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Financial analysts play an important role in capital markets as informa-
tion intermediaries. In filtrating information, resulting in earnings fore-
casts, analysts generally tend to disagree. This thesis focuses on the disa-
greement between financial analysts.  

Previous research and data indicate that when a company reports losses, 
analysts start disagreeing more about the future earnings of that compa-
ny. Intuition would suggest that this is due to more uncertainty. Anecdotal 
evidence from analysts earnings reports corroborates this intuition,  find-
ing analysts more uncertain around negative earnings, precisely where 
disagreement tends to increase.

However, the theoretical models for belief formation that lay the math-
ematical foundations for this thesis, incorporate a somewhat strange 
implication - If analysts start disagreeing more, it can only mean they 
become more certain. In the theoretical setup, one that is used exten-
sively in the literature, it is only asymmetric information that can give rise 
to increased disagreement. 

In order to resolve the certainty/uncertainty contradiction, this thesis 
shows that a model taking into account the public information flow in 
earnings announcements over time, can produce only small levels of disa-
greement between analysts, levels of disagreement that are too small to 
encompass observed levels of disagreement.

As a result, this thesis concludes that the theoretical models used in the 
literature for explaining analyst disagreement, as such seem insufficient, 
and increases in disagreement could instead be interpreted as increased 
uncertainty, in accordance with evidence from analysts’ reports.

The evidence in this thesis contributes to the Accounting literature, since 
many studies employ these models the other way around, in that when 
an increase in disagreement in empirical data is observed, the observed 
disagreement is thought to signify an increase in asymmetric informa-
tion. Extensive reliance on the underlying models obscures our under-
standing of the uncertainty dynamics around e.g. earnings announce-
ments. Earnings announcements are paramount for price discovery in 
practice, and are also extensively studied in the Accounting literature. 
The results in this thesis indicate that conclusions in other studies regar-
ding increases in disagreement resulting from information asymmetry 
might be premature.  
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Abstract

The standard Bayesian learning model under asymmetric information due to Barry

and Jennings (1992) and Barron, Kim, Lim and Stevens (1998), shows how dis-

persion in the forecasts made by financial analysts emerges as a function of the

uncertainties that the analysts are facing. A key implication arising from these

models is that dispersion in forecasts can only increase due to increased information

asymmetry.

This study expands the models of Barry and Jennings (1992) and Barron et al.

(1998) by explicitly considering the role that releases of common information, in-

terpreted as annual earnings releases, have on belief convergence. The study shows

that learning from common information in a fixed learning regime, causes rapid con-

vergence of subjective beliefs. The convergence of beliefs on common information in

turn dictates the magnitude of maximum dispersion that asymmetric information

can cause, resulting in a monotonically decreasing maximum amount of dispersion.

Empirical estimations using data on all US listed companies between 1995-2010

confirm that observed levels of forecast dispersion exceed theoretically implied max-

imums when taking into account the amount of commonly observed information that

has become available through earnings announcements. Exceedance of theoretically

implied maximums for forecast dispersion is prominent when a company experiences

negative earnings.

The joint evidence of the study suggest that levels of dispersion in analysts’ forecasts

are too high to find theoretical support. Consequently asymmetric information alone

cannot yield observed levels of forecast dispersion.

The results have intuitive appeal, since dispersion increasing from asymmetric infor-

mation as in Barry and Jennings (1992) and Barron et al. (1998), implies increased

certainty. The evidence in this study instead suggests that dispersion resulting from

asymmetric information alone is not possible, and thus opens up possibilities for

interpreting increased dispersion as increased uncertainty. The study finally dis-

cusses potential pathways for such interpretations, involving agents restarting their

learning procedures, or agents acting as if the conditioning distribution is non-fixed.
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Svensk sammanfattning

Spridning i prognoser gjorda av finansanalytiker anses vanligen kunna förklaras

med en Bayesiansk modell, utvecklad av Barry och Jennings (1992) samt Barron,

Kim, Lim och Stevens (1998). Modellen visar hur spridningen i prognoser uppst̊ar

som ett resultat av den osäkerhet som analytikerna st̊ar inför. Den huvudsakliga

förutsättningen för att spridning mellan analytikers prognoser skall kunna öka, är

att informationsasymmetri ökar.

Denna avhandling utvidgar modellerna av Barry och Jennings (1992) samt Barron

et al. (1998) genom att explicit beakta hur publikt tillgänglig information, infor-

mation som tolkas uppkomma i form av företags resultatrapporter, måste p̊averka

konvergensen i analytikernas övertygelser (beliefs). Avhandlingen visar att inläran-

det som sker p.g.a. publik information i en fixerad Bayesiansk miljö leder till en

snabb konvergens i subjektiva övertygelser. Konvergensen i övertygelser som sker

p.g.a. publik information visar sig i sin tur diktera den maximala mängd sprid-

ning som den asymmetriska informationen kan orsaka, och detta leder till att den

maximala spridningsmängden m̊aste sjunka monotont över tiden.

De empiriska estimationerna i avhandlingen visar att den mängd spridning i prog-

noser som observeras i data överstiger den teoretiska maximimängden för spridning

i prognoser, d̊a man beaktar den mängd publik information som blivit tillgänglig

genom företagens resultatrapporter. Det visar sig även att överträdelser i förh̊allande

till de teoretiska maximiniv̊aerna för spridning i prognoser förekommer speciellt i sit-

uationer där ett företag rapporterar förluster. Data som används är Amerikanska

listade bolag under tidsperioden 1995 -2010.

Den sammanlagda bevismängden i avhandlingen tyder p̊a att de empiriskt observer-

ade niv̊aerna för spridning i analytikerprognoser är för höga för att kunna finna stöd

i de modeller som utvecklats för att förklara dem. Därmed kan inte den asym-

metriska informationen som vanligtvis används som en förklaring för en ökning i

spridningen av prognoserna, ensam åstadkomma de niv̊aer i prognosspridning som

de facto observeras i data.

Resultaten är intuitivt tilltalande d̊a en ökning i prognosspridning till följd av asym-
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metrisk information, s̊a som i Barry och Jennings (1992) samt Barron et al. (1998),

samtidigt även innefattar att analytiker blir säkrare i sina övertygelser d̊a sprid-

ningen i prognoser ökar. Resultaten ur denna avhandling hävdar istället att prog-

nosspridningen inte enbart kan bero p̊a asymmetrisk information, och detta öppnar

samtidigt möjligheten till att i själva verket tolka en ökning i prognosspridning som

ökad osäkerhet. Slutligen diskuterar avhandlingen möjliga banor för tolkningar av

ökad prognosspridning som involverar ökad osäkerhet. Detta kan ske genom att ana-

lytiker tvingas starta om sin inlärningsprocess eller genom att analytikerna använder

icke-fixerade sannolikhetsfördelningar i sin informationsmängd.
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Chapter 1

Introduction

1.1 Introduction

Professional financial analysts, who forecast firm earnings and issue buy and sell

recommendations, tend not to agree in their forecasts about the future. The dis-

agreement in their views about the future is readily observable in that the forecasts

they generate exhibit dispersion. This disagreement is illustrated in Figure 121. To

a layman disagreement about the future hardly comes as a surprise - since forecast-

ing the future is fraught with uncertainty, it is not difficult to imagine forecasters

having divergent views on the future. In rationally anchored theoretical models for

how financial analysts formulate their forecasts such as Barry and Jennings (1992)

and Barron et al. (1998), the link between disagreement and uncertainty is more

complex.

The models of Barry and Jennings (1992) and Barron et al. (1998) provide the stan-

dard setting for how analysts are thought to formulate their forecasts. Here, in the

context of the model, an agent is faced with two sources of uncertain information;

common and privately observed. Common, or public information is information

available to all agents, whereas private information is individual specific. All infor-

mation is normally distributed. The model assumes Bayesian learning, and implies

that an agent has a prior (uncertain) belief on the true value of the parameter he/she

is trying to learn. A noteworthy general feature of the Bayesian learning model is

that beliefs are updated over realizations. Upon receiving new information, the

agent uses the new information in conjunction with his/her prior belief, to arrive at

1See page 80.
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an updated, sharper belief on the parameter he/she is estimating. This is called the

posterior belief. When agents have different information sets, due to differential or

asymmetric information, their (posterior) beliefs differ. When the assumed setting

of the model is that of financial analysts, disagreement manifests itself as dispersion

in forecasts.

In the models of Barry and Jennings (1992) and Barron et al. (1998), serving

as the standard theoretical framework for analyzing forecasts, dispersion does not

directly measure the underlying uncertainty or risk. There will, for example, exist

no disagreement no matter how high the uncertainty is, if all agents share the same

information2. Consequently, in order for disagreement to exist within the context

of the model, agents need to be endowed with privately observed information and

dispersion in forecasts can only increase if there is an increase in private information

(information asymmetry).

Private information is the only factor that can yield increases in forecast dispersion

in the models of Barry and Jennings (1992) and Barron et al. (1998) and empir-

ical studies that observe increases in dispersion typically conjecture that private

information is the cause for increased dispersion. Examples where inferences are

drawn based on a rationale similar to the above, where dispersion in forecasts is

assumed to result from information asymmetry, include e.g. Lang and Lundholm

(1996), Adut, Sen and Sinha (2008), Ali, Liu, Xu and Yao (2009), Barron, Stanford

and Yu (2009). Careful theoretical analysis of the Barry and Jennings (1992) and

Barron et al. (1998) models however reveals that the aforementioned interpreta-

tion, where dispersion increases due to increased information asymmetry, nests a

somewhat counterintuitive consequence. When agents gain access to more privately

observed information, resulting in an increase in dispersion, the agents themselves

become more certain. In a Gaussian Bayesian learning model under asymmetric

information, increases in disagreement and increases in certainty are inherently two

sides of the same coin. The realism of this effect, where increases in dispersion imply

more certainty, an inherent feature of the Bayesian model3, is usually not specifically

addressed.

Theoretically, dispersion can only increase if agents are endowed with more private

information and as a result, intuitively linking increases in dispersion to increases

in uncertainty is contradicted by theory. Further, the Bayesian learning present in

the models of Barry and Jennings (1992) and Barron et al. (1998), not only limits

2This is of course in no means limited to the models of Barry and Jennings (1992) and Barron
et al. (1998), rather this is a standard result whenever agents are rational and information is
common.

3This is a feature of the Gaussian Bayesian learning model under asymmetric information.
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increases in dispersion to increased private information, but in a strict sense agents

can never become uncertain in their subjective beliefs. Increased certainty on new

information holds for all information, common and private and is a general feature

of Gaussian Bayesian learning. Yet, it seems that in reality, people can become more

uncertain in their beliefs.

In the context of financial analysts forecasting firm earnings, it appears that in some

states of the world, analysts do seem to believe that it is possible for the future of

a company to become more difficult to forecast, and thus more uncertain.

The suspicion that dispersion is linked to views of increased uncertainty can be ex-

emplified anecdotally by analysts’ written reports4 for companies with poor5 perfor-

mance, where analysts often refer to the futures of these companies with expressions

along the lines of ”decreased visibility”, ”weak outlook” or ”with visibility relatively

low”. These verbal descriptions, at least heuristically, seem to describe states where

the future has, simply put, become more uncertain.

The above, citing analysts descriptions on the future of weakly performing com-

panies, thus provides a hint at the possibility that analysts in reality can become

subjectively more uncertain about the variable they are forecasting. This however is

not possible under the theoretical models of Barry and Jennings (1992) and Barron

et al. (1998). In cases where these low visibility environments are associated with

increases in dispersion, the interpretation resting on the standard theory would be

that these increases in dispersion would have resulted from analysts having acquired

more private information. Again however, increased private information implies

increased certainty, not uncertainty.

It is this somewhat contradictory issue, where theory suggests increases in dispersion

imply more certainty but intuition and anecdotal evidence suggest dispersion implies

increased uncertainty, that this study aims at providing further evidence on.

1.2 Background

The literature using data on financial analysts is voluminous, especially in the con-

text of capital markets research in Accounting. This is exemplified in the preface

to the ”I/B/E/S Research Bibliography” by Brown (2000), where he notes that the

4Content analysis of selected, undisclosed analysts’ earnings reports. Analysts typically provide
these extensive written analyses along with their estimates and recommendations.

5This refers to companies either in loss territory or with a an outlook that is deteriorating,
where losses are subsequently observed ex post.
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I/B/E/S Research Bibliography gathers over 500 studies on analysts expectations

that make use of I/B/E/S data6. Studies surveying the literature on the use of

analyst data in various settings can be found in e.g. Givoly and Lakonishok (1984),

Brown (1993), Ramnath, Rock and Shane (2008).

Why are analysts forecasts important and widely used in research? Prices, including

those of stocks, theoretically equal discounted future payoffs (Cochrane, 2005). The

view that it is only the future prospects, not the past, that is important in the

purchase decision of a stock, is already present in work such as Graham and Dodd’s

Security Analysis from 1934. Anticipation, or expectations of the future are thus

key in the price or value of an asset. These fundamental views are also mirrored in

Cragg and Malkiel (1968): ”The price of a share (of common stock) is − or should

be − determined primarily by investors’ current expectations about the future value

of variables that measure the relevant aspects of a corporation’s performance and

profitability, particularly the anticipated growth rate of earnings per share.” In the

introduction to the I/B/E/S Research Bibliography” (2000), Lawrence Brown, also

mentions the views of both Graham and Dodd (1934) and Cragg and Malkiel (1968).

The first words of the introduction to the I/B/E/S Research Bibliography” (2000)

however embodies the fundamental importance of expectations in one short sentence:

”Expectations drive share price”.

It is thus expectations of the future that drives stock prices. Since expectations are

generally unobserved, the rationale for using financial analysts as objects of study,

is that data on financial analysts’ forecasts represent a unique proxy for the other-

wise unobservable investor expectations (e.g. Givoly and Lakonishok (1984), Brown

(1993), Bradshaw, Drake, Myers and Myers (2012) Keane and Runkle (1998)).

While analysts’ forecasts are important on a general level, as they serve as proxies for

unobserved investor expectations, this study specifically focuses on the variability

between the forecasts of analysts. Generally, measures capturing the spread or

variability of a variable are tied to notions of risk or uncertainty. Consequently

forecast dispersion, measuring the spread of reported forecasts by analysts, at first

glance corresponds well with an idea of uncertainty or risk. Thus, through studying

the dispersion in forecasts, one hopes to gain an understanding of the uncertainties

or perceived risks that analysts are facing. In the models for how analysts form their

expectations such as Barry and Jennings (1992) and Barron et al. (1998), it turns

out that dispersion in forecasts is not necessarily a direct function of the uncertainty

that analysts are confronted with.

6I/B/E/S is short for the Institutional Brokers Estimate System, gathering data on analysts’
earnings estimates since 1971.

4



There is also ample evidence that forecast dispersion is related to various empirical

phenomena. For example, dispersion in forecasts has been shown to be related to

the accuracy of the forecasts that analysts produce (Lang and Lundholm, 1996).

Forecast dispersion has also been shown to be related to both higher credit spreads

on corporate bonds (Guntay and Hackbarth, 2010), as well as worse credit ratings

(Avramov, Chordia, Jostova and Philipov, 2009). Furthermore, there is growing

evidence that dispersion in forecasts has implications for asset pricing. This follows

the Diether, Malloy, and Scherbina (2002) result that disagreement between finan-

cial analysts leads to lower cross-sectional stock returns. If one views disagreement

as a proxy for risk, this result is somewhat puzzling from a classical risk return

standpoint7. Follow up studies by Park (2005) and Yu (2011) establishes the neg-

ative relation between forecast dispersion and return on a portfolio level. Recent

(unpublished) work by Ali et al. (2009) provide evidence that the negative return

relation is driven by negative earnings surprises, whereas (unpublished) work by Xu

and Zhao (2010) find evidence that the dispersion negative return relation is driven

by idiosyncratic volatility.

The study of analysts’ forecasts is a well established field. This is exemplified by the

sheer volume of studies of analysts’ forecasts, seen in both the I/B/E/S Research

Bibliography (2000) and the survey papers by Givoly and Lakonishok (1984), Brown

(1993), Ramnath, Rock and Shane (2008) covering research in the field. Expecta-

tions are integral for the pricing of financial assets, hence studying analysts’ fore-

casts (proxies for expectations) can provide answers on the link between information,

expectations and valuation. Dispersion in forecasts is superficially linked to uncer-

tainty or risk, and dispersion in forecasts has been shown to be empirically linked to

various phenomena, seen in the short review in the preceding paragraph. Yet, there

exists something of a disconnect between the predictions from the main theoretical

models that model the emergence of forecast dispersion, Barry and Jennings (1992)

and Barron et al. (1998), where dispersion implies certainty, and interpretations of

dispersion as risk or uncertainty.

1.3 Formulation of the problem

Forecasts exhibit dispersion. This can be seen in Figure 128. In theoretical mod-

els for how financial analysts formulate their forecasts such as Barry and Jennings

7Diether et al. (2002) therefore reach the conclusion that dispersion cannot be used as a proxy
for risk. Instead, the authors infer that the result is driven by a Miller (1977) type of effect.

8See page 80.
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(1992) and Barron et al. (1998), dispersion in forecasts can only increase when

analysts gain access to more private information. Indeed, Barron et al. (2009) re-

visit this idea in a recent study, conjecturing, in an earnings announcement setting,

that ”[E]arnings announcements increase information asymmetry, on average, be-

cause analysts and investors develop new private information in conjunction with

the announcement”. This notion of increased production or acquisition of private in-

formation being the driver behind increases in dispersion, will henceforth be labelled

the private information acquisition hypothesis.

The anecdotal evidence from analysts’ written reports finds analysts citing the out-

look for poorly9 performing companies in particular, as having low or weak visibility.

The fact that analysts find the futures of some companies, especially those perform-

ing poorly, as having low or weak visibility, points toward analysts seeing increased

uncertainty about the future of the companies. It also turns out that companies

reporting losses have associated levels of dispersion that are on average four times

higher than companies reporting positive earnings10. If the private information

acquisition hypothesis is valid, and since dispersion is associated with losses, the

implication is that agents do not become more uncertain around negative earnings,

rather they develop more private information and become more certain about the

future of the firm. Such a hypothesis would, however, contradict both a heuristic

idea of negative earnings indicating more uncertainty and a notion of low or weak

visibility.

The problem is thus that the theory that describes analyst behavior, such as Barry

and Jennings (1992) and Barron et al. (1998), states that dispersion in forecasts

can only increase if information asymmetry increases, simultaneously implying a

reduction in uncertainty. At the same time, dispersion is high in environments

characterized by negative earnings, where analysts describe the futures of poorly

performing companies as uncertain. This represents an obvious contradiction, since

analysts say they become more uncertain, but theory suggests they become less

uncertain. This contradiction between theory and evidence is exacerbated by the

fact that empirical work, especially in Accounting Research, uses the prediction of

increased information asymmetry as an explanation for observed dispersion.

On a more specific theoretical level, it seems that an important factor affecting

models such as Barry and Jennings (1992) and Barron et al. (1998), has been largely

left unconsidered. This factor consists of how information must affect learning over

9A poorly performing company is loosely defined at this point as one that will report negative
earnings ex post.

10See e.g. Table 3, Panel (A) on page 87.
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time. An explicit application of the Barry and Jennings (1992) and Barron et al.

(1998) style models to a time series setting has, to the best knowledge of the author,

not been previously addressed in research. The models of Barry and Jennings (1992)

and Barron et al. (1998) are very general and could in some sense be thought to

already encompass a time dimension, in terms of how agents update over a sample

as in DeGroot (1970). The models of Barry and Jennings (1992) and Barron et al.

(1998) however contain no clear mentioning that they should be interpreted as such.

Neither is there any indication of how and at what rate, information should become

available to agents.

This study identifies a theoretical gap, in that the models for how analysts formulate

their forecasts, such as Barry and Jennings (1992) and Barron et al. (1998), do not

explicitly take into account the effect of convergence in beliefs that occurs sequen-

tially over annual earnings announcements (common information). The study conse-

quently develops a representation of the asymmetric information Gaussian Bayesian

learning model of Barry and Jennings (1992) and Barron et al. (1998), a model that

specifically accounts for the release of common information over time. The model

yields restrictions on the magnitude of forecast dispersion that can be used to test

the underlying theory. The compatibility of observed levels of dispersion with theo-

retically implied levels has implications for whether increases in private information

can be thought to unambiguously explain increases in forecast dispersion.

Testing for whether forecast dispersion conforms to the theoretical bounds in essence

equates to testing the underlying model itself. Due to the general inherent difficulty

of identifying what information agents are facing, or what information is contained in

their information sets, such direct tests in these settings are not common. There thus

exists an empirical gap in testing if the observed level of dispersion are compatible

with theory. Testing the compatibility of observed levels of dispersion with those

of theory is possible through the novel idea in this study, where levels of dispersion

can be compared to the amount of common information that agents have updated

over.

While some of the tests performed in this study seem superficially related to those

of other authors (e.g. Adut et al., 2008), the tests are very different in spirit and in

the set of questions they set to answer. E.g. Adut et al. (2008) use the underlying

theory of dispersion increasing in information asymmetry, in their case the Barron

et al. (1998) version, in explaining empirically observed phenomena, i.e. forecast

dispersion. The stance of this study on the other hand is to test the performance of

the Bayesian learning model, even though the variables used in the tests are similar

to e.g. those used by Adut et al. (2008). Ideologically (in terms of testing aspects
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of underlying theory), the tests in this study are much more similar in spirit to e.g.

Keane and Runkle (1990), and Keane and Runkle (1998), who generally assess ratio-

nality of forecasts and the unbiasedness of predictions. This study however not only

differs from e.g. Keane and Runkle (1990), and Keane and Runkle (1998) in terms

of methodology, but takes rationality as given, and tests whether observed levels

of forecast dispersion can be generated by the asymmetric information Gaussian

Bayesian learning model.

Thus, the ultimate empirical question in the study is to test the performance of

the underlying rational learning model in order to provide answers on the theoret-

ical question of whether (increases in) forecast dispersion must imply increases in

information asymmetry and individual certainty.

1.4 Aim and Methods

Increases in the dispersion of analysts’ forecasts are typically attributed to increases

in information asymmetry. In a Bayesian learning model under asymmetric informa-

tion, such as that of Barry and Jennings (1992) and Barron et al. (1998), increases

in information asymmetry occur due to more privately observed information which

leads to individual agents becoming more certain in their beliefs. Consequently,

upon observing increases in dispersion, the implicit (standard) conclusion is that

agents on an individual level become more certain in their beliefs. This study aims

at analyzing in detail if levels of dispersion can be explained by asymmetric in-

formation as the theory of Barry and Jennings (1992) and Barron et al. (1998)

predicts.

The purpose of this study is twofold, and consists of an interlinked theoretical and

empirical part.

The theoretical purpose of the study is to perform an extension of the model of

Barry and Jennings (1992) and Barron et al. (1998) for how financial analysts are

thought to formulate their forecasts. The contribution lies in explicitly taking into

account the amount of common information that financial analysts become endowed

with through earnings announcements. The idea is to keep track of the amount of

learning (convergence of individual beliefs) that occurs from common information

and subsequently check what magnitudes of disagreement due to private information

the model can sustain.

The empirical purpose of the study is to test the developed model extension that

8



takes into account the amount of common information that financial analysts must

become endowed with through earnings announcements. Specifically, the study aims

at empirically assessing whether derived maximum bounds for dispersion implied by

the model extension are violated in the data. If the magnitude of disagreement

breaches theoretically predicted values, it rejects the learning model and implies

that financial analysts do not necessarily always have to become more certain in

their beliefs.

To address the issue on whether private information can yield sufficient magnitudes

of disagreement, the study starts by developing a model11, that retains all the el-

ements of Barry and Jennings (1992) and Barron et al. (1998) and shows how

uncertainties and forecast dispersion evolve over time as analysts must gain access

to increasing amounts of common information through annual earnings announce-

ments. Since private information is unobservable, cumulative common information

constitutes a benchmark for the size of disagreement. Here, the study is guided by

the intuition of Brown (1993), who advocates that ” Bayesian theory suggests that

earnings announcements generally increase the precision of individual’s estimates of

future earnings”, emphasis added.

While the model aims at preserving the elements of Barry and Jennings (1992)

and Barron et al. (1998), the nature of the public information is such that it is

disseminated slowly over time12. This has implications for the evolution of forecast

dispersion over time, and a secondary objective of this study is to illustrate this

evolution in detail.

More importantly, the model, or representation, yields restrictions for how large fore-

cast dispersion can become, at maximum, for each period. Through the restrictions

for maximum dispersion, it is possible to evaluate whether the private information

acquisition hypothesis holds. This has direct implications for whether increases in

dispersion can be interpreted as increases in certainty, as is the case under the pri-

vate information acquisition hypothesis, or whether the model is too restrictive and

interpretations involving increased uncertainty are more likely candidates.

A detailed analysis of forecast dispersion in a setting where common information is

released over time through earnings announcements, along with the implied maxi-

mum bounds for forecast dispersion, define the theoretical contributions of the study.

11it is more fitting to use the term representation or application, since the intention is not to
state the model in mathematical terms is a new model. The innovation lies in in the way the model
is interpreted to apply in a setting of a sequence of earnings announcements.

12This can be seen as a piece by piece construction of the sample used in reaching the posterior
in e.g. DeGroot (1970)
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In order to evaluate the performance of the model, and consequently that of the

private information acquisition assumption, empirical tests are carried out for the

derived maximum bounds for dispersion. The evaluation of the maximum bound

rests crucially on identification of the uncertainty in the public information. Con-

siderable attention is given to this matter such that confidence in identification is

reached.

Estimations are carried out on a sample consisting of all US exchange listed com-

panies from 1995-2010 that have data available in Worldscope and I/B/E/S. The

contradiction between heuristically perceived increases in uncertainty and increases

in dispersion is epitomized in negative earnings environments. The empirical assess-

ment of the maximum bounds therefore additionally employs negative earnings as

causes for potential exceedance of the maximum bounds for dispersion.

The empirical estimations themselves consist of standard pooled OLS regressions,

but the novelty lies in a direct mapping of theoretical concepts into observable

quantities in the form of an uncertainty ratio. The derived maximum for dispersion

is a function of the exogenous uncertainty agents are assumed to face and the number

of periods. Dividing through by exogenous uncertainty yields the uncertainty ratio,

forecast dispersion in relation to exogenous uncertainty, which is a simple function of

the number of periods. The uncertainty ratio, as measured in the data and used as

a dependent variable in the empirical estimations, has a theoretically dictated exact

maximum threshold value. By controlling for the (minimum) amount of periods

that can be observed in the data, the theoretically implied maximum value for

the uncertainty ratio is trivially computed. By performing post estimation Wald

tests for implied threshold values, the significance of the potential exceedance of the

theoretical bounds can be assessed.

The empirical aspiration of the study is thus to test whether observed levels of fore-

cast dispersion are compatible with the maximum bounds that take into account

the amount of information that agents have gained access to through annual earn-

ings announcements. The conformity of dispersion in forecasts with the maximum

bounds, provides answers on the applicability of the Bayesian learning model un-

der asymmetric information when common information dissemination is accounted

for. Failure of the maximum bounds to hold implies that the learning model nest-

ing increased subjective certainty does not hold, thus giving space to explanations

involving actual increased subjective uncertainty.

Finally, the study aims at providing a supplementary mechanism that is able to

explain larger increases in forecast dispersion, a mechanism nesting a notion of
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increased uncertainty without sacrificing rationality.

1.5 Theoretical Landscape

The standard (rational) theoretical approach to model how financial analysts formu-

late their earnings forecasts, typically utilizes a Bayesian learning approach, where

an agent learns about a parameter through sampling from a normal distribution.

This approach originates in DeGroot (1970). See Eq. (1) on page 15. In the con-

text of financial analysts’ forecasts, an updating equation such as Eq. (1) can be

found in e.g. Barry and Jennings (1992), Barron et al. (1998), and Ottaviani and

Sorensen (2010). When the signal agents are receiving is understood to be private,

in the sense that other agents do not observe its realization, forecasts differ. Barry

and Jennings (1992) are the first to derive explicit formulas for the dispersion in

forecasts in setting equivalent to the above, whereas Barron et al. (1998) augment

the analysis by adding the role of the forecast error. While this study does not

focus on the role of the forecast error, the study of Barron et al. (1998) is added as

a second study that will be referred to as ”benchmark” studies regarding forecast

dispersion.

Naturally there exists other ways of approaching forecast dispersion or disagreement

from a theoretical point of view. The study proceeds by reviewing some of these

approaches below. The model of Abarbanell, Lanen and Verrecchia (1995) is a ra-

tionally based equilibrium model, ultimately aimed at analyzing volume and price

behavior around earnings announcements. While the model contains forecast dis-

persion as an effect, the model is distinct since forecasts are drawn exogenously, a

fact emphasized in Barron et al. (1998). Also, Abarbanell et al. (1995) are explicit

about the fact that the model specifically contains two periods.

An ideologically contrasting starting approach is taken in the models of Harris and

Raviv (1993) and Kandel and Pearson (1995), analyzing volume and trade behavior

resulting from differences in beliefs/opinions. While the models are not focused on

explaining forecast dispersion, they are related in the sense that they incorporate a

theoretical mechanism that results in differing beliefs. This mechanism is however

different from the one employed in this study, since the distinguishing assumption in

Harris and Raviv (1993) and Kandel and Pearson (1995) is that agents are allowed

to interpret public information differently.

A similar mechanism for belief diversity is employed in Morse, Stephan and Stice

(1991). Morse et al. (1991) is an early study close to the empirical setting of this
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study in that Morse et al. (1991) find that dispersion in forecasts tends to increase

following earnings announcements13. Theoretically, the proposed model by Morse

et al. (1991) is however different from the rational Bayesian setting of this study

where common information leads to belief convergence. Agents in the Morse et

al. (1991) model are allowed to interpret a single common realization differently

and this makes the model of Morse et al. (1991) to be ideologically related to the

approach of Harris and Raviv (1993) and Kandel and Pearson (1995).

Furthermore, studies such Diether et al. (2002) and Yu (2011), invoke the rationale

of the model of Miller (1977) in explaining empirical results regarding forecast dis-

persion. Miller (1977) presents the argument that as long as the entire supply of a

security can be absorbed by a minority of potential purchasers (and pessimists face

short sale constraints), the market price will be above the mean evaluation of the

potential investors, and thus represents the views of the most optimistic investors14.

However, since the Miller (1977) model conditions on the existence of heterogeneity,

and lacks a clear quantitative belief diversity mechanism that depends on informa-

tion, it is also distinct from the rational, asymmetric information approach invoked

in this study. It is also somewhat unclear how disagreement among analysts would

increase from them being constrained from absorbing the supply of securities.

Finally, Johnson (2004) develops a model for the relationship between forecast dis-

persion and expected returns in a continuous time setting. The model rests on the

idea that fundamentals are unobservable, and information about the fundamentals

adds a separate layer of (idiosyncratic) uncertainty. This, in combination with a

contingent claims analysis of capital structure, leads to decreasing expected returns

for higher levels of idiosyncratic (parameter) risk. One important differentiating fac-

tor can be found in Johnson (2004): ”Second, I do not explicitly model information

production/acquisition or capital structure choice, which are both clearly endoge-

nous aspects of the problem”. The former is exactly the purpose of the modeling

here.

It is worth noting that in the ”benchmark” models, and consequently in the rep-

resentation developed in this study, it is assumed that forecasters honestly report

their expectations in the forecasts they publish. Indeed, in using financial analysts

forecasts as proxies for expectations, this assumption would be implicit, unless the

13The evidence from Morse et al. (1991) is subsequently questioned in Brown and Han (1992),
who argue that dispersion only increases following earnings announcements for the largest decile
of earnings surprises.

14A further implication of the Miller (1977) model is thus that an increase in the divergence of
opinion will increase price, and thus as is standard, and noted by Yu (2011), lead to a subsequent
lower return.
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converse is pointed out. An example can be given in the model of Ottaviani and

Sorensen (2010), where forecasters act strategically.

A final differentiating factor, that unfortunately makes comparing approaches some-

what difficult, stems from distributional assumptions regarding uncertainty. Many

models, representing both the rational and the behavioral approach, use a (at least

partial) binary setup. In a binary setup, even where rationality is maintained, new

information can actually reduce the confidence in an estimate, whereas the (rational)

fully Gaussian case never allows for this - new information must, by construction

increase the precision on the subjective confidence in the estimate (Chamley, 2004).

Different approaches to model disagreement exist, as the short theoretical review

demonstrates. Since the purpose in this study is to explore issues relating to the

private information acquisition hypothesis and the embedded predictions regarding

subjective uncertainty, the model in this study is developed to closely resemble those

of Barry and Jennings (1992) and Barron et al. (1998). The underlying model is thus

a rational Bayesian model, subject to asymmetric information where all information

is distributed normally and the informative distribution remains fixed throughout

what is interpreted as the time dimension. A discussion on the applicability of

alternative explanations driving forecast dispersion is left for the concluding section

when the performance of the model has been investigated empirically.

1.6 Outline of Study

Chapter 2 commences by introducing the standard theory of Bayesian belief up-

dating. The analysis is then augmented with asymmetric information, after which

results pertaining to the variance of beliefs (forecast dispersion) are presented. The

study then proceeds by showing how the standard Bayesian belief updating model

under asymmetric information can be applied in an earnings announcement setting

that spans multiple periods. The problem is modelled in a specific setup where

both public and private signals are drawn each period. Putting structure on private

information in addition to that of public information aids in analyzing the behavior

of forecast dispersion, which is carried out in Chapter 3, but for the most important

results, private information is treated as a free parameter.

Chapter 3 aims at illustrating the dynamic behavior that forecast dispersion can

take. This is best illustrated by anchoring the behavior of forecast dispersion to

the specific setup where both public and private signals are drawn each period
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as a benchmark. Additional changes to private information endowments are then

carried out. By calibrating the model to reasonable values that can be observed

from empirical data, the chapter illustrates more intuitively the maximum bounds

for forecast dispersion, as well as under what conditions dispersion in forecasts can

be thought to increase.

