapter
files explains how the abstract actions found in the load models are translated
to concrete actions. The settings file contain information about the test
session, such as the location of the load models, IP-address to the SUT, the
ramp function, test duration, etc. The same information can also be set from
the GUI via the Settings button, see Figure 6.8. In here, the user is required
to enter the same information as given in the settings file. Additionally, the
path to the adapter file and the load models have to be given.

As one may notice in Figure 6.8, the user has the option of defining an
average think time for the models and its standard deviation. If these options
are used, the individual think time specified in the models for each action

Performance Testing in the Cloud Using MBPeT 209

Figure 6.7: MBPeT tool activity diagram

will be ignored and the one specified in the GUI will be used.
Once the required information has been given, the master node sets up the

test environment. After that, it invokes the Model Validator. This module
validates the syntax of user models. If the validation fails, it gives the user
a choice whether the user wants to continue or not to load generation. If
the user decides to continue or the validation was successful, then the master
enters into the next phase.

6.6.2 Load Generation

Load is generated for the models based on the same principles as described in
section 6.5.2. The load generation is based on a deterministic choice with a
probabilistic policy. This introduces certain randomness into the test process

210 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Figure 6.8: Settings window of the GUI

and that can be useful for uncovering certain sequences of actions which may
have a negative impact of the performance. Such sequences would be di�cult
or maybe impossible to discover if static test scripts are used, where a fixed
order of the actions is specified, and repeated over and over again. Every
PTA has an exit location which will eventually be reached. By modifying
the probability for the exit action, it is possible to adjust the length of the
test.

The attributes of PTA models make them a good candidate for modeling
the behavior of VUs, which imitate the dynamic behavior of real users. Ac-
tions in the PTA model corresponds to an action which a user can send to
the SUT and the clocks present the user think time. In our case, the PTA
formalism is implemented using the DOT notation.

Load is generated from these models by executing an instance of the model
for every simulated VU. Whenever a transition with an action is fired, that
action is translated by the MBPeT tool and sent to the SUT. This process is
repeated and run in parallel for every simulated user throughout the whole
test session. During load generation, the MBPeT tool monitors the SUT the
whole time.

Performance Testing in the Cloud Using MBPeT 211

6.6.3 Test Reporting

After each test run the MBPeT tool generates a test report based on the
monitored data. It is the slave nodes that are responsible for the monitoring
and they report the values back to the master node which later creates the
report.

Every slave node will monitor the communication with the SUT and
collecting the data needed for test report. The slave node will start a timer
every time and action is sent to the system. When a response is received,
the timer is stopped and the response code together with the action name
and response time is stored. This data is later sent to the master node which
will aggregate the data and produce a report.

The slave node will also monitor its own resources so it does not get
saturated and becomes the bottleneck during load generation. The slave
node monitors is own CPU, memory, and disk utilization and sends the
information to the master node. The master node the data is plotted in
graphs and included in the test report.

It is the test report creation module of the master node that is responsible
for creating test report. This module performs two tasks: aggregating data
received from the slave nodes and creating a test report. Data aggregation
consists of combining data received from the slave nodes together into and
internal representation. Based on the received data, di↵erent kinds of statis-
tical values are computer, e.g. mean and max response times, throughput,
etc. Values such as response time and throughput plotted as graphs so the
tester can see how the di↵erent values varies over time. Figures of the test
report will later be shown throughout Section 6.7.

The final task of the test report creation module is to render all the values
and graphs into a report. The final report is rendered as a HTML document.

6.7 Experiments

In this section we will describe a set of experiments carried out with the
MBPeT tool on a case study. The system tested in the case study is an
HTTP based auction web service.

6.7.1 YAAS

YAAS is a web application and a web service for creating and participating
in auctions. An auction site is a good example of a service o↵ered as a web
application. It facilitates a community of users interested in buying or selling
diverse items, where any user including guest user can view all the auctions

212 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

and all authenticated users, except seller of an item, can bid on the auction
against other users.

The web application is implemented in Python language using the
Django2 web-framework. In addition to HTML pages, YAAS also has a
RESTful [10] web service interface. The web service interface has various
APIs to support di↵erent operations, including:

Browse API It returns the list of all active auctions.

Search API It allows to search auctions by title.

Get Auction This API returns an auction against the given Auction-ID.

Bids It is used to the get the list of all the bids have been made to a
particular auction.

Make Bid Allows and authenticated user to place a bid on a particular
auction.

6.7.2 Test Architecture

A setup of the test architecture can be seen in Figure 6.9. The server runs an
instance of the YAAS application on top of an Apache web server. All nodes
(master, slaves, and the server) feature an 8-core CPU, 16GB of memory,
1Gb Ethernet, 7200 rpm hard drive, and Fedora 16 operating system. The
nodes were connected via a 1Gb ethernet over which the data were sent.

A populator script is used to generate input data (i.e., populate the test
databases) on both the client and server side, before each test session. This
ensures that the test data on either sides is consistent and easy to rebuild
after each test session.

6.7.3 Load Models

The test database of the application is configured with a script to have 1000
users. Each user has exactly one auction and each auction has one starting
bid.

In order to identify the di↵erent type of users for the YAAS application,
we have used the AWStats3 tool. This tool analyzes the Apache server access
logs to generate a report on the YAAS application usage. Based on that
report, we discovered three types of users; aggressive, passive and non-bidder.

2https://www.djangoproject.com/
3http://awstats.sourceforge.net

Performance Testing in the Cloud Using MBPeT 213

1�GB

Slave�
Node 1

Slave�
Node 2Master�

Node

Slave�
Node N

.

. Monitoring tools

Apache

YAASDB DB

Populator

Ethernet

Server

Dstat

Figure 6.9: A caption of the test architecture

Figure 6.10: Aggressive User type model

Figure 6.11: Passive User type model

214 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Action Dependency Aggressive User Passive User Non-Bidder User
Think time Frequency Think Time Frequency Think Time Frequency

search() 4 0,40 4 0,40 4 0,40
browse() 3 0,60 3 0,60 3 0,60
browse() browse(),search() 5 0,10 3 0,10 3 0,10
get auction() browse(),search() 5 0,87 5 0,87 5 0,87
exit() browse(),search() 3 0,03 3 0,03 3 0,03
browse() get auction() 5 0,05 5 0,05 5 0,05
get bids() get auction() 3 0,75 3 0,75 3 0,75
exit() get auction() 3 0,20 3 0,20 3 0,20
browse() get bids() 5 0,20 5 0,20 5 0,60
bid() get bids() 3 0,50 3 0,30
exit() get bids() 3 0,30 3 0,50 3 0,40
get bids() bid() 3 0,30 3 0,45
browse() bid() 4 0,20 4 0,25
exit() bid() 3 0,50 3 0,30

Table 6.2: Think time and distribution values extracted from the AWStats
report

Figure 6.12: Non-bidder User type model

Table 6.2 shows the think time and distribution of actions for the three
di↵erent types of users.

For each user type, a load model was created as describe in section 6.5.
The aggressive type (Figure 6.10) of users describes those users, who make
bids more frequently as compared to other types of users. The passive users
(Figure 6.11) are less frequent in making bids, see for instance the locations
14 or 18 in the referred figures. The third type of users are only interested
in browsing and searching for auctions instead of making any bids and are
known as non-bidders (Figure 6.12). The root model of the YAAS applica-
tion, shown in Figure 6.13, describes the distribution of di↵erent user types.

Performance Testing in the Cloud Using MBPeT 215

Based on the AWStats analysis, we determined that the almost 30% of total
users who visited the YAAS, were very frequently in making bids, whereas
rest of 50% users made bids occasionally. The rest of the users were not
interested in making bids at all. This distribution is depicted by the model
in Figure 6.13.

Figure 6.13: YAAS Root model

The models of all these user types were provided to the MBPeT tool to
simulate them as virtual users. For example, the model of an aggressive user
type, shown in Figure 6.10, shows that the user will start from the location
1, and from this location the user will select either browse or search action
based on a probabilistic choice. Before performing the action, the slave will
wait for the think time corresponding to the selected action. Eventually, the
user will reach the final location (i.e. location 20) by performing the exit
action and terminate the current user session. Similarly, the other models of
passive and non-bidder user type have the same structure but with di↵erent
probabilities and distribution of actions.

