Multi-source ingestion of publisher articles
The SCOAP3 repository experience

Wojciech Ziółek & Samuele Kaplun
CERN, SCOAP3

Open Repositories, Helsinki 2014
AGENDA

• SCOAP3
 • What is it?
 • How does it work?
• Mission of the repository
• Software
 • Software base
 • Content ingestion
 • Compliance checks
 • Future development
• Summary
SCOAP³ – Sponsoring Consortium for Open Access Publishing in Particle Physics

Sponsoring Consortium for Open Access Publishing in Particle Physics
HOW DOES IT WORK?

Libraries → money fair share → SCOAP3 → money APC → Publishers → manuscripts → Authors

> 2000 libraries, institutes and funding agencies from 35 countries

Elsevier, Springer, Hindawi, IOP, OUP, Jagiellonian University

Articles are immediately Open Access and CC-BY
Welcome

SCOAP3 has started in January 1st 2014. These pages provide background information and news as we start operations. The first SCOAP3 articles are already available and the SCOAP3 Repository has launched in beta.

SCOAP3 is a one-of-its-kind partnership of thousands of libraries and key funding agencies and research centers in two dozen countries. Working with leading publishers, SCOAP3 is converting key journals in the field of High-Energy Physics to Open Access at no cost for authors. SCOAP3 is centrally paying publishers for the costs involved in providing Open Access, publishers in turn reduce subscription fees to their customers, who contribute to SCOAP3. Each country participate in a way commensurate to its scientific output in this field. In addition, existing Open Access journals are also centrally supported, removing any existing financial barrier for authors.

As a result, articles are Open Access, the copyright stays with the authors, permissive CC-BY license allow text- and data-mining applications.

SCOAP3 is looking forward to establishing further partnerships worldwide. Scientists will freely enjoy the advantages of Open Access: their libraries and institutions can make this happen.

http://scoap3.org/
SCOAP3 repository

Welcome to the SCOAP3 repository.
Here you can freely search, browse and of course download all Open Access articles sponsored by the international SCOAP3 initiative.

In the coming months, and as more articles become available, we will make available tailored feeds of metadata and articles. We will also provide SCOAP3 participating libraries API access.

For information on SCOAP3, and how to join, please visit scoap3.org.

http://repo.scoap3.org/
SCOAP3 is based on Invenio Software.
SCOAP3 - specific development on top of Invenio

Compliance checks

Content ingestion

Export services

https://github.com/SCOAP3
CONTENT INGESTION

robot upload

OAI-PMH

FTP server

Different formats

JATS NLM
A++ Elsevier
(Springer) XML
COMPLIANCE CHECKS

- Integrity of delivered files
- PDF Open Access on Publishers' sites
- Immediate (within 24 hours) availability
- Metadata
- Open Access conditions
OPEN ACCESS CONDITIONS

"funded by SCOAP3"

Copyright not transferred to publishers
Meson decays in an extended Nambu-Jona-Lasinio model
with heavy quark flavors

ZIGE Wu (吴自吉) (1) CHEN Xue-Lei (陈雪雷) (2)
IOPscience

Abstract: In a previous work, we proposed an extended Nambu-Jona-Lasinio (NJL) model including heavy quark flavors. In this work, we will study radiative and nonradiative decays of vector mesons in this extended NJL model, including light quark q, q^* and heavy c, c^*, b, b^*. The radiative decays are studied in the light and heavy mesons sectors.

1 Introduction

The Nambu-Jona-Lasinio (NJL) model [1, 2], in its original form as a quark QCD theory, was constructed to incorporate the dynamics of quark degrees of freedom [3, 4]. The most important feature of the NJL model is the chiral symmetry of the Lagrangian plus a chiral symmetry breaking potential. The model was first introduced by the NJL, that is, the NJL model was generalized to include heavy quark flavors. Both the chiral symmetry in the light meson sector and the spin symmetry in the heavy meson sector were proposed to be effective in the framework of NJL.

In the above work [2], the authors introduced two coupling constants C and D for the light meson sector and another different coupling C' for the heavier mesons. In this work, we will study radiative and nonradiative decays of vector mesons in this extended NJL model, including light quark q, q^* and heavy c, c^*, b, b^*.

1 Introduction

In the present work, we propose a solution to extend the NJL model to incorporate the heavy quark flavors. The NJL interactions were expanded with respect to $1/m$, where m is the constituent quark mass, just like the expansion in the heavy quark effective theory (HQET). Naturally, the vector-current interaction is dominant with other interactions, such as the dressed axial-vector current, should be $1/m$ suppressed. We have performed numerical calculations for both the light and heavy meson sectors. The results of the experimental data were quite well. The decay constants of heavy mesons were also calculated and compared with the experimental values, being generally a factor of 2.

The strong and radiative decays provide insights into the high-energy dynamics and the structure of the meson sector. The results of this work will be of interest to experimentalists and theorists.

This work was supported in part by the National Natural Science Foundation of China.

1 Introduction

In the present work, we propose a solution to extend the NJL model to incorporate the heavy quark flavors. The NJL interactions were expanded with respect to $1/m$, where m is the constituent quark mass, just like the expansion in the heavy quark effective theory (HQET). Naturally, the vector-current interaction is dominant with other interactions, such as the dressed axial-vector current, should be $1/m$ suppressed. We have performed numerical calculations for both the light and heavy meson sectors. The results of the experimental data were quite well. The decay constants of heavy mesons were also calculated and compared with the experimental values, being generally a factor of 2.

The strong and radiative decays provide insights into the high-energy dynamics and the structure of the meson sector. The results of this work will be of interest to experimentalists and theorists. This work was supported in part by the National Natural Science Foundation of China.
FUTURE DEVELOPMENT

- OAI-PMH feed
 - Now
- RSS
 - 2Q2014
- API access
 - 3Q2014
- Improved author attribution
 - 3Q2014
- Advanced query builders
 - 4Q2014
- Advanced handling of author affiliations
 - 1Q2015
SUMMARY

• Very interesting Open Access experiment and full collaboration with 6 publishers.
• Still, very different standards and lots of hard work.
• Data cleaning and large-scale automatic checks are hard.
• Looking forward to opening OAI-PMH feeds and other services for third parties to reuse this content.

info@scoap3.org