Chapter 4 is aimed at empirical assessment of the multiperiod representation devel-

oped in Chapter 2. More specifically, the maximum bounds for dispersion, derived in

Chapter 2, are tested in the data. Estimations are carried out on a sample consisting

of all US exchange listed companies from 1995-2010, where companies are required

to have data available in Worldscope and I/B/E/S. Considerable effort is exerted

towards providing proper identification of the uncertainty that agents in the model

are assumed to condition on. Chapter 4 also considers and tests and alternative

hypothesis for the observed levels of forecast dispersion.

Chapter 5 summarizes both the theoretical and empirical findings. Chapter 5 also

discusses what implications the results have on agents’ subjective uncertainties.

In addition, the study assess how the empirical results are related to both other

theoretical approaches, as well as that of the alternative hypothesis of Chapter

4. Chapter 5 also discusses how the evidence of the study can be positioned in the

context of the asset pricing evidence in the literature that is related to the dispersion

in forecasts. Finally, the chapter concludes and makes explicit the contributions that

this study makes.
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Chapter 2

Theory

2.1 Bayesian Belief updating

This section starts by introducing the standard ”closed”1 general Bayesian frame-

work for updating beliefs, to illustrate in its simplest form how agents filter infor-

mation through a belief updating equation to arrive at an updated expectation and

how subjective uncertainty is affected. All the analysis in this study will be set in

a Gaussian framework. Since agents are assumed to honestly report their expecta-

tions, expectations of the agents in the model are analogous with forecasts made by

analysts.

The general form of how a Bayesian agent processes and updates his beliefs of an

unknown scalar parameter θ over new information is as follows. Initially, the agent

starts out with a prior belief. The prior belief about θ is normal, and summarized

by θ ∼ N(µ0, τ
2
0 ). Next, the agent receives a signal (observation/realization) from

a distribution informative on θ, parameterized as y ∼ N(θ, σ2) . This is analogous

to stating that y = θ + η, where η ∼ N(0, σ2). Note that the agent is assumed to

know σ2. The agent now updates his/her belief in accordance with Baye’s rule as:

µ = E[θ|y] =

1
τ20
µ0 + 1

σ2y

1
τ20

+ 1
σ2

. (1)

This is the general form of the posterior mean, resulting from updating a prior (nor-

mally distributed) belief with a realization from a normal distribution centered on

1Standard models of Bayesian belief updating will be referred to as ”closed” or ”fixed”. With
the risk of not giving a fully rigorous definition, what is implied by closed or fixed is the standard
assumption that the parameter to be estimated is unknown, but can be represented by a probability
distribution. This distribution is assumed to remain ”fixed” over time. This is not the same thing
as the parameter, θ, being fixed in the Frequentist sense.
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the true mean2. It can be noted that the posterior is actually a posterior distribution

of θ, where the posterior distribution in this case is normal, DeGroot (1970). The

posterior variance, following DeGroot (1970), is given by:

τ 21 =

(
1

τ 20
+

1

σ2

)−1
(2)

Thus, the agent’s full posterior distribution of θ, conditional on y, is:

θ ∼ N

(
1
τ20
µ0 + 1

σ2y

1
τ20

+ 1
σ2

,

(
1

τ 20
+

1

σ2

)−1)
(3)

This can of course be summarized by: θ ∼ N(µ, τ 21 ).

Generally, the decision rule to forecast the mean can be shown to minimize squared

error loss (See e.g. Ottaviani and Sorensen, 2010; DeGroot, 1970). The decision

rule to forecast the mean is implicit and standard in e.g. the models of Barry and

Jennings (1992) and Barron et al. (1998). The Bayesian forecasting procedure,

or decision rule, invoked here implicitly uses squared error loss as a loss function

and results in the minimization of posterior risk. As a consequence, it is therefore

implicitly assumed that utility functions are quadratic (Berger, 1985; Särkkä, 2013).

Since some authors referred to in this study (e.g. Prendergast and Stole, 1996) prefer

a variance representation instead of a precision representation, and uncertainties

have a natural analog in variances, it is perhaps useful to note that an equivalent

representation of equation (3) in terms of variances, is given by:

θ ∼ N

(
τ 20 y + σ2µ0

τ 20 + σ2
,
τ 20σ

2

τ 20 + σ2

)

The uncertainty about θ, after receiving a signal (and conditioning on the prior),

decreases mechanically with the amount 1/σ2, DeGroot (1970). This property of

the Bayesian updating regime says that the uncertainty about the parameter that

each agent faces, can never increase3. Another way of stating this is that the

variance of the posterior is always smaller than the variance of the prior, that is

τ 20σ
2/(τ 20 + σ2) < τ 20 , as made explicit by Prendergast and Stole (1996). As the

2The study does not venture further into why the belief updating equation takes this specific
form. For a thorough analysis of how this (standard) result arises through the use of the likelihood
function, see eg. DeGroot (1970), Berger (1985) or Gelman, Carlin, Stern and Rubin (2004).

3This is the case if agents are pure Bayesians, they know exactly the distributional properties
of their signals and the true mean of the process exists. These assumptions are relaxed later when
explaining the empirical results.
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study moves on to discuss disagreement, it is important to note that at this point

the analysis specifically concerns individual beliefs.

A useful feature concerning the signals is their linear additivity. If an agent receives

an additional signal from the same distribution as his/her prior, in the context of

equation (2), his/her updated uncertainty about θ would be τ 21 = (1/τ 20 + 1/τ 20 )−1 =

(2/τ 20 )−1 = τ 20 /2. Receiving additional signals of the same magnitude, results in an

evolution of the subjective belief as depicted in Figure 1 on page 44. This also makes

clear that multiple signals can be summarized by just one signal. This is a useful

property in dealing with private signals in the model development later: Analysts

could also be thought to receive any number of private signals during e.g. any

interim period between annual earnings announcements, but the total information

content of these signals can be represented by just one signal.

2.2 The standard model

This section presents the standard model of belief updating with common and pri-

vate information that leads to differing beliefs between agents. The results are very

general and do not take a specific stance on the exact evolution of information over

time. The development closely follows that of Barry and Jennings (1992) and Barron

et al. (1998).

There are N agents in the economy (indexed by i:j,k,l,...,N) who forecast an unknown

earnings variable θ. Prior beliefs about θ are summarized by θ ∼ N(µ0, τ
2
0 ). As

the model development proceeds with using precision4 (inverse of variance) instead

of variance, it can be noted that τ 20 = 1/h ⇔ h = 1/τ 20 . Initially, all available

information is common and thus assumed to be contained within the prior. The

average, or consensus, belief is E[θ] = µ0 = utj = utk, that is, everyone makes the

same forecast from the commonly available information.

Apart from observing commonly available information, agents also have access to

private information (costlessly). Private information is introduced in the standard

fashion5; that is, as a signal, zi, informative on θ. In particular, zi ∼ N(θ, ν2i ). This

4The choice of variance or precision is obviously one of preference, however the precision formu-
lation has a somewhat more direct intuitive interpretation; an observation is directly weighted by
its corresponding signal precision, see e.g. Chamley (2004). Throughout this study, both precisions
and variances will be used.

5Here, the signal shows a dependence on i, that is the signal variance is allowed to be specific to
each agent. However, in the later analysis of the dispersion of forecasts, a simplifying assumption is
made where all agents have access to the same distribution. The consequences of this is discussed
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is of course equivalent with stating, in the more commonly seen form: zi = θ + εi,

where εi ∼ N(0, ν2i ). Working with precisions instead of variances as before: ν2i =

1/si ⇔ si = 1/ν2i .

After observing their signals, agents update their beliefs in accordance with Bayes’

rule, and agent i’s belief is given analogously to equation (1), as:

ui = E[θ|zi] =

1
τ20
µ0 + 1

ν2i
zi

1
τ20

+ 1
ν2i

(4)

The posterior variance of agent i is again analogous to equation (2) and is given by:

τ 21i =

(
1

τ 20
+

1

ν2i

)−1
(5)

Thus, agent i’s posterior distribution of θ, conditional on zi, is:

θ ∼ N

(
1
τ20
µ0 + 1

ν2i
zi

1
τ20

+ 1
ν2i

,

(
1

τ 20
+

1

ν2i

)−1)
(6)

Since agents receive different signal realizations, their individual posterior means (or

forecasts) will differ, that is: ut2j 6= ut2k. This is the mechanism that leads to the

divergence of beliefs. However, as most of the results will be derived in a setting

where all private information is of equal precision6, that is ν2i = ν2∀i, it is useful to

note that the existence of differential beliefs does not depend on differential precision

of private information.

2.3 Properties of agents’ beliefs

The consensus, or mean belief ū, is simply defined, as in Barron et al. (1998), by

the sample average of individual beliefs ui:

ū =
1

N

N∑
i=1

ui

later. (The signal realizations will naturally differ in all setups in order to induce information
asymmetry).

6Barron et al. (1998) derive many of their predictions on forecast dispersion under this as-
sumption. Furthermore, in their footnote 8, they motivate this by stating that ”most empirical
test for differences in the magnitude of forecast error across analysts have failed to find significant
differences ”.
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The extent to which these beliefs vary, is naturally measured by the sample variance

of the beliefs around their mean, as in Barron et al. (1998):

d =
1

N − 1

N∑
i=1

(ui − ū)2 (7)

This represents the diversity of beliefs.

Note that equation (7) is the sample variance. In order to make predictions about

what the expected diversity of beliefs will be, it is natural to define a diversity

measure, V , to be the expected value of the sample variance7. Thus:

var(ui) = V = E[d] = E

[
1

N − 1

N∑
i=1

(ui − ū)2

]
(8)

Defining diversity in terms of sample variance has an advantage in cases where one

wishes to analyze the effect of correlated draws from the signal distribution.

2.4 Properties of belief diversity

Assuming all agents face the same uncertainty, that is ν2i = ν2∀i, diversity of beliefs

can be shown to take on the following specific form,

Proposition 1:

V =
ν2τ 40

(ν2 + τ 20 )2
(9)

Proposition 1 is the specific form of the expected diversity of beliefs, or dispersion

in forecasts, after agents have observed their signals, expressed in terms of τ 20 and

ν2, the prior and signal variance, respectively. This result is derived by both Barron

et al. (1998), and Barry and Jennings (1992). This corresponds to equation (19)

on page 427 in Barron et al. (1998), and equation (5) on page 172 in Barry and

Jennings (1992). See Appendix B for a lengthy proof of Proposition 1.

7See Barron et al. (1998) for a discussion of this and note that Barry and Jennings (1992) also
define diversity this way. As a side note, it is perhaps worth pointing out that V as defined here
and in Barry and Jennings (1992) corresponds to the definition of ”D” in Barron et al. (1998). V ,
as defined in Barron et al. (1998) in turn corresponds to the posterior variance, given here in e.g.
Eq. (2) and Eq. (5).

19



Appendix B derives the expected variance of beliefs (ui’s) using the precision rep-

resentation given in equation (4). Thus, the final result,

E[var(ui)] =
s

(h+ s)2
, (10)

is exactly as equation (19) on page 427 in Barron et al. (1998). Since the above

representation uses precisions instead of variances, rewrite in terms of variances,

where h = 1/τ 20 and s = 1/ν2, yielding:

E[var(ui)] =
1
ν2

( 1
τ20

+ 1
ν2

)2

Since τ 20 and ν2 are positive, the above expression, after some algebra, reduces to

equation (9).

In order to see the equivalence between Proposition 1, and equation (5) on page 172

in Barry and Jennings (1992), set τ 20 = σ2/n0, and ν2 = σ2/n. Then, simply plug

into equation (9):

V =
(σ

2

n
)(σ

2

n0
)2

[(σ
2

n
) + (σ

2

n0
)]2
,

which after some algebraic manipulations, yields:

V =
nσ2

(n0 + n)2
=
n

n

nσ2

(n0 + n)2
=
σ2

n

[
n

(n0 + n)

]2
,

where the last result, V = (σ2/n)[n/(n0 + n]2, equals equation (5) on page 172 in

Barry and Jennings (1992), QED.

2.5 The role of the prior mean

Proposition 1 shows that belief diversity (and consequently forecast dispersion, in

the cases where forecasts are assumed to be honestly reported expectations/beliefs

by agents who act in a non-strategic manner), is completely determined by the two

sources of uncertainty facing the agents; common uncertainty (prior variance), τ 20 ,

and private uncertainty (signal variance), ν2. A consequence of Proposition 1, that

becomes clear immediately, is that the diversity of beliefs does not depend on the

prior mean.
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This is interesting since a subset of the empirical tests analyzes the association

between forecast dispersion and negative realizations of earnings, the latter which is

information that reasonably constitutes commonly available information. The above

makes clear that there exists no direct mechanism that links the two. This can also be

illustrated by a situation where agents first observe a draw from common information

(earnings) and a private signal, which is shown in the example of Appendix A.

The example in Appendix A provides the intuition for the fact that common infor-

mation, i.e. earnings, cannot directly affect the diversity of beliefs. This can also be

seen in a more thorough context in Appendix B, in the midst of the derivation of

Proposition 1. Appendix A also demonstrates some of the modeling elements that

are used in the following sections, in the modeling of the behavior of belief diversity

applied to earnings releases in a time series setting.

To re-iterate, the diversity of beliefs depends on the perceived uncertainty in the

information that agents have (will have). This is characterized by the variance. The

particular feature of the Bayesian setting however, is that an agent, after having

constructed a prior, updates over a (one at a time in a sense) realization that arrives

from the informative distribution, the variance of which is known to the agent. The

”value” of the realization however, does not affect how his/her updated perceived

variance of the estimated parameter evolves. The dispersion in forecasts is again

affected through the agent’s (agents’) updated belief certainty, which in turn is a

direct input into the formula for the dispersion in beliefs in the aggregate.

2.6 New dynamics

The analysis up until this point has been purposely vague on the exact nature

of information dissemination and uncertainty dynamics over time. The result of

Barry and Jennings (1992) (and Barron et al., 1998) in Proposition 1 describes

how diversity of beliefs depends on the two sources of uncertainty facing the agents,

namely common and private information. The representation of Barry and Jennings

(1992), follows in their words, ”the suggestion by Raiffa and Schlaifer (1961) that

a natural conjugate prior or posterior distribution has an interpretation in terms of

”equivalent sample information.” ”. Since private information in Barry and Jennings

(1992) is specified by8 xi ∼ N(µ̃, σ2/n), taking the derivative of V with respect to

n, (and increasing n) has the interpretation of increasing the quality of private

8In their notation. There is actually a i subscript on n, implying that the correct form would
have ni instead of n, but since the analysis of the derivatives assumes that all agents have access
to the same private information, the subscript is left out at this point already.
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information.

∂V/∂n = σ2(n0 − n)/(n0 + n)3

Since this is positive for n < n0, it is the case that diversity can increase if more

private information is added (Common, or public information in Barry and Jennings

(1992) is given by x0 ∼ N(µ̃, σ2/n0)). It is this feature that is behind the ”private

information acquisition hypothesis”. However, taking the derivative of V wrt n0 is

strictly negative for all values/combinations of common and private information.

∂V/∂n0 = −2nσ2/(n0 + n)3

This again has the interpretation of increasing common information (from the same

distribution), by adding observations, through increasing n0.

It thus seems that indeed, diversity can increase if agents gain access to more private

information 9. Simultaneously however, there exists an effect of diversity decreasing

monotonically with common information. Since over time, a minimum require-

ment should be that agents receive more and more common (public) information,

it appears to be too early to state whether increasing private information can yield

increasing diversity in sufficient amounts, without simultaneously considering the

restriction of continuously increasing common information. Thus, in order to fully

specify the evolution of forecast dispersion over time, there is a need for a model

that takes into account the speed of convergence on common information over time.

Whether private information can give rise to required (observed) levels of forecast

dispersion, can only be fully assessed after controlling for the rate of convergence on

public information.

This is the very issue that this study sets out to explore next, that is, to develop

a model for the dynamics of belief diversity over time, given reasonable constraints

on common information dissemination.

2.7 Multiperiod convergence

The intuition is to model the information dissemination process in a way that

matches how information about company earnings is released to the market. For

simplicity, it will be will assumed that this happens only annually, that is through

9A requirement for this is also that the starting private information is vague.
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companies’ annual earnings releases (naturally, this could be extended to quarterly

information as well). At the same time however, this also seems to be a minimum

requirement for realism - since new information de facto is released through earn-

ings announcements, it would be unrealistic in this setting to start by endowing

agents with commonly available information in the priors, but then proceeding by

only adding private information (For an example of such a model, in a completely

different setting, see e.g. Prendergast and Stole, 1996). In periods smaller than

one year, this could be the case, if agents start off with all historical information,

including the latest earnings, and then receive only private signals throughout the

interim period (this can of course be represented by simply one signal). Once the

next year’s earnings announcements are made available however, this information

must be thought to have at least a common component, and should be included in

the model as an addition of common information that agents take into account in

formulating their forecasts.

There exist further reasons, apart from the above, that seem to suggest that the

correct way to analyze the learning behavior and the resulting (potential) disagree-

ment, is through a model that encompasses multiple periods. To exemplify, Brown

(1993) notes that ” Bayesian theory suggests that earnings announcements generally

increase the precision of individual’s estimates of future earnings” (emphasis added).

It is difficult to see how this intuition would apply to the learning process, unless it

is implied that learning is connected to over time10.

The idea of the model is then that at each period, agents get endowed with both

common and private information. In the (arbitrary) starting point, there exists

common information represented by the prior, and some private information. There

is no need to add a separate earnings announcement that constitutes a draw from

common information in the beginning, since as illustrated in the example in Ap-

pendix A, the prior can be assumed to already contain this information. Then,

for each year (period), both common information and private information will be

added, which agents will subsequently update over. Common information, y, will

be assumed to be drawn from a distribution, the moments of which (specifically

the second moment) are given by those of the historical record11. In the subsequent

analysis, this will be treated (by the economist) as a fixed and observable parameter.

10This could of course be done easily by simply stacking a sequence of disconnected learning
periods after one another. The problem however then becomes that learning only occurs within
a period, whereas agents would forget the information just learned when starting the following
period.

11Obviously, the model in no theoretical way depends on this assumption. It is mentioned here
only in the sense of ”setting the scene”, that is giving the intuition for how the model maps to
reality.
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Private information, z, will be the variable that will remain as a free parameter12,

where changes in the parameter will be used to study the sensitivity of the model

in later stages.

2.8 A model for agents learning over time

The study now proceeds by modelling how agents, after having performed a first up-

date, described below, construct subsequent updates over new common information

that arrives at each period, in addition to private information. In this setup, agents

will receive both public (common) and private signals at each period. In subsequent

sections the study refers to this particular setup as simply ”the model”. The need

for specifying the arrival of one public signal for each period is important for keeping

track of the convergence that occurs over multiple periods. In the specific model

below however, a private signal is additionally added at each step. While this is

not perhaps necessary, it adds intuition and realism to analyzing the behavior of

forecast dispersion in the following chapter.

The idea is now that at the outset, agents start with differing priors since each

individual’s prior is the result of the history of common information and his/her

personal (history of) private signal(s). In other words, the prior that each agent

uses at each period, is his/her own individual (previous) forecast. Thus, initially,

agents are assumed to have performed an updating procedure such as in section

2.2, and each agent now has an individual forecast of θ, u1i. The study follows the

previous notation to the extent that h = 1/τ 2 refers to the precision on the prior,

and s = 1/ν2 refers to the precision on the privately observed signal. The study

also introduces r = 1/σ2, which refers to the precision of the common information,

y, and is a a constant throughout time.

It will now be assumed that for the first belief update that agents have performed,

yielding u1i, agents view firm earnings as coming from a distribution y ∼ N(θ, σ2).

Before performing the first update, agents then have access to the full history of

a firm’s earnings, and consequently use the variance in these earnings to assess

σ2 (naturally, they can use the historical mean of the earnings series as an initial

estimate of u0i, which is common information and thus equal to u0 = µ0). The

estimate of σ2 (1/r) will thus be used as the variance of the prior in the first update13.

12Throughout, the study uses the term parameter both in a general sense, as in this case, as well
as in the statistical sense. The definition is not made explicit at each point, rather the context is
allowed to define the meaning.

13Note that although this perhaps might seem like a strong assumption at first glance, this is not
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The implication is thus that in constructing their first forecast (u1i), agents use

r = 1/σ2 as their prior h = 1/τ 2.

Recall that the first update, in terms of the previously used time indices, was given

by u1i = (h(0)u0 + sz)/(h(0) + s) = (h(0)µ0 + sz)/(h(0) + s). In light of the above,

this is equivalent with u1i = (r(0)u0 + sz)/(r(0) + s) = (r(0)µ0 + sz)/(r(0) + s). The

fact that for the first update agents use r as their prior h will be made use of later.

The analysis will now proceed by using n for time indexing and n can thus be

thought of as a time period, where for example n = 1 implies that the updating

from 0 to 1 has already occurred.

Notice that there is a slight abuse of notation that comes with the change, with

the advent of using n to denote the period when updating has already occurred,

instead of using the strict t indices to denote time, as in the previous ”one period”

models. Previously, 1/τ 20 (or h0), was used to describe the information that existed

prior to the first updating over new information at t = 0. Time post updating

was, in reference to the above, referred to as t = 1. Thus, the information, in

terms of time indexing, going in to the forecast, was kept separate from the time

indexing of the forecast after updating had occurred. Now however, indexing time

by n, notationally bundles up all the information under one index (except for the

prior mean, u0), such that it is implied that information going in to the forecast,

actually predates the information that is the result of the forecast. So what would

have been formulated as u1i = (h(0)u0 + sz)/(h(0) + s) under indexing by t, now

becomes u1i = (h(1)u0 + sz)/(h(1) + s) under the change to n-indexing. Actually,

in the cases where also the private signals require indexing, under n-indexing, it is

the case that u1i = (h(1)u0 + s(1)z(1))/(h(1) + s(1))
14. Furthermore, for the first belief

update, the fact that agents are assumed to use the distributional characteristics

of (observed) earnings, y, as their initial prior, implies in terms of the switch to

n-indexing that: u1i = (r(1)u0 + s(1)z(1))/(r(1) + s(1)). The reason for performing this

change in indexation, is that it results in a gain in terms of keeping track of the

number of periods that have been used for updating, which will provide to be useful

in some of the later analysis. Simultaneously, this comes with a slight cost in terms

the case - the assumption is mainly being done to keep the notation clear. To see why this does
not affect the results, note that as long as the common information that is observed by the agents
in the form of earnings, y, remains (somewhat) fixed, and empirically matches the observed history
of earnings, the effect of an (initial) prior of much higher variance will quickly be overshadowed by
the learning from the new, much ”sharper” information that is the earnings series. On the other
hand, if the initial prior would be sharper than the commonly observed earnings, y, beliefs, and
subsequently dispersion in forecasts converge at a much faster rate than assumed here. This is
explored in the empirical section.

14The idea being that the signal, in this case the private signal z, ”belongs” to first (nth)
updating event.
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of reduced clarity of what information is actually used in the updating. For the

subsequent analysis however, r1 will be labeled simply r, since the true variance of

earnings, y, are assumed to be a constant over time at this point (But the omitted

subindex on r would be 1, as in the above example).

Having clarified the notation, the forecasting behavior for the second period, n = 2

can now be analyzed. The main feature is that now, all agents will, for each and all

subsequent periods, receive private information15 from z and common information

from y.

The agent will now make the following forecast, which, after having been carried

out, results in what is labeled as the n = 2 forecast:16

u2i = E[θ|y, z] =

1
τ2
(2)

u(1)i + 1
ν2
(2)

z(2)i + 1
σ2y

1
τ2
(2)

+ 1
ν2
(2)

+ 1
σ2

=
h(2)u(1)i + s(2)z(2)i + ry

h(2) + s(2) + r
. (11)

While Eq. (11) analyzes the period 2 update specifically, the general form of all

subsequent updates for n ≥ 2 is given by:

uni =
h(n)u(n−1)i + s(n)z(n)i + ry

h(n) + s(n) + r
.

Using the forecast(s) above, Appendix C derives the following proposition, which

is an expression for the variance of forecasts, resulting from agents updating over

(any) normally distributed, unequal priors.

Proposition 2:

var(uni) =
s2n[var(zni)] + h2n[var(un−1i)]

(hn + sn + r)2
(12)

Proposition 2 shows how the variance of forecasts depends on the (variance of the)

latest signal and the variance of the priors. Note that while the specific characteris-

tics of information dissemination are important for the dynamics of earnings studied

here, one could easily change the model interpretation by removing the latest realiza-

tion of common information, r, since this only affects the denominator (and no other

parameters depend on it), yielding: var(uni) = (s2n[var(zni)]+h
2
n[var(un−1i)])/((hn+

15time indices on the private signals, z, are tracked, since the private information acquisition
hypothesis will lead to an analysis of changes in the private signals.

16n = 2 since two updating events have been performed (tracked by the model).
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sn)2). By further assuming a constant prior, that is var(un−1i) = 0, equation (12)

reduces to:

Corollary 1:

var(uni) =
s2n[var(zni)]

(hn + sn)2
(13)

Which is exactly equal to Proposition 1, and thus shows that Proposition 2 is a

different specification of the general result of Barry and Jennings (1992).

Proposition 2 however, will transpire to be a useful specification in analyzing situ-

ations where changes to the private signal (distributions) are assumed to occur at

certain points in time. Proposition 2 also serves a starting point for developing the

time series behavior of the proposed model, introduced next.

The introduction of the common signal y at each period, in addition to the private

signals, has some interesting consequences for the rate of convergence of forecast

dispersion over time. Using equation (11) as the starting point, Appendix D de-

rives an expression for diversity as a function of time, and is given in the following

proposition:

Proposition 3:

Given the uncertainty dynamics above, it can be shown that belief diversity, as a

function of time, n, takes the following form17:

var(uni) =
ns(1)

(nr + ns(1))2
(14)

The strength of Proposition 3 lies in the fact that diversity of beliefs, at any point

in the future, can be expressed in terms of ”starting” variances, that is the initial

precisions (or uncertainties) of common and private information. In comparison to

Barry and Jennings (1992), who do show generally that dispersion can increase for

increasing private information precisions, Proposition 3 simultaneously considers the

evolution/convergence of common uncertainty over time, and allows for analyzing

whether increases in private information can actually yield observable dynamics

17Being fully rigorous, the model was defined for n ≥ 2. However, setting n = 1 is equal to using
the ”one-period” belief updating model, where the resulting variance of forecasts equals setting
n = 1 in Proposition 3. Thus, Proposition 3 is also defined for n = 1. Also, Appendix D derives
the result using the assumption that signals are constant over time (s). Here however the time-
subscript is added to indicate that this is the signal that agents used in the formation of their first
update, but nevertheless remains a constant going forward (n) periods.
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(increases) in belief diversity, given the rapid convergence on common information

over time. Note however that the dynamic is still exactly as in Barry and Jennings

(1992), and can thus be found by specifying Proposition 1 correctly. The result in

Proposition 3 however, explicitly shows how uncertainty evolves over time in the

model of this study and has an advantage in forcing one to consider the continuous

convergence on common information being added.

2.9 Properties of belief diversity under conver-

gence on common information

For the subsequent analysis, the result in Proposition 3 will be labeled V ′, that is:

V ′ = var(uni) =
ns1

(nr + ns1)2
,

as it is constrained the same uncertainty dynamics of V, derived in Barry and

Jennings (1992), but here makes the constraints put forth by the model of the

convergence on common information over time, explicit. The partial derivatives of

V ′ are:

∂V ′

∂s1
=

r − s1
n(r + s1)3

,
∂V ′

∂r
=

−2s1
n(r + s1)3

,
∂V ′

∂n
=

−s1
n2(r + s1)2

The leftmost and middle derivatives share the exact dynamic as the corresponding

derivatives in Barry and Jennings (1992)18. The rightmost derivative of V ′ with

respect to time (n), which is new in comparison with Barry and Jennings (1992),

is overall decreasing in n but since the derivatives are partials, keeping the other

variables constant, one cannot make statements about any form of dynamic evolution

of private signal variance over time, as this case refers to s1 being a constant only.

As for the first (leftmost) derivative, it shows that dispersion is initially increasing

in s1 while r > s1, but this is within one time period only. Thus, the derivatives are

not sufficient for studying the full scale dynamic evolution of belief diversity, if one

wishes to study whether increases in private information can yield increases in belief

diversity while allowing for the convergence of beliefs on new common information.

In order to achieve this, that is study whether increases in private information can

yield increases in belief diversity while allowing for the convergence of beliefs on

18Notice that n in the above derivatives is not the same as n in Barry and Jennings (1992)
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new common information, one can use a combination of Proposition 2 and Propo-

sition 3: specifically, for any sequence of periods where private information, s, is

kept constant, diversity evolves according to Proposition 3, whereas if the private

information is allowed to change at some period n∗, diversity is analyzed with Propo-

sition 2, using the result from Proposition 3 at n∗ − 1 as the prior, var(un−1i) in

Proposition 2. This is shown in the following:

Consider some time period n∗. At n∗, agents are endowed with a more informative

signal z′, (s′ > s) than they have updated over up until n∗. Thus, at n∗, diversity is

given by Proposition 2:

var(un∗i) =
s
′2
n∗ [var(z

′
n∗i)] + h2n∗ [var(un∗−1i)]

(hn∗ + s′n∗ + r)2
,

and19 var(un∗−1i) = [(n∗ − 1)s1]/([(n
∗ − 1)r + (n∗ − 1)s1]

2). As Appendix D makes

clear, any hn can be represented by the square root of the denominator of the

variance of the forecasts from the previous period. Here, hn∗ = [(n∗−1)r+(n∗−1)s1].

Furthermore noting that s
′2
n∗ [var(z

′
n∗i)] = s′n∗ , and inserting into Proposition 2 gives:

var(un∗i) =
s′n∗ + [(n∗ − 1)r + (n∗ − 1)s1]

2 [(n∗−1)s1]
[(n∗−1)r+(n∗−1)s1]2

([(n∗ − 1)r + (n∗ − 1)s1] + s′n∗ + r)2

var(un∗i) =
s′n∗ + [(n∗ − 1)s1]

[(n∗)r + (n∗ − 1)s1 + s′n∗ ]
2

This shows the variance of forecasts at n∗, given the new, signal s′n∗ , expressed in

terms of the beliefs that have evolved up until n∗−1, from the initial values at n = 1,

s1 and r. Thus. if the interest lies in seeing whether s′n∗ can increase dispersion at

n∗, a value for s′n∗ must be found, such that the following condition is satisfied:

s′n∗ + [(n∗ − 1)s1]

[(n∗)r + (n∗ − 1)s1 + s′n∗ ]
2
>

[(n∗ − 1)s1]

([(n∗ − 1)r + (n∗ − 1)s1]2)
(15)

Unfortunately, finding a ”nice” analytical expression, on the sought after solution

space, for any n∗, treating all parameters as free, is not possible. Nevertheless,

the condition in equation (15), provides the intuition for checking whether belief

19The variance comes from Proposition 3, since n∗ − 1 periods have passed before the current
period n∗. The fact that var(un∗−1i) contains and i index is due to the fact that it is a variance
of individual forecasts, not that the variance is agent specific.
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diversity increases from one period to the next, if private information is allowed to

change within the context of the model.

While Eq. (15) shows the general condition for increasing dispersion from any n∗−1

to n∗ given a private signal s′n∗ , solving still involves tracking the full evolution of

signals from 1 to n∗− 1. To exemplify, if n∗ = 2, it corresponds to a situation where

the prior (from n∗ = 1) sums up everything that has happened in the past20. Here,

since the analysis does not concern maximums specifically, the choice of using n∗ in

place of n is arbitrary. In terms of equation (15):

s′2 + s1
[2r + s1 + s′2]

2
>

s1
(r + s1)2

(16)

Alternatively, if n∗ is general, Eq. (15) is:

s′n∗ + sn∗−1
[hn∗ + r + s′n∗ ]

2
>

sn∗−1
(hn∗−1 + sn∗−1)2

s′n∗ + sn∗−1
[hn∗−1 + sn∗−1 + r + s′n∗ ]

2
>

sn∗−1
(hn∗−1 + sn∗−1)2

(17)

It becomes evident that the representation (Eq. [17]), in itself, is not sufficient in

describing increases in forecast dispersion from any n∗ − 1 to n∗, since in order to

fully specify hn∗−1, one needs to know exactly how hn∗−1 has evolved from r. This in

turn depends on the length of the period, n∗. Thus the evolution of hn∗−1 and sn∗−1

from n = 1 to n = n∗ − 1 needs to be fully specified, as is done in the derivation

leading up to21 Eq. (15). Thus the difference between Eq. (15) and Eq. (17) is

that Eq. (15) specifies the evolution from starting values, while the notation in Eq.

(17) implies general forms for the priors. The problem that becomes apparent is

that regardless of formulations, the full evolution of uncertainties must always be

tracked.

Simultaneously, it is possible to see from Eq. (16) and Eq. (17) how Proposition

2 and 3 are equivalent of the Barry and Jennings (1992) model, given the exact

evolution of signals over time. One can set s′2 = s1 in Eq. (16), to end up with

2s1/(2r + 2s1). Substituting forward yields Proposition 3.

Notice however that it is always possible to find a signal s′n∗max, such that belief

diversity at n∗ is maximized, using the fact that the derivative of V is always equal

20By definition of course the prior always sums up all past information, but what is meant here
is that going back only 1 period leads back directly to starting values or uncertainties, in this case
r and s1.

21Where the assumption is a static evolution from n = 1 to n = n∗ − 1 from starting values.
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to zero for s = h. This is the ∂V/∂n in Barry and Jennings (1992), in their notation,

and ∂V ′/∂s in the notation of this study, respectively.

One could thus try to set the signal equal to the prior, implying s′n∗max = hn∗ ,

where hn∗ = [(n∗− 1)r+ (n∗− 1)s1], implying that s′n∗max = [(n∗− 1)r+ (n∗− 1)s1].