6.7.4 Experiment 1

The goal of this experiment was to set the target response time for each
action and observe at what point the average response time of the action
exceed the target value. The experiment ran for 20 minutes. The maximum
number of concurrent users was set to 300 and the ramp up value was 0.9
that the tool would increase the number of concurrent users with the passage
of time to achieve the value of 300 concurrent users when the 90% of test
duration time has been passed.

The resulting test report has various sections, where each section presents
the di↵erent perspective of the results. The first section, shown in Figure
6.14, contains the information about the test session including, test started
time, test duration, target number of concurrent of users, etc. The Total

216 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

#################### Master Stats #######################

This test was executed at: 2013-07-01 16:54:47

Duration of the test: 20 min

Target number of concurrent users: 300

Total number of generated users: 27536

Measured Request rate (MRR): 27.68 req/s

Number of NON-BIDDER_USER: 6296 (23.0)%

Number of AGGRESSIVE_USER: 9087 (33.0)%

Number of PASSIVE_USER: 12153 (44.0)%

Average number of action per user: 91 actions

Figure 6.14: Test Report 1 - Section 1: General information

######## AVERAGE/MAX RESPONSE TIME per METHOD CALL ##########

NON-BIDDER_USER (23.0 %) PASSIVE_USER (44.0 %) AGGRESSIVE_USER (33.0 %)
Method Call Average (sec) Max (sec) Average (sec) Max (sec) Average (sec) Max (sec)

GET_AUCTION(ID) 3.04 23.95 2.85 23.67 2.93 24.71

BROWSE() 5.44 21.25 5.66 21.7 5.68 21.29

GET_BIDS(ID) 3.59 27.37 3.63 25.8 3.65 24.87

BID(ID,PRICE,USERNAME,PASSWORD) 0.0 0.0 8.26 33.44 8.11 36.84

SEARCH(STRING) 3.36 12.86 3.26 15.84 3.47 15.79

Figure 6.15: Test Report 1 - Section 2: Average and Maximum response time
of SUT per action or method call

number of generated users in the report describes that the tool had simulated
27536 numbers of virtual users. The Measured Request Rate (MRR) depicts
the average number of requests per second which were made to the SUT
during the load generation process. Moreover, it also shows the distribution
of total number of user generated which is very close to what we have defined
in the root model (Figure 6.13). This section is useful to see the summarized
view of the entire test session.

In the second section of the test report, we could observe the SUT perfor-
mance for each action separately, and identify which actions have responded
with more delay than the others, and which actions should be optimized to
increase the performance of the SUT. As from the table in Figure 6.15, it
appears that the action BID(ID, PRICE, USERNAME, PASSWORD) has
larger average and maximum response time than the other actions. The non-
bidder users do not perform the BID action that is why we have zero response
time in the column of NON-BIDDER USER against the BID action.

Section three (shown in Figure 6.16) of the test report presents a com-
parison of the SUTs desired performance against the measured performance.
As we had defined the target response time for each action in the test config-

Performance Testing in the Cloud Using MBPeT 217

AVERAGE/MAX RESPONSE TIME THRESHOLD BREACH per METHOD CALL

Action Target Response Time NON-BIDDER_USER PASSIVE_USER AGGRESSIVE_USER Verdict
Average

(secs)

Max

(secs)

Average

users (secs)

Max

users (secs)

Average

users (secs)

Max

users (secs)

Average

users (secs)

Max

users (secs)
Pass/Fail

GET_AUCTION(ID) 2.0 4.0 70 (251) 84 (299.0) 70 (251) 95 (341.0) 70 (250) 95 (341.0) Failed

BROWSE() 4.0 8.0 84 (299) 97 (345.0) 84 (299) 113 (403.0) 84 (299) 113 (403.0) Failed

GET_BIDS(ID) 3.0 6.0 84 (298) 112 (402.0) 83 (296) 112 (402.0) 96 (344) 112 (401.0) Failed

BID(ID,PRICE,USERNAME,PASSWORD) 5.0 10 Passed Passed 97 (346) 113 (405.0) 112 (402) 135 (483.0) Failed

SEARCH(STRING) 3.0 6 95 (341) 134 (479.0) 96 (342) 112 (402.0) 83 (296) 133 (476.0) Failed

Figure 6.16: Test Report 1 - Section 3: Average and Maximum response time
of SUT per action or method call

uration, in this section we could actually observe how many concurrent users
were active when the target response time was breached. The table in this
section allows us to estimate the performance of current system’s implementa-
tion. For instance, the target average response time for the GET AUCTION
action was breached at 250 seconds for the aggressive type of users, when
the number of concurrent users was 70. Further, this section demonstrates
that the SUT can only support up to 84 concurrent users before it breaches
the threshold value of 3 seconds for GET BIDS action for the passive type
of users. In summary, all the actions in Figure 6.16 have breached the tar-
get response time except the BID action in NON-BIDDER USER column
because non-bidder users do not bid.

Figures 6.17 and 6.18 display the resource load at the SUT during load
generation. These graphs are very useful to identify which resources are
being utilized more than the others and limiting the performance of SUT.
For instance, it can be seen from Figure 6.17 that after 400 seconds the CPU
utilization was almost equal to 100% for the rest of the test session, it means
that the target web application is CPU-intensive, and it might be the reason
of large response time.

Figure 6.19 illustrate that the response time of each action for the aggres-
sive user type increases proportionally to the number of concurrent users.
The figure also points out which actions response time is increasing much
faster than the other actions and require optimization. Similar patterns was
observed for the two other user types: passive users and non-bidder, respec-
tively.

For example the response time of action BID(ID, PRICE, USERNAME,
PASSWORD) for aggressive and passive user types increases more rapidly
than the other actions. It might be because the BID action involves a write
operation and in order to perform a write operation on the database file, the

218 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Figure 6.17: Test Report 1 - SUT CPU and memory utilization

Figure 6.18: Test Report 1 - SUT network and disk utilization

SQLite4 database has to deny the all new access requests to the database
and wait until all previous operations (including read and write operations)
have been completed.

Section four of the test report provides miscellaneous information about

4http://www.sqlite.org/

Performance Testing in the Cloud Using MBPeT 219

Figure 6.19: Test Report 1 - Response time of aggressive user type per action

the test session. For example, the first erroneous response was recorded
at 520 seconds (according to Figure 6.20) and at that time the tool was
generating load at the maximum rate, that is 1600 actions/seconds, shown
in Figure 6.21. Similarly, Figure 6.20 displays that there was no error until
the number of consecutive users exceeded 150, after this point errors began
to appear and increased steeply proportional to the number of consecutive
users.

A further deep analysis of the test report showed that the database could
be the bottleneck. Owning to the fact a sqlite database has been used for
this experiment, the application has to block the entire database before some-
thing can be written to it. It could explain the larger response time of BID
actions compared to other actions. This is because the web application had
to perform a write operation to the database in order to execute the BID
action. Further, before each write operation, sqlite creates a rollback jour-
nal file, an exact copy of original database file, to preserve the integrity of
database [17]. This could also delay the processing of a write operation and
thus cause a larger response time.

6.7.5 Experiment 2

In the second experiment, we wanted to verify the hypothesis, which we
proposed in the previous experiment: database could be the performance bot-
tleneck. We ran the second experiment for 20 minutes with the same test

220 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Figure 6.20: Test Report 1 - Error rate

Figure 6.21: Test Report 1 - Average number of actions

configuration of the previous experiment. However, we did make one mod-
ification in the architecture. In the previous experiment, the SQLite 3.7
was used as database server, but in this experiment, it was replaced by the
PostgreSQL 9.1 5. The main motivating factor of using the PostgreSQL

5http://www.postgresql.org

Performance Testing in the Cloud Using MBPeT 221

#################### Master Stats #######################

This test was executed at: 2013-07-01 17:37:38

Duration of the test: 20 min

Target number of concurrent users: 300

Total number of generated users: 35851

Measured Request rate (MRR): 39.21 req/s

Number of AGGRESSIVE_USER: 11950 (33.0)%

Number of NON-BIDDER_USER: 7697 (21.0)%

Number of PASSIVE_USER: 16204 (45.0)%

Average number of action per user: 119 actions

Figure 6.22: Test Report 2 - Section 1: global information

Figure 6.23: Test Report 2 - Error rate

database is that it supports the better concurrent access to the data than
the SQLite. The PostgreSQL database uses the Multiversion Concurrency
Control (MVCC) model instead of simple locking. In MVCC, di↵erent locks
are acquired for the read and write operations, it means that the both oper-
ations can be performed simultaneously without blocking each other [14].