However, the maximum in ∂V/∂n in Barry and Jennings (1992) actually applies to

total information, so the maximum will be found at the point where all common

information is of equal precision to private information. Thus the signal s′n∗max

that maximizes dispersion at n∗, is given by: s′n∗max = [(n∗)r − (n∗ − 1)s1]. To see

this, simply gather all private information on the left-hand side and set it equal to

common information: s′n∗max + (n∗ − 1)s1 = (n∗)r, which is total s equal to total

h. Using this implies that for each n, the maximum variance that can be achieved

given the variance for the previous period, is:

varmax(un∗i) =
[(n∗)r − (n∗ − 1)s1] + [(n∗ − 1)s1]

[(n∗)r + (n∗ − 1)s1 + [(n∗)r − (n∗ − 1)s1]]2

varmax(un∗i) =
(n∗)r

[(n∗)r + (n∗)r]2
=

(n∗)r

[2(n∗)r]2
=

1

4(n∗)r

The derivations above become somewhat convoluted by the fact that the evolution

of private information in the model follows a particular predefined pattern, and is

disseminated at each period. If one completely relaxes the evolution of the private

signals over time, and simply assumes one cumulative private signal22, one can

simply set the precision of this cumulative private signal, say z′′ (precision s′′),

equal to the common information in the prior23 at n, nr (s′′ = nr). This yields

simply:

varmax(uni) = Vmax =
nr

[nr + nr]2
=

nr

[2nr]2
=

1

4nr
(18)

Equation (18) is an expression for the maximum variance of forecasts as a function

of the amount of common information that has become available from σ = 1/r,

over n periods. The most important part of Eq. (18) is the subtle but significant

difference compared to a single period setup, where one would have h instead of

nr in the denominator. In other words, nr tracks the amount of convergence that

must have occurred from agents receiving one realization from a distribution with

variance σ = 1/r, per period n.

22This can be done due to the linearity of precisions.
23In exact mathematical terms this should read ”in the information set at n, implying that n

signals have been received an updated over from r.
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2.10 Analytical properties of the model

This section, along with subsections, delves deeper into some analytical properties

of the model. These results are used to some extent in the illustrations in Chapter 3.

However, for the reader more interested in the intuition of the model, it is perhaps

preferable to skip to the concluding section (2.12 on page 37) of the chapter.

The study now proceeds by analyzing in detail some of the dynamics of the model.

This analysis lays the mathematical foundation for some of the results in Chapter 3.

Using the precursor to the general result in Eq. (18) (and Eq. [15]) , the (maximum)

amount by which the variance can increase from (any) n∗ − 1 to n∗ is:

1

4(n∗)r
/

[(n∗ − 1)s1]

([(n∗ − 1)r + (n∗ − 1)s1]2)

Here the numerator (left) is the maximum amount of dispersion at n∗ (given r), and

the denominator (right) is current dispersion at n∗. Cleaning up yields the following

proposition:

Proposition 4:

The maximum change in dispersion, labelled potential, ∆n∗,max, going from any

n∗ − 1 to n∗, where n∗ ≥ 2, can be found by using the starting precisions, r and s1,

given by the following equation:

∆n∗,max =
(n∗ − 1)(r + s1)

2

4(n∗)rs1
(19)

Eq. (19) is the factor or multiplier by which dispersion can change at maximum

from (any) n∗−1 to n∗, given initial starting values for s1 and r. Thus, if dispersion

at n∗ − 1 can increase going to n∗, Eq. (19) must be > 1. Since all variables in Eq.

(19) are positive, Eq. (19) can never become negative.

The first implications of Eq. (19) can be seen by differentiating. The analysis of

the derivatives (w.r.t. r and s1) is akin to analyzing the starting conditions for the

model.

The derivative of the factor (Eq. [19]) w.r.t. the private signal is given by:

∂∆n∗,max

∂s1
= −(n∗ − 1)(r − s1)(r + s1)

4(n∗)rs21
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The derivative is initially negative, for values of s1 < r , implying that increasing

s1 yields smaller increases in potential, up until the extremum at r = s1, where

the derivative becomes zero. Beyond this point, The derivative becomes positive

as s1 > r, implying that increasing s1 will yield larger increases in potential (going

forward).

The derivative of Eq. (19) w.r.t r is given by:

∂∆n∗,max

∂r
=

(n∗ − 1)(r − s1)(r + s1)

4(n∗)r2s1

This shares the intuition of the derivative w.r.t. s1, where the extremum is attained

for r = s1, and is shown here for completeness. The derivative is initially negative

for values of r < s1, implying that increasing r yields smaller increases in potential,

up until the extremum at r = s1. Beyond this point, the derivative becomes positive

as r > s1, implying that increasing r will yield larger increases in potential. The

fact that the potential grows as r grows in precision beyond that of s1 is a somewhat

unrealistic effect that will be labelled reverse potential, and is discussed further in

the following sections.

The model, and consequently Eq. (19), only refer to an evolution of the system over

time in exact accordance with Proposition 3 specified by the starting conditions.

Manipulating s1 and r above refers to an analysis of different starting conditions for

the model, and is not the same thing as changing signals over time.

The most important part of the analysis, in terms of providing intuition for the

dynamics over time, is concerned with what happens to the increases in potential

regarding changes in n∗ :

∂∆n∗,max

∂n∗
=

(r + s1)
2

4(n∗2)rs1

The derivative of Eq. (19) is always positive, implying that for every n∗ going

forward, the potential increases, regardless of r and s1. If for example starting

from a value of r > s1, then the larger n∗ becomes, the larger the potential or the

multiplier on the dispersion at n∗ − 1 becomes. Recall that this still implies r and

s1 are fixed in the beginning.

Even though the derivative w.r.t. n∗ remains positive for all values of n∗, the

condition for increasing dispersion from n∗ − 1 to n∗, requires that Eq. (19) > 1.

Setting r = s1 implies that ∂∆n∗,max/∂n
∗ reduces to 1/(n∗2). The derivative is still

positive however, implying that the potential is growing, even though it was stated
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that dispersion was already at its maximum. Any sn∗′ > sn∗ (implying n∗
′
> n∗)

will thus technically have a bigger potential in comparison with any previous signal.

The increases are relative to the sizes of previous increases and this is overshadowed

by the rate of decline in dispersion, seen in setting r = s1 in Eq. (19), yielding:

(n∗ − 1)/(n∗), which is always < 1, showing that dispersion is decreasing for all

n > n∗. However, for r 6= s1, one can always find a sufficiently large n∗ such that

Eq. (19) > 1.

2.11 Higher precision private signals

This subsection analyzes how the arrival of more precise private signals affects in-

creases in dispersion and particularly looks at potential. This cannot be analyzed

directly with the derivatives above, since the evolution of signals is fixed from the

beginning (the evolution of signals is fixed from the beginning in Proposition 3 alone,

implying that agents will keep getting signals of size r and s1). Overall it would be

of interest to find the exact conditions for when Eq. (19) > 1. Analogously to Eq.

(15) however, there exists no ”nice” general solution for this inequality24.

The analysis now proceeds by considering changes in private signals. This analy-

sis unfortunately becomes somewhat unintuitive analytically and consequently the

mechanism of only a few examples are considered.

If the signal s′n∗max arrives at any n∗, dispersion will jump to its maximum possible

value at that point, the size of the jump (in terms of a multiplier on previous

dispersion) from the previous period being described by Eq. (19), while the size of

the (maximum) dispersion is described by Eq. (18) . This signal, s′n∗max, disrupts

the steady evolution of the system described by Proposition 3, and the signal s′n∗max,

by definition maximizes dispersion, and now places the system at what can be viewed

as a ”new starting point”.

After the arrival of the signal s′n∗max, the system has used up all its potential in

increasing dispersion for any periods going forward, and the future evolution of

the system is now analogous25 to r = s1, already analyzed previously. Thus, from

this point onward, after the arrival of a signal s′n∗max, the system is already on a

trajectory of maximum dispersion for all periods going forward, and no new signal

24In order to be clear, there does exists an analytical solution, however it is not particularly
informative/intuitive and is thus excluded.

25The evolution is similar in that future private signal are equal to common signals. In order to
model the evolution of the system analytically, the previous learning must be controlled for.
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can increase this (since by assumption more common information enters each period

going forward). As shown already in the last paragraph of the previous subsection,

this trajectory (changes in dispersion), is in itself declining (Setting r = s1, Eq. (19)

simply reduces to: (n∗ − 1)/(n∗) which is always < 1). Staying on the maximum

trajectory assumes that private signals after the arrival of s′n∗max , are equal to

common signals, sn>n∗ = r.

The ”Calibration” section will illustrate this effect (see e.g. Figure 7 on page 51),

namely after the system has reached a stage of (compounded) common signals =

(compounded) private signals, the maximum dispersion going forward will be for

private signals being equal to common signals, that arrive from the (fixed) distribu-

tion with variance σ2. The study now demonstrates analytically how the model can

be solved forward and what is implied by the ”new starting point”.

Previous to the arrival of the signal s′n∗max, the system evolves according to Propo-

sition 3. If signals remain stable after n∗, the system can again be solved forward

using Proposition 3. The interest thus lies in finding dispersion and potential for

some future point in time m, that occurs after n∗, so that m > n∗. Thus, the

sought after idea is Proposition 3 for m > n∗. Up to the point n∗, there have been

n∗ common signals of size r, and (n∗ − 1) signals of magnitude s1 and the signal

s′n∗max. The learning over this information must be accounted for in the prior in a

formulation for the system for t m > n∗. The equation below, where sn>n∗ indicates

private signals after n∗, uses the fact that precisions add linearly, and the variance

of beliefs can be represented as:

(n∗ − 1)s1 + s′n∗max + (m− n∗)sn>n∗
[n∗r + (m− n∗)r + (n∗ − 1)s1 + s′n∗max + (m− n∗)sn>n∗]2

The corresponding potential at m (using the precursor to Eq. [19]) is given by:

1

(4[n∗r + (m− n∗)r])
/

(n∗ − 1)s1 + s′n∗max + [(m− 1)− n∗]sn>n∗
[n∗r + [(m− 1)− n∗]r + (n∗ − 1)s1 + s′n∗max + [(m− 1)− n∗]sn>n∗]2

First, it can be noted that by definition s′n∗max = [(n∗)r− (n∗− 1)s1]. Secondly, the

maximum trajectory for dispersion required that private signals after the arrival of

s′n∗max are equal to common signals, sn>n∗ = r. Inserting, the expression for the

variance reduces to [n∗r + (m − n∗)r]/[(n∗r + (m − n∗)r) + (n∗r + (m − n∗)r)]2 =

(mr)/(2mr)2 = 1/4mr, implying that dispersion is at its maximum for any m. For

this trajectory, potential reduces to (1/4mr)/([(m−1)r]/[2(m−1)r]2) = (m−1)/m,

which is always less than 1 and shows that dispersion cannot increase for any m going

forward.
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If instead the private signals at the ”new” starting point continue to be of the same

magnitude as the signal s′n∗max, implying that sn>n∗ = s′n∗max , the private signals

will start adding information faster than common information. The equation for the

variance of beliefs however can now only be reduced to:

(n∗ − 1)s1 + s′n∗max + (m− n∗)s′n∗max
[n∗r + (m− n∗)r + (n∗ − 1)s1 + s′n∗max + (m− n∗)s′n∗max]2

(n∗ − 1)s1 + ((m+ 1)− n∗)s′n∗max
[n∗r + (m− n∗)r + (n∗ − 1)s1 + ((m+ 1)− n∗)s′n∗max]2

Inserting the definition of the maximizing signal s′n∗max = [(n∗)r−(n∗−1)s1], yields:

(n∗ − 1)s1 + ((m+ 1)− n∗)[(n∗)r − (n∗ − 1)s1]

[n∗r + (m− n∗)r + (n∗ − 1)s1 + ((m+ 1)− n∗)[(n∗)r − (n∗ − 1)s1]]2
,

the dynamics of which become difficult to analyze analytically. Similarly, the formula

for potential (which is excluded) becomes equally difficult to interpret, as the above

expression is one part of that result. Figure 8 on page 52 in Chapter 3 however

provides a more intuitive illustration of this situation. What happens is that private

signals start adding information faster than common signals after the maximum at

n∗ has been reached. This will add ”reverse potential” to the model, in the sense

that now, dispersion over time is not on track for maximal dispersion, and as n

grows beyond n∗, at some point the difference grows large enough that dispersion in

the future can increase to its maximum level by suddenly becoming less informative.

This type of behavior where the private signal precision jumps back and forth will

generally be ruled out. Also, in this case where after s′n∗max signals continues to be of

size s′n∗max, dispersion actually leaves its maximum trajectory such that any ”reverse

potential” will at maximum take dispersion back up to the maximal trajectory of

r = s after s′n∗max.

The formula for the multiplier on previous dispersion to reach its maximum value,

potential in Eq. (19), and the formulas for dispersion, become somewhat cumber-

some to use analytically once changes in private signals are introduced. In fact,

the sizes of increases in dispersion from one period to the next become unbounded

in the limit (Look at Eq. (19) when s1 approaches zero [from the positive side]).

Analytical results become even less transparent in the situations depicted in Figures

10 and 11 in Chapter 3, where the private signal grows at each period. As such,

analytical solutions to these cases are omitted.

While analytical solutions increase in complexity due to the need for tracking exact
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signal evolutions, the formulas are easy to apply numerically. Dispersion can always

be solved recursively from initial values using Proposition 2, or alternatively through

accumulating the total cumulative private signal sequence (s1 + s2 + ...+ sm) from

initial values. Also, it is important to note that the maximum absolute size of

dispersion is always given by Eq. (18) , i.e.: varmax(un∗i) = 1/4nr, regardless of

assumptions on r − s1. This implies that the maximum dispersion is a constant

at each n, given r. Consequently, the multiplier on previous dispersion can always

be found through solving for the implied maximum value for dispersion, and the

previous value for dispersion.

The intuition of the multiplier and the dynamics for dispersion become clearer in

the illustrations in the following chapter.

2.12 Discussion of theoretical results

The emphasis of this study is to rigorously consider the private information acqui-

sition hypothesis. The private information acquisition hypothesis rests theoretically

on the fact that disagreement is increasing private information in a Bayesian learning

model where learning occurs from normally distributed information sources, com-

mon and private. As has been shown (Appendix B), disagreement results from the

cross sectional variance of the posterior expectations of agents, where the variance

of the posteriors turns out to depend only on the variances (precisions) of the signal

distributions.

The rational Bayesian learning model under asymmetric information where all infor-

mation is normally distributed is very general, and the resulting disagreement from

such a setting can always be traced back to a representation such as that of Barry

and Jennings (1992). In fact, even the information dynamic in the very different

study by Prendergast and Stole (1996) can be shown to conform to the restrictions

of the representation of Barry and Jennings (1992).

The point being made here is that mathematically the model here is the same model

as Barry and Jennings (1992), but in terms of application there is a difference. The

key distinction lies in that common information is specifically constrained, forcing

information to enter agents’ information set at a specific rate. While this can be seen

as simply a different interpretation or application of the Barry and Jennings (1992)

result, Barry and Jennings (1992) do not state that their model should be inter-

preted over a time dimension. The model here thus arrives at the ultimate posterior
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expectation (from cumulative information), through a piece by piece construction

of the sample used in reaching the posterior expectation. DeGroot (1970) indeed

derives the posterior expectation over a sample of information, whereas Barry and

Jennings (1992) similarly derive results for dispersion using a sample of information.

The insight of this study is to explicitly trace the construction of that sample as

it evolves over time, through controlling for the minimum amount of common in-

formation that becomes available from the common distribution. While the results

of Barry and Jennings (1992) are general, the stance of this study is that to apply

the model to the real world, a specific interpretation of the model is needed. The

study argues that to achieve realism in application of the model, the setting is that

of annual earnings releases that endow agents with more information over time.

The assumption made in this study is that common signals arrive from a fixed

distribution (with σ2) that represents earnings, earnings which occur annually (n).

Additionally, agents have access to private information. The most important idea

is now that by assuming that private information is already maximized, the model

only depends on two parameters. One can now differentiate the (general) maximum

of Eq. (18) wrt n.

∂Vmax
∂n

= − 1

4n2r
(20)

Importantly, this differentiation does not lose generality, since in the above r is

fixed, as r is supposed to be fixed by assumption. Furthermore, the above allows for

agents having access to any (full) private information. The above thus shows that

as more common information arrives (through increasing n) from the distribution

with precision r, the maximum dispersion becomes smaller for each period, even if

agents have access to private information such that disagreement is maximized.

In summary, the theoretical results help in keeping track of the cumulative common

signal that agents have received over n periods. The variance in forecasts is a

function of this amount of information.

The main take-aways from the model are the following:

1) For agents receiving signal realizations from a common information distribution

that remains fixed over time, there exists a private signal, equal to the cumulative

common signal, that maximizes the dispersion in beliefs (forecasts) at each time

n. This maximum dispersion is monotonically decreasing in n, implying that the

maximum dispersion in forecasts always becomes smaller as n grows, i.e. time moves

on.
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2) Once maximum dispersion has been reached, a more informative private signal

that arrives can only act as to reduce the dispersion in forecasts. Consequently, the

private information acquisition hypothesis, and the resulting increase in dispersion,

applies only to a situation preceding the situation in 1), that is a situation where

private information, cumulatively, is less informative than common information.

A corollary to the above is that once private information has become more infor-

mative than common information, dispersion could actually be increased if agents

”lose” some of their private information. Since this is relation to the total amount of

available common information, one possibility for this is of course the arrival of more

common information. By choosing not to receive private signals, dispersion could

increase in this scenario. This was labelled the ”reverse potential” result and was

ruled out here on the grounds of realism. Nevertheless, in this setting it represents

an effect not covered in previous literature.

In summation, as long as the distribution from which agents receive more informa-

tion (realizations) over time remains fixed, the maximum amount of dispersion must

become smaller for each period. Furthermore, increases in dispersion can only be

a transitory effect. Once maximum dispersion for a specific point in time has been

reached, more information in the next period results in the maximum amount of

dispersion in that period being smaller than the maximum amount of dispersion in

the previous period.
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Chapter 3

Calibration

The aim of this chapter is to illustrate how the dispersion in forecasts in the model

of Chapter 2 evolves over time when agents receive more and more common infor-

mation in the form of earnings realizations. The convergence on common informa-

tion constitutes the benchmark evolution of beliefs and dispersion, whereas different

endowments of private information are considered in order to illustrate how they

affect dispersion. To achieve a realistic sense of the bounds implied by the model,

the model is calibrated to values that can be observed in empirical data.

It is worth emphasizing that the calibrations to data values are performed only in

order to illustrate some of the dynamic behavior that can occur within the model.

The idea here is to pick values that at least to some extent are representative of

what occurs in the data. Whereas the model in reality applies to learning about the

earnings of individual firms (distributions) this section performs calibrations on an

aggregate level. As such, some statements in this section apply only to this section

specifically and not to assumptions made in the empirical or theoretical section. A

full description of the data is found in the empirical analysis in Chapter 4 (section

4.4 on page 68 and section 4.8 on page 77).

To begin the calibrations, start with Eq. (14), reproduced below. Even though

private information remains private, and thus unobservable, private information is

the only variable that cannot be observed.

V ′ = var(uni) =
ns1

(nr + ns1)2

In the equation above, there are 4 variables. By first considering an (arbitrary) first

period1, n = 1, the amount of variables reduces to 3, out of which 2 can be observed

1This is essentially the u1i leading up to Eq. (11).
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or proxied. V’, or V, is the variance of the forecasts2 (
√
V being the standard de-

viation) that can be observed and r, the precision of common information, can be

extracted from the historical variance3 of earnings, since 1/r = σ2. The empirical

proxy for forecast dispersion (
√
V ) used in this section is the standard deviation of

forecasts for the full year ending, measured June 30th divided by the correspond-

ing consensus (mean) forecast (for each company year), arriving at a coefficient of

variation measure. This variable is Winsorized at the 1st and 99th percentile, since

close to zero mean values will artificially inflate the coefficient of variation metric.

This is also pointed out by e.g. Minton, Schrand and Walther (2002). To find V,

the measured dispersion metric4 can simply be squared.

Under the theoretical model of the previous chapter, the Bayesian agent constructs

his/her forecast through observing common and private information. Expectations

are updated over realizations from a distribution of both assumed private informa-

tion and common information, where the latter is firm level earnings. Theoretically

the variance of the common information distribution σ2 is assumed to be fixed. The

implication of a fixed σ2 is that with more realizations from the distribution with

variance σ2, an agent’s subjective uncertainty decreases, even though the signal con-

tinues to be of the same magnitude. Simultaneously, a fixed (and observable) σ2

implies that it is possible to measure.

In the empirical estimations in Chapter 4, information can be controlled for on a

firm by firm level and the empirical estimations therefore endow agents with in-

formation available up to the time of forecasting. In contrast, in order to achieve

the calibrations in this chapter, there is a need to represent earnings volatility by

a single number that aggregates across all firms in the sample. The estimate of

earnings volatility is thus measured on a coefficient of variation basis. To arrive at

a meaningful estimate, the earnings volatility measure aggregates both cross sec-

tionally and over time, until the end of the sample period. This causes the earnings

volatility measure that proxies for σ2 to include forward looking information, but as

the point of this section is to calibrate the model to reasonable values that represent

the data and give an illustration of the behavior of the model, this is deemed not to

2While in Chapter 2 a distinction between V and V’ was made such that the latter, V’, referred
to the variance of beliefs in the context of the model representation developed in this study,
generally both V and V’ both refer to the variance of beliefs. Since the models are mathematically
equivalent under similar assumptions, the (empirical) variance of beliefs will denoted simply V,
when a distinction is not needed.

3Naturally, the volatility is σ, i.e. the standard deviation.
4Here an assumption that the standard deviation can be proxied by the coefficient of variation

is made. While the empirical section also introduces more refined measures, the aggregate analysis
performed here requires the use of the coefficient of variation, since aggregation is performed across
all firms.
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constitute a problem here.

On a general level it is difficult to make statements on when the model ”begins”,

that is given σ2, how many updates has the Bayesian agent carried out. The ap-

proach taken in this study, discussed at length in section 4.6, is that the number

of observable realizations from common information i.e. annual earnings announce-

ments, defines the minimum amount of learning that has occurred as in the model.

The issue is somewhat more prominent in this section compared to Chapter 4, since

by using the aggregate measure here it is a) not possible to track the exact num-

ber of earnings realizations per firm and b) σ2 is measured from ending data where

possible. The latter involves the problem whether estimates of σ2 are different if

measured e.g. at the beginning of the sample period5 in 1995 or at the end in 2010.

As mentioned earlier however, the aim of this section is to illustrate the behavior

of the model for reasonable parameter values, and as such σ2 in this chapter is

measured through equal weighted aggregation of the full sample period coefficient

of variation of earnings for each firm. In terms of exact identification in the empiri-

cal estimations, the important part is that tracking the amount of realizations that

have occurred from the commonly observed informative distribution, dictates the

minimum amount of convergence of beliefs that must occur.

3.1 Static calibration

The first important property of the model, individual subjective belief convergence,

can now be illustrated. Starting by assuming that there exists no private informa-

tion, the convergence of individual (and the common) belief could be illustrated as

in Figure 1 (σ2 normalized to 1). Notice that this is not something that could be

observed, since there would exist no dispersion. Nevertheless, this illustrates the

point on how (individual) beliefs converge on information. If one would ask for

reported confidence intervals for the strength of beliefs, this is how theory suggests

they evolve. What is important is that in Figure 1, at each point in time, the

agent gets a new realization from the distribution with variance σ2. As the analysis

moves to introduce private information, the magnitude of σ2 is always assumed to

be known. In the above, the assumption is that at 0, agents combined their prior,

consisting of σ2, with a realization from σ2 at 1, ending up with the forecast at 1.

The above demonstrates the important property of belief convergence on new infor-

5Naturally, without using additional data it is not possible to estimate σ2 from 1995 data.
Robustness tests at the end of Chapter 4 however deal with the issue as it relates to the empirical
estimations, by making use of a longer period of data.

43



 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 

U
nc

er
ta

in
ty

  

Number of periods 

Figure 1: Evolution of uncertainty about θ, where τ20 is normalized to 1. The convergence
pattern is the result of signals being of strength 1/τ20 . The rate of convergence of the belief
in the figure is on a variance basis.

mation. Next, the model is calibrated to values that can be observed in the data.

The idea is to obtain an overall estimate of σ2 and assuming that this is the uncer-

tainty of the commonly observed distribution that agents start with. Going forward

agents will continue receiving realizations from this commonly observed distribution

at each period.

As described previously, σ2 is found by measuring for each company the average

standard deviation of earnings for all available years, scaled by the corresponding

(absolute value) of the mean, and subsequently averaging this coefficient of variation

measure over all companies. To convert the (average) coefficient of variation of

earnings in to the precision metric, r, the coefficient of variation is squared and

inverted, the assumption being that the coefficient of variation proxies for σ. The

average6 coefficient of variation of all company earnings in the sample is 1.76, while

the average coefficient of variation for dispersion is 0.1434.

Since V and r are now known, it is possible to solve for the precision (variance) of

the private information, by simply finding the roots to V, that is:

6This number puts no restrictions on the data, such as enforcing December fiscal year ends. See
Section 4.7. The exact number used in the calculations below is 1.7625.
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s1 =
−2rV ±

√
1− 4rV + 1

2V

, where in this case the lower precision number is of interest (the higher precision

number is the reverse potential result).

Plugging into the preceding quadratic equation (implicitly assuming n = 1), it is

the case that the private information, required to produce the observed dispersion,

given that σ2 is 1.762 (≈ 3.1), has to have a variance of 463 ,approximately 149

times higher than that of common information (0.0206 = s/(s+ 0.3219)2). In other

words, the private signal is 149 times less precise than common information (on a

variance basis). Notice that the private and common information distributions can

be directly compared, since by assumption they are centered on the same value,

θ. Naturally, there always exists another solution since the equation is quadratic.

However, as noted previously, this root is generally ruled out since it assumes that

private information is much more informative than common information. The choice

of ruling out these solutions are done only on grounds of realism - these ”reverse

potential” results would affect the analysis in a symmetric way, and will still yield

the same result.

The first calibrations are static in the sense that they are only aimed at finding

appropriate starting values for the uncertainty components in order to produce ap-

proximate levels for observed forecast dispersion. Finding these ”starting values”

assumes that only one updating event has occurred (to arrive at the initial values),

using a prior of σ2, estimated at 1.76, and a private signal (or aggregation of), 149

times less precise (in variance terms). In standard deviation terms this implies a

factor of 12.21. Assuming now for simplicity that these would have been the starting

values, yielding an initial dispersion of the observed 0.1434, it is possible to see what

happens if the model is ”simulated” forward using Eq. (14) (Proposition 3) and the

values obtained for the parameters. Adding signals of 1.762 and 463 for each period,

in accordance with Eq. (14), yields Figure 2, which tracks how dispersion would

behave over time.

If the initial value for dispersion, from which the private signal variance is backed

out, instead would have been the average value in 1995, the starting value for disper-

sion equals 0.1206. Plugging in to the quadratic formula implies that the variance

of the private signal would have to be (0.0145 = s/(s+ 0.3219)2), or approximately

659, or 212 times the variance of common information. In terms of standard devia-

tions, this implies that the standard deviation of the private information distribution

should be approximately 14.57 times higher than the standard deviation of common
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Figure 2: The line in Figure 2 represents the evolution of forecast dispersion from start-
ing values of σ2, (estimated at 1.762), and ν2 estimated at 463, where signals of respective
magnitude are observed each period. Forecast dispersion is portrayed on a standard devi-
ation basis.

information. The evolution of forecast dispersion from the above starting values is

depicted in Figure 3, along with the evolution from the starting values of Figure

2, included for comparison. As Figure 3 shows the evolution of forecast dispersion

is similar to that of using the total sample average for forecast dispersion (0.1434),

versus using the 1995 average for forecast dispersion (0.1206), the difference being

that forecast dispersion for the latter is on a slightly lower trajectory.

Naturally, it is quite simplifying to assume that this procedure would locate the

correct starting point for learning. Nevertheless, this shows what convergence would

look like if the average measures for the data would be used as starting values for

the learning process, and agents would continue receiving signals of the same size

for each period.

Keeping the assumption of the existence of a true, time invariant σ2, but instead

assuming that learning has already occurred in the past before the sample period,

the situation can be depicted as in Figure 4.

The choice of a previous learning period, in this case 5, is arbitrary, but illustrates
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Figure 3: The solid line in Figure 3 represents the evolution of forecast dispersion from
starting values of σ2, (estimated at 1.762), and ν2 estimated at 463, where signals of re-
spective magnitude are observed each period. The dotted line in turn depicts the evolution
of forecast dispersion where ν2 is estimated at 659. Forecast dispersion is portrayed on a
standard deviation basis.

the main point. If some learning has occurred in the past, the evolution of dispersion

flattens out (all the while keeping in mind that at each period agents get new signal

realizations from σ2 and ν2, here illustrated for the same values as previously, that is

1.762 and 463, respectively). Obviously, the average dispersion now does not match

well with the observed levels of dispersion previously estimated, that is 0.1434. In

fact, Figure 12 on page 80, which tracks the average dispersion (measured on a

coefficient of variation basis as here), shows that dispersion does not contain neither

a decreasing trend, nor values such as those in Figure 4. The flattened part of the

curve in Figure 4 is approximately 2 to 3 times too low in comparison with actual

observed values.

One solution to this would be to go back to the pre-analysis learning period and

stipulate that the private information distribution actually was of higher precision

than the suggested (variance) of 463. This would be the case in Figure 5.

In Figure 5, dispersion better matches the observed values (which are 0.1434 on
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Figure 4: The line in Figure 4 represents the evolution of forecast dispersion from starting
values of σ2, (estimated at 1.762), and ν2 estimated at 463, where signals of respective
magnitude are observed each period. The (arbitrary) first 5 periods, positioned at the
negative side of the x-axis, are illustrated as a grayed out part of the line. Forecast
dispersion is portrayed on a standard deviation basis.

average), even though the decline is somewhat steeper. In order to produce this

scenario however, the starting variance for private information is sizably lower, in

this case 65.9. This on the other hand would act to reduce the potential in the

system, since r − s1 is now smaller. Even this is not enough to match the observed

trend for dispersion observed in Figure 12 on page 80, since in the learning with

fixed private signals in Figure 5, dispersion continues to show a decreasing trend.

To be able to produce a flat to increasing trend, private signals must be of increasing

precision. This is introduced in the following section, after the effect of large private

signals that maximize dispersion directly have been considered.

3.2 Dynamic calibration

The previous calibrations were concerned with finding appropriate starting values

for the uncertainty constituents, and studying the evolution of the system in accor-

dance with Proposition 3. Now instead changes to the variance of the private signal
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Figure 5: The line in Figure 5 represents the evolution of forecast dispersion from starting
values of σ2, (estimated at 1.762), and ν2 estimated at 65.9, where signals of respective
magnitude are observed each period. The (arbitrary) first 5 periods, positioned at the
negative side of the x-axis, are illustrated as a grayed out part of the line. Forecast
dispersion is portrayed on a standard deviation basis.

distribution are considered. These are interpreted as the arrival of more informative

private signals. The subsequent figures illustrating the behavior of dispersion7, are

augmented with lines representing maximum dispersion (Eq.[18]) and the potential,

or multiplier from previous to maximum (current) dispersion (Eq.[19]).

Since potential measures the multiplier on dispersion at n− 1 that yields maximum

dispersion at n, analyzing potential going forward implies looking at potential for

n + 1. In the illustrations, if analyzing the situation at some point e.g. n = 7,

potential for increasing dispersion (next period) is potential at n = 8.

Figure 6 tracks the learning process with values of σ2 estimated at 1.762, and ν2

estimated at 463, the same values as those in Figure 2. Signals of corresponding

magnitude are drawn each period. This corresponds to a case where the difference

between r and s1 is somewhat large. The somewhat large difference between the

7Values for dispersion at each point can most easily be found by using Proposition 2 at each
point. Similarly, the potential or multiplier to maximum dispersion is easily found using the
precursor to Eq. (19).
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Figure 6: The dotted line (blue circles) represents the evolution of forecast dispersion
from starting values of σ2, (estimated at 1.762), and ν2 estimated at 463. The solid line
represents the maximum amount of dispersion that can be achieved at any time period.
Simultaneously, this corresponds to the case where ν2 = σ2. The dashed line (green
triangles), describes the maximum potential for increasing dispersion from its previous
value at n − 1. Here, if a signal, s′n∗max, arrives that raises dispersion to its maximum
value, potential for raising dispersion is used up.

uncertainty of the common and private signals implies that there exists potential to

increase dispersion substantially. The line in Figure 6 representing potential visually

illustrates the size by which current dispersion (at any point) can be increased by a

more informative private signal.

To illustrate how the potential is used up with a signal of strength s′n∗max (a private

signal that maximizes dispersion by definition), Figure 7 shows the arrival of a

signal, s′n∗max at n = 7 and dispersion jumps to its maximum value at n = 7.

Since dispersion is at its maximum for the amount of information at n = 7 (i.e.

conditioning on σ2), and the maximum dispersion is always decreasing in n, the

potential drops to below one. Here, for n > 7 the private signal is equal to r. A

slightly technical implication that follows is that the private signals for n > 7 are

essentially of slightly lower precision8 than s′n∗max (at n∗). This corresponds to the

8Why is it the case that private signals for n > 7 are of lower precision than s′n∗max (at n∗)?
For n > 7, private signals will equal r. The statement above thus implies that r is of lower
precision (less) than s′n∗max. Since s′n∗max is essentially n ∗ r− (n− 1) ∗ s1, the implied inequality
is n ∗ r− (n− 1) ∗ s1 > r. Solving yields r > s1, which is the case since starting private precisions
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first scenario in section 2.11 in Chapter 2.
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Figure 7: The dotted line (blue circles) represents the evolution of forecast dispersion
from starting values of σ2, (estimated at 1.762), and ν2 estimated at 463. The solid line
represents the maximum amount of dispersion that can be achieved at any time period.
Simultaneously, this corresponds to the case where ν2 = σ2. The dashed line (green
triangles), describes the maximum potential for increasing dispersion from its previous
value at n − 1. The private signal, s′n∗max, arriving at n = 7, raises dispersion to its
maximum value and consequently uses up all potential. Since here, for n > 7 private
signals s = r, the system is on a trajectory for maximum dispersion. This is illustrated
by the fact that after n = 7, potential never exceeds 1 .

Figure 8 illustrates a similar case, but where signals following n = 7 continue to be

of strength s′n∗max, describing the analysis in the second scenario in section 2.11 in

Chapter 2. This illustrates two additional aspects. First, it demonstrates the fact

that as private signals continue to be more precise than r for n > 7, the system

is not on track for maximal dispersion, and this builds up potential in the system

going forward (seen in the fact that the dotted line representing potential (triangles)

eventually rises above 1 in Figure 8). The second, and essential point, is that if the

system has reached the maximum dispersion at n = 7, after the arrival of s′n∗max,

then the system has used up its potential for increasing dispersion as a result of

increased private information. It can now be readily seen that after this point

the proposed dynamics under the private information acquisition hypothesis fail to

are by assumption less precise than common information.
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hold. That is, after s′n∗max at n = 7, increasing private information (the standard

explanation for forecast dispersion), now only accelerates convergence and is not

capable of producing higher levels of dispersion. Now the system deviates from the

trajectory of maximum dispersion for n > 7, and potential starts adding up going

forward. This however is ”reverse potential” in the sense that in order to utilize this

potential, and cause subsequent increases in dispersion, private signals would have

to become less informative.
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Figure 8: The dotted line (blue circles) represents the evolution of forecast dispersion
from starting values of σ2, (estimated at 1.762), and ν2 estimated at 463. The solid line
represents the maximum amount of dispersion that can be achieved at any time period.
Simultaneously, this corresponds to the case where ν2 = σ2. The dashed line (green
triangles), describes the maximum potential for increasing dispersion from its previous
value at n − 1. The private signal, s′n∗max, arriving at n = 7, raises dispersion to its
maximum value and consequently uses up all potential. Since here, for n > 7 private
signals continue to be s′n∗max, the system is not on a trajectory for maximum dispersion.
This is illustrated by the fact that after n = 7, the potential exceeds 1 and that dispersion
(dotted line, blue circles) starts deviating from the track of maximum dispersion (solid
line).

The notion of used up potential is interesting, since it shows that even if some

instances of jumps in dispersion could be explained by increases in private signals,

at some point the same increases in private signals start having the opposite effect,

that is decreasing dispersion.
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The illustrations up until this point show how the model can be calibrated to values

observed from empirical data and solved forward. The role of informative private

signals that increase dispersion (to its maximum) in the context of the model have

also been considered. Excluding the private signals that temporarily increase (max-

imize) dispersion, the trend of dispersion in the model is decreasing over time. The

empirical trend for dispersion in forecasts, seen in Figure 12 on page 80, shows a

different tendency, where the overall trend is flat to increasing, with the additional

large increases occurring in the years 2008-2009. To match the empirical flat average

trend in dispersion, small amounts of increases in private information must be added

to the model each period. The implication of adding private information at each

period however is that potential is reduced each period. Thus, in a scenario that

is capable of yielding a flat to increasing trend in dispersion, potential for (large)

increases in dispersion disappear fast. In Figure 9 constant (fraction) increases in

private information, from the starting values σ2 = 1.762 and ν2 = 463, are depicted

for 10, 20, and 30 percent annually (on a variance basis).
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Figure 9: The solid line depicts the evolution of dispersion where private signals become
more informative (reduction in variance) by 10 percent each year. The gray dotted line
depicts the analogous situation but with private signals becoming more informative by
20 percent each year. Finally, the dashed line shows the evolution of dispersion where
private signals become more informative by 30 percent each year. The starting values are:
σ2 = 1.762 and ν2 = 463.
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While a slow increase in private information precision (reduction in variance) over

time can yield a constant rate of dispersion over time (for a finite period), Figure

9 shows that this is sensitive to the exact rate at which this happens (this also

depends on r − s1, not shown here, i.e. different values yield different dynamics).

Importantly, the evolution of dispersion for the 20 and 30 percent rates hints at

the effect at play; the increases in dispersion are the result of the system eating

up potential over time, thus leaving less and less potential left over for increases in

dispersion following the arrival of higher precision signals.

Figure 10 illustrates what happens to potential in the case of 30 percent (variance)

annual increases in private information precision each period.
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Figure 10: The starting values are again: σ2 = 1.762 and ν2 = 463. The dotted line (blue
circles) is the same as the dashed line in Figure 9, and shows the evolution of dispersion
where private signals become more informative by 30 percent each year (in variance terms).
The solid line represents the maximum amount of dispersion that can be achieved at any
time period, while the dotted line (green triangles), describes the maximum potential for
increasing dispersion from its previous value at n− 1.

In Figure 10, it is apparent that the private signals that increase over time, erode

the potential from the system up until the point at approximately 20. From here on,

the increasing private signals act to reduce dispersion. The fact that the potential

starts growing results from the fact that the system is now acquiring reverse potential

54



such that in principle dispersion could be increased by reversing the evolution of the

private signals such that they suddenly turn to become less informative.

Now, withholding the private information acquisition hypothesis, given the assump-

tion of private information increases of 30 percent annually, any (more informative)

signal arriving after the system has used up its potential, will now lead to a drop in

dispersion, as depicted in Figure 11.
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Figure 11: The starting values are again: σ2 = 1.762 and ν2 = 463. The dashed line
(blue circles) is the same as in Figure 10 (and the dashed line in Figure 9), and shows the
evolution of dispersion where private signals become more informative by 30 percent each
year. The solid line represents the maximum amount of dispersion that can be achieved at
any time period, while the dotted line ( green triangles), describes the maximum potential
for increasing dispersion from its previous value at n− 1. At n = 21, a more informative
signal (more private information) arrives and now leads to a substantial drop in dispersion.

The more informative signal arriving at n = 21, in this case a signal that is 10 times9

more informative than the previous signal on a standard deviation basis, now causes

a reduction in dispersion. This is in contrast to the situation portrayed in Figures

7 and 8, where, as the standard theory predicts, the increased private signal yielded

an increase in dispersion. (Note that again, the reason for the large increase in

9The value of the chosen private signal is arbitrary. It is chosen such that the effect can be
clearly illustrated in Figure 11; a private signal of any size will reduce dispersion beyond this point.
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potential (not dispersion) that occurs after the signal at n=21 consists of ”reverse

potential”).

This exemplifies how the private information acquisition hypothesis is heavily depen-

dent on the amount of potential the system has. Also, it shows that this potential

is finite.

3.3 Concluding remarks

This section aimed at illustrating some of the main dynamics of the model of chapter

two, where adding information over time affects convergence properties.

The key aspects are naturally the same10 as those from Chapter 2, only here the

illustrations will hopefully provide for better intuition. Simultaneously however, it is

important to keep in mind that each illustration only captures a limited view of the

model, where the exact dynamics are valid only for the chosen values. These values

(starting values) however are chosen to represent the data, whereas manipulation of

the values are chosen as to give as much intuition for the possible dynamic behavior

that the model allows for.

As noted earlier, the calibrations are carried out for illustrative purposes, and the

calibrations to the data are made on an aggregate level. There are however numerous

ways that e.g. an average pattern of a flat to increasing dispersion year by year, as

in Figure 9, could be produced - this could for example be the result of high start-

ing variances for private information for all companies, combined with subsequent

small increases in private information precision for each period. Alternatively, the

same average aggregate pattern could be produced if a fraction of all companies

experience large increases in dispersion each year (following large increases in pri-

vate information precision, given a low starting precision), whereas the remaining

fraction of companies could evolve in accordance with fixed common and private

information signals, as in e.g. Figure 2, showing a steady decline in dispersion over

time, the aggregate effect being an observed average amount of dispersion which

remains fairly constant year over year.

It is worth emphasizing that all theoretical predictions of the model are on a firm

level, where the model of learning is for Bayesian agents who receive common and

private signals from the (true) distribution of company earnings, that allows the

agent to learn the true mean of the process. As the model does not make predictions

10See section 2.12.
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on aggregate effects for all companies, the empirical tests in the following chapter

will construct test that are fine-grained enough to allow for isolating the required

firm-level dynamics.

The empirical section will therefore be concerned with various tests of the model

(Proposition 3), analyzing specifically whether forecast dispersion conforms to the

(maximum) theoretical bounds proposed by the model.
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Chapter 4

Empirical Analysis

This chapter is aimed at empirically testing the implications that come out of the

model developed in Chapter 2. The rationale for expanding the Barry and Jen-

nings (1992) and Barron et al. (1998) model is that the predictions from the (their)

model(s) are widely used in the literature, especially in the form of the private

information acquisition hypothesis, where increases in forecast dispersion are asso-

ciated with agents acquiring more private information. This theoretical prediction

is usually taken more or less at face value.

Even though the Barry and Jennings (1992) and Barron et al. (1998) model can be

viewed as nesting a multiperiod setting, proper operationalization of the model to

fit empirical data spanning multiple periods becomes difficult. This is due to the

fact that prima facie, the model only allows for one aggregated input for common

information. It is with respect to this aggregate common information that analyses

in the literature are being made. Specifically, the private information acquisition

hypothesis comes out of the first derivative of the variance of the forecasts (forecast

dispersion) w.r.t. private information, implying that common information is kept

fixed. Common information here however is total common information, and cannot

be compared across time periods without simultaneous consideration of informa-

tion release/dissemination dynamics. It is exactly this comparison that the model

representation of this study achieves, simultaneously allowing for testing whether

observed levels of forecast dispersion seen in the data are compatible with the learn-

ing model, given that one can assume that the earnings series reasonably represents

common information.

There are two major predictions that directly come out of the model extension

developed in Chapter 2. These are:

1) For reasonable values of existing private information, there exists a maximum

amount (factor) by which dispersion can increase. This is Eq. (19).
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2) Regardless of the amount of private information, there exists for each time period

a maximum amount of dispersion in forecasts that is allowed by the model, given

that one can reasonably measure common information. This is Eq. (18) .

Unfortunately, as private information is not measurable by definition, mathemati-

cally, as private information goes to zero, the potential increases in the form of a

factor become infinite (in the limit). While this could be considered as perhaps not

being reasonable, or at least realistic, using prediction 1) would still involve the use

of additional assumptions on private information, assumptions that would not be

very transparent.

Thus instead, the main tests in this chapter will initially use prediction 2), which

puts no limits on private information. Here the strong assumption instead involves

common information, but this is advantageous since assumptions regarding common

information remain transparent.

4.1 Hypothesis formation

While the first tests will be concerned with ”setting the scene”, in the sense of

looking at dispersion in forecasts in general, the main interest lies in evaluating the

performance of the model. The evaluation of the performance of the model simulta-

neously tests the embedded private information acquisition hypothesis. Assessment

of the model is to be carried out through evaluating the boundaries in Eq. [18] .

Eq. [18] states how large the dispersion in forecasts can be at a maximum at

each point in time, and is given by varmax(uni) = 1/4nr. To be able to test the

performance of the model, the theoretical constructs in Eq. [18] have to be mapped

to empirically observed counterparts. The LHS in the above is of course simply

the variance of forecasts, and thus the emphasis lies on finding a proxy for r in the

denominator of the RHS, the distribution from which agents are thought to receive

earnings realizations. While this is in no means neither an easy, nor completely

unambiguous task, the subsequent sections (4.7, 4.17, 4.18) provide an in depth

discussion on how this is achieved. Once a reasonable proxy for r is constructed

however, the maximum magnitude of dispersion going forward is known.

A combination of the intuition from Chapter 1, relating dispersion to uncertainty,

along with the attributes of the model from Chapter 2, particularly the rapid con-

vergence of learning, leads to the following hypotheses:
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H1: The magnitude of forecast dispersion is too large to be supported by agents’

acquisition of private information.

H2: The magnitude of forecast dispersion is too large to be supported by agents’

acquisition of private information, and this is prominent in ”uncertain environments”

categorized by negative earnings realizations.

H1 can be seen as more of a general test of the model, and subsequently on the

performance of the private information acquisition hypothesis, whereas H2 relates

more directly to the potential link between dispersion and uncertainty. Under the

null of both hypotheses, where the fixed learning model is withheld, the implica-

tion of observing increases in dispersion is always that agents have become better

informed. When dispersion increases, there is more information in the economy and

more information will always lead to a sharper belief on the level of the individual

analyst (given that the learning regime remains fixed). Consequently, when disper-

sion increases, agents become more certain. This is the opposite of the intuition of

dispersion being related to increased uncertainty, since increased dispersion under

the model implies increased certainty.

4.1.1 Background for H2

The starting intuitive hypothesis is that negative earnings possibly proxy for (id-

iosyncratic) environments where forecasting is difficult or, in other words, uncer-

tainty is high. In contrast, theoretically disagreement (V or V ′) is completely char-

acterized by uncertainty components only, that is common uncertainty (prior vari-

ance) and private uncertainty (signal variance). The example in Appendix A makes

explicit that there exists no direct (theoretical) mechanism through which any real-

izations could affect disagreement, other than through the mechanical effect of infor-

mation addition that causes disagreement and uncertainty to decrease in Bayesian

learning environments (each common draw reduces uncertainty). This uncertainty

decrease, or convergence, occurs, and is fixed/given, regardless of observed common

values. The location of the signal realization does not affect subjective uncertainty,

the only factor that affects the subjective uncertainty is the variance of the distribu-

tion from which the signal is drawn. Thus, negative earnings (or any realizations)

themselves do not provide a direct mechanism for affecting disagreement.

If the null hypothesis under H2 holds, that is that agents are learning from real-

izations from a time-invariant process, then the mechanism that could cause the

hypothesized negative earnings to induce increases in disagreement is an increase in

private information (private information acquisition) around losses. In other words,
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around losses, agents acquire more private information1. The link between uncer-

tainty (disagreement) and losses is thus indirect; private information merely acts as

a catalyst.

As long as one assumes that learning is rational and indeed occurs over time, it is

not theoretically correct to assume that subjective uncertainty could have increased.

To validate an exploration in to explanations involving increased uncertainty for

increased dispersion, one must first rule out that predictions from the standard

model are possible.

4.2 Related empirical research

The empirical research covered in this section can be seen to be most closely re-

lated to H2, namely that dispersion is hypothesized to be linked to heuristically

viewed uncertain environments,2 especially when the indicator for such uncertain

environments is negative earnings.

While the recent interest toward disagreement in Finance is in one form or other

closely tied to the Diether et al. (2002) ”puzzle”3 of forecast dispersion and lower re-

turns, empirical work in Accounting Research has been more geared towards study-

ing dispersion as it relates to information in terms of notions of uncertainty or

information revelation, typically around earnings announcements. While some em-

pirical work in Accounting Research is similar to tests performed in this study, the

interpretation of the results are different, since inference is typically drawn solely

based on the idea of dispersion increasing as a result of agents having access to more

private information.

Morse et al. (1991) is an early study on the convergence or divergence of forecasts

around earnings announcements, where the authors show that forecast dispersion,

following large earnings surprises, tends to increase. The stance of Morse et al.

(1991) is however different from this study in some key aspects, in that they are

analyzing earnings surprises, and that they measure dispersion following earnings

surprises. Brown and Han (1992) also question the empirical results in Morse et

al. (1991), suggesting that the results in Morse et al. (1991) are driven by the use

of I/B/E/S summary data and that the effect found in Morse et al. (1991) can

1This requires the assumption that private information is initially vague, in order for potential
to exist. Additionally, the predictions under the null rest on the somewhat restrictive assumption
of the existence and availability of private information.

2This is covered in greater detail in the following section ”uncertainty and disagreement, revis-
ited”

3This is a puzzle in the standard risk-return world.
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only be identified for the largest decile of earnings surprises. Brown and Han (1992)

further conjecture that the combined evidence of (1) Bayesian belief revision theory

and (2) the time series properties of earnings, suggests that earnings announcements

should increase the convergence of analysts’ beliefs. Because the theoretical position

in Morse et al. (1991) is very different from a standard rational Bayesian one, the

similarity of this study to Morse et al. (1991) is mostly limited to the empirical

approach of analyzing forecast dispersion around earnings announcements.

This study is not the first to propose a link between disagreement and lower future

earnings, and some authors have, for example, used this notion as a potential reso-

lution for the dispersion-lower returns puzzle documented by Diether et al. (2002).

Indeed, Ali et al. (2009), and to a lesser extent Xu and Zhao (2010), are two

examples of such studies.

Ali et al. (2009) hypothesize that the forecast dispersion anomaly is driven by:

”firms’ tendenc[ies] to disclose good news about future earnings on a timely basis

and to delay the disclosure of bad news”. Ali et al. (2009) thus base their starting

point in the selective disclosure hypothesis in eg. Verrecchia (1983). Ali et al. (2009)

further refer to Lang and Lundholm (1996) in that ”firms that provide less public

disclosure about future earnings exhibit greater forecast dispersion, presumably be-

cause financial analysts reliance on their private source of information is greater for

these firms”. Yu (2011) confirms that firms that provide earnings guidance have

lower dispersion, but Yu (2011) subsequently excludes firms that provide guidance,

focusing on only on firms that do not provide earnings guidance. Nevertheless Ali et

al. (2009) show that ”After controlling for the relation between forecast dispersion

and future earnings, we find that forecast dispersion is no longer negatively related

to future stock returns”.

While drawing a connection between dispersion and negative earnings, Ali et al.

(2009) use this empirical finding to show that it is related to the Diether et al.

(2002) pricing puzzle of forecast dispersion leading to lower future returns. As such,

Ali et al. (2009) do not test what drives dispersion, rather their results show that

controlling for earnings surprise, the forecast dispersion - negative return anomaly

disappears. Importantly, the theoretical stance of Ali et al. (2009) is that of private

information acquisition driving dispersion, the very issue that this study aims to

provide evidence on.

Xu and Zhao (2010) is another study aiming at explaining the dispersion-lower

returns puzzle, in their case through analyst coverage and idiosyncratic volatility.

The idiosyncratic volatility ”puzzle” is a relatively new negative return anomaly,
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due to Ang, Hodrick, Xing, and Zhang (2006), who show that stocks with high

idiosyncratic volatility earn low average returns. The robustness of this evidence

has however more recently been questioned by Bali and Cakici (2008).

In assessing the role of idiosyncratic volatility on the dispersion - negative return

relation, Xu and Zhao (2010) find that the negative return effect is absent for stocks

with high idiosyncratic risk (and are followed by more analysts), implying that

idiosyncratic risk is the culprit behind the negative relation between dispersion and

returns. Conversely Yu (2011) points out that the disagreement effect on (market)

returns is orthogonal to the Ang, Hodrick, Xing, and Zhang (2006) idiosyncratic

volatility effect, and that the disagreement - negative returns relation is not driven

by idiosyncratic volatility. Xu and Zhao (2010) find that the dispersion negative

return relation is still present for firms with low idiosyncratic risk (and low analyst

coverage), and argue that the Ali et al. (2009) result where lower future earnings

explain the dispersion return relation is driven by these firms.

As this study is not aimed at providing direct explanations for the dispersion -

lower returns puzzle, the extent to which negative earnings relate to the dispersion

- negative return anomaly, and interacts with the other predictors, such as those in

Yu (2011) or Xu and Zhao (2010), is not addressed in this study.

Adut, Sen and Sinha (2008) is a study that is empirically related to the tests per-

formed in this study, as the authors hypothesize and subsequently test the idea that

the variance of analysts’ forecasts is larger in ”bad-news” environments. Adut et al.

(2008) also specifically show that forecast dispersion is related to ex post negative

earnings. The greatest similarity between the tests in this study and those of Adut

et al. (2008) is their use of the same notion of bad-news, that is negative earnings

and they also study this ex post. While Adut et al. (2008) show that that this

hypothesis indeed holds empirically, they base their theoretical stance, as does Ali

et al. (2009), in the selective disclosure hypothesis (Verrechia (1983)). Furthermore,

Adut et al. (2008) use the measures in Barron et al. (1998) to arrive at the con-

clusion that the amount of private information of analysts are always higher in a

bad-news environment.

In summary, the previous evidence on dispersion and future earnings closest to this

study are Ali et al. (2009) and Adut et al. (2008). The important distinction

between this study and those of Ali et al. (2009) and Adut et al. (2008) are that

while studying the same empirical relation between dispersion and future earnings,

Ali et al. (2009) and Adut et al. (2008) base their explanations on the private

information acquisition hypothesis, the very hypothesis this study aims to test.
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4.3 Uncertainty and disagreement, revisited

This section aims to illustrate how this study relates to the predictions of Barron et

al. (2009), as well as clarifying the meaning of uncertainty in context of the model

of this study in comparison to both Barron et al. (1998) and Barron et al. (2009).

First, as long as the learning model in the Bayesian setting remains fixed, more infor-

mation leads to sharper subjective belief on θ. A sharper belief means less variance

or uncertainty (in the normal sense of the word). This uncertainty decrease occurs

regardless of information source, that is private or common information. Also, since

increases in private information is the required condition for increasing dispersion,

the implication here is that when dispersion increases, uncertainty decreases, on the

level of the individual agent. As long as the model holds, subjective uncertainty,

the uncertainty that the agent uses to assess θ can never increase.

The ”external” common uncertainty that agents in the model of this study are

facing is represented by the variance, σ2, of the distribution representing common

information. The uncertainty from the common distribution is filtered through

the learning equation, and agents’ beliefs reflect and are a function of the external

uncertainty σ2, and the number of periods.

Since Eq. (18) denotes the maximum for dispersion, regardless of private informa-

tion,4 this study looks at the uncertainty that agents are facing in terms of common

uncertainty, σ. Consequently, this is the relevant definition of (external) uncertainty

that is analyzed, since private information is always assumed to already be maxi-

mized. Thus, when this study refers to the uncertainty that agents are facing, for the

above reason, this usually only denotes common uncertainty. By separately keeping

track of common uncertainty at all times, the link between external uncertainty and

the uncertainty in the information sets remains straightforward. This is in contrast

to the uncertainty measure used in Barron et al. (1998) and Barron et al. (2009).

Below an attempt is made to explain the difference.

In their attempt at separating the drivers behind dispersion in forecasts, Barron

et al. (2009) conjecture that ”changes in dispersion primarily reflect changes in

information asymmetry whereas levels of dispersion primarily reflect levels of uncer-

tainty”.

The compatibility of the first part of the above statement (”changes in dispersion

4The term regardless is slightly ambiguous since the maximum is attained for a specific value of
private information, namely when cumulative private information is equal to cumulative common
information.
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primarily reflect changes in information asymmetry”) with the expanded model de-

veloped here, or the Barron et al. (1998) model, is easily demonstrated. This can

be seen by taking the partial derivative of the variance of forecasts with respect

to private information, ∂V ′/∂s1 (or ∂V/∂s1). Keeping common information fixed,

implying the analysis is within one period, increases in information asymmetry in-

deed yield increases in dispersion (given that private information is initially vague

or non-existent). Thus, a necessary condition for increasing dispersion is an increase

in private information, and can be seen to describe what Barron et al . (2010) are

referring to in the first part of the above statement. However, it is important to

remember that while increases in private information are necessary for dispersion to

increase (within a fixed learning regime), it is not necessarily the other way around;

increases in private information do not unconditionally imply that dispersion will

increase. This is very much a point made in this study and can for example be seen

in Figure 11; as private information increases in precision beyond that of common

information, private information acquisition or production instead starts decreas-

ing dispersion. Furthermore, in a setting as that of this study, the convergence over

multiple common signals will also yield decreases in dispersion if private information

is kept fixed. Over time changes (decreases) in dispersion are theoretically expected

that occur due to common information.

The second part of the statement in Barron et al. (2009), ”... levels of disper-

sion primarily reflect levels of uncertainty”, is somewhat more complex to analyze.

First, the term uncertainty that Barron et al. (2009) (and Barron et al., 1998) are

using, is somewhat distinct from the measures used here. This study at all times

distinguishes between the two sources of uncertainty, namely private and common

uncertainty, and consequently keep track of their evolution separately. In Barron

et al. (2009) (and Barron et al., 1998) on the other hand, the term uncertainty

actually denotes the precision (or variance) of the posterior distribution of the pa-

rameter being estimated5. As such, it is a mixture of both sources of uncertainty.

The perspective of this study is that analyzing uncertainty as a mixed measure of two

sources of uncertainty complicates the analysis and makes assumptions/implications

less transparent. Hence this study does not use a mixed measure of uncertainty.

Returning to the assessment of the second part of the statement, start by looking at

how the common part of uncertainty affects dispersion. This can be seen by taking

5The posterior variance in e.g. ”The standard model” given in Eq. 6) is given by
(

1
τ2
0

+ 1
ν2

)−1
.

Since 1/τ0 = h and 1/ν2 = s, the posterior variance in terms of precisions can be written as 1
h+s ,

(Here ν2i = ν2∀i). This is exactly the definition of V in Barron et al. (1998), found in their Eq.
(19).
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the partial derivative6 of V ′ with respect to r, where ∂V ′/∂r is overall decreasing in

r. Also, since r = 1/σ2, the implication is that that V ′ is increasing in σ2, and thus

the higher the common uncertainty, the higher the disagreement, keeping private

information fixed. (This can also be seen by taking the derivative of V or V ′ in

the variance representation w.r.t. τ 2 or σ2, respectively). Stating that the higher

the common uncertainty, the higher the disagreement, or to some extent saying

that levels of disagreement reflect common uncertainty, are however only useful

statements in comparing different starting scenarios or companies. Because a static

analysis does not realistically describe the problem at hand, analyzing increases in

uncertainty in the information sets does not happen within a learning regime for a

given company.

The connected learning regime dictates that the uncertainty in the information set

always decreases. As σ2 characterizes the objective distribution that remains fixed, a

discussion on increases in r or σ2 alone is not correct considering the representation in

V ′ (unless the consideration concerns starting values). Instead, increases in certainty

in the V ′ representation should be thought about as occurring through the combined

value of σ2, or r multiplied by n. In the context of the representation in V , if h is

thought of as cumulative measure consisting of both n and r, then it is correct to

state that h, cumulative common certainty, can never decrease.

Of course, as the term uncertainty used in Barron et al. (2009) (and Barron et al.,

1998), the precision (or variance) of the posterior distribution, depends on common

information, it also follows that uncertainty, defined as in Barron et al. (2009)

(and Barron et al., 1998), is reflected in the levels of dispersion. However, without

further specification of common information and especially how much convergence

has occurred, simply stating that levels of dispersion reflect common uncertainty

seems somewhat incomplete.

The main take away is that the Barron et al. (2009) notion that the levels of dis-

agreement reflect the levels of uncertainty is indeed correct, but that the uncertainty

that is reflected is the mixture of common and private uncertainty. Furthermore,

regardless of whether ”uncertainty” refers to the mixed measure as in the previous

statement, or the common source of uncertainty, the uncertainty reflected in the

levels of dispersion is specific to a chosen point in time, and cannot remain constant

if earnings are released to the market.

6see section 2.9.
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4.4 Sample description

The initial sample consists of all US exchange listed companies from 1995-2010, dead

and alive, whose main exchange is listed as US. This does not include American de-

positary receipts or pink sheets. A company is determined to be a US company if

Datastream lists the exchange on which the company is listed as ”United States”

and currency as ”United States Dollar” and that the company’s ISO code is US. A

further screen requires that the I/B/E/S country code is also US. (This removes 55

companies). Companies are furthermore required to have data available in World-

scope and I/B/E/S.

The above requirements yield an initial sample of 8633 companies. As a result, the

total starting sample consists of 138128 individual firm-year observations.

All company data is retrieved from Worldscope (through Datastream) and all esti-

mate data is obtained from I/B/E/S. However, some additional data that is directly

related to analysts, is also taken from I/B/E/S. The most important example is earn-

ings per share, which is taken from I/B/E/S, and constitute the so called ”street”

earnings, which do not match the GAAP earnings reported in e.g. Worldscope. The

reason for using ”street” earnings instead of GAAP earnings is that this puts the

estimates and the realized values on the same page. (Consequently, the standard

deviation of realized earnings is also based on the ”street” measure). The number

of analysts is also taken from I/B/E/S.

Since dead equities are included, the final estimation sample is reduced from the

starting sample. In addition, data is missing for many firm-year observations, and

as some constructed measures require many observations per firm, which further

reduces the working sample size.

The initial sample (panel) is unbalanced. Since the main empirical variable of in-

terest is forecast dispersion, the availability of data on forecast dispersion dictates

the maximum number of observations that are available. The number of defined

firm-year observations for forecast dispersion is 46125.

4.5 Construction of variables

The study is concerned with analyzing increases in disagreement between analysts.

Disagreement comes out directly from theory, in the form of V or V ′, the variance
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of agents’ expectations (forecasts).

The basis for the calculation of disagreement between analysts is the standard de-

viation of (annual) EPS estimates, obtained from I/B/E/S. This is per firm year.

The standard deviation of EPS estimates needs to be scaled properly, in order to

make comparisons across firms possible. Different authors use different deflators for

the standard deviation of forecasts. E.g. Duru and Reeb (2002), in their study of

international diversification and forecasting accuracy, and Guntay and Hackbarth

(2010), in their study of forecast dispersion and corporate bond spreads, both use

price as a deflator. Here however, the choice of deflator needs to be specified beyond

simply making forecast dispersion comparable across firms. Since the interest lies

in the size of perceived uncertainty by analysts in relation to commonly observed

uncertainty (earnings volatility), both variables need to be specified in terms of the

coefficient of variation. This makes it possible to compare the spread, or dispersion of

two distributions directly, since the coefficient of variation is a normalized measure.

Consequently, deflating the standard deviation of EPS estimates with the mean of

the estimates (for the same firm year), yields the desired coefficient of variation

metric.

Diether et al. (2002), in their widely cited paper on the relation between forecast

dispersion and (negative) stock returns, use the exact same measure for forecast

dispersion as the one used in this study, that is the standard deviation of forecasts

is scaled by the absolute value of the mean forecast. The distinction is that they

use I/B/E/S detail data whereas this study uses I/B/E/S summary data.

The main concern with using the I/B/E/S summary data is perhaps that there are

potential stale forecasts in the data set. This is also noted by Brown (1993). If

there are stale forecasts and EPS undergoes a large change, a stale forecast can

artificially inflate the standard deviation of forecasts. This would be especially

problematic if this is due to a systematic effect, for example, it might be possible

that analysts stop following firms that report losses. Then, loss firms could see a

biased standard deviation to the upside. There are strong reasons to doubt that this

is the case however. First, in the setup in this study, dispersion is measured prior

to observing losses, thus making it unlikely that analysts systematically drop out

before losses occur. Secondly, and more importantly, the final estimations of this

study are performed on a sub-sample that consists of firms that have complete data

for all years for the variables of interest, causing the firms to be on average larger

and having more analysts estimates.

Even though there are some concerns and (potential) inconsistencies with using the
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I/B/E/S summary data, these concerns are alleviated in that e.g. Diether et al.

(2002) document that: ”[T]he mean and standard deviation values calculated from

the Detail History file data closely track the values in the Summary History file.”.

This view is affirmed by Yu (2011) who subsequently also uses I/B/E/S summary

data.

Using the absolute value of the mean estimate as a deflator however, is potentially

problematic, as this can lead to extreme observations when the variable (absolute

value of the mean) is close to zero, as mentioned by Minton et al. (2002). To deal

with these potential problems, the variables are Winsorized at the 1st and 99th

percentile values, as in Minton et al. (2002).

The forecast dispersion metric is thus the standard deviation of forecasts around the

mean forecast, deflated by the absolute value of mean forecast. This will be used as

a one key dependent variable in the empirical estimations.

The standard deviation of EPS estimates and the mean EPS estimate used in the

forecast dispersion metric, are measured on the 30th of June each year. Robustness

tests are also performed by measuring the aforementioned on the 30th of April

each year, but unless otherwise noted, forecast dispersion refers to the measure

constructed from data on the 30th of June. The robustness tests using 30th of April

data are unreported and available upon request.

Finally, in terms of the timing of events, the time periods in both the model and

the data are on an annual level. To allow for information being incorporated into

analysts’ information sets already before (annual) earnings are announced, disper-

sion is measured before earnings occur. This allows for the possibility of analysts

being aware of uncertainties relating to a firm that earnings data does not necessar-

ily capture, uncertainties that subsequently manifest themselves in terms of realized

negative earnings.

4.6 Uncertainty ratio

Instead of merely looking at sizes of the increases in dispersion (measuring potential

under prediction 1), more can be said about the magnitude of dispersion in forecasts

if the magnitude of dispersion can be conditioned on the uncertainty, or variance of

the assumed distribution of common information.

The predictions for forecast dispersion arise endogenously from the model and are
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company specific. For each firm, as long as a proxy for the uncertainty in common

information (the inverse of r in Eq. [18] ) can be found, it is possible to put maximum

bounds on the size of disagreement. Under the assumption of fixed signals, the

maximum magnitude of disagreement depends on the variance of the commonly

observed signal distribution and the number of updating events that have occurred.

The uncertainty of the assumed conditioning distribution (in variance terms σ2

(1/r)) will be proxied by the standard deviation of historical earnings. In particular,

the standard deviation of earnings will be measured recursively, for each firm, such

that at each point maximum information is used to estimate σ, without using forward

looking information. Firm specific uncertainty estimated for the maximum amount

of available information will then constitute an estimate of σ in such a way that

it is assumed that σ has been the conditioning distribution for agents throughout

the measured historical period. While another possibility would be to estimate

signal standard deviations as separate estimates at each period, such an estimation

procedure would be based on too few data points and would bias results7. See section

4.14.1 and 4.17 for a thorough discussion on the implications of such an assumption.