In the section 1 of Test report 2 (Figure 6.22) shows that the Measured
Request Rate (MRR) increased by 42%. Additionally, each user performed
averagely 30% more actions in this experiment.

Similarly in the second section (Figure 6.24), the average and maximum
response time of all action decreased by almost 47%. Moreover, the error
rate section (Figure 6.23) depicts that there was no error until the number

222 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

######## AVERAGE/MAX RESPONSE TIME per METHOD CALL ##########

AGGRESSIVE_USER (33.0 %) PASSIVE_USER (45.0 %) NON-BIDDER_USER (21.0 %)
Method Call Average (sec) Max (sec) Average (sec) Max (sec) Average (sec) Max (sec)

GET_AUCTION(ID) 1.18 15.58 1.1 15.95 1.25 15.8

BROWSE() 4.99 23.61 5.13 23.47 5.23 23.6

GET_BIDS(ID) 1.51 15.25 1.54 15.56 1.63 15.02

BID(ID,PRICE,USERNAME,PASSWORD) 3.25 18.65 3.25 18.37 0.0 0.0

SEARCH(STRING) 1.48 14.66 1.54 14.83 1.43 15.43

Figure 6.24: Test Report 2 - Section 2: Average and Maximum response time
of SUT per action or method call

Figure 6.25: Test Report 2 - Response time of aggressive user type per action

of concurrent users was below 182, that is 21% more users than the last
experiment.

Figure 6.25 shows that the response time of aggressive type of users is
decreased by 50% approximately in comparison with the previous experi-
ment in Figure 6.19. In summary, all of these indicators suggest significant
improvement in the performance of SUT.

6.8 Conclusions

In this chapter, we have presented a tool-supported approach for model-based
performance testing. Our approach uses PTA models to specify the prob-
abilistic distribution of user types and of actions that are executed against

REFERENCES 223

the system.
The approach is supported by the MBPeT tool, which has a distributed

scalable architecture, targeted to cloud-based environments allowing it to
generate load at high rates. The tool generates load in online mode and
monitors di↵erent KPIs including the resource utilization of the SUT. It can
be run both in command line and in GUI mode, respectively. The former
facilitates the integration of the tool in automated test frameworks, whereas
the latter allows the user to interact with the SUT and visualize in real-time
its performance depending on the number of concurrent users.

Using our modeling approach, the e↵ort necessary to create and update
the user profiles is reduced. The adapter required to interface with the SUT
has to be implemented only once and then it can be reused. As shown in the
experiments, the tool allows quick exploration of the performance space by
trying out di↵erent load mixes. In addition, preliminary experiments have
shown that the synthetic load generated from probabilistic models has in
general a stronger impact on the SUT compared to static scripts.

We have also showed that the tool us su�cient enough in finding per-
formance bottlenecks and that the tool can handle large amounts of parallel
virtual users. The tool benefits from its distributed architecture in the sense
that it can easily be integrated in a cloud environment where thousands of
concurrent virtual users need to be simulated.

Future work will be targeted towards improving the methods for creating
the user profiles from historic data and providing more detailed analysis of
the test results. So far, the MBPeT tool has been used for testing web
services however, we plan also to address also web applications, as well as
other types of communicating systems.

References

[1] Ashlish Jolly. Historical Perspective in Optimising Software Testing
E↵orts. 2013. url: http://www.indianmba.com/Faculty_Column/
FC139/fc139.html.

[2] C. Barna, M. Litoiu, and H. Ghanbari. “Model-based performance
testing (NIER track)”. In: Proceedings of the 33rd International Con-
ference on Software Engineering. ICSE ’11. Waikiki, Honolulu, HI,
USA: ACM, 2011, pp. 872–875. isbn: 978-1-4503-0445-0. doi: 10.

1145/1985793.1985930.

224 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

[3] M. Calzarossa, L. Massari, and D. Tessera. “Workload Characteriza-
tion Issues and Methodologies”. In: Performance Evaluation: Origins
and Directions. London, UK, UK: Springer-Verlag, 2000, pp. 459–481.
isbn: 3-540-67193-5.

[4] G. Denaro, A. Polini, and W. Emmerich. “Early performance testing
of distributed software applications”. In: Proceedings of the 4th inter-
national workshop on Software and performance. WOSP ’04. Redwood
Shores, California: ACM, 2004, pp. 94–103. isbn: 1-58113-673-0. doi:
10.1145/974044.974059.

[5] E. Gansner, E. Koutsofios, and S North. Drawing draphs with dot. On-
line at http://www.graphviz.org/Documentation/dotguide.pdf. 2006.
url: http://www.graphviz.org/Documentation/dotguide.pdf.

[6] Hewlett-Packard. httperf. retrieved: October, 2012. url: http://www.
hpl.hp.com/research/linux/httperf/httperf-man-0.9.txt.

[7] HP. HP LoadRunner. 2013. url: http://www8.hp.com/us/en/
software-solutions/software.html?compURI=1175451\#.URz7wq

Wou8E.

[8] ITEA 2. ITEA 2 D-MINT project result leaflet: Model-based testing
cuts development costs. 2013. url: http://www.itea2.org/pro

ject/result/download/result/5519?file=06014_D_MINT\

_Project_Leaflet_results_oct_10.pdf.

[9] M. Jurdziński et al. “Concavely-Priced Probabilistic Timed Au-
tomata”. In: Proc. 20th International Conference on Concurrency
Theory (CONCUR’09). Ed. by M. Bravetti and G. Zavattaro.
Vol. 5710. LNCS. Springer, 2009, pp. 415–430.

[10] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media.
2007.

[11] D. A. Menasce and V. Almeida. Capacity Planning for Web Services:
metrics, models, and methods. 1st. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2001. isbn: 0130659037.

[12] D. Mosberger and T. Jin. “httperfa tool for measuring web server per-
formance”. In: SIGMETRICS Perform. Eval. Rev. 26.3 (Dec. 1998),
pp. 31–37. issn: 0163-5999. doi: 10 . 1145 / 306225 . 306235. url:
http://doi.acm.org/10.1145/306225.306235.

[13] D. C. Petriu and H. Shen. “Applying the UML Performance Profile:
Graph Grammar-based Derivation of LQN Models from UML Speci-
fications”. In: Springer-Verlag, 2002, pp. 159–177.

[14] PostgreSQL. Concurrency Control. retrieved: March, 2013. url: htt
p://www.postgresql.org/docs/9.1/static/mvcc-intro.html.

[15] G. Ru↵o et al. “WALTy: A User Behavior Tailored Tool for Eval-
uating Web Application Performance”. In: Network Computing and
Applications, IEEE International Symposium on 0 (2004), pp. 77–86.
doi: http://doi.ieeecomputersociety.org/10.1109/NCA.2004.
1347765.

[16] M. Shams, D. Krishnamurthy, and B. Far. “A model-based approach
for testing the performance of web applications”. In: SOQUA ’06: Pro-
ceedings of the 3rd international workshop on Software quality assur-
ance. Portland, Oregon: ACM, 2006, pp. 54–61. isbn: 1-59593-584-3.
doi: http://doi.acm.org/10.1145/1188895.1188909.

[17] SQLite. File Locking And Concurrency In SQLite Version 3. retrieved:
March, 2013. url: http://www.sqlite.org/lockingv3.html.

[18] Sun. Faban Harness and Benchmark Framework. 2013. url: http:
//java.net/projects/faban/.