In the simple setup of the model, each (Bayesian) agent constructs a forecast of

earnings. The forecast is constructed from (all) the information that the agent

has. Mathematically, the agent does this by observing (earnings) realizations from

the distribution(s), the mean of which he/she is trying to estimate. All relevant

information is thus summarized by the variance of the distribution in his information

set, and the (sequence of) earnings realizations. Since the agent forecasts earnings,

it is only natural to assume that distribution he/she uses is that of the earnings

as well.8 In keeping the empirical mapping as close to the theoretical quantities as

possible, the mapping assumes that the agent only uses the variance of earnings in

his assessment. This is again not an assumption in terms of theory. It is for this

reason that the empirical mapping uses the simplifying assumption that the earnings

variance, or uncertainty, is sufficient to describe the agents’ information. (since this

is what the theory says he/she does).

Naturally, there may exist other information that agents use in their information

sets, apart from the history of earnings. However, to the extent that this additional

7While the main empirical estimations estimate standard deviations based on a comparatively
small number of observations, Section 4.16 confirms that the standard deviations used in the
empirical estimations lie close to values estimated for a much longer sample using data going
back to 1978. Also, it is worth noting that the cross-sectional standard deviations used as the
basis for the calculation of dispersion in forecasts in many studies uses much fewer cross-sectional
observations than time series observations for earnings used here.

8Note that this is not an assumption in terms of theory, it becomes an assumption only in the
parameterization of the model. The simple Bayesian model is a single parameter model.
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unobserved information is common, and as long as the estimate of the uncertainty

of the earnings distribution is correctly identified, additional common information

will only act as to reduce the subjective variance of the parameter being estimated.

Additional unobserved common information, to the extent that is informative on

earnings beyond that of observed earnings information, will make the actual vari-

ance of common information that agents condition on, smaller than the observed

variance of earnings that are used as a proxy for common uncertainty in the empiri-

cal tests. Accordingly, if agents have access to any additional common information,

the strength of their beliefs (the subjective ”confidence interval” for the parame-

ter which constitutes the strength of the belief) will actually be narrower than the

observed variance of earnings used as a proxy here9. Thus, using only observable

common information as measured by the historical volatility in company earnings,

which has the potential of underestimating the amount of information that agents

actually have10, gives an advantage to the null hypothesis which maintains the ra-

tional Bayesian learning model sustained in the literature.

Having identified σ2(1/r), proxied by historical firm level earnings variance, all in-

gredients for analyzing Eq. (18) are in place. Empirical uncertainty ratio measures

can now be constructed. The uncertainty ratios scale measures of forecast disper-

sion with earnings volatility (that proxies for theoretical common uncertainty) and

the uncertainty ratios directly proxy the theoretical construct (
√
V /σ) that can be

extracted from Eq. (18). The rationale for using the ratio (
√
V /σ) is the following.

Eq. (18) gives the maximum magnitude of dispersion in forecasts, as a function of

the variance of the common conditioning distribution and the number of signal re-

alizations. Using Eq. (18) , where Vmax is shorthand for varmax(uni), Vmax = 1/4nr

⇔
√
V max =

√
1/4nr ⇔

√
V max/

√
1/r =

√
1/4n. Since (1/r) = σ2 it follows that√

V max/σ =
√

1/4n, or in the notation that will be used (
√
V /σ)max =

√
1/4n.

The left-hand side of the final identity is the maximum magnitude of dispersion in

forecasts scaled by earnings volatility, and turns out to be a simple number that is

a function of n, the number of earnings realizations. Given the number of earnings

realizations, the number of observed annual earnings announcements in the data,

one can easily find the maximum value for (
√
V /σ). Through constructing an em-

pirical measure which directly maps to (
√
V /σ), the performance of the model can

be judged by analyzing whether (
√
V /σ) in the data conforms to the value implied

9Another way to see this is to think of other unobservable common information as additional
draws, alternatively viewing the series as being ”longer” than what can be observed, i.e. the
measured n understates true n.

10As per the previous footnote, if agents have received more common draws than what can be
observed, their subjective uncertainty would be smaller (alternatively again one can view n as
being larger) than what could be estimated from the commonly observed information together
with observed n.
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by n. The empirical estimations will assess the performance of the model by testing

whether the uncertainty ratio (
√
V /σ) stays in line with the maximum magnitude

of the ratio, given by n.

To provide some intuition for the sizes of maximum disagreement implied by the

model, start by considering n = 1 . The case where n = 1 gives the maximum frac-

tion of disagreement in relation to the variance of a commonly observed informative

distribution, when the common distribution is thought to be the Bayesian prior and

updating is performed over one private signal realization for each agent. This case

gives the absolute maximum fraction of disagreement that can occur, and is not

equal to the variance of common information, rather it is 1/4 th of the variance of

the common uncertainty (1/[4× 1]) , or 1/2 of the standard deviation (
√

1/[4× 1])

of the common uncertainty. As n increases, that is as more (common) information is

incorporated into the agents’ information sets, the maximum amount of dispersion

declines, resulting in a decline in the maximum value for (
√
V /σ). For example,

for a period corresponding to n = 10, where it is implied that common information

has arrived from the same (fixed) distribution each period, the maximum for the

uncertainty ratio (
√
V /σ) is 1/40 in variance terms or

√
1/40 in standard devia-

tion terms. In the latter case, using standard deviations, the maximum value for

(
√
V /σ) where n = 10 is thus approximately equal to 0.158. This means that a for

a company with n = 10, the maximum that the ratio (
√
V /σ) can attain is 0.158,

regardless of values for private information. Thus, even if the starting point for the

company at hand would have been a very low amount (low precision, high variance)

of private information, implying that there was sizeable potential to raise disper-

sion from previous levels, the maximum amount dispersion in relation to common

uncertainty could rise to, is 0.158

The study considers two different parameterizations of the theoretical relation (
√
V /σ).

The first parameterization of dispersion in forecasts to common uncertainty is per-

formed on a coefficient of variation basis. This variable is labelled Disptosigma,

referring to ”dispersion to sigma”, where sigma, σ is the standard deviation of the

common information distribution. This variable is constructed by dividing forecast

dispersion (coefficient of variation) with the corresponding coefficient of variation of

earnings for each firm.

The coefficient of variation for earnings is calculated by first calculating the standard

deviation of EPS, constructed on a recursive (growing) basis for each firm. Note

that this is the ”street” EPS measure, obtained directly from I/B/E/S. If a firm has

a minimum of two (consecutive) year EPS observations, the first recursive standard
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deviation estimate is constructed, and is used as an estimate for the volatility of

earnings, corresponding to the latter year. If there are n observations, the recursive

estimate is based on 1...n (trailing observations). The recursive standard deviation

thus uses the full available sample information, up to the current point. Missing

observations are skipped and not interpolated. A similar recursive estimation is

performed for the mean of the earnings series, for each firm (and year).

The coefficient of variation of earnings is calculated at each step, using the total

sample information up to the current point, by dividing the standard deviation

estimate with the absolute value of the mean. Having constructed the coefficient

of variation of EPS for each firm year, Disptosigma is constructed by dividing each

firm year observation of forecast dispersion with the coefficient of variation of EPS

(lagged). Naturally, this estimate loses one (year) observation for each firm, reducing

the working sample.

Disptosigma is constructed by dividing each firm year observation of forecast dis-

persion with the lagged value of coefficient of variation of EPS. Since forecasts are

measured on the 30th of June each year, e.g. 1997, and the realized EPS for the

fiscal year 1997 is not known until early 1998 (all realized EPS values in the data

file are already lagged such that realized values for 1997, which are reported in 1998,

are shifted to occur at the time identifier 1997), the full year results for 1997 are

obviously not available to analysts in June of 1997. Thus, the information sets of

analysts in 1997 (recall that annual observations are used), only contain the full

year realized results of 1996 and earlier. Thus, the dispersion of forecasts measured

in June of 1997, is compared to the information that analysts have available at the

time, namely the full year results of 1996. Therefore the variable Disptosigma uses

current dispersion scaled by lagged earnings volatility (σ).

The theoretical restrictions map one to one with standard deviations (variances to

be completely rigorous). Proxying standard deviation with the coefficient of varia-

tion has an advantage in terms of comparability, and is the only way to construct

direct tests for measuring direct responses of dispersion, but it is not necessarily a

direct proxy for theoretical values. When using measures based on the coefficient

of variation, it is assumed that theoretical restrictions on standard deviations carry

over to coefficient of variation measures. This is theoretically well motivated since

in the Bayesian learning environment, both forecasts and realizations center on the

true mean of the process, θ. On empirical grounds however, this is slightly more

complicated. Since the coefficient of variation of earnings is based on the recursive

standard deviation scaled by the recursive mean, the deflator for the coefficient of

variation for historical earnings is the (total) time series mean of the earnings series.
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The dispersion measure on the other hand, is based on the cross-section of earn-

ings forecasts at one point in time, constructed by deflating the standard deviation

of forecasts with the mean forecast. To the extent that analysts in reality are not

pure Bayesian agents, constructing unconditional mean forecasts, these two different

deflators (mean estimates) may not coincide.

The study therefore constructs a more robust measure using standard deviations

directly, thereby ensuring that identification is correct. This robust measure, DTS-

direct (
√
V /σ), is analogous to Disptosigma, except that it uses standard deviations

directly. The numerator is the raw standard deviation of forecasts for a firm for a

particular year, deflated by the (lagged) recursive standard deviation for past earn-

ings. The recursive standard deviation for past earnings is calculated exactly as

above in the construction of the variable Disptosigma.

Both variables, Disptosigma and DTSdirect (
√
V /σ), are subject to the same restric-

tions. The direct theoretical restrictions (
√
V /σ)max =

√
1/4n however have a one

to one correspondence to the variable DTSdirect (
√
V /σ). In the variable DTSdi-

rect (
√
V /σ), the numerator

√
V exactly equals the standard deviation of forecasts,

and the denominator σ is the standard deviation of earnings. Thus, to the extent

that σ corresponds to the estimated volatility of past earnings, the uncertainty ratio

(
√
V /σ) is exactly the variable DTSdirect (

√
V /σ).

4.7 Control variables

The general tests of the model (H1) are performed through evaluating the maximum

bound (
√
V /σ)max. In terms of H1, if the maximum theoretical bounds for forecast

dispersion are violated, it does not in effect matter which variable (or an aggregate,

cumulative effect of all variables) is the culprit. Any variable (or combination of)

that would cause an exceedance of the theoretical bounds, would itself be a novel

result. This is because the main theoretical prediction that is being tested, is the

maximum allowed dispersion allowed by the model - the theory is silent on what

could cause such effects. (Strictly speaking the theory does not allow for such effects,

the only allowable cause is an effect that increases private information).

The empirical tests of H2 evaluate the performance of the bound (
√
V /σ)max specif-

ically around negative earnings. Negative earnings are the key hypothesized trigger

for increases in dispersion and consequently the effect must be separated from other

effects.

75



Lang and Lundholm11 (1996) and Duru and Reeb (2002) find that forecast dispersion

is negatively related to analysts’ forecast accuracy. The hypothesis (H2) is that

negative earnings are related to uncertainty and dispersion. Negative earnings have

been found to carry with them an unexpected component, and Hwang, Jan and

Basu (1996) (in Duru and Reeb, 2002), find that analysts’ forecasts of losses are, on

average, less accurate than forecasts of profits. Consequently, accuracy is controlled

for in an attempt to disentangle the potentially different effects on dispersion that

accuracy and negative earnings have, especially as the two are related to each other.

In summation, the study controls for accuracy in the empirical estimations, due to

the fact that at least heuristically forecast dispersion, accuracy and losses, all tend

to be related to uncertainty about future profits. While the term used is accuracy,

it can equally well be interpreted as either earnings surprise or forecast error.

The accuracy variable is constructed in the following way. Using the year 1997 as an

example, forecast accuracy (or surprise) is measured as the (absolute value of the)

difference between realized earnings in 1997 (that become known in early 1998),

minus the consensus estimate in 1997 (June), scaled by stock price in 1997 (June)

multiplied by 100. The timing of measures, as well as scaling by price is analogous to

the construction of the accuracy variable in eg. Duru and Reeb (2002). In contrast,

Duru and Reeb (2002) and Lang and Lundholm (1996) both multiply the accuracy

measure12 with (-1). In this study, the accuracy measure is not multiplied by (-1)

and thus the accuracy measure in this study has a direct interpretation in terms of

surprise or forecast error, the higher the value on the accuracy measure, the greater

is the surprise in earnings as compared to consensus13. Earnings are earnings per

share.

Since this study is interested in the size of the regression coefficients, specifically

the size of the effect on the relation of dispersion to common variance, the accuracy

variable is additionally scaled by 100 so that sizes are easier to compare. The

raw accuracy variable (without scaling by 100), has a mean of 0.023 and a median

of 0.0066, with a 95 percentile value of 0.0997 and a maximum value of 0.351.

Interpreting a regression coefficient on the raw accuracy variable would entail the

use of additional consideration, since accuracy could in the maximum case, only

move from 0 to 0.351. So a coefficient on accuracy of e.g. 0.2 would imply that a 1

”unit” move in the independent variable (in this case accuracy), would correspond

to a 0.2 move in the dependent variable. However, such a move is not possible since

11Based on significant correlation.
12Note that in the Lang and Lundholm (1996) study, all variables in the accuracy metric are

indexed by (t)
13Some caution might thus be warranted in comparing signs of the accuracy relation to studies

by other authors.
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no such values exist, so in other words the absolute maximum move in the dependent

variable in this example would be 0.0702, where this would be achieved only between

the two extreme end values of the accuracy distribution. Consequently, to facilitate

easier comparisons in the size of coefficients, the accuracy metric is multiplied by

100.

Lang and Lundholm (1996) find that larger changes in earnings are associated with

less accurate forecasts. While this study is not directly focused on the forecast error

(accuracy) of analysts’ forecasts, changes in earnings are controlled for due to their

general association with the forecasting environment and the accuracy of forecasts,

the latter which in turn is associated with negative earnings environments (Hwang

et al.,1996, in Duru and Reeb, 2002). Change in earnings is measured simply as

realized earnings for the current year minus realized earnings for the previous year,

scaled by realized earnings for the previous year, multiplied by 100. Earnings are

earnings per share.

Other controls used are the natural logarithm of market capitalization to control

for size, and Following, controlling the number of estimates or analysts following

the firm. Industry effects are controlled for by industry dummies, based on ICB

industry classification codes14.

Finally, it is important to keep the length of the forecasting window fixed. Some

authors such as Duru and Reeb (2002) approach the issue by controlling for forecast

horizon by using a measure of forecast months. In the context of this study, this

approach is deemed insufficient due to a suspicion that there are possible mismatches

between realized earnings and forecasts for those earnings. Furthermore, as more

data becomes available throughout a year, e.g. 3/4 of annual earnings are known

in Q4, there is a concern that this affects the estimates on dispersion. To keep the

forecast horizon fixed, to ensure forecasts match earnings, and to make sure that it

can be reasonably deduced what (common) information analysts have available to

them, this study instead opts to use only firms whose fiscal year end is December.

Consequently, the length of the estimate window is fixed to six months.

4.8 Descriptive statistics

Table 1 reports descriptive statistics for the main variables used. Panel A reports

the ”raw” variables used in the construction15 of the main dependent uncertainty

14The results in the tables use the term ”sector” for the industry dummies.
15The variables used depend on specification. See the section ”Construction of variables”.
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variables: the standard deviation of the EPS forecasts, the mean (consensus) fore-

cast, and the rolling (recursive) standard deviation of realized EPS. While Panel A

in Table 1 reports descriptive statistics for earnings per share, the measure used in

the uncertainty measure, in this case Disptosigma, is the absolute value of EPS (not

shown). The variables as reported in Panel A are not Winsorized. This is due to

the fact that Winsorizations are performed only after the uncertainty variables are

constructed.

Table 1: Descriptive statistics. Observations reported in Table 1 have to have corre-
sponding observations on earnings per share (EPS), as well as December fiscal year ends.
Panel A: Sd forecasts is the raw standard deviation of EPS forecasts, on a firm year basis.
Mean forecast is the average of forecasts of analysts for a given firm year. All forecasts are
measured June 30th each year. Recursive sd EPS is the standard deviation of realized EPS
firm by firm, estimated recursively (growing estimation window). EPS is the earnings per
share for each available firm year. Panel B: All variables in Panel B are winsorized at the
1st and 99th percentile, except for Loss and Following. Forecast dispersion is the firm year
standard deviation of forecasts, scaled by the (absolute value of the) corresponding mean
forecast. Disptosigma is forecast dispersion scaled by the recursively estimated coefficient
of variation of firm historical EPS. The recursively estimated coefficent of variation of
firm historical EPS is estimated from (full year) information available up to the current
point, effectively implying a half year lag for the denominator. DTSdirect (

√
V /σ) is the

firm year standard deviation of forecasts, scaled by the recursively estimated standard
deviation of earnings. The recursively estimated standard deviation of earnings (EPS) is
estimated from (full year) information available up to the current point, effectively imply-
ing a half year lag for the denominator. Accuracy is (the absolute value of) the difference
between the realized earnings for a given firm year, and the consensus estimated earnings
June 30th of the same year, scaled by year end price. Change in earnings is defined as
the simple net return of firm EPS, multiplied by 100. Size is the natural logarithm of
market capitalization. Following is the number of analysts covering a firm at the time of
forecasting. Loss is a binary indicator variable taking the value 1 if EPS is less than zero.

Variable mean sd min max skew. kurt. N

Panel (A)

Sd forecasts 0.26 7.69 0.00 1003.80 99.19 11268.02 31166
Mean forecast 1.95 90.06 -8128.00 5825.16 9.41 4227.87 35835
Recursive sd EPS 2.54 76.63 0.00 6169.76 64.45 4530.64 34756
EPS 1.18 107.15 -12736.00 6774.00 -25.97 7037.32 40282

Panel (B)

Forecast dispersion 0.15 0.35 0.00 2.50 4.93 30.03 31118
Disptosigma 0.29 0.56 0.00 3.67 4.07 21.51 23686

DTSdirect (
√
V /σ) 0.25 0.38 0.00 2.54 3.85 20.62 25488

Accuracy 0.02 0.05 0.00 0.35 4.30 23.83 35348
Change in earnings -1.34 171.34 -860.71 812.50 -0.31 15.95 33570
Size 13.33 1.75 8.41 17.69 0.24 2.78 39171
Following 7.18 6.39 1.00 47.00 1.61 5.86 35835
Loss 0.20 0.40 0.00 1.00 1.47 3.16 40282
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The measures in Panel A however do not necessarily provide much intuition in

themselves. E.g. comparing the standard deviation of forecasts across firms is not

particularly meaningful since firm-specific EPS varies heavily, and furthermore the

unwinsorized measures are heavily affected by the extreme EPS measures that are

represented by just a handful of firms.

Panel B in Table 1 reports descriptive statistics for both the three uncertainty vari-

ables, forecast dispersion, Disptosigma, and DTSdirect (
√
V /σ), as well as for the

control variables, accuracy16, change in earnings17, size, and following.

All variables18 in Panel B are Winsorized at the 1st and 99th percentile. Notice that

while the variables in Panel B are still not necessarily behaving ”nicely” in terms

of normality, the most important measure used in this study, DTSdirect (
√
V /σ),

behaves better than forecast dispersion. Recall that forecast dispersion was defined

as the standard deviation of EPS forecasts scaled by the consensus forecast, and

is the exact measure used in e.g. Diether et al. (2002). While other authors, e.g.

Duru and Reeb (2002) use price as a deflator for the EPS forecasts, constructing a

dispersion measure analogously19 using the data in this study still yields a skewness

of 4.75 and a kurtosis of 28.32. Thus, the accepted approach in the literature in

terms of distributional characteristics, gives no reason to doubt inferences drawn

from the DTSdirect (
√
V /σ) measure.

The non-normality of the variables is of course driven by the fact that that the

variables involving standard deviations (as well as accuracy) are truncated at zero.

The data in Table 1 are subject to a few conditions that has shrunken the data from

its initial size. Apart from the requirement of companies having December fiscal

year ends, the data in Table 1 are matched based on the availability of earnings

data. Note however that the empirical estimations also require forecast data to

be available and thus the descriptive statistics may not be fully representative of

samples used in estimations. (Also the subsequent estimations will add additional

requirements that will further shrink the data set).

16The accuracy measure here refers to the ”raw” measure in the sense that it is before being
multiplied by 100.

17It is slightly interesting that the average change in earnings (earnings growth) has a mean
that is negative. Forcing the companies to have earnings observations for all years throughout the
sample however, as is the case with main estimations performed in the following sections, yields a
mean for the variable equal to 4.34.

18Except Loss and Following.
19That is deflating the standard deviation of forecasts by price.
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4.9 Empirical estimations

Figure 12 illustrates how forecast dispersion behaves in the data on aggregate. Due

to the lack of scaling, and the fact that data is aggregated across all firms in the

sample, the dispersion measure is based on the coefficient of variation.
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Figure 12: Bottom up aggregated forecast dispersion for US exchange listed companies
for the years 1995-2010. Aggregation is performed through equal weighting. Forecast
dispersion is the firm year standard deviation of forecasts, scaled by the (absolute value
of the) corresponding mean forecast. See Table 1 for a further description.

The magnitude of the dispersion in forecasts, as well as the overall behavior, is

similar20 to that of Figure 1 in Park (2005), which is a predecessor to Yu (2011),

in showing that disagreement leads to lower portfolio returns. On the other hand,

Figure 1 in Yu (2011), which also aims at illustrating the dynamics of forecast

dispersion, looks markedly different from Figure 12 and the corresponding figure in

Park (2005). The reasons for this can be found in that firstly, Yu (2011) uses the

dispersion in long term growth forecasts, not EPS estimates. Secondly, Yu (2011)

aggregates dispersion through value weighting instead of equal weighting as in this

study and in Park (2005).

20Park (2005) however scales the standard deviation of forecasts with actual earnings. More
importantly, earnings used in Park (2005) are top down aggregate forecasts for the S&P 500. Also,
Park (2005) utilizes a weighting scheme for the standard deviation in forecasts in an attempt to
fix the forecasting horizon while taking advantage of monthly data.
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Next, Figure 13 illustrates how dispersion in the aggregate behaves in relation to the

maximum bounds derived from theory. This provides an initial visual examination

of H1. In Figure 13, the grey line is (
√
V /σ)max, that is the maximum magnitude

forecast dispersion can have in relation to common uncertainty, and here constitutes

the maximum bound. The dotted line is (
√
V /σ), that is the variable DTSdirect,

and illustrates what is implied by the data.
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Figure 13: Comparison of the maximum bound for dispersion, (
√
V /σ)max, and the ac-

tual value for DTSdirect (
√
V /σ). The solid grey line is the maximum bound (

√
V /σ)max,

which constitutes the maximum value for DTSdirect (
√
V /σ) for each period. The dot-

ted line with red squares shows the actual value for DTSdirect (
√
V /σ). See Table 1 for

a further description of the variable DTSdirect (
√
V /σ). Firms must have full earnings

histories to be included in the data that DTSdirect (
√
V /σ) is based on in the figure.

While the data for the initial years (up to 2000) are difficult to draw conclusions

from21, something interesting occurs in 2008 and 2009; forecast dispersion in the

data, on aggregate, exceeds its maximum theoretical value. To examine whether

the exeedance of the implied maximum values illustrated in Figure 13 is significant,

empirical estimations of H1 are carried out.

The equation below formally tests H1, where DTSdirect (
√
V /σ) is regressed on a

constant. Results are reported in Table 2.

21For the initial years there is not enough data to get meaningful estimates for the realized
standard deviation of earnings.
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DTSdirect = α + (β1 · Controls) + ε (21)

Specification (1) in Table 2 is for the full sample 1995-2010 and shows that the

average value for DTSdirect is 0.256. As can be deduced from Figure 13 however,

this is somewhat problematic since in the beginning of the sample period DTSdirect

is poorly estimated (the pre 2000 values for DTSdirect are in all likelihood driven

by biased standard deviation estimates for realized earnings). Secondly, recalling

that the threshold level for DTSdirect, (
√
V /σ)max, is guided by n, it is difficult to

compare the value for DTSdirect in specification (1) against the maximum threshold

level, since the sample spans a large period22.

Table 2: Table 2 displays the results from pooled OLS regressions of the variable DTS-
direct (

√
V /σ) on an intercept and controls (specification 4 only), as described below.

Specification/column (1) is a univariate regression of the variable DTSdirect (
√
V /σ) on

an intercept for the years 1995-2010. Specification (2) repeats the estimation in (1), but
on a sample that enforces the availability of a full earnings (1995-2010) history for a firm
to be included in the sample. Specification (3) repeats (2), but is estimated on a sub-
sample form 2006-2010, enforcing the full availability of earnings observations as above.
Specification (4) again repeats (3), with the addition of controlling for sector effects based
on ICB industry classification codes. The full availability of earnings observations are
enforced as above. Reported standard errors are White (1980) standard errors, robust to
heteroskedasticity, and are found in parentheses. All variable definitions are described in
Table 1.

     
 Dependent Variable: DTSdirect 
     
 (1) (2) (3) (4) 
     
Constant 0.256*** 0.214*** 0.170*** 0.227*** 
 (0.00231) (0.00304) (0.00309) (0.0160) 
     
Observations 27,603 9,277 3,338 3,338 
R-squared 0.000 0.000 0.000 0.053 
     

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
 
 

Consequently, in order to keep better track of n, and to ensure that sufficient con-

verge has occurred, that is enough updates have been carried out, specification (3)23

is estimated for a sub-sample from 2006-2010. The requirement for inclusion in the

sub-sample, is that firms have complete earnings and estimate histories throughout

22The only threshold that could be used with certainty is 0.5.
23specification (2) is simply as specification (1), that is on the full sample but with the added

requirement of full sample earnings histories for each individual firm.
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the whole sample24 (1995-2010). While this induces a large-cap bias, it ensures that

results are not driven by small firms and guarantees that the minimum amount of

updates that must be assumed to have occurred are known with certainty. Thus, a

firm present in the sub-sample, in e.g. 2006, will have had earnings from 1995-2005

(Estimates are made on June 30 th of 2006. Consequently, analysts’ information

sets contain full year earnings up to, and including, 2005).

Agents should then, according to theory, have had at least 25 10 annual observations

of commonly observable information, causing them to have updated over common

information 10 times. If agents are forecasting earnings as coming from a fixed

distribution, the maximum fraction of forecast dispersion in relation to common

”uncertainty”, (
√
V /σ), (for any values on private information) that the learning

model allows for, is 0.158. Thus, in 2006 (and beyond), the maximum theoretical

value that (
√
V /σ) can take is 0.158, given that the underlying learning model is

true.

Naturally, as with all threshold values used in this study, they are based on observable

n, which is the number of periods from the beginning of the sample up to the point of

measurement. This is the reason for enforcing the full availability of firms’ earnings

histories described above. Conversely, the observed values of the variable DTSdirect

(
√
V /σ) are however not directly dependent on n. Thus, if one would use a longer

history of earnings, the value of the variable DTSdirect (
√
V /σ) does not change26,

while the threshold value (
√
V /σ)max changes. Given that the value for DTSdirect

(
√
V /σ) remains constant (subject to the caveat in the previous footnote), one would

effectively use a lower threshold value for judging exceedance of the model bounds

in the regression results. In terms of visualization, this would amount to the curve

for the threshold value, (
√
V /σ)max, in Figure 13 being adjusted downward. See

also the final paragraphs of section 4.16 for a discussion of the probable magnitude

of true n.

In specification 3, the intercept is equal to 0.170 and highly significant. The sig-

nificance level of the test however is for the constant being different from zero. In

order to be able to test the restrictions of the theoretical model, the test must be

24Notice that Figures 13 and 16 are also subject to this constraint.
25Since the earnings for the year 1995 are included, in terms of the model one could use a

threshold value of n = 11. However, using what is effectively n − 1 in reality allows for the prior
in the model to be set very freely. In, fact the only restriction on the prior is that it is normally
distributed. While this is not explicitly made use of in the model (in order to keep the formulas
more compact), this essentially just relaxes the assumption of setting h = r in the first period.
Footnote 11 in section 2.8 also discusses the issue.

26The numerator remains the same but since the denominator consists of the estimated standard
deviation, a longer sample could affect the value.
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for the constant being larger than the threshold value (
√
V /σ)max, which for n = 10

is equal to 0.158.

A post estimation Wald test on the restriction that the intercept is equal to 0.158

confirms that this is indeed the case. The F-statistic equals 14.06 (1, 3337), and

the corresponding Prob > F = 0.0002. This validates H1 and confirms that the

dispersion in forecasts is too large for the fixed Bayesian learning model to hold.

Specification (4) repeats the above estimation but includes sector dummies based on

ICB industry classification codes. The findings here corroborate those of specifica-

tion (3) in that H1 is accepted. Repeating the Wald test after running specification

(4) confirms the result. The F-statistic equals 18.89 (1, 3328) and the corresponding

Prob > F = 0.0000.

These findings are very interesting. The implication is that the dispersion in fore-

casts cannot simply be explained by private information, since the threshold value

(
√
V /σ)max is the maximum amount of dispersion in forecasts (in relation to earnings

variance) that the fixed Bayesian learning model allows for. Recall that the maxi-

mum was derived for a signal, s′n∗max, defined in such a way that it is the amount

of private information that by definition maximizes dispersion. Consequently, there

can exist no private signal that can cause an exeedance of this bound. Yet the bound

is exceeded in the data, as the results in Table 2 confirm. What this implies is that

there must be other explanations that are driving the results.

4.10 Illustration of the negative earnings - disper-

sion relation.

Before proceeding with testing H2, the following example company provides some

intuition on the dynamics of uncertainty around pending losses, and to what extent

theoretical maximum bounds are violated in the data. This is depicted in Figure 14,

which also shows how negative earnings seem to be a large contributor to increases

in dispersion. Note that this is only an example which is to serve as an illustration.

In Figure 14 it is clear that DTSdirect (
√
V /σ), readily exceeds its maximum value27,

which is approximately 0.158, since DTSdirect takes the value 0.87 in 2008. The

large rise in the standard deviation of forecasts, the driver behind the rise in DTSdi-

27notice that DTSdirect (and Disptosigma) measures exceedance w.r.t. to the latest estimate of
the (recursive) standard deviation. See section 4.17 for a thorough analysis of this.
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Figure 14: Fifth Third Bancorp. The grey boxes are earnings per share (right axis).
The black dashed line with circles shows forecast dispersion, defined on a coefficient of
variation basis. The grey dashed line (triangles) shows the estimated volatility (standard
deviation) of earnings (recursive estimate). The solid line is the standard deviation of
forecasts. The dashed line (plusses) shows the variable DTSdirect, which is the ratio of
forecast standard deviation to earnings volatility, the maximum theoretical value of which
is less than 0.158 (for the year 2007 and onwards). Here, the value of DTSdirect is 0.87,
implying that DTSdirect exceeds its theoretical bound by a factor of over 5X.

rect, can also be readily observed. Interestingly, forecast dispersion, as it is usually

measured, makes its largest increase in 2010, even though the standard deviation

of forecasts has already decreased significantly at this point. The reason for this

is that here forecast dispersion is defined on a coefficient of variation basis, and as

the mean forecast for 2010 is 0.12, this measure becomes artificially inflated due to

the low absolute value of the mean forecast (the standard deviation of forecasts in

2010 is 0.2, implying that the forecast dispersion measure based on the coefficient

of variation becomes 1.67). This shows the potential caveats of measuring forecast

dispersion as a coefficient of variation. Note that this caveat applies well beyond

this study. Simultaneously however, this shows the strength of the robust DTSdirect

measure.

Figure 15 provides some additional intuition for the magnitude of the standard

85



 
-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

1995 2000 2005 2010 

Figure 15: Fifth Third Bancorp. In the figure, the thick (blue) candles represent realized
earnings. The vertical bars in turn represent the 2 standard deviation interval around the
mean forecast, which in turn is represented by the dot on the right-hand side of each bar.
The 2 standard deviation interval is based on the (one) standard deviation of earnings
forecasts.

deviation of forecasts in the example of Fifth Third Bancorp. In the figure, the thick

(blue) candles represent realized earnings. The vertical bars in turn represent the 2

standard deviation interval around the mean forecast, which in turn is represented

by the dot on the right-hand side of each bar. The 2 standard deviation interval is

based on the standard deviation of earnings forecasts.

In this illustration it is easier to directly compare the magnitude of the disagreement

in forecasts, since it on the same level as the realized earnings. In the years up

to 2008, the spread in forecasts is very small, whereas in 2008 the spread widens

considerably. In fact, the standard deviation in forecasts increases 16X from the

previous year.

Viewed from another angle: in order for the standard deviation in forecasts in 2008 to

be compatible with the null of the Bayesian learning model, the standard deviation

of the distribution over which agents updated in 1995, would have to have been

over 4 (as the maximum standard deviation in 2008, in this case 0.64, can be at

most 0.158 of the standard deviation of the common information 10 periods earlier,

implying 0.64/0.158, which is > 4). In the figure, this would imply a one standard
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deviation interval in 1995 that encompasses virtually the whole vertical axis, and

the corresponding two standard deviation interval, as in the figure, would extend

far beyond the axes of the figure.

4.11 Empirical estimations of H2

The previous example demonstrated how large increases in dispersion tend to specif-

ically occur around negative earnings, apart from the general evidence provided in

the results in Table 2, that the magnitude of dispersion on aggregate exceeds its the-

oretically implied bounds. The combined evidence so far leads up to analyzing H2,

namely that the driver behind large increases in dispersion are negative earnings.

For initial illustration, Table 3 shows the results of a mean-comparison test (with

unequal variances), comparing the average values for the three different uncertainty

measures, forecast dispersion, Disptosigma and DTSdirect, for years of negative

earnings vs. positive earnings.

Table 3: Table 3 reports results of mean-comparison tests using the full sample of data,
1995-2010. The t-tests assess whether the uncertainty measures have the same mean for
when a firm reports negative earnings vs. when a firm reports positive earnings. The
results are for the variables forecast dispersion, Panel (A), Disptosigma, Panel (B), and
DTSdirect (

√
V /σ) , Panel (C). The degree of freedom correction resulting from unequal

variances is due to Satterthwaite (1946). All variable definitions are described in Table 1.