[19] The Apache Software Foundation. Apache JMeter. Retrieved: Octo-
ber, 2012. url: http://jmeter.apache.org/.

225

Paper VII

An Automated Approach for Creat-
ing Workload Models From Server
Log Data

Fredrik Abbors, Tanwir Ahmad, and, Dragos Truscan

Originally published 2014 Proceeding of 9th International Conference
on Software Engineering and Applications. SCITEPRESS. August
2014, Vienna, Austria.

c©2014 SCITEPRESS. Reprinted with permission of SCITEPRESS.

In reference to SCITEPRESS copyrighted material which is used with per-
mission in this thesis, SCITEPRESS does not endorse any of Åbo Akademi’s
products and services. Internal or personal use of this material is permitted.
If interested in reprinting/republishing SCITEPRESS copyrighted material
for advertising or promotional purposes or for crediting new collective work
for resale or redistribution, please go to
https://www.insticc.org/Portal/copyright.aspx

to learn how to obtain a license.

An Automated Approach for Creating Workload Models From Server
Log Data

Fredrik Abbors, Dragos Truscan, Tanwir Ahmad
Department of Information Technologies, Åbo Akademi University, Joukahaisenkatu 3-5 A, Turku, Finland

{fredrik.abbors, dragos.truscan, tanwir.ahmad}@abo.fi

Keywords: Workload model generation, Log file analysis, Performance testing, Probabilistic Timed Automata

Abstract: We present a tool-supported approach for creating workload models from historical web access log data. The
resulting workload models are stochastic, represented as Probabilistic Timed Automata (PTA), and describe
how users interact with the system. Such models allow one to analyze different user profiles and to mimic
real user behavior as closely as possible when generating workload. We provide an experiment to validate the
approach.

1 INTRODUCTION

The primary idea in performance testing is to es-
tablish how well a system performs in terms of re-
sponsiveness, stability, resource utilization, etc, un-
der a given synthetic workload. The synthetic work-
load is usually generated from some kind of workload
profile either on-the-fly or pre-generated. However,
Ferrari states that synthetic workload should mimic
the expected workload as closely as possible (Ferrari,
1984), otherwise it is not possible to draw any reliable
conclusions from the results. This means that if load
is generated from a workload model, then the model
must represent the real-world user behavior as closely
as possible. In addition, Jain points out that one of
the most common mistakes in load testing is the use
of unrepresentative load (Al-Jaar, 1991).

There already exists a broad range of well estab-
lished web analytics software both as open source
(Analog, AWStats, Webalyzer), proprietary (Sawmill,
NetInsight, Urchin), as well as web hosted ones
(Google Analytics, Analyzer, Insight). All these tools
have different pricing models and range from free
up to several hundred euros per month. These tools
provide all kinds of information regarding the user
clients, different statistics, daily number of visitors,
average site hits, etc. Some tools can even visual-
ize paths that visitors take on the site. However, this
usually requires a high-priced premium subscription.
What the above tools do not provide is a deeper classi-
fication of the users or even a artefact that can directly
be used for load testing. Such an artefact, based on
real user data, would be the ideal source for gener-

ating synthetic load in a performance testing environ-
ment. Instead, the performance tester have to interpret
the provided information and build his own artefact,
from where load is generated. Automatically creat-
ing this artefact would also significantly speed up the
performance testing process by removing the need of
manual labour, and thus saving time and money.

This paper investigates an approach for automat-
ically creating a workload model from web server
log data. More specifically, we are targeting HTTP-
based systems with RESTful (Richardson and Ruby,
2007) interfaces. The proposed approach uses the K-
means algorithm to classify users into groups based
on the requested resources and a probabilistic work-
load model is automatically built for each group.

The presented approach and its tool support inte-
grates with our performance testing process using the
MBPeT (Abbors et al., 2012) tool. The MBPeT tool
generates load in real-time by executing the workload
models in parallel. The parallel execution is meant to
simulate the concurrent nature of normal web requests
coming from real-world users. The tool itself has a
distributed master/slave architecture which makes it
is suitable for cloud environments. However, the ap-
proach proposed in this paper can be used indepen-
dently for analyzing and classifying the usage of a
web site.

The rest of the paper is structured as follow: In
Section 2, we give an overview of the related work. In
Section 3, we present the formalism behind the work-
load models that we use. In Section 4, we cover the
methodology whereas, in Section 5, we present the
tool support. Section 6 shows our approach applied

on a real-world example. In Section 7, we demon-
strate the validity of our work. Finally, in Section 8,
we present our conclusions and discuss future work.

2 RELATED WORK

Load testing is still often done manually by spec-
ifying load scripts that describe the user behavior in
terms of a subprogram (Rudolf and Pirker, 2000),
(Subraya and Subrahmanya, 2000). The subprogram
is then run for each virtual user, possibly with the data
being pre-generated or randomly generated. With re-
gard to the data, theses types of approaches exhibit a
certain degree of randomization. However, the behav-
ior of each virtual user is a mainly a repetition of pre-
defined traces. Most of these approaches are prone
to errors due to much manual work and lack of ab-
straction that stochastic models offer. However, the
question: ”How to create a realistic stochastic perfor-
mance model?” remains.

There exists a plethora of tools on the market that
can analyze HTTP-based logs and provide the user
with statistical information and graphs regarding the
system. Some tools might even offer the user with
common and reoccurring patterns. However, to the
best of our knowledge, there is no web analytics soft-
ware that will create a stochastic model from log data.

Kathuria et al. proposed an approach for cluster-
ing users into groups based on the intent of the web
query or the search string (Kathuria et al., 2010). The
authors divide the user intent into three categories:
navigational, informational, and transactional. The
proposed approach clusters web queries into one of
the three categories based on a K-means algorithm.
Our approach differs from this one in the sense that
we cluster the users by their behavior by looking at
the request pattern and accessed resources, whereas
in their approach, the authors cluster users based on
the intent or meaning behind the web query.

Vaarandi (Vaarandi, 2003) proposes a Simple Log-
file Clustering Tool consequently called SLCT. SLCT
uses a clustering algorithm that detects frequent pat-
terns in system event logs. The event logs typically
contain log data in various formats from a wide range
of devices, such as printers, scanners, routers, etc.
The tool automatically detects common patterns in
the structure of the event log. The approach is us-
ing data mining and clustering techniques to detect
normal and anomalous log file lines. The approach is
different from ours in the sense that we assume that
the logging format is known and we build a stochastic
model that can be used for performance testing from
common patterns found in the log.

Shi (Shi, 2009) presents an approach for cluster-
ing users interest in web pages using the K-means al-
gorithm. The author uses fuzzy linguistic variables
to describe the time duration that users spend on web
pages. The final user classification is then done using
the K-means algorithm based on the time the users
spend on each page. This research is different from
ours in the sense that we are not classifying users
based on the amount of time they spend on a web page
but rather on their access pattern.

The solutions proposed by Mannila et al. (Man-
nila et al., 1997) and Ma and Hellerstein (Ma and
Hellerstein, 2001) are targeted towards discovering
temporal patterns from event logs using data min-
ing techniques and various association rules. Both
approaches assume a common logging format. Al-
though association rules algorithms are powerful in
detecting temporal associations between events, they
do not focus on user classification and workload mod-
eling for performance testing.

Another approach is presented by Anastasiou
and Knottenbelt (Anastasiou and Knottenbelt, 2013).
Here, the authors propose a tool, PEPPERCORN, that
will infer a performance model from a set of log files
containing raw location tracking traces. From the
data, the tool will automatically create a Petri Net
Performance Model (PNPM). The resulting PNPM
is used to make an analysis of the system perfor-
mance, identify bottlenecks, and to compute end-to-
end response times by simulating the model. The ap-
proach differs from our in the sense that it operates on
different structured data and that the resulting Petri
Net model is used for making a performance analysis
of the system and not for load generation. In addi-
tion, we construct probabilistic time automata (PTA)
model from which we later on generate synthetic load.

Lutteroth and Weber describe a performance test-
ing process similar to ours (Lutteroth and Weber,
2008). Load is generated from a stochastic model
represented by a form chart. The main differences be-
tween their and our approach is that we use different
type of models and that we automatically infer our
models from log data while they create the models
manually. In addition, due to their nature, form chart
models are less scalable compared to PTAs.

3 WORKLOAD MODELS

The work presented in this paper connects to
our previous model-based performance testing pro-
cess using the MBPeT (Abbors et al., 2012) tool. A
workload model is the central element in this pro-
cess, being used for distributed load generation. Pre-

viously, the model was created manually from the per-
formance requirements of the system and based on an
estimated user behavior. In order to model as realis-
tic workload as possible, we use historic usage data
extracted from web-server logs.

3.1 Workload models

Traditionally, performance testing starts first with
identifying key performance scenarios, based on the
idea that certain scenarios are more frequent than oth-
ers or certain scenarios impact more on the perfor-
mance of the system than other scenarios. A perfor-
mance scenario is a sequence of actions performed by
an identified group of users (Petriu and Shen, 2002).
However, this has traditionally been a manual step in
the performance testing process. Typically, the iden-
tified scenarios are put together in a model or subpro-
gram and later executed to produce load that is sent to
the system.

In our approach, we use probabilistic timed au-
tomata (PTA) (Jurdziński et al., 2009) to model the
likelyhood of user actions. The PTA consists of a set
of locations interconnected to each other via a set of
edges. A PTA also includes the notion of time and
probabilities (see Figure 1(a)). Edges are labeled with
different values: probability value, think time, and ac-
tion. The probability value represents the likelihood
of that particular edge being taken based on a prob-
ability mass function. The think time describes the
amount of time that a user thinks or waits between
two consecutive actions. An action is a request or a
set of requests that the user sends to the system. Exe-
cuting an action means making a probabilistic choice,
waiting for the specified think time, and executing the
actual action. In order to reduce complexity of the
PTA, we use a compact notation where the probabil-
ity value, think time, and action are modeled on the
same edge (see Figure 1(b)).

4 AUTOMATIC WORKLOAD
MODEL CREATION

In this section, we describe the method for auto-
matically creating the workload model from log data
and we discuss relevant aspects in more detail. The
starting point of our approach is a web server log pro-
vided by web servers such as Apache or Microsoft
Server. A typical format for a server log is shown in
Table 1. The log is processed in several steps and a
workload model is produced.

1

2

0.6 / 0 /

3

0.4 / 0 /

4

1.0 / 3 / action1()

5

1.0 / 4 / action2()

6

1.0 / 0 /

7

1.0 / 0 /

8

1.0 / 6 / exit() 1.0 / 8 / exit()

(a) Original PTA

1

2

0.6 / 3 / action1()

3

0.4 / 4 / action2()

4

1.0 / 6 / exit() 1.0 / 8 / exit()

(b) Compact PTA
Figure 1: Example of a probabilistic timed automata

4.1 Data Cleaning

Before we start parsing the log file we prepare and
clean up the data. This entails that irrelevant data is
removed from the log. Nowadays, it is not uncommon
to encounter requests made by autonomous machines,
also referred to as bots, usually used to crawl the web
and index web sites. These types of requests are iden-
tified and removed from the log into a separate list.

At the moment, we are only interested in HTTP
requests that result in a success or redirect (i.e., re-
sponse codes that start with 2xx or 3xx). Requests
that result in an error, typically response codes that
start with 4xx or 5xx, are usually not part of the in-
tended behavior and are also put in a separate list.

4.2 Parsing

The cleaned log file is parsed line by line using a pat-
tern that matches the logging format. In our approach,
a new virtual user is created when a new client IP-
address1 is encountered in the log. For each request
made to the sever, the requested resource is stored in
a list associated with a virtual user. The date and time
information of the request together with the time dif-
ference to the previous request is also stored. The
latter is what we denote as think time between two
requests.

4.3 Pre-processing

From the previous step, we obtain a list of virtual
users and for each virtual user a list of requests made

1Our approach uses IP-addresses for user classification
since the UserId is only available for authenticated users
and usually not present in the log.

Client IP-address User-Identifier User Id Date Method Resource Protocol Status Code Size of Object
87.153.57.43 example.site.com bob [20/Aug/2013:14:22:35 -0500] GET /browse HTTP/1.0 200 855
87.153.57.43 example.site.com bob [20/Aug/2013:14:23:42 -0500] GET /basket/book/add HTTP/1.0 200 685
87.153.57.43 example.site.com bob [20/Aug/2013:14:23:58 -0500] GET /basket/book/delete HTTP/1.0 200 936

136.242.54.78 example.site.com alice [21/Aug/2013:23:44:45 -0700] GET /browse” HTTP/1.0 200 855
136.242.54.78 example.site.com alice [21/Aug/2013:23:46:27 -0700] GET /basket/phone/add HTTP/1.0 200 685
136.242.54.78 example.site.com alice [21/Aug/2013:23:57:02 -0700] GET /basket/view.html HTTP/1.0 200 1772

Table 1: Requests to be structured in a tree

from the same client IP-address. In the pre-processing
phase, these lists of requests are split up into shorter
lists called sessions. A session is a sequence of re-
quests made to the web server which represent the
user activity in a certain time interval. It is not al-
ways trivial to say when one session ends and an-
other begins, since the time interval varies from ses-
sion to session. Traditionally, a session ends when a
certain period of inactivity is detected, (e.g., 30 min-
utes). Hence, we define a session timeout value which
is used to split the list of requests of a given user into
sessions. In other words, we are searching for a time
gap between two successive requests from the same
virtual user that is greater than the specified timeout
value. When a gap is found, the request trace is split
into a new session. An example using a timeout of 30
minutes is shown in Figure 2.

Req1 Req2 Req4 Req5 Req6 Req7 Req8Req3

Req1 Req2 Req4 Req5 Req6Req3 Req7 Req8

1 min

Time Out Value 30 min

3 min 32 min

GAP

12 min 5 min 35 min 22 min

1 min 3 min 12 min 5 min

GAP

22 min

Figure 2: Example of splitting a list of requests into shorter
sessions

4.4 Building a Request Tree

Visitors interact with web sites by carrying out ac-
tions. Actions can be seen as abstract transactions or
templates that fit many different requests. These re-
quests can be quite similar in structure, yet not identi-
cal to each other. For example, consider a normal web
shop where users add products to the basket. Adding
two different products to the basket will result in two
different web requests even though the action is the
same. In this step, we group similar requests into ac-
tions.

To achieve this, we first put the requests into a tree
structure. For example, consider the example in Ta-

/basket

/book

/phone

/add

/delete

/add

/basket

/book, phone

/add
/delete

[Collection]
[Resource]

action

/view.html

/view.html

/ /

/browse

/browse

2

2

1

1

1

1

1

1

2

Figure 3: Example of request tree reduction.

ble 1. We split the string of the requested resource
by the ”/” separator and structure it into a tree. Fig-
ure 3-left shows how the requests in Table 1 would
be structured. We always keep count of how many
times we end up in a leaf node. For each new log line,
we try to fit the request into the tree, otherwise a new
branch is created.

After parsing a large log file, we obtain a large
tree that might be difficult to manage. However, the
tree can be reduced into a smaller tree by grouping to-
gether nodes. The algorithm is recursive and nodes at
the same level in the tree are grouped together if they
share joint sub-nodes. Figure 3-right shows how a tree
can be reduced into a smaller tree. Once the request
tree has been reduced as much as possible, every path
in the reduced tree, that reaches a leaf node, is then
considered as an action that can be executed against
the system.

Consider the second request made by both Bob
and Alice in Table 1. These two requests are basically
the same type of request. They both request a resource
from the same collection. This is similar to a REST
interface where one uses collections and resources. It
would seem obvious that these two requests are the
result of the same action, only that the user requested
different resources. Hence, by grouping together re-
quests of the same type to the same resources, the tree
can be reduced to a smaller tree. Similar requests are
grouped into an action.

Requests in the tree can also be joined by manu-
ally inspecting the tree and grouping nodes that are
a result of the same action. If a node in the path
has more than one parameter, (e.g., it is a result of

grouping two resources) that part of the request can
be parameterized. For example, the request ”/bas-
ket/book,phone/add” is a parameterized action where
either book or phone should be used when sending the
actual request to the system.