    
 Panel(A) Panel(B) Panel(C) 
 Dispersion Disptosigma DTSdirect 
    

Mean (no loss) 0.100 0.228 0.232 
Diff. Mean (no loss) - Mean (loss)  -0.317*** -0.404*** -0.145*** 

t-stat (-38.95) (-27.46) (-18.30) 
    

N 33506 25607 27603    
    

t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

 

Panel A in Table 3 reports the results for forecast dispersion, where on average the

dispersion in forecasts for firm years associated with losses is 4 times28 higher than

the dispersion in forecasts for firms reporting positive earnings.

28Since the difference between Mean (no loss) and Mean (loss) is -0317, and Mean (loss) is equal
to 0.100, it follows that Mean (loss) must equal 0.417.
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Although the effect is sizeable, this alone is however not sufficient to make state-

ments on the performance of H2, since there is always the possibility that dispersion

increased from a large acquisition of private information, from previous levels of

vague private information. This is exactly the difficulty with using prediction 1)

from Eq. (19); without being able to control for previous levels of information, it is

not possible to make statements about the magnitude of the increases in dispersion.

The preliminary evidence on the relation between forecast dispersion and negative

earnings however confirm the results in Adut et al. (2008).

In order to facilitate an anchoring of the increases in forecast dispersion associ-

ated with losses to their theoretical bounds given by the uncertainty of the com-

monly available historical information, Panel B in Table 3 reports the difference

in means test on the disagreement (forecast dispersion) to common variance ratio,

Disptosigma, between years with negative and positive earnings.

The outcome is large and highly significant and shows that while on average for

non-loss firm years, the dispersion is 22.8 percent of the size of the cumulative past

historical earnings variation, for firm years associated with losses, this fraction rises

to 63.1 percent. To the extent that the measures (forecast dispersion and the co-

efficient of variation for past earnings) can be interpreted on the same basis as the

restriction on standard deviations that come directly out of theory, the exceedance

of the level of 50 percent implies a violation of the maximum bounds for disagree-

ment, even for one single updating event29. However, some caution is needed in

the interpretation of results using the Disptosigma measure, since it is based on the

coefficient of variation.

Panel C in Table 3 reports the same test for the more robust variable DTSdirect,

which behaves better. Here the difference between firm years with positive and

negative earnings is smaller, and also the value for DTSdirect under losses is a more

reasonable 0.377.

Notice however that using measures spanning the whole sample is subject to the

same caveat as the results in Table 2; it is impossible to be sure how many updating

events agents have performed. Also, there exists a possibility that losses are heavily

concentrated in the early part of the sample. As such the only threshold one can

be sure that applies is the one for one updating event, namely 0.5. While the

Disptosigma measure in Panel (B) of Table 3 does exceed this threshold, the robust

measure DTSdirect does not, and thus more refined tests are needed.

29The restriction comes out of Eq. (18) , where, if common uncertainty, without loss of generality,
is normalized to 1, the maximum disagreement in variance terms is 1/4 th, yielding 1/2 in standard
deviation terms.
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Table 4 repeats the intuition of Table 3, through estimating the following regression

specification(s):

ForecastDispersion = α + β1 · loss+ β2 · Controls+ ε (22)

Disptosigma = α + β1 · loss+ β2 · Controls+ ε (23)

DTSdirect = α + β1 · loss+ β2 · Controls+ ε (24)

Table 4: Table 4 displays the results of pooled OLS regressions of dispersion/uncertainty
variables on negative earnings and firm-level control variables 1995-2010. All estimations
enforce the availability of full earnings (1995-2010) histories for firms to be included in
the sample. In Panel (A) the dependent variable is (forecast) Dispersion, in Panel (B)
Disptosigma, and in Panel (C), DTSdirect (

√
V /σ), respectively. All regressions include

industry controls (ICB industry classification) and year controls. Reported standard er-
rors are White (1980) standard errors, robust to heteroskedasticity, and are found in
parentheses. All variable definitions are described in Table 1.

    
Independent Variable Dependent Variable 
    
 Panel (A) Panel (B) Panel (C) 
 Dispersion Disptosigma DTSdirect 
    
Loss  0.383*** 0.461*** 0.139*** 
 (0.0280) (0.0413) (0.0187) 
Accuracy 0.00410** 0.00140 0.00458*** 
 (0.00164) (0.00229) (0.00117) 
Change in earnings -0.000179*** -0.000278*** 5.48e-05** 
 (3.44e-05) (4.84e-05) (2.44e-05) 
Size -0.0129*** -0.0145*** -0.00637** 
 (0.00313) (0.00506) (0.00314) 
Following 0.000833 0.000644 0.000198 
 (0.000651) (0.00105) (0.000691) 
Constant 0.369*** 0.769*** 0.308*** 
 (0.0514) (0.0772) (0.0534) 
    
Year fixed effects Yes Yes Yes 
Sector fixed effects  Yes Yes Yes 
    
    
Observations 9,742 8,932 9,121 
R-squared 0.228 0.168 0.168 
    

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

In Table 4, Equation (22) refers to Panel (A), Equation (23) refers to Panel (B), and

Equation (24) refers to Panel (C). The estimations are carried out for the full sample

(1995-2010). The reason for the seemingly low number of observations (compared

to the initial sample) derives from enforcing the restriction that firms must have full

89



earnings histories to be included in the sample.

The results in Table 4 are qualitatively similar to those of Table 3, except now

various other variables related to forecast dispersion are controlled for. While the

results are indeed stronger for all three measures, one can still not make definitive

inference on the performance of the theoretical bound (
√
V /σ)max (Panel (A) and

Panel (B)), since the estimation caveat for the standard deviation of earnings still

applies.

4.12 Subsample estimations of H2

While the evidence in Table 3 and Table 4, combined with Figure 13, not only shows

indications of forecast dispersion increasing with losses, but that the association

potentially points at breaches of the theoretically allowed maximum bounds (H2),

it is however not fine grained enough to resolve the issue. Additional partitioning

of the data however, manages to resolve the remaining ambiguities. This is shown

in Figure 16.

Figure 16 splits the data for DTSdirect measure used in Figure 13, between negative

and positive earnings. The thick dotted line with green triangles represents DTS-

direct (
√
V /σ) for negative earnings, while the light dotted line with blue squares

represents DTSdirect (
√
V /σ) for positive earnings. The grey line is again the max-

imum boundary (
√
V /σ)max. In Figure 16, it is evident that not only are negative

earnings associated with much higher values for DTSdirect (
√
V /σ), but these val-

ues for negative earnings heavily breach (
√
V /σ)max. The corresponding figure for

Disptosigma is similar, but more exaggerated, but the Disptosigma measure is left

out due to the problems with the coefficient of variation measures. While the vi-

sual evidence is compelling, the significance of the effect seen in Figure 16, which

simultaneously coincides with H2, needs to be assessed empirically.

As in the tests for H1, definitive answers can be provided by tests on a sub-sample

for the later years in the sample. Again, the requirement for inclusion is that firms

have full earnings histories within the whole period of 1995-2010. Testing on the sub-

sample achieves two things: First, it allows for having more meaningful estimates

of the standard deviation of earnings, and secondly allows for a smaller window

under which to assess the threshold (
√
V /σ)max, as it depends on n. In some ways,

it would perhaps be more fitting to simply view the period 2006-2010 as the main

sample on which estimations are performed, whereas 1995-2005 would constitute a

pre-estimation sample.
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Figure 16: Comparison of the maximum bound for dispersion, (
√
V /σ)max, and the

actual values for DTSdirect (
√
V /σ) for positive and negative earnings. The solid grey line

is the maximum bound (
√
V /σ)max, which constitutes the maximum value for DTSdirect

(
√
V /σ) for each period. The dotted line with the blue squares shows the actual value

for DTSdirect (
√
V /σ) for years with positive earnings. The thick dotted line with green

triangles shows the actual value for DTSdirect (
√
V /σ) for years with negative earnings.

See Table 1 for a further description of the variable DTSdirect (
√
V /σ). Firms must have

full earnings histories to be included in the data that DTSdirect (
√
V /σ) is based on in

the figure.

Table 5 reports the results of a re-estimation of equations (22-24), this time for a

sub-sample period of 2006-2010. Panels (A) and (B) are included for completeness,

but as the primary goal it to test H2 (and H1), that is the theoretical bounds of the

model, the analysis is contained to Panel (C).

Agents should again, according to theory, have had at least 10 annual observations

of commonly observable information, causing them to have updated over common

information 10 times. If agents are forecasting earnings as coming from a fixed

distribution, the maximum fraction of forecast dispersion in relation to common

uncertainty, (
√
V /σ), (for any values on private information) that the learning model

allows for, is again 0.158. Thus, in 2006 (and beyond), the maximum theoretical

value that (
√
V /σ) can take is 0.158, given that the underlying learning model is

true.

In Panel (C) in Table 5, the coefficient on the negative earnings (Loss) is highly

significant and large in magnitude (both in absolute terms and compared to the
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Table 5: Table 5 displays the results of pooled OLS regressions of dispersion/uncertainty
variables on negative earnings and firm-level control variables for a sub sample 2006-
2010. All estimations enforce the availability of full earnings (1995-2010) histories for
firms to be included in the sample. In Panel (A) the dependent variable is (forecast)
Dispersion, in Panel (B) Disptosigma, and in Panel (C), DTSdirect (

√
V /σ), respectively.

All regressions include industry controls (ICB industry classification) and year controls.
Reported standard errors are White (1980) standard errors, robust to heteroskedasticity,
and are found in parentheses. All variable definitions are described in Table 1.

    
Independent Variable Dependent Variable 
    
 Panel (A) Panel (B) Panel (C) 
 Dispersion Disptosigma DTSdirect 
    
Loss  0.303*** 0.257*** 0.0494*** 
 (0.0488) (0.0592) (0.0145) 
Accuracy 0.00769*** 0.00634** 0.00618*** 
 (0.00243) (0.00308) (0.00130) 
Change in earnings -0.000193*** -0.000373*** 9.59e-06 
 (5.73e-05) (8.49e-05) (3.23e-05) 
Size -0.0119** -0.0159** -0.00548* 
 (0.00577) (0.00749) (0.00289) 
Following -0.000297 0.000320 -0.000179 
 (0.00119) (0.00160) (0.000635) 
Constant 0.296*** 0.543*** 0.323*** 
 (0.101) (0.175) (0.0512) 
    
Year fixed effects Yes Yes Yes 
Sector fixed effects  Yes Yes Yes 
    
    
Observations 3,315 3,255 3,318 
R-squared 0.208 0.155 0.139 
    

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

control variables). Performing a post estimation Wald test on the restriction that the

intercept + the effect on negative earnings is equal to 0.158, yields a rejection (F [1,

3299] = 17.14, Prob > F = 0.0000), implying that the overall effect around negative

earnings on DTSdirect, exceeds the maximum bound (
√
V /σ)max, which implies

accepting H2 as true30. Thus, in 2006 (and beyond), the value of (
√
V /σ), exceeds

its theoretical maximum value of 0.158, and thereby rejects the underlying model,

implying in turn that it is not possible for an acquisition of private information to

yield the observed increases in forecast dispersion.

Simultaneously, the results in Table 5 can be seen as an additional test of H1, both

30The magnitude on the coefficient of Loss alone in Panel (C) of Table 5 does not exceed the
threshold value, but the correct judgment is of the overall effect, including the intercept. If one
only looks at the effect of the coefficient on Loss, it excludes the ”starting” level for dispersion.
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in terms of the above, but also since performing a post estimation Wald test on the

restriction that the intercept alone is equal to 0.158, also leads to a rejection, F(1,

3299) = 10.38, Prob > F = 0.0013.

Notice that while some empirical results here, taken at face value, are similar to those

of the previous studies of Ali et al. (2009) and Adut et al. (2008), the fact that the

private information acquisition hypothesis is rejected, questions the interpretations

these authors make. Ali et al. (2009) and Adut et al. (2008) both conclude that

the negative earnings environment that is associated with increased dispersion, is a

result of selective disclosure in the sense that firms withhold bad news and therefore

analysts rely more on private information, resulting in higher levels of dispersion in

forecasts. However, regardless of how much private information analysts have access

to, the resulting levels of forecast dispersion are too large for this interpretation to

hold, since the model itself is rejected.

These findings are interesting. The implication is that the dispersion in forecasts can-

not simply be explained by private information, since the threshold value (
√
V /σ)max

is the maximum amount of dispersion in forecasts (in relation to earnings variance)

that the fixed Bayesian learning model allows for. Recall that the maximum was

derived for a signal, s′n∗max, defined in such a way that it is the amount of private

information that by definition maximizes dispersion. Consequently, there can exist

no private signal that can cause an exeedance of this bound. Yet the bound is ex-

ceeded in the data, as the results in Table 5 confirm. What this implies is that there

must be other explanations that are driving the results. These explanations, that

have been briefly touched upon previously, can now be formalized.

4.13 Possible explanations

The combined evidence thus far rejects the model nesting the private information

acquisition hypothesis. Since the tests of H2 confirm that bound exceedance is espe-

cially prominent around ”uncertain” environments categorized by negative earnings,

an explanation close at hand rests on the intuitive idea of negative earnings actually

increasing the uncertainty of a firm’s future. Anecdotal evidence for this could be

inferred from the analysts’ reports in the introduction, where around negative earn-

ings, the outlook for the future is typically described in terms such as decreased or

low visibility. As the fixed Bayesian model(s) do not allow for such effects, further

speculation along the lines above at an earlier stage would have been somewhat

premature. Now, as the results show that the model in the fixed form does not
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hold, it is motivated to suggest an alternative explanation that would be consistent

with the observed increases in dispersion, which simultaneously has a more direct

interpretation in terms of actual increased uncertainty.

This explanation entails that losses, as the intuitive hypothesis puts forth, actually

do increase the uncertainty about the firm, that the agents face. As has been dis-

cussed previously, the standard Bayesian learning categorized as a time-invariant

fixed process, as in the model of Chapter 2, does not permit increases in uncer-

tainty (about the parameter, on the level of the individual), and therefore the only

explanation for disagreement is based on asymmetric information.

Instead, the study proposes that agents are not always treating firm earnings as com-

ing from a time-invariant distribution; for example when losses occur, in a very real

way, agents become more uncertain about the distribution from which the earnings

arrive, and this disrupts the learning process. This is consistent with agents viewing

the process that they are estimating as (potentially) containing structural breaks,

where a new regime requires learning to start over. Under such a scenario, agents,

when faced with losses, become uncertain about the earnings process of the firm

and ”take a step back” in their estimation of the firm earnings process, effectively

forcing the agents to restart their learning process from the beginning.

Theoretically, a mechanism that would allow for such a dynamic, which implies

actual increased uncertainty on an individual level, is one where agents simply must

formulate new priors. In essence, agents, after becoming faced with a firm entering

loss territory, now view the firm as a ”new” firm, or a new process, whose earnings

process must be estimated from the beginning. This allows for both much higher

levels of allowable dispersion, as well as the appealing implication that individual

uncertainty actually increases.

4.14 Additional tests/hypothesis

Before analyzing the matter presented above further, it is worth returning to an

interesting feature that comes out the expanded learning model in Chapter 2, that

is following ”large enough” increases in dispersion, subsequent private information

acquisition should lead to decreases in dispersion. Since increases in dispersion in a

fixed regime are the result of private information acquisition, one should reasonably

expect that environments where the private information acquisition notion is in-

voked, should always be related to private information acquisition. So for example,
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if one can show that increases in dispersion are related to some identifiable effect

or setting (e.g. losses), and one uses private information as an explanation for the

increase in dispersion in this setting, then one should continue to expect this set-

ting (losses) to be associated with private information acquisition, unless one has a

believable story on why this would not be the case. This becomes interesting after

dispersion reaches its ”saturation point” since beyond this point, private information

will speed up convergence and lead to dispersion declining at fast rate.

Having identified negative earnings as a driver for not only increases in dispersion,

but more importantly that dispersion in forecasts exceeds its theoretically implied

bounds, now allows for indirectly assessing the theoretical prediction that private

information under some circumstances should result in decreased dispersion. While

it was deemed difficult to judge what factor dispersion could increase by, since this

depends on the previous cumulative amount of (unobservable) private information,

it is now possible to replace the use of the cumulative past private signal with the

empirical results of Table 5. To see why this is so, notice that at the point where

dispersion reaches the (
√
V /σ)max bound, private information has reached its max-

imum capacity for increasing dispersion, implying that further private information

acquisition can now only lead to decreases in dispersion.

By disregarding for the moment that the Eq. (18) bound is actually exceeded31 in the

results of Table 5, if one entertains the idea that dispersion only barely reaches the

bound, theory predicts that beyond this point, dispersion will only decrease. In order

to gain more insight into the findings, negative earnings are partitioned into those

that occur in a firms history for the first time (in the sample) vs negative earnings

that occur subsequently. If it is the case that that already first time occurring

negative earnings (b)reach the bound, then it is evident that subsequently occurring

negative earnings must lead to decreases in dispersion if the private information

acquisition hypothesis holds.

Returning now to the idea of increased uncertainty, if agents instead view the fu-

tures of firms transitioning into negative earnings territory as truly having become

more uncertain, dispersion in forecasts would be allowed to increase for subsequent

earnings. The reason for this is that now the initial losses that breach the maximum

bound for dispersion, force the agents to restart their learning procedures, i.e. the

31Note that this is only for the sake of argument. Since dispersion exceeds the bound it is the
case that had it been private information that drove the increase in dispersion, dispersion could at
most have reached the bound. If the private signal was more informative, dispersion would have
instead ”bounced back”. So in cases where one assumes large acquisitions of private information,
one would actually expect to see smaller increases in dispersion, implying that dispersion is already
on its way down, or even decreases in dispersion.
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parameter being estimated is now one from a new distribution. Furthermore, agents

subjective certainty would no longer be constrained by the number of realizations

received from a distribution with variance σ2, and thus the threshold for maximum

dispersion would be different both due to the higher ”new σ”, as well as the fact

that the threshold to be compared against would now be higher, since n is now the

distance between the first and the ”other” loss.

This yields the additional hypothesis:

H2.1: Conditional on initial negative earnings reaching the Eq. (18) bound (
√
V /σ)max,

if agents truly become more uncertain, subsequent negative earnings will yield in-

creases in forecast dispersion.

In order to test H2.1, the following regression specifications are estimated:

ForecastDispersion = α + β1 · firstlossdum+ β2 · otherlossdum+ β3 · Controls+ ε

(25)

Disptosigma = α + β1 · firstlossdum+ β2 · otherlossdum+ β3 · Controls+ ε

(26)

DTSdirect = α + β1 · firstlossdum+ β2 · otherlossdum+ β3 · Controls+ ε (27)

Table 6 reports the results of running equations (25-27), and are reported in Panels

A to C, respectively. As is the case with the previous setups, the results in Panel (C)

(and Panel [B]) suffer a bias resulting from the fact that the standard deviation of

earnings does not (necessarily) have enough observations for convergence to correct

values. Nevertheless, the results in Panel (A) indicate that the magnitude of the

response in forecast dispersion is similar, whether the loss occurs for the first time

or not.

Table 7 reports the results of running equations (25-27) for the sub-sample period

2005-2010, and are reported in Panels A to C, respectively.

In panel C in Table 7, the coefficient on first time negative earnings (First Loss) is

again highly significant and large in magnitude (both in absolute terms and com-

pared to the control variables). A post estimation Wald test on the restriction that

the intercept + the effect on first time negative earnings is equal to the threshold

level for n = 10 of 0.158, yields a rejection (F(1, 3298) = 27.57, Prob > F = 0.0000).

This implies that now the overall effect on DTSdirect around negative earnings that
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Table 6: Table 6 displays the results of pooled OLS regressions of dispersion/uncertainty
variables on first time occurring negative earnings and subsequently occurring negative
earnings 1995-2010. First time occurring negative earnings (First Loss) is defined as a
negative EPS observation that occurs for the first time in a firm’s earnings history in
1995-2010. Other Loss is any other negative EPS observation that occurs in a firm’s
earnings history in 1995-2010, excluding the negative EPS observation accounted for in
First Loss. Estimations include firm-level control variables. All estimations enforce the
availability of full earnings (1995-2010) histories for firms to be included in the sample. In
Panel (A) the dependent variable is (forecast) Dispersion, in Panel (B) Disptosigma, and
in Panel (C), DTSdirect (

√
V /σ), respectively. All regressions include industry controls

(ICB industry classification) and year controls. Reported standard errors are White (1980)
standard errors, robust to heteroskedasticity, and are found in parentheses. All variable
definitions not found above are described in Table 1.

    
Independent Variable Dependent Variable 
    
 Panel (A) Panel (B) Panel (C) 
 Dispersion Disptosigma DTSdirect 
    
First Loss  0.387*** 0.963*** 0.200*** 
 (0.0508) (0.0926) (0.0380) 
Other Loss 0.382*** 0.307*** 0.121*** 
 (0.0305) (0.0375) (0.0196) 
Accuracy 0.00409** -0.000861 0.00432*** 
 (0.00166) (0.00221) (0.00115) 
Change in earnings -0.000178*** -0.000155*** 6.94e-05*** 
 (3.39e-05) (4.34e-05) (2.35e-05) 
Size -0.0129*** -0.0157*** -0.00652** 
 (0.00314) (0.00497) (0.00315) 
Following 0.000830 0.000281 0.000151 
 (0.000648) (0.00103) (0.000690) 
Constant 0.370*** 0.788*** 0.311*** 
 (0.0516) (0.0762) (0.0534) 
    
Year fixed effects Yes Yes Yes 
Sector fixed effects  Yes Yes Yes 
    
    
Observations 9,742 8,932 9,121 
R-squared 0.228 0.202 0.169 
    

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

occur for the first time, exceeds the maximum bound (
√
V /σ)max.

While the result in Panel (C) of Table 7 that other losses seem to indicate a muted

response on DTSdirect, first turn to look at the corresponding result in Panel (A).

Notice that the effect of other losses on forecast dispersion is even larger than that of

first time occurring losses. This implies that even as the first time occurring losses,
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Table 7: Table 7 displays the results of pooled OLS regressions of dispersion/uncertainty
variables on first time occurring negative earnings and subsequently occurring negative
earnings in a subsample 2006-2010. First time occurring negative earnings (First Loss) is
defined as a negative EPS observation that occurs for the first time in a firm’s earnings
history in 1995-2010. Other Loss is any other negative EPS observation that occurs in a
firm’s earnings history in 1995-2010, excluding the negative EPS observation accounted for
in First Loss. Estimations include firm-level control variables. All estimations enforce the
availability of full earnings (1995-2010) histories for firms to be included in the sample. In
Panel (A) the dependent variable is (forecast) Dispersion, in Panel (B) Disptosigma, and
in Panel (C), DTSdirect (

√
V /σ), respectively. All regressions include industry controls

(ICB industry classification) and year controls. Reported standard errors are White (1980)
standard errors, robust to heteroskedasticity, and are found in parentheses. All variable
definitions not found above are described in Table 1.

    
Independent Variable Dependent Variable 
    
 Panel (A) Panel (B) Panel (C) 
 Dispersion Disptosigma DTSdirect 
    
First Loss  0.210** 0.745*** 0.172*** 
 (0.0823) (0.137) (0.0448) 
Other Loss 0.324*** 0.142*** 0.0211 
 (0.0516) (0.0528) (0.0150) 
Accuracy 0.00814*** 0.00385 0.00560*** 
 (0.00248) (0.00305) (0.00126) 
Change in earnings -0.000221*** -0.000225*** 4.63e-05 
 (5.89e-05) (7.70e-05) (2.88e-05) 
Size -0.0113* -0.0191*** -0.00626** 
 (0.00581) (0.00720) (0.00284) 
Following -0.000288 0.000298 -0.000192 
 (0.00119) (0.00155) (0.000628) 
Constant 0.288*** 0.576*** 0.331*** 
 (0.102) (0.171) (0.0504) 
    
Year fixed effects Yes Yes Yes 
Sector fixed effects  Yes Yes Yes 
    
    
Observations 3,315 3,255 3,318 
R-squared 0.210 0.190 0.151 
    

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

as evidenced32 in Panel (C), breach the maximum bound (
√
V /σ)max, other losses

continue to yield increases in dispersion (Panel A), even if the model clearly predicts

that once the bound is reached, a further acquisition of private information should

only act as to reduce dispersion. Thus, even when dispersion reaches its maximum

level, subsequent losses continue to give rise to increases in dispersion, even if this

is not possible under the model. This now confirms H2.1.

32This refers to the Wald test of the effect of the intercept + the coefficient on Firstlossdum.
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Now turn to the result in Panel (C), where other losses seem to have negligible effect

on DTSdirect. In order to appreciate potential reasons for this, a further analysis of

what is happening in the data and the variables must be carried out. There are two

different effects at work. One is mechanical, and has to do with the conditioning in

the variable DTSdirect, and the other is how the conditioning is related to theory.

Mechanically, losses can be outliers in firms’ earnings series (as in the somewhat ex-

treme example in Figures 14 and 15), and can therefore in some instances increase

the variance of the firms’ earnings series33 (going forward). For ease of understand-

ing, this section will refer to the variance of the earnings series as σ′ under an

assumption that a (first) loss induces a higher mechanical variance for the earnings

series going forward. The variable DTSdirect is constructed to only take into ac-

count all information available up to the current point in time (not forward looking),

as agents are not assumed to know about potential future changes in firms’ earnings

distributions before they actually occur; agents are assumed to use the data avail-

able to them at the current point in time. Therefore, the variable DTSdirect does

not account for potential increased variance of the earnings series that occurs after

a (first) loss occurs.

If the historical variance σ is somewhat stable, an increase in dispersion around a

(first) loss, relative to the agents’ current information sets/beliefs about the earnings

series (in essence (
√
V /σ)), can be substantial. Simultaneously, if the variance of the

earnings series has become larger following a first loss that occurred previously, then

a similar increase in dispersion on absolute terms as the previous (first) loss, now on

a relative basis (to the new σ′) can be smaller in magnitude. If such a mechanical

effect is present, where a first time occurring loss yields a larger σ′ going forward,

this effect can be a contributing factor to a small response to other losses in Panel

(C) in Table 7 even if the response in dispersion to both the first and other losses is

of similar magnitude in Panel (A) in Table 7.

It is however not sufficient to study the mechanical effect of potential increases in

the variance of a firm’s earnings series going forward in the variable DTSdirect in

isolation. Instead, one must consider the effect in conjunction with predictions from

theory.

If the assumption about a break in learning holds, then following a break, agents

restart the estimation process using the new series. Thus in relation to this new

series, one that has potentially become more volatile, a loss that follows, which

33The study does not perform specific tests for whether there are actual breaks in the earnings
series variance, rather the point here is to discuss what effect on DTSdirect such breaks would
have.

99



would yield a similar increase in dispersion on absolute terms as the previous loss,

now on a relative basis (to the new series) can be smaller in magnitude. Thus,

following an initial loss, dispersion would again be theoretically compatible with the

new earnings series, and this effect can be a contributing factor to the small response

to other losses in Panel (C) in Table 7. Withholding the assumption of a break in

the series, it is not clear exactly how or why agents know a break has occurred, since

there is no direct theoretical mechanism that allows for this34. It is thus possible

that the variance (σ′) in the new conditioning set is even larger, making the effect

of other losses on DTSdirect in Panel (C) in Table 7 biased to the upside.

If instead the private information acquisition hypothesis held, regardless of the con-

ditioning set35 for other losses, the effect should be negative, which would show up

as a negative response on other losses in both Panel (A) and Panel (C) in Table 7,

since (b)reaching the (
√
V /σ)max bound means dispersion on an absolute level can

only decrease going forward. The analysis however is complicated by the fact that

the variable DTSdirect, following an initial loss that increases earnings variance in

combination with the assumption of the null, uses the wrong conditioning. Why is

this the case? First, the construction of the DTSdirect variable assumes that σ is

constant. While the estimated values for σ are not constant in the variable DTSdi-

rect, there is a substantial margin of error in favor of the null, since this estimation

acts as if true σ is equal to the latest estimate of σ, even though estimated σ tends

to grow36.

Potential breaks in the earnings series induced by losses however, are not compatible

with the rationale for the construction of DTSdirect. Since agents do not know the

losses before hand, a breach of the bound that uses the conditioning set (a function

of σ) up until the loss, implies the learning model is compromised. The only way to

assume that the new increased earnings variance (σ′) would be compatible with the

learning up to the point of the breach at the loss, is if the increased variance going

forward actually consists of noisier signals - the following subsection analyses this

scenario in greater detail. If this is the case however, the correct way to assess the

maximum size of the dispersion continues to be σ from before the loss. This is the

case because if one entertains the learning process as continuing, new noisier signals

do not affect the amount of learning that has occurred in the past. New noisier

signals will at most affect individual uncertainty, and consequently the maximum

bound, in such a way that it is equal to the period before37.

34The alternative explanation provided is not analytically formalized.
35The completely rigorous term here would be subsequent conditioning set. These conclusions

implicitly condition on the preceding information set being correctly identified.
36Both the section 4.17 as well as Appendix E deal with this issue further.
37Since the Bayesian agent never loses information. Consequently, whatever uncertain signals
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The variable DTSdirect however, compares the dispersion to the latest estimate of

earnings variance. In the case of a large previous loss, it is possible that the estimated

variance (σ′) has increased. This new variance (σ′) is not the ”σ” in the information

set anymore, in the sense assumed in the construction of the variable DTSdirect.

The σ, or variance in the information set38 cannot increase if learning remains fixed.

However if the learning is breached, then DTSdirect is again correct39, since the new

σ′ that DTSdirect uses, is the correct σ if learning has restarted. The implication

here is that the first loss that already exceeded the maximum, cannot be followed by

private information acquisition or any other effects that could increase dispersion.

Instead, withholding the private information acquisition assumption, the only effect

one could expect under the model is for dispersion to start decreasing. Yet, the

evidence in Panel A in Table 7 suggests that the contrary is true.

The conclusion is therefore that while it might seem on first glance from Panel (C)

of Table 7 that other losses are within the limits of the model, this can only be the

case if the model has undergone a break.

4.14.1 The implication of a noisier signals interpretation

Before drawing definite conclusions from the results of Table 7, a somewhat more

detailed discussion on the role of viewing losses as noisier signals, briefly touched

upon in the previous section, is warranted.

Nothing prohibits one from viewing earnings realizations that follow increases in

earnings variance (induced by losses) as signals, centered on the same expected

value as before, that now simply are signals with more noise (higher variance). This

essentially equates to treating σ as being non fixed. While section 4.17 deals with

this issue in a more general manner, the following section delves deeper into the

issue as it relates here.

What happens is that if agents would treat the new signal as a noisy signal, but

from the same underlying process, the common part of agents subjective beliefs

do not change by much. If the signal would be assumed to be unchanged, then

learning would proceed as in the model. However, no matter how uncertain the

new signal is, the agents’ subjective uncertainty can at most remain at (close to)

the same level as previously. What this in turn implies is that the common part

the agent receives, his/her past signals/information are never weakened.
38Naturally, the (common part of) uncertainty in agents’ information sets is a function of σ.
39Perhaps a better term is compatible. As discussed on the previous page, the ”new” earnings

variance might be higher than what is implied in the estimate in the variable DTSdirect.
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of information that is included in the agents’ information sets (cumulative r or σ),

which ultimately defines the threshold for dispersion, can at maximum remain at

(close to) the previous level. So if the threshold under a fixed model for n = 10, is

equal to 0.158, then for a signal that is completely uninformative (high variance),

the threshold for maximum dispersion at n = 11 can never exceed 0.158 (in relation

to the previous σ that DTSdirect conditions on40).

The reason for constructing the DTSdirect measure in such a way that it acts as

if the latest estimate for the standard deviation of earnings is correct, is that it is

directly compatible with the theory, which assumes that agents are getting signals

from y ∼ N(θ, σ2).

While theoretically and agent can receive signals of varying precisions that are cen-

tered on the same mean, it is not possible to estimate this from data, since this

would entail using each estimate of the standard deviation for each firm. One would

have to assume that at each point, the estimate of the signal variance is exactly

equal to the uncertainty of the signal, and one would consequently have to base

the standard deviation on very few observations. Furthermore, one could not use

the threshold levels for DTSdirect that are a function of n, since this usage rests

on the signals being of equal size at each period. One would instead have to make

individual threshold calculations for each firm.

As an example, in the case of the company in the Figures 14 and 15, the standard

deviation of forecasts for the corresponding (first) loss year is 0.64. The variable

DTSdirect compares this against the standard deviation of previous earnings, which

since the beginning of the sample period equates to 0.74. The assumption in using

the threshold levels for DTSdirect is that the latest standard deviation estimate for

earnings, 0.74, constitutes σ. Thus, in assuming that agents have updated over a

σ of 0.74, one would use the number of updates that agents should have received,

in evaluating the bound. Since the empirical estimations do not keep track of the

exact number of updates, true n in this case is actually 12 instead of 10 that is

used as the threshold in the empirical estimations. Thus the true rejection bound

is actually lower than 0.158.

If one instead suggests that agents are not using a time invariant σ, or that it cannot

be estimated correctly, and one instead argues that agents are receiving signals of

varying precision at each period, one would in the previous case accumulate signals

estimated at each step41. Because the estimates for the standard deviation at the

40Since learning must be assumed to have occurred w.r.t. a distribution of lower variance in the
past, conditioning on a new higher variance signal would be incorrect.

41See section 4.17 for specifics of the signal accumulation procedure.
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first periods are low, accumulation of the assumed signals of differing precisions as

observed at each step would imply that the maximum allowed dispersion at the time

of the negative earnings is 0.032. As noted, there now exists no general threshold

level that can be used. This is in contrast to the previous calculation where σ is

assumed to remain fixed, where the threshold levels could be used, where the 0.158

fraction of 0.74 implies that the maximum allowed dispersion that the estimations

assume is 0.12. Thus, in this case for example, the threshold level that DTSdirect

employs, is approximately four times higher than what it would be under the above

rationale.