4.5 User Classification

Before we start constructing a workload model repre-
senting the user behavior, we cluster different virtual
users into groups according to their behavior. By user
behavior we mean a behavioral pattern that a group
of web site visitors have in common. A User Type
can be seen as a group abstracting several visitors of
a web site.

To group visitors based on the actions they per-
form we use the K-means algorithm (MacQueen,
1967). Table 2 shows the properties used for clus-
tering. The properties are the actions obtained from
the reduced request tree and the numbers represent
the number of times a visitor has performed that ac-
tion. Figure 5 show how the different visitors in Table
2 would be clustered into groups (or User Types) us-
ing the K-means algorithm. The only input in this
step is the number of desired clusters which has to be
specified a priori. Figure 4 depicts a typical exam-
ple of clustering data into two groups using K-means.
K-means clustering is an old method that involves as-
signing data points to k different clusters so that it
minimizes the total squared distance between each
point and its closest cluster center. One of the most
widely used algorithms is simply referred to as ”K-
means” and it is a well documented algorithm that
have several proposed optimization to it. The clus-
tering is executed as follows:
1. Choose k clusters and initialize the centroid by

uniformly choosing a random value from the data
points.

2. For every sample in the data set, assign it to the
closest cluster using the Euclidean distance.

3. Calculate a new centroid for every cluster by com-
puting the average of all samples in the cluster.

4. Repeat step 2 and 3 until the clusters no longer
change.

Virtual User Action1 Action2 Action3 Action4 Action5
Visitor 1 2 0 0 3 3
Visitor 2 0 3 4 3 3
Visitor 3 1 0 1 8 9
Visitor 4 4 6 0 0 1
Visitor 5 0 0 4 8 7
Visitor 6 5 2 0 7 0

Table 2: Example showing the number of actions that dif-
ferent visitors perform.

Figure 4: Example of two dimensional K-means clustering

Visitor 1

User Type 1

User Type 2

Visitor 6Visitor 4

Visitor 2

Visitor 3

Visitor 5

Figure 5: K-means clustering on data from Table 2.

Our approach also allows us to cluster virtual
users based on other characteristics. Table 3 shows an
example using different clustering parameters. Here
the variable #Get means the total number of GET re-
quests sent to the system and #Post means the total
number of POST requests sent to the system. ATT
stands for Average Think Time, ASL stands for Av-
erage Session Length, and ADT stands for Average
Response Size.

Virtual User #Get #Post ATT ASL ARS
Visitor 1 25 3 44 653 696
Visitor 2 17 0 25 277 1353
Visitor 3 31 3 54 1904 473
Visitor 4 19 1 23 444 943

Table 3: Example showing different clustering parameters.

This method, however, gives a different clustering
result than the method presented previously and can
be used as a complement if the first method gives an
unsatisfactory result.

4.6 Removing Infrequent Sessions

Before we start building the workload model for each
selected cluster, we filter out low frequency sessions.
If we would include all possible sessions in the fi-
nal workload model it would become too cluttered
and difficult to understand and would include actions
which do not contribute significantly to the load due
to their low frequency rate. We are mainly interested
in the common group behavior among visitors in the
same cluster.

Removing sessions that have low frequency is
achieved by sorting the sessions in descending or-
der according to their execution rate. We filter out

low frequent sessions according to a Pareto probabil-
ity density function (Arnold, 2008) by cutting off the
tail beneath a certain threshold value. The threshold
value is given as a percentage value. That means that
sessions below the threshold are simply ignored and
treated as irrelevant. The threshold value can how-
ever be adjusted on-the-fly to include more or fewer
sessions in the workload model. Table 4 shows an
example of sessions listed in a descending order ac-
cording to their execution count. There is a total of
20 sessions, some of them have been executed several
times, (e.g., session 1 has been executed 7 times). A
threshold value of 0.7 would in this case mean that
we want 70 percent of the most executed sessions in-
cluded in our model, meaning a total of 14 sessions.
Thus, we would have to construct a model with (Ses-
sion1 * 7) + (Session2 * 6) + (Session3 * 1).

Session Number of times executed
Session 1 7
Session 2 6
Session 3 3
Session 4 2
Session 5 1
Session 6 1
Total 20

Table 4: Sessions listed in a descending order according to
number of times executed.

4.7 Building the Workload Model

The workload models that we create describes the
common behavior of all virtual users belonging to the
same cluster. We say that the model describes the be-
havior of a particular User Type. Creating the model
for a particular user type is a step-wise process where
we overlap sessions of all visitors belonging to the
same cluster.

Session by session we gradually build a model,
while reusing existing nodes in the model as much as
possible. At each step, we note the number of times
an edge has been traversed, the action, and the think
time value. We use this information to calculate the
probability and average think time of each edge in the
model.

Figure 6 depicts how the workload model is grad-
ually built. One session at a time is included in the
workload model. An edge represents an action be-
ing sent to the system. The numbers associated to the
edges represent session IDs. Each node represents a
place, where the visitor waits before sending the next
action. One by one we include all the session belong-
ing to the same cluster, while reusing existing nodes
as much as possible. Identical sessions will be laid on
top of each other and at each step, we note the number
of times an edge has been traversed, the action, and

the think time value. We use this information to cal-
culate the probability and average think time of each
edge.

Figure 6: Model built in a step-wise manner.

We calculate the probability for an action as the
ratio of a particular action to all the actions going
out from a node. In a similar way, we calculate the
think time of an action by computing the average of
all think time values of an action.

In order to guarantee that the workload gener-
ated from the workload model matches the workload
present in the log file, we calculate the user arrival
rate. This information together with the distribu-
tion between user types is described in a higher level
model called the root model. Figure 7 depicts such a
model.

1

2

0.1 / 45 / user_type1 0.4 / 60 / user_type2 0.5 / 20 / user_type3

Figure 7: Root model describing different user types their
waiting times and probability

The labels on the edges are separated by a ”/” and
refer to the probability, waiting time, and user type,
respectively. The probability value describes the dis-
tribution between different user types. The waiting
time describes the average waiting time between ses-
sions. The user type value simply denotes what work-
load model to execute. To calculate the waiting time
of a user type, we first have to study the waiting time
between different sessions of a particular user. We
then calculate the user waiting time by computing an

average time between sessions for every user belong-
ing to a cluster.

5 TOOL SUPPORT

Tool support for our approach was implemented
using the Python (Python, 2014) programming lan-
guage. To increase the performance of the tool and
make use of as many processor cores as possible for
the most computation intensive tasks, we made use of
Python’s multiprocessing library.

Our tool has a set of pre-defined patterns for com-
mon logging formats that are typically used in mod-
ern web servers (e.g., Apache and Microsoft Server).
However, if the pattern of the log file is not automat-
ically recognized (e.g., due to a custom logging for-
mat) the user can manually specify a logging pattern
via a regular expression. Once the log is parsed, the
data is stored into a database. This way we avoid hav-
ing to re-parse large log files from one experiment to
another.

Before parsing a log file, the tool prompts the user
for a session time out value and the number of user
clusters. This information, however, has to be pro-
vided a priori. Once the file has been parsed and
the reduced request tree has been built, the user has
a chance to manually inspect the tree. Requests can
be grouped manually by dragging one node on top of
the other. Figure 8 shows an example of such a re-
quest tree.

When the workload models have been built for
each cluster they are presented to the user. Figure 9
shows an example where 2 clusters have been used.
The left pane shows the number of concurrent users
detected throughout the logging period. The slider
bar at the bottom of the figure can be used to adjust the
threshold value, which determines how many sessions
to include in the model. A higher threshold value usu-
ally means more sessions are included in the model,
leading to a more complex model.

When saving the model, the tool will create two
artifacts: the workload models and the Python adapter
code. The latter contains the mapping of each action
in the models in a parameterized form and is used to
interface our MBPeT tool with the system under test.

6 Example

In this section, we apply our approach to a web
log file containing real-users data.

Figure 8: Example of the request tree

The web site2 used in this example maintains
scores of football games played in the football league
called pubiliiga. It also stores information about
where and when the games are played, rules, teams,
etc. The web site has been created using the Django
framework (Django Framework, 2012) and runs on
top of an Apache web server.

6.1 Data Cleaning

The log that we used was 323 MB in size and con-
tained roughly 1.3 million lines of log data. The web
site was visited by 20,000 unique users that resulted
in 365,000 page views between April 25th of 2009
and August 23rd of 2013. However, most of the users
only visited the web site once or twice and there were
only about 2,000 frequent users that regularly visited
the web site. Also, since the web site is updated fre-
quently on the same platform on which it is running,
the log contained a significant amount of data from er-
roneous requests made by the simple method of trail
and error during development. All erroneous requests
and requests made from known robots were filtered
out. The results that we are going to show in this sec-
tion are generated from a selected section of the log
data containing a mere 30,000 lines of log data, gen-

2www.pubiliiga.fi

Figure 9: The output window

1

2

0.097 / 0 / exit()

3

0.086 / 0 / action224

0.44 / 6 / action27

6

0.043 / 5 / action24

7

0.043 / 0 / action208

0.20 / 5 / action26

9

0.032 / 22 / action25

10

0.054 / 0 / action23

0.84 / 0 / exit()

0.16 / 23 / action220.55 / 0 / exit()

0.29 / 5 / action22

5

0.17 / 11 / action23

1 / 0 / exit()

1 / 0 / exit()

1 / 22 / action22 1 / 4 / action20

1 / 0 / exit()

1 / 0 / exit()

Figure 10: Workload models recreated from log data.

erated by 1092 unique users.

6.2 Pre-Processing

We used a session timeout value of 60 minutes to de-
termine where to split the list of requests into ses-

sions. In this experiment, we clustered the users into
two different groups. The total time to parse and pre-
process the data was around 10 seconds. The com-
puter was equipped with a 8 core Intel i7 2.93 GHz
processor and had 16 GB of memory.

6.3 Results

We used a threshold value of 0.3 when reconstruct-
ing the workload model for both clusters, meaning
that 30 percent of most executed traces are included in
the models. Figure 10 shows the workload model for
cluster 1. A total of 985 virtual users were grouped
into this cluster.

For confidentiality reasons the actual request types
have been left out and replaced by abstract types. Cre-
ating the model took approximately 2 seconds. How-
ever, the execution time may hugely vary depending
on the number of sessions that need to be included
in the workload model. That number of sessions in-
cluded in the model depends on what threshold value
is selected.

7 VALIDATION

In this section, we demonstrate the validity of our
approach on an auctioning web service, generically
called YAAS (Yet Another Auction Site). The YAAS
web service was developed as a university stand-alone
project. The web service has a RESTful interface and
has 5 simple actions:
• Browse: Returns all active auctions.
• Search: Returns auctions that matches the search

query.
• Get Auction: Returns information about a particu-

lar auction.
• Get Bids: Returns all the bids made to a particular

auction.
• Bid: Allows an authenticated user to place a bid on

an auction.
During this experiment we preformed two load

tests. First, we generated load from workload models
that we built manually. We then re-created the work-
load models from the log data that was produced dur-
ing first load test. In the second load test, load was
generated from the re-created workload models. Fi-
nally, we compared the load that was generated during
both tests. In the first step, we manually created mod-
els for two different user types. To test if the cluster-
ing works as expected, we made the workload mod-
els almost identical except for one request. One user
type is doing distinctively a browse request while the
other user type is always doing a search request. Fig-
ure 11(a) depicts the model for user type 1, the one
that is performing distinctively a browse request. A
similar model was also created for user type 2. If the
algorithm can cluster users into different groups when
only one action distinguishes them, then we consider
the clustering to be good enough.

7.1 Generating a log file

Once the models were built, they were used to load
test the YAAS system using our in-house performance
testing tool MBPeT. We simulated 10 virtual users
(60% user type 1 and 40% user type 2) in parallel
for 2 hours. We set the virtual users to wait 20 sec-
onds between each session. This value is later going
to influence the timeout value during pre-processing
phase. From the produced log file, containing roughly
10,000 lines, we re-created the original models as ac-
curately as possible. We point out that the original
model is of a probabilistic nature, which means that
distinctly different traces with different lengths can
be generated from a fairly simple model. For exam-
ple, the shortest session had only 1 action, while the
longest session had 22 actions. Also, we do not have
exact control over how many times each trace is exe-
cuted by a user.

7.2 Recreating the models

To make sure that we split the sessions in a similar
way we used a timeout value of 20 seconds. No other
delay between the requests was that large. We also
clustered the data into 2 user types. Each user type
is later going to be represented with a separate work-
load model. In this experiment we did not filter out
any user sessions, hence we used a threshold value
of 1.0, meaning all traces found in the log were used
to recreate the models. Figure 11(a) shows the origi-
nal workload model while Figure 11(b) shows the re-
constructed workload model for User Type 1. A sim-
ilar model was also created for User Type 2. As one
can see, the only difference from the original model
is the probability values on the edges. However close,
the probability values in the original models do not
match exactly those in the generated workload mod-
els. This is due to the fact that we use a stochastic
model for generating the load and we do not have
an exact control of what traces are generated. Figure
12(a) shows original root model while Figure 12(a)
shows the re-created root model. From the figures we
can see that the probability values of the re-created
root model match that of the original root model (60%
and 40%) and that the waiting time is close to 20 sec-
onds (19.97 and 19.98).

7.3 Data Gathering

Even though the models look similar, we also wanted
to make sure that the load generated from the origi-
nal models matched the load generated from our re-
created models. Hence, we let the MBPeT tool mea-

1

2

1.0 / 0 / browse()

0.10 / 7 / browse()

3

0.87 / 4 / get_auction(id)

6

0.03 / 0 / exit()

0.05 / 4 / browse()

4

0.75 / 4 / get_bids(id)

0.20 / 0 / exit()

0.20 / 5 / browse()

5

0.50 / 3/ bid(id,price,username,password)

0.30 / 0 / exit()

0.25 / 6 / browse()

0.45 / 4 / get_bids(id)

0.30 / 0 / exit()

(a) User Type 1 original model.

1

3

1.0 / 0 / browse()

0.095 / 7 / browse()

2

0.033 / 0 / exit()

4

0.87 / 4 / get_auction(id)

0.052 / 4 / browse()

0.20 / 0 / exit()

5

0.75 / 5 / get_bids(id)

0.24 / 5 / browse()

0.29 / 0 / exit() 6

0.48 / 3 / bid(id, price, username, password)

0.23 / 6 / browse()

0.30 / 0 / exit()

0.48 / 4 / get_bids(id)

(b) User Type 1 recreated model.
Figure 11: Original and re-created workload models.

(a) Original root model.

(b) Recreated root model.
Figure 12: Root models

sure the number of requests sent to the YAAS system
during both steps. Table 5 shows a comparison be-
tween the tests.

Request Load Test 1 Load Test 2
Search(string) 1263 1294
Browse() 1895 1942
Get Auction(id) 2762 2821
Get bids(id) 2697 2625
Bid(id, price, username, password) 1288 1265
Total 9903 9947
Request Rate 1.37 req/sec 1.38 req/sec

Table 5: Comparison between the two test runs

As can be seen from the table, the re-created
model produced a slightly higher workload. However,
we like to point out that the load generation phase
lasted for 2 hours and we see a difference of 44 re-
quests. This is backed up by looking at the measured
request rate. Load test 1 generated 1.37 req/sec, while

load test 2 is virtually identical with 1.38 req/sec. Fig-
ure 13 shows the workload as a function of request
(actions) over time for both test sessions. As one can
see, the graphs are not identical but but the trend and
scale is pretty much similar.

8 CONCLUSIONS

In this paper, we have presented a tool-supported ap-
proach for creating performance models from histor-
ical log data. The models are of a stochastic nature
and specify the probabilistic distribution of actions
that are executed against the system.