In conclusion, the results of Table 7 can be summarized as follows: The first time

negative earnings occur, dispersion increases to a level that is too high to be sup-

ported by the underlying theoretical model. Subsequent losses for a firm tend to

increase dispersion to the same extent or more, even if theoretically the effect should

turn negative. Furthermore, while the effect on DTSdirect for other losses seems to

point toward a nonexistent outcome, this is a mechanical effect due to the interplay

of both the construction of the DTSdirect variable, as well as that of the break in

the standard deviation of the earning series that negative earnings tend to produce.

Since the first time negative earnings breach the theoretical bounds implied by the

model, private information acquisition alone cannot be the driver be the increases

in dispersion. Consequently, another explanation is required. The one hypothesized

is one where analysts truly become more uncertain about the firm earnings, and

have to restart learning. If this is correct then the observed effect of other losses on

DTSdirect is consistent with an explanation where the levels of dispersion lie well

within the theoretical bounds implied by the uncertainty in a new learning regime.

Finally, the results in panel C of Table 7 can also be seen as an additional test of H1,

both in terms of the above, but also since performing a post estimation Wald test

on the restriction that the intercept alone is equal to 0.158, also leads to a rejection,

F( 1, 3298) = 11.78, Prob > F = 0.0006.

4.15 Discussion of results/Summary

Overall the empirical results show that dispersion in forecasts breaches the theoreti-

cal bounds implied by (
√
V /σ)max. Apart from also occurring in general, exceedance

is triggered especially around negative earnings. This implies that the increases in

dispersion cannot solely be driven by an acquisition of private information. Instead,
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the evidence corresponds well with an idea of increased uncertainty. As the theoret-

ical model does not allow for such effects however, and since it is indeed losses that

trigger exceedance, the evidence supports the hypothesis that agents, when faced

with losses can actually become more uncertain. By viewing losses as indicators of

regime shifts in the firms’ earning series, agents, through restarting their learning

process, actually become more uncertain, on an individual level, about firm earnings.

While these results are not compatible with increases in private information being

the only driver for dispersion, they do not eliminate the need for private information.

Furthermore the results do not compromise Bayesian learning itself, they merely

questions agents acting as if there exists one time invariant distribution over which

they update.

Since dispersion in forecasts is too large to solely be supported by acquisition of

private information, the conclusion is that it must be the case that especially when

negative earnings occur, agents, though remaining fully rational, actually become

more uncertain about the future of the firm.

This is easy to accept on heuristic grounds, supported by anecdotal evidence from

analysts reports where the future of firms facing negative earnings is typically de-

noted by expressions such as decreased visibility. The proposed theoretical mech-

anism for this is one that maintains rationality, but instead suggests that analysts

are not treating the firm earnings as coming from a stable, fixed distribution. When

a firm suddenly becomes unprofitable - it is due to a inherent change of the firm

(or its earnings process) itself. The rational Bayesian agent who becomes aware of

this, now must restart his/her learning. Instead of continuing in using his/her past

information - under which he/she could eventually learn the new parameter, it is

more efficient for him/her to restart his/her learning by constructing a new prior.

This causes a temporary surge in uncertainty, as the agent in a very real way be-

comes more uncertain, which also leads to a much larger allowed level for forecast

dispersion. However, the temporary uncertainty increase, leads to the agent being

more efficient in estimating the new mean for the series, than what would have been

the case if he/she had continued updating/conditioning on the wrong/old variable.

104



4.16 Robustness

One potential concern is if the sample period standard deviation does not correctly

identify the true standard deviation of the earnings series. This could happen for

general reasons (the sample period is less volatile) or specific reasons, e.g. that the

pre-sample period earnings histories contain losses that deviate from the rest of the

(sample) earnings series42. Most importantly however, there is the question to what

extent the estimated standard deviation has enough observations for convergence.

In all three instances there is a concern that the standard deviation in the sample

period is downward biased from the true standard deviation. This would inflate

the DTSdirect (
√
V /σ) measure, since the real value for σ is higher and therefore

true DTSdirect is lower. This would in turn be problematic in terms of inference,

since if the uncertainty (standard deviation) in the agents’ information sets is higher

(than estimated), consistency with the standard model allows for higher levels of

dispersion.

In order to assess this potential problem, robustness tests are carried out where all

companies that have complete earnings histories in the sample (DTSdirect obser-

vations) are sampled and where their complete earnings histories are compared to

their earnings histories used in the sample 1995-2010. The maximum earnings length

histories used in the robustness tests are available from 1978, and consequently full

sample histories vary from 32 years (starting in 1978) to 17 years (starting in 1995,

the main sample) (Due to the fact that full earnings histories are enforced in the

sample, the minimum sample spans 17 years). The study constructs measures for

standard deviation and coefficient of variation, and compares the measures for the

sample period (1995-2010) to the corresponding full histories.

The results of the robustness tests indicate that on average, the full sample standard

deviation is only 2.56 percent higher in the full earnings history of the companies,

than in the sample used. One can thus be fairly safe in assuming that the estimated

in-sample common uncertainty, as measured by the variability in historical earnings,

is a robust proxy for the true standard deviation of earnings that the theory posits

that agents are using, and that the uncertainty ratios are well identified. Viewed

differently, this supports one of the main assumptions that here, on average, earnings

series’ have well defined, time invariant second moments. This is important since

the learning under the model assumes that agents condition their expectations on a

fixed, true variance for the DGP from which they observe the series of realizations.

42In this case earnings volatility would be under estimated in sample.
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(The analogous results for the coefficient of variation shows that on average the

full histories have a coefficient of variation that is on average 10 percent higher,

yielding a potential upward bias on coefficient of variation comparisons of roughly

equal magnitude).

There is still a concern that actual convergence of the estimated standard deviation

values has taken place only in 2010. Furthermore, another potential concern is

that even if on average, the estimated in-sample standard deviation is only off by

2-3% from true, full sample values, outliers might be driving the result or that

there is a conditional effect at play: companies with (first time occurring) negative

earnings might be the ones with the most biased standard deviation estimates. Since

the largest estimated standard deviation difference (between the estimated and the

true value) is approximately 100%, this could potentially bias the dispersion/sigma

measure upward by an equal amount. To ensure this is not the case, all observations

where the exeedance is over 50% are deleted. Here the midpoint of the sub-sample

estimation, namely 2008, is used. Performing the adjustments confirm that the

results are not driven by wrongly estimated standard deviations: regression results

in all specifications remain unaffected by the deletions.

Matters become slightly more complicated when the earnings series undergo poten-

tial larger breaks, especially as whether they have occurred or not are important

for the evaluation of the performance of the theoretical model. Consequently it is

not enough to identify an unconditional forward looking standard deviation for the

earnings series in the case that the series is made up of different regimes.

Due to the fact that the DTSdirect measure is ill-equipped in dealing with these

breaks in the earnings series of companies following initial losses, additional robust-

ness tests are performed. Recall that under a break in the earnings series following

an initial loss, regardless of whether one relaxes the assumption of a fixed σ, or that

of a fixed learning regime, DTSdirect uses the wrong conditioning. One thus wants

to make sure that the estimates for the standard deviations are correct up until the

first loss where DTSdirect still conditions correctly. In order to do this, the study

instead samples all companies that have complete earnings histories in the sample

(DTSdirect observations) and measures full standard deviations up to 2006, and

compares these full earnings history standard deviations to standard deviations es-

timated in the sample between 1995-2006. Due to the shorter estimation window for

the standard deviation, results are off to a slightly higher extent - the true standard

deviation is on average 8 percent higher from the estimates carried out for the years

1995-2006.
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In order to ensure that this does not affect results, an analogous removal of company

id’s as above is performed. The criterion for deletion is that the in-sample standard

deviation between 1995-2006 compared to full sample standard deviation (-2006) is

over 50 percent. This effectively removes the corresponding risks that the previous

deletion procedure deals with, i.e. that outliers might be driving the result or that

companies with (subsequent) first time occurring negative earnings are the ones

with the most biased standard deviation estimates. Additionally, this ensures that

standard deviation estimates for the earnings series are robust going in to the sub-

sample estimations. Performing the adjustments again confirm that the results are

not driven by wrongly estimated standard deviations as regression results in all

specifications remain unaffected by the deletions. Furthermore, after having carried

out the deletions, the full standard deviation drops to being on average only 5

percent higher from the estimates carried out for the years 1995-2006.

Additional note: One of the companies dropped in the above procedure is Activision.

In the sample period (1995-2010), earnings per share are between -0.05 and 0.69.

In the years preceding the sample period, 1994 and earlier, there are large gaps in

the data, with earnings available only for 1989-1990, 1986-1987 and 1984. The 1984

earnings per share are reported at 16.17, which obviously heavily affects the full

sample standard deviation in comparison to the sample period standard deviation.

The gaps in the early data, combined with inconsistently large earnings per share

observations, warrants a suspicion that there are potential adjustment errors in the

(early) data. This shows that the sample period standard deviation estimate is not

necessarily biased in itself, in terms of underestimating the true value, rather the

difference between the estimated and true standard deviation values, are potentially

driven by data errors.

Thus the combined evidence that the sample standard deviation estimates that are

potentially biased on the downside (which potentially overstate the results) a) do

not affect the results, and b) that the standard deviation estimates that seem too

low in comparison to full sample values, are biased because of data errors, point to

the fact that the estimates for standard deviation used in the study are correct.

Note finally that there is also an opposite effect at play here. As discussed earlier, it

is somewhat naive to assume that firm earnings histories that start in 1995 represent

the beginning of all firm histories. As the earnings histories date back to a maximum

of 32 years here, the convergence that has to occur on common information implies

that the maximum fraction of dispersion to σ, is lower than the threshold used. In

fact, the average earnings history for firms in the robustness sample is 25.44 years.

Since the regressions (using the year 2006 and onwards sample) used n=10 to arrive
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at the maximum fraction of dispersion that the model allowed, 0.158 (from Eq. [18]),

the correct n on average would actually be approximately 20. This in turn implies

that on average, the maximum fraction of dispersion to common uncertainty, and

subsequently the threshold to be used in judging exceedance of theoretical bounds,

is in reality as low as 0.0913.

4.17 Robustness 2: A note on growing standard

deviation over time

If the standard deviation grows over time, the predictions from the model, which

assumes a constant distribution for common information, have to be interpreted

slightly differently.

This however is not very problematic, as has been noted previously, if the relaxation

of a fixed distribution only refers to the variance. In this case, where it is implied

that the learning regime continues to remain fixed, differing variances across time

can be interpreted simply as signals of different precisions where some signals are

noisier than others. This section investigates how DTSdirect is affected under such

an assumption.

Note that the empirical measure of common uncertainty uses the latest estimate of

the standard deviation for the earnings series. If the (true) standard deviation is

growing, the estimate of the standard deviation of earnings is inflated (Since this

estimate is used in the variable DTSdirect as a fixed quantity over time). As the

uncertainty ratio, DTSdirect (
√
V /σ), compares current dispersion in forecasts to

this measure, the recursive standard deviation of earnings, DTSdirect acts as if the

learning would have occurred w.r.t. to this latest estimate of common variability

throughout history. The fact that in reality, learning has occurred w.r.t. lower

variance ”distributions” (i.e. signals) in the past, there has been more convergence

than what the current estimate of the standard deviation suggests, and this implies

that the maximum bound for dispersion at the current point in time (if using the

bound from the non-growing case) is actually overstated. This is illustrated in the

following, somewhat lengthy example.

It is true that in absolute dispersion terms, the maximum amount of dispersion in,

say, period 10 is higher if the (true) standard deviation of earnings has grown over

time (noisier signals), vs. a constant case, given that the starting point was the

same. The reasons for this should be clear at this point: noisier signals equal less
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learning, and as the maximum dispersion is a function of the amount of convergence,

slower convergence supports higher dispersion.

If this starting point is, without loss of generality, normalized to 1, then first in the

constant case, after 10 learning periods, the maximum dispersion is equal to 0.158

in magnitude. This however is not the correct case to compare to. The correct

comparison is for a value that is equal to what σ has grown to at the point of

measurement. Thus, if the standard deviation has grown annually, on average (in

variance terms 1.14), then at point 10, the signal is 3.25 in variance terms (1.8

in standard deviation terms). Thus, the correct case of comparison, is one where

signals of σ = 1.8 have been received for 10 periods.

Using the above where the variance has grown by an approximate factor of 1.14 (this

is the corresponding value to the average annualized growth of the average standard

deviation of earnings in the sample), the variance starting at 1, reaches 3.25 at

n=10. The cumulative sequence of precisions is thus 1+1/1.14+1/142+...+1/1.149,

equaling 5.946 at n=10. Inserting the cumulative precision into Eq. (9), yields 0.042

(0.205 in standard deviations terms), which is the maximum absolute dispersion at

this point (where it is implied that the private signal is of equal strength).

In order to see how one can accumulate the signals in the above, conditional on

knowing the exact evolution of signals over time, notice that it is in this case possible

to arrive at Eq. (18) directly, using equation 14 (V’). Set r1 = s1 in order to arrive

at nr1/(2nr1)
2, which yields 1/4nr1. This refers to the model presented in the study,

where the common information distribution remains fixed. One can also in this case

arrive at Eq. (18) by using the Barry and Jennings (1992) intuition, instead using

the Barron et al. (1998) representation given in Equation (9). Setting h = s yields

1/4h. Now using an equivalent sample size argument similar to the one referenced

in Barry and Jennings (1992), h, can now be seen to represent the cumulative

sequence of (common) signals that have occurred up to the current point in time.( If

the sequence of signals has been constructed from a fixed distribution at each point

in time, then h corresponds to n× r1.)

The earlier paragraph compares two cases where σ is known in both cases. Empir-

ically however, DTSdirect cannot distinguish between the two. Instead, DTSdirect

acts as if in this case there have been 10 realizations of a signal with variance

3.25 (1.8 in standard deviation terms). Consequently, DTSdirect, the way it is

measured, suggests that the maximum amount of allowed dispersion is
√
V max =√

1/[4× 10× (1/3.25)] = 0.285, whereas the true maximum dispersion, knowing

the true evolution of signals over time is equal to
√
V max =

√
1/[4× 5.946] = 0.205.
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To state the above differently, what is observed in the data is that σ = 1.8. DTS-

direct thus assumes that σ has been equal to 1.8 for n = 10, which would imply a

threshold for dispersion equal to 1.8 × 0.158 = 0.285. Thus, if a level of dispersion

of 0.285 for the company in question is observed, then DTSdirect compares this to

σ = 1.8, which results in dispersion being exactly at threshold level of 0.158. How-

ever, if σ has de facto grown, the correct rejection level would be for a dispersion in

the data of 0.205 (In the above). In this case the correct comparison would be for

(
√
V /σ) = 0.205/1.80, yielding a rejection threshold of 0.11. However, DTSdirect

does not take into account potential growth of σ, and thus DTSdirect gives a large

advantage in favor of the null.

The above correction applies if the real variance has grown, i.e. in a sense agents

receive increasingly noisier signals. What the calculations show is that in this case

the DTSdirect measure generally has the potential to overstate estimated σ, which

in turn leads to using a threshold value that is compared against that is too high. So

when e.g. a threshold value of 0.158 is used, it is likely that the true threshold that

should be used is lower, (e.g. 0.111 in the numerical example), since the DTSdirect

understates the amount of convergence that has actually occurred.

On the other hand, if there is an estimation error regarding the standard devia-

tion of earnings, such that only in the later part of the sample will the estimated

standard deviation have converged to its true value, then DTSdirect is unbiased.

The robustness tests in the previous section deal with this specific issue, and the

results indicate that on average σ is well measured in sample, even before the be-

ginning of the later part of the sample that constitutes the space for the sub sample

estimations.

4.18 Robustness 3: Estimating the standard de-

viation for growing EPS

There is still one more issue that warrants discussion. Careful consideration of the

estimation procedure for the (recursive) estimate of the standard deviation, shows

that the standard deviation is the spread around the time series mean43. When the

variable (EPS) is growing, the time series mean is generally lower than the current

level of earnings, around which the standard deviation of forecasts is centered (the

forecasts are of course centered on the mean estimate of earnings but this lies, as a

43This is speaking loosely. The standard deviation of course is in units of EPS, but centered on
time series average.
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general rule, close to the level of current earnings).

This suggests that perhaps a better way to analyze earnings would be in the form of

a return series, where the mean is better behaved. The theoretical implication here

is of course that agents are estimating the growth rate of earnings, which is what

they do, at least implicitly. Observations on the standard deviation in forecasts is

however not available on this basis44, and in order to carry out an analysis on this

level, the data has to be transformed. This is carried out below.

In the case of the example company Fifth Third Bancorp, earnings pre 2008 have

grown on average 8.4 percent annually, with a standard deviation of 14.7 percentage

points annually (implying that a one standard deviation interval for the growth in

earnings is 8.4 ± 14.7). If this would be considered to be the true (common signal)

distribution, then in accordance with the rate of convergence, after 10 periods the

maximum amount of dispersion would be given by 2.32 percentage points (0.158×
14.7) around the average return of 8.4 percent growth. Since the level of earnings

in 2007 is 2.03, the average growth that is to be expected from the data,45 equals

2.201, obtained simply from 2.03 × 1.084 (the level of earnings multiplied by the

average growth rate).

Since learning has occurred for 10 (in reality of course >10) periods, the aforemen-

tioned standard deviation of 2.32 percentage points around this value, applies. The

lower one standard deviation bound46 is given by 2.03 × (1.084 - 0.0232) = 2.1534.

Analogously for the upper one standard deviation bound 2.03 × (1.084 + 0.0232) =

2.2476. Consequently, in units of the current earnings, the implied standard devia-

tion, corresponding to (
√
V /σ)max, is 0.047 (2.201 ± 0.047). This is contrast to the

acceptance level that DTSdirect uses, which is equal to 0.115. (0.158 × 0.73, which

is the threshold value for n = 10, although the true threshold equals 13, and 0.73,

which is the standard deviation estimate for 2007).

What this shows is that the structuring of the variable DTSdirect gives a large

advantage in favor of the null.

44one could argue that LTG (long term growth) estimates are exactly this measure, but there
are reasons to suspect that apart from LTG having much fewer observations, analysts are nowhere
else putting as much effort as in getting the front EPS measure right.

45Being completely rigorous it is theoretically problematic to use this estimate, since it is exactly
this estimate agents, under the theory, are trying to learn.

46Observe that the standard deviation bound is not the subjective uncertainty, rather the value
that constitutes (maximum) dispersion.
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Chapter 5

Conclusion

5.1 Discussion and Conclusions

Traditional models for how financial analysts construct their forecasts predict that

dispersion in forecasts is driven by asymmetric information. When dispersion in

forecasts increases as a result of asymmetric (private) information, it simultaneously

implies that subjective uncertainty decreases, i.e. agents become more certain. In

contrast, empirically dispersion in forecasts tends to be large in environments, such

as firms experiencing losses, that heuristically indicate uncertainty. The hypothesis

that losses are linked to uncertainty originates from evidence in analysts written

reports, where analysts describe negative earnings environments as having low, or

weak visibility. Theory and evidence thus indicate contradictory explanations for

(increases in the) dispersion in forecasts. Theoretical models indicate that increased

dispersion implies increased subjective certainty, whereas anecdotal evidence from

analysts reports suggests that increased dispersion implies increased subjective un-

certainty.

Studies in Accounting Research typically take the private information assumption

as given, and consequently invoke the prediction of private information increasing

dispersion as a more or less untested explanatory factor for empirically observed

increases in forecast dispersion. This study shows that private information cannot

explain the observed magnitude of forecast dispersion.

The study is able to challenge the private information acquisition hypothesis for

increasing dispersion through the following. The study develops a representation/

application of the models of Barron et al. (1998) and Barry and Jennings (1992) that

explicitly takes into account the amount of common information that becomes avail-

able through earnings announcements over time. When companies release earnings
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to the market on an annual basis at minimum, (public) information about earnings

must successively add more information to analysts, causing convergence of individ-

ual beliefs. The study tracks the convergence of subjective beliefs that results from

common information and subsequently derives maximum bounds for dispersion in

forecasts, conditional on the amount of received common information. The study

then empirically tests the compatibility of the maximum bounds with observed lev-

els of forecast dispersion, conditional on the amount of common information that

has become available.

The main theoretical results are that not only does there exist a maximum amount

for dispersion1, but this maximum amount must decline monotonically over time at

a predetermined rate. The convergence of beliefs, and subsequently the convergence

of the maximum amount of dispersion, is an outcome of Bayesian learning where

agents must become more certain upon receiving more information. Each annual

earnings release contributes more information about the parameter that is being

forecasted and leads to a decrease in subjective uncertainty.

The simple Bayesian model in which each earnings release represents a draw from

a commonly observed signal distribution and leads to declining maximum amounts

of dispersion, is a single parameter model. The single parameter setup ensures that

the theoretically correct conditioning set is that of the signal distribution variance.

In this single parameter setting this conditioning variable, the informative distribu-

tion or Data Generating Process (DGP), is assumed to equal firm level earnings.

Through assuming that the observed historical sample variance of earnings has con-

verged sufficiently to represent population values, the empirical mapping replaces

the theoretical variance with observed historical earnings variance. In doing so, the

study is able to present the maximum level of dispersion as a ratio of the dispersion

in forecasts to earnings variability (
√
V /σ). When the true variance of signals is

time invariant, this ratio depends exclusively on the number of periods. Having es-

tablished the theoretical benchmark, the study empirically evaluates the maximum

bounds for dispersion in forecasts (
√
V /σ)max implied by the above model.

The main empirical result is that the magnitude of the dispersion in forecasts is not

compatible with the standard Bayesian learning model if agents treat the informa-

tive distribution as fixed. The theoretically implied maximum bound (
√
V /σ)max,

is exceeded in the data both in general, and further, especially around negative

earnings. This implies that the increases in dispersion cannot solely be driven by

an acquisition of private information.

1A result derived by Barry and Jennings (1992), where the maximum is attained for private
information being equal to common information.
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A second empirical result derives from the theoretical predication that if there have

been sufficient amounts of dispersion in the past, increases in private information

should yield decreases in dispersion. A straightforward implication of this theoretical

result is that one would expect to find numerous companies for which e.g. negative

earnings yield lower dispersion. One would consequently also expect the average

effect of losses on forecast dispersion to be muted or even negative. Such an effect

cannot be identified in the data.

The empirical results, where observed values for forecast dispersion breach theoret-

ically implied bounds, show that asymmetric information alone cannot explain the

magnitudes of disagreement, given the underlying model. The implication of these

results is that when dispersion increases, the explanation that rests on increased pri-

vate information and nesting increased subjective certainty, is rejected. The study

therefore challenges interpretations made in studies such as Lang and Lundholm

(1996), Adut et al. (2008), Ali et al. (2009), Barron et al. (2009), where (increases

in) forecast dispersion is thought to signify an increase in information asymmetry.

In light of the combined evidence of this study, information asymmetry alone can-

not cause levels of dispersion that are observed in the data and this study suggest

that conclusions in previous studies resting on the private information acquisition

hypothesis could benefit from being re-evaluated2.

In order to be able to explain magnitudes of forecast dispersion observed in the data,

this study offers an alternative mechanism capable of generating observed levels of

forecast dispersion. This explanation, that maintains the rational learning model,

but relaxes the ”fixedness” of the informative distribution, is that agents, when

faced with uncertain forecasting environments, such as those associated with firms

experiencing losses, actually treat the parameter as coming from a new distribution.

Agents must then restart learning, implying that they start out with new priors.

This encompasses the auxiliary implication that agents actually become more un-

certain about the parameter (earnings) they are estimating. In these environments

the interpretation on large increases in dispersion now changes dramatically; instead

of being the result of increased private information (with the implication of increased

certainty), increases in dispersion instead indicate real increases in uncertainty about

firm earnings. This explanation finds support in empirical estimations.

Apart from the empirical results of this study, the threshold level for the maximum

amount of dispersion can easily be applied by other researchers wishing to determine

2An earlier version (2007) of the Adut et al. (2008) paper does hypothesize loosely that bad
news environments could be associated with higher levels of uncertainty, but the Adut et al. (2008)
version of the paper subsequently moves the stance in favor of the private information acquisition
hypothesis.
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whether asymmetric information alone can be determined to be the driver behind

dispersion in analysts’ forecasts. The threshold level, (
√
V /σ)max =

√
1/4n, can

be used in a backward sense to assess what level of volatility/uncertainty for public

information, σ, observed levels of dispersion are compatible with, when one accepts

the assumption of signals being fixed over time. This results in σ(min) = 2
√
nV ,

which is now the minimum implied amount of volatility that the observed levels of

dispersion, in conjunction with the assumed length of learning, are compatible with.

If earnings volatility is below this level, it is equivalent with dispersion exceeding its

maximum value. The resulting value thus obtained for σ can be compared against

corresponding observed values in one’s data set, and can thus be used in evaluation

of the reasonability of the private information assumption being the single driver

behind disagreement in the data3.

5.2 Discussion on alternative theoretical explana-

tions

The combined theoretical and empirical results of this study indicate that the dis-

persion in forecasts (beliefs) cannot be explained by asymmetric information alone

in a rational Bayesian learning setup where learning about the parameter is fixed.

The study presents a possible mechanism to explain the observed magnitude of

forecast dispersion but alternative explanations are also possible. For example, the

derived maximums withhold the assumption of honest forecasting. E.g. Ottaviani

and Sorensen (2010) note in relation to the Keane and Runkle (1990) finding that

asymmetric (private) information drives differences in forecasts, that such conclu-

sions rest on the maintained assumption of honest forecasting and could also be

due to strategic forecasting. Since this study does not attempt to derive bounds for

dispersion in a setting similar to that of Ottaviani and Sorensen (2010), it is not

assessed directly whether strategic forecasting affects the results of this study.

In some sense the same caveat applies to Harris and Raviv (1993) and Kandel and

3As an example, Figure 12 shows that dispersion in forecasts in 2009 is 0.25. Since in light
of the current data set n = 14, σmin above becomes: σmin = 2

√
14 × 0.25 = 1.87. Because

the average coefficient of variation for all earnings in the sample was determined to be 1.76 in
Chapter 3, observed levels of dispersion in 2009 are either too high to be supported by private
information acquisition, or the volatility of earnings in the aggregate is measured incorrectly. These
results become even stronger when the restrictions on December fiscal year ends, as well as the full
availability of earnings histories are enforced. Dispersion in 2009 remains close to the value above,
and is 0.245, whereas the coefficient of variation for earnings drops to 1.35, implying greater
exceedance. Note however that this is just an example - as discussed at length previously, the
aggregate data used in Figure 12 is not necessarily directly comparable with theory, and neither
does it necessarily correctly identify n.
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Pearson (1995); since this study does not attempt to derive maximum bounds for

dispersion in a setup exactly equal to either one of the studies, it is difficult to make

explicit statements about whether their models can support the observed magnitude

of forecast dispersion. Nevertheless, it is possible that heterogeneous processing of

public information happens in reality, but whether it affects a model similar to the

one in this study is left open.

The results of this study also warrant a discussion on how they relate to Johnson

(2004). First, the conclusion that dispersion is related to uncertainty fits well with

Johnson (2004). The likelihood of the candidate explanation by Johnson (2004) in

driving the results here however, is somewhat difficult to assess. First, the continuous

time framework in Johnson (2004) makes a direct mapping difficult, and neither is

that the objective of this study. Secondly, Johnson (2004) is explicit about not

modeling the expectation formation process. As such, it is difficult to assess to

what bounds, if any, dispersion in his model has to conform. Johnson (2004) does

mention that ”Conversely, they [the forecasters] could all place enormous confidence

in their own estimates while differing wildly from each other”, but this is mentioned

in a more general discussion, not in context of the model. Obviously, such behavior

is not possible in the setup of this study, and the mere existence of a maximum

for the dispersion in forecasts, rules out such effects, depending on the definition

”wildly”.

On a more qualitative level there are similarities between Johnson (2004) and the

sketch of an explanation presented in this study. The theory in Johnson (2004) rests

on the idea of (unpriced) parameter risk, with a guiding notion that asset values

are unobservable. The explanation provided here, where agents must restart their

learning procedures qualitatively rests on a similar idea, since this is hypothesized

to occur when firms earnings processes undergo pre-unknowable shifts. In this sense

one could think of asset values or firm fundamentals as being unobservable, or at

least perhaps, unlearnable. Thus, while potential mechanisms might differ, the main

take away is the same in this study as in that of Johnson (2004) - dispersion is related

to uncertainty.

The Johnson (2004) model, however, has some further implications that are more

difficult to reconcile with the empirical evidence that dispersion is related to losses,

evidence strongly supported both in this study and to various extents in Adut et al.

(2008), Ali et al. (2009) and Xu and Zhao (2010). A particular implication derives

from the following, found in Johnson (2004): ”[T]o the extent that dispersion of

earnings expectations is under the control of firms themselves, they might actually

benefit, via a lower cost of equity capital, by increasing disagreement.” In a simplistic
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case where negative earnings are the only driver behind disagreement, firms knowing

the relation between losses and dispersion, could at least in this sense benefit from

reporting losses in order to increase the equity value of the firm. Such an effect

seems unlikely.

5.3 Discussion and implications for pricing

If increased dispersion implies increased uncertainty and the pathway for the un-

certainty increase is through an actual increase in the variance of the DGP, it is of

interest to consider potentially resulting asset pricing implications. First, however,

it is important to re-emphasize that the learning model analyzed in this study is

contained to the expectation formation process, and as such does not generate any

formal or direct asset pricing implications. Neither are the empirical estimations

asset pricing tests.

If uncertainty instead of asymmetric information drives dispersion, it fits intuitively

with Guntay and Hackbarth (2010) where dispersion is associated with higher credit

spreads, and Avramov et al. (2009), where dispersion is related to worse credit

ratings. Worse credit ratings and higher credit spreads could be interpreted as

resulting from increases in uncertainty4. A higher credit spread can be interpreted

as a higher required return, where the higher return is achieved through a lower price.

A similar pattern can be envisioned for stocks, where higher uncertainty would yield

price discounts. Avramov et al. (2009) find that in periods of deteriorating credit

conditions, firms with low credit ratings experience increases in dispersion and large

price drops. Concerning both stocks and bonds, investors would be willing to pay a

lower price for the uncertainty involved, since if the expectations of analysts proxy

for average investor expectations, the predictions could be assumed to carry over

in the sense that where analysts are more uncertain, the average investor becomes

more uncertain. Here the implication would be that investors are uncertainty-averse,

or that risk and uncertainty have a one to one correspondence. The above pricing

implications are, however, problematic, since results derived from evidence in this

4It is worth emphasizing that neither of the papers actually use the asymmetric information
explanation and instead both can be seen to derive the uncertainty premise from Johnson (2004).
Guntay and Hackbarth (2010) in fact suggest that uncertainty about future cash flows is the culprit
behind their result. Avramov et al. (2009) also lean towards a similar explanation. Avramov et
al. (2009) argue that financial distress drives the dispersion effect, and that periods of financial
distress are associated with rising uncertainty about firm fundamentals. The point here is to
consider which explanation, certainty or uncertainty fits the overall picture better. Also, the fact
that the uncertainty explanation seems the likelier choice, does not in itself refute an asymmetric
information explanation, but since the results of this study reject the asymmetric information
explanation, the fit with an uncertainty explanation warrants consideration.
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study imply all effects are idiosyncratic. The notion above where investors pay a

lower price for uncertainty is thus not a straightforward effect if uncertainty or risk

in this setting is not systematic.

The standard asset pricing prediction is that priced risk should lead to lower prices

(higher expected return). If dispersion proxies for risk, risk averse investors would

be willing to pay less for assets with higher dispersion. If the risk is priced, price

discounts arise due to prices being at levels such that the correctly priced assets

offer compensation for the risks in the form of higher expected returns. This is the

rationale behind the initial hypothesis in Diether et al. (2002) - if dispersion proxies

for priced risk, dispersion should be related to higher returns. The Diether et al.

(2002) finding is the exact opposite - dispersion is related to lower returns.

The question that arises is whether dispersion is a manifestation of risk, uncertainty

or both and if there are different idiosyncratic and systematic elements at play. The

theoretical results of this study are derived purely on a firm level, and thus models

the uncertainties of agents in an idiosyncratic setting. The evidence of this study

shows that stocks with high dispersion are associated with future losses, as evidenced

also in Adut et al. (2008). The conclusion of this study is also that (increases in)

dispersion indicate increased uncertainty about the future of the firms’ earnings,

occurring through a proposed pathway of increased variance or uncertainty for the

earnings distribution. This is qualitatively very similar to Guntay and Hackbarth

(2010), who advocate that ”dispersion appears to proxy largely for future cash flow

uncertainty in corporate bond markets”. If negative earnings indicate true increases

in idiosyncratic levels of uncertainty, then it is possible to have lower associated

returns. In fact, Johnson (2004) notes that an opposite risk return dynamic is indeed

possible when the risk is idiosyncratic - expected returns decrease with the level of

idiosyncratic risk. Furthermore, the evidence in Ali et al. (2008) suggests that the

Diether et al. (2002) dispersion lower return finding goes away after controlling for

the relation of future earnings.

A potential explanation that unifies the evidence of this study with that of the

evidence in the literature, is one where sudden increases in uncertainty5 force id-

iosyncratic elements to affect price adjustments. The reasoning is as follows. A

temporary increase in idiosyncratic uncertainty about a firm’s fundamentals first

5If increases in uncertainty are modeled as changes in the DGP, it poses problems for standard
asset pricing models since these usually require time series to be stationary. The stationarity of
time series is also a requirement for standard rational asset pricing to hold, since investors price
assets on the basis of their risks and expected returns. In order to be able to compute correct risks
and returns, distributions will generally have to be stable so that information can be summarized
by the first moments of the distribution.
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leads to higher dispersion as per the explanation proposed in this study. This in-

crease in uncertainty occurs because the firm itself undergoes an unexpected change.

If the uncertainty, indicated by dispersion, leads to subsequent future losses (and

permanent lower earnings), the value of the firm decreases. The dispersion - negative

future earnings association is confirmed by the results of this study, as well as those

in Ali et al. (2009) and Adut et al. (2008). Because of the increased uncertainty,

lower earnings and overall worsened situation of the firm, the stock price declines.

The declining prices in the worsened environment is confirmed by Avramov et al.

(2009). Sudden price declines should also by construction materialize as a lower

return. Consequently, the dispersion-return relation first documented by Diether et

al. (2002) is not surprising. A simultaneous worsened credit spread as in Guntay

and Hackbarth (2010), and credit downgrades as in Avramov et al. (2009) are in

some ways expected effects for abruptly worsened firm specific conditions. Finally,

once the pricing adjustment from the increase in idiosyncratic uncertainty is con-

cluded, learning and uncertainty stabilize and result in standard pricing predictions

applying.

The explanation for the observed magnitudes of dispersion in forecasts that this

study provides, where breaks in the earnings series cause increases in (idiosyncratic6

7) uncertainty and the restarting of estimation procedures, is in some sense only a

somewhat crude sketch of a potential mechanism. The fact that the simple Bayesian

model taking into account the convergence on common information cannot yield

observed levels of dispersion that are high enough, might be due to simply an over

simplified modelling setup. Perhaps more intricate ways of handling expectations, or

even more importantly models that encompass richer probability dynamics for the

DGP in models such as rational beliefs (Kurz, 1994), could provide a formal solution

to the problem, encompassing predictions an all phenomena relating to dispersion

6Note that the reason for discussing increases in uncertainty (changes in the DGP) as an id-
iosyncratic effect is that the model used in the study is idiosyncratic (in terms of information.
Recall that the model is not an asset pricing model). Potential structural changes might well have
a systematic element, in the sense that firms to different extents load on what would be interpreted
as a risk factor. The problem with this is however twofold. First, from a theoretical point of view,
having a systematic uncertainty increase across firms would potentially require a different informa-
tion structure, since agents could be learning about a firm’s earnings process through information
about other firms. Secondly, the Diether et al. (2002) result very much suggests that there is
indeed a systematic (cross sectional) pricing effect, but this effect is difficult to interpret as a risk
factor, precisely because the relation has the wrong sign.

7However, since the main regressions in Diether et al. (2002) utilize short return horizons, it is
not impossible that the negative dispersion return relation being picked up is temporary uncertainty
shocks. Increases in dispersion are followed by large price declines (Avramov et al., 2009) and at
least on a firm level, such an effect will show a short term negative return by construction. Whether
the downward adjusted prices following uncertainty and dispersion increases are rewarded with a
higher return over subsequent longer horizons, possibly supporting a risk factor explanation, is left
open.
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and uncertainty.

The above does however not alter the fact that standard conclusions of private

information yielding increases in dispersion, which are a direct consequence of the

underlying model, are shown not to hold in this study. The results of this study do

show that private information cannot explain observed levels of forecast dispersion.

Consequently, the private information acquisition assumption that implies increased

certainty when dispersion increases is rejected by the joint evidence of this study.

While there is no attempt made at horse racing the alternative mechanism presented

in this study against potential explanations from other theories, the alternative

explanation does find support in the data.

Generally, in what is correctly pointed out by Johnson (2004), we do not have data

on how confident forecasters are (subjectively) about their estimates, and data on

forecast dispersion cannot in itself come to the rescue. Conclusions from dispersion

data are thus always made in conjunction with a theory of how beliefs are formed.

This is as true in this study, as in others using data on forecast dispersion and

prediction on the direction of subjective uncertainty (increases/decreases) is assessed

indirectly, in conjunction with an underlying model. Interestingly however, there

exists unique data linking dispersion to subjective uncertainty in a study using the

NBER-ASA survey of economic forecasters by Zarnowitz and Lambros (1987) and

in Bomberger (1996) using Livingston survey data. Johnson (2004) summarizes

the link between dispersion and uncertainty resulting from the studies of Zarnowitz

and Lambros (1987) and Bomberger (1996) in that while caution in warranted in

interpreting the results of the two above studies, the intuition linking dispersion to

uncertainty is on solid ground.

In conclusion, the survey evidence by Zarnowitz and Lambros (1987) and Bomberger

(1996), the anecdotal evidence from analysts’ reports indicating increased uncer-

tainty, the explanations in Guntay and Hackbarth (2010), and Avramov et al.

(2009), and the joint evidence of this study where the increased certainty hypothesis

is clearly rejected, all strongly support the case for dispersion in forecasts in reality

being linked to future uncertainty.

5.4 Contributions

This final section of the study summarizes and makes explicit the various contribu-

tions that this study makes. These contributions are the following:
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1) On a very general level, this study points out the limitations of employing the

asymmetric information Bayesian Gaussian learning model as an explanation for

disagreement in practice. The main result is that given an assumed signal distribu-

tion (DGP) with a quantifiable fixed variance, only a handful of observations (signal

realizations) leads to the maximum magnitude of disagreement being constrained to

only a fraction of the variance of the DGP.

The result of the monotonically decreasing maximum amount of disagreement, along

with a notably small magnitude of disagreement in relation to the variance of the

DGP, can be seen as a combination of two elements. One element, the rate of

convergence on multiple realizations from an informative signal distribution, can

be traced back to a representation of Bayesian updating in standard textbook ex-

positions, such as in Gelman et al. (2004, pp. 49). The second element is that

theoretically disagreement attains its maximum when private information equals

common information, as shown by Barry and Jennings (1992). The contribution

lies in combining these two elements, yielding a model that accounts for both effects

simultaneously. Such a combination is justified by an aspiration for realism and

the notion of Brown (1993), who implicitly suggests that learning occurring around

earnings announcements is connected over multiple periods. The implications of the

model are monotonically declining maximum levels of disagreement and disagree-

ment levels that at maximum can only be a fraction of the variance of the assumed

signal distribution. The model and its implications are contributing in the following

ways:

-Constructing a model explicitly considering both elements, the rate of convergence

of learning and the maximum levels of disagreement, yields implications and restric-

tions on disagreement that are previously unexplored.

-A thorough analysis of the model implications, monotonically declining maximum

levels of disagreement and theoretically supported levels of disagreement that are

small in relation to the assumed DGP, illustrate the limitations of using the asym-

metric information Gaussian Bayesian learning model as model for attaining realistic

levels of disagreement.

-The implications from the model not only offer a contribution to the study of

dispersion in financial analysts’ forecasts, but offer a general theoretical contribution

to the use of Bayesian models of asymmetric information in economic modelling -

disagreement resulting from asymmetric information is small, and can at most be a

fraction8 of the uncertainty or variance of commonly observed information.

8The size of the fraction being guided by the number of realizations form the (fixed) informative
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2) The results of the study contribute directly to the literature in Accounting Re-

search, particularly to that concerned with dispersion in analysts’ forecasts. By

taking the purely theoretical results in 1) and proxying the variance of the DGP

with observed firm level historical variance, empirical estimations show that ob-

served levels of dispersion do not find theoretical support. In showing that observed

levels of forecast dispersion are too high to be supported by a standard Bayesian

learning model under asymmetric information augmented by an explicit considera-

tion of public information dissemination, the study challenges the use of increases

in forecast dispersion as evidence of increased information asymmetry alone. The

combined theoretical and empirical evidence of the study instead suggest alternative

explanations are needed to explain both increases and levels of forecast dispersion.

Where the standard interpretation of increased dispersion resulting from increases

in private information by construction must imply increases in certainty, the study

instead suggests that increases in dispersion may well be driven by increases in

subjective uncertainty.

While there exists studies that invoke a notion of uncertainty as an explanation

for dispersion in forecasts such as Guntay and Hackbarth (2010), Avramov et al.

(2009) and Johnson (2004), this study is the first to explicitly prove that the op-

posite explanation for forecast dispersion, asymmetric information, is in reality not

possible.

3) Finally, the results of this study can be easily employed by researchers wishing to

assess whether asymmetric information alone can drive disagreement. By assuming

that the DGP remains fixed, and the variance of the DGP can be reasonably proxied,

the study contributes by offering a simple formula for assessing whether observed

levels of dispersion are compatible with a theoretical explanation that encompasses

asymmetric information as the driver behind increases in forecast dispersion.

distribution.
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Appendix A

Consider a 2 period case. There are N agents (indexed by i:j,k,l,...,N) who forecast
an unknown earnings variable θ. At t = t0, an arbitrary point in time, there exists
only common information. Prior beliefs at t = t0, about θ are summarized by
θ ∼ N(µ0, τ

2
0 ). At t = t1, new information (common) arrives in the form of an

(annual) earnings release. This is modeled as a signal, observed by all agents,
informative on θ, and is parameterized as y ∼ N(θ, σ2) .1 Agents now update their
beliefs in accordance with equation (1) as:

µt1 = E[θ|y] =

1
τ20
µ0 + 1

σ2yt1
1
τ20

+ 1
σ2

.

Notice the use of µt1 directly, instead of the individual forecasts ut1i : since the infor-
mation in the realization, yt1 , is observed by all, everyone updates their expectation
equally.

At t = t2, agents gain access to private information. Private information is in-
troduced in the standard fashion; that is, as a signal, zi, informative on θ. In
particular, zi ∼ N(θ, ν2i ). The agent now observes its realization, zt2i and updates
his expectation of θ according to:

ut2j(6= ut2k) = E[θ|zi] =

1
τ21
µt1 + 1

ν2i
zt2i

1
τ21

+ 1
ν2i

.

Here, the posterior expectation, after having observed the signal at t = t2, is ex-
pressed in terms of the prior at t = t1.

2 In terms of the initial prior from t = t0, the
expectation takes the form:

ut2i = E[θ|zi] =

( 1
τ20

+ 1
σ2 )

( 1

τ20
µ0+

1
σ2
yt1

1

τ20
+ 1
σ2

)
+ 1

ν2i
zt2i

1
τ20

+ 1
σ2 + 1

ν2i

ut2i =

1
τ20
µ0 + 1

σ2yt1 + 1
ν2i
zt2i

1
τ20

+ 1
σ2 + 1

ν2i

(28)

1Here, the analysis does not take a stand on how σ2 and τ20 are related.
2Notice that generally, the variables in the conditioning set are indeed variables and therefore

not indexed by time. This makes the proposition that agents have to have knowledge of the
distributional properties of their signals explicit.
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It is informative to use the formulation above, which shows the dependence of agents
i’s time t = t2 expectation, ut2i, on the realization of y at time t = t1.

At both t = t0 and t = t1, µ0 and µt1 respectively do not depend on i, as all agents
make the same forecast. Consequently, dispersion is given by dt0 = 1

N−1
∑N

i=1(ut0i−
ūt0)

2 = 0 and dt1 = 1
N−1

∑N
i=1(ut1i − ūt1)2 = 0. At t = t2 however, dispersion will

be present since realizations of private signals will lead to ut2j 6= ut2k. It is therefore

the case that: dt2 = 1
N−1

∑N
i=1(ut2i − ūt2)2 ≥ 0.

To see why diversity cannot be directly predicted by information that is public
,consider a particular time t = t1 realization of y, y

t1
:

u2i = E[θ|zi] =

1
τ20
µ0 + 1

σ2yt1
+ 1

ν2i
zt2i

1
τ20

+ 1
σ2 + 1

ν2i

The realization y
t1

has already occurred at time t = t1, and is part of the prior of

agent i, who at time t = t2 observes a realization zt2i from zi ∼ N(θ, ν2i ). Recall
also that y (or in this case y

t1
) is a realization from y ∼ N(θ, σ2). Thus, y

t1
and zt2i

are realizations from two independent probability distributions, and any realization
from one distribution cannot predict realizations from the other.

Another way of seeing this is by noticing that dt2 is a function of ut2i (the differences
between the i’s being the driver behind the variation) and that the differences in
ut2i’s are determined by realizations of zi’s . Realizations from zi, are however
unpredictable, as they are driven by the white noise process εi ∼ N(0, ν2i ). As the
single driver behind variations in dt2 is the white noise process εi, it implies that dt2
is itself unpredictable. Therefore, it cannot be the case that any realizations, or sets
of realizations from y could predict dt2 .Q.E.D.
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Appendix B

This section shows how to derive the expression for the dispersion in forecasts,
through aggregating over all agents’ individual expectations.

The general form for the variance of ui is:

var(ui) =
1

N − 1

[(
hµ0 + sjzj
h+ sj

− 1

N

(
hµ0 + sjzj
h+ sj

+
hµ0 + skzk
h+ sk

+ ...+
hµ0 + sNzN
h+ sN

))2

+

(
hµ0 + skzk
h+ sk

− 1

N

(
hµ0 + sjzj
h+ sj

+
hµ0 + skzk
h+ sk

+ ...+
hµ0 + sNzN
h+ sN

))2

+ ...

...+

(
hµ0 + sNzN
h+ sN

− 1

N

(
hµ0 + sjzj
h+ sj

+
hµ0 + skzk
h+ sk

+ ...+
hµ0 + sNzN
h+ sN

))2 ]
.

The dispersion in forecasts is the variance of individual forecasts. By assuming just
one private signal distribution (but different realizations), it is possible to derive an
expression for the dispersion in forecasts:

var(ui) =
1

N − 1

[

hµ0 + szj
h+ s

− 1

N

(
hµ0 + szj
h+ s

+
hµ0 + szk
h+ s

+ ...+
hµ0 + szN
h+ s

)
︸ ︷︷ ︸

(iv)︸ ︷︷ ︸
(v)︸ ︷︷ ︸

(vi)



2

+

+

(
hµ0 + szk
h+ s

− 1

N

(
hµ0 + szj
h+ s

+
hµ0 + szk
h+ s

+ ...+
hµ0 + szN
h+ s

))2

+ ...

...+

(
hµ0 + szN
h+ s

− 1

N

(
hµ0 + szj
h+ s

+
hµ0 + szk
h+ s

+ ...+
hµ0 + szN
h+ s

))2 ]
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Combining terms in (iv) gives (iv):

hµ0 + szj + hµ0 + szk + ...+ hµ0 + szN
h+ s

s(zj + zk + ...+ zN) +N × hµ0

h+ s

s(
∑N

i=1 zi) +N × hµ0

h+ s

Multiplying in 1/N gives (v):

s( 1
N

∑N
i=1 zi) + hµ0

h+ s

Where 1
N

∑N
i=1 zi is the mean of the signal realizations. Now consider (vi):

hµ0 + szj
h+ s

−

(
s( 1

N

∑N
i=1 zi) + hµ0

h+ s

)
hµ0 + szj − s( 1

N

∑N
i=1 zi)− hµ0

h+ s

This is an important step since it can now be seen that dependence on (all) prior
information drops out from the expression for the variance of ui, through the elimi-
nation of hµ0. (vi) thus becomes:

szj − s( 1
N

∑N
i=1 zi)

h+ s

The variance expression now looks like:

var(ui) =
1

N − 1

[(
szj − s( 1

N

∑N
i=1 zi)

h+ s

)2

+

(
szk − s( 1

N

∑N
i=1 zi)

h+ s

)2

+ ...

...+

(
szN − s( 1

N

∑N
i=1 zi)

h+ s

)2 ]

var(ui) =
1

N − 1

[
s2(zj − 1

N

∑N
i=1 zi)

2

(h+ s)2
+
s2(zk − 1

N

∑N
i=1 zi)

2

(h+ s)2
+ ...

...+
s2(zN − 1

N

∑N
i=1 zi)

2

(h+ s)2

]
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Sum over the squared differences from the mean of the realizations. The realizations
are indexed by i = j, k, l, ..., N , so we thus have

∑N
i=1(zi−

1
N

∑N
i=1 zi)

2, yielding the
following expression for the variance:

var(ui) =
1

N − 1

[
s2[(zj − 1

N

∑N
i=1 zi)

2 + (zk − 1
N

∑N
i=1 zi)

2 + ...+ (zN − 1
N

∑N
i=1 zi)

2]

(h+ s)2

]

var(ui) =
1

N − 1

[
s2[
∑N

i=1(zi −
1
N

∑N
i=1 zi)

2]

(h+ s)2

]

Now multiply in 1
N−1 and observe that now the right-hand tem in the numerator is

the expression for the variance of zi:

var(ui) =

s2

var(zi)︷ ︸︸ ︷[
1

N − 1

N∑
i=1

(zi −
1

N

∑
i=1

Nzi)
2

]
(h+ s)2

Recalling that the variance of zi was given by ν2i and furthermore that ν2i = 1/si (or
in this case ν2 = 1/s) , it is the case that:

var(ui) =
s2ν2

(h+ s)2
=

s2 1
s

(h+ s)2

Which finally yields:

var(ui) =
s

(h+ s)2

This final result is the same as the one given in Eq. 19 in Barron et al. (1998).
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Appendix C

This section expands the analysis of forecast dispersion from Appendix B, and de-
rives an expression for the variance of forecasts in a case where agents are not
assumed to have equal priors and receive both private and commonly observed sig-
nals. This corresponds to a period following a period where agents already received
(one, or a sequence of identical) private signals.

Again, only one signal distribution is assumed (but different realizations across all
agents). Before proceeding, notice that the first term in (vi), (huj + szj + ry)/(h+
s+ r), actually implies1:

h(n)u(n−1)j + s(n)z(n)j + ry

h(n) + s(n) + r
(29)

but time subscripts are suppressed for notational clarity throughout the derivations.
The rationale for u(n−1)j referring to the previous period, n − 1, is that the prior
that agents use are their posteriors from the previous periods. At this point, the
priors, u(n−1)i, are not specified in any way, and thus the analysis is general. Thus,
the sub-indices, j, refer to the same agent but are temporally separated, and by
assumption, uncorrelated (This obviously applies analogously to the other terms as
well).

The expression for the variance is now given by:

var(uni) =

1In regards to the model in ”The Model”, where the n = 2 forecast is analyzed, this would
imply: u2i = (h(2)u(1)i + s(2)z(2)i + ry)/(h(2) + s(2) + r)
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=
1

N − 1

[

huj + szj + ry

h+ s+ r
− 1

N

(
huj + szj + ry

h+ s+ r
+
huk + szk + ry

h+ s+ r
+ ...+

huN + szN + ry

h+ s+ r

)
︸ ︷︷ ︸

(iv)︸ ︷︷ ︸
(v)︸ ︷︷ ︸

(vi)



2

+

(
huk + szk + ry

h+ s+ r
− 1

N

(
huj + szj + ry

h+ s+ r
+
huk + szk + ry

h+ s+ r
+ ...+

huN + szN + ry

h+ s+ r

))2

...+

(
huN + szN + ry

h+ s+ r
− 1

N

(
huj + szj + ry

h+ s+ r
+
huk + szk + ry

h+ s+ r
+ ...+

huN + szN + ry

h+ s+ r

))2 ]
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Combining terms in (iv) gives (iv):

huj + szj + ry + huk + szk + ry + ...+ huN + szN + ry

h+ s+ r

s(zj + zk + ...+ zN) + h(uj + uk + ...+ uN) +N × ry
h+ s+ r

s(
∑N

i=1 zi) + h(
∑N

i=1 ui) +N × ry
h+ s+ r

Multiplying in 1/N gives (v):

s( 1
N

∑N
i=1 zi) + h( 1

N

∑N
i=1 ui) + ry

h+ s+ r

Where 1
N

∑N
i=1 zi is the mean of the signal realizations and 1

N

∑N
i=1 ui is the mean

of the priors, containing past signals . Now consider (vi):

huj + szj + ry

h+ s+ r
−

(
s( 1

N

∑N
i=1 zi) + h( 1

N

∑N
i=1 ui) + ry

h+ s+ r

)
huj + szj − s( 1

N

∑N
i=1 zi)− h( 1

N

∑N
i=1 ui)

h+ s+ r

Whereas in Appendix B, all dependence on the prior dropped out of the numerator,
this is not the case here2 and (vi) looks like :

szj − s( 1
N

∑N
i=1 zi) + huj − h( 1

N

∑N
i=1 ui)

h+ s+ r

The variance expression now looks like:

var(uni) =
1

N − 1

[(
szj − s( 1

N

∑N
i=1 zi) + huj − h( 1

N

∑N
i=1 ui)

h+ s+ r

)2

+

(
szk − s( 1

N

∑N
i=1 zi) + huk − h( 1

N

∑N
i=1 ui)

h+ s+ r

)2

+ ...

...+

(
szN − s( 1

N

∑N
i=1 zi) + huN − h( 1

N

∑N
i=1 ui)

h+ s+ r

)2 ]
2notice however that all dependence of the last common signal, y, drops out of the numerator.

The variance remains affected by the common information however, through the scaling by r.
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var(uni) =
1

N − 1

[(
[szj − s( 1

N

∑N
i=1 zi)] + [huj − h( 1

N

∑N
i=1 ui)]

h+ s+ r

)2

︸ ︷︷ ︸
(vii)

+

(
[szk − s( 1

N

∑N
i=1 zi)] + [huk − h( 1

N

∑N
i=1 ui)]

h+ s+ r

)2

+ ...

...+

(
[szN − s( 1

N

∑N
i=1 zi)] + [huN − h( 1

N

∑N
i=1 ui)]

h+ s+ r

)2 ]
Expanding (vii), we have:

[szj − s( 1
N

∑N
i=1 zi)]

2 + 2[szj − s( 1
N

∑N
i=1 zi)][huj − h( 1

N

∑N
i=1 ui)] + [huj − h( 1

N

∑N
i=1 ui)]

2

(h+ s+ r)2

s2[zj − ( 1
N

∑N
i=1 zi)]

2 + 2sh[zj − ( 1
N

∑N
i=1 zi)][uj − ( 1

N

∑N
i=1 ui)] + h2[uj − ( 1

N

∑N
i=1 ui)]

2

(h+ s+ r)2

Using (vii) in the expression for the variance we have:

var(uni) =
1

N − 1

[
s2[zj − ( 1

N

∑N
i=1 zi)]

2 + 2sh[zj − ( 1
N

∑N
i=1 zi)][uj − ( 1

N

∑N
i=1 ui)] + h2[uj − ( 1

N

∑N
i=1 ui)]

2

(h+ s+ r)2

+
s2[zk − ( 1

N

∑N
i=1 zi)]

2 + 2sh[zk − ( 1
N

∑N
i=1 zi)][uk − ( 1

N

∑N
i=1 ui)] + h2[uk − ( 1

N

∑N
i=1 ui)]

2

(h+ s+ r)2
+..

...+
s2[zN − ( 1

N

∑N
i=1 zi)]

2 + 2sh[zN − ( 1
N

∑N
i=1 zi)][uN − ( 1

N

∑N
i=1 ui)] + h2[uN − ( 1

N

∑N
i=1 ui)]

2

(h+ s+ r)2

]

Since we are summing over all agents (realizations) i = j, k, l, ..., N , the variance
can be expressed as:

var(ui) =
1

N − 1

[
s2
∑N

i=1[zi − ( 1
N

∑N
i=1 zi)]

2

(h+ s+ r)2

+
2sh

∑N
i=1[zi − ( 1

N

∑N
i=1 zi)][ui − ( 1

N

∑N
i=1 ui)]

(h+ s+ r)2

+
h2
∑N

i=1[ui − ( 1
N

∑N
i=1 ui)]

2

(h+ s+ r)2

]
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Multiplying in 1
N−1 , and using the fact that ui is actually un−1i:

var(uni) =

[s2
var(zi)︷ ︸︸ ︷

[
1

N − 1

N∑
i=1

(zi −
1

N

N∑
i=1

zi)]
2

(h+ s+ r)2

+

2sh

covar(zi,un−1i)︷ ︸︸ ︷
[

1

N − 1

N∑
i=1

(zi −
1

N

N∑
i=1

zi)(ui −
1

N

N∑
i=1

ui)]

(h+ s+ r)2

+

h2

var(un−1i)︷ ︸︸ ︷
[

1

N − 1

N∑
i=1

(ui −
1

N

N∑
i=1

ui)
2

(h+ s+ r)2

]

Which for simplicity can be written:

var(uni) =
s2[var(zi)]

(h+ s+ r)2
+

2sh[covar(zi, un−1i)]

(h+ s+ r)2
+
h2[var(un−1i)]

(h+ s+ r)2

First note that the covariance term is equal to zero as long as signals are drawn
independently3.

Thus, for this analysis, where independence is assumed, we have:

var(uni) =
s2[var(zi)] + h2[var(un−1i)]

(h+ s+ r)2

,putting back all relevant time subscripts, we have the final result:

var(uni) =
s2n[var(zni)] + h2n[var(un−1i)]

(hn + sn + r)2
(30)

,where the subscripts on s result from the fact that this is the latest signal, received
at time n.

3This is not the same as having correlated draws at each period, rather here the assumption is
only that signals are independent across time.
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Appendix D

This section derives an expression for the evolution of forecast dispersion over time.
Time subscripts on the private signal are omitted since the signal is assumed to be
constant over time and thus s1 = s2 = ... = sn = s. The indices on the variables
are the ones referring to the period, labeled n-indexing, described in ”The Model”
in detail.

Agents make their initial forecasts from information contained in their common prior
and individual signal realizations (this is labelled n=1). The study now considers
what happens at n=2 and onwards.

Starting with the result preceding the final result for the variance of the forecasts
from Appendix C (and writing u1i = ui) , for n = 2 we have:

var(u2i) =
s2[var(zi)] + h2[var(ui)]

(h+ s+ r)2

Recalling that the variance of zi was given by ν2 and furthermore that ν2 = 1/s,
the variance expression becomes:

var(u2i) =
s2 1

s
+ h2[var(ui)]

(h+ s+ r)2
=
s+ h2[var(ui)]

(h+ s+ r)2

The question is: what is the variance of the prior (ui)? One might be tempted
to plug in the variance for the private signal, 1/s, as the variance of the prior is
driven by the variance of the signal. This is not correct however, since the extent
to which the variance of the prior is affected by the variance of the private signal
in the previous (first) period, will depend on the weights that were placed on the
signal and the prior in the previous (first) period.

The answer lies in observing that the variance of the prior in the expression above,
or expressed in another way: the uncertainty of the prior at n = 2, is given by the
variance of the posteriors from the previous (first) period (where the prior was a con-
stant). The cross sectional variance of the posteriors (forecasts) is given exactly by
the expression for the variance of the forecasts from Appendix C: var(ui) = s

(h1+s)2
,

as agents will, in a ”closed” context, use their posteriors from the previous period
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as their prior in the current period (Gelman et al., 2004). Note that h1 denotes the
precision on commonly available information at the outset/first/beginning period.

Now, put time-subscripts on the precision of the prior in the expression for the
variance of the forecasts at n = 2 (var(u2i)):

var(u2i) =
s+ h22[var(ui)]

(h2 + s+ r)2

Next, substitute var(ui) with the expression for the variance, or uncertainty, from
the first period,

var(ui) =
s

(h1 + s)2

Yielding:

var(u2i) =
s+ h22(

s
(h1+s)2

)

(h2 + s+ r)2

Since precisions add linearly1, assuming that the previous period was the first, con-
sisting of a common prior and a private signal part, we can express the precision at
n = 2 in terms of the precision and the signal at n = 1: h2 = h1 + s. Substituting:

var(u2i) =
s+ (h1 + s)2( s

(h1+s)2
)

(h1 + s+ s+ r)2

var(u2i) =
2s

(h1 + 2s+ r)2

The final step is noticing that that the weight placed on the common signal y, is r
and is in this case equal to h1, since y is in this case a (commonly observed) signal,
and agents will weight it by its perceived precision h1, obtained from the historical
record. Thus r = h1, so we have that:

var(u2i) =
2s

(h1 + 2s+ h1)2
=

2s

(2h1 + 2s)2

1Look at e.g. Eq. (2), or Gelman et al. (2004). τ21 =
(

1
τ2
0

+ 1
σ2

)−1
⇔ 1

τ2
1

= 1
τ2
0

+ 1
σ2 . Using

precisions: h1 = h0 + s. Note however that this is in terms of t-indexing, which in terms of
n-indexing is h2 = h1 + s.

140



Analogously, for n=3, we have:

var(u3i) =
s+ h23[var(u2i)]

(h3 + s+ r)2

var(u3i) =
s+ h23(

2s
(2h1+2s)2

)

(h3 + s+ r)2

and using h3 = h2 + s+ r = h1 + s+ s+ r = h1 + s+ s+ h1 = 2h1 + 2s, we have:

var(u3i) =
s+ (2h1 + 2s)2( 2s

(2h1+2s)2
)

(2h1 + 2s+ s+ h1)2

var(u3i) =
3s

(3h1 + 3s)2

Simple forward substitution then gives the main result:

var(uni) =
ns

(nh1 + ns)2

Using variances instead of precisions:

var(uni) =
n 1
ν2

(n 1
τ2

+ n 1
ν2

)2

Re-arranging finally yields:

var(uni) =
(τ 2)2ν2

n(τ 2 + ν2)2

, where τ 2 refers to the initial starting prior.

It was noted earlier that r = h1, so we can also express the main result in terms of
r:

var(uni) =
ns

(nr + ns)2
(31)

, implying that that the variance distribution used is the observable historical vari-
ance σ2, so we have:

var(uni) =
(σ2)2ν2

n(σ2 + ν2)2
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Appendix E

This section attempts to illustrate more intuitively how the variable DTSdirect
(
√
V /σ) performs under different assumptions for σ. In the example, there is a

negative earnings realization at t = T . As usual, this increases both dispersion in
forecasts at t = T , as well as σt>T .

The measures in the figure below are described in event time. There is a negative
earnings realization occurring at t = T .
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Figure 17

1.
√
V , is the observed standard deviation of forecasts.

2. (
√
V /σ(T−1))max. In the empirical estimations, this is the threshold value for

the maximum bound, as a function of n, corresponding to the measuring of DTSdi-
rect in the study. It compares the standard deviation in forecasts with the lagged
value of the (recursive) standard deviation of earnings, which in turn is assumed to
constitute σ. Here however, since the analysis only pertains to one company, the
bound (

√
V /σ(T−1))max is actually multiplied through by σ(T−1), so that in the Fig-

ure, the bound is directly in units of the standard deviation of forecasts (earnings).
The maximum (threshold) value for dispersion,

√
V max, (not the bound) at T is

approximately 0.10. The calculation resulting in the value is described below.
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Using Eq. (18) , where Vmax is shorthand for varmax(uni), Vmax = 1/4nr⇔
√
V max =√

1/4nr ⇔
√
V max/

√
1/r =

√
1/4n. Since (1/r) = σ2 it follows that

√
V max/σ =√

1/4n, or in the notation of the study: (
√
V /σ)max =

√
1/4n.

At t = T , real n is equal to 13 and consequently the maximum value for DTSdirect
(maximum threshold value for n = 13) is thus 0.1387. Through multiplying by
σ(T−1), which here equals 0.74, we get 0.10 for the absolute maximum magnitude for

the dispersion in forecasts,
√
V , given that σ(T−1) corresponds to agents’ information

sets.

Obviously, the standard deviation of forecasts,
√
V (line 1), heavily exceeds this

maximum value at t = T . The value of
√
V at t = T equals 0.64.

3. (
√
V /σ(t>T ))max. This is the corresponding implied threshold using forward

looking information. However, due to the break in the earnings series occurring
at T , conditioning on σ(t>T ) for t < T is suspect. Again, in the Figure, the bound

(
√
V /σ(t>T ))max is multiplied by σ(t>T ) so that it is in the same units as the standard

deviation of forecasts (earnings) for the company.

4. (
√
V /σ̂)max. The notation here is somewhat off. This is actually the maximum

level in absolute dispersion, calculated through assuming that the estimated σ at
each step is the noise of the signal. A better notation would be (

√
V )max|σ̂, or (

√
V |

σ̂)max, where σ̂ is understood to refer to the standard deviation being estimated
separately at each step.

5. σ estimated on a rolling, lagged basis, as in the study.

143



Fredrik Le Bell

The Time Series Convergence of 
Dispersion in Financial Analysts’  
Forecasts

Fredrik Le Bell | The Tim
e Series C

onvergence of D
ispersion in Financial A

nalysts’ Forecasts | 2014

Fredrik Le Bell

The Time Series Convergence of 
Dispersion in Financial Analysts’ 
Forecasts
Financial analysts play an important role in capital markets as informa-
tion intermediaries. In filtrating information, resulting in earnings fore-
casts, analysts generally tend to disagree. This thesis focuses on the disa-
greement between financial analysts.  

Previous research and data indicate that when a company reports losses, 
analysts start disagreeing more about the future earnings of that compa-
ny. Intuition would suggest that this is due to more uncertainty. Anecdotal 
evidence from analysts earnings reports corroborates this intuition,  find-
ing analysts more uncertain around negative earnings, precisely where 
disagreement tends to increase.

However, the theoretical models for belief formation that lay the math-
ematical foundations for this thesis, incorporate a somewhat strange 
implication - If analysts start disagreeing more, it can only mean they 
become more certain. In the theoretical setup, one that is used exten-
sively in the literature, it is only asymmetric information that can give rise 
to increased disagreement. 

In order to resolve the certainty/uncertainty contradiction, this thesis 
shows that a model taking into account the public information flow in 
earnings announcements over time, can produce only small levels of disa-
greement between analysts, levels of disagreement that are too small to 
encompass observed levels of disagreement.

As a result, this thesis concludes that the theoretical models used in the 
literature for explaining analyst disagreement, as such seem insufficient, 
and increases in disagreement could instead be interpreted as increased 
uncertainty, in accordance with evidence from analysts’ reports.

The evidence in this thesis contributes to the Accounting literature, since 
many studies employ these models the other way around, in that when 
an increase in disagreement in empirical data is observed, the observed 
disagreement is thought to signify an increase in asymmetric informa-
tion. Extensive reliance on the underlying models obscures our under-
standing of the uncertainty dynamics around e.g. earnings announce-
ments. Earnings announcements are paramount for price discovery in 
practice, and are also extensively studied in the Accounting literature. 
The results in this thesis indicate that conclusions in other studies regar-
ding increases in disagreement resulting from information asymmetry 
might be premature.  
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