The approach is automated, hence reducing the ef-
fort necessary to create workload models for perfor-
mance testing. In contrast, Cai et al. (Cai et al., 2007)
report that they spent around 18 hours to manually
create a test plan and the JMeter scripts for the refer-
ence Java PetStore application (Oracle, 2014).

The experiments presented in this paper have
shown that the approach can adequately enough cre-
ate workload models from log files and they mimic
the real user behavior when used for load testing. Fur-
ther, the models themselves give insight in how users
behave. This information can be valuable for opti-
mizing functions in the system and enforcing certain
navigational patterns on the web site.

Future work will targeted towards handling larger
amount of log data. Currently the tool is not op-
timized enough to operate efficiently on large data
amounts. Another improvement is automatic session
detection. Currently the tool follows a pre-defined
timeout value for detecting sessions. Automatic ses-
sion detection could suggest different timeout values

(a) Load Test 1

(b) Load Test 2
Figure 13: Number of request shows as a function over time

for different users, hence, improving on the overall
quality of the recreated model. Currently, we are only
clustering users according to accessed resources. In
the future, we would like to extend the K-means clus-
tering algorithm to cluster based on other relevant fac-
tors like: request method, size of resource, user re-
quest rate, etc. This clustering method could suggest
models that, when executed, exercise the workload
patterns on the system, thus, potentially finding ”hid-
den” bottlenecks. Further, an interesting experiment
would be to analyze only failed or dropped requests.

This way one could for instance study the details of
how a DoS-attack was carried out and what pages
were hit during the attack.

ACKNOWLEDGEMENTS

Our sincerest gratitude go to the owners of
www.pubilliiga.fi for letting us use their data in our
experiments.

REFERENCES

Abbors, F., Ahmad, T., Truscan, D., and Porres, I. (2012).
MBPeT: A Model-Based Performance Testing Tool.
2012 Fourth International Conference on Advances in
System Testing and Validation Lifecycle.

Al-Jaar, R. (1991). Book review: The art of computer
systems performance analysis: Techniques for exper-
imental design, measurement, simulation, and model-
ing by raj jain (John Wiley & Sons). SIGMETRICS
Perform. Eval. Rev., 19(2):5–11.

Anastasiou, N. and Knottenbelt, W. (2013). Peppercorn:
Inferring performance models from location tracking
data. In QEST, Lecture Notes in Computer Science,
pages 169–172. Springer.

Arnold, B. (2008). Pareto and generalized pareto distribu-
tions. In Chotikapanich, D., editor, Modeling Income
Distributions and Lorenz Curves, volume 5 of Eco-
nomic Studies in Equality, Social Exclusion and Well-
Being, pages 119–145. Springer New York.

Cai, Y., Grundy, J., and Hosking, J. (2007). Synthesiz-
ing client load models for performance engineering
via web crawling. In Proceedings of the Twenty-
second IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’07, pages 353–
362. ACM.

Django Framework (2012). Online at
https://www.djangoproject.com/.

Ferrari, D. (1984). On the foundations of artificial work-
load design. In Proceedings of the 1984 ACM SIG-
METRICS conference on Measurement and modeling
of computer systems, SIGMETRICS ’84, pages 8–14,
New York, NY, USA. ACM.

Jurdziński, M., Kwiatkowska, M., Norman, G., and Trivedi,
A. (2009). Concavely-Priced Probabilistic Timed Au-
tomata. In Bravetti, M. and Zavattaro, G., editors,
Proc. 20th International Conference on Concurrency
Theory (CONCUR’09), volume 5710 of LNCS, pages
415–430. Springer.

Kathuria, A., Jansen, B. J., Hafernik, C. T., and Spink, A.
(2010). Classifying the user intent of web queries us-
ing k-means clustering. In Internet Research, num-
ber 5, pages 563–581. Emerald Group Publishing.

Lutteroth, C. and Weber, G. (2008). Modeling a realis-
tic workload for performance testing. In 12th Inter-
national Conference on Enterprise Distributed Object
Computing., pages 149–158. IEEE Computer Society.

Ma, S. and Hellerstein, J. L. (2001). Mining partially pe-
riodic event patterns with unknown periods. In Pro-
ceedings of the 17th International Conference on Data
Engineering, pages 205–214, Washington, DC, USA.
IEEE Computer Society.

MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathemat-
ical Statistics and Probability, number 1, pages 281–
297. Berkeley, University of California Press.

Mannila, H., Toivonen, H., and Inkeri Verkamo, A. (1997).
Discovery of frequent episodes in event sequences.
Data Min. Knowl. Discov., 1(3):259–289.

Oracle (2014). Java Pet Store 2.0 reference applica-
tion. http://www.oracle.com/technetwork/java/index-
136650.html. Last Accessed: 2014-05-23.

Petriu, D. C. and Shen, H. (2002). Applying the UML
Performance Profile: Graph Grammar-based Deriva-
tion of LQN Models from UML Specifications. pages
159–177. Springer-Verlag.

Python (2014). Python programming language. Online at
http://www.python.org/. Last Accessed: 2014-05-23.

Richardson, L. and Ruby, S. (2007). Restful web services.
O’Reilly, first edition.

Rudolf, A. and Pirker, R. (2000). E-Business Testing: User
Perceptions and Performance Issues. In Proceedings
of the First Asia-Pacific Conference on Quality Soft-
ware (APAQS’00), APAQS ’00, pages 315–, Washing-
ton, DC, USA. IEEE Computer Society.

Shi, P. (2009). An efficient approach for clustering web ac-
cess patterns from web logs. In International Journal
of Advanced Science and Technology, volume 5, pages
1–14. SERSC.

Subraya, B. M. and Subrahmanya, S. V. (2000). Ob-
ject driven performance testing in web applications.
In Proceedings of the First Asia-Pacific Conference
on Quality Software (APAQS’00), pages 17–26. IEEE
Computer Society.

Vaarandi, R. (2003). A data clustering algorithm for mining
patterns from event logs. In Proceedings of the 3rd
IEEE Workshop on IP Operations and Management
(IPOM03), pages 119–126. IEEE.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3247-3
ISSN 1239-1883

Fredrik A
bbors

Fredrik A
bbors

Fredrik A
bbors

M
odel-B

ased Testing of S
oftw

are System
s

M
odel-B

ased Testing of S
oftw

are System
s

M
odel-B

ased Testing of S
oftw

are System
s: Functionality and Perform

ance

	Introduction
	Motivation
	Purpose of this Thesis
	Research Methodology
	Research Questions
	Overview of Research Contributions
	Creating Models for Testing
	Increasing the Quality of Models Used for Testing
	Requirements Modeling and Traceability Across an MBT Process
	Load Generation from Workload Models
	Tool Support for MBT

	Overview of Original Publications
	Paper I: Tracing Requirements in a Model-Based Testing Approach
	Paper II: Including Model-Based Statistical Testing in the MATERA Approach
	Paper III: MATERA - An Integrated Framework for Model-based Testing
	Paper IV: Applying Model-Based Testing in the Telecommunications Domain
	Paper V: Model-based Performance Testing of Web Services Using Probabilistic Timed Automata.
	Paper VI: Performance Testing in the Cloud using MBPeT.
	Paper VII: An Automated Approach for Creating Workload Models From Server Log Data.

	Research Setting
	Structure of the Thesis

	Modeling for Functional Testing
	Background
	The Unified Modeling Language
	The Systems Modeling Language
	The Object Constraint Language
	NoMagic MagicDraw tool
	Qtronic and the QML Modeling Language
	The Nethawk EAST tool

	Contributions
	MATERA: A Systematic Modeling Process
	Increasing Model Quality through Model Validation
	Requirements Traceability Across the MATERA Process

	Validation
	Tool Support
	Empirical Validation on a Tele-communication Case Study

	Related Work
	Conclusions

	Modeling for Performance Testing
	Background
	Performance Testing
	Workload models

	Contributions
	Distributed Load Generation from PTA Models
	Creation of Workload Models

	Validation
	Tool Support
	Empirical Validation on Case Studies

	Related Work
	Performance Testing Approaches
	Performance Testing Tools

	Conclusions

	Conclusions
	Discussion
	Future